TeECHNICAL RESEARCH REPORT

On Parallel-Machine Scheduling with

Operator-Constrained Setups

by J.W. Herrmann, C-Y. Lee

T.R. 94-85

IR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

On parallel-machine scheduling with
operator-constrained setups

Jeffrey W. Herrmann
Institute for Systems Research
University of Maryland, College Park

Chung-Yee Lee
Department of Industrial and Systems Engineering
University of Florida

November 1, 1994
Abstract

The processing of a task on a machine often requires an operator to setup the job.
In this paper we consider the problem of scheduling a finite set of jobs on a number
of identical parallel machines. Each job has a setup that must be performed by an
operator, who can perform only one setup at a time. We examine the problems of min-
imizing the schedule makespan. Our results include complexity proofs, special cases
that can be solved in polynomial time, lower bounds, and approximation algorithms
with error bounds.

1 Introduction

In many manufacturing environments, a set of machines is overseen by an operator who
must setup a machine for processing a task. Once setup, however, the machine can
run until the end of the task without operator intervention. In this paper we consider
the problem of scheduling such a system of semiautomatic machines.

We are given a set of identical machines, a set of jobs, and one operator. Each job
consists of both a setup that must be performed by the operator and a task. Both
the setup and the task have to be scheduled on a machine (the task must immediately
follow the setup). The operator can perform only one setup at a time; thus, schedul-
ing the jobs on the machines also requires scheduling the setups for the operator. A
machine can perform only one task at a time, and preemption is prohibited.

The problem is one of scheduling the tasks on the machines in order to minimize
the makespan, which is defined as the time between the start of the first setup and the

completion of the last task.

The problem can be denoted as follows: There exists a set of m machines M;,
j =1,...,m. There exists a set of n jobs J;, i =1, ...,n. Job J; requires a setup of time

1

s; and processing for time p;.

This problem is quite similar to the machine interference problems studied by Miller
and Berry (1974, 1977), Aronson (1984), and Stecke and Aronson (1985); these prob-
lems have many identical jobs preassigned to each machine. In addition, Koulamas
and Smith (1988) and Koulamas (1993) study heuristics for parallel machines, preas-
signed jobs, and a common server. Hall, Potts, and Sriskandarajah (1994) review this
previous work and provide a complete analysis of the complexity of various parallel
machine scheduling problems with a common server. In this paper we describe the
performance of a number of heuristics that can be used to find approximate solutions
and a number of special cases that can be solved optimally in polynomial time. This
work was done independently of the work by Hall, Potts, and Sriskandarajah.

Researchers have studied many different problems associated with scheduling par-
allel automatic machines, including those problems with sequence-independent setups,
in which case the setups are included in the processing time, and those with sequence-
dependent setups, which lead to traveling salesman problems. For these problems, it
is assumed that the machines or resources can setup themselves. The problem of min-
imizing makespan on parallel identical machines with no sequence-dependent setups
is a strongly NP-complete problem, as shown by Garey and Johnson (1978). Tang
(1990), Geoffrion and Graves (1976), and Parker, Deane, and Holmes (1977) all study
parallel-machine scheduling problems with setups or changeover costs. Some resource-
constrained scheduling problems have been considered, but all except the simplest
problems are computationally complex. Additional research has studied very general
formulations. Surveys of such results can be found in Lawler, Lenstra, Rinnooy Kan,
and Shmoys (1989) and Cheng and Sin (1990).

The rest of the paper is organized as follows: Section 2 provides a basic result for
the general case. In Section 3 we consider some special cases and prove that even
a special case of our problem is strongly NP-complete. We discuss in Section 4 a
branch-and-bound for the general makespan problem. Section 5 presents a number of
heuristics and their corresponding error bounds, and Section 6 presents the results of
the empirical testing of those algorithms. Section 7 concludes the paper with a look at
possible future directions.

2 Basic Results

Any schedule can be considered as a sequence of setups, since the operator can perform
only one setup at a time. For a given schedule, we say that a machine M; is available
at time ¢ if the machine completes the processing of the last task at time t.

Lemma 1 (First Available Machine) For any regular objective function, there ez-
ists an optimal schedule in which each setup is done on the first available machine.
(There exists no machine that is available earlier than the machine on which the job is
setup.)

Proof. Suppose we are given an optimal schedule with the following property: Job J;
is setup on machine M at time ¢;, M, is available at some time ¢; < ¢;, and machine
M, is available at some time ¢, < t;. Let J, be the job setup on M, at time ¢, > t;, if
such a job exists. (See Figure 1a.) M, is idle between ¢, and t,. We can move to M, all
of the jobs on Mj from J; to the end of the given schedule if we simultaneously move
to M, all of the jobs on M, from Jj, to the end of the given schedule (if any). Because
t, <t <t; and t; > t; > 1, it may be possible to begin tasks on M} and M, earlier.
(See Figure 1b.) In any case, this switch does not delay any tasks, and J; has been
started on an machine available earlier. By repeating such switches, one can create
a schedule in which each job begins on the first available machine and no completion
time has been increased; therefore, the value of any regular objective function has not
been increased, and the new schedule must also be optimal. Q.E.D.

Lemma 2 (Sum of Setups) Suppose that the jobs are numbered such that s; < sy <

.. < sp. If there exists k < m such that sy + s2 + ... + s > max{p;}, then the
Jollowing algorithm will find an optimal solution, and the minimal makespan can be
achieved using only k + 1 machines.

Algorithm 1.

Step 1. Find the k + 1 jobs with the smallest processing times. Let S be the set
of such jobs.

Step 2. Sequence the jobs that are not in S in any order and sequence S in
decreasing order of processing times.

Step 3. Starting with the jobs not in S, assign the first job to My, the next to
M,, and so on. After scheduling a job on M}, begin again with M;. Continue
with the jobs in S.

Proof. Consider a schedule created by Algorithm 1. The time ¢ between setups on
the same machine will at least the time necessary to perform the k setups on the other
machines in use. Thus, ¢ > s; + ... + sx > max{p;}, so the processing of a task on
a machine cannot delay the next setup on that machine. Thus, the operator is able
to perform all setups continuously, and the use of additional machines cannot improve
the schedule. Since each machine ends with a job from S, the completion time of
some job in S determines the makespan of the schedule. Since the operator performs
setups continuously, minimizing the makespan is equivalent to scheduling the operator
to minimize max{S; + p;}, where S; is the completion of the setup. Sequencing the
jobs in S longest processing time first yields an optimal schedule. Q.E.D.

3 Special Cases

In this section we consider two special cases: in Case 1, all p; = p; in Case 2, all s; = s.
Similar results were proved independently by Hall, Potts, and Sriskandarajah (1994).

Case 1. All p;, =p.

Lemma 3 If p; = p for all jobs J;, then there exists an optimal schedule in which the
operator performs setups cyclically on My, My, ..., My,.

Proof. This result follows directly from the first available machine result. Consider
the construction of a schedule. At the beginning of the schedule, all m machines are
available, so the first m setups can be performed on the machines in any order, in-
cluding My, M,, ..., M,,. Since the processing times are all equal, the first available
machine will be the one that was setup first. Thus the operator repeats the cycle
M, M,,...,My,. QE.D.

The following special case of Case 1 can be solved by extending Lemma 2:

Corollary 1 Suppose that the jobs are numbered such that s1 < so < ... < 8. If
p; = p for all jobs J; and there erists k < m such that s1 + s3 + ...+ sg = p, then
sequencing the jobs in any order and assigning them to k + 1 machines is an optimal
solution.

Theorem 1 (Case 1) If there are two machines, all p; = p, and the s, are arbitrary,
then minimizing the makespan is an NP-complete problem.

Proof: Transform into our problem a PARTITION PROBLEM WITH EQUAL CAR-
DINALITY: Given ag, ..., ay, with 3 a; = 24, can we partition a,, ..., ag, into two sets
so that each set has n elements with total sum equal to A? (This problem is NP-
complete according to Garey and Johnson, 1979.)

Generate an instance for our problem: p; = Afori =1,..,2n+ 2. s; = q; for

i=1,..,2n. Sopy1 = Sop42 = 0. Can we find a feasible schedule with makespan equal
to (n + 2)A?

Suppose that we have a partition. Let the partition be S; and S;. Rearrange the
jobs in S; in ascending order of s; and the jobs in Sy in descending order of s;. Assign
Jon+1 and then S; to M, and assign Sy and then Ja, 2 to Ms. It can be checked that
the schedule will have a makespan of nA + A + A = (n + 2)A. (There is no idle time
in the schedule.) See Figure 2.

Suppose that we have a schedule with makespan equal to (n + 2)A. The sum of
all setup time and processing time is equal to (2n + 2 + 2)A4 = (2n + 4)A. In order
to achieve a makespan of (n + 2)A, there will be no idle time on either machine, and
two setups will start at time zero. One of these setups will be have to be of length
zero. Without loss of generality, let us assign Jy,41 as the first job on M;. Due to the
alternating property (Lemma 3), there are exactly n+ 1 jobs on each machine and the
last setup occurs on Ms. Sirmilarly, since there is no idle time, two setups must end at
time (n + 1)A. And since the operator can do only one setup at a time, one of these
setups must be Jo, 12, which, as the setup started last, will be on M,. Thus we have n

4

non-zero setups on each machine whose total setup time is A. We must have a partition.

Therefore, we have a partition if and only if we have a schedule with makespan
equal to (n+2)A. Thus, minimizing the makespan is an NP-complete problem. Q.E.D.

Case 2: All s; = s. The following corollary to Lemma, 2, which is similar to Corollary
1, provides an optimal solution to a special case of Case 2:

Corollary 2 If s; = s for all jobs J; and there exists k < m such that ks > max{p;},
then Algorithm 1 will construct using k+1 machines a schedule with optimal makespan.

If the processing times are large, the following theorem shows that minimizing the
makespan is an NP-complete problem in the strong sense even if m = 2. This result
corresponds to Theorem 2.2 of Hall, Potts, and Sriskandarajah (1994).

Theorem 2 (Case 2) If there are two machines, all s; = s, and the p; are arbitrary,
then minimizing the makespan is a strongly NP-complete problem.

Proof. Transform into our problem a 3-PARTITION PROBLEM: Given ay, ..., a3,
with ¥~ a; = nB, can we partition a4, ..., ag, into n sets so that each one has 3 elements
with sum equal to B? (Without loss of generality, we assume that B/4 < a; < B/2
for all i.) This problem is strongly NP-complete according to Garey and Johnson, 1979.

Generate an instance for our problem. p; = 3B for i = 1,...,n. p; = aj—, for
i=n+1,.,4n. p,=0fori=4n+1. s;, = B/2fori=1,...,4n+ 1. Can we find a
feasible schedule with makespan equal to 3nB + B/2?

Suppose that we have a partition. Let the n sets of the partition be Sy, ..., S,. S;
also refers to the corresponding three jobs in the set {J; : i = n + 1,...,4n} whose
processing times sum to B. Assign Jy, So, J3, S4, . . . , Jn—2, Sp—1, and J, to M,
(assuming n is odd). Assign Si, Jo, S3, J4, . . . , Sp—2, Ju—1, and S, to M,. It can be
checked that the schedule created will have a makespan of 3nB + B/2. (There is no
idle time.) See Figure 3.

Suppose that we have a feasible schedule with makespan equal to 3nB+ B/2. Since
the sum of all setup times and processing times is equal to 3nB+nB+ B/2(4n+1) =
6nB + B/2, there must be no idle time except for the first setup time. Note that
p; < s = B/2for all i = n + 1,...,4n. During the setup for one machine, the other
machine must be processing jobs from J; : 1 < i < n. Otherwise, there will have to be
idle time on the other machine during that setup. Furthermore, during the processing
of any job from J;: n+1 < i < 4n + 1, the other machine must be processing a job
from J;: 1 < i < n. Otherwise, it can be checked easily that there must be some idle
time.

From the above two observations, we conclude that the jobs in J; : 1 < i < n must
alternate between M; and M, and one of these jobs must begin processing imme-
diately after the completion of the job on the other machine. Without loss of gen-
erality we assign the jobs in numeric order. Note that during the processing of
any job from J; : 1 < i < n, the other machine must process exactly three jobs from
Jitn+1<i<4n+1 since the processing time of any two jobs is less than B, and
the processing time of any four jobs is greater than B. This implies that the sum of
these three job processing times is equal to B. Once we have n — 1 sets of jobs whose
processing times sum to B, we know that the processing times of the last set of three
jobs must also equal B. Thus, we have a partition.

Therefore, we have a partition if and only if we have a feasible schedule with
makespan equal to 3nB -+ B/2. This shows that minimizing the makespan is a strongly
NP-complete problem. Q.E.D.

4 Branch-and-bound

In this section we disuss a branch-and-bound approach to the general problem: mul-
tiple machines and no constraints on the processing times and setup times. We will
present lower bounds used in a straight-forward branch-and-bound procedure for the
problem and a truncated implementation of the procedure.

With the first available machine property in place, it is clear that we can search for
the optimal schedule by searching over all sequences of jobs. From any partial schedule,
a branch is added for each of the unscheduled jobs. When adding a job to a partial
schedule, the new job is setup on the first available machine (or any one of the first
available machines). No branching on the machine assignment is necessary.

We now describe two lower bounds for a partial schedule. In order to do so, we will
introduce some notation associated with a partial schedule.

m is the number of machines.

A is the set of scheduled jobs.

N is the set of unscheduled jobs.

t is the completion time of the last setup.

tr, is the completion time of the last job scheduled on M.
F(t) is the set of machines M, : t; > t.

The maximum %, is a trivial lower bound. For the first new lower bound, the number
of machines is increased to the number of tasks. The operator must perform each
remaining setup, and the lower bound on the makespan can be found by renumbering
the jobs in LPT order: p; > ps > ... > p,.

6

LBy =t+max{ Y si+p;}.
TiEN " ENi<;
The second lower bound recognizes that all remaining setups and jobs must be done
after the last scheduled setup.

1
LBy=t+—(Y. (t—t)+ Y (s5+p;)
M MeeF() J;EN
These lower bounds can be extended to form global lower bounds for a problem
instance (N is the set of all jobs):

LB, = ErJlg])v({z 8 + pj}.

i<y

LB, = % T (s;+5)-
" J;EN

While a branch-and-bound procedure may take, in the worst case, an exponentially
large amount of effort to search the entire solution space, it is often able to find very
good solutions at the beginning of its search. The remainder of the search is spent
finding a few incremental improvements or verifying that no better solution exists
elsewhere. Thus, it may be possible to employ a branch-and-bound search to find
very good solutions in a reasonable amount of time. We implemented a truncated
(depth-first) branch-and-bound search that halts, if the search is not yet finished,
after searching 100,000 nodes. The best solution found so far is an approximate but
hopefully optimal or near-optimal schedule. The results of using this procedure, which
will still require more effort than a standard scheduling heuristic, are reported in the
section on empirical results.

5 Heuristics

Due to the complexity of the scheduling problem, we are unable to find optimal solu-
tions in reasonable time. Therefore, we concentrate on constructing algorithms that
find high-quality approximate solutions and finding bounds on their worst-case perfor-
mance. The average performance of these heuristics on a number of randomly generated
problem sets is described in the next section. Although heuristics have been proposed
for the scheduling of semiautomatic machines (Miller and Berry, 1974; Koulamas and
Smith, 1988), the problems studied in these papers have preassigned jobs. We consider
heuristics that assign jobs to machines and schedule the work of the operator.

Combine. We begin by including each setup as part of the job processing time.
After assigning the jobs to the machines, we will use a simple rule to order the setups
for the operator. The assignment of the jobs is the classic parallel-machine problem
of minimizing the makespan on a fixed number of machines. This problem has been
studied intensively, and a number of approximation algorithms have been proposed

and analyzed. The Combine algorithm described by Lee and Massey (1988) uses the
Longest Processing Time (LPT) list schedule as the incumbent and then applies MUL-
TIFIT to reduce the makespan. This algorithm is an improvement to the MULTIFIT
algorithm proposed by Coffman, Garey, and Johnson (1978).

In order to find a feasible schedule for the operator, the LPT ordering of the jobs
created by the first-fit-decreasing procedure is maintained on each machine. After fin-
ishing one setup, the operator does the next setup on the first available machine. If
more than one machine is available, the operator does the next setup for the available
machine with the most remaining work.

LPT list schedule. An alternative heuristic is to create a list schedule directly
by re-ordering the entire set of jobs. The first job is setup on the first machine. The
operator performs the setup for each subsequent job on the first available machine. In
the LPT list schedule, the jobs are ordered by decreasing setup plus processing time:
S1+Pp12S2+p2 2> ... 2 Syt Do

Shortest Setup Time list. For this list schedule, the jobs are sequenced in order
of increasing setup times: s; < s3 < ... < s,. The goal is to get each machine working
as soon as possible.

Mixed list. This list schedule places shorter setups first and shorter processing
times last. Specifically, the mized sequence is formed by renumbering the jobs so that
if i < 7, then min{s;, p;} < min{s;,p;}. Such an ordering can always be performed.

If the shortest setup time is greater than or equal to the longest processing time,
then Lemma 2 applies, and the mixed list finds the optimal solution, since it will put
the shortest task last, creating a schedule with makespan equal to) s; + Pmin.

Worst-Case Performance.

Let us denote our problem by P and define a new problem P’ such that s; = 0
and p; = s; + p;. Let C*(P) denote the optimal makespan for P, and let C*(P")
denote the optimal makespan for P’. Since the operator is never busy in problem P,
whenever a machine finishes processing a job, the setup for the next job can follow
immediately. Thus P’ is a m parallel identical machine scheduling problem with no
setups and p} = s; + p;. It is clear that the optimal makespan for P’ is no larger than
the optimal makespan for P:

Property 1 C*(P') < C*(P).

Property 2 Suppose that o heuristic generates for P' a sequence H of setups. Let
Cu(P') be the makespan of the schedule constructed by implementing H for problem
P'. Let Cygi(P) be the makespan of the schedule constructed by implementing H for
problem P, where the jobs are setup in the same order as in H and on the first available
machine. If Cg(P') < (1 + a)C*(P'), then Cw(P) < (24)C*(P).

8

Proof. First, apply H to P by performing the setups in the same order and on the
same machines, and let Cy(P) be the makespan of this schedule. This may violate the
first-available machine rule. This schedule can be constructed from the solution to P’
by removing the conflict on the operator. Some delaying of setups may be necessary.
Consider each setup in the order in which the operator performs them. The setup for
Jii41) starts after the setup for J;). If these setups overlap, delay Jj;11) and all remaining
jobs on all machines by the amount of overlap §, which is less than s;;). This maintains
the relative timing of all remaining jobs. After the setup conflicts have been resolved.
no job has been delayed by an amount more than }_ s;. Thus,

CH(P) S ZSj + CH(PI)

Let H' be the solution for P formed by scheduling the setups in the same order
as H, this time on the first available machine. By Lemma 1, this cannot increase the
makespan.

Cr/(P) < Cu(P)
Since Y s; < C*(P),
Cw(P) < C*(P)+ (1 +a)C*(P") < (2+ a)C*(P).
Q.E.D.

Corollary 3 Since the worst-case relative error of a list schedule is 2 — # for P’

(Graham, 1966), the worst-case error of a list schedule for P is is (3 — -—)C*(P).
This bound includes the Mixed and Shortest Setup list schedules.

Corollary 4 Since the worst-case relative error of an LPT schedule is % — = for P'
(Graham, 1969), the worst-case error of a LPT schedule for P is (%)C*(P).

T 3m

Example. Consider the following seven-job, three-machine problem:

Job Setup Task

N O U W N
O H NN
DN N W

The optimal schedule for P is C*(P) = 11, which can be achieved if the jobs are
setup in the order 5, 2, 3, 4, 1, 6, 7. The sum of setups 3 s; = 10. The optimal schedule
for P' is C*(P') =9, and the error bound is (1 + &) = 11/9. The jobs are numbered
in LPT order, and the LPT schedule has a makespan of Cy(P') = 11 (see Figure

9

4a). Including the setups in this schedule increases the makespan to Cy(P) = 16 (see
Figure 4b). Note 16 < 7 s; + Cx(P') = 10+ 11 = 21. Rescheduling the setups on the
first available machine decreases the setup to Cy/(P) = 12 (see Figure 4c). Finally,
note 12 < (2 + a)C*(P) = (20/9)11 = 243.

Corollary 5 Since the worst-case relative error of a MULTIFIT schedule is 1+ 1—21 for
P’ (Yue, 1990), the worst-case error of the Combine schedule for P is (2 + &)C*(P).

6 Empirical Results

In this section we present the results of using various heuristics to solve the makespan
problem. We used the four heuristics described in Section 5: the three list-based rules
and the Combine heuristic. We also implemented the truncated branch-and-bound
search described in Section 4. We tested the algorithms on a number of problem sets
of various sizes. The makespan of each solution generated is compared to the lower
bounds for each problem. These lower bounds were presented in Section 4. The prob-
lem set data and the results are shown in Table 1. The performance is the average
(over ten problems) of the relative percentage deviation from the lower bound.

From these results we can see that the truncated branch-and-bound procedure found
consistently better solutions. On all of the larger problem sets, the branch-and-bound
was able to find optimal solutions without searching more than 100,000 nodes. The
Mixed list schedule was the best of the four scheduling heuristics. On the problems
in which the setup times were uniformly greater than the processing times, the Mixed
list schedule found the optimal solution (since it achieved the lower bound); this was
predicted in Section 3. The only significant exception to this dominance are the larger
problems in which the setup times were consistently smaller than the processing times
(s302az, s306az, s506ay, s506az). For these problems, the LPT and Combine heuristics
assign a nearly equal amount of work to each machine, which yields better solutions,
since conflict between setups is not a concern.

7 Summary

In this work, we have considered a parallel-machine scheduling problem in which the
setup for each job must be performed by an operator. We have proved some funda-
mental results, including the complexity of the problem, and presented some approx-
imation algorithms for finding near-optimal solutions for the problem of minimizing
the makespan. We have investigated the worst-case and average performance of the
heuristics. For all heuristic:, the worst-case relative performance is less than 3. The
heuristics are able to find optimal and near-optimal solutions, but the relative per-
formance of the heuristics depends upon the amount of conflict on the operator. In
addition we have identified new special cases that can be solved in polynomial time.

10

We have begun to look at the problem of minimizing the total flowtime and at
problems with precedence constraints between the jobs. Some simple problems with
chains of jobs have been considered. If approximation algorithms do not yield good
results for some computationally difficult problems, heuristic searches like simulated
annealing or genetic algorithms may be useful for finding very good solutions. Addi-
tional future work may include the problem of allocating machines to multiple workers
in order to optimize system performance.

8 References

Aronson, J.E., “Two heuristics for the deterministic, single operator, multiple machine,
multiple run cyclic scheduling problem,” Journal of Operations Management, Vol. 4,
pp. 159-173, 1984.

Cheng, T.C.E., and C.C.S. Sin, “A state-of-the-art review of parallel-machine schedul-
ing research,” Furopean Journal of Operational Research, Vol. 47, pp. 271-292, 1990.

Coffman, E.G., M. Garey, and D. Johnson, “An application of bin-packing to multi-
processor scheduling,” STAM Journal of Computing, Vol. 7, pp. 1-16, 1978.

Garey, M.R., and D.S. Johnson, “Strong NP-completeness results: motivation, exam-
ples, and implications,” Journal of the ACM, Vol. 25, pp. 499-508, 1978.

Garey, M.R., and D.S. Johnson, Complexity and Intractability, W.H. Freeman, San
Francisco, California, 1979.

Geoffrion, A., and G. Graves, “Scheduling parallel production lines with changeover
costs: practical applications of a quadratic assignment/LP approach,” Operations Re-
search, Vol. 24, pp. 595-610, 1976.

Graham, R.L., “Bounds for certain multiprocessing anomalies,” Bell System Technical
Journal, Vol. 45, pp. 1563-1581, 1966.

Graham, R.L., “Bounds on multiprocessing timing anomalies,” SIAM Journal on Ap-
plied Mathematics, Vol. 17, pp. 263-269, 1969.

Hall, N.G., C.N. Potts, and C. Sriskandarajah, “Parallel machine scheduling with a
common server,” Working paper 94-21, College of Business, The Ohio State University,
May, 1994.

Koulamas, C.P., “Scheduling on two parallel machines for minimizing machine inter-
ference,” Working paper, Department of Decision Sciences and Information Systems,
Florida International University, 1993.

11

Koulamas, C.P., and M.L. Smith, “Look-ahead scheduling for minimizing machine in-
terference,” International Journal of Production Research, Vol. 26, pp. 1523-1533,
1988.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, “Sequencing and
scheduling: algorithms and complexity,” Report BS-R8909, Centre for Mathematics
and Computer Science, Amsterdam, 1989.

Lee, C.-Y., and J.D. Massey, “Multiprocessor scheduling: combining LPT and Multi-
fit,” Discrete Applied Mathematics, Vol. 20, pp. 233-242, 1988.

Miller, J.G., and W.L. Berry, “Heuristic methods for assigning men to machines: an
experimental analysis,” AIIE Transactions, Vol. 6, pp. 97-104, 1974.

Miller, J.G., and W.L. Berry, “The assignment of men to machines: an application of
branch and bound,” Decision Sciences, Vol. 8, pp. 56-72, 1977.

Parker, R., R. Deane, and R. Holmes, “On the use of a vehicle routing algorithm
for the parallel processor problem with sequence dependent changeover costs,” AIIE
Transactions, pp. 155-160, 1977.

Stecke, K.E., and J.E. Aronson, “Review of operator/machine interference models,”
International Journal of Production Research, Vol. 23, pp. 129-151, 1985.

Tang, C.S., “Scheduling batches on parallel machines with major and minor setups,”
European Journal of Operational Research, Vol. 46, pp. 28-37, 1990.

Yue, M., “On the exact upper bound for the MULTIFIT processor scheduling algo-

rithm,” in M. Yue, ed., “Operations research in China,” Annals of Operations Research,
Vol. 24, pp. 233-259, 1990.

12

Performance is the average (over ten problems) of the relative percentage deviation
from the lower bound.

Problem Set Jobs

s152ax
s152ay
s152az
s152bx
s152by
s152bz
s152cx
s152cy
s152cz

s302ax
s302ay
s302az
s302bx
s302by
s302bz
s302cx
s302cy
s302cz

s306ax
s306ay
s306az
s306bx
s306by
s306bz
s306¢cx
s306cy
s306¢z

so(6ax
sb06ay
sb06az
s506bx
s506by
s506bz
s506¢cx
sb06cy
s006cz

Table 1. Problems Sets and Empirical Results.

15
15
15
15
15
15
15
15
15

30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30

50
50
a0
50
50
50
50
50
o0

Machines

D DN DN DN DN DN DN DN DN DN DN N NN NN

SO OO OYOY O

DO OOTITOHYODOHOO

Setups

1-10
1-10
1-10
1-30
1-30
1-30
11-20
11-20
11-20

1-10
1-10
1-10
1-30
1-30
1-30
11-20
11-20
11-20

1-10
1-10
1-10
1-30
1-30
1-30
11-20
11-20
11-20

1-10
1-10
1-10
1-30
1-30
1-30
11-20
11-20
11-20

13

Tasks

1-10
1-30
11-20
1-10
1-30
11-20
1-10
1-30
11-20

1-10
1-30
11-20
1-10
1-30
11-20
1-10
1-30
11-20

1-10
1-30
11-20
1-10
1-30
11-20
1-10
1-30
11-20

1-10
1-30
11-20
1-10
1-30
11-20
1-10
1-30
11-20

B&B

4.05
0.50
0.68
0.70
4.10
9.32

0
7.19
2.81

8.12
0.38
0.27
1.66
8.63
13.89
0
10.24
4.31

o oo o ocoCc oo

oSO oo oo Cc oo o

Mix

11.32
5.52
6.25
1.79

11.66

10.24

0

12.74

5.62

13.72
5.10
4.83
1.85

14.42

11.70

0

13.13

6.21

0
3.72
6.86

0
0.18
0.08

0

0

0

0.23
5.72
6.79

0.41
0.27

LPT Setup Combine

12.77
7.97
6.71
2.76

13.28

10.97
0.53

12.14
9.72

11.57
5.65
2.83
2.12

12.58

11.51
0.09

11.92
4.77

0.32
4.37
2.29
0.42
0.73
0.46
0.09
0.35
0.09

0.29
4.16
2.02
0.16
0.43
0.26
0.09
0.20
0.09

16.58
7.54
6.25
3.98

17.79

12.18
1.65

16.14
7.74

16.72
6.25
4.83
2.57

16.57

12.58
1.13

15.46
7.93

3.13
14.47
6.86
0.88
2.98
0.93
1.13
3.51
1.10

2.02
11.53
6.79
0.67
2.49
0.93
0.66
2.05
0.65

19.94
7.50
10.43
8.58
25.53
22.85
1.86
19.88
13.12

14.69
5.37
3.15
6.30

19.97

18.99
0.15

14.46
5.91

0.43
6.45
2.94
0.66
1.14
0.48
0.09
0.37
0.09

0.33
3.55
0.98
0.58
0.70
0.32
0.09
0.20
0.09

