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ABSTRACT

Forward error correction (FEC) without feedback always has to transmit
maximum redundancy for the worst case of errors to be corrected. With feedback,
the redundancy can be adapted to actual channel disturbances. For Maximum-
Distance~-Separable (MDS) algebraic block codes, including Reed-Sclomon (RS)
codes, methods are described and analyzed, where parity symbols are transmitted
only until enough redundancy is received to correct and detect reliably all
errors and erasures in the transmitted sequence. The expected coderate is shown
to be much higher than without feedback, even close to capacity for a variety of
channels with and without memory, and reasonably better than the cutoff rate
estimate for FEC. The method proves to be very robust against the length

distribution of error bursts.



1. Introduction

Pure Forward Error Correction (FEC) is used for channels where feedback is
either not available or not advisable, as, for example, due to a long time delay
in deep space data transmission. Good results with FEC are achieved when the
disturbances are fairly constant, for example Additive White Gaussian Noise
(AWGN). But near earth channels often are dominated by heavy time varying noise
or error bursts, often with unpredictable time behavior, caused for example by
multipath effects, interference, manmade noise, radar, hostile jammers, etc. In
such cases, a feedback signal from the receiver to the transmitter telling
whether a message was received reliably, eventually requiring some kind of
retransmission may be essential for high reliability and data throughput.

The simplest way of using feedback for error control is Automatic Repeat
Request (ARQ) as shown in fig. la. A string i of information data together with
some few parity symbols p for error detection only are transmitted. When errors
are detected, retransmission is required. The block length has to be adjusted
carefully to the channel. Long blocks may almost always have some errors
somewhere, requiring many retransmissions and a poor data throughput. For short
blocks, the header (for control data like address, frame synchronization, etc.)
decreases the data throughput.

As an altermnative philosophy, some commercial terminals for mobile communi-
cations transmit more redundancy (e.g., a code of rate 1/2) in order to correct
some few "typical” errors by FEC as shown in fig. 1b. Longer codes of reason-
able rate also are able to detect reliably when more errors occurred than the
code can correct, even if the full error correcting capability of the code is
used for correction. But for bursty channels, the redundancy transmitted for
FEC often is wasted because either no errors occur in clean parts of the channel

or the redundancy is not enough to correct long error bursts.
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Fig. 1d: Adaptive FEC, packet transmission

Fig. 1: Error control philosophies for channels
with feedback.



Methods which combine some advantages of ARQ and FEC were developed, e.g.,
by 8. Lin [1],[23], D. Chase [3].

In this paper, a method for Adaptive FEC with algebraic blockcodes will be
described and analyzed. The basic principle [4] is shown in fig. lc. First,
all K information symbols of a relatively long blockcode are transmitted
followed by a variable number r of parity symbols. 1In the limiting case of
zero—-delay, error—-free feedback with continuous data transmission, the receiver
tries to decode the received sequence of length K + r after each received parity
symbol. If all errors can be corrected reliably, the receiver causes the trans-
mitter to stop transmission of more parity symbols and to start transmitting the
next codeword. So the number of transmitted parity symbols is adapted to the
noise in each codeword resulting in a small average number K + r of symbols per
codeword. Especially appropriate for such a scheme are MDS codes, inclduing
Reed-Solomon (SR) codes, which have optimal error correcting and detecting
capability for any K + r received symbols of a codeword. We will use RS codes
with elements from a binary extension field GF(ZS) where each symbol is an
s~bit-byte. An error is defined as a wrong symbol (with any number of wrong
bits) at an unknown position. Erasures are unreliable symbols at known posi-
tions defined by the receiver, based, for example, on the received signal level,
indicated by an Automatic Gain Control (AGC) signal, or any other "side
information" from the front end receiver, bit synchronizer, or demodulator.

Long error bursts usually can be detected reliably as erasures. Within K + r
received symbols, up to a € r erasures can be corrected together with t

errors as long as a + 2t < r. 1In other words, two parity symbols are
necessary for each error to be corrected but only one for each erasure. If

a + 2t > r, the decoder may make an undetected decoding error with probability

P, With probability (1 - Pu) such disturbances are detected as uncorrectable



resulting in transmission of more parity elements. As shown in [5],[6], for a
symbol length s » 6 the undetected error probability is Pu < 10'_6 for
r-a>l10. Forr - a < 10, only one error less up to t < (r - a)/2 - 1 errors

6

should be corrected to achieve a small P, <10 °, i.e., two additional parity
symbols are used for reliable error detection in this case. The maximum code-
length of RS codes is K+ r < ZS - 1 = :N (extendable to ZS). We will
investigate two schemes, one in which the number n = K + r of transmitted sym-
bols per codeword is limited to the maximum codelength n < N, with a certain
block error probability Pe (when n > N symbols would be necessary), and a
second scheme in which a new codeword is started and combined with the previous
ones until the message is decoded successfully, n limited to any number

L < o,

In practical applications and packet transmission the scheme may be modi-
fied as indicated in fig. 1d. For example, with a symbol length of s = 6 bits
(maximum codelength N = 127 symbols) first K = 40 information symbols together
with 2 parity symbols for error detection are transmitted in a first trans-—
mission trial. If errors are detected, a second block of 40 + 2 check symbols
is transmitted. In a cyclic block code, the next symbol at any position always
has the same linear dependence from the previous K symbols. Therefore, the last
2 symbols in the second block can be used for error detection in the same way as
in the first block. TIf no errors are detected in the second block, the informa-
tion is reconstructed by regarding the first block as erased or by "inversion"
[1]. If errors are detected t errors plus a erasures can be corrected in the
first two blocks together, if 2t + a < r = 2 + 40 + 2 resp. 2(t - 1) + a < 44
for 44 — a < 10. Otherwise, a third block with 40 + 2 parity symbols will be
transmitted, again first with error detection within the third block (regarding
the first two blocks as erased, if no errors are detected in the third block)

resp. correction of 2t + a € 2 + 40 + 2 + 40 + 2 errors resp. erasures in all
4



three blocks.

After describing the channel assumptions by simple models used to represent
channels with error bursts in section 2, we discuss an analytical method to
investigate the performance of the proposed Adaptive FEC for the continuous
case, fig. lc, with n limited ton € N. In section 3.2, a transmission scheme
with n limited to any arbitrary number L is described in more detail. Numerical
results for the expected average number n of transmitted symbols, resp. the code
rate R: = K/n, and the block error probability P i = Pr(n > L) are discussed in
chapter 5 and compared to theoretical limits and estimates, which are explained

in section 4.

2. Channels.

Feedback is essential especially for channels with memory (error bursts)
for reliable data transmission. The simplest model for such a channel is a two-—
state first-order Markov chain as shown in Fig. 2, often referred to as Gilbert-
Elliott (GE) model (which might or might not represent the real world, but
is a model which is simple enough to be handled mathematically). The GE model
has two channel states, z = G (= good) with a fairly low bit error probability
Pgo and z = B (= bad, burst) with a considerably higher Py >> Pge For RS codes

(with symbols of length s-~bits), we regard the transition probabilities

P(z, = B/z. = () = g, resp P(zj = b/ = B) = b as symbol-transition proba-

j i-1 Zi-1
bilities. This seems to be a valid assumption if the average burst-length
(number of successive bits in the bad state) is long compared to the symbol

length s.
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Fig. 2: A simple model for channels with memory.
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The channel has the well known following properties:

The average burst length is

(=]
i, = Z i*(1 - b)i—l-b = l-symbols (1)
B b
i=1
The conditional probability that state Zivy will be z = G if z; = B (e.g.,
for f%-symbol interleaving) is
_ b . _ ok
by g [1 - (1-b-g) "]
g, =5 [1- (bt (2)
L b +¢g &
with b1 = b, g = & and
-8 ., -—bP -
8w “p T 5 :§, b, vV g 1 $ (3)

as absolute probabilities of being in the bad (resp. good) state. If each of
the two states is regarded as a Binary Symmetric Channel (BSC), the symbol error

probabilities for z = G resp. z = B are

u = 1-(1-p)° (4)

What a bad or good state is may be defined by the receiver, based, for example,
on the received signal strength, the number of detected errors in the sync
pattern, the variance of the soft decision demodulater output, phase-jitter in
the Phase-Locked-Loops (PLL) of the receiver, noise level in neighbor frequency
bands, or any other "side information”. For error—and-erasures—correction with
RS codes, we regard signals in the bad state as erased. The good state still

may have errors besides correct symbols. For error-correction-only, the channel



state is assumed not to be known (only the channel parameters p, resp. u, for
z = G/B, b and g).

One of the most serious causes for error bursts in some practical channels
(as, e.g., in car mobile, ship to satellite, aircraft to satellite communication)
are multipath effects where the received signal is the sum of many reflected
paths of the transmitted carrier frequency, each with random amplitude and
phase, resulting in a Rayleigh distribution of the received amplitude (if no
path dominates). With Additive White Gaussian Noise (AWGN), antipodal modula-
tion and coherent demodulation, e.g., coherent binary phase modulation (BPSK),
the demodulated binary signals r1/2 (for transmitted binary signals 8, = +1,

8, = -1) are (perfect syndromization assumed !)

r,=a°*s +n, k=1,2 (5)
where a has a Rayleigh distribution with probability density function
2
f(a) = 2a * exp(-a”) , a >0 (6)

normalized on an expected value E[az] = 1. The additive noise n is zero-mean

. . . 2 . .
Gaussian with variance ¢~ = No/(ZES), N, = one-sided spectral noise power

density, ES = gverage received signal energy per bit. Usually, the received
signal amplitude a can be well estimated by the receiver if the fading bandwidth
is small compared to the data bandwidth, indicated, for example, by the Auto-
matic Gain Control (AGC). If binary signals Sy are transmitted with equal
probability 1/2 the optimum decision rule for the demodulated bit is §k = sign Tpe

The bit error probability conditioned on a given signal amplitude a is
p(a) = Q(a * v2y ) , with vy : = E_/N, (7)

and
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qx) : = et/2 g (8)
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resulting in an average bit error probability

o]

p = [ fa)p(a)da = 5 + (1 - /Y /(T + 7)) €D

(o}

We define here a "bad” state z = B by a weak signal strength a <aT, where arn is

a (optimized) threshold, z = G for a > a_,. The probability § of being in state

T

z = B then is

a
§=] Tf(a)da =1 - exp(—ai) (10)
)

The conditioned bit error probabilities Pg» Pp in state z = B/G are

pe= o5 | (@) +p(a)da = —L— [exp(-al) «Qay/2Y,) - VYTV ) "Qlay V2T ) ]
ar 2'exp(—aT)
(11)
s " : [1 = /YT - exp(-an)Qan/2yy + VY J(I+Y)Q(ay /2¥2Y,) ]

2'(1-exp(—a%))
(12)

These probabilities do not express yet how long fades are. If we want to model
the distribution of burst-lengths by a GE model as in Fig. 2, we assume a cer-
tain average burst length iB and calculate the transition probabilities b,

resp. g by (1) resp (3) with (10).

2. Reliable error detection.

RS codes with K information and r = n — K parity symbols can correct up to
a < r erasures, where the number a and the positions of the erasures are known

to the receiver. For a < r in addition up to

£ = | (r-a)/2]_] (13)



errors can be corrected corresponding to error-correction-only in a shortened
code of length n' = K+ r - a. If only up to t' < t errors are corrected, t > t'
errors are always detected as "undecodable” as long as t < r - a - t'. If the
number of transmission errors t in the n' non-erased positions is t > r - a - t',
then the probability for undetected decoding errors (conditioned under
t >r —-a-t') is bounded by

t'

P o< § (m)2® - 1)ljps(rma) (14)

u . .
i=0 i

as shown by Kressel [6], based on [7], [5]. For s > 6 and r - a > 10, for

6 for t' = t (i.e., even if all errors up to

example, (14) results in P, < 10
the full error correcting capability (13) are corrected). For (r-a) < 10,

§ > 6, only up to t' =t - 1 errors should be corrected for a comparable low
limit of P, in (14). This is equivalent to using two of the remaining (r-a)

parity symbols not for error correction but for additional error detection only.

In the simulations t' = t for (r-a) > 10 and t' = t — 1 for (r-a) < 10 was used.

In the calculations of section 3, t' =t and t' t - 1 results in upper and

lower limits Ru and Rg for the adaptive code rate R.

3. Code rate, block error probability for n < 2% - 1.

If the number of transmitted symbols n is limited to n < 2% = 1 = N (the
maximum length of an RS codeword with symbols from GF(ZS)), the expected number
n and the corresponding code rate R = K/n as well as the remaining block error
probability P, (the probability that n > N transmissions would be needed) can be
calculated by recursion even for channels with memory (represented, e.g., by a
GE model, Fig. 2).

Let us begin with the assumption t' = t. After K information symbols

r=0,l,e00,r = 2%-1-K parity symbols are transmitted. Let t. resp. a. be



the number of errors resp erasures in the first n = K + r transmitted symbols

and ir:= a. + 2. t. — r. Because all errors and erasures are corrected, if

a_ + 2tr < r, exactly n = X + r symbols are to be transmitted, if ir = 0 and

ij > 0 for all j < r. The probabilities P(ij,zj) can be calculated from the

P(1i,

j-17 Zj—l) by recursion. If the j-th symbol 8 is correct (Zc), erased (=a)

or in error (=e)

i, = i._1 ) for s, = a
L +1 J-e (15)

With known probabilities P(s.,z./z, = P(z,/z, *P(s./z, where P(z,/z,
p (J’ZJ/ZJ—I) (zJ/ J_1) (J J), (ZJ/ J_1)

are the transition probabilities of channel states and

P(s, .=G) = 1~ P(s.= .=B) =0 if 7, =1 - if
( J=c/zJ ) uq (sJ c/zJ ) if Iy uB2 zJ
P(sj=a/zj=G) =0 P(sj=a/zj=B) =1 resp. = 0 ¢ unknown
P(sj=e/zj=G) = u, P(sj=e/zj=B) =0 = up ) (16)
the corresponding joint probabilities P(jj,zj) are
P(ij,zj) = 2 . {P(ij_l = ij—l,zj_l)'P(sj=c,zj/zj_1)
23-1=C>8 . .
+P(1j__l =1y, zj—l) P(sj=a,zj/zj_1)
+P(ij_l = 1j+l,zj_1)°P(Sj=e,zj/zj_l)} (17)

setting P(ij_ O’Z'—l) to zero before, because transmission is assumed to be

1 3
finished in this case after r = j — 1 parity symbols. The probability for
exactly r = j parity symbols to be transmitted is P(ij =0) = P(ij = O,zj = G) +

P(i. = 0,z. = B).

J J
The remaining block error probability P_ = P(i > 0) where r =
e Thnax max
ZS_I—K parity symbols are not sufficient to correct all errors and erasures

is about the same as for FEC with a fixed rate R = K/ (K + rmax), but slightly

smaller, because Adaptive FEC would be successful in (rare) cases where most of

10



the uncorrectable errors for FEC are concentrated at the very end of the code
word.

The expected number of parity symbols, therefore, is

r
max

. jzo 3Ry =0 B Tay (18)

The corresponding upper limit of the code rate yields
R, = K/(K + 1) (19)

A lower limit R% of the achievable code rate can be given by the assumption that
in each case only up to t' = t — 1 errors will be corrected, corresponding to
two additional parity symbols for reliable error detection in each case,

yielding

R, = K/ (K + 1 + 2) (20)
Numerical results are given together with the simulation results for an

arbitrary limitation of n < L, any L < « in section 5.

3.2 Limitation n < L, any L < o,

The scheme described in section 3.1 with n limited ton < N = 1% -2 (the
maximum in length of an RS-code) may be appropriate for applications with a
limited number of transmission trials. For example, in car mobile communica-
tions with packet transmission according to Fig. l.d, if some few transmission
trials are not successful, the reason may be some shadowing effect, and trans-
mission should be interrupted rather than occupying the channel without success.
In this chapter, we investigated the performance of a scheme where the codeword
symbols are repeated cyclically until the message is transmitted successfully.

The encoder just goes on as it does for n < N. By using a linear feedback shift

11



register of length K, based on the check polynomial h{x): = (XN—l)/g(x) (g(x) =
generation polynomial), each cyclically following symbol of a codeword is
generated from the previous K symbols in the same way. The decoder stores up to
N received symbols, §1,...,§N beginning with all N symbols marked as "erased”, a

= N erasures. When the j-th transmitted symbol sj is received, gjmodN is

replaced by Sj’ if it was marked as erased before. If was not marked as

SjmodN

erased and sj is not erased, but s, # is in

i 53 modN (i.e., if either sj or

SjmodN

will be marked as erased; otherwise (for s, ) remains

error, sj i = sjmodN

modN
unchanged. As explained before, all errors and erasures can be corrected as

soon as a + 2t €« N - K (a = number of erasures, t = number of errors in the
codeword), resp t € (N-K-a)/2 - 1 if N- K- a <10, s » 6 (for a small probabi-
lity Pu for undetected decoding errors).

The probabilities P(n = j) that n = j symbols per codeword are sufficient
were estimated by computer simulations. The probability P(n > L) represents the
probability of transmission failures if n is limited to n < L. The average
nunber of transmitted symbols is (L) = % j*P(n = j) + L*P(n > L), approaching
asymptotically a limit (L, = ). How t%ZKzgderate R(1L): = ¥K/n(L) and P(n > L)

depend on the channel and code parameters will be discussed in section 5.

4, Channel Capacity, Cutoffrate Ro'

Before the results of Adaptive FEC will be discussed, we derive some useful
limits to compare with. Channel capacity is the absolute limit for coderates R
(with small block error probability), whereas RO is regarded as a more practical
estimate of achievable coderates R, [8] (but neither an upper nor a lower
limit!). This is considered to be true for pure FEC without feedback. But with
feedback and Adaptive FEC, it will be shown that R gets close to the appropriate
capacity C but is much better than the corresponding RO of the forward channel.

If the state z = G/B is known to the receiver, and therefore part of the

12



received information, channel capacity C is defined as

P(y,z/x)

B(y,2) (22)

c=) P(x) ) P(y,z/x)log2
X Y2

where the alphabet size for the transmitted signal x is ZS, but 2° + 1 for the

received signal y (including y = erasure). For a constant discrete memoryless

channel (CDMC) in each state z G/B, (20) results in C = (1—6)‘0G + S‘CB, where

§ is the probability of z = B and C the conditional channel capacity for

G/B
z = G/B. If the channel state z is known, notice that C does not depend on the
memory in the transition of channel states. That means C is independent of the
lengths and distribution of error bursts for § = const. It also is the same for
channels with and without feedback. But that is not the case for cutoff rate
Ro’ defined as

R, = Logy{ 1 [ pG/R(y,2/%) 1%} (23)

VY,Z X

(23) represents R, for the forward channel without feedback and may be different
for the channel with feedback (which we have not calculated yet).

What are the probabilities P(y,z/x) (defining the forward channel) we have
to look at in order to get an appropriate measure for the performance of the
proposed transmission scheme? There are at least 3 channels, i.e., sets of
P(y,z/x) = P(z)*P(y/x,z) for which RS-codes with error and erasure correction
perform exactly the same.

(a) FEach z = G/B corresponding to a BSC with bit error probability P, and
P(y/x,2) = p (1-p )° " (24)

for each binary error pattern (y-x) of weight i. Let's label

this channel as "Bit" channel, with C = :C__, R = :R__.
ps o} ps

13



(b) a channel, where each error pattern (y—x) # 0 has the same
probability
1 - u, for y = x

P(y/x,2) = o
uz/(2 -1) fory # x (25)

Let's label this channel as "symbol" channel, with C = :Cus’

(¢) a channel, where each y is regarded as erased for z = B:
P(y/x,z = G) the same as in (25), but P(y = erasure/x,z = B) = 1,

labeled as "Erasure” channel, C = :Cés’ RO = :Rés .

It is not surprising that the channels become "worse” in this sequence; that

means that C_ > C > C., R >R > R, « 1In order to get the closest esti-
P us 8s ps us 8s

mate of limits for the performance of a coding scheme, we should refer to

capacity, resp. RO, of the "worst"” channel for which a specific coding/decoding

scheme performs exactly the same, in this case CGS and RGs' The P(y/x,z)

defined above result in

cps = cpl =2 cp = (1-9) - (1—H2(pG)) + 8 (1~H2(pB)) (26)

where HZ(X) = —xlogz(x) - (l—x)logz(l—x) is the binary entropy function. All

C and RO are given in "bit per transmitted binary signal.”

Cus = (1-8) ° CusG + & ° CusB (27)
with s

Cusz: = [S_HZ(uz) -y, 1Og2(2 —1)]/8 (28)
and, finally,

Cse = (1-8) * C_ . (29)

The corresponding cutoff rates RO are

14



Rog = {s - 1og2[(1—c)-(1 + z/pG(l-pG))s + 8(1 - 2/5;(?:5;$)S]}/s (30)

Notice that (in contrast to capacity)

Rps < (1—6)RpsG + 6'RpsB with
RpsG =1 - logz(l + 2VpG(l—pG)) = Rps(6=0)
RpsB =1 - log2(1 + 2VpB(1—pB)) = Rps(6=1)

because log(x) is a convex function of x. Special cases:
s =1, 6§ =0, p= P (errors only): Rpl =1 - log(l + 2Vp(1-p))
s =1, P; = 0, Pg = 0.5 (erasures only): Rpl = l-log(l + &)

For the "symbol"” channel RO yields

R,g = {s - logz[(l—é)vsG + 6'vsB]}/s (3D
with v, = 1+ UZ'(ZS—Z) + 2/&2(1_uz)(zs—1) for z = G/B.
Finally, for the "Erasure” channel,
s
R, = [s - log, [(1-8)v , + 827 /s (32)

For Rayleigh-fading, as described in section 2, the maximum cutoff rate R.O nax
>
is achieved for a channel where in eq. (5) the value T ("soft decision

demodulator output”) as well as the signal strength a are known exactly to the

receiver. For this case, [9]

R =1 - log,[1 - 1/(1+v)] (33)

0 ,max
often is referred to as "Ro of a Rayleigh-fading channel.”

15



5. Performance.

In this chapter, we discuss numerical results for the expected number
n =K+ r of transmitted symbols, resp. the average coderate R(L) = k/n
(n limited to a maximum of L transmitted symbols per codeword) and the block
error probability Pe(L) = P(n > L), i.e., the probability that n < L trans-
mitted symbols are not enough to correct and detect all errors and erasures
reliably. For L = 2% = 1 = N (the maximum codeword length) R(L), Pe(L) were
calculated analytically by using eqs. (17),(18). For all L (including L < N and
up to L = 20000), computer simulations were run, the results of both methods

confirming each other. How R(L), Pe(L) depend on channel and code parameters

and compare to theoretical limits will be discussed in sections 5.1 through 5.5.

5.1. Influence of burst-length distribution.

The proposed scheme mainly was designed to cope with heavy error bursts,
often of unpredictable length and distribution. One of the most interesting
questions, therefore, is: How do R(L), Pe(L) depend on the burstlength distri-
bution in the GE-model, fig. 2? The overall probability of being in bad state
z =8 is § = g/(g+b), the average burstlength iB = 1/b. Numerical results for a
typical example with § = 40%, symbol error rate u; = 0.03 in good state z = G
(erasures in bad state z = B, i.e., Py = 0.5) are given in fig. 3, for a code
with a symbol length of s = 6 bits and K = 20 information symbols. Beginning
with statistically independent state transitions (i.e., g = 8§ = 0.4,
up to 333 symbols

b=1-g=20.6, i, = 1/b =1.7), average burstlengths i

B B

(i.e., more than five times the maximum codelength N = ZS - 1 = 63) are
regarded. For a reasonable limitation I such that P(n > L) is small (say,
<10_3), R(L) = R(«»). As one of the most surprising results, the average
nunber of symbols per codeword n (L = ©), resp. R = KfH, is seen to be almost

independent of the burstlength iB. This turned out to be true also for other

16
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investigated values of § and Use

But, of course, i, influences the probability distribution P(n=j) resp.

B
Pe(L) = P(n > L). If i, becomes larger, P(n = j) increases for larger j. That
means in long bursts much more symbols are to be transmitted. But we then also

often have long strings of symbols in the good state (for 8§ = constant), where

only a small number n of symbols is required. For example, P(n = K+2 = 22 =

min., n) = 10_.5 for iB = 1.7 but 45% for iB = 333. On the other hand,

P(n > 200) = O for iB = 1.7 but = 2.5% for iB = 333.
g b iB n(o) R(®) P(n=22) P(n>80) P(n>200) P(n>2800)
4 .6 1.7 38.9  .514 =10 ° ~ 0 - -
.02 .03 33 39.4 507 .25 ~10 2 %1072 ~ 0
.002  .003 333 39.6  .505 A he102 2.5+1072 %1072

Fig. 3: 1Influence of average burstlength ig on n(«), R(=), P(n>L).

Error exponent E: For most coding schemes with FEC, the block error

probability Pe usually decreases almost exponentially with codelength N, i.e.,

_N.E("'), where E(...) depends on the channel and code parameters but

Pe(n) % 2
not on N (for large N). FE(...) is called the "error exponent”. Figure 4 shows
log Pe(L) = log P(n > L) also depending about linearly on L, corresponding to a

constant error exponent E (independent of L). Of course, E(iB) decreases with

increasing iB (i.e., becomes worse).

5.2. Influence of Code Parameters.

With straight FEC without feedback, the code parameters must carefully be
adapted in order to achieve a low error probability Pe and a high coderate R

(data throughput). But Adaptive FEC will be shown to adapt to the channel very
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independently of the code parameters s and K if they are chosen within a wide,
reasonable range.

Figure 5 shows the coderate R = R(L) = R(®) (for reasonable limitations L)
for s = 6 (max. codelength N = 63) and s = 8 (N = 255) and various K (number of
information symbols). If K is only a small multiple of 2, then the r » 2 parity
symbols which are always necessary for reliable error detection, decrease the
coderate. If K becomes close to N, the code does not have much error correcting
capability anymore resulting in a poor coderate. But for 2 < K << N the

resulting coderate is seen to depend only weakly on K and s.

s K R( ) s K R( )
6 10 47 8 10 A7
6 20 51 8 20 .51
6 40 45 8 40 54
8 100 .55
8 150 .52
8 200 .38

Fig. 5: Influence of code parameters s,K on R(«).

5.3. Influence of Channel Parameters §,u,.

We have seen in sections 5.1 and 5.2 that R mainly is a function of the

symbol error probability u, and the overall probability § = P(z = B) of being

G
in the bad state. For § # 0, R(uG,G) can be approximated from knowing
R(uG,G =0). For § # 0, of course, at least as much symbols in state z = G are

required as for § = 0 because erased symbols in state z = B do not contain any

information. Therefore,

ng * (1-8) > n (34)

§=0

We expect the inequality in eq. (34) close to equality because an erasure

and a transmitted parity symbol may be regarded as canceling each other by
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eq. (13). The simulation results also showed results close to equality in (34).

For example, with s = 6, K = 20, u, = 0.03, the simulations for § = 0 yield

G

23.4 (or R = K/n = 0.855). For § = 40%, equality in (34) would result in

n

23.4/ (1-0.4) = 39.0 (or R = K/n = 0.855%(1-0.4) = 0.51) close to the simula-

n

tion results in fig. 3. So,

can be regarded as a good estimate of the coderate for § # 0.

A correspondingly simple estimate for R as function of u, only could be

G

found and shown to be valid for small values of u, with correspondingly small

G

n << N. For error correction only (8 = 0), the expected number r of parity

symbols is about twice the expected number of errors, r = 2uG:H. With 2

additional parity symbols for reliable error detection if n is small, this

results inr=n - K = 2 + 2uéﬁ or

R =K/n =~ (1 - 2u.) /(1 + 2/K) for u, << 1, TN (36)

§=0

For example, with s = 6, K = 20, u, = 0.03, (36) yields RG=O = 0.855 as in the

G
simulations. For n > N, approximation (36) is not valid anymore. For

example, with s = 6, K = 20, P = 0.1 corresponding to u, = 0.47, (36) would

result in R = 0.06, but the simulations revealed R = 0.13.

5.4. Rayleigh-Fading.

For Rayleigh-fading the threshold ap for the signal level a was optimized

such that capacity Cp, eq. (26), is maximum. When other optimization criteria

C P R the results revealed not to be very sensitive to

were used (as Cus’ 6s’ e’ )s y

a indicated also by a very flat optimum in C, P, and R. For various values
T’ e

of Yo = ES/NO and given s,K, the corresponding values Pgs Pps Ugs Ups §

according to egs. (5) to (12) were calculated. By computer simulation, the
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s K ES/N R Eb/N

4 8 0 dB .15 8.2 dB
2 dB .25 8.1 dB
4 dB .37 8.3 dB
6 20 0 dB .19 7.2 dB
2 dB .35 6.5 dB =opt.
4 dB 47 7.2 dB
8 20 0 dB 14 8.5 dB
2 dB .30 7.7 dB
4 dB 45 7.5 dB
8 40 0 dB .13 8.6 dB
2 dB 31 7.1 dB
3 dB .39 7.0 dB
4 dB A7 7.3 dB

Fig. 6: Eb/No as function of ES/NO and code parameters s,K.

resulting values R(L) were found (for independent state transitions, i.e.,
g=68, b=1- 8. For R » R(»), the resulting Eb/No = Es/(No'R) are shown in
fig. 6.

As seen from fig. 6, the optimum ES/No = 2dB results in Eb/No = 6.5 to 7 éB
for small Pe. With fixed rate FEC (without feedback), only about Eb/NO = 10 to
11 dB can be achieved. Compared to uncoded CBPSK with AWGN Eb/NO = 9.6 dB and
with Rayleigh-fading Eb/NO ~» 44 dB are necessary for P, < 10—5. So with

feedback and Adaptive FEC with RS-codes, a Rayleigh-fading channel with coding

needs less signal energy than an AWGN channel without coding.

5.5, Comparison to Capacity and Cutoff Rate.

The coderates R achieved by Adoptive FEC were compared to capacity

c=2¢Cp, C R

CG and cutoff rate R_= s
s o us

Rgg» and R, e.g., (26)

us?’ Rps’

through (33). As explained in chapter 4, Csg> €4+ (29), is the closest capacity
limit for any error correcting scheme which corrects s-bit symbols (treating

each wrong symbol the same way) as errors and erasures. Reos €qe (32), is the
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corresponding cutoff rate. For a GE-channel with u, = 0.03, & = 40% and code
parameters s = 6, r = 20, a coderate R =~ 0.51 was achieved by Adaptive FED.

The corresponding values Cés’ R5 are C6s = 0.56 (relatively close to R) but

s

R = 0.19 (much too pessimistic). Similar results were seen for Rayleigh-

ds
fading. For y = 2dB = (ES/NO)opt, ap = 0.65 (such that Cp = max) and a
symbol-length of s = 6 bits the values of capacity C (and cutoff rate RO

together with the corresponding Eb/No = YO) C resp R are shown in fig. 7.

C - @ E /N, R = @ E /N
R a— R = 369 6.33 dB
pl ps p pl

Cp = ,568 4.45 dB RPS = .295 7.31 dB
C = .459 5'38 dB i R = 0156 10.07 dB
us ¢ us

Cpg = +423 574 dB 1 R 135 10.71 dB

Fig. 7: Capacities and R 's for Rayleigh-fading, E_/N_= 2 dB, a, = 0.65,
(o} . s'7o T
symbols-length s = 6 bits.
The coderate R achieved by Adaptive FEC with RS-codes s = 6, K = 20 is
R - 0.353 resulting in Eb/No = YO/R = 6.52 dB. This is only 0.8 dB worse than
the corresponding capacity limit CGs but more than 4 dB better than the RO

estimate from RGs‘ (The maximum R .528 corresponds to Eb/NO = 4,77 dB

0,max

for ES/NO = 2 dB.)

6. Conclusions and Open Questions.

For a two-state GE-channel-model with or without memory, it was shown that
the proposed Adaptive FEC scheme has a coderate R which is almost independent
from the length distribution of bursts. The coderate depends mainly on the
symbol error probability u, in the "good" state and the overall probability & of
being in the "bad" state. For § # 0, about as many symbols in the "good" state

are necessary for reliable error and erasure correction and detection as for
22



§ = 0, resulting in Re = R6=O‘(l—6). For small values of n, a simple approxi-
mation of R could be given. Code parameters s and K were seen not to influence
the performance much, due to the adaptive nature of the correcting scheme. For
error bursts caused by miltipath effects and modeled as Rayleigh-fading with a
binary channel state quantization, the required signal-to-noise-ratio Eb/NO is
only 6.5 dB compared to 10 to 11 dB without feedback and 44 dB without coding.
It could be shown that this is only about 0.8 dB worse than the corresponding
channel capacity C@s’ but more than 4 dB better than the appropriate cutoff

rate R_o = R Whereas capacity is the same for channels with or without feed-

§s”
back, this is not the case for RO. Here we only were able to calculate Ro for
channels without feedback. To calculate cutoff rate for channels without feed-
back is an issue for further research.

0Of course, the distribution of bursts and the average burstlength iB
influences the error probability P, = P(n>L) if n is limited to a maximum of L
transmitted symbols per codeword. By computer simulations, Pe could be shown to
decrease exponentially with L, described by a constant error exponent E

(independent from L), which decreases with increasing burstlength i Because E

B
is of great practical importance for the required buffer length of the receiver
and the decoding delay, more analytical work should be done in order to get
realistic estimates of E for a variety of parameters without tedious computer
simulations. Some first information theoretic approaches by P. Narayan [10],
using random codebook arguments, show results close to the values seen by
simulations, encouraging further work in this direction. All results in the
paper were calculated under the often unrealistic assumption of a zero-delay

error—-free feedback signal. The influence of feedback delay and feedback errors

also may be an important issue for future work.
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