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Abstract

An analysis of the rate-distortion performance of an optimum entropy-constrained
block transform quantization scheme operating on discrete~time stationary
autoregressive processes is presenteds Uniform—threshold quantization is employed to
quantize the transform coefficients. An algoritim for optimum stepsize (or, equiva-
lently, entropy) assigmment among the quantizers is develop;d.’ A simple asymptotic
formula indicating the high rate performance of the block transform quantization
scheme is presented. Finally, specific results determining the rate-distortion per-
formance of the entropy—constrained block transform quantization scheme operating
upon first-order Gauss-Markov and Laplace-Markov sources are presented and
appropriate comparisons with the Huang and Schultheiss block transform quantization,

vector quantization and predictive encoding are rendered,
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I. Introduction:

There are numerous techniques available for analog-to-digital conversion or
data compression of discrete time sources, They range from simple scalar
(zero-memory) quantization or PCM, to more sophisticated schemes such as predic-
tive encoding, tree encoding and multi-d imensional quantization. It is well-
known that the potential gains of data compression are most noticeable for highly
correlated sources.

One of the most popular data compression schemes for encoding of correlated
sources is block transform quantization. The main advantages associated with
the block transform quantization scheme are: (i) good performance results, and
(1ii) ease of implementation.

In a typical block transform quantization scheme blocks of length L of the
source output are operated upon by a transformation. Then, the resulting trans-
form coefficients are quantized and encoded for transmission over a noiseless
channel, In the receiver another transformation will operate upon the received
transform coefficients to generate a replica of the source output vector.

Transform coders were developed by Kramer and Mathews [19] and later refined
by Huang and Schultheiss [1]. Huang and Schultheiss restricted the transformation
to be linear. They also assumed that the transform coefficients are quantized by
means of Lloyd-Max quantizers [4], [5]. They then determined the optimal linear
transformation, which turned out to be the KarhunanmLoeve transformation. They
also found the approximately optimal integral bit allocation among the transform
coefficients and then quantized each component with a Lloyd-Max quantizer.
Specific examples determining the performance of this scheme on Gauss-Markov
sources aref;rovided in [1].

Certain refinements of Huang and Schultheiss' results are given in [2] by
Segall., Also, various adaptive schemes for block transform quantization of

speech and image sources are developed and reported in [3], [7] and [8].
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All aforementioned results are based upon the assumption that the transform
coef ficients are quantized by means of Lloyd-Max quantizers which implicity assume
that the number of bits needed to represent the output of each quantizer is given by
the base 2 logaritim of the corresponding number of levels. However, recent results
on entropy-constrained quantization reveals that substantial performance improvements
can be obtained by using optimum entropy-constrained quantizers instead of Lloyd-Max
quantizers [6].

In this paper, we will study the performance of block transform quantization
schemes in which entropy-constrained zero-memory quantizers are used to encode the
transform coefficients. This system, as we will show in subsequent sections, will
result in a better rate-distortion performance as compared to the Huang-Schutheiss
scheme. The reasons for this performance improvement are two. First, zero-memory
entropy-constrained quantizers perform better than zero-memory Lloyd-Max quantizers.,
Second, in the Huang-Schulthelss scheme the rate associated with each quantizer is
constrained to be an integer. The absence of this restriction in the entropy-
constrained quantization situation results in additional performance improvements.

In this paper we present an analysis of an entropy-constrained block trans-
form quantization scheme. We develop an algorithmic approach for the design of
the quantizers and the entropy assignment among the quantizers. We examine the
rate-distortion performance of this scheme on Gauss-Markov and Laplace-Markov
sources and present comparisons against the rate-distortion bounds, as well as
the performance of other source coding schemes such as Huang-Schultheiss' block
transform coding, vector quantization [11] and predictive encoding schemes [10].
Furthermore, we develop a high rate asymptotic analysis of the rate-distortion
performance if the entropy-constrained block transform quantization scheme which pro-
vides a siméie formula for the high bit rate region in terms of the differential

entropies of the transform coefficients.



The organization of this paper is as follows. In Section II, we present a
description of the block transform encoding scheme. Then, we formilate the
entropy-constrained block transform quantization problem in Section III. Also,
in this section an algorithm for entropy (rate) assignment and quantizer design
is presented. In Section IV the Guass-Markov and Laplace-Markov sources, for
which the system performance is obtained, are described and the density of the
transform coefficients are computed. This is followed by a presentation of the
high bit rate asymptotic results in Section V. In Section VI, numerical results
describing the efficacy of the entropy-constrained block transform quantization
scheme are presented. Finally, in Section VII a summary and suggestions for future

research are included.
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II. Preliminaries and Notation:

In the sequel we assume that the source to be encoded can be modeled as a
discrete-time stationary first-order autoregressive procss with zero mean and

variance 02 described by

X’
Xn = DXn_l + Wn 3 n=1,2,... s (I1.1)
where {an is a zero-mean sequence of independent and identically distributed

random variables with probability density function pw(x), and variance 0;

Furthermore, we assume that the initial state XO is chosen appropriately to
insure stationarity of {Xn}.

This model has been chosen both because it is often a good mathematical
model for real-world data (e.g., speech and images), and because it provides a
well-understood standard for comparison [1], [9]-[11].

Let us consider a block of length L of consecutive source outputs defined by

T
zn - (X(n-l)L+1 > X(n_l)L_'_z,o-., X.nL) Py n—l,z, XK (II.Z)
Upon defining the source autocorrelation function
= f . = +
¢k E{Xn Xn+k] H k=0,%1,... , (11.3)

the moment matrix of the vector process Eﬂ is defined by

— -
[ P
¢ ¢ LN ) (p
T 1 0 L-2
ﬁx - EtX X } = . L] (II.A)
—q)L—l ¢L‘-2 LR N ] ¢0 _]-

Also, the source power spectral density ¢X(w), is defined as

@ = L ee , we |[-m, 7] (11.5)

with @ = ¢ k= 1,2,... .



In a typical block transform quantization scheme, L successive source outputs
are collected to form a block zﬂ, or simply X, as n, due to stationarity, bears
no significance in our analysis. The source L-vector X is then operated upon by a
nonsingular (LxL) transformation matrix:i to generate an L-vector X_with uncorrelated

components given by

>

Y (Y Y LK Y Y )T = AX . (1106)
- L =

1’ 2

The intuitive idea behind this transformation is to exploit the correlation bet-
ween the input samples {Xn} by first generating a set of uncorrelated variables

Y ey YL and then encoding these sample by sample, Thus, each component of

l) Yz)
Y is quantized and encoded by means of a separate zero-memory quantizer. The

quantizer operating upon the ith transform coefficient qi('), i=1,2,...,L is

described by

q 0 = 1e xe @), TP, eae, 0, (I1.7)

in which T(i)< T(i)< ees N T(i) and Q(i), Q(i), ceu, Q(l) are the threshold levels
0 1 Ni 1 2 Ni
and the quantization levels associated with the ith quantizer, respectively. Here,

the number of levels associated with the ith quantizer is denoted by N

i
Let us denote the vector of quantized transform coefficients by
Fo) " »~ o) T
Y= (YI’ Y2, cee, YL) in which
Y, =q,(¥) , i=1,2,...,L . (I1.8)

~

The Yi's, after being coded as a sequence of binary digits, are transmitted

via a noiseless channel., In the receiver, an (LxL) transformation matrix B operates
=8

”~ .

on Y to generate a replica of X, say X, given by

a byt 18.|

= BY ., (11.9)
=

ECRY



At this point, the problem can be described as follows. Given a fixed
nunber of bits available for representing a source sample, say R, our goal is to
minimize the average per-symbol squared-error distortion incurred in the above

operation, described by

D=%E{ n_)_(-xnz} , (11.10)

in which E{-} is the expectation operation and IXl denotes the norm of the vector

X € RL. The minimization of D will be achieved by adjustment of the matrices A

andlz, and the appropriate design of the quantizers qi(-), i=1,2, ¢ee, L

The above problem was first stulied by Huang and Schultheiss [1], in which
the block transform quantization problem was investigated for stationary Gaussian
sources with the assunption that the quantizers used for encoding the transform
coefficients are Lloyd-Max quantizers. In [1], the optimum choices of the
transformations‘é and.E;are determined. More specifically, it is shown that,
(i) the best transformation matrix B is the inverse of the matrix:i, and (ii) the

best transformation matrix A is the matrix whose rows are the orthonormalized
==
eigenvectors of ¢ _, the covariance matrix of X (i.e., the KarhunenrLoeve
- st

transformation).

Due to the fact that the Karhunenrloeve transformation is a unitary trans—

formation (i.e., AT = Afl), we have
1 o2 1 o2
p=rE{ 1X-X1"}=5E{1Y-Y1 } =
llf
== A, D, (I1.11)
L =1 1 i

T

where Ai is the ith eigenvalue of @X (or, the variance of the ith transform

coefficient) and D, is the normalized (to the variance of the ith coefficient)

i

average squared-error associated with the quantization of the ith coefficient.
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If Ri’ i=1,2,...,L, designates the rate associated with the ith quantizer, the
problem of quantizer design is that of minimizing D given by (II.11l) while the

overall rate requirement is satisfied, i.e.,

Rl + R2 + ees + RL )

Assuming that Lloyd-Max quantizers are used for encoding the transform coef-

ficients, i.e., R, is the logarithm of the number of levels of the quantizer,

i
Huang and Schultheiss [1] developed an algorithm to find approximately the best bit

assignment among the L quantizers*.

While Huang and Schultheiss', as well as all subsequent work on block
transform quantization [2], [7], [8] are based on the use of Lloyd-Max quan-
tizers, recent work on optimum entropy-constrained zero—memory quantization [6]
has revealed that, from a rate-distortion theoretic point of view, substantial per-
formance improvements can be obtained by optimum entropy-constrained quantization
compared to the Lloyd-Max scheme. This has become our motivation for studying the
performance of block transform quantization schemes which employ entropy-constrained
quantizers to encode the transform coefficients. In what follows, we provide a pre-

cise formulation of the problem and develop an algorithm for optimum system design.

g

# Note that im [1] only Gaussian sources are considered for which the transform
coefficients are also Gaussian and hence the problem of optimum quantizer
design reduces to that of optimum bit assignment, since the quantizer design
with a known number of levels for Gaussian sources is known }, 5].



III. Problem Statement and Algorithm:

Let us suppose that the ith transform coefficient is quantized by means of
a zero-memory optimum entropy-constrained quantizer with output entropy
Hi bits/sample. Thus, according to Shannon's noiseless source coding arguments [15],
the average nunber of bits necessary to represent the output of the ith quantizer is
Hi bits/sample. let Di(Hi) be the variance-normalized average squared-error distor—
tion associated with quantizing the ith coefficient. The overall average distortion

is then given by

L
D(H) = oy D), (III.1)

1 i

-

i

in which H = (Hl, H2’ cees HL). We wish to put a constraint, say R, on the overall

average output entropy. Therefore, our problem is to find an optimum vector

* % * %
H = (Hl, H2’ eve, HL) that minimizes
1 L
D(H) =T .Z A Dy(HD (I1I.2.a)
i=1
subject to
1 L
- ) H <R. (I11.2.b)
L i=1 i

*

Notice that the vector of optimum entropy (rate) assignment H , plays the
same role as the optimum bit assigment vector in [l]. Solving the above nonli-
near constrained programming problem, in general, is a formidable task. This is,

primarily, due to the fact that explicit relationship between Di(Hi) and Hi is

not known. Te alleviate this problem it is possible to express both the average

distortion and the output entropy associated with individual coefficients in

# In (III.1) and subsequent sections we will assume that the KarhunemrlLoeve
transformation is used and hence A,, i=1,2,...,L, is the variance of the ith
coefficient. Extension to other nomoptimal transformations is straightforward.

8



terms of their respective quantization thresholds Til)

, 4=0,1,...,N, and quan-

i

tization levels Qii), 2=1,2,...,Ni. So lving this problem involves the deter—
L
mination of ) (2N1—1) threshold levels and quantization levels.
i=1
Considering the fact that to get good performance results some of the N,'s need to be

i

fairly large, and also to fully exploit the source correlation, large values of
L might be required, it becomes obvious that, in general, the number of
variables could become prohibitively large which, in turn, makes the problem
extremely difficult.

To alleviate the aforementioned problem we have made use of some observations
about the performance of zero-memory entropy-constrained quantizers., Specifically,
it is shown by Gish and Pierce [13] that at high bit rates and for large number of
quantization levels, the optimum quantizer has uniformly spaced levels. Furthermore,
experimental results of Farvardin and Modestino [6] have revealed that, for a wide
class of memoryless sources, even at low bit rates, uniformthreshold quantizers
(i.e., N-level quantizers with Tz - Tl—l = A, 2=2,3,...,8-1) perform very close to
the optimum performance when N is sufficiently large. Indeed, in the absence of a
limit on the number of levels, the difference between the performance of the optimum
uniform-threshold quantizer and the optimum quantizer is observed to be negligible
[6]. The above observation and the need for simplification of our problem has led us
to consider a block transform quantization scheme with entropy constraint in which

zero-memory uniform—threshold quantizers are employed in quantization of the trans-

form coefficients.
Let us suppose that the variance-normalized average squared-error distortion and

output entropy associated with the uniformthreshold quantizer with stepsize Ai

- A ~

operating on the ith transform coefficient are given by Di(Ai) and Hi(Ai)’

bits/sample, respectively. Then, the constrained nonlinear programming problem



described by (III.2) will be translated to finding a vector of optimum stepsizes

* * % *
A = (Al’ A2""’ AL) that minimizes

L
~ 1 - o~
D(&) =+ ) A D.(8) , (II1.3.a)
i=1
subject to
. L Lo
H(A) == ) H(A) SR . (1IL.3.b)
SR A R

For comparison purposes, we will denote the optimum distortion-rate perfor-
mance of this scheme by 6(R) = 6(3?), while reserving D(R) to denote the limiting
source distortion-rate function [14].

Necessary conditions for the solution of the problem described in (IIL.3)

! *
follow from the Kuhn-Tucker Theorem LIZ]. Specifically, letting A_ be a local

#
solution of (III.3), there must exist a scalar A > 0 such that

(s + Am(a) =0 (I11L.4.a)
and
Nk
AMH(A) -R] =0 , (I11.4.b)

where A 1s the Lagrange multiplier,
F#
Notice that for the ith N-level quantizer the explicit expressions for

Di(Ai) and Hi(Ai) are simply written as

. NP Wy 2
D, (8) = 221 [ 1y == ) p (dx,  (I1L.5.a)
-1

[T

# The operator V(°*) indicates the gradient of a scalar function with respect to
its arguments.

% Notice that so long as the number of levels is sufficiently large, its actual
value does not play an important role., Therefore, we will assume, from now on,
that all L quantizers have the same number of levels N,

10



and

~

N
- - (1) (1)
Hi(Ai) = gzl Pz (Ai)log2 Pz (Ai), bits/sample, (I1I.5.b)
in which
™™ 2y - w2 g=1,2 N-1
2 i bl ? 9 S0y b}
T;i) = - T(()i) =« , (IIL.5.c)
and
20
f xpi(x)dx
. T(i)
Qil)(Ai) = Aol s 2=1,2, .00 N , (II1.5.d)
A0
%(i) pi(x)dx
-1

where pi(x) is the probability density function (p.d.f) of the ith transform

(1)

coefficient and Pz

(Ai) is the probability that the ith transform coefficient falls

in the 2th bin of its respective quantizer. It must be mentioned that in (III.5) and
all subsequent sections, following the arguments in [6], the uniformthreshold quan-

tizers are assuned to be symmetric with respect to the origin.

For A > 0, (III.4) yields a set of L necessary conditions for optimality

described by

3D, (A.) 3H, (A,)
* A TiTd A i 1 _ \
fi(Ai,x) =3 t 5= 5 =0, i=1,2,.e.,L . (III.6)
i * i i *
b=h, =8y

Using (III.5), an expression for fi(Ai;A) in terms of Ai and A can be found

which is included in Appendix A. It is important to note that for A=0 the

problem reduces to that of minimizing the average distortion D(A) with no

~

constraint on H(A). This, essentially, corresponds to the minimization of the

average distortion in each coordinate. The resulting D(A) and H(A) yield the

11



minimum distortion point (for a fixed value of N) on the distortion-rate perfor-

mance curve D(R).

With the above description, our algoritim works in the following manner,

Algoritim:

1)

i1)

111)

iv)

Fix the number of quantization levels N, and the block size L,

Compute the variance A, and the p.d.f. Pi(x) of the transform coefficients,

i
i=1,2,...L (see Section IV)., Set A=0,

Solye (I11.6) for the optimum Ai’ say A*, i=1,2,44s,L. This can be done
using numerical techniques for computing the root(s) of a nonlinear
equation. Compute 6(3?) and ﬁ(éf). If ﬁ(A*) > Ht go to (iv)., Otherwise
stop. Here, Ht>0 is a small rate used for terminating the algorithm,

Set A = A + § (80 is the value by which A is incremented at each iteration).

Go to (1ii).

~ ok ~ ok
The collection of points (D(& ), H(A )) obtained in step (iii) of the algorithm

determine the system's distortion-rate performance curve.

One issue that we have neglected so far is that of computing the p.d.f. of

the transform coefficients, In the following section, we shall confine attention

to two different source distributions for which the numerical results are obtained,

and will describe the procedure for computing the p.d.f. of the transform coef-

ficients,

[T T B DT
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IV. Source Models:

As mentioned in Section II, our attention in studying the entropy-constrained
block transform quantization scheme is focused on stationary first-order
autoregressive sources described by (II.1). In particular, we are interested in
first-order Gauss-Markov and Laplace-Markov sources. Let us consider the two sources
separately.

A.) Gauss-Markov Source:

The Gauss-Markov source is defined according to (II.1) where {Wn} is a

. 2
zero-mean sequence of Gaussian random variables with variance Ou = 1. It turns

out that, under appropriate initial conditions, {Xn} is a stationary zero-mean

Gaussian random process with variance oi =1/ (1—p2). Since the Karhunen-Loeve

transformation A is a linear transformation, the transform coefficients will be

Gaussian variates with zero-mean and variance Xi’ i=1,2,...,L. Thus, the pd.f.

of the ith transform coefficient, is given by:

1
v'21r)‘i

pi(x) = exp{—xz/ZAi}, i=1,2,604,L, =0 { x  © , (1Iv.1)

B.) Laplace-Markov Source:

The stationary Laplace-Markov process is defined in [17] . By this we mean
a first-order Markov process with a Laplacian marginal distribution. It is
straightforward to determine the pd.f. of the process {Wn} generating the
Laplace—Markov source.

Upon taking characteristic functions in (II.1), we have

wX(Z) = wx(pz)ww(Z) , (IV.2)

in which \I)X( 3 and ww(-) denote the characteristic functions of X and wn,

respectively If , we require
-1 -lx]
pX(x) =5e y @ {x < R (Iv.3.a)

13



as assumed, we have

1
P (2) 2mme | —@ z (O (IV.3.b)
X 1+22

which, in turn, combined with (IV.2) yields

22
+
h(2) = 3-11%3— = 0% + (1-p%) 2 — (IV.4.a)
14z 1+z
and hence

That is, {Xn} represents a source generating a random variable whose value
is either zero with probability 92 or Laplacian distributed with probability
(1—92). Here, again under appropriate initial conditions, the process {Xn} is a
stationary zero—mean Laplacian process with variance O; = 2,

The significance of studying Laplace-Markov sources is the observation,

made by several researchers (e.g., [18}) that speech signals possess a marginal

density reasonably close to a Laplacian density.
Let us now proceed to compute the marginal p.d.f., of the transform coef-
ficients for the Laplace-Markov input. Consider a typical source L-vector

X= (Xl’xz""’XL)° Using (II.,1) it is straightforward to show that

X, = DjX + & pj—kw ’ j=192’°°°’1‘ . (IV'S)
i 0 w1 k

Then, using (II1.6) and denoting the (i,j)th element of A by a1 5 i=1,2,...,L,
E_J

4

i=1,2,...,L, we have

Y é [ 3 a, o ]x + E

& O, 1=1,2,...L (1V.6)
L 13 0 3 1 k

a
13, 2

1

which can be further simplified as
14



Y, = aX) + Y B Mo 1= 1,2,.000L, (1V.7.a)
k=1 ?
where
A L .
ai = z ai'pJ ’ i=1)2)"”L E] (IVo7cb)
j=1
and
L i
A -k )
) ai,pJ , k=1,2,...,L, i=1,2,...,L . (1V.7.c)
’ j=k J

Now, using the fact that XO’ and W, , k=1,2,...,L are all independent from

each other, we can write

L
by (z) = ¥ (aiz)- f ww(ek iz), i=1,2,...,L . (1IvV.8)

i X k=1 ’

Therefore, using (IV.3.b) and (IV.4.a), we have the following explicit formula

for the characteristic function of Yi:

1 L l+928i iz2
¢Y (z) =——=— + 1 5 ’2 , 1=1,2,4044,L (1v.9)
i 1+ﬂiz k=1 1+Bk iz

Now, noting that a, = pB 10 i=1,2,.¢.,L, (IV.9) simplifies to
b

1
L
292 2
I (14p Bk 42 )
vo (z) = K22 ,  i=1,2,...,L . (1V.10)
Y L )
I (1+Bk 42 )
k=1 ,

= 2 2
Upon assuming that Bk i * B ¥ for all k#2, we can rewrite (IV.10) as the
_ b

2,i

following sum:

# If this condition is not satisfied, then multiple poles exist in (IV.10) which
should be dealt with properly. An example of this, is when L=4 and p=0.5 in which

case three of the poles coincide.
15



oy (2) = ] —=h— e, (IV.11.a)

in which

2 _
A A %uz )q;Yi(z) ) L =1,2,...,L. (1V.11.b)

£,1 - _ 2
z 1/32,1

Having expressed the characteristic function of the random variable Yi as

(Iv.1l.a), its pd.f. can easily be written as

-x]/18, .|
N R S 0 S A (1V.12)

L
_ 1
p; (x) _kzlAk,i 218, 1 °

In other words, the p.d.f. of the transform coefficients can be expressed as a

weighted sum of the p.d.f.'s of L zeromean Laplacian p.d.f.'s with variances

2

k.1’ k=1,2,...,L. The simple formula for the p.d.f. of the ith transfom
’

28

coefficient is extremely useful in simplifying the computation of the performance

of entropy-constrained block transform quantization scheme. Before presenting the

numerical results, in the following section we present a high rate asymptotic

analysis of the system performance.

vhgob oy e
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V. Asymptotic Results:

It is shown by Gish and Pierce [13] that in zero-memory quantization of
memoryless sources, when the number of quantization levels is large and when
the output entropy is high, under certain mild conditions on the source p.d.f., the
varlance-normalized average distortion and output entropy can be expressed as a func-

tion of the quantizer stepsize through the following simple relationship

A 2

Di(Ai) = 12Ai , (V.l.3)
and

Hi(Ai) = hi - log2 Ai , bits/sample, (V.l.b)

respectively, where hi is the differential entropy associated with the ith

transform coefficient given by

-

hi = - f pi(x)log2 pi(x)dx, bits/sample. (V.l.c)

Furthermore, eliminating Ai in (V.1) yields the following high rate asymptotic per—

formance for zero-memory entropy-constrained quantizers

~

~oon 1 Z(hi - Hi)
Di(Hi) -i—z-)T 2 . (v.2)

Replacing (V.l.a) and (V.l.b) in (IIL.6) yields

* eal/2
Ai = [m'] Y 1—1,2, ose glie (V.3)

{

~ ok
Noting that from (IIL.4.b), X > 0 implies H(A ) = R, we must have

w

H(A) =5 I (h, - log, 8) =R, (V.4)
1=1

which, in turn, implies
17



_ An2 9 2(h-R)

Y 7%

, (v.5)

in which h is defined by

>
e

L

Y h, . (V.6)

i=

Combining (V.l.a), (V.3), (V.5) and (I1I.3.a) yields the following expression

for the distortiomrrate performance of our system at the high bit rate region,

IA)(R) -1 ,2(h-R)

75 . v.7)

It is interesting to note that B(R) in (V.7) is very similar to 5i(ﬁi) in
(V.2) with the exception of h defined by (V.6) which, in a sense, is the average per—
symbol differential entropy.

Equation (V.7) is very useful in assessing the distortionrate performance
of the block transform coding scheme against the optimal source distortion rate-
rate function and the optimal performance of other source coding schemes such as
Huang and Schultheiss' block tramsform quantization [1] scheme or optimum pre-
dictive encoding [10] at high bit rates.

In general, as indicated in Section IV, computation of the p.d.f. and hence
the differential entropy of the transform coefficients is difficult. However,
for the Gaussian source, the transform coefficients remain Gaussian and, therefore,
a good deal of analytical results can be obtained, which is presented in the
following.

let us first compute D(R) for the Gaussian source. The differential entro-

pies hi’ i=1,§,...,L are given by

(ORI

h, = -El-log2 2mel i=1,2,...,L , bits/sample, (v.8)

i i?

and hence
18



L

h = l-log 27e [ T X ]I/L . v.9)
2 2 i
i=1
Therefore, (V.7) simplifies to
- Te L /L ~-2R
D(R) =— [ I A,] 2 . (V.10)
gl 1

On the other hand, the high bit rate (or, low distortion, i.e,, D < Ai R

i=1,2,...,L) distortiorrate function of the source is given by

]1/1. ;R

L
D (R) = [ m A , (V.11)

=1 1
where the subscript L is used to indicate that the distortion-rate function is
obtained based on source blocks of length L, [14], [16]. Of course, as L tends
to infinity DL(R) converges to the source distortiorrate function.

To provide a basis for comparison with Huang and Schultheiss' scheme [1],
in what follows we present an asymptotic analysis of the performance of the
scheme described in [1].

In [l], Lloyd-Max quantizers are used to encode the transform coefficients.
The distortionrrate performance of the ith Lloyd-Max quantizer at high bit rates
can be approximated by means of companding arguments [3]. Denoting the variance-

normalized distortionrate performance of the ith Lloyd-Max quantizer by Di(Ri)’ we

have [3]
ol -2R
= 2 1/3 3 i
D, (R;) = EK—'[ i [pi(x)] dx]” 2 . (V.12)
i 0
For the Gaussian source, however, we have
1 2
- pi(x) = ————————-exp{dx /ZXi} , 1=1,2,...,L , (V.13)
- VZnAi

which results in the following expression for Di(Ri)’

-R
"{3—_ 2 1, (V.14)

Di(Ri) =
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Now the problem of minimizing the distortion is that of finding
* * * * L
R = (Rl’ RZ""’ RL) which minimizes

~

D(R) =

1
L 2 i ’

L -R,
v 3 2t (V.15.a)
i=1

subject to

. L
T LR =R . (V.15.b)

Using the same approach as before, it can be shown that the best Ri's are given

approximately* by

* 1 i .
R, = R+ % log, ———=—— , i=1,2,...,L , (V.16)
1 2 2 L /

[ n A.]”‘

. i

i=1

~

~ %
which, in turn, results in the best performance D(R),A D(R ) given by

[L
T A
i=1 1

mv3

! ]l/L )~ R

B(R) = . (V.17)

Comparison of (V.10), (V.11) and (V.17) reveals the fact that for a fixed
transmission rate R, the difference between the source rate-distortion function
and the entropy-constrained block transform coding scheme is lOloglO §3-= 1.53 4B,
while the gain of entropy-constrained block transform over Huang and Schultheiss'
scheme is 1Olog10-3%§§%—— = 2.81 dB. Equivalently, these differences, for a fixed
distortion D, are 0.255 bits/sample and 0.467 bits/sample, respectively.

Finally, it is worth mentioning that similar differences hold regardless of

the actual value of L. Also, the limiting results for L => « can be obtained using

the Toeplitz distribution theorem [14], [16]. More precisely, to obtain the

vl o

* *
¥ The Ry's given by (V.16) are not necessarily integers. Therfore, these R;j's
should be somehow adjusted to their nearest integer values [1], [7].
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distortion-rate performance of the optimum entropy-constrained block transform

quantization scheme in the high bit-rate region and for the limit of large L, we

observe from (V,10) that

-~ L
e 1 &
log2 D(R) = log2 z + i-1£1 10g2 Ai R , (V.18)
which then using the Toeplitz distribution theorem [14] implies
- Te 1
lim log, D(R) = log, = + =+ { log, ¢ (w)dw - 2R, (V.19)

L->w L

in which QX(w) is the source power spectral density as described in (IIL.5).

It is instructive to mention, before closing this section, that the limiting
value of the expression in (V.19) for first-order autoregressive Gaussian sources
coincides with the asymptotic performance of optimum entropy-constrained predictive
encoding schemes (equation (63a) in [10]). In other words, for first-order
Gauss-Markov sourcesg, the entropy-constrained block transform quantization and the
entropy—constrained DPCM yield the same high rate performance,

In the following section we present the numerical results obtained from our
algorithm for the first—order Gauss-Markov and Laplace-Markov sources and make

appropriate comparisons against other coding schemes,

adgg v e
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VI. Numerical Results:

We have used the algorithm described in Section III to obtain the optimum
distortionrrate performance of the entropy-constrained block transform quan—
tization scheme with uniform-threshold quantizers. Performance results are
obtained for the GaussMarkov and the Laplace-Markov source for different values of
the block size L, the correlation coefficient p and the transmission rate R, In the
following we present a description of various system parameters and the results.,

In the outset, it should be mentioned that in all cases the number of quan-
tization levels is fixed and equal to N=35. This assumption, although rather
arbitrary, is based on the results in [6]., It is shown in [6] that for most sources
N=35 is sufficiently large for close-to-optimal performance at low bit rates. It is
conceivable that at higher bit rates (e.g., R=3 bits/sample) and especially for the
Laplace-Markov source for which the transform coefficients possess more broad-tailed
densities, better performance results could be obtained with a larger number of quan-
tization levels, It is also important to mention that since different transform
coefficients‘are quantized at different rates, one could use a smaller number of
levels for those coefficlents that are quantized at lower bit rates, This will be
useful in complexity reduction when the system is to be implemented.

In Tables 1-3 we have sunmarized the performance results of the entropy-
constrained block transform quantization scheme for Gauss-Markov sources. Where
available, the performance of the Huang-Schultheiss scheme [1], the vector quan-
tization scheme [11],[20] and the optimum entropy-constrained DPCM [10], is also
included in these tables. Several comments about these results are in order.

First, it is important to note that in all cases the entropy-constrained
s cheme outpeiforms the Huang-Schultheiss scheme. This difference in performance
ranges from 5.18 dB for p=0.5, 1=1, and R=1 bit/sample, to 2.53 dB for p=0.5,

L=2, and R=3 bits/sample. Tn general, the performance improvements are more

noticeable at higher bit rates. These performance improvements are due to two fac-
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tors. First, entropy-constrained zero-memory quantizers outperform Lloyd-Max
quantizers. Secondly, the Huang-Schultheiss scheme is designed based upon the
assunption that the rate associated with each quantizer is an integer. This
constraint, which does not exist in the entropy-constrained scheme, results in addi-
tional suboptimality and hence inferior performance. It is important to recall, as
we established in Section V, that if there is no restriction on the number of quan-
tization levels of the entropy-constrained scheme, then at high bit rates it outper—
forms the Huang-Schultheiss scheme by 2.81 dB.

The second interesting observation is that in all cases for which the results
are available for the full-search vector quantizer performance [20], the
entropy-constrained block transform quantization scheme has yielded superior
performance results. This observation, together with the fact that block trans-
form quantization schemes are more amenable to implementation further underscores
thelr attractiveness for easily implementable high-performance data coﬁpression
s chemes.

Finally, it is of importance to compare the performance of the entropy-
constrained block transform quantization scheme against the optimum entropy-
constrained DPCM. This is especially important at the low bit rate region because,
as indicated in Section V, for high bit rates the two schemes offer the same perfor-
mance. Results of Tables 1-3 reveal that at rate R=1 bit/sample the entropy-
constrained block transform scheme offers substantial performance improvements over
DPCM. Interestingly, this takes place for relatively low values of L. Indeed, in
all cases the performance of the system with L=4 supercedes that of the optimum DPCM.
The performance improvements are more tangible for higher values of p and L. For
instance, fdi p=0.9 and 1=8, the entropy-constrained block transform scheme at R=1
bit/sample &itperforms the DPCM scheme by 1.52 dB. We expect that this difference
will become noticeably larger for larger values of L, especially for large values of

p for which there is more memory in the source.
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For the sake of completion, the rate-distortion performance of entropy-
constrained block transform quantizers are illustrated in Fig.'s 1-3. In these
Figures we have also included the asymptotic performance curves given by (V.10), as
well as the source rate-distortion performance curve described in [14].

Careful examination of the results in Figures 1-3 reveals that, in general,
there is good agreement between the numerical results and the asymptotic formula in
the high bit rate region. Slight deviation from the asymptotic performance (dashed
curves in Figures 1-3) for p = 0.8 and p = 0.9 is a direct consequence of the limita-—
tion on the number of quantization levels. More specifically, it turns out that for
large values of p, R and L, the entropy assigned to the first component is very large
(e.g., for p = 0.9, L = 8 and R = 3 bits/sample, the entropy assigned to the first
component is ﬁl = 4,58 bits/sample). Therefore, in order to achieve an average
distortion close to optimum for this component, a large number of quantization levels
(larger than N = 35) will become necessary.

Let us now consider similar results for the Laplace-Markov source. These
results are summarized in Tables 4-6. In these tables we have also included upper
and lower bound on the source rate-distortion function, denoted by RL(D) and RU(D).
The upper bound is the well-known Gaussian upper bound [14] and the lower bound is
based on the autoregressive lower bound [21]. This lower bound is determined in
terms of the rate-distortion function of the innovation sequence {Wn} described by
(IV.4.b). This rate-distortion function, in turn, has been lower bounded by the
Carter-Neuhoff composite lower bound [22], the computation of which is based on the
Blahut algorithm [23]. Details of this lower bound can be found in [10].

As one could easily see from the results in Tables 4-6, the performance improve-
ments obtaiﬁ?d by the entropy-constrained block transform coding over the
Huang—Schult?eiss scheme are much more noticeable for the Laplace-Markov source.

This is, primarily, due to the fact that for the Laplace-Markov source, the transform

coefficients possess more broad-tailed densities than for the Gauss-Markov source.
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It is shown in [6] that the performance improvement obtained by entropy-constrained
quantization is more noticeable for more broad-tailed densities. Also, as our
results in Tables 4-6 indicate, noticeable gains over the vector quantization scheme
are obtained. However, with the limited available information on the DPCM perfor-
mance, it appears that at low bit rates (i.e., R = 1 bit/sample) the DPCM offers very
good performance, especially for larger values of p,

Let us note in Table 4-6 that in some cases the performance of the system with
L=8 is lower than that with L=4. This needs some explanation. When we increase the
blocksize from L=4 to 1=8, the variance of the first transform coefficient inceases
which, generally, means a larger value of optimal rate for the quantization of the
first coefficient. However, because of the fact that the number of quantization
levels is fixed, higher bit rate could result in noticeable deviation from optimal
performance which, in turn, could result in an overall performance degradation[6].
This problem can be overcome by increasing the number of quantization levels.

Al though not included here for the sake of consistency, for the Laplace-Markov source
nunerical results with larger number of quantization levels have been obtained which
have resolved this problen.

In light of all the numerical results, it can be concluded that the entropy-
constrainted block transform coding scheme performs better than the Huang-Schultheiss
and the vector quantization scheme for both Gauss-Markov and Laplace-Markov sources
at least for the cases stulied here. For Gauss-Markov sources, its performance coim-
cides with that of DPCM at high bit rates and at low bit rates its performance super—
cedes that of DPCM. For the Laplace-Markov source, at low bit rates the DPCM system
performs very well, and very large values of L may be needed for the block transform

coder to yiéid an equally good performance.

[
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VII. Summary and Conclusions:

In this paper we have studied the problem of optimum entropy-constrained block
transform quantization of first-order autoregressive sources., Necessary conditions
for the optimality of this scheme are developed and an algoritlm for optimal entropy
assigmment among different quantizers used for encoding the transform coefficients is
developed. Also, for first-order Gauss-Markov and Laplace-Markov sources, the
distribution of the transform coefficients are obtained.

Asymptotic results, similar to those developed by Gish and Pierce [13] in the
memoryless case, are developed. These results that agree favorably with our numeri-
cal results in the Gaussian case, imply that at high bit rates there is only 0.255
bits/sample performance penalty, exactly similar to the DPCM scheme [10].

Our numerical results indicate performance improvements over the
Huang-Schultheiss scheme and the vector quantization scheme in all cases for which
results are available. The performance improvements are much more noticeable for the
Laplace-Markov source. To compare our system with the DPCM scheme, we should con-
sider the two sources separately. For the Gauss-Markov source, our results indicate
noticeable improvements over DPCM at low bit rates. For the Laplace-Markov source
for which the available DPCM results are very limited, the DPCM outperforms our block
transform quantization at low bit rates. At high bit rates, results on the DPCM per-
formance are not available,

We should mention here that although the entropy-constrained block transform
quantization scheme offers superior performance to most other coding schemes, it suf-
fers from two problems. First, in our analysis of the system we have assumed that
the rate associated with each transform coefficient equals the output entropy of the
corresponding%quantizer. This suggests the use of some type of variable-length
coding for tf?nsmission of the transform coefficients., But, transmission of
variable-length codes introduces two problems. First, it introduces buffer

overflow/underflow problems [24], [25], and secondly it results in the propagation of
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channel errors. To overcome these problems, entropy-constrained quantization can be

replaced by permitation coding which is proved to offer the same performance [26].

This work is currently under investigation.

whar v T
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Appendix A

Computation of fi(A;X)

Recall from Section III that fi(A;)\) is given by

3D, (8) A (A)
fﬁ“““‘a‘r“‘g"‘%‘r ’ (a.1)

in which Di(A) and Hi(A) are described by (III.5). We will assume throughout
that N is an odd integer representing the number of quantization levels for all
L quantizers and that all quantizers are symmetric. Then, it is straightforward

to come up with

~ (N_l) /2 . .
= 2 (1) (1) 2
D,(8) =0y = 2 221 P, (8) [Qg ], (A.2.a)
and
~ . (~D/2 . ,
p(1) (1) _ (1) (1)
Hi(B) = = Pryryy a (8108 el 1y /o (8) - 2 IZ,ZI (8)1ogyP ,"" (4).
(A.2.b)

Therefore, taking derivatives with respect to A, of (A.2.a) and (A.2.b)

yields the following expression for fi(A;)\):

(i) (1)
(N-1)/2 . 3,77 (4) i 3P, 77 (A)
s =2 1 Pz - oM 2 -
2=1
. a-D/2 ,
A 3 (1) 1) p(1)
~ vz Laa Biven 2O 1P gy 1 ()42 L TPy ()
[1+znp§i) w1}, (A.3)
in which :
- &i>
=lay & g * (x)dx (A.4)
= 2’ (1) Xpi ’ .

and
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(1-N/2)p, L(1-N/2) 4] ;o kel
(4-N/2)p, L(&-N/2) 8 [=(4m1-N/2)p, [ (A=1-N/ D)8 [; =2, .00, (N-1)/2,
(A.5)

a2 la-n/28] =l
(3-8/2) ap, L8/ 8 |1/ 2 Pp, L 21N/ | 5 222,30
(A.6)
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SNR (in dB) of Optimum Entropy-Constrained Blo
Comparisons with the Huang-Schultheiss Scheme
parenthesis), the Vector Quantization Scheme
brackets), the Optimum DPCM

Transform Quantization and

il

R, bits/sampld L=l 2 4 8 DPCM R(D)
1 4,58 5.43 5.78 5.96 5.22 7.27
ia.aof a.71f %5.30f (5.41)
4.40 5.18 5.69
2 10.51 11.14 11.45 11.60 11.58 | 13.29
(9.30) | (9.33)] (10.12) | (10.24)
3 16.53 17.15 17.47 17.62 17.77 | 19.31
(14.62) | (14.62) | (15.34) | (15.46)
Table 1

bers in the

, (numbers in the
1GJ}, and the Rate-Distortion Function for a
Fist-Order Gauss-Markov Source with 0=0.5.

SNR (in dB) of Optimum Entropy-Constrained Blo
Comparisons with the Huang-Schultheiss Scheme

parenthesis), the Vector Quantization Scheme (11

R, bits/sampld L=l 2 4 8 DPCM R(D)
1 4,58 7.45 8.47 9.02
iA'AOf %6.87j %7.90} (8.39)| 7.56 10.46
4.40 6.85 8.18
2 10.51 12.74 13.86 14.41 | 14,44 16.48
(9.50) (11.29) | (12.64) | (13.20)
3 16.53 18.75 19.84 20.31 | 20.96 22.50
(14.62) (16.93) | (17.78) | (18.44)
Table 2

numbers in the

Tk Transform Quantization and
1],
9

20], (numbers in the

brackets), the Optimum DPCM [10], and the Rate-Distortion Function for a
First-Order Gauss-Markov Source with p=0.8.

32




R, bits/sampld L=1 2 4 8 DPCM R(D)
4.58 8.71 10.60 | 11.53 10.01 | 13.23
1 iﬁ.aoj %7'91f 10.02} (10.89)
4.40 7.871 | l10.16
2 10.51 14.19 | 15.98 | 16.85 NA 19.25
(9.30) } (12.93) | (14.90) | (15.69)
3 16.53 | 20.14 | 21.71 22.18 NA | 25.27
(14.62) | (18.27)] (20.14) | (20.87)
Table 3

SNR (in dB) of Optimum Entropy-Constrained Block_ Transform Quantization and

Comparisons with the Huang-Schultheiss Scheme
parenthesis), the Vector Qua
brackets), the Optimum DPCM

Ts]

zation Scheme

Fist-Order Gauss-Markov Source with p=0.9.

[T,

(numbers in the
(20 ; (numbers in the
, and the Rate-Distortion Function for a

SNR (inzaB) of Optimum Entropy-Constrained Ble
Comparisons with the Huang-Schultheiss Scheme

R, bits/sampld L=l 2 4 8 DPCM RL(D) RU(D)
5.76 6.22 6.25 6.19 7.50 9.81 7.27
1 %3.01} A.Blj a.saj (5.10)
3,01 4,32 5.72
2 11.31 11.81 11.79 11.73 NA 17.90 13.29
(7.53) | (7.89) (9.05)| (9.56)
3 17.20 17.68 17.71 17.70 NA 25.96 19.31
(12.61) | (12.92) ] (14.06) | (14.61)
Table 4

Transform Quantization and
bers in the

Tﬁ}, &gu
parenthésis), the Vector Quantization Scheme (11 , UT

brackets), the Optimum DPCM

Fist-Order Laplace-Markov Source with p=0.5.
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SNR (in dB) of Optimum Entropy-Constrained Blo
Comparisons with the Huang-Schultheiss Scheme

parenthesis), the Vector Quantization Scheme

brackets), the Optimum DPCM

Fist-Order Laplace-Markov Source with p=0.8.

[

R, bits/sampld L=l 2 4 8 DPCM R (D) R,(D)
5.76 8.36 | 9.34 9.53 | 11.80 | 21.69 | 10.46
1 %;.01} %5.97} 7.09} (7.74)
.01 5.97) | [7.88
2 11.31 | 15.04 | 15.44 | 15.18 NA | 38.51 | 16.48
(7.53) | (9.45)] (11.00) | (11.86)
3 17.20 | 20.46 | 20.63 | 20.40 Na | 55.22 | 22.50
(12.61) ] (14.45) | (15.52) | (16.81)
Table 5

Transform Quantization and

TTJ, iguTbers in the
111, t20d, (numbers in the
10J, and the Rate-Distortion Function for a

R, bits/sampld L=1 2 4 8 R (D) R,(D)
5.76 9.56 | 12.07 12.55

1 %;.011 6.68 %2.821 (10.04)| 39.52 | 13.23

.01 6.7 .39

2 11.31 | 17.74 | 18.86 | 18.39 | 17.21 | 19.25
(7.53) | (11.91) | (13.03) | (14.17)

3 17.20 | 21.60 | 21.77 | 21.72 | 102.90 | 25.27
(12.61) | (15.76) | (17.36) | (18.43)

Table 6

[T

SNR (in «B) of Optimum Entropy-Constrained BloTk Transform Quantization and
Comparisons with the Huang-Schultheiss Scheme 1], %hu bers in the
parenthesis), the Vector Quantization Scheme (11 , ZOT, (numbers in the
brackets), and the Rate-Distortion Function Bounds for a Fist-Order

Laplace-Markov Source with p=0.9.
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