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This project studied the influence of different long-term agricultural management 

regimes on soil microbial communities, and compared survival strategies of individual 

prokaryotic OTUs in diverse soils subjected to long-term incubation. Together these 

would show whether alterations to microbial communities affect rates of soil carbon 

cycling. Agricultural soils were sampled at arbitrary depths above and below the plow 

layer, and relative abundances of microbes were measured using high-throughput 

sequencing. ‘Activity’ (rRNA:rDNA) ratios were calculated for individual OTUs 

identified by high-throughput sequencing of  tropical rainforest and temperate cornfield 

soils after incubation for one year with differing water and carbon availabilities. It was 

found that depth controls microbial communities to a greater degree than agricultural 

management, and that the characterization of microbial trophic strategies might be 

complicated by the often-ignored DNA preservation potential of soil. The study 

highlights the need for holistic approaches to testing hypotheses in modern microbial 

ecology. 
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Chapter(I(–(Introduction(and(Literature(Review(

 Soil microbial ecologists have historically been limited by the tools needed to 

study community structure, and to link changes in microbial β-diversity to ecosystem 

function (van Elsas and Boersma, 2011). The ‘great plate count anomaly’, in which it was 

recognized that the majority of environmental organisms were not culturable with 

techniques common to microbiology of the time, was first noted almost a century ago 

(Staley and Konopka, 1985), and studying the diversity and function of ‘unculturable’ 

organisms remains a major challenge in microbial ecology today (Pham and Kim, 2012). 

However, with the advent of high-throughput sequencing and bioinformatics (e.g. 454 

Pyrosequencing, Illumina, QIIME), researchers have been able to study the detailed 

composition of microbial communities quickly and relatively cheaply for the first time 

(Hamady et al., 2008; Caporaso et al., 2011). The last five years has seen an explosion in 

research on soil microbial communities, including: how they are affected by external 

factors, and how they affect larger ecosystem processes (Fierer et al., 2007; Lauber et al., 

2009; Koljalg et al., 2013). 

 Major research efforts have focused on the impacts of environmental changes on 

microbial communities, and possible influences of these community alterations on 

ecosystem functioning. A particularly vibrant area of this research has focused on ways in 

which soil microbes process and store carbon (C) (Trivedi et al., 2013) and the ways 

anthropogenic influences, especially climate change (Bardgett et al., 2008; Allison et al., 

2010) could affect these rates. As soil is a major sink of global C, accounting for 

approximately 2.2 trillion metric tons worldwide (Batjes, 1996), changing rates of 
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biochemical C processing may have far-reaching relevance for atmospheric C levels, and 

therefore is a matter of global concern. 

In agroecosystems, continued human activity directly impacts both soil microbial 

communities and soil C storage, and changes in agricultural management style could alter 

these impacts on a large geographic scale. Despite their central role in ecosystem 

functioning, the community structure of soil microbes has long been understudied as a 

functionally relevant factor in agronomy (Schimel and Schaeffer, 2012). While next-

generation sequencing has spurred increased exploration of the links between agricultural 

management, C storage, and microbial community composition and function, studies of 

agroecosystems in recent years have often neglected key factors affecting these 

relationships. Many studies in microbial ecology homogenize across soil depth (Shange 

et al., 2012) and/or sample only the surface 5-10 cm of soil (Roesch et al., 2007; Lauber 

et al., 2009), despite widespread evidence of the importance of depth effects on C form 

and storage in agricultural soils (Syswerda et al., 2011) and on microbial communities in 

natural soils (Eilers et al., 2012). At the same time, studies in agronomy and soil science 

which acknowledge and account for depth and soil morphology often do not feature 

microbial community analyses, nor do they handle and store samples in a way that allows 

for these analyses to be performed (Follett et al., 2013). The historic separation of the 

fields of microbiology and agronomy has thus created a gap in our understanding of these 

systems. 

The wide variety of possible agricultural management styles and cropping 

rotations (Hartmann et al., 2014), methods of microbial analyses (van Elsas and Boersma, 

2011), and geographic variation add additional layers of complexity to this field. Both 
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no-till and USDA organic management systems have been promoted to increase soil 

conservation and sustainability of agricultural systems (Lal, 1997; Spargo et al., 2011). 

USDA organic management forbids the use of synthetic chemicals, including most 

mineral fertilizers. Therefore, plant nitrogen (N) needs must be met with naturally 

occurring sources of N. Manures, composts, and legume cover crops are generally used – 

all biochemically complex, C-linked forms of N. This is in contrast to the biochemically 

homogeneous, readily available mineral fertilizers used in ‘conventional’ agriculture, 

including no-till systems. It has been shown that microbial communities in systems using 

macromolecular C-linked N are significantly different (Li et al., 2012) and more diverse 

(Hartmann et al., 2014) than those that use chemical fertilizer. However, another study 

did not detect a significant difference in the diversity of functional genes between organic 

and conventional soils (Xue et al., 2013). 

While USDA organic systems use C-linked fertilizer, they also generally involve 

intensive tillage regimes (Gomiero et al., 2011). Historic observations indicate that 

increased tillage leads to increased rates of microbial activity and C mineralization; 

however, recent studies suggest otherwise (Acosta-Martínez et al., 2010; Spargo et al., 

2011; Wickings et al., 2011). Especially under organic management, it seems that C 

inputs are high enough to offset losses by mineralization (Gomiero et al., 2011). The 

results of these studies may be confounded by the lack of consideration for soil depth. 

When accounting for depth, the greater surface C storage found under no-till (Lal, 1997) 

is balanced by greater C storage in the subsurface in tilled soil (Angers et al., 2007; Baker 

et al., 2007). Depth is now considered an important factor in soil C dynamics (Fontaine et 

al., 2007; Xiang et al., 2008; Rumpel and Kögel-Knabner, 2011). Approximately 30-60% 
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of terrestrial soil organic matter is stored below 30 cm (Batjes, 1996), and both crop type 

and tillage can affect soil C at depth (Wright et al., 2007). However, it has not, to the 

author’s knowledge, been studied as a controlling factor on soil microbe populations in 

agricultural soil. Studies on paired microbial communities, activities, and C and N forms 

at depth are needed to evaluate the potential influence of microbial community in C 

cycling across the entire soil profile. 

Another focus in studying the relationship between soil microbial ecology and 

soil C processing is aimed at describing the survival strategies of the newly uncovered 

‘unculturable’ bacterial and archaeal majority in terrestrial soils (Fierer et al., 2007; 

Goldfarb et al., 2011). Survival strategy – the methods by which microbes obtain energy 

and reproduce, while adapting to or avoiding dangers – determines the functional 

diversity of microbial communities (Schimel and Schaeffer, 2012). Currently, the most 

widely used dichotomy for describing different survival strategies of soil microbes is the 

copiotroph – oligotroph model (Lauro et al., 2009). Copiotrophs are defined by their 

ability to make use of large pulses of nutrients by reproducing rapidly when nutrients are 

plentiful, only to die off or enter resting states when the nutrient source is depleted. 

Conversely, oligotrophs maintain small but stable populations, making use of small 

concentrations of nutrients and allocating most of their energy to cellular growth rather 

than reproduction.  

Fierer et al., (2007) proposed that these strategies are conserved at the phylum 

level for some bacteria, and provided observational and limited experimental support for 

this hypothesis. Since then, many studies have followed this example, and common 

associations have been found between oligotrophic soils and the prevalence of certain 



! 5!

bacterial phyla, particularly Acidobacteria (Lee et al., 2008; Fierer et al., 2011). 

Additionally, some phyla (Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, 

Actinobacteria) are consistently found in copiotrophic soils, and proliferate rapidly when 

labile carbon sources are added (Cleveland et al., 2007; Eilers et al., 2010; Goldfarb et 

al., 2011). 

Dominant survival strategy in a soil community – either oligotrophic or 

copiotrophic – might shift with changes in agricultural management regimes (Li et al., 

2012). Most studies of soil microbial communities have found that soil management 

changes cause significant and abiding shifts in community structure (Allison and 

Martiny, 2008). If the dominant survival strategy changes, the rates of C transformations 

and the eventual fate of the C in the soil may change (Schimel and Schaeffer, 2012). This 

could make the dominant survival strategy in a community relevant to soil C 

sequestration. 

However, the experimental evidence for highly conserved ‘oligotrophy’ in soils is 

tenuous. Genes controlling C decomposition are highly dispersed amongst soil microbes 

(Martiny et al., 2012), undercutting assumptions that changing archaeal and bacterial 

community would change rates of C processing in soil. Furthermore, the majority of 

‘oligotrophic’ bacteria are classified based on observational data (Fierer et al., 2007; 

Pascault et al., 2013). There is little experimental data to suggest a repeatable definition 

or archetypal example of oligotrophy. The few studies that attempt to clearly place 

bacterial populations on an oligotrophic-copiotrophic gradient find not two, but five or 

six discrete survival strategies (Lauro et al., 2009). 
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 This research had two components: the first investigated the links between 

agricultural management practices, C and N dynamics, and archaeal, bacterial, and fungal 

community structure, sampling by arbitrary depth fractions both above and below the 

plow layer to demonstrate the influence of both soil depth and morphology on edaphic 

factors and microbial α- and β-diversity. The second was a manipulative study that 

directly investigated the basis for oligotrophy in bacterial taxa. Together these studies 

explore soil microbes in agro-ecosystems at an unprecedented resolution: in the first 

experiment, in terms of physical and sequencing depth; in the second, in terms of the 

survival strategies of individual archaeal and bacterial OTUs. 
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Abstract 

In spite of known differences in the composition of microbial communities across 

soil depth, most studies fail to characterize microorganisms from soils deeper than 5-20 

centimeters. The few that address soil depth tend to use arbitrary depth increments, and 

do not divide samples by soil horizon boundaries. Previously tilled agricultural soils 

generally feature a well-defined plow layer (Ap horizon) that provides an opportunity to 

examine the role of vertical soil heterogeneity on changes in microbial β-diversity, and 

the distribution of different microbial groups within the profile. Illumina sequencing was 

used to characterize bacteria and archaea by targeting a region of the 16S rRNA gene, 

and to characterize fungi by targeting a region of the ITS. Microbial communities were 

compared to each other across depths and agricultural management regimes, and 

correlated to a variety of physical and chemical soil characteristics. The relative 

abundance of fungal OTUs generally decreased consistently with depth, though several 

abundant OTUs were most prevalent immediately above the plow layer. In contrast, 
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bacterial and archaeal abundance showed one of four clearly defined distribution patterns 

with increasing depth: constant decrease, constant increase, enrichment above the Ap 

horizon, or enrichment below the Ap horizon. The significant effects of proximity to the 

Ap horizon on the distribution and changes in β-diversity highlight the need to examine 

microbes in deeper soil communities, and to explicitly account for soil horizonation when 

sampling these communities.  

Introduction 

There is a growing body of literature suggesting that microbial community 

composition is shaped by both microscale edaphic features such as pH (Lauber et al., 

2009; Nemergut et al., 2013), total carbon (Nemergut et al., 2008; Shange et al., 2012), 

and soil texture (Lauber et al., 2008), and larger-scale soil morphological features such as 

vegetation and parent material (Michel and Williams, 2011; Yarwood et al., 2015). 

Although evidence is mixed, several studies have also linked microbial community β-

diversity to ecosystem function (Allison and Martiny, 2008). Unfortunately, the majority 

of microbial ecology studies focus on β-diversity across horizontal space, and generally 

ignore soil depth (Fierer et al., 2003; Bru et al., 2011). Most studies using high-

throughput sequencing have sampled only the top 5-20 cm of soil, and have homogenized 

across this depth. In the relatively few cases in which depth has been considered using 

these methods, β-diversity between surface and sub-surface soils was as high for both 

fungi (Bahram et al., 2015) and bacteria (Eilers et al., 2012) as that of surface soils 

between continents. To the authors’ knowledge, there has not yet been a similar depth-

structured study of fungal, archaeal, and bacterial communities characterized using 

Illumina sequencing.  
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Even when depth is studied, it is usually fractionated arbitrarily, with little 

consideration for soil horizonation (Michel and Williams, 2011). The vertical boundaries 

of soil horizons, which may feature sharp gradients between widely differing chemical 

and physical conditions, may fluctuate in depth even across a small horizontal area 

(Grüneberg et al., 2010; Soil Survey Staff, 2010). By homogenizing across depth, the 

inherent variability of the soil structure is masked and the accuracy of correlations 

between edaphic factors and microbial communities is lowered. An understanding of 

microbial diversity with explicit consideration for soil morphology is particularly 

important when attempting to explore the ecological niches of uncultured microbes. 

Experimental field data with an explicit depth component may more accurately suggest 

the ecological functions and niches of different microbial groups (Nunan et al., 2007; Vos 

et al., 2013). 

Agricultural soils present an opportunity to better understand the magnitude of 

depth effects, as tilled soils at a minimum should have depth effects due to the plow layer 

(Ap Horizon). Studying agricultural soils is complex, however, due to the wide variety of 

management practices. Recent papers examining surface soils have shown that 

populations of both bacteria and fungi are greater under organic management compared 

to no-till or conventional management (Wu et al., 2015), and microbial diversity can be 

significantly affected by management regime (Hartmann et al., 2014). The study reported 

here tested the effects of agricultural management on physical, chemical, and microbial 

characteristics. High-throughput sequencing was used to characterize soil fungal, 

bacterial, and archaeal communities. The study system is a long-term agricultural 

experiment where grain is grown under a variety of management systems: no-till, 
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conventional chisel till, and USDA organic management. We sampled at arbitrary depth 

increments both above and below the plow layer (Ap horizon). Edaphic properties known 

to influence microbial community assembly were measured and enzyme assays were 

used to assess function. We had three hypotheses: 1) In all three management regimes, 

the diversity of microbial communities will significantly differ by depth and treatment: 

communities from soils above the plow layer will be more diverse than those below, and 

communities in no-till soils will be less diverse than organic soils above the plow layer. 

2) Microbial β-diversity will significantly differ across every depth fraction, and will be 

significantly affected by treatment in all depths above the plow layer. 3) Depth will have 

a greater effect on bacterial and archaeal community composition than on fungal 

communities. 

Results 

 Soil cores (0-60 cm) were sampled from experimental agricultural plots of the 

Farming Systems Project in Beltsville, MD (Cavigelli et al., 2008). Individual cores were 

split into 0-5 cm, 5-10 cm, 10 cm- plow layer (Ap horizon), Ap horizon-30 cm, and 30-60 

cm increments, and homogenized. The depth of the Ap horizon was determined by color 

gradient, and ranged in depth from 12 to 26 cm, depending on the individual core (Figure 

1). 

 A variety of physical and chemical factors were measured (Table 1; Appendix A, 

Tables S1-3). A linear mixed effect model (Randomized Complete Block Design within 

each treatment) showed that all physical and chemical variables (except NH4
+-N, Table 

S2) significantly differed (p < 0.05) by depth. However, a repeated measures model 
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Figure 1. Box plots show the depth of the Ap horizon as determined by abrupt color 
change within individual cores taken from soils under chisel-till, no-till, or USDA 
organic management. For each management regime, four replicate field plots were 
sampled. Within each plot, 10 cores (100 cm deep, 2.5 cm diameter) were removed. 
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Table 1. Texture, pH, and total carbon and nitrogen of soils under each agricultural management regime at each of five depth 
increments (N=4, α = 0.05). Letters show significance groupings within each treatment for each factor. 
    Sand Silt Clay pH Total C Total N C:N Ratio 
Treatment Depth (%) (%) (%) 

 
(%) (%) 

 Chisel Till 0-5 cm 24.5 ± 2.4 a  58.4 ± 1.8 a  17.1 ± 1.7 b  6.37 ± 0.11 bc  1.36 ± 0.07 a  0.13 ± 0.009 a  10.6 ± 0.2 a  

 
5-10 cm 23.2 ± 2.3 ab  59.0 ± 1.3 a  17.8 ± 1.8 b  6.47 ± 0.04 ab  1.42 ± 0.16 a  0.13 ± 0.013 a  11.1 ± 0.2 a  

 
10 cm-Ap 21.3 ± 2.3 b  59.7 ± 2.0 a  19.0 ± 1.3 b  6.81 ± 0.11 ab  0.88 ± 0.09 b  0.08 ± 0.010 b  10.7 ± 0.2 a  

 
Ap-30 cm 16.0 ± 2.6 c  54.2 ± 1.4 b  29.8 ± 2.2 a  7.00 ± 0.14 a  0.30 ± 0.03 c  0.04 ± 0.004 c  8.2 ± 0.3 b  

 
30-60 cm 15.9 ± 4.1 c 50.6 ± 0.5 c  33.5 ± 4.2 a  5.79 ± 0.33 c  0.18 ± 0.03 c  0.03 ± 0.004 c  6.5 ± 0.1 c  

No Till 0-5 cm 23.4 ± 1.7 a  60.2 ± 1.1 a  16.4 ± 1.1 b  6.28 ± 0.12 c  1.70 ± 0.06 a  0.16 ± 0.007 a  10.8 ± 0.1 ab  

 
5-10 cm 23.2 ± 2.2 a  59.3 ± 1.5 a  17.5 ± 1.4 b  6.39 ± 0.16 bc  1.23 ± 0.10 b  0.12 ± 0.010 b  10.4 ± 0.2 ab  

 
10 cm-Ap 21.8 ± 1.7 a  59.3 ± 1.3 a  18.9 ± 1.3 b  6.81 ± 0.09 ab  0.95 ± 0.14 c  0.08 ± 0.006 c  11.2 ± 0.8 a  

 
Ap-30 cm 14.2 ± 2.2 b  54.6 ± 1.5 b  31.2 ± 2.6 a  6.86 ± 0.07 a  0.34 ± 0.04 d  0.07 ± 0.005 d  9.4 ± 0.7 b  

 
30-60 cm 12.6 ± 3.4 b  50.6 ± 2.2 b  36.8 ± 5.0 a  5.77 ± 0.18 d  0.22 ± 0.01 d  0.03 ± 0.003 d  7.3 ± 0.5 c  

Organic 0-5 cm 22.1 ± 1.4 a  59.1 ± 1.0 a  18.8 ± 1.5 b  6.55 ± 0.14 b  1.66 ± 0.04 a  0.15 ± 0.007 a  11.2 ± 0.7 a  

 
5-10 cm 22.2 ± 1.2 a  59.1 ± 1.1 a  18.7 ± 1.5 b  6.94 ± 0.10 ab  1.53 ± 0.07 a  0.15 ± 0.008 a  10.4 ± 0.3 ab  

 
10 cm-Ap 21.7 ± 1.3 a  58.1 ± 1.5 a  20.2 ± 1.6 b  7.04 ± 0.13 a  1.17 ± 0.07 b  0.11 ± 0.007 b  10.6 ± 0.2 a  

 
Ap-30 cm 17.9 ± 2.0 b  51.5 ± 0.7 b  30.6 ± 1.6 a  7.06 ± 0.18 a  0.29 ± 0.02 c  0.03 ± 0.002 c  9.0 ± 0.9 b  

  30-60 cm 14.5 ± 2.7 b  50.4 ± 2.2 b  35.1 ± 4.2 a  5.75 ± 0.18 c  0.17 ± 0.02 c  0.03 ± 0.002 c  6.4 ± 0.3 c  
!
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showed that there were no significant effects of treatment on any measured edaphic factor 

(except bulk density, p = 0.047) across all depths. 

Illumina sequencing returned a total of 9.9 million 16S rRNA sequences from the 

V4-V5 region and 5.9 million ITS sequences from an area targeting ITS-1. After quality 

filtering, 7.3 and 5.0 million sequences (respectively) remained for use in further 

analyses. In four samples from the 30-60 cm depth fraction, no high quality ITS 

sequences remained after filtering, and these samples were excluded from further 

analysis. Missing samples included two samples under organic treatment, one under no-

till, and one under chisel-till, ensuring an n of at least 2 for statistical analysis. There 

were an average of 121,000 sequences per sample for bacteria and archaea, and 88,500 

for fungi. There tended to be approximately 5-9 times as many unique OTUs for bacteria 

than fungi in each sample, and 12-17 times as many bacterial OTUs as archaeal OTUs 

(Table 2). Species richness significantly differed with depth (p < 0.001 for archaea, p = 

0.0012 for bacteria, p < 0.001 for fungi), but not between treatments. In pairwise 

comparisons, only the 5 cm-Ap horizon and 30-60 cm depths significantly differed in 

archaeal OTUs, and the 0-10 cm and 30-60 cm depths significantly differed for bacteria 

(p < 0.05). In contrast, fungal species count decreased significantly with increasing depth, 

from a maximum 996 OTUs in the 0-5 cm depth fraction to 474 OTUs from 30-60 cm. 

Pairwise comparisons by depth also showed that there were significantly (p = 0.0026) 

more unique fungal OTUs under both Chisel-Till (930 ± 20) and Organic (910 ± 24) 

management than No-Till (794 ± 13) between 5-10 cm. 

!
!
!
!
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Table 2. The average number of unique OTUs per sample at each depth fraction (N = 12) 
± SE. Due to missing values, N = 8 at 30-60 cm. Bacterial and archaeal sequences were 
considered OTUs at 97% similarity, and fungi were considered unique at variable 
similarity (97-99%) according to the curated UNITE dynamic database (Koljalg et al., 
2013). 

    Archaea Bacteria Fungi 
Depth 0-5 cm 290 ± 18 ab 4921 ± 206 a 996 ± 31 a 

 
5-10 cm 360 ± 32 a 5414 ± 287 a 878 ± 21 b 

 
10 cm-Ap 348 ± 36 a 4296 ± 296 ab 584 ± 17 c 

 
Ap-30 cm 260 ± 39 ab 4426 ± 526 ab 477 ± 24 d 

 
30-60 cm 182 ± 28 b 3145 ± 523 b 475 ± 49 cd 
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Combined archaeal and bacterial communities of every depth increment were 

significantly different from each other (p < 0.001, A-statistic = 0.526, Figure 2A). 

Communities in the 0-5 cm and 5-10 cm depth fractions were the most similar to each 

other (p < 0.001, A = 0.116). Moving down the soil profile, communities became 

increasingly distinct, with the two most divergent communities being those immediately 

above and below the Ap horizon (p < 0.001, A = 0.420). There were no significant 

differences in communities associated with agricultural management regime across all 

depths (p = 0.17, A = 0.012). However, when analyzed individually, there were 

significant differences between treatments in the 0-5 cm (p = 0.0037, A = 0.244), 5-10 

cm (p < 0.001, A = 0.439), and 10 cm-Ap Horizon (p = 0.037, A = 0.134) depth fractions. 

According to PerMANOVA analysis, there was a significant effect of treatment nested 

within depth on 16S-based communities (p< 0.001, both treatment and depth factors). In 

the 10 cm-Ap horizon, there was also a significant difference between communities in 

different experimental blocks (p = 0.038, A = 0.169), a trend that also held for the Ap 

horizon-30 cm (p < 0.001, A = 0.404) and 30-60 cm (p = 0.001, A = 0.239) depths. 

Pairwise comparisons show that these differences were mostly due to divergence between 

communities in organic and no-till systems. Organic and no-till communities diverged at 

the 0-5 cm (p = 0.008, A = 0.292), 5-10 cm (p = 0.008, A = 0.444), and 10 cm-Ap 

horizon (p = 0.017, A = 0.190) depths. 

 
!
!
!
!
!
!
!
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Figure 2. Non-metric multidimensional (NMS) ordinations representing A) archaeal and 
bacterial communities and B) fungal communities from three different agricultural 
management regimes at each of five depth increments. Each point represents one 
treatment group (2 > N > 4), error bars represent standard errors of the means. Vectors 
show factors correlated to soil properties (Glu – glucosidase activity, Gln – 
glucosaminidase activity); all are significant (p < 0.001).!
!

A"

B"



! 20!

The β-diversity in 16S-based communities was correlated with factors related to 

soil depth (Table 3). All factors were significant (p < 0.05) predictors of community 

composition except for pH. The strongest predictors of surface communities were total C 

(r = 0.770) and glucosidase activity (r = 0.776), while subsurface communities were 

correlated with increasing clay content (r = -0.588). 

In contrast to bacteria and archaea, fungal communities differed both by depth 

and treatment among all samples (Figure 2B). Communities of every depth class and 

treatment were significantly different from each other (p < 0.05, A statistics 0.081 < A < 

0.412), with the exception of the 0-5 cm and 5-10 cm depths (p = 0.066). While treatment 

effects on fungal communities were stronger in fungal communities, depth effects were 

weaker, especially between communities immediately above and below the Ap horizon (p 

< 0.001, A = 0.12, Figure 2B). A-statistics, which describe the magnitude of the 

distinction between tested groups, were 0.12, 0.33, 0.42, and 0.34 for communities of 

neighboring, successive descending depths in 16S-based communities. In ITS-based 

communities, A-statistics for these same comparisons were 0.04, 0.10, 0.12, and 0.08.  

ITS-based communities showed generally similar relationships to edaphic factors 

as those for the 16S-based communities (Table 3). All correlations were significant 

except for pH (p = 0.12) and NH4
+ concentration (p = 0.14). Again, factors related to 

depth were the primary predictors of community structure, with total C (r = -0.812) 

correlated to surface communities, and % clay (r = 0.617) correlated with subsurface 

communities. 

!
!
!
!
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Table 3. Correlations between edaphic factors and 16S rRNA bacterial and archaeal 
communities and ITS fungal communities. 

  Factor r p 
16S % Clay -0.588 < 0.001 

 
pH -0.075 0.572 

 
NO3

- 0.607 < 0.001 

 
NH4

+ 0.417 0.001 

 
Total %C 0.770 < 0.001 

 
C:N Ratio 0.525 < 0.001 

 
Glucosidase 0.776 < 0.001 

 
Glucosaminidase 0.616 < 0.001 

ITS % Clay 0.617 < 0.001 

 
pH -0.212 0.117 

 
NO3

- -0.628 < 0.001 

 
NH4

+ -0.198 0.143 

 
Total %C -0.812 < 0.001 

 
C:N Ratio -0.617 < 0.001 

 
Glucosidase -0.782 < 0.001 

  Glucosaminidase -0.708 < 0.001 
 

!
!
!
!
!
!
!
!
!
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!
!
!
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!
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Of the 238 classes of bacteria and archaea identified in our samples, 134 were 

significant indicators of depth fractions (Figure 3A), while 21 were significant indicators 

of treatments across all depths (data not shown). Together these significant depth 

indicator classes accounted for between 73-97% of the total community, while significant 

treatment indicator classes only ranged between 0 – 4.2% of the total community in all 

samples, and these were therefore analyzed within individual depth fractions. This 

revealed 101 significant (α = 0.05) indicator classes, 75 for treatments from depths above 

the Ap horizon, and 26 for experimental blocks from depths between 10-60 cm. Average 

abundances of indicator classes between treatments were subtle, while those in blocks 

were more dramatic (Appendix A, Figure S1 A-F). Especially notable were the differing 

abundances of members of phylum GAL-15 and acidobacterial classes Acidobacteria-6 

and Acidobacteria iii1-8 between blocks in the Ap-30 cm depth, Chloracidobacteria in 

the 30-60 cm depth fraction, and the extreme variability of Ktedonobacteria in all depths 

below the Ap horizon. 

Fungal indicator species were assessed at the OTU level, due to the greater ability 

to connect fungal OTUs to ecological functions (Figure 3B and C). These accounted for 

less of the total community than in bacteria and archaea, with greater variability between 

samples. Significant depth indicators made up 24.1 - 66.1% of community abundance, 

and significant treatment indicators accounted for 7.0 - 57.1%. There were a total of 600 

significant (α = 0.05) indicator species for depth, and 464 for treatments, with 87 shared 

OTUs significant in both categories. Proportions of phylum membership amongst 

significant indicator OTUs were similar in each category: depth indicators were 38.8% 

Ascomycota, 8.5% Basidiomycota, 1.0% Chytridiomycota and 4.8% Zygomycota, with  
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Figure 3. Stacked bar graphs show average abundances of A) bacterial and archaeal 
classes and B) fungal OTUs with the top 10 greatest absolute ranges in average 
abundance between depth fractions (N = 12). C shows fungal OTUs with the top 10 
greatest absolute ranges in average abundance between agriculture management regimes 
across all depth fractions (N = 20). Only significant indicator species (α = 0.05, PC-ORD, 
(McCune and Mefford, 2011) for either depth (A and B) or treatment (C) were 
considered. Inset stacked bar graphs show relative proportions of the top ten indicator 
classes (main graph), proportions of all other significant indicator species, and non-
indicator species. Fungal OTUs are identified at the finest taxonomic resolution assigned 
by the RDP classifier (k – kingdom, p – phylum, c – class, o - order, f – family, g – 
genus, s – species) with a unique internal identification number. Only one fungal OTU 
(g_Mortiella 9936) is common to both B and C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0"

5"

10"

15"

20"

25"

CT" NT" ORG"

Re
la
%v

e'
Ab

un
da

nc
e'
(%

)'

Management'

"s__Myxocephala"albida"(5906)" "o__Hypocreales"(6285)"

"s__Clonostachys"rosea"f."catenulata"(6487)" "s__Stachybotrys"sp"(6725)"

"f__Nectriaceae"(6796)" "s__Ceratobasidium"sp"(8450)"

"g__MorEerella"(9936)" "g__MorEerella"(9628)"

"g__MorEerella"(9781)" "s__MorEerella"amoeboidea"(10094)"

0%"

50%"

100%"

CT" NT" ORG"

Non)Indicator"OTUs"

Other"Significant"Indicator"OTUs"

Top"Ten"Indicator"OTUs"C'



! 25!

46.8% unclassifiable beyond the kingdom level. Treatment indicators were 41.2% 

Ascomycota, 13.6% Basidiomycota, 1.1% Chytridiomycota and 4.7% Zygomycota, with 

39.4% unclassified remaining. 

Changing patterns of indicator species relative abundance with increasing depth 

were characterized into four distribution patterns: 1) constant decrease with increasing 

depth, 2) constant increase with depth, 3) greatest abundance immediately above the Ap 

and 4) greatest abundance immediately below the Ap horizon (Figure 4). In bacteria and 

archaea, half of the identified classes were most abundant at the surface and constantly 

decreased (51 of 104). The remaining classes were split evenly between the other three 

distribution patterns (17, 19, and 17 in the 10 cm-Ap, Ap-30 cm, and 30-60 cm depth 

fractions, respectively). Archaeal class Thaumarchaeaota and bacterial classes 

Acidobacteria-6 and Chloracidobacteria were highest above the Ap horizon, while 

Chloroflexi and Planctomycetia were highest below the Ap horizon. Classes AB-6 and 

Ktedonobacteria, as well as sequences that could not be assigned to any known 

taxonomy, were highest at depth. Distribution patterns of individual classes tended to be 

diverse within each of their respective phyla (Figure 4). Within the archaea, only 

Thaumarchaeota were abundant above the Ap horizon. In contrast, crenarchaeotal classes 

MBGA and MGC, as well as euryarchaeal class Methanomicrobia were most abundant at 

depth. Phylum Ktedonobacteria was the most dramatic indicator of depth, but the 

majority of classes in phylum Chloroflexi were also most abundant below the Ap horizon. 

The only phyla with more than two component classes in which all classes were 

indicators for the same depth were Bacteroidetes (8 classes, surface) and Cyanobacteria 

(8 classes, surface). 
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Figure 4. Line graphs show average abundances of all classes (including putative 
classes) within phyla Crenarchaeota (A), Acidobacteria (B), Chloroflexi (C), and 
Bacteroidetes (D) in each of five depth increments. Only significant indicator species (α 
= 0.05, PC-ORD, (McCune and Mefford, 2011) for depth were considered. 
 
 
 

A" B"
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Distribution patterns of fungal indicator species were more consistent compared 

to bacteria and archaea. Most fungal indicator species had the highest relative abundance 

at the soil surface and decreased with increasing depth (264 of 336). An additional 43 

indicator species were most abundant immediately above the Ap horizon. Unlike in 

bacteria and archaea, proportions of depth patterns did not differ much between phyla, 

with proportions of members of Ascomycota, Basidiomycota, Zygomycota, and 

unidentifiable fungi all having approximately the same distributions as above. 

Though most fungal OTUs were most abundant at the surface, abundance patterns 

of the top 10 greatest absolute ranges between depth increments were diverse (Figure 

3B). Two members of Ascomycota (one family Nectriaceae, one genus Fusarium) and 

two members of Zygomycota (one genus Mortierella, one species Mortierella horticola) 

were relatively most abundant at the surface and decreased with depth. Indicator species 

for treatments did not overlap with those for depth, except in the case of the most 

abundant Mortierella species (Figure 3C). This OTU, along with two other Mortiella sp. 

and an unidentified Stachybotrys sp. were most abundant in organic plots. One final 

Mortiella species, as well as two members of order Hypocreales and one Myxocephala 

albida were most abundant under chisel-till management. Clonostachys rosea and an 

unidentified Ceratobasidium species were most abundant under no-till management. 

Discussion 

We observed ~4500 bacterial OTUs in each sample of agricultural soil (Table 2). 

This is an order of magnitude higher than other reports based on clone libraries 

(Upchurch et al., 2008) or pyrosequencing (Hartmann et al., 2014). Higher species 

richness in the current study is likely due to a number of generated sequences several 
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orders of magnitude higher than those commonly received from other sequencing 

methods. Species richness was greater at the soil surface compared to depth for archaea, 

bacteria, and fungi, partially supporting our first hypothesis (Table 2). Greater microbial 

diversity in surface communities is consistent with previous studies with both lower (Will 

et al., 2010; Michel and Williams, 2011) and higher (Eilers et al., 2012) spatial 

resolutions. This greater surface diversity likely results from more possible niches at the 

surface compared to the subsurface (Vos et al., 2013). Our results reinforce previous 

findings that fungal diversity decreases with increasing depth (Jumpponen et al., 2010; 

Bahram et al., 2015), but the only significant difference in archaeal and bacterial diversity 

was between the surface soils (0-10 cm or 5 cm-Ap horizon) and the deepest sampled 

layer (30-60 cm). This alone contradicts previous studies that have shown significant 

differences in diversity across smaller vertical distances (Eilers et al., 2012).  

Hartmann et al. (2014) reported an increase in bacterial and archaeal species 

richness when agricultural management included manure addition. In contrast, 16S-based 

OTU richness did not differ between the farming treatments at any depth within our 

study. We did find significantly greater fungal diversity under both chisel-till and organic 

management than no-till, although this only held true at the 5-10 cm depth. Our results 

suggest that agricultural management affects microbial community species richness 

above the plow layer, but has no effect below this anthropogenic disturbance. 

Similarly, β-diversity of both 16S and ITS-based communities significantly 

differed between agricultural management regimes at every depth above the Ap horizon 

(Figure 2A and B), supporting our second hypothesis. The dramatic difference observed 

between soils just above and below the plow layer highlights the need to sample and 
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study soils using horizon boundaries, rather than arbitrary depths (Grüneberg et al., 

2010). The importance of sampling agricultural soil by Ap horizon boundary has been 

previously reported (Syswerda et al., 2011), though its location has been found not to 

vary in depth across experimental fields. In contrast, we found that Ap horizon depth in 

individual cores was variable (Figure 1). Although it did not significantly differ by 

management regime, pairwise comparisons showed that it significantly varied from plot 

to plot, with average depths ranging from 15.7 to 23.9 cm. Dividing individual cores 

above and below this horizon was important in capturing the changing edaphic factors 

across the horizon boundary. These included a precipitous drop in total C and N, and a 

dramatic increase in average percent clay (Appendix A, Table S1). 

Soil morphology is important in shaping soil microbial communities because it 

represents a history of mineral deposition, chemical illuviation, and disturbance (Soil 

Survey Staff, 2010; Michel and Williams, 2011). Factors known to correlate with 

changes in microbial community structure include: pH (Lauber et al., 2009), moisture 

(Barnard et al., 2013), C availability (Eilers et al., 2010), and the mineralogy of parent 

material (Yarwood et al., 2015). All these factors are in turn related to the weathering 

processes of soil and can differ between soil horizons.  

Sampling from above and below the Ap horizon revealed the vertical distribution 

of common agricultural soil microbes, and allowed us to detect putatively identified 

microbes that have traditionally not been reported as abundant in agricultural soils, such 

as Ktedonobacteria (Figure 3A and B). Depth sampling showed that Thaumarchaeota 

(Fuhrman, 1992), the most abundant class of archaea in these soils, was common in 

surface soils and most abundant immediately above the Ap horizon. This contrasts with 
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previous findings (Hansel et al., 2008; Eilers et al., 2012) showing Thaumarchaeota to be 

more abundant at depth in forest soils. The majority of studies of Thaumarchaeota have 

focused on their proposed role as widespread ammonia-oxidizers due to the prevalence of 

ammonia monooxygenase (amo) genes in their genome (Pester et al., 2011). While these 

organisms were first discovered and most researched in marine settings, they are 

abundant in agricultural soils, and have been shown to have nitrifying roles in terrestrial 

ecosystems (Zhang et al., 2010; Pratscher et al., 2011). Though it is generally assumed 

that Thaumarchaeota exclusively use ammonia, there are few physiological studies of 

Thaumarchaeota, and the diversity of metabolic strategies in the class has not been 

experimentally tested. Therefore, it is possible that these microbes could use other 

substrates, or that some members could be facultative ammonia-oxidizers (Pester et al., 

2011). 

The two most abundant acidobacterial classes (Acidobacteria-6 and 

Chloracidobacteria) were also most abundant above the Ap horizon. Acidobacteria-6 is 

widely found in terrestrial soils (Jones et al., 2009; Foesel et al., 2014), but 

Chloracidobacteria is not. The closest related known organism to the unidentified OTUs 

in class Chloracidobacteria is the phototrophic Chloracidobacterium thermophilum, 

isolated from a microbial mat in Yellowstone (Bryant et al., 2007). This depth-structured 

distribution pattern of Acidobacteria-6 has been previously noted in a weathered shale 

saprolite (Hansel et al., 2008), but is contradicted by findings of greater abundance in the 

A horizon of grassland soils (Will et al., 2010) and no distinguishable pattern in forest 

soils (Eilers et al., 2012), showing that the vertical distribution of this group is highly 

dependent on ecotone.  
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Observing abundance patterns of archaeal and bacterial classes may provide 

insight into the ecological diversity of their respective phyla. It has been stated that, for 

certain bacteria, general trophic strategies are conserved at the phylum level (Philippot et 

al., 2010), a claim that has been especially explored for Acidobacteria (Fierer et al., 

2007). Here we show this to be the case only in two common groups: Bacteroidetes and 

Cyanobacteria, in which all component classes are most abundant at the soil surface and 

decrease with increasing depth (Figure 4). This can be explained in that all members of 

cyanobacteria are photosynthetic, one of a few highly conserved functions (Martiny et al., 

2013), and require direct light to function. This also provides further evidence for 

Bacteroidetes’ status as generally copiotrophic, adapted to taking advantage of large 

amounts of easily available C to reproduce quickly (Fierer et al., 2007; Eilers et al., 

2012). However, most other bacterial and archaeal phyla were composed of classes with 

diverse patterns of abundance across depth, especially Acidobacteria. The high niche 

diversity of members of Acidobacteria is increasingly reported, but the ecological 

functions of most of its component classes are mostly unknown (Eichorst et al., 2011). 

Patterns of abundance across depth, in addition to space (Jones et al., 2009) may provide 

greater context for future experiments of the specific functions of individual members of 

Acidobacteria, rather than the generalized activity of the entire phylum. 

Compared to archaea and bacteria, fungal communities between depth increments 

were less distinct, supporting our third hypothesis. This may be due to the filamentous 

morphology of many fungi, which gives them access to resources from a larger area than 

bacteria (Vos et al., 2013). Though fungal communities of successive depths were less 

distinct from each other than archaeal and bacterial communities, fungal communities 
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above and below the Ap horizon were still the most distinct (Figure 2B). This shows that 

soil morphology and horizonation may have significant effects even on communities of 

organisms with the ability to span horizon boundaries (Taylor et al., 2014). 

Though most fungal OTUs were most abundant at the soil surface, several of the 

most abundant OTUs increased in abundance with increasing depth, and peaked below 

the Ap horizon or from 30-60 cm (Figure 3B). Of those that were identifiable past 

phylum level, both belonged to family Eurotiales: one unidentified Trichocomaceae, and 

one member of Exophiala pisciphila. Both are molds commonly found in soils, and are 

likely saprophytic (Webster and Weber, 2007). In contrast, the two most abundant OTUs 

decreasing with depth belonged to family Nectriaceae, one in genus Fusarium, both 

commonly saprophytic or parasitic to plants (Webster and Weber, 2007). Together, these 

suggest that increasing depth in agricultural soils may be associated with a decrease in 

plant parasite abundance, and an increase in saprophytes.  

Though many recent studies have drawn links between edaphic features and 

microbial communities in an attempt to suggest possible niches for organisms, we show 

that homogenizing across depth may obscure these relationships. Both depth and changes 

in soil morphology are correlated with significant changes in microbial community 

dynamics, and taking into account soil horizon boundaries can improve interpretations of 

effects of anthropogenic changes on both edaphic properties and soil microbial 

communities. The Ap horizon is an important heterogeneity that appears to support 

communities that differ in β-diversity. Even after 11 years of no-till management, the Ap 

horizon remains distinct and still affects microbial community structure. Future studies 
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should take into account this important soil feature and investigate the legacy of tillage 

over longer time frames. 

Experimental Procedures 

Soils were sampled in August 2013 from the Farming Systems Project (FSP) in 

Beltsville, MD (39.03° N, 76.90° W). The climate is humid subtropical bordering humid 

continental, with an average annual precipitation of approximately 1110 mm, and average 

temperature of 12.8 °C. Soil types at the study site are Christiana (fine, kaolinitic, mesic 

Typic Paleudults), Keyport (fine, mixed, semiactive, mesic Aquic Hapludults), 

Matapeake (fine-silty, mixed, semiactive, mesic Typic Hapludults), and Mattapex (fine-

silty, mixed, active, mesic Aquic Hapludults) silt loams (Spargo et al., 2011). All soils are 

designated as Ultisols with variable amounts of clay in the subsoil, and variable average 

water table depths (Soil Survey Staff, 2014). 

The FSP is a long-term experiment testing the effects of agricultural management 

style and crop rotation length on soil properties and farm profitability. Soils were 

sampled from chisel-till, no-till, and USDA organic plots in each of four experimental 

blocks on the site. Only plots under three-year rotations were sampled (Table 4). Further 

details of the agricultural management of the FSP can be found in Spargo et al., 2011. 

 Ten cores (2.5 cm diameter, 100 cm depth) within plastic sleeves were taken from 

each of twelve plots by backing a hydraulic probe 10 feet into the edge of each plot and 

taking three cores at 0°, 90°, and 180° orientations, backing a further 10 feet into the plot 

and repeating, then backing another 10 feet into the plot and taking two cores at 0° and 

180°. An additional 10 cores were taken at random points within the sampling area with a  
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Table 4. Agricultural management practices of the Farming Systems Project (adapted 
from (Spargo et al., 2011). 
Management Practice Cropping System 

 
No Till (NT) Chisel Till (CT) Organic (ORG) 

Crop rotation † C-r-S-W/S C-r-S-W/S C-r-S-W-v 
Primary tillage ‡ None Ch D, MB, or Ch 
Weed control § Herbicides Herbicides RH, RC 
Fertility ¶ N, P, K N, P, K GM, AM, K 

 
† - C corn, S soybean, W wheat, W/S wheat followed by double-cropped soybean; r rye cover crop, v hairy 
vetch. No till and chisel till followed a 2-year C-W/S rotation from 1996 to 2000. 
‡ - D disk, MB moldboard plow, Ch chisel plow 
§ - RH rotary hoe, RC row cultivator 
¶ - N urea ammonium nitrate, P triple super phosphate, K potassium sulfate, GM green manures, AM 
animal manures 
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10 cm push probe to ensure enough soil in the 0-5 cm and 5-10 cm depth fractions for all 

analyses. Meter-deep soil cores were covered and transported to a lab in Beltsville for 

subsampling. 

 Soils were immediately extruded from plastic cores and divided into 0-5 cm, 5-10 

cm, 10 cm-Ap Horizon, Ap Horizon-30 cm, and 30-60 cm depth fractions in sterile 

conditions. The depth of Ap horizon was judged core-by-core by the abrupt color change. 

All depth fragments for all 10 cores from each plot were collected into sterile containers, 

and the extra 0-5 cm and 5-10 cm cores taken from the field were combined with those 

from the cores. Combined core fractions were homogenized with a 4 mm sieve, then 

subsampled and stored for further analysis: samples for DNA extraction were frozen at -

20 °C, samples for NO3
- and NH4

+ extraction and enzyme assays were stored at 4 °C, 

samples for moisture correction and particle size analysis were oven-dried at 105 °C for 

24 hours, and those for all other analyses were allowed to air-dry at room temperature for 

three days. 

 Bulk density was calculated by dividing the oven-dry corrected mass of 

aggregated soil depth fractions from each plot by the calculated volume of the soil cores. 

Soil texture was determined using the pipette method of particle size analysis (Gee and 

Bauder, 1986). Suspensions (2:1) of 5.0 grams of soil in 10.0 mL of deionized H2O were 

allowed to equilibrate for 30 minutes, after which pH was measured using an Accumet 

AB15 soil pH meter with a glass electrode (Fisher Scientific, Waltham, MA). Total C and 

N from air-dry soil samples were measured using dry combustion with a LECO CHN 

2000 analyzer (LECO Corporation, Lakeville, MI). NO3
- and NH4

+ were extracted 

simultaneously from 5.0 grams of field-moist soil (stored at 4 °C for no more than 2 
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weeks) using 25 mL of 2 M KCl. Soil suspensions were shaken for 1 hour on a 

reciprocating shaker, and filtered through Whatman #2 filters into scintillation vials. 

Extractable NO3
- and NH4

+ were quantified colorimetrically using an autoanalyzer 

(Lachat, Loveland, CO). 

Activities of β-d-glucosidase (EC 3.2.1.20) and N-acetyl-β-d-glucosaminidase 

(EC 3.2.1.52) were determined using a modified version of the microplate method 

detailed in Popova and Deng, 2010. Modifications were as follows: 1.00 g oven-dry 

equivalent mass of field moist soil was mixed with 100 mL of deionized H2O for 30 

minutes using a magnetic stir bar in a glass dish measuring 10 cm in height and 15 cm in 

diameter. H20 was used in place of 60 mM 2-(N-morpholino)ethanesulfonic acid (MES), 

and 50 µL 0.3 M MES buffer was added to individual microplate wells to bring the total 

concentration of MES in the wells to 60 mM. Additionally, 6.0 mM solutions of p-

nitrophenyl-N-acetyl-β-d-glucosaminide and 10.0 mM solutions of p-nitrophenyl-β-d-

glucoside substrates were used in place of 60 mM concentrations, as these were found to 

be the upper limits of solubility for these compounds in H2O. Enzyme assays were 

performed within 3 months of sampling, but all samples were performed within a week 

and a half of each other, due to time taken to optimize assay protocols. 

 DNA was extracted from soils using MoBio “Powerlyzer” Powersoil DNA 

isolation kits (MoBio Laboratories, Carlsbad, CA) according to manufacturer’s 

instructions. Briefly, 0.25 g of frozen soils were added to bead-beating tubes and shaken 

using a FastPrep-24 Instrument (MP Biomedical, Solon, OH) set at 5.5 m/s for 45 

seconds. In four samples of soil from 30-60 cm depths, DNA yields using this kit were 

too low for amplification, and MoBio “Powermax” DNA isolation kits were used instead 
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(MoBio Laboratories, Carlsbad, CA). Kits were used according to manufacturer’s 

instructions with the following alteration: bead-beating was performed at room 

temperature by shaking on a reciprocating shaker at maximum speed for 30 minutes. 

DNA was quantified using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA). 

Extracts were diluted to 2.0 ng/µL for amplification and sequencing. The V4-V5 region 

of the 16S rRNA gene was amplified using 505F – 806R universal primers (Caporaso et 

al., 2012), and a region of the fungal ITS gene was amplified with modified ITS1f - ITS2 

fungal primers (Smith and Peay, 2014), both amplified according to published 

amplification parameters. Both sets of primers had Illumina adaptor overhang sequences: 

5’ TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG – Forward Primer – 3’, 

and 5’ GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G – Reverse 

Primer – 3’. Amplified products were cleaned and prepared for Illumina sequencing 

using the 16S Metagenomic Sequencing Library Preparation protocol (Part # 15044223 

Rev. B, support.illumina.com). Both 16S and ITS PCR products were cleaned of 

oligonucleotides using AMPure XP beads (Beckman Coulter, Pasadena, CA), 8-

nucleotide indexes and Illumina sequencing indices were attached using a Nextera XT 

Index Kit (Illumina, San Diego, CA), and final products were cleaned a final time using 

AMPure XP beads (Beckman Coulter, Pasadena, CA). Two µL of each cleaned final 

amplified product was combined into one pooled sample for each target (16S or ITS), 

which was quantified in triplicate using a Qubit 2.0 Fluorometer (Life Technologies, 

Carlsbad, CA) before being diluted into two aliquots of 10 nM and 1.0 ng/µL. The 1.0 

ng/µL dilution of combined 16S and ITS samples was analyzed using a 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA) to test for product purity and appropriate 
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amplicon length (variable for ITS sequences) prior to sequencing. Sequencing of the 10 

nM dilutions was performed using a MiSeq Desktop Sequencer (Illumina, San Diego, 

CA) at the Center for Genome Research and Biocomputing at Oregon State University. 

Spikes of 5% and 10% PhiX were included on 16S and ITS plates respectively, to prevent 

sequencing errors. Paired-end sequences (250 bp) were generated and demultiplexed at 

Oregon State, and downloaded at the University of Maryland, College Park for further 

processing. 

 Paired-end sequences were joined using the fastq-join function within the ea-tools 

bioinformatics software package (Aronesty, 2011), implemented within the QIIME 

pipeline (Caporaso et al., 2010). All default settings were used, but minimum base pair 

overlap was increased to 50 from 6. As demultiplexed samples had been stripped of 

indexes, primers were removed, quality controls were implemented, and sequences were 

labeled with experimental data by processing them individually with the split_libraries.py 

function. All default settings were used, except the –z truncate_remove option was 

enabled to remove all sequences without a completely intact reverse primer. Individual 

sequences were then concatenated, and OTUs were picked using UCLUST through the 

pick_otus.py function (97% similarity) (Edgar, 2010). The most recent release of the 

greengenes database (May 2014 release, greengenes.org, McDonald et al., 2012) was 

referenced in 16S sequence clustering, and the UNITE dynamic database (October 9, 

2014 release, unite.ut.ee, Koljalg et al., 2013) was used to cluster ITS sequences. 

Likewise, taxonomy was assigned 16S sequences using default settings (UCLUST, 

greengenes reference), though fungal taxonomy was assigned using the RDP classifier, 

referencing the UNITE database (Cole et al., 2009). OTU tables for 16S and ITS were 
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generated with the make_otu_table.py function, and taxonomy summaries were generated 

using summarize_taxa.py.  

 OTU tables and taxonomy summaries were used to calculate Sorenson distance 

matrices and perform multidimensional statistics using PC-ORD ver. 6.0 (McCune and 

Mefford, 2011). Distinctions in archaeal, bacterial, and fungal community structures by 

depth and treatments were evaluated using Nonmetric Multidimensional Scaling (NMS). 

NMS ordinations were plotted on two axes, with 250 iterations to the final ordination. 

Significant differences between groups were determined by Multi-Response Permutation 

Procedures (MRPP). Both significance of indicator species, and overall significance of 

treatment and depth effects (evaluated using PerMANOVA) were evaluated within PC-

ORD. Significance of depth and treatment effects on soil physical, chemical, and 

biochemical properties were evaluated using the lme() function within the nlme package 

in R (Pinheiro et al., 2007). Post-hoc pairwise comparisons of individual groups were 

performed with the glht() function within the R ‘multcomp’ package (Hothorn et al., 

2014). All results were considered significant at α = 0.05. 
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Abstract 

We tested a method of estimating the activity of detectable individual bacterial 

and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to 

rDNA copy numbers. We investigated phylogenetically coherent patterns of activity 

among soil prokaryotes in non-growing soil communities. ‘Activity ratios’ were 

calculated for bacteria and archaea in soil sampled from a tropical rainforest and 

temperate agricultural field and incubated for one year at two levels of moisture 

availability and with and without carbon additions. Prior to calculating activity ratios, we 

corrected the relative abundances of OTUs to account for multiple copies of the 16S gene 

per genome. Although necessary to ensure accurate activity ratios, this correction did not 

change our interpretation of differences in microbial community composition across 

treatments. Activity ratios in this study were lower than those previously published 

(0.0003 – 210, logarithmic mean = 0.24), suggesting significant extracellular DNA 

preservation. After controlling for the influence of individual incubation jars, significant 

differences in activity ratios between all members of each phylum were observed. 
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Planctomycetes and Firmicutes had the highest activity ratios and Crenarchaeota had the 

lowest activity overall. Our results suggest that greater caution should be taken in 

interpreting soil microbial community data derived from extracted DNA. Indirect 

extraction methods may be useful in ensuring that microbes identified from extracellular 

DNA are not erroneously interpreted as components of an active microbial community. 

Highlights 

• We calculated ‘activity ratios’ for all OTUs detected in incubated soil samples. 

• We found significantly different overall activity ratios for some phyla. 

• Low activity ratios suggested significant extracellular DNA preservation. 

• Indirect DNA extraction may help distinguish extracellular DNA from active 

microbes. 

Keywords 

Activity, eDNA, iDNA, Oligotrophy, Preservation 

1. Introduction 

 High-throughput sequencing of microbial DNA has become increasingly common 

in environmental microbial ecology over the last decade (Caporaso et al., 2011). These 

techniques are increasingly being used to explore the uncultured majority of microbes in 

soils and sediments, and apply macro-ecological theories to the microbiome (Fierer et al., 

2012). For example, some studies have proposed that ecological niches and 

environmental life-strategies of environmental microorganisms may be coherent at high 

taxonomic levels (i.e. phyla) (Fierer et al., 2007; Philippot et al., 2010), and broadly 

divisible into “copiotrophs” and “oligotrophs”. Theorized copiotrophs (i.e. β-

Proteobacteria, Firmicutes, and Bacteroidetes) make up a greater proportion of microbial 
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communities in soils with higher carbon (C) availability (Cleveland et al., 2007), and 

their relative abundance increases rapidly when exposed to readily available C sources 

(Goldfarb et al., 2011). Conversely, theorized oligotrophs (i.e. Acidobacteria and 

Verrucomicrobia) are more abundant in low C systems (Fierer et al., 2007), and do not 

increase in population after the addition of available C (Goldfarb et al., 2011). This 

copiotroph-oligotroph dichotomy has become an increasingly accepted conceptual 

framework in microbial ecology, supported by the identification of defining genomic 

traits of a model copiotroph and oligotroph (Lauro et al., 2009), and the high abundance 

of genes related to high carbon affinity and desiccation resistance in selected 

Acidobacteria genomes (Ward et al., 2009). 

Studies investigating phylogenetic conservation of ecological functions in 

environmental microbes tend to have two limitations, however. The first applies chiefly 

to studies investigating trophic strategy. Many experiments showing a lack of increased 

growth in response to the addition of labile C feature incubation times from days 

(Goldfarb et al., 2011) up to a month (Fierer et al., 2007).  Some dormant bacteria can 

stochastically awaken and form a rapidly growing population after months or even years 

of inactivity (Buerger et al., 2012). A lack of response to one specific stimulant (labile C) 

over a period of less than a year may not be useful as experimental evidence of an 

oligotrophic survival strategy. The second limitation applies more generally to studies 

that rely on sequencing and quantifying 16S rRNA genes (rDNA) rather than 16S rRNA 

itself. Characterizing rDNA does not necessarily reflect the active community, only the 

potential for activity (Lennon and Jones, 2011; DeAngelis and Firestone, 2012), because 

it includes living, dormant, and non-viable organisms.  
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Studies have reported that microbial β-diversity can differ significantly between 

rDNA- and rRNA-based soil communities (Angel et al., 2013; Baldrian et al., 2012; 

DeAngelis and Firestone, 2012). This may in part be due to high-quality extracellular 

DNA (eDNA) preserved in soil and sediment, either sorbed to clay minerals (Ogram et 

al., 1988) or as a component of biofilms (Bockelmann et al., 2006; Alawi et al., 2014).  

Additionally the number of 16S gene copies is variable between different organisms’ 

genomes, ranging from one to fifteen copies in bacteria and archaea (Kembel et al., 

2012). Not considering multiple rDNA copies could cause overestimation of relative 

abundance of some OTUs, thus affecting β-diversity results. Although 16S copy number 

correction has been shown to be useful in studies of nematodes (Darby et al., 2013) the 

tools needed to correct 16S rDNA for bacteria and archaea are relatively new (Kembel et 

al., 2012; Langille et al., 2013) and the use of these tools is not widely published in the 

study of soil microbial communities.  

The study reported here uses a culture-free specific activity method (Kemp et al., 

1993) to identify active members of microbial communities in incubated soils. We 

included sequencing and quantification of both rDNA and rRNA to estimate ‘activity 

ratios’ for soil bacteria and archaea. Bacterial pure culture studies have shown that, in 

many (but not all) cases, active cells contain more ribosomes than those that are less 

active, resulting in a higher ratio of rRNA to rDNA (Blazewicz et al., 2013). Calculating 

this ratio in a mixed community requires quantification of both 16S rDNA and rRNA, 

followed by multiplication of absolute quantities by the relative abundance of a group as 

determined by sequencing. The accuracy of this ratio depends upon correcting the 16S 

rDNA for number of copies per genome, and on sufficient sequencing depth to reflect 
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true α- and β-diversities of sequenced communities (Caporaso et al., 2011). In theory, the 

resulting ‘activity ratio’ represents the average number of ribosomes present in all cells 

for a given OTU. This can then be used as a measurement of the general protein 

production capacity of individual taxa, including those that are difficult to culture or 

whose specific functions are currently unknown (Blazewicz et al., 2013). Similar 

methods have been in use for decades, but have been applied either in observational 

studies (Brettar et al., 2011; Campbell and Kirchman, 2012) or pure cultures (Kemp et 

al., 1993; Muttray et al., 2001). To the authors’ knowledge, no study has yet applied these 

techniques to entire soil communities in experimental microcosms. 

Soil rRNA and rDNA was extracted from soils taken from two geographically 

distinct areas and incubated at two levels of moisture availability, and with or without 

added C for one year. We tested three hypotheses: 1) Microbial community composition 

as determined by rRNA sequencing will be more similar across treatments compared to 

composition determined from rDNA sequencing. 2) Correcting for 16S gene copy 

number will make a statistically significant difference in a DNA-based measure of 

microbial community β-diversity. 3) Putative copiotrophic and oligotrophic groups will 

be distinguished by the magnitude and variability of their activity ratios in each of six 

treatment groups: activity ratios of copiotrophic groups will be lower and highly variable 

between treatments; those of oligotrophic groups will be higher and more constant. As 

these incubations will result in universally oligotrophic microenvironments after one 

year, oligotrophic organisms should have higher activity ratios than copiotrophs. 

Furthermore, copiotrotrophs should respond to the addition of labile carbon, while 

oligotrophs should not. 
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2. Materials and Methods 

2.1. Soil Descriptions 

Soils were sampled from two geographically distinct sites. A forested slope in the 

El Yunque National Forest in Rio Grande, Puerto Rico (18° 19' 54.57" N, 65° 46' 28.12" 

W), hereafter referred to as the ‘Rio Grande’ soil, was sampled in February 2011. Soil 

was taken from a moderately steep, north-facing convex contour, and could be classified 

as either the Yunque or Los Guineos series, both of which are very-fine, kaolinitic, 

isothermic Humic Hapludox (Soil Survey Staff, 2014). The second soil was sampled in 

late July 2011, from a cornfield near the USDA-ARS Integrated Cropping Research 

Laboratory in Brookings, South Dakota, USA (44° 20’ 27.94” N, 96° 47’ 17.31” W), 

hereafter the ‘Brookings’ soil. Soil in the area is mapped as a Kranzburg-Brookings 

complex. The Kranzburg series is classified as fine-silty, mixed, superactive, frigid 

Calcic Hapludolls, while the Brookings series is classified as fine-silty, mixed, 

superactive, frigid Pachic Hapludolls (Soil Survey Staff, 2014). The Rio Grande and 

Brookings soils were sampled to depths of 30 cm and 15 cm, respectively. A thin layer of 

organic material (O horizon) was scraped away from the surface of the Rio Grande soil 

prior to sampling. Approximately 48 hours passed between sampling at both sites and 

storage at the USDA-ARS Beltsville Agricultural research Center in Beltsville, 

Maryland, USA. Soils were stored at 4 °C until laboratory analysis and incubation. 

2.2. Incubation Conditions 

Soils from each site were bulked and passed through a 4 mm sieve before 

assignment to one of three incubation treatments for each soil, with three replicates for 

each treatment. Soils were incubated for one year in glass jars at 25 °C with the following 
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adjustments: (1) -0.25 MPa water potential with the addition of 0.005 g of dried, 

powdered Zea mays shoot (C/N = 40.1) per gram of dry soil, (2) -0.25 MPa water 

potential, and (3) -2.5 MPa water potential. These levels were chosen to represent surface 

soil conditions expected in summer months in 1) a temperate agricultural soil with one 

season’s corn crop plowed under to a depth of 15 cm, 2) a temperate agricultural soil, and 

3) a desert soil or an agricultural soil during a drought year. Moisture corrections were 

made gravimetrically based on soil water potential vs. volumetric water curves. These 

were constructed using a WP4 Dewpoint Potentiometer (Decagon Devices, Pullman, 

WA). A small hole was drilled through the top of each lid and covered with filter paper to 

allow continuous gas exchange with the atmosphere. 

Following incubation, 1-g subsamples of each replicate soil treatment were 

removed from jars and placed into sterile 10-mL plastic tubes containing 1-mL of 

LifeGuard solution (MoBio Laboratories, Carlsbad, CA). Preserved soils were stored at -

20 °C until extraction. 

2.3. Soil Chemical and Physical Analyses 

Physical and chemical tests were performed on representative samples from each 

soil. The pH of each soil was measured in a 2:1 suspension of 0.01 M CaCl2 using an ion-

selective probe. Textures were measured using the hydrometer method of particle size 

analysis (Orr and Gee, 2002) (Appendix  B, Table S4). 

Total C and N were measured on representative samples of pre- and post-

incubation soil treatments using dry combustion with a LECO CHN 2000 analyzer 

(LECO Corporation, Lakeville, MI) (Appendix S2, Supplementary material). As the 
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Brookings soil appeared to contain carbonates, samples of this soil were subjected to acid 

fumigation (Harris et al., 2001) prior to measurement.  

2.4. Processing ribosomal RNA and DNA 

2.4.1. Simultaneous extraction of rRNA and rDNA 

At the beginning of the experiment DNA was extracted from each replicate 

incubation jar using a MoBio Powersoil DNA isolation kit (MoBio Laboratories, 

Carlsbad, CA). DNA was stored at -20 °C for one year. Following the one-year 

incubation DNA and rRNA were extracted together from samples preserved in LifeGuard 

using a MoBio RNA Powersoil Total RNA Isolation Kit with the additional DNA elution 

step, according to manufacturer’s protocol (MoBio Laboratories, Carlsbad, CA). DNA 

and rRNA extracts were stored at -20 °C and -80 °C respectively until further use. 

Extracted rRNA was transcribed to cDNA using an Invitrogen SuperScript® III First-

Strand Synthesis Kit according to manufacturer’s protocol (Life Technologies, Grand 

Island, NY).  

2.4.2. Quantification of rRNA and rDNA 

Bacterial and archaeal 16S rDNA and 16S rRNA (via cDNA) were measured with 

qPCR of the V4 region of the 16S ribosomal subunit using primers F515 (5’ – GTG CCA 

GCM GCC GCG GTA A – 3’) and R806 (5’ – GGA CTA CVS GGG TAT CTA AT – 

3’) (Caporaso et al., 2011).  These were the same primers used in sequencing. KiCqStart 

SYBR green qPCR ReadyMix with ROX (Sigma-Aldritch, St. Louis, MO) was used with 

a StepOnePlus Real-Time PCR System (Life Technologies, Grand Island, NY). 

Amplification was carried out with a 5 minute denaturation step at 95 °C followed by 40 
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cycles of 5-second denaturation at 95 °C, 15-second annealing at 54 °C, and 10-second 

extension at 72 °C. 

2.4.3. Sequencing and assigning taxonomy to PCR-amplified rRNA and rDNA 

Sequencing was conducted using 454 pyrosequencing on post-incubation bacterial 

and archaeal communities. DNA and cDNA samples were amplified with barcoded 16S 

515F and 806R primers, using 10-bp barcodes for identification (Caporaso et al., 2010). 

Amplified, barcoded samples were pooled and sent to Duke University for 454 Titanium 

pyrosequencing (454 Life Sciences, Branford, CT). Sequences of amplified genes were 

processed and classified using the QIIME bioinformatics package (Caporaso et al., 2010).  

In total, 744,565 sequences were generated in pyrosequencing, of which 371,392 were 

removed in quality filtering. The remaining 373,173 sequences were split amongst 36 

individual samples – 18 each of RNA and DNA. The minimum sequence count was 

3,711, and maximum was 19,487, with a mean of 10,366 quality-filtered sequences. 

Barcodes and reverse primers were then removed, and OTUs were picked at 97% 

similarity using the pick_closed_reference_otus.py command, with default settings 

(UCLUST). OTU taxonomy was assigned by comparing sequences to the greengenes 

database (greengenes.lbl.gov).  

2.5. 16S rRNA gene copy number correction 

 We corrected for variable 16S rRNA gene copy number amongst incubated 

bacteria and archaea using the normalize_by_copy_number.py function within the 

bioinformatics program PICRUSt (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States, ver. 1.0.0 (Langille et al., 2013). This divides the 

abundance of every OTU in a user-supplied OTU table by the known (or PICRUSt-
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extrapolated) copy number abundance for all OTUs in the latest greengenes database 

(May 2013 release). 

2.6. Activity ratio calculation 

 Following copy number correction, activity ratios were calculated for every OTU 

identified in both rRNA and rDNA-based communities in each sample. First, we 

multiplied the relativized abundance of each OTU within the overall community by the 

rRNA or rDNA abundance for each sample. This gave an absolute number of 16S rRNA 

(ribosomes) and corrected 16S rDNA (total cells) for every OTU in every sample. The 

ratio of these two numbers therefore gives an estimate of the average number of 

ribosomes per cell for each OTU detected by sequencing.  

2.7. Statistics 

 Differences in rDNA and rRNA-based bacterial and archaeal community 

structures within different soils and incubation treatments were evaluated by Nonmetric 

Multidimensional Scaling (NMS) using PC-ORD ver. 6.0 (McCune and Mefford, 2011), 

NMS ordinations were plotted on two axes, with 250 iterations to the final ordination. 

Significant differences in community structures between treatment groups were 

determined using Multi-Response Permutation Procedure (MRPP), also within PC-ORD. 

Statistical significance of incubation effects on rDNA and rRNA copy numbers was 

evaluated using linear mixed effect models with the “nlme” package in R (Pinheiro et al., 

2007). Significance of the influence of phylum membership on 16S gene copy number 

correction factors of individual OTUs, and on activity ratios of individual OTUs, were 

tested with the aov() function in R (R Core Team, 2014). Post-hoc pairwise comparisons 
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of correction factors and activity ratios were performed with the HSD.test() function 

within the R ‘agricolae’ package (de Mendiburu and de Mendiburu, 2014). 

3. Results  

3.1. Incubation effects on rRNA and rDNA-based communities 

 The dominant factor determining composition in both rDNA- and rRNA-based 

communities was soil type (Figure 5). We calculated separate ordinations for each of the 

two soils, as their communities were too divergent to observe effects of incubation 

treatments when plotted together. Low moisture and C additions resulted in community 

composition differences in the Rio Grande soil, but only low moisture potential 

significantly affected composition in the Brookings soil (α = 0.05). Ribosomal RNA-

based communities were distinct from the rDNA-based communities in all cases, and 

individual replicates were always more variable in rRNA-based communities. 

Communities based on rRNA in each of the two soils did not converge during the one-

year incubation.  

3.2. 16S gene copy number correction effects 

Correcting rDNA-based community composition for 16S gene copy number had 

an observable but insignificant effect (α = 0.05) on overall community composition, as 

measured by NMS and MRPP (Figure 5A and 5B). The average correction factor for 

members of phyla present in all samples ranged from 2.4 (Planctomycetes) to 3.6 

(Tenericutes), with no statistically significant differences between phyla as estimated by 

Tukey’s HSD pairwise comparisons from a one-way ANOVA (α = 0.05). 
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Figure 5. Nonmetric Multidimensional Scaling (NMS) ordinations show 16S rRNA gene 
(rDNA)-based bacterial and archaeal communities in A) Brookings and B) Rio Grande 
soil samples. Relative abundances of OTUs in ‘Corrected’ rDNA communities have been 
corrected for 16S rDNA copy numbers per genome using PICRUSt (Langille et al., 
2013), while ‘Uncorrected’ communities are unaltered. Inset panels show the effect of 
copy number correction on rDNA-based communities, with black lines connecting the 
centroids of each set of replicates for each treatment (N=3). 
 
 

A"

B"
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3.3. Composition of rRNA and 16S gene copy number corrected rDNA communities 
 
 Community differences between soils were driven predominantly by the relative 

abundances of members of archaeal phyla Euryarchaeota and Crenarchaeota, and 

bacterial groups Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, and γ- and α-

Proteobacteria (Figure 6A and 6B). Bacteroidetes was universally more abundant in the 

Brookings soil (14.0% vs. 3.5%), while α-Proteobacteria was more prevalent in the Rio 

Grande soil (14.0% vs. 5.2%) (Figure 6A and 6B). Differences between rRNA and 

rDNA-based communities in each soil were subtle, with average relative abundances of 

rRNA:rDNA ranging from 0.5:1 (γ-Proteobacteria in Rio Grande, Euryarchaeota in both 

soils) to 1.7:1 (Acidobacteria in Rio Grande) (Figure 6A and 6B). 

3.4. Quantification of 16S rRNA and rDNA 

Efficiency of qPCR reactions ranged from 96-99%, as measured against a dilution 

series of a plasmid standard. All results were normalized to copy number per gram of 

soil, and log-transformed before analysis to satisfy the assumption of normality. There 

were significantly (p = 0.0001) more 16S rDNA copies in incubated soils (mean 

2.40*10^11 copies/g soil) than pre-incubated soils (mean 9.52*10^10 copies/g soil), and 

significantly (p < 0.0001) less rRNA (mean 8.59*10^10 copies/g soil) than rDNA copies 

in incubated soils (Figure 7).  We did not observe significant differences between 

treatment groups (α = 0.05, data not shown), however (Figure 7). 
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Figure 6. Heatmap shows the relative abundances of phyla (and Proteobacteria classes) 
for A) 16S rRNA and B) rRNA gene (rDNA)-based communities in all incubated soil 
samples. The color of bars represents 0% (white) to A) 37% or B) 33% (black) 
abundance. Binary annotation blocks to the right of heatmaps show the properties of each 
sample when read horizontally – black boxes indicate the soil type, moisture treatment, 
and carbon treatment for each sample. Dendrograms left of heatmaps show groupings of 
samples based on Bray-Curtis distance matrices across all phyla. Only phyla that 
comprised at least 1% abundance in at least one sample are shown. 
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Figure 7. Copy numbers of 16S rRNA gene (rDNA) and rRNA in soil samples, as 
quantified by qPCR. Error bars show standard error of the mean for three replicates per 
treatment. 
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3.5. Analysis of activity ratios between treatments and phyla 

The total number of copies of 16S rDNA and rRNA in each sample was 

multiplied by the relative community abundances for each OTU in that sample to 

calculate activity ratios. Activity ratios were lower than 1:1 for the majority of OTUs, 

though were highly variable both within and among treatments and phyla. There were no 

significant treatment effects on activity ratios, nor significant patterns of activity among 

phyla at the treatment level, due to the extreme variability of activity ratios in individual 

incubation replicates (Appendix B, Figure S2). 

  When the influence of individual treatment jars was removed and ratios were 

calculated for individual OTUs (97% similarity), however, bacterial and archaeal phyla 

significantly (α = 0.05) differed in mean activity ratios (Figure 8).  Pairwise comparisons 

were calculated with Tukey’s HSD test from a one-way ANOVA testing the effect of 

phylum membership on log-transformed activity ratios, with incubation jars as a nested 

factor. Members of Planctomycetes had the highest average activity ratio (mean = 0.320), 

and members of Crenarchaeota had the lowest (mean = 0.096). Acidobacteria and all 

component classes of Proteobacteria fell between these two extremes. Despite these 

differences, activity ratios of individual OTUs within each phylum were variable over up 

to five orders of magnitude, and outliers on either side of the distribution were common. 
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Figure 8. Boxplot shows average rRNA:rRNA gene ratios, corrected for absolute 
numbers of RNA and DNA quantified using qPCR (‘activity ratios’) of all putative 
bacterial and archaeal OTUs present in at least one replicate of each treatment group, 
divided by phylum membership. Letters show significance groupings of pairwise 
comparisons using Tukey’s HSD within a one-way ANOVA (α=0.05). Log-transformed 
activity ratios of individual OTUs were nested within sample jars to control for the strong 
effects of individual treatment replicates. Phylum Proteobacteria was split into 
component classes α-, β-, γ-, and δ-Proteobacteria. 
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4. Discussion 

Correction for 16S gene copy number is a built-in function of the PICRUSt 

functional gene prediction package (Langille et al., 2013), which has been used to 

investigate the functional diversity of bacterial communities in humans (David et al., 

2013), salamanders (Loudon et al., 2013), and river water (Staley et al., 2014). Kembel et 

al. (2012) showed that 16S gene copy correction of individual OTUs can affect measures 

of abundance for several taxa (Cyanobacteria Group II, Alteromonadales) within marine 

bacterial communities, as well as the structure of hierarchical clustering of communities 

sampled from the human microbiome. However, we did not find that this correction made 

a significant difference in measures of overall community composition in incubated 

terrestrial soils (Figure 5). Although this correction has a large influence on selected 

individual groups (e.g. Thermodesulfobacteriales vs. Sphingobacteriales, two orders in 

our samples with the most extreme mean correction factors of 4.7 and 1.8, respectively), 

in general the influence of a few OTUs with many copies of the 16S gene was drowned 

out by the vast majority of closely related OTUs with 1-2 copies. It is feasible that 16S 

copy number correction might significantly impact measurements of community structure 

in communities with less diversity than those studied here (we putatively identified 4,069 

OTUs among all samples). While correction had little effect on rDNA community 

composition, applying the correction was necessary to ensure accurate rRNA:rDNA 

ratios. Failure to make this correction would have led to activity ratios lower by a factor 

of 2.5 (averaged across all OTUs). 

Calculated activity ratios were much lower than we expected. Published values 

for calculated specific activities of bacteria range from 3 (uncultured Acidobacteria, 
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Foesel et al., 2014) to 2,006 (cultured E. coli, Bremer and Dennis, 1996). In contrast, in 

this study activity ratios were lower than 1 for 82% of OTUs, and lower than 0.1 for 28% 

of OTUs, with a logarithmic average of 0.24. As activity ratios describe the average 

number of ribosomes per cell, this suggests that at least 76% of rDNA sequences 

assigned to OTUs represented extracellular DNA (eDNA) within biofilms or bound to 

organic or inorganic components of the soil matrix (Alawi et al., 2014). As living cells 

may contain many ribosomes, the actual proportion of eDNA in our samples may have 

been higher than 76%. 

These data raise questions about the validity of DNA-based approaches to answer 

some questions in soil microbial ecology; however, our interpretation depends on several 

experimental assumptions. First, we must assume 100% recovery of both rRNA and 

rDNA from the soil, or at a minimum assume that the percent recovery is similar between 

the two molecules. Like many labs, we routinely use MoBio extraction kits that have 

been shown to be effective at DNA extraction (Whitehouse and Hottel, 2007), but do not 

typically spike samples to assess recovery.  Similarly, prior to qPCR we assumed 100% 

reverse transcription of rRNA.  A select group of rRNA extracts were subjected to a 

second reverse-transcription and quantification using the same kit, and produced 

comparable values (data not shown). Presumably any bias in extraction or reverse 

transcription is consistent between samples, allowing for relative comparisons between 

treatments. 

Our data suggest a large amount of extracellular DNA (mean = 1.51*10^11 

copies/g soil) was preserved for up to a year, with fidelity high enough to be sequenced 

and assigned taxonomy according to the greengenes database (greengenes.lbl.gov). Our 
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long, relatively dry incubation conditions may have allowed a degree of DNA 

preservation at the upper end of what could be expected in natural environments. 

However, long-term DNA preservation in soil has been extensively reviewed in terms of 

sorption and complexation (Nielsen et al., 2006; Pietramellara et al., 2009), the potential 

for microbial transformation (Levy-Booth et al., 2007; Nielsen et al., 2007), and 

exploitation in archeology (Pääbo et al., 2004). When added to non-sterile soil, pure 

DNA can be used by bacteria for transformation for a period of hours to days (Nielsen et 

al., 2007), after which point it becomes unavailable due to a combination of sorption to 

mineral surfaces, complexation with organic compounds, and enzymatic degradation. 

Soils with mildly acidic to neutral pH and high clay mineral content, particularly of 

montmorillonite, have no practical upper limit to DNA sorption potential (Ogram et al., 

1988). Once sorbed to clay surfaces, DNA is at least 100-400 times less susceptible to 

enzymatic degradation than free DNA (Cai et al., 2006), due partly to the high sorption 

affinity clay particles also have for DNAses (Khanna and Stotzky, 1992). Amplifiable 20-

500 bp fragments of DNA can persist in soils for several months to several years (Nielsen 

et al., 2006), up to eleven millennia (Epp et al., 2012). As extracellular microbial DNA is 

likely to be released in close proximity to clay particles (Miltner et al., 2012) or within 

macro- or microaggregates (Blaud et al., 2012), it may be even more protected than 

laboratory studies using additions of pure DNA or bacterial inoculum would otherwise 

suggest (Schimel and Schaeffer, 2012). Although an extensive literature exists to support 

the stabilization of DNA in soil and sediment (Alawi et al., 2014; Ceccherini et al., 2009; 

Corinaldesi et al., 2008), this has largely been ignored in DNA based microbial ecology 

studies.  
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Consistent with previous studies (Angel et al., 2013; DeAngelis et al., 2013; 

DeAngelis and Firestone, 2012), we observed significant differences between 16S rRNA- 

and rDNA-based measures of β-diversity in all treatment groups (Figure 5A and 5B). 

Counter to our hypothesis that the composition of ‘active’ rRNA-based communities in 

samples of different soil types incubated in the same environmental conditions for one 

year would converge, the rRNA communities remained distinct between soil types. We 

cannot explain the relative contributions of factors responsible for these differences in our 

study, but wide-ranging studies of bacterial and archaeal community have generally 

found that pH, C and N availability, soil texture, and management history correlate with 

changes in β-diversity at the phylum level (Fierer et al., 2012); it is likely that a 

combination of these factors are responsible for overall community differences here. 

Due to the high variability of activity ratios in individual incubation replicates, we 

were not able to discern trophic strategies between OTUs based on activity ratios 

between treatments (Appendix B, Figure S2). We did however observe significant 

differences in activity ratios amongst phyla after accounting for variation due to 

individual treatment replicates (Figure 8). Although activity ratios were low and variable 

across all phyla, there were coherent patterns in activity ratios across broad taxonomic 

groups. This may support previous assertions that ecological function is broadly 

conserved at the phylum level (Philippot et al., 2010; Lennon et al., 2012). We were 

unable to test for this conservation at lower taxonomic levels (with the exception of the 

large Proteobacteria classes), as these were not represented in all samples, likely due to 

insufficient sampling depth. Rarefaction curves of OTU counts for each of our incubated 
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samples show that we did not approach total sequence coverage for any of the studied 

communities (Appendix B, Figure S3). 

The phyla with the highest mean activity ratios were Firmicutes and 

Planctomycetes (Figure 8). Both have been previously found to have high relative 

abundance in soils subjected to long-term desiccation (Barnard et al., 2013). As many 

members of Firmicutes form endospores in response to harsh environmental conditions 

(i.e. Clostridia, which comprised 13% average community abundance and 70% of total 

Firmicutes abundance per sample) their ranking here may be a result of their superior 

ability to form resistant resting states (Setlow, 2007). Much less is known about 

Planctomycetes (Fuerst and Sagulenko, 2011). Cultured Planctomycetes have double-

layered membranes, analogous to eukaryotic organelles, and (in some cases) non-

peptidoglycanous cell walls (Lage et al., 2013). Their distinctive cell wall adaptations 

may give them an increased ability to adapt to prolonged, harsh conditions. On the other 

hand, Crenarchaeota had the lowest mean activity ratio, nearly half that of the next 

lowest phylum (Actinobacteria, mean activity ratio = 0.18). In our samples, most 

Crenarchaeota (93%) were members of the Miscellaneous Crenarchaeotal Group 

(MCG). MCG was only recently described through 16S gene sequencing, and is 

widespread in many oligotrophic marine sediments (Gagen et al., 2013; Kubo et al., 

2012). The activity ratios calculated here demonstrate the need for greater distinction 

between the concepts of oligotrophy as ‘resistant to change’, vs. ‘adapted to oligotrophic 

environments’ (Barnard et al., 2013; Lennon et al., 2012). Though these are distinct 

survival strategies, they are often conflated, with ‘model’ oligotrophs possessing both 

(Lauro et al., 2009). 
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 Calculating and interpreting activity ratios should be done with caution. Many 

studies use rRNA:rDNA ratios as a proxy for metabolic activity at the time of extraction, 

but this may not be valid in all circumstances (Blazewicz et al., 2013). While higher 

activity ratios indicate higher rates of cellular division in some organisms (Bremer and 

Dennis, 1996), they indicate dormancy in others (Sukenik et al., 2011). Here, we show 

that in addition to the critiques made in Blazewicz et al. (2013), quantification of the 

rDNA and rRNA copy numbers is vital to get an accurate picture of both the size and 

composition of rRNA and rDNA-based communities. More studies of cultured 

representatives are needed to understand the functional relevance of activity ratios in 

individual taxa.  

4.1. Conclusions 

 The activity ratios of individual OTUs were significantly different between some 

phyla in our soil incubations, but our results suggest that extracted soil DNA may not 

only represent active and dormant members of the microbial community. Rather our data 

provide evidence for the presence of extracellular DNA in soil. In order to validate the 

low activity ratios reported here, further incubations tailored to test the degree to which 

microbial DNA can be preserved in terrestrial soils under natural environmental 

conditions should be conducted. Long incubations with multiple time points could be 

used to determine the rate at which environmental microbes become inviable, and of 

eDNA accumulation. To improve the accuracy of ecological interpretations of molecular 

data, indirect extraction techniques should also be considered. Separation of intact 

microbial cells from the soil matrix prior to RNA and DNA extraction would ensure that 

communities are represented only by active or dormant organisms. These methods have 
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been used successfully for more than a decade in studies of soil metagenomics (Gabor et 

al., 2003) and marine sediment communities (Alawi et al., 2014), but have been 

superseded by bead-beating extraction kits in the larger field of environmental microbial 

ecology. While these kits conveniently and consistently return larger yields (Whitehouse 

and Hottel, 2007), they also may extract DNA of unknown age and provenance. 
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Chapter IV - Conclusions 

 Research reported here addressed two main objectives: 1) study the effects of 

agricultural management on soil microbial communities, with potential implications for 

rates of carbon (C) sequestration under different management systems, and 2) use 

molecular methods to investigate survival strategies (and potential strategies of C use) of 

individual, mostly uncultured archaeal and bacterial OTUs.  Chapter 2 reports that 

management style significantly affects microbial communities, though community 

composition is much more influenced by depth than agricultural management. Chapter 3 

shows that attempts to use molecular methods to describe microbial trophic strategies 

might be complicated by the often-ignored DNA preservation potential of soil. Together, 

these studies demonstrate that the sampling techniques and experimental tools of modern 

microbial ecology may lead to over- or misinterpretation of results, and that a multi-

pronged, holistic approach is needed to make further advances in the field. 

 Chapter 2 demonstrated the importance of consideration for spatial scale and soil 

morphology in sampling. The results validate similar findings that bacterial and archaeal 

(Eilers et al., 2012) and fungal (Bahram et al., 2015) communities significantly differ in 

both α- and β-diversity by depth, a fact that has been widely recognized in a variety of 

ecosystems including forest (Goberna et al., 2005), grassland (Fierer et al., 2003), and 

tundra (Kim et al., 2014) soils. Unfortunately most studies still tend to ignore depth 

(Michel and Williams, 2011), even when their reported aim is to discover basic 

environmental factors influencing microbial community assembly (Lauber et al., 2009). 

We found that splitting depth fractions by soil horizon, rather than arbitrary depth 

increments, produced an abrupt distinction in edaphic factors and 16S-based community 
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composition across a depth gradient of approximately 5-10 cm. While there is no way to 

determine whether we would have arrived at identical conclusions by sampling 10-20 cm 

and 20-30 cm depth fractions instead of above and below the Ap horizon in individual 

cores, our sampling method certainly improved our accuracy in correlating microbial 

communities to the conditions of their immediate environments (Grüneberg et al., 2010; 

Michel and Williams, 2011) .  

Despite the high sampling resolution of this study, the heterogeneity of potential 

microbial niches in terrestrial soil is greater than any field study could reasonably account 

for (Vos et al., 2013). This is best demonstrated by the anaerobic conditions at the center 

of soil aggregates as small as 4 mm (Sexstone et al., 1985), reflected in this study by the 

small but detectable proportion of methanogens at every depth sampled. Additionally, 

unless soil is saturated, capillary forces from water films immobilize unicellular 

microbes, pinning them to soil particle surfaces (Or et al., 2007; Dechesne et al., 2010). 

This can produce microscale niche homogeneity in which non-filamentous microbes may 

be unable to access resources beyond their immediate surroundings. An accurate 

measurement of microbial communities and the specific terrestrial soil environments they 

inhabit requires microscale techniques (Nunan et al., 2007; Vos et al., 2013) that are 

generally incompatible with field-level agricultural experiments. In any study involving 

the homogenization of many grams of soil across multiple centimeters, measured 

bacterial and archaeal communities may represent a diversity of niches and functions 

analogous to that of an entire watershed in terms of terrestrial macroecology. 

Whereas the study in Chapter 2 was designed to quantify these broad-scale 

relationships, Chapter 3 was designed to draw conclusions of the trophic strategies of 
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individual OTUs using molecular techniques. Instead, this study highlighted the 

limitations of purely molecular approaches to studying basic ecological functions of 

uncultured microbes. The results of this study suggested the potential for undisturbed, 

relatively dry soils to preserve large amounts of amplifiable microbial DNA, showing 

that the assumption that 16S amplicons necessarily represent living microbes may not 

hold in some circumstances. Evidence for long-term preservation of DNA in soil is 

widespread (Nielsen et al., 2007; Pietramellara et al., 2009), though its relative 

importance in different environments is unknown. Despite the potential impact of this 

effect on interpretations of microbial q-PCR and sequencing data, it is rarely 

acknowledged or controlled for in large-scale studies of microbial ecology. The 

implications of DNA preservation may expand and complicate the power of molecular 

techniques to measure communities, depending on the circumstances. On the one hand, 

DNA preservation may allow researchers to study historic communities, potentially 

spanning many thousands of years in dry, cold climates (Pääbo et al., 2004; Mackelprang 

et al., 2011). Preserved DNA also may reduce our ability to make definite conclusions 

that a community represented by 16S gene sequences has any relationship to current, 

measurable environmental conditions (Peay, 2014). 

Both of these experiments demonstrate limitations of the ways high-throughput 

sequencing is currently used, and of the conclusions that can be drawn from these data 

(Blazewicz et al., 2013; Vos et al., 2013; Peay, 2014). The ability to cheaply and quickly 

identify the relative proportions of millions of OTUs in hundreds of samples has invited 

widespread speculation on their ecological niches and potential environmental functions 

(Fierer et al., 2012). There has been a drive to sequence communities from increasingly 
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novel environments in stated attempts to better understand the factors controlling 

microbial distribution, or suggest their possible functions, while maintaining novelty 

(Roesch et al., 2007; Fierer et al., 2012; Pessi et al., 2014). Studies tend to be unable to 

make conclusions beyond correlation and speculation, as few members of several 

dominant microbial groups (e.g. Acidobacteria, Chloroflexi, Planctomycetes) have been 

sequenced (Pham and Kim, 2012). Lack of sequenced representatives may also force 

researchers to describe patterns of community abundance at arbitrary phylogenetic levels 

(i.e. phylum) that may be inappropriate to differentiate coherent functions (Martiny et al., 

2012). While the exploration of ecological theory across spatial scales should be a 

priority of microbial ecologists, without significant knowledge of the spatiotemporal 

environment experienced by microbes and a database of cultured representatives (Peay, 

2014), our ability to infer ecological functions from molecular data alone will remain 

tentative. 

A different experimental focus is needed to advance the field of soil microbial 

ecology. A method for improving our ability to draw less ambiguous conclusions from 

experiments is a greater focus on soil depth, especially when used to connect microbial 

community composition to other soil features including horizon boundaries and 

mineralogy. Microbial community characterization should also include both rRNA and 

rRNA genes so as to differentiate potentially active components of microbial 

communities from extracellular DNA. Although it is outside the scope of this thesis, 

other improvements to the current standards of experimental design could include the use 

of stable isotopes or BrdU to distinguish active microorganisms from the large majority 

of dormant cells. Additionally, though it has become less widely published in 
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environmental microbiology, microscopy and X-ray tomography should be considered as 

viable methods of studying the spatial environments inhabited by soil microbes. 

Microbial ecologists have summarized the state of their field following the 

widespread adoption of high-throughput sequencing technology as a burst of interest in 

the basic question, “who’s there?” This was followed by phases of “why are they there?” 

and “what are they doing?”, analogous to the second and third chapters of this thesis. 

However, many researchers skipped over the issue of what “there” is, and what “there” 

means in the context of individual organisms and communities. A better understanding of 

the physical and chemical habitats of soil microbes will aid in unraveling their diversity 

and interactions, with other microbes and their environment. While large-scale 

sequencing efforts will continue to provide huge amounts of ecological data, paired 

studies at a microbial scale are needed to interpret the results in meaningful ways. 
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Appendix A. 

Table S1. Soil physical characteristics – bulk density and texture of soils under each 
agricultural management regime at each of five depth increments (N=4, α = 0.05). Letters 
show significance groupings within each treatment for each factor. 

    Bulk Density Sand Silt Clay 
Treatment Depth (g/cm^3) % % % 
Chisel Till 0-5 cm 1.30 ± 0.04 c 24.5 ± 2.4 a  58.4 ± 1.8 a  17.1 ± 1.7 b  

 
5-10 cm 1.37 ± 0.02 bc 23.2 ± 2.3 ab  59.0 ± 1.3 a  17.8 ± 1.8 b  

 
10 cm-Ap 1.48 ± 0.05 ab 21.3 ± 2.3 b  59.7 ± 2.0 a  19.0 ± 1.3 b  

 
Ap-30 cm 1.54 ± 0.04 a 16.0 ± 2.6 c  54.2 ± 1.4 b  29.8 ± 2.2 a  

 
30-60 cm 1.56 ± 0.03 a 15.9 ± 4.1 c  50.6 ± 0.5 c  33.5 ± 4.2 a  

No Till 0-5 cm 1.25 ± 0.04 c 23.4 ± 1.7 a  60.2 ± 1.1 a  16.4 ± 1.1 b  

 
5-10 cm 1.35 ± 0.04 b 23.2 ± 2.2 a  59.3 ± 1.5 a  17.5 ± 1.4 b  

 
10 cm-Ap 1.42 ± 0.02 b 21.8 ± 1.7 a  59.3 ± 1.3 a  18.9 ± 1.3 b  

 
Ap-30 cm 1.55 ± 0.04 a 14.2 ± 2.2 b  54.6 ± 1.5 b  31.2 ± 2.6 a  

 
30-60 cm 1.56 ± 0.01 a 12.6 ± 3.4 b  50.6 ± 2.2 b  36.8 ± 5.0 a  

Organic 0-5 cm 1.40 ± 0.06 bc 22.1 ± 1.4 a  59.1 ± 1.0 a  18.8 ± 1.5 b  

 
5-10 cm 1.35 ± 0.02 c 22.2 ± 1.2 a  59.1 ± 1.1 a  18.7 ± 1.5 b  

 
10 cm-Ap 1.50 ± 0.04 ab 21.7 ± 1.3 a  58.1 ± 1.5 a  20.2 ± 1.6 b  

 
Ap-30 cm 1.60 ± 0.01 a 17.9 ± 2.0 b  51.5 ± 0.7 b  30.6 ± 1.6 a  

  30-60 cm 1.61 ± 0.01 a 14.5 ± 2.7 b  50.4 ± 2.2 b  35.1 ± 4.2 a  
!
!
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Table S2. Soil chemical characteristics – pH, C and N of soils under each agricultural management regime at each of five 
depth increments (N=4, α = 0.05). Letters show significance groupings within each treatment for each factor. 
    pH NO3

--N NH4
+-N Total N Total C C:N Ratio 

Treatment Depth 
 

(ug/g soil) (ug/g soil) % % 
 Chisel Till 0-5 cm 6.37 ± 0.11 bc  7.57 ± 1.04 a 2.01 ± 0.64 a 0.13 ± 0.009 a  1.36 ± 0.07 a  10.6 ± 0.2 b  

 
5-10 cm 6.47 ± 0.04 ab  4.77 ± 0.47 b 1.64 ± 0.79 a 0.13 ± 0.013 a  1.42 ± 0.16 a  11.1 ± 0.2 a  

 
10 cm-Ap 6.81 ± 0.11 ab  3.37 ± 0.37 bc 1.07 ± 0.12 a 0.08 ± 0.010 b  0.88 ± 0.09 b  10.7 ± 0.2 a  

 
Ap-30 cm 7.00 ± 0.14 a  1.72 ± 0.24 c 1.04 ± 0.16 a 0.04 ± 0.004 c  0.30 ± 0.03 c  8.2 ± 0.3 b  

 
30-60 cm 5.79 ± 0.33 c  1.57 ± 0.32 c 1.19 ± 0.34 a 0.03 ± 0.004 c  0.18 ± 0.03 c  6.5 ± 0.1 c  

No Till 0-5 cm 6.28 ± 0.12 c  4.15 ± 0.46 a 2.12 ± 0.46 a 0.16 ± 0.007 a  1.70 ± 0.06 a  10.8 ± 0.1 ab  

 
5-10 cm 6.39 ± 0.16 bc  3.20 ± 0.44 b 1.05 ± 0.21 b 0.12 ± 0.010 b  1.23 ± 0.10 b  10.4 ± 0.2 ab  

 
10 cm-Ap 6.81 ± 0.09 ab  3.03 ± 0.53 b 1.18 ± 0.09 b 0.08 ± 0.006 c  0.95 ± 0.14 c  11.2 ± 0.8 a  

 
Ap-30 cm 6.86 ± 0.07 a  2.33 ± 0.38 bc 1.16 ± 0.23 b 0.07 ± 0.005 d  0.34 ± 0.04 d  9.4 ± 0.7 b  

 
30-60 cm 5.77 ± 0.18 d  1.74 ± 0.36 c 1.32 ± 0.27 ab 0.03 ± 0.003 d  0.22 ± 0.01 d  7.3 ± 0.5 c  

Organic 0-5 cm 6.55 ± 0.14 b  7.46 ± 1.76 a 1.65 ± 0.69 ab 0.15 ± 0.007 a  1.66 ± 0.04 a  11.2 ± 0.7 a  

 
5-10 cm 6.94 ± 0.10 ab  4.92 ± 1.29 b 1.35 ± 0.24 ab 0.15 ± 0.008 a  1.53 ± 0.07 a  10.4 ± 0.3 ab  

 
10 cm-Ap 7.04 ± 0.13 a  3.22 ± 1.10 bc 2.58 ± 0.73 a 0.11 ± 0.007 b  1.17 ± 0.07 b  10.6 ± 0.2 a  

 
Ap-30 cm 7.06 ± 0.18 a  1.80 ± 0.82 c 1.14 ± 0.14 ab 0.03 ± 0.002 c  0.29 ± 0.02 c  9.0 ± 0.9 b  

  30-60 cm 5.75 ± 0.18 c  2.04 ± 0.46 c 0.80 ± 0.29 b 0.03 ± 0.002 c  0.17 ± 0.02 c  6.4 ± 0.3 c 
!
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Table S3. Soil biochemical characteristics – enzyme activities of soils under each 
agricultural management regime at each of five depth increments (N=4, α = 0.05). Letters 
show significance groupings within each treatment for each factor. 

    Glucosidase Glucosaminidase 
Treatment Depth (mg pnit/kg soil/hr) (mg pnit/kg soil/hr) 
Chisel Till 0-5 cm 272.7 ± 30.3 a 132.4 ± 5.8 a 

 
5-10 cm 278.8 ± 13.6 a 125.7 ± 5.8 a 

 
10 cm-Ap 121.8 ± 12.6 b 159.4 ± 35.0 a 

 
Ap-30 cm 42.5 ± 4.0 c 63.6 ± 4.8 b 

 
30-60 cm 38.1 ± 3.9 c 50.8 ± 11.2 b 

No Till 0-5 cm 356.4 ± 37.0 b 158.7 ± 5.5 a 

 
5-10 cm 253.4 ± 35.0 c 132.4 ± 14.4 a 

 
10 cm-Ap 103.2 ± 11.9 d 88.3 ± 14.7 b 

 
Ap-30 cm 59.0 ± 6.3 ad 65.0 ± 2.2 b 

 
30-60 cm 56.2 ± 19.8 a 61.0 ± 5.9 b 

Organic 0-5 cm 404.5 ± 43.5 a 185.7 ± 12.0 a 

 
5-10 cm 287.9 ± 53.3 b 213.9 ± 33.0 a 

 
10 cm-Ap 211.7 ± 34.0 b 100.1 ± 22.3 b 

 
Ap-30 cm 38.9 ± 4.2 c 66.3 ± 4.3 b 

  30-60 cm 40.0 ± 4.5 c 71.7 ± 11.4 b 
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Figure S1. Stacked bar graphs show average abundances of bacterial and archaeal classes 
with the top 10 greatest absolute ranges in average abundance between agricultural 
management regimes (A, B, C, N = 3) or experimental blocks (D, E, F, N = 4) within 
each of five depth fractions. Only significant indicator species (α = 0.05, PC-ORD, 
(McCune and Mefford, 2011) for either treatment (A, B, C) or block (D, E, F) were 
considered. Error bars show standard error of the mean. 
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Appendix B. 
 
Table S4. Texture and pH of homogenized soils before assignment to incubation 
chambers. Texture measured using the pipette method; pH measured in a 2:1 suspension 
of 0.01 M CaCl2. 

Soil Texture pH 

 Sand (%) Silt (%) Clay (%)  
Brookings 38 27 35 7.20 
Rio Grande 46 32 22 3.99 
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Table S5. Total C and N content of pre- and post-incubated soils. Labels show the 
incubation conditions and soil type for each sample analyzed. Only the -2.5 MPa 
treatments were analyzed by individual replicate; others were subsampled prior to 
assignment to incubation chambers. 
Sample Pre-Incubation Post-Incubation 

 
Total %C Total %N C/N Ratio Total %C Total %N C/N Ratio 

Brookings 
2.65 0.23 11.54 2.26 0.25 9.2 -0.25 MPa +C 

-0.25 MPa 2.74 0.25 10.81 2.43 0.25 9.74 
-2.5 MPa 1 2.71 0.27 10.18 2.67 0.26 10.28 
-2.5 MPa 2 2.74 0.25 11.17 2.36 0.25 9.44 
-2.5 MPa 3 2.47 0.25 9.98 2.47 0.23 10.6 
Rio Grande 

5.75 0.47 12.16 5.49 0.48 11.41 -0.25 MPa +C 
-0.25 MPa 5.64 0.49 11.45 5.42 0.48 11.38 
-2.5 MPa 1 5.30 0.46 11.45 5.46 0.47 11.53 
-2.5 MPa 2 5.20 0.46 11.33 5.3 0.46 11.53 
-2.5 MPa 3 5.38 0.46 11.78 5.6 0.49 11.44 
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Figure S2.  Heatmap shows log-transformed activity ratios of every phylum present in at 
least one replicate of each treatment group. Red shows untransformed values of less than 
0.1, yellow shows values from 0.1 to 1.0, and green shows values greater than 1.0. 
Despite slight differences in patterns of activity between phyla, the primary factor 
affecting activity ratio is the specific jar in which the community was incubated, and 
groupings do not seem to conform to coherent patterns in either incubation conditions or 
phylogenetic relatedness. Members of phylum Crenarchaeota were not present in 
Brookings treatments -0.25 MPa +C replicates 1 or 2. 
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Figure S3.  Alpha rarefaction plot of observed species obtained from each of 36 
extractions (rRNA genes and reverse-transcribed cDNA from rRNA for each of 18 
samples), using the alpha_rarefaction.py workflow script within the QIIME pipeline. 
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