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This study develops a unified technology choice and energy consumption 

model (a “discrete/continuous model”) that can be applied to study household energy 

use behavior. The model, stemming from consumer theory, ensures modeling of 

consumer short-run energy demand and long-run capital investment decisions in a 

mutually consistent manner. The model adopts a second-order translog flexible 

functional form that allows considerable flexibility in the structure of consumer 

preferences and in the exploration of interplays among energy uses and between 

energy demand and appliance choices. This study extends the discrete/continuous 

model developed by Dubin and McFadden (1984) and is the first known application 

of the second-order translog flexible functional form in joint discrete/continuous 

modeling of consumer energy demand and appliance choice.  



  

Using a unique household-level dataset of 2,408 households served by the 

Pacific Gas and Electric Company in California, the model is applied to examine the 

roles of income, prices, household characteristics, and energy and environmental 

policy in household short-run energy use and long-run technology choices. The 

empirical analysis estimates a system of short-run household demand equations for 

electricity and natural gas and long-run technology choices with respect to clothes 

washing, water heating, space heating, and clothes drying. The results demonstrate 

the modeling framework is appropriate and robust in studying household energy use 

behavior. 

Findings from the empirical analysis have important implications for policy 

design. This study confirms two important market failures with respect to household 

energy technology choice behavior: the principal/agent problem and information 

imperfection. In the case of clothes washer choices, the information-based Energy 

Star program emerges as the most significant factor influencing the adoption of 

energy-efficient front-loading clothes washers, followed by energy efficiency 

standards. Surprisingly, financial incentives, such as the popular rebate programs 

used to lower the initial capital cost of energy-efficient appliances, are found to be far 

less effective in influencing adoption of energy-efficient appliances. 

Furthermore, the study finds at the household level that the incentive for new 

technology adoption is greater under direct regulation than under market-based 

instruments, such as a carbon cap-and-trade program or emission taxes. 
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Chapter 1: Introduction 

Energy supply and price have been public and political concerns over the last 

several decades. Increased awareness about global climate change in recent years has 

rejuvenated debate about policy options to reduce energy consumption and 

greenhouse gas emissions. Technological change and energy efficiency are 

recognized as important factors to address multiple energy and climate change 

challenges (Weyant 1993, Jaffe et al. 2003, and Pacala and Socolow, 2004).1

In the United States, various policy programs have been devised to encourage 

the adoption of energy efficient technology at the federal, state and local levels. These 

programs range from regulation, such as the federal appliance energy efficiency 

standards, to incentive-based programs, such as federal tax incentives for fuel-

efficient vehicles and utility rebates for energy-efficient appliances (e.g., boilers, air 

conditioners and refrigerators), to voluntary information and labeling programs, such 

 

According to the International Energy Agency, in order to stabilize carbon 

concentration in the atmosphere at 450 ppm by 2030 to avoid dangerous effects of 

climate change, over half of the global carbon dioxide (CO2) emission reductions will 

come from greater energy efficiency in the world economy (Birol 2008). The 

diffusion and adoption of energy-efficient technology thus play a crucial role in 

energy and climate change policy. 

                                                 
1 For the purpose of this study, I adopt a service-minded definition and define energy efficiency as the 
ratio of energy input for a given level of energy service output with the assumption that an energy 
service provides a consumable good (e.g., clean clothes and hot water), which provides utility to a 
consumer.  
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the Energy Star program. Many of these programs target the residential sector since 

residential households consume about one-fifth of the total energy in the economy 

and the sector has some of the most cost-effective opportunities to reduce energy 

consumption.2

In California, where the empirical analysis of this study focuses, households 

are found to be the most important determinants of the state’s energy consumption 

(Roland-Holst 2008). In 2006, the state passed the California Global Warming 

Solutions Act (“Assembly Bill 32”) to address global climate change. The Act 

mandates a cap on the state’s greenhouse gas emissions at the 1990 levels by 2020 

and a target to reduce the state’s emissions by 80 percent from the 1990 levels by 

2050. A suite of policy instruments are under consideration to fulfill the targets, 

including a cap-and-trade program, vehicle fuel efficiency standards, enhanced 

appliance efficiency standards, significant increases in the share of clean, renewable 

energy in power supply and end use, and energy efficiency measures such as green 

buildings in new construction and utility demand-side energy management 

programs.

   

3

Given the important policy relevance of household behavior, better 

understanding is needed with respect to short-run energy consumption and long-run 

energy technology adoption, as well as with respect to responsiveness to price signals 

and incentive policy. However, empirical evidence to inform policymaking has been 

 Many of these programs would have implications for residential energy 

use. 

                                                 
2 The share of residential energy consumption is estimated based on historic average data between 
1949 and 2008 reported in the Annual Energy Review 2008 published by the Energy Information 
Administration (Report No. DOE/EIA-0384). 
3 Source: California’s Climate Plan Fact Sheet, updated January 27, 2010 (accessed via 
www.climatechange.ca.gov). 
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lacking in two important areas: (i) insights on consumer behavior with respect to 

adoption of energy-efficient technology, and (ii) effectiveness of alternative policy 

instruments (e.g., cap-and-trade programs, energy efficiency standards, and financial 

incentives) as a means of encouraging short-run and long-run household energy 

efficiency. 

In this study, I develop a unified discrete technology choice and continuous 

energy consumption model (a “discrete/continuous model”) derived from an 

underlying theoretical model of utility maximization. The approach, stemming from 

consumer theory, ensures modeling of consumer short-run demand and long-run 

capital investment decisions in a mutually congruent manner. The model adopts a 

second-order translog flexible form of the indirect utility function which allows 

considerable flexibility in the structure of consumer preferences and in the 

exploration of interplays among energy end uses both across different energy forms, 

and between energy demand and discrete appliance choices. This study extends the 

discrete/continuous model developed by Dubin and McFadden (1984) and is the first 

known application of the second-order translog flexible functional form in joint 

discrete/continuous modeling of consumer energy demand and appliance choice.  

Using a unique and rich micro-level household survey dataset in California, 

the model is applied to examine the roles of income, prices, household characteristics, 

and energy and environmental policy in short-run energy use and long-run technology 

choices. I estimate a system of short-run household demand equations for electricity 

and natural gas and long-run technology choices with respect to clothes washing, 

water heating, space heating, and clothes drying. The results, based on observations 
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of recent energy consumption and appliance holdings among 2,408 households served 

by the Pacific Gas and Electric (PG&E) Company, demonstrate the modeling 

framework is appropriate and robust in studying household energy consumption and 

technology choice behavior.  

Another unique contribution of this study is the insights on the effectiveness 

of alternative energy and environmental policy instruments (e.g., the market-based 

carbon cap-and-trade program, energy technology performance standards, financial 

incentives, and information programs) in encouraging the adoption of energy-efficient 

technology at the household level. 

The remainder of this document is organized as follows. Chapter 2 reviews 

the relevant literature, discusses gaps in existing knowledge, and describes how my 

study contributes to the literature. Chapter 3 establishes the theoretical model for 

empirical investigation. Chapter 4 provides an overview of available data and 

describes data management procedures. Chapter 5 illustrates the estimation strategy. 

Chapter 6 presents the results of empirical estimation. Chapter 7 discusses the policy 

implications of the study findings. Finally, Chapter 8 concludes with thoughts on 

future research. 
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Chapter 2: Relevant Literature 

This chapter reviews the literature related to energy efficiency policy and 

modeling of consumer energy demand and energy technology adoption behavior. 

Section 2.1 synthesizes the relevant policy discussions concerned with adoption of 

energy-efficient technology. Section 2.2 chronicles the evolution of energy demand 

modeling and the convergence to joint analysis of consumer energy demand and 

technology choice decisions. Section 2.3 discusses the gaps in existing literature and 

the unique contributions of this study.  

2.1 Climate change and policy interest in energy-efficient technology adoption 

Technological change and energy efficiency are recognized as important 

factors of environmental and climate change policies (Jaffe, et al., 2003; Weyant 

1993). The process of technological change is often characterized in three stages: 

invention, innovation, and diffusion (Thirtle and Ruttan 1987). Diffusion refers to the 

process by which a new technology is adopted by firms or individuals.  

Previous research on technology adoption has consistently shown that 

diffusion of new technology is a gradual process (e.g., Rogers 1957 and Mansfield 

1989). Rates of adoption and diffusion of apparently cost-effective energy efficiency 

investments are also noted to have been slow. Hence, this phenomenon has come to 

be called the ‘energy paradox.’ This is now a subject studied extensively in the 

literature (e.g., Hassett and Metcalf 1993 & 1996, Jaffe and Stavins 1994, and 

DeCanio 1998). 
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 The energy paradox 

Using a simulation model, Jaffe and Stavins (1994) found that incomplete 

information, principal/agent problems, and artificially low energy prices inhibit the 

diffusion of energy-efficient technologies. Howarth and Sanstad (1995) argued that 

asymmetric information, bounded rationality, and transaction costs are major 

contributors to the energy paradox. Using firm level data on lighting upgrade 

investment decisions, DeCanio (1998) found that a large potential for profitable 

energy-saving investments has not been realized because of internal organizational 

and institutional impediments in the private and public sector. 

Early on, Hausman (1979) noted that individuals trade off capital costs and 

expected operating costs when making energy appliance purchase decisions. He 

found an implicit discount rate of about 20 percent in room air conditioner purchases. 

In a stated preference study of untried, energy-saving durable goods, Houston (1983) 

found that many consumers appear to calculate rationally the net worth of a 

household investment, but a substantial minority appears to lack the skills or alertness 

to perceive investment opportunities or initiate analysis. More recently, Hassett and 

Metcalf (1993) argued that the apparently high discount rates revealed in energy 

saving investment decisions were not irrational in the presence of substantial sunk 

costs and uncertainty about future savings.  

Train (1985) highlighted a wide range of estimates of implicit discount rates 

for different types of energy technology investments. He found estimates of 4-36% 

for space heating systems, 3-29% for air conditioners, 39-108% for refrigerators, and 

4-67% for other appliances. He suggested that one possible explanation for the 
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differences in discount rates is consumers’ limited awareness of the true energy use 

and operating costs of some of the technologies. Train’s argument is supported by 

recent consumer survey studies which found that limited knowledge of energy 

efficiency options inhibit adoption of energy saving measures (Hagler Bailly 1999 

and Pacific Gas and Electric 2000). 

In addition, energy market regulations and infrastructure constraints were 

noted as factors that affect consumer choices and lock in particular patterns of energy 

use (Azar and Dowlatabadi 1999). 

Psychologists and market researchers have also been interested in consumers’ 

attitudes towards energy conservation and perceptions of new, energy-efficient 

technology. Various studies have found little correlation between general energy 

efficiency attitudes and reported conservation actions (e.g., Olsen 1981, Hagler Bailly 

1999, KEMA-XENERGY and Quantum Consulting 2003). In their examination of 

the experience during the ten years of oil crises between 1973 and 1982, Frieden and 

Baker (1983) found consumers’ energy efficiency performance disappointing and 

concluded that the main driver of energy efficiency activity was energy price.   

Labay and Kinnear (1981) explored the consumer decision process in the 

adoption of solar energy systems and found that product-related and economic factors 

are of the highest concerns to adopters and informed nonadopters. High perceived 

initial cost was found to remain the most pervasive barrier to the adoption of energy-

efficient measures by Customer Opinion Research (1999). Although many of the 

market research studies do not put these various factors into structural models for 
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empirical analysis, they point out that the costs and benefits of conservation seem to 

play significant roles in energy efficiency improvement investment decisions. 

The potential of public policy 

The role of public policy in promoting energy efficiency and greenhouse gas 

emissions reductions has attracted great debate (e.g., Jaffe and Stavins 1994, Jaffe et 

al. 1999, Anderson and Newell 2002, Goulder et al. 1999, Levine et al. 1995, and 

Koomey et al. 1996). Some economists draw a distinction between ‘market failures’ 

(e.g., under-provision of information, principal/agent problems, subsidies, and 

environmental externalities) and ‘market barriers’ (i.e., private information costs, 

high discount rates, and hetereogeneity among potential adopters) that affect the 

adoption of energy-efficient technologies (e.g., Jaffe and Stavins 1994, Jaffe et al. 

1999, and Anderson and Newell 2002). They argue for the necessity of understanding 

the sources that affect diffusion of energy-efficient technologies as a prerequisite for 

government intervention. In their view, market failures provide justification for 

government action whereas market barriers do not. However, others argue that if 

market imperfections impair producers’ and consumers’ ability to implement cost-

effective energy savings, policy measures may be justified to improve market 

performance at prevailing prices (e.g., Howarth and Sanstad 1995; Howarth et al. 

2000).  

The effectiveness of alternative policy instruments in encouraging the 

adoption of energy-efficient technology has important implications for policy design. 

Based on a number of theoretical analyses, Jaffe et al. (2003) claim that the incentive 

for the adoption of new technologies is greater under market-based instruments than 
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under direct regulation. A more recent analysis by Parry et al. (2010) evaluated the 

welfare impacts of energy efficiency standards for automobiles and electricity-

consuming durables. The study supports the view that pricing mechanisms (e.g., 

energy taxes and emissions taxes) are preferred to regulatory approaches in correcting 

externalities associated with fossil fuel consumption.  

In an analysis of market supply of air conditioners and water heaters, Newell 

et al. (1999) found evidence that both changes in energy prices and government 

regulations (energy efficiency labeling and energy efficiency standards) have affected 

energy efficiency in the menu of appliance models offered in the market. Hassett and 

Metcalf (1995) found evidence that government tax policies have significant impacts 

on the probability of residential energy conservation investments. Quigley (1984) 

used estimates of production and demand functions for housing services to evaluate 

the social costs of government policies designed to induce energy conservation by 

residential consumers (i.e., tax credits for energy efficiency improvements and 

building energy performance mandates). His analysis provides support for 

government intervention on the basis that residential energy prices are less than 

marginal private or social costs.  

Howarth et al. (2000) found strong evidence of energy efficiency 

improvements among private firms in the presence of the voluntary Green Lights and 

Energy Star programs sponsored by the U.S. Environmental Protection Agency. 

Anderson and Newell (2002) examined the effect of government energy-efficiency 

audit programs for industrial manufacturers’ decisions on energy efficient technology 

adoption. Only half of the recommended energy efficiency projects were adopted by 
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firms. They argue that information or institutional barriers does not fully explain 

firms’ non-adoption behavior.  The underlying economic reasons (e.g., longer than 

expected payback periods) ultimately affect firms’ decisions on whether to adopt a 

recommended energy efficiency action.  

2.2 Household energy demand and technology choice modeling 

Analysis of household energy consumption and demand elasticities has long 

been used to (1) assess the energy saving potential of energy efficiency programs, (2) 

forecast energy demand and load profiles, and (3) plan future generation capacity 

needs. Following the energy crisis in the 1970s, interest emerged in understanding 

consumer investment decisions with respect to energy technology and conservation 

measures. Estimation of consumer energy technology choice largely began in the 

1980s in response to this policy interest. In recent years, consumer energy 

consumption and technology choice behavior has received renewed interest in the 

context of climate change policy. This section reviews relevant methods and studies 

that model household energy demand and technology adoption, and highlights the 

latest developments in joint modeling of the two aspects of consumer decisions.  

Energy demand analysis 

Conditional demand analysis (CDA) is a common approach for short-run 

household energy demand estimation that disaggregates total household energy 

consumption into appliance-specific estimates of demand functions based on 
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explanatory variables such as energy price and household demographic characteristics 

given current appliance ownership.4

Estimates of appliance energy consumption typically come from metering 

studies, engineering estimates, and statistical demand analyses (Wenzel et al. 1997). 

Metering data provide the most accurate estimates of energy use by appliance but are 

costly to collect and usually cover limited end uses in small samples. Engineering 

studies estimate appliance performance based on product specifications but do not 

address consumer behavior (e.g., price and income response). Statistical demand 

analyses are useful when appliance-specific energy consumption is not observed. 

Moreover, statistical models allow inference of changes in explanatory variables and 

are particularly useful for analyzing energy consumption impacts of policy and 

energy price changes. 

  

Historically, most regression analyses of energy demand have relied on 

aggregate national or state data (e.g., Balestra and Nerlove 1966, Hartman and Werth 

1981, Hartman 1983). Aggregate data are prone to aggregation bias and specification 

errors that pose challenges when evaluating consumer behavior. Detailed household 

information is desirable because of the ability to better predict consumer demand 

response to changes in energy price and income.   

Parti and Parti (1980) developed one of the first conditional demand analysis 

models for residential electricity consumption using household data. Their model 

disaggregates a household’s electricity consumption into appliance-specific 

                                                 
4 Conditional demand analysis is used in the economic literature of consumer energy consumption 
analysis. Most studies, however, do not give a precise definition of the term nor explain the theory 
from which CDA stems. Pollak (1969) discusses conditional demand functions in the context of 
consumer behavior analysis in the short run when “fixed commitments prevent instantaneous 
adjustment to the long-run equilibrium” or when some good(s) are pre-allocated (e.g., rationed).  
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consumption estimates assuming linear relationships between energy consumption 

and explanatory variables based on appliance ownership.   

The basic CDA model in the spirit of Parti and Parti can be represented as  

(1) ∑∑∑
= ==

==
J

j

K

k
jkjk

J

j
j dbxX

1 11

,θ  

where X is the household’s aggregate electricity consumption during a period of time 

(e.g., annual or monthly electricity consumption in kilowatt hours); ∑
=

=
K

k
jkjkj dbx

1

θ is 

electricity consumption of the jth appliance for  j = 1,…,J; dj is a dummy variable 

indicating ownership of the jth appliance; θk is the kth exogenous variable (e.g., 

energy price, income, climate, or house size) that influences electricity consumption 

for k = 1,…,K; and jkb  is the coefficient of θk in the jth conditional demand function. 

Using microdata from over 5,000 households in San Diego County in 1975, they 

applied the model in equation (1) to estimate annual and monthly energy consumption 

of a set of 16 specified appliance categories and price and income elasticities of 

demand for each of the specified demand functions. Appliance-specific energy 

consumption during a time period is defined as “unit energy consumption” (UEC).  

UEC estimates are frequently used in demand forecasting. 

A number of studies have estimated short-run household electricity 

consumption and demand elasticity using CDA models similar to Parti and Parti. 

Barnes, et al. (1981), used data from about 10,000 U.S. households in the 1972-73 

Consumer Expenditure Survey and estimated demand functions for 11 end use 
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categories including space heating, air conditioning and refrigeration.5

Archibald, et al. (1982), estimated monthly and seasonal electricity demand 

equations for six classes of appliances using micro-data of 1,311 households in the 

national survey of Lifestyles and Household Energy Use of 1975. The UEC definition 

in Archibald, et al. (1982), is similar to Barnes, et al. (1981), but three types of 

utilization functions are considered depending on whether each energy use is affected 

by weather, housing characteristics or household demographic characteristics.

 In their model, 

UEC is a function of appliance ownership and utilization rate. The utilization rate is a 

linear function of the logarithms of the price and income variables and a vector of 

demographic variables (e.g., climate, region, and season dummy variables and 

household size).   

6 Using 

a seemingly unrelated regression system, Aigner, Soroothian and Kerwin (1984) 

estimated hourly load curves in a typical day for nine appliances. They used data for 

the months of August between 1978 and 1980 from a few hundred customers of the 

Los Angeles Department of Water and Power.7

                                                 
5 Barnes et al. include “number of rooms” as an end-use category.  It is a proxy for housing size and is 
not a proper energy end use category. Estimating the UEC of “number of rooms” using an OLS 
approach likely causes biased UEC estimates for end use categories correlated with housing size such 
as space heating and cooling.   

 

6 For instance, Archibald et al. assume that UEC for common appliances (e.g., television and, 
microwaves) is a linear function of energy price and income only; UEC for appliances whose 
utilization depends on a “thermostat” (e.g., water heaters and freezers) is a linear function of energy 
price, income, and weather; and UEC for heaters and air conditioners is a linear function of energy 
price, income, weather, and housing characteristics.   
7 Alternative forms of energy price representation have been used in estimation: marginal price, 
average price, and a declining-block rate schedule of prices. Taylor (1975) suggests that consumer 
demand for electricity under a multi-part rate schedule is more complex and demand equilibrium 
cannot be derived using conventional differential procedures.  A number of CDA studies (e.g., 
Hartman and Werth 1981 and Barnes et al. 1981), include both a marginal price and a fixed price to 
reflect the block rate structure of electricity.  
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Technology Choice Modeling 

Jaffe et al. (2003) reviewed two main models in the literature relevant to 

energy technology adoption: the epidemic model and the rank model. The epidemic 

model postulates that technology diffusion is a gradual process because a decision to 

adopt a new technology is a risky undertaking requiring considerable information 

both about the generic attributes of the new technology and about the details of its 

use. The epidemic model captures the information externality of technology adoption 

transmitted from early adopters to other potential adopters. The model yields an S-

shape curve of technology adoption for the population over time.  

In contrast, the rank model posits that potential adopters are heterogeneous 

and only those who face the value or return of a new technology above a threshold 

choose to adopt. The rank model is analogous to the choice model. The choice model 

assumes that, given a set of technology choices with different initial costs and returns 

over time, a consumer makes the technology choice that minimizes discounted total 

costs required to generate a level of desired energy services (Nyboer and Bataille 

2000).  

The epidemic model is more appropriate to describe the process of aggregate 

technology adoption in a population whereas the rank, or choice, model is more 

appropriate to explain technology adoption decisions faced by an individual 

consumer. Because the primary interest of this study is to better understand drivers of 

household choices of energy technology, the choice model is used for the purpose of 

this study.  



 

 15 
 

Most choice models implicitly or explicitly assume some form of individual 

utility maximization. Empirically, logit and probit discrete choice models are used to 

explain the role of factors such as purchase cost, energy prices, technology attributes 

and consumer characteristics that influence consumer’s technology choice decision 

(see a review of recent studies on green technology adoption in Jaffe et al. 2003).  

Discrete/continuous modeling 

Although the short-run decision focuses on the intensity of technology 

utilization, neglecting capital stock holdings and household decisions regarding 

technology choice biases estimation of the demand function because technology 

choice and usage decisions are correlated.8

                                                 
8 For example, a household with high demand for air conditioning is likely to purchase an energy-
efficient air conditioner with higher capital cost but lower operating cost.  

 Balestra and Nerlove (1966) argued that 

demand for energy is a dynamic problem and that “the demand function should 

incorporate a stock effect and some assumptions about the adjustment of these stocks 

over time” (p. 585). As Hausman (1979) put it, “energy demand may be viewed 

usefully as part of a household production process in which the services of a 

consumer durable good are combined with energy inputs to produce household 

services” and warned that “[e]conometric models which do not differentiate the 

capital-stock decision from the utilization decision cannot capture the interplay of 

technological change and consumer choice in determining final energy demand” (p. 

33-34). The conditional demand analyses cited above each report UEC by appliance 

and some discuss it interchangeably with UEC by end use. Such treatment reflects 

confusion between energy use and appliance choice. 
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In his survey article of electricity demand analyses, Taylor (1975) explored 

econometric specifications that capture both short-run and long-run aspects of 

demand for electricity and suggested that demand for capital stock should be modeled 

explicitly to evaluate the long-run demand for energy. Hausman (1979) evaluated 

individual decisions on purchase and utilization of energy-using durables. He 

emphasized the tradeoff between capital costs for more energy efficient appliances 

and operating costs for appliances. Using a two-stage optimization approach, he 

modeled household utilization and choice of room air conditioners. In the first stage, 

utility maximization determines optimal utilization of air conditioners. The 

information on utilization function is then used to model consumer air conditioner 

choices. 

Dubin and McFadden (1984) demonstrated that modeling energy demand 

without consideration of endogenous technology choice as in Parti and Parti (1980) 

yields biased and inconsistent estimates. They proposed an approach that jointly 

estimates the discrete decisions on appliance choice and continuous decisions on 

usage (the “discrete/continuous model”). The essence of the Dubin and McFadden 

model is described below. 

Assuming the consumer chooses an appliance portfolio i  from m  choices to 

maximize utility, the consumer has a conditional indirect utility function 

(2) ),,,,( iii pryiVu εη−= , 

where ir  is the annualized cost of appliance i , y  is income, p is the price of fuel, iη  

represents the observed attributes of appliance i , and iε  represents unobserved 
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attributes of appliance i .9

i

 By Roy’s identity, the energy (fuel) consumption, given 

appliance choice , is 

(3) µ
εη
εη

+
∂−∂
∂−∂−

=
ypryiV
ppryiV

x
iii

iii

/),,,,(
/),,,,(

 

where µ  is a random disturbance in fuel demand typically added for econometric 

purposes, ( ) 0.E µ = .  

The probability that appliance i is chosen is  

(4) }.),,,,(),,,,(:),..,Pr{( '
'''

'
1 iipryiVpryiVP iiiiiimi ≠∀−>−= εηεηεε  

Joint estimation of equations (3) and (4) is required for efficient and congruent 

estimation because the two equations have common parameters. In principle, any 

function )(⋅V  with the necessary and sufficient properties of an indirect utility 

function can be used to construct econometric forms for estimation.  

Dubin and McFadden (1984) illustrated the discrete/continuous model by 

jointly estimating technology choice and energy demand for space heating and water 

heating. For simplicity, they limited the choice set to two alternatives of space heating 

and water heating equipment that use the same fuel (i.e., either both use electricity or 

both use natural gas). Their study used a subsample of 313 households from a 1975 

survey. 

Hanemann (1984) showed that the discrete technology choice and continuous 

consumption decisions derived from an underlying theoretical model of utility 

maximization are consistent with the economic theory of consumer behavior and 

                                                 
9 Dubin and McFadden (1984) include two fuel prices in the model: price of own fuel (e.g., electricity) 
and price of alternative fuel (e.g., natural gas).  
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should be modeled in a mutually consistent manner. In a recent study, Davis (2008) 

used the discrete/continuous model to estimate household demand for energy and 

water from a field trial of energy-efficient clothes washers among 98 households in 

Bern, Kansas. He found that when simultaneity of appliance choice is ignored, 

estimates of price elasticities are biased away from zero.  

The discrete/continuous modeling approach has been applied to analyze short-

run and long-run energy use in Europe. For instance, Dagsvik et al. (1987) used a 

dynamic discrete/continuous choice model to analyze gas demand in the residential 

sector of Western Europe. Vaage (2000) and Nesbakken (2001) applied 

discrete/continuous models to evaluate household heating technology choice and fuel 

demand in Norway. Vaage (2000) used a version of the discrete/continuous model in 

Hanemann (1984) and adopted a two-step estimation approach; Nesbakken (2001) 

applied the Dubin and McFadden model and used the full information maximum 

likelihood estimation method. Using a two-step discrete/continuous approach, 

Halvorsen and Larsen (2001) effectively estimated the short- and long-run price 

elasticities of residential electricity demand in Norway. 

The application of discrete/continuous modeling for energy use was sparse in 

the U.S. until the recent years. With increased interests in climate change, fuel 

efficiency, and clean energy, the discrete/continuous modeling approach has regained 

popularity. Newell and Pizer (2008) use this approach to estimate fuel choices and 

energy demand in the U.S. commercial sector in an effort to estimate a carbon 

mitigation cost curve for the sector. Mansure et al. (2008) apply the method to 

evaluate changes in fuel choices and energy demand among U.S. households and 



 

 19 
 

firms in response to long-term weather change due to climate change. Both studies 

largely followed the two-step estimation method of the Dubin & McFadden model 

whereby a multinomial logit model of fuel choices is estimated first, followed by 

fuel-specific conditional demand analysis that incorporates selection error terms from 

the first stage. 

2.3  Conclusions 

Joint modeling of household long-run energy technology choice decisions and 

short-run energy use is recognized as a holistic approach to evaluate household 

energy use behavior. However, its application is still very limited. Most existing 

empirical studies are based on outdated data or data of limited scope for the purpose 

of robust inference. Moreover, empirical evaluation of the effectiveness of alternative 

energy and environmental policy instruments for encouraging consumer adoption of 

energy-efficient technology in this consistent analytical framework is even more 

sparse. 

This study contributes to the literature by developing a discrete/continuous 

model based on a second-order translog flexible function form of the indirect utility 

function, and applying the model to empirically estimate household demand for both 

electricity and natural gas and technology choices for clothes washers, water heaters, 

space heating systems and clothes dryers. This is the first known study to evaluate 

multiple household energy uses under this comprehensive analytical framework. In 

addition, the study contributes to the ongoing policy debate about the effectiveness of 

alternative policy instruments for encouraging household energy efficiency and 

greenhouse gas emission reductions through robust empirical analysis. 
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Chapter 3: Modeling Household Energy Demand and Technology 

Choice 

This chapter develops a conceptual framework for joint modeling of 

household consumption and energy durable choice decisions. Section 3.1 establishes 

the underlying household model. Section 3.2 derives the household short-run demand 

model. Section 3.3 develops the long-run technology choice model. Section 3.4 

concludes with discussions on model applications. 

3.1  Model setup 

I assume the household maximizes utility from consumption of two groups of 

goods, market goods and energy uses, in each time period.  Market goods are 

represented as a composite good 0E and energy uses by a vector }.,...,{ 1 JEEE =  

Utility maximization is represented as 

(5) );,..,,(max 10,.., 10
θJEEE EEEu

J
, 

where 

E0 = a composite market good, represented as a scalar numeraire,  

jE  = energy use j, j = 1,…,J (e.g., space heating, water heating, clothes 

washing, clothes drying, etc.); jE is measured in the physical units of 

energy output, e.g., BTUs of heat from a space heater, and 
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θ  = a K-dimensional column vector of household and housing characteristics 

that influence household demand, e.g., household size, house square-

footage, and climate. 

The utility function is assumed to be increasing and quasi-concave in E0 and E.  Both 

E0 and E are assumed to be essential goods.  Utility maximization is constrained by 

household production technologies and the budget constraint. 

Demand for each energy service jE  is met through utilization of a household 

energy production technology (i.e., an appliance) using fuel as an input. I assume that 

household energy service production does not require household labor.10 I further 

assume independence of energy production technologies, i.e., no appliance produces 

more than one energy service (output nonjointness) so that each energy service has a 

unique production function.11

(6) 

 In addition, I assume input nonjointness, i.e., fuel must 

be allocated among appliances that produce energy services so that fuel allocated to 

one appliance (energy service) does not affect production of others. If a single 

technology is used to produce a given end use j, then the energy service production 

function is represented by  

,),( jilijj xE ϕ=   Jj ,...,1= ,  

where 

                                                 
10 This assumption is reasonable as a majority of energy services do not involve labor. A few energy 
uses have time implications, such as cooking and clothes washing. However, for energy service 
production that requires time, the time requirement is relatively inelastic with respect to the energy 
price. One can argue that demand for time has an income effect. This question is worth pursuing but is 
beyond the scope of this study.  
11 In a few cases, multiple energy services are produced using the same appliance (e.g., a heat pump is 
used for both space heating and cooling).  
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i  = technology choice index, jIi∈ , where jI  is the technology choice set for 

end use j, 

jilx ),(  = input of fuel l(i) associated with technology i for end use j where l is 

the energy source (e.g., electricity and  natural gas), and 

ijϕ  = the average energy-efficiency coefficient (i.e., energy output per unit of 

energy input) associated with technology i for energy use j.  

Energy service production functions of the form in (6) are widely used in 

energy engineering models to calculate the energy output for a given level of energy 

input or, conversely, the energy input requirement given a level of energy service 

load (e.g., Wenzel et al. 1997).12

i

 The use of such functions in this model avoids 

estimating certain phenomena in broad reduced form relationships for which physical 

relationships are known comparatively precisely. In this setup, I assume the 

technology choice determines the fuel choice as represented by l(i). That is, once 

technology  is chosen from the technology set jI  to meet energy service demand 

jE , the fuel choice l(i) is determined.  

Some energy uses can be met with more than one fuel technology (e.g., 

electricity or natural gas appliances can be used for water heating, space heating, and 

clothes drying); other energy use categories (e.g., lighting, refrigerators, and freezers) 

have only one practical fuel possibility (electricity). Although the model I develop 

here assumes that each energy service is met through a single technology, multiple 

                                                 
12  The exact definition of the energy-efficiency coefficient ( ijϕ ) varies by energy use. For example, 
the energy-efficiency level of heating equipment is typically measured by the annual fuel utilization 
efficiency (AFUE), whereas the energy-efficiency level of an air conditioner is measured by its energy 
efficiency rating (EER) or seasonal energy efficiency rating (SEER). 



 

 23 
 

technologies are used to produce some energy services (e.g., both a central air furnace 

and a portable space heater may be used simultaneously for space heating). To 

capture this case, equation (6) can be represented more generally as 

∑∈
=

jIi jilijj xE ),(ϕ . The model generalization for the multiple technology case is 

presented in Appendix 3.1 at the end of this Chapter.  

In the short-run, the household capital stock (e.g., appliances and housing 

stock) is likely fixed and production of the desired level of an energy service is 

determined by the intensity with which the chosen technology is utilized. Therefore, 

the short-run household optimization problem generates a derived demand for fuel 

that treats the technology choice as given and does not depend on factors that affect 

technology choice. In the long run, however, the household will “weigh the 

alternatives of each appliance against expectations of future use, future energy prices, 

and current financing decisions” (Dubin and McFadden 1984). In other words, the 

household will consider both the capital costs and the future flow of operating costs 

associated with each of the alternative technologies in the decision-making process.  

The two sections below discuss household decisions on short-run fuel use and 

the long-run technology choice, respectively. I demonstrate that theoretically both 

decisions flow from the same underlying utility maximization problem so that a 

unified framework applies to analysis of both household energy consumption and 

technology choice behavior.  

3.2 Short-run fuel demand 

Ignoring the case of using multiple technologies for individual energy uses for 

conceptual simplicity of presentation, the short-run optimization problem discussed 
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above can be formalized as utility maximization as in equation (5) subject to the 

production function in equation (6), and the budget constraint 

(7) ,*
1

),(),(
1

),(),(0
1

0 ∑∑∑
===

−≡≤+=+
J

j
jjijji

J

j
jjljjl

L

l
ll kyyxpExpE ρ  

where  

jjll pp ),(≡ = the price of fuel l regardless of the energy use, i.e., for all  

 j = 1,…,J, 

∑
=

≡
J

j
jjll xx

1
),( = total household use of fuel l, 

i(j) = the technology currently in place for meeting energy service j,  

))(()( jiljl ≡ = the fuel choice associated with end use j, which is implicitly 

determined by technology choice i, 

y* = the amount of income not already committed to fixed payments 

including appliance payments (represented as annualized costs),  

y  = household income, 

jjik ),(  = capital cost of technology i for end use j, and 

jji ),(ρ = annualized fixed cost rate of technology i for end use j that accounts 

for appliance lifetime and financing costs. 

I assume that ,   0 jE j ∀≥  and require that E0 > 0 following LaFrance and 

Hamemann (1989) to avoid a technical continuity issue.   

The budget constraint in (7) implies that the cost of producing the quantity Ej 

of energy service j is  
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(8) ,),(),( jjljjlj xpc =    .,...1 Jj =  

The implicit price of energy service j, i.e., the effective cost per unit of energy output 

for the jth energy use, is 

(9) ,/)/()( ),(),(),(),(),(),( jjijjljjljjijjljjlj pxxpr ϕϕ =≡
 

.,...1 Jj =  

Solving the utility maximization problem given the current appliance stock 

yields the conditional indirect utility function 

(10) ),*,,( θyrVV =  

where r is a vector including r0, the price of the composite good, and the rj’s across 

all energy end uses for j = 1,…,J, and )(⋅V  is assumed to be continuous and 

quasiconvex in r and y*, monotonically decreasing in r, and monotonically increasing 

in y*. 

I adopt a version of the second-order translog flexible functional form of the 

conditional indirect utility function following Berndt et al (1977). The indirect utility 

function also incorporates demographic variables by interacting them with price terms 

using the “demographic translating” technique discussed in Pollak and Wales 

(1992).13

                                                 
13 The inclusion of household and housing characteristics in the demand functions is based on the 
common sense and significance of statistical test results.   

 In addition, I include a vector of household characteristics that may 

influence energy technology choices and disturbances associated with individual 

technology choices for energy service production. This functional form yields 
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(11) 
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where ‘0’ denotes the composite good, α , jα , j = 0,…,J, and 'jjβ , j,j’ = 0,…,J, are 

scalar parameters, and jΓ , j = 0,…,J and jji ),(Η , j = 1,…,J are row-vector parameters 

of the indirect utility function, and jji ),(ε is a disturbance. Both the parameter vector 

( ),i j jΗ  and the disturbance jji ),(ε  are associated with the specific technology i chosen 

for energy use j. I assume separability in demand between the composite good and the 

choice of energy technology alternatives. 

Flexible functional forms have desirable properties as they do not constrain 

price and income elasticities at a base point a priori (Berndt et al. 1977). Popular 

functional forms include the almost ideal demand system (AIDS) (e.g., Deaton and 

Muellbauer 1980), the transcendental logarithmic (Translog) system (e.g., 

Christensen, Jorgenson, and Lau 1975), the generalized Leontief (e.g., Diewert 1971), 

and the generalized Cobb-Douglas (e.g., Diewert 1973). Using Bayesian procedures, 

Berndt et al. (1977) compared the translog, generalized Leontief, and generalized 

Cobb-Douglas using Canadian data, and concluded that the translog functional form 

is preferable on theoretical and econometric grounds. Lewbel (1989) showed that the 

AIDS and translog models are about equal in terms of both explanatory power and 

estimated elasticities. Cameron (1985) used a translog indirect utility function to 

estimate household energy conservation retrofit decisions and found that estimated 
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coefficients were robust across different specifications such as the generalized 

Leontief and the quadratic form.   

LaFrance and Hanemann (1989) show that when utility maximization subject 

to a linear budget constraint satisfies the standard regularity properties and income is 

greater than total expenditure on a subset of goods, the associated incomplete demand 

system (i.e., without estimation of demand for the numeraire E0) can be treated 

virtually the same as a complete demand system. This permits recovery of the implied 

preference structure for the subset of goods.14

(12) 

 Thus, the optimal level of the jth 

energy service can be derived using Roy’s identity 
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Substituting *lnln*)/ln( yryr jj −=  and imposing the adding-up and symmetry 

normalization constraints ,1
0

=∑
=

J

j
jα ,'' jjjj ββ =

 
and 0

0 0'
' =∑∑

= =

J

j

J

j
jjβ  for the translog 

system, equation (12) can be simplified as 

(13) .,...,0      ,
ln21

*ln2ln2

0''
''

0'' 0'
''''

0' 0'
'''*

Jj
r

yr

r
yE J

j
j

J

j

J

j
jjj

J

j
j

J

j
jjjjjj

j
j =

Γ++

Γ+−+
=

∑∑∑

∑ ∑

== =

= =

θβ

θββα
 

Since r0 = 1 and thus lnr0 = 0, the demand system equation (13) can be re-

written as 

                                                 
14 The standard regularity properties are: (i) the demands are positive valued; (ii) the demands are zero 
degree homogenous in all prices and income, and (iii) the JJ × matrix of compensated substitution 
effects for E is symmetric, negative semidefinite.  
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Given that jE  is an unobserved household quantity, equation (15) can be converted 

to an estimable equation by substituting (6), 
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and rearranging to get 
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Further substituting (9) obtains 
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The associated budget share equations by energy end use are thus 
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The budget constraint in (7) suggests that the amount of y* allocated to the composite 

good (the numeraire) is ∑
=

−=
J

j
jjljjl xpyE

1
),(),(0 * . Thus, the budget share for the 

numeraire 0ω  can be expressed as
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where µ0 is a disturbance.  

If only aggregate household use of each fuel is observed, equation (19) can be 

aggregated over end uses by fuel type to get budget shares by fuel type, lω . Here I 

also introduce an error term for econometric purposes to represent errors in fuel use 

decisions 
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where define indicator variable, and μl is a disturbance of fuel use decisions with 

respect to fuel type l. Demand for numeraire and fuels are nonrandom to households 

but unobservable to researchers. I assume the disturbances μ associated with 

consumption are correlated with household taste (e.g., for energy efficiency) which 

also affects choices of energy technology. For the empirical analysis of household 

energy demand among California households, equation (21) consists of two estimable 

budget share equations, i.e., L = {electricity, natural gas}.15

Estimation of the demand system in equations (20) and (21) retrieves 

parameters of the demand equations and the indirect utility function. If the appliance 

 The model setup 

presented above only addresses situation that an energy service is met through a 

single technology. The model expressions and estimation equations for multiple 

technology case are presented in Appendix 3.1 at the end of this Chapter.  

                                                 
15 According to the 2005 Residential Energy Consumption Survey conducted by the EIA, electricity 
and natural gas consumption accounts for over 93 percent of an average California household’s fuel 
expenditure. (Source: Table US10 “Average Expenditures by Fuels Used, 2005” in the 2005 
Residential Energy Consumption Survey--Detailed Tables, published by the EIA, 2008. Accessed via 
http://www.eia.doe.gov/emeu/recs/recs2005/c&e/detailed_tables2005c&e.html on March 2, 2008) 
 

http://www.eia.doe.gov/emeu/recs/recs2005/c&e/detailed_tables2005c&e.html%20on%20March%202�
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engineering energy-efficiency coefficients jji ),(ϕ  are unobserved, equation (21) can 

incorporate suitable estimable expressions for them. For example, 

suppose ijijij wγϕ =ln , where wij is a column vector of relevant explanatory variables 

possibly including appliance age and the appliance energy-efficiency standard, and γij 

is a corresponding row vector of related coefficients. Substituting this specification, 

replacing ∑∑∑∑∑∑
=== == =
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and the budget share for the numeraire 0ω  in equation (20) can be expressed as 
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Equations (22) and (23) are jointly estimated in this case.  

3.3 Long-run technology choice 

Turning to the long-term capital stock decision, the household optimization 

problem can be represented as 
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(24) ,);,...,,(max
1
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where λ is a discount factor, t subscripts denote time, T is the planning horizon, and 

‘*’ denotes optimal choice functions conditioned on technology choices according to 

successive applications of the short-term decision model of the previous section.  

Again, I assume only one technology is chosen to meet each energy use for 

conceptual simplicity of presentation, although generalizations are easily added. I 

assume that appliances have appropriate resale value consistent with remaining 

lifetime when sold as part of selling a house and that T is sufficiently large to avoid 

dependence of ownership costs on the planning horizon. 

The modeling of household energy technology choices requires some 

simplifying assumptions because the treatment of appliance usage depends on future 

price expectations. Hausman (1979) modeled consumer decisions with respect to 

purchase and utilization of room air conditioners. He recognized the challenge of 

modeling future price expectations and used marginal electricity price in the year of 

study to estimate the expected operating costs. Dubin and McFadden (1984) modeled 

household technology choice as contemporaneous with utilization decisions. They 

acknowledge that their assumption is realistic only if “there are perfect competitive 

rental markets for consumer durables.” They used electricity price in the year of study 

to calculate operating cost over the appliance lifetime, and relied on exogenous 
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estimates of ‘typical’ unit energy consumption (UEC) of appliances to derive future 

usage estimates.   

In a review article, Rust (1986) noted that what is needed to be accurate is “a 

formal dynamic programming model of the appliance investment decision, which 

models consumer expectations of future prices by specification of a parametric 

stochastic process governing their law of motion.” However, no study has been able 

to achieve this ideal. For example, in a much more recent study of energy 

consumption and technology choice for space heating in Norway, Nesbakken (2001) 

used real energy price in the year of appliance purchase as the expected energy price. 

For my analysis, I assume future price and income expectations at each point 

in time are given by current prices and income. Thus, the long term problem in (24) 

reduces to the single time period problem,
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A comparison of the budget constraints in the long- and the short-term 

problems implies compatibility such that 

(26) ∑
=

−=
J

j
jjijji kyy

1
),(),(* ρ , 

where y* is the available income for short-term decisions once the technology choices 

in the long-term decision problem are made. To further attain compatibility of the 
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short- and long-term decision problems requires use of the same indirect utility 

function (11), where y* now depends on the i(j) technology choices through the ρi(j),j’s 

and ki(j),j’s that determine y* in (26), and the rj’s depend on the i(j)’s through equation 

(9) above.  

After the short-term optimization and imposing r0 = 1 using the normalization 

constraints, the indirect utility function (11) becomes 

(27) 
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where .00 ααα +=  

In order to study household energy technology choice behavior, I treat 

appliance choice for each energy use in isolation of others assuming that appliances 

for all other energy service production remain unchanged. This is a reasonable 

assumption as the household’s decision to replace a clothes washer is unlikely to be 

affected by the decision to buy a specific type of water heater. Moreover, appliance 

replacement decisions are typically motivated by an old appliance wearing out, which 

occurs at random times. Such decisions are made one at a time as they arise. 
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Therefore, the unobservables that affect appliance choices are likely from different 

time periods and thus likely to be independent of one another.16

Under the technology-choice-independence assumption, this model reduces to 

independent minimization of the implicit cost of individual energy uses. That is, 

individual appliance choice decisions can be represented by defining V as a function 

of i(j) for a given energy use j assuming no other appliance choice problem arises 

simultaneously, i.e., other appliances are held fixed.  For this purpose, I define
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where yj represents income available given commitments to fixed payments 

associated with all energy services other than j, and yij represents income available 

after choosing technology alternative i for energy service j. Analogous to rj as defined 

in equation (9), I also define 

 jjijjilij pr ),()),(( /ϕ≡  

as the effective cost per unit of energy service j where i(j) is the chosen technology. 

The indirect utility function in (11) can be denoted as 

(30) }';,...,1')(,)(|),,,({),,,,,( jjJj for jiijiyrVykiV ijijjijijj ≠=== εθεθρ , 

                                                 
16 However, there are realistic cases where this assumption may be challenged (e.g., new home 
construction or retrofitting when appliance choices are made at the same time).  The technology choice 
independence assumption can be tested empirically by comparing the independent choice case with a 
joint technology choice case. Statistical tests will reveal the appropriateness of the assumption.  
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where V is the same indirect utility function with the same parameters as defined in 

(11). The indirect utility function Vj can be decomposed into two components: the 

terms that vary with the technology choice for energy use j and the terms that are 

constant regardless of this technology choice. For convenience, I introduce the 

following notation for the right-hand side expression in (30): 

(31) )exp(),,,( 0
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The probability that the household chooses technology i from the set Ij of 

alternatives for energy service j can then be represented as 

(32) 
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As shown in (32), the 0
jW  terms conveniently cancel out of this expression. Thus, 

only choice-related variables and technology choice disturbances are relevant. 

Assuming ,jij Ii ∈∀ε are identically and independently distributed with zero 

means and follow extreme value (EV) type I distributions, the difference between two 

disturbances follows the logistic distribution function, 
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(33) )exp()( '
'

j
iieF j

ii
εε −−= , 

where .'' ijji
j
ii εεε −=  Following the well-known results developed and popularized 

by McFadden (1974), the EV error term distribution leads to a logistic model of the 

discrete choice probability where the probability that technology i yields the highest 

indirect utility among all possible technologies is given by 
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Thus, A0 and Aj are, in effect, scalars that do not vary with the chosen technology for 

a given energy service (and household). If the energy-efficiency coefficients used to 
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define rij are not observed, suitable expressions, e.g., ijijij wγϕ =ln , can be inserted in 

their definition.  Then equation (34) can be re-written as   
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Equation (34) shows that when the long-run technology choice decisions and 

the short-run energy demands are both derived from the same underlying indirect 

utility function, coefficients for the income variable (lnyij) and price variables (lnrij) in 

the long-run technology choice model are the same as those that appear in the short-

run fuel demand model in equation (21). In addition, equation (34) shows how the 

household variables in θ can influence the propensity that the household chooses 

technology i for energy use j in a mixed logit framework.  

To illustrate the model in the case of binary choice (e.g., two technology 

choices for energy use j), equation (34) reduces to 
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where ijji
j
ii Η−Η≡Η '' . The log-odds ratio of the probability that technology 

alternative i is chosen is 
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If more than two technology choice alternatives are involved, the model in 

(34) is a multinomial logit model. To identify the parameters, one alternative i* is 

designated as the reference choice alternative, i.e., the probability that technology i* 

is chosen is 
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and the probability that technology i ( 'ii ≠ ) is chosen becomes 
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 One remaining consideration in applying this appliance choice model has to 

do with future price and income expectations. While the same preference parameters 

from the underlying utility maximization model appear in both short-run use 

equations and long-run appliance choice equations (assuming stable preferences), 

consumers may have different expectations for prices and income that will prevail 

over the appliance life. If consumers naively expect current prices and income to 

continue, then no modification in the model is needed. However, if consumers expect 
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different prices and income to prevail during the appliance lifetime, then those 

expectations may modify the prices and income used in the appliance choice model.  

3.4 Conclusions 

 This chapter develops a consistent theoretical framework that can be used to 

analyze household behavior with respect to short-run energy demand and long-run 

technology choices. The model, derived from underlying utility maximization using a 

second-order translog indirect utility function, provides a transparent structure with 

great flexibility to empirically investigate consumer preferences and the role of 

prices, income and household characteristics in energy consumption and technology 

adoption decisions. This model addresses several unique features of consumer energy 

use and allows analysis of demand interactions, demand aggregation, and fuel 

substitution.  

The empirical application of the model presented in the subsequent chapters 

shows that the model predicts household energy demand and technology choice 

decisions quite well given the extent of structure, validating the usefulness and 

appropriateness of the model in studying household energy use behavior.  

The modeling framework allows analysis of the likelihood that a technology is 

chosen based on variations in its attributes (e.g., capital and operating costs, and 

energy efficiency characteristics) and household characteristics (e.g., income, 

education, and climate) given future expectations. Similarly, the impacts of prices, 

income and household characteristics on short-run energy consumption can be 

evaluated given technology choices. Analysis of these questions in this consistent 
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framework assures that the short- and long-run answers to these questions are 

mutually congruent and sensible.  

The effects of policy instruments designed to encourage household energy 

efficiency can also be analyzed in this framework. For instance, incentive-based 

policy, such as utility rebates or government tax incentives on technology purchases, 

lower the capital cost of targeted technologies; energy efficiency performance 

standards affect the energy efficiency performance ( ijϕ ) of targeted technologies; and 

public or utility information and outreach programs that promote energy-efficient 

technology potentially change the household’s perception on the attributes of the 

technology.   

On the other hand, climate change policies, such as a carbon cap-and-trade 

program or emissions taxes, can potentially change the resource costs of fossil-based 

energy supplies (natural gas, oil, and electricity) and thus related fuel prices. The 

effects of these policy-induced changes on households’ technology choices and 

utilization can be analyzed efficiently using this modeling framework.  
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Appendix 3.1.  Model setup for demand analysis with multiple technology 

ownerships for a given energy service 

If multiple technologies are used to meet the demand of energy service j, 

equation (6) can be represented as 

(40) ,)),((),(∑∈
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then, with a slight generalization in notation, the budget constraint (7) can be written 

as
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In this case, the cost of producing the quantity Ej of energy service j becomes  

(42) ∑
∈

=
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jjiljjilj xpc ,)),(()),((  j = 1,…,J. 

The implicit price of energy service j is then  
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which is the average cost to produce a unit of energy output for energy service j using 

multiple technologies.  If the multiple technologies use the same fuel l, equation (43) 

is reduced to  

(44) ,// )),((),(),()),((),(),(),( jjilIi jjiIi jjljjiljjijjljjlj
jj

pxxpr ϖϕϕ ∑∑ ∈∈
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,,...1 Jj =  

where ∑∈
≡

jIi jjiljjl xx )),((),( , and jjil )),((ϖ is the share of fuel input l of technology i, 

,jIi∈  for energy use j.  If the multiple technologies use different fuels, equation (43) 

can be re-written as 
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In both cases, rj is the weighted average cost to produce a unit of energy output for 

energy use j with consideration of the energy efficiency and relative intensity of 

utilization (thus fuel input) of each technology.   

 The subsequent model expressions for short-term fuel demand in equations 

(12)–(18) are modified similarly for the multi-technology case.  Specifically, equation 

(12) becomes 
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Cancelling ∑∈ jIi jjiljji x )),((),(ϕ and rearranging terms obtain 
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where *
)),(()),(( / yxp

jIi jjiljjil∑∈
is the budget share of fuel consumption for the jth 

energy use.   

 The estimation equation of aggregate budget share for each fuel type in 

equation (21) then becomes  

(48) 
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where )0( ),( >Ψ jjlx equals to one if energy service j uses fuel l and equals to zero 

otherwise. The budget share equation in (48) of the multiple technology case only 

differs from that of the single technology case shown in equation (21) in two terms: rj 

now reflects the weighted average cost per unit of energy output for energy use j, and 

y*, the amount of income available after paying for fixed costs of appliances, includes 

fixed payment for multiple appliances for energy service j. The estimation procedure 

for the multiple technology case is essentially the same as for the single technology 

case except for modifications on variables rj and y*.  
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Chapter 4: California Household Data 
 

This chapter describes the available data used to empirically apply the 

discrete/continuous model developed in Chapter 3. Section 4.1 reviews a micro-level 

survey dataset of energy use and appliance holdings among California households, 

and explains additional data collection and data management procedures. Section 4.2 

summarizes California households’ energy technology choices for clothes washing, 

water heating, space heating, and clothes drying, the four energy uses that are 

empirically analyzed later, and presents technology costs, energy performance, and 

relevant policy considerations. Section 4.3 discusses the relevance of the data for 

empirical estimation.  

4.1 Data Overview 

RASS household survey data 

The empirical study uses micro-data collected for the 2003 Statewide 

Residential Appliance Saturation Study (RASS) in California. The study was 

conducted by the California Energy Commission (CEC) with sponsorship from the 

major investor-owned utilities (IOUs) in the state (KEMA-XENERGY et al. 2004). 

The utilities that participated in the survey include Pacific Gas & Electric Company 

(PG&E), Southern California Edison (SCE), San Diego Gas & Electric Company 

(SDG&E), Southern California Gas Company (SCG), Los Angeles Department of 

Water & Power (LADWP), and a few other municipal utilities. Sample frames are the 

electric customer population of the utilities. Based on a stratified random sampling of 
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the population frames, the study collected data from 21,920 households across 

different utility service areas and climate zones in California.17

This analysis uses a subsample of 2,408 households served by PG&E for both 

natural gas and electricity in the RASS.

  

18,19

In 2002, a typical California household consumed 5,914 kWh of electricity 

and 536 therms (15,705 kWh equivalent) of natural gas.

 The subsample only includes households 

with both electricity and natural gas consumption in order to empirically estimate the 

system of equations shown in equation (52) that represents tradeoffs of fuel use both 

in the short run and the long run as well as between short-run and long-run decisions. 

The PG&E subsample is used for analysis mainly driven by the availability and 

quality of historic energy price data. PG&E provides natural gas and electric services 

to approximately 15 million people, or 44 percent of the California population, 

throughout northern and central California.  

20 In comparison, in 2005 the 

nationwide average electricity consumption per household was 11,480 kWh and the 

average natural gas consumption was 689 therms.21

                                                 
17 The total population was stratified based on electric utility, house age, presence of electric heat, 
house type (e.g., single- or multi-family), and climate zone.  

 Lower energy consumption by 

18 The RASS has 7,295 households served by PG&E for electricity and gas. Data were cleaned by 
excluding households not in the clothes washer, water heater, space heater and clothes dryer choice 
sets (31.3 percent), households with missing values for variables (i.e., income, fuel consumption, and 
household variables) used in the analysis (32.4 percent), and a few outliers of households with less 
than one member or 20 or more members (0.08 percent) or with a budget share for fuel consumption 
greater than 30 percent (0.07 percent). 
19  The subsample of PG&E households with both electricity and natural gas service excludes 1,500 
households served with only electricity (15.5 percent of PG&E households), which have no natural gas 
service in their neighborhoods.   
20 This average household electricity consumption comes from a conditional demand analysis based on 
the household energy consumption survey results of the Residential Appliance Saturation Study by 
KEMA-XENERGY et al. (2004); the average household natural gas consumption is based on 
“California Residential Natural Gas Consumption,” Energy Almanac, California Energy Commission, 
accessed via http://energyalmanac.ca.gov/naturalgas/residential_natural_gas_consumption.html, on 
November 30, 2009. 
21 These estimates based on the 2005 Residential Energy Consumption Survey of the Energy 
Information Administration.  

http://energyalmanac.ca.gov/naturalgas/residential_natural_gas_consumption.html�
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California households is due in large part to structural factors such as less floor area 

per household, greater reliance on natural gas, and the significantly milder heating 

season compared to the national average (Schipper and McMahon 1995). Policy 

programs such as appliance energy efficiency standards, building codes, and utility 

demand-side management (DSM) programs help to reduce residential energy use in 

California (Schipper and McMahon 1995).   

The RASS dataset contains variables including household socio-economic 

characteristics (e.g., income, household size and education level), housing 

characteristics (e.g., housing type, square-footage, vintage and ownership), appliance 

holdings by energy use (e.g., technology, age and fuel type), and annual consumption 

of electricity and natural gas.22 The dataset also assigns individual households with 

climate zone and heating degree days (HDDs) and cooling degree days (CDDs) data, 

which can help determine households’ heating and cooling loads.23

Technology choices (i.e. appliance type and associated fuel type) are available 

for major categories of household energy services including clothes washing, water 

heating, space heating, and clothes drying. Appliance efficiency and capacity are not 

 Historic heating 

and cooling degree days between 1950 and 2003 were provided by the CEC and 

merged with the RASS based on climate zone. In addition, county code was provided 

by the CEC and merged with the dataset based on zip code data in the RASS.  

                                                 
22 The reported household annual consumption of electricity and natural gas in the RASS is estimated 
based on household billing data and is calendarized and normalized by climate.  
23 Both heating degree days and cooling degree days are quantitative indices designed to reflect energy 
needed to heat or cool a structure.  Heating degree days represents the number of degrees that the daily 
mean temperature is below the base of 65°F; cooling degree days represents the number of degrees that 
the daily mean temperature is above the base of 65°F.  Annual heating and cooling degree days are 
aggregate degree days over a year. 
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reported. However, appliance ages are provided in most cases and used to construct 

energy-efficiency indicators.   

The PG&E subsample presents sufficient variations in household 

characteristics, fuel consumption and appliance choices for meaningful analysis. 

Table 1 provides the summary statistics of selected key variables of the PG&E 

subsample. Overall, the characteristics of the PG&E households in the subsample are 

fairly similar to the characteristics of the households in the RASS sample except for 

several measures: higher mean income ($87,326 vs. $63,981), higher mean natural 

gas consumption (564 vs. 472 therms), higher mean heating degree days (2,631 vs. 

2,090) and lower mean cooling degree days (751 vs. 894), all with smaller standard 

deviations than the whole sample. The higher mean income is mainly due to data 

cleaning and higher natural gas consumption is due to higher demand for heating with 

cooler climate in northern and central California.  

Table 1. Summary statistics of selected variables used in analysis 

Variable Mean  Standard 
Deviation Minimum Maximum 

Annual electricity use (kWh) 7023.14 3844.53 299.95 33739.49 

Annual natural gas (therms) 564.24 278.62 9.02 3058.37 

Average income (2000$) 87326.29 47866.74 15000 214454.7 

Household size (persons) 2.79 1.46 1 13 

Own dwelling dummy 0.92 0.27 0 1 

House age (years) 13.73 11.97 1 37 

Square footage (sqft) 1890.78 761.82 375 6000 

Heating degree days 2630.76 394.53 2207 5267 

Cooling degree days 751.07 627.19 0 2060 
Source: Author’s estimates based on the 2,408 households in the subsample used for estimation. 
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The analysis of short-run fuel demand and long-run technology choices 

explicitly models four categories of energy services: clothes washing, water heating, 

space heating, and clothes drying. Together, these four energy use categories 

represent 65 percent of the average household energy consumption.24,25

Despite its rich information, the RASS dataset lacks a few key variables 

required for the analysis, including fuel prices (

 These energy 

uses are chosen for analysis mainly because of the availability and quality of 

technology data for technology choice analysis. Details of these energy uses are 

discussed in Section 4.2.  In the short-run demand analysis, all other energy uses are 

grouped in an “other” category. 

lp ), appliance capital costs ( ijk ), 

energy efficiency characteristics ( ijϕ ), and household fixed payments to derive the 

expenditure variable ( *y ). Electricity and natural gas tariffs are collected from 

PG&E and assigned to households based on definitions of service categories; annual 

fuel expenditures are estimated using household annual fuel consumption and 

assigned energy prices; appliance costs and energy efficiency characteristics are 

compiled through a number of sources; household fixed payments are estimated 

based on a regression analysis of the relationship between household income and 

fixed payments using the Consumer Expenditure Survey. The data are cleaned and 

merged with the RASS dataset. The subsections below describe the data collection 

and management procedures.  

                                                 
24 This estimate is based on estimated household average energy consumption by end use in California 
by KEMA-XENERGY et al. (2004).  
25 An initial analysis was carried out which consider joint choices of water heater and space heater 
given the possible correlation of fuel choices for these two energy services. However, a statistical test 
of the nested model of fuel choices cannot reject the null hypothesis that fuel choices for water heating 
and space heating are independent. 
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Energy prices 

Since households’ billing data and actual charges are unobserved, the rate 

schedules are used to assign energy prices to individual households. Tariff schedules 

are collected from the PG&E website and through personal contacts with the utility.26

Historic average residential energy prices are used to model long-run 

technology choice analysis as consumers are more likely to be concerned about the 

trend of energy price changes, with or without some form of price expectations to 

make trade-offs between upfront capital cost and operating cost. The appropriate 

representation of energy prices in energy demand analysis is much debated in the 

literature (see discussions in Taylor 1975). Alternative forms of energy price 

representation have been used, i.e., marginal price (e.g., Hartman and Werth 1981, 

and Hartman 1983), average price (e.g., Parti and Parti 1980), and increasing-block 

 

On the PG&E website, historic tariffs date back to 1998 for electricity and 1986 for 

natural gas. The residential electric tariff books provide various rate schedules (i.e., 

tiered energy charges, time-of-use, and seasonal) as well as estimated average 

electricity prices for each residential service category (e.g., regular or discount 

program) in dollars per kilo-watt hour ($/kWh). For natural gas, rate schedules are 

provided in dollars per therm ($/therm) on a monthly basis, including the tiered 

energy charge for baseline and excess quantities. In addition to regular charges, the 

utility also implements a low-income CARE (California Alternate Rates for Energy) 

program, which provides a monthly discount on energy bills for income-qualified 

households and housing facilities (e.g., multi-family and mobile homes).   

                                                 
26 Access via http://www.pge.com/tariffs/. 
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rate schedules (e.g., Barnes et al. 1980 and Archibald et al. 1982). Recently, empirical 

studies and surveys suggest that individuals may not respond to nonlinear pricing in a 

way that the standard economic model predicts (see a review in Ito 2010). For 

instance, using a panel data set of monthly billing records among households in 

southern California, Ito (2010) found strong empirical evidence that consumers 

respond to average price rather than marginal price when faced with nonlinear 

electricity price schedules. 

Between 2002 and 2003, a majority (95 percent) of the PG&E residential 

customers was covered under a two-tier, increasing-block rate structure, a small 

fraction (5.7 percent) of which was under the residential CARE discount rate. Less 

than five percent of all residential customers were under time-of-use (TOU) and 

seasonal rate structures.27

Between July 2001 and March 2003, the electricity charge was $0.1117/kWh 

(2000$) for the baseline quantity and $0.1284/kWh (2000$) for excess quantity. In 

 The TOU and seasonal rate structures reflect a move to 

marginal pricing. However, they were not implemented more broadly until after 2004. 

Thus, this analysis focuses on the two-tier, increasing-block rate structure. The first 

tier, also referred to as the “baseline” level, sets a level of price for baseline 

consumption. According to the CPUC, the baseline quantities are set at about 50-60 

percent of average electricity and natural gas consumption to allow a ‘reasonable 

price of energy’ (CPUC code 739.4/5). The second tier, also referred to as the 

“excess” level, sets a higher level of tariff for consumption above the baseline 

quantity.   

                                                 
27 The percentages are estimated based on utility service data in the Statewide Residential Lighting and 
Appliance Saturation Study (RLW Analytics 2000).  
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2003, the natural gas tariff was $0.8496/therm (2000$) for baseline consumption and 

$1.0563/therm (2000$) for excess quantity. In the absence of actual household billing 

data to carry out specification tests, average energy prices between 2002 and 2003 are 

used in the short-run energy demand analysis, corresponding to the energy 

consumption data in the subsample. 

Figure 1 shows the historic trend of real average PG&E residential electricity 

and natural gas prices (in 2000$/kWh equivalent) between 1970 and 2008. Between 

1970 and 2003, the real natural gas prices increased by 7 percent per year and real 

electricity prices increased by 2 percent per year. Between 1980 and 2003, the 

estimation period, changes in real energy prices were more moderate: the real 

electricity and natural gas prices had increased by 1 percent per year. Figure 1 puts 

the widely-cited California energy crisis that occurred in 2001 and 2002 in historical 

context. Real natural gas price shows to have spiked in 2001, about 70 percent higher 

than in the pre-crisis year of 1999. Electricity price in 2001 also increased sharply 

from the 1999-2000 level, but was much below the peak around the early- to mid-

1990s. The energy crisis, with interrupted energy supply and higher energy prices, 

likely triggered demand-side conservation response and increased adoption of energy-

efficient technologies. The short-term price response is captured in the energy price 

elasticities in the short-run analysis; the long-run response to energy price changes is 

captured in the technology choice analysis.   
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Figure 1. PG&E’s historic average residential energy rates 

 
Source: Author’s estimates based on data provided by PG&E. 

 

In the short-run energy demand analysis, natural gas prices are expressed in 

dollar per therm (2000$/therm) to match the consumption data; in the long-run 

technology choice analysis, natural gas prices are converted to 2000$/kWh-equivalent 

in order to compare operating costs of alternative technologies using the two different 

fuels. As shown in Figure 1, the real natural gas prices, measured in $/kWh-

equivalent, are about one-fifth of the real electricity prices.   

Appliance capital costs 

Collecting consistent historic appliance capital cost data has proven to be 

challenging. As observed by XENERGY, an energy consulting firm involved in the 

various data collection efforts in California, “[D]espite decades of experience and 

multi-million dollar budgets, obtaining accurate estimates of changes in [energy-

efficiency measure] prices over time remains a daunting challenge.” (XENERGY 
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2001) For this analysis, historic capital cost curves are constructed for various 

appliances based on a number of energy-efficient measure cost databases.28

The California Public Utility Commission (CPUC) and the California Energy 

Commission maintain an online Database for Energy Efficient Resources (DEER) 

with estimates on the capital, labor and installation costs of several hundreds of 

residential and nonresidential energy technologies and conservation measures.

   

29 Two 

waves of data from DEER are used in this analysis, DEER 2001 and DEER 2005. 

The DEER cost estimates come from sources including manufacturers, wholesale 

distributors, contractors, retail stores, websites, and utility program records 

(XENERGY 2001, Itron 2005). The CPUC provided two earlier versions of the 

database, Measure Cost Study 1992 and 1994 (XENERGY 1992 and XENERGY 

1994). These earlier measure cost studies were conducted for similar purposes using 

similar methodology.  Costs are constructed for 1991, 1993, 2000 and 2003 and linear 

extrapolations are used for other years.30,31

Due to the availability of technology cost data, the technology choice analysis 

only includes choice decisions between 1990 and 2003 with the exception of space 

heating equipment. The technology cost and efficiency estimates for space heating 

and ventilation systems, obtained from two versions of the Energy Data Sourcebook 

for the U.S. Residential Sector produced by the Lawrence Berkeley Laboratory 

  

                                                 
28 The analysis, which uses estimated appliance costs from the various sources, does not take into 
consideration potential rebates or discounts offered by retailers due to lack of data availability.  
29 The latest data (2005 DEER and 2008 DEER) can be accessed via http://www.energy.ca.gov/deer/ 
30 Considering the time lag between data collection and report publication, I assume a one-year lag in 
reported cost data. 
31 Appliance ages are reported in intervals in the RASS (i.e., less than one year, one to three years, four 
to eight years, nine to thirteen years, fourteen to thirty years, and over 30 years), the middle year of an 
appliance age category is used to represent the value of technology cost.  Specifically, data in years 
2002, 2000, 1996, 1993, and 1991 are used. 
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(Hanford et al. 1994 and Wenzel et al. 1997), date back to 1980. The mean values of 

cost estimates are used to represent the average cost of a category of appliances (e.g., 

a top-load washer and a gas tank water heater). Such a procedure matches the level of 

detail of appliance holdings in the sample as only the broad category of appliance 

ownership (e.g., front-load vs. top-load clothes washer, gas vs. electric tank water 

heater) is reported. For water heating and space heating equipment, technology costs 

are missing in some years. For these years, the appliance costs are extrapolated using 

the rate of change in manufacturing costs in the Producer Price Index. 

Annual appliance capital cost payments of an appliance are estimated based 

on the average appliance lifetime and the interest rate at the time of purchase. 

Specifically, I use the average of annual prime interest rates for time intervals by 

which appliances purchases are recorded in the data. Table 2 below reports the 

assumed appliance lifetimes used in the analysis. 

Table 2. Assumed appliance lifetimes used in the analysis 

Technology Appliance Type Average Lifetime (years) 

Clothes washer  13 

Clothes dryer  14 

Water heater Tank 13 

Water heater Tankless 20 

Space heater Furnace 20 

Space heater Other 18 
Note: These estimates are derived from DEER 2005 and Wenzel et al. 1997.  

Energy efficiency measures  

The model developed in Chapter 3 assumes that the energy efficiency levels 

of alternative technologies affect technology choice decisions and thus actual energy 

use. Since only broad categories of appliance choices are observed, average energy 
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efficiency performance estimates for a given category of appliance stock provides the 

best approximation for the specific appliance a household owns. A number of 

household and market survey studies have estimated average energy efficiency levels 

of existing appliance stock in California. For example, the California Statewide 

Residential Lighting and Appliance Efficiency Saturation Study 2000 and 2005 

(RLW Analytics 2001, RLW Analytics 2005) provide survey results of household 

energy appliance ownerships, appliance capacity distributions and energy efficiency 

estimates based on on-site home audits.   

In addition, the Lawrence Berkeley Laboratory reports (Hanford et al. 1994 

and Wenzel et al. 1997) developed energy efficiency estimates for major energy 

technologies between 1972 and 1990. These studies are used to construct average 

energy efficiency indicators for the various categories of appliances in the sample.  

Fortunately, these studies, sponsored by the same utilities as the RASS, have similar 

categories of appliances and the energy efficiency indicators are matched closely with 

those in the subsample. 

Average energy efficiency indicators are assigned to various space heaters 

(gas or electric forced-air furnaces, floor or wall heaters, hot water radiators, electric 

resistance systems, and heat pumps), water heaters (gas tank or tankless systems, and 

electric tank or tankless systems), clothes washers (top-load and front-load washers) 

and clothes dryers (gas and electric dryers). The energy efficiency indicators do not 

distinguish potential differences in energy efficiency performance by appliance 

vintage because such data were not available.  
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Given the potential measurement errors by using average energy efficiency 

estimates, alternative treatments of appliance energy efficiency are tested in both the 

short-run demand analysis and the long-run technology choice analysis. In the short-

run demand analysis, the model fit improves significantly when the energy efficiency 

of clothes washers is modeled as a function of technology change and policy 

interventions (i.e., energy efficiency standards and Energy Star Program). This is 

mainly because the energy efficiency of clothes washers improved substantially over 

the last two decades. To a lesser extent, statistical analysis shows that modeling the 

energy efficiency levels of water heaters as a function of technology change is 

preferred to using average energy efficiency estimates. In the short-run modeling, the 

energy efficiency levels of clothes washers and water heaters are modeled explicitly 

as a function of appliance age and policy interventions. Average energy efficiency 

estimates are used for other energy appliances based on specification tests.  

Similarly, the two alternative treatments of appliance energy efficiency are 

tested in the long-run technology choice analysis, each representing different 

perceptions of the energy efficiency performance of alternative technology choices at 

the time of appliance purchase. Again, the model fits improve significantly when the 

consumers’ energy efficiency perception is modeled as a function of some form of 

technological change and policy variables such as energy efficiency standards and 

information programs rather than using average energy efficiency estimates. 

Arguably, consumers likely rely more on obvious signals about the energy 

performance of appliance alternatives from energy labels such as through the Energy 

Star program than estimates of the average energy efficiency of an appliance stock 
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such as provided by an energy analyst. The implications of the alternative modeling 

of appliance energy efficiency are examined in Chapter 6. 

In addition to the four specific energy services examined, the model also 

includes a category of other energy use to represent all other energy services. Average 

energy efficiency indicators are developed for these other electricity-consuming and 

natural gas-consuming appliances. Natural gas, water heating, space heating and 

clothes drying account for 93 percent of average natural gas consumption. The other 

main gas-consuming energy service is cooking. I assign an energy factor of 0.5 for 

the gas-using “other” services based on the average energy factor for gas stovetops in 

Hanford et al. (1994). The main electricity-using services in the “other” category are 

for lighting, refrigerators/freezers, office equipment, TVs, computers, air 

conditioners, and spas. For electricity-using “other” services, I estimate a weighted 

average energy efficiency factor of 0.44 based on shares of various energy uses and 

estimates of energy factors in Hanford et al. (1994) and RLW Analytics (2005). I then 

separately calculate the unit cost of energy output for “other” electricity-consuming 

energy services (re,other) and “other” natural gas-consuming energy services (rg,other). 

The unit cost of energy output for the “other” energy services category (rother) is the 

weighted average of re,other and rg,other based on average household electricity and 

natural gas consumption for these other energy uses.  

Consumer expenditures 

To derive relationships between household income and fixed payments, 

regression analysis is undertaken using the Consumer Expenditure Survey (CES) of 
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the Bureau of Labor Statistics.32 A dataset of pre-tax income and expenditures is 

constructed by pooling consumer units in different income groups between 1990 and 

2002 reported in the CES tables.33

All income and expenditure data are converted to 2000 dollar value using the 

Consumer Price Index. Figure 2 shows scatter plot of the pooled real income, total 

expenditure, fixed payment variables, and expenditure of major appliances based on 

the CES. 

  Income before taxes is used as the income 

variable to match the income data in the sample. Annual fixed payments, including 

for housing, vehicle purchase, and health care, are estimated. Fixed housing 

expenditures distinguish between home owners and renters. Fixed payments for 

owned dwelling include mortgage interest and charges, property taxes, maintenance, 

repairs, insurance and other expenses; fixed payment for rented dwellings is the rent 

reported. Fixed payments for vehicle purchase include net outlay of vehicle 

purchases, finance charges, insurance, vehicle rental, leases, licenses, and other 

charges. Health care costs include health insurance, medical services, drugs and 

medical supplies.   

As shown in Figure 2, expenditures and fixed payments appear to grow 

relatively linearly with income for real income above $7,500 (2000$). For real 

income lower than $7,500 (2000$), expenditures and income appear to have inverse 

relationships.

                                                 
32 Accessed via http://www.bls.gov/cex/csxstnd.htm. The average values for consumer units in each 
income group are treated as characteristics of a typical consumer unit (i.e., household). 
33 The income groups include: less than $5,000, $5,000-$9,999, $10,000-$14,999, $15,000-$19,999, 
$20,000-$24,999, $25,000-$29,999, $30,000-$39,999, $40,000-$49,999, $50,000-$69,999, and 
$70,000 and more. 

http://www.bls.gov/cex/csxstnd.htm�
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Figure 2. Scatter plot of income and expenditure using CES data (2000 dollars) 
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The following quadratic linear regression model is thus hypothesized 

(49) *
2
*2*10*_ nnnn eincomefincomeffpaymentfixed +++=  

where fixed_paymentn* is the real fixed payment variables (i.e., for house owners or 

renters, respectively) for consumer unit n*, incomen* is the real income before taxes 

for consumer unit n*. The random variable en* is assumed to have mean zero and 

variance 2
eσ . Ordinary least square (OLS) of equation (49) are carried out using the 

pooled data. OLS estimates of the coefficients would be unbiased and consistent if 

assumption of the random variable holds.34

                                                 
34 Equation (49) is also estimated using panel data methods (pooled OLS and pooled feasible 
generalized least square, with and without error correlation and autocorrelation). Results of estimated 
models are fairly consistent.  

 Estimated coefficients and standard errors 
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of the model using robust standard error are reported in equation (50) below. 

Regressions are carried out for owners and renters respectively. The estimated 

coefficients are used to derive annual fixed payments for the PG&E households in the 

subsample according to the following regression results (with standard errors in 

parentheses):  

(50) 
0.991R                                                                                                        

575)(0.0000000             (0.00756)   (310.504)                                           
000000513.0234.0558.2086__

2

2
***

=

−+= nnn incomeincomeownpaymentfixed

0.970R                                                                                                        
446)(0.0000000             (0.00574)   (199.702)                                           

000000719.0169.0863.3552__

2

2
***

=

−+= nnn incomeincomerentpaymentfixed
 

In addition, the CES also reports expenditure on “major appliances,” which 

includes the majority of energy-using appliances except for water heaters and space 

heaters. The relationship between income and expenditure on “major appliances” is 

estimated to obtain estimates on the average household spending on these energy 

appliances. According to the CES definition, major appliances include refrigerators 

and freezers, dishwashers and garbage disposals, stoves and ovens, vacuum cleaners, 

microwaves, air-conditioners, sewing machines, washing machines and dryers, and 

floor cleaning equipment.35

                                                 
35 Source: http://www.bls.gov/cex/csxgloss.htm#housing 

 As shown in Figure 2, spending on home appliances is a 

small fraction of household income and is relatively inelastic with respect to changes 

in income. Nonetheless, OLS regression analysis using robust standard error is 

carried out to derive estimated fixed payments for energy appliances in the analysis. 

The estimated regression equation  (with standard errors in parentheses) is  
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(51) 
0.915R                                                                                                        

0196)(0.0000000           (0.000235)    (9.613)                                     
0000000102.000340.0479.46_

2

2

=

−+= incomeincomepaymentappliance
 

Policy and Incentive Programs 

Policy and incentive programs are evaluated in the model framework to the 

extent possible. Historic federal, state and utility policy programs, such as building 

and appliance energy efficiency standards, and tax incentives that have affected 

California residential consumers were collected and reflected in the model. Historic 

and current federal energy efficiency standards and associated implementation 

schedules were collected from the Department of Energy website.36 California state 

energy efficiency standards for residential buildings were collected from the 

California Energy Commission website.37 Historic and current utility energy 

efficiency programs were collected from the utility websites and from a searchable 

data portal, CALMAC, established by the CPUC and CEC.38

4.2 Household Technology Choices and Technology Characteristics 

 

Clothes Washer Choices 

In the PG&E subsample, 88.6 percent of the households have top-loading 

washers and 11.4 percent have front-loading washers. The front-loading washers are 

predominantly newer. About 88 percent of them were purchased within three years 

                                                 
36 These are accessible via 
http://www.eere.energy.gov/consumer/your_home/appliances/index.cfm/mytopic=10050 (last accessed 
on July 10, 2008).  
37 Historic standards can be accessed via http://www.energy.ca.gov/title24/standards_archive/.  
38 CALMAC publications can be accessed via http://www.calmac.org/search.asp.  

http://www.eere.energy.gov/consumer/your_home/appliances/index.cfm/mytopic=10050�
http://www.energy.ca.gov/title24/standards_archive/�
http://www.calmac.org/search.asp�
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after 2000, compared to only 43 percent of top-loading washers purchased within the 

same period.39

Front-loading washers are distinctively more energy efficient, consuming 

about 40 percent less water per load and more than 60 percent less energy than top-

loading clothes washers (Natural Resources Canada 2005). According to a household 

appliance energy efficiency survey conducted in California, in 2000 the average 

energy efficiency level of existing front-loading washer stock was 3.95 measured by 

energy factor (EF) whereas the average energy efficiency of existing top-loading 

washer stock was 1.26 EF (RLW Analytics 2000). By 2005 the average energy 

efficiency level of existing front-loading washer stock in California rose to 4.13 EF 

and the average energy efficiency of existing top-loading washer stock declined to 

1.22 EF (RLW Analytics 2005).   

   

With higher efficiency performance, front-loading washers come with higher 

upfront costs due to more electronics, more complicated motors, control and 

suspension systems, and weight (DOE 2004).40

                                                 
39 Before 1997, the energy-efficient front-loading clothes washers available were mostly European 
models that were considered small and expensive by American standards.  Maytag and Frigidaire both 
introduced energy-efficient washers in 1997, which changed the market substantially.  By 2001, there 
were 18 different manufacturers and 62 different models available on the market (Pacific Energy 
Associates, 2001). 

 Figure 3 below presents average 

capital costs of the two alternatives used in the analysis. Cost difference between a 

top-load washer and a front-load washer is in the range of $322 and $374 in real price 

(2000$) between 1996 and 2004, consistent with industry sources that cite around 

$350 of price difference.  

40 Source: memo, “U.S. Department of Energy ENERGY STAR
® 

Criteria for Clothes Washer 
Meeting,” August 31, 2004. 
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Figure 3. Historic clothes washer capital costs used in the analysis 

 
Source: Appliance cost estimates are based on several appliance and energy efficiency measure cost 
studies in California (XENERGY 1992, XENERGY 1994, DEER 2001, and DEER 2005). 

 

Clothes washers are regulated under federal energy efficiency standards. The 

Energy Policy and Conservation Act of 1975 directed the Department of Energy to 

establish minimum energy efficiency standards for various home appliances, 

including clothes washers. The first federal clothes washer standard and test 

procedure were adopted in 1994, which requires a minimum energy factor of 1.18, in 

terms of cubic feet per kilowatt-hour per cycle (cf3/kWh/cycle), for standard top-

loading clothes washers of 1.6 cubic feet or greater capacity.41

                                                 
41 Clothes washer efficiency ratings are based on estimated annual energy use (kWh) under “typical 
conditions” and an average of 392 loads, or cycles, per year (source: Federal Registry, Vol. 66, No. 9, 
January 12, 2001, pp 3315).  

 The 1994 standard did 

not specify a minimum energy efficiency level for front-loading washers except that it 

required them to have an unheated rinse option.   



 

 65 
 

The standard was updated on January 1, 2004 and the required minimum 

energy efficiency level was revised to 1.04 modified energy factor (MEF) or higher. 

The revised standard applies to both front-loading washers and top-loading washers 

of 1.6 cubic feet or greater capacity. The standard was changed from “energy factor” 

to “modified energy factor” to account for the amount of dryer energy used to remove 

the remaining moisture content in washed items.42

Minimum energy efficiency standards change the menu of products offered in 

the market (Newell et al. 1994). Voluntary, information-based labeling programs, 

such as Energy Star, convey energy performance information of a product to 

consumers. The Energy Policy Act of 1992 directs the U.S. Environmental Protection 

Agency and the U.S. Department of Energy to establish voluntary Energy Star 

programs that promote products more efficient than minimum federal or state codes.

 On January 1, 2007, the standards 

were revised to 1.26 MEF. The State of California has implemented the state 

standards for clothes washers following the federal schedule and stringency levels.  

43

                                                 
42  Numerical measures of energy efficiency expressed in “energy factor” and “modified energy factor” 
cannot be directly compared.  

 

In principle, the top 25 percent energy efficient products in the market are deemed 

eligible for the label. The first Energy Star criteria for residential clothes washers 

were established in 1997 which require a minimum energy factor of 2.5 compared to 

the federal minimum standard of 1.18 EF. By 2001, the Energy Star criteria changed 

to 1.26 MEF. Energy Star is moving toward more stringent criteria of a minimum 

MEF of 2.0 and a maximum water factor of 6.0. If implemented, it would disqualify 

every Energy Star-qualified top-loading model currently on the market and 

43 Source: “ENERGY STAR Criteria for Clothes Washers: Overview of ENERGY STAR Criteria 
Setting Process and History of Clothes Washer Criteria.” A power point presentation by Richard H. 
Karney of the U.S. Department of Energy, August 31, 2004. 
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effectively force any consumer who desires an Energy Star qualified washer to 

purchase a front-loading unit.44

Utilities in California have implemented incentive programs to encourage 

adoption of energy-efficient clothes washers. The most popular incentive programs 

are rebates. Rebates are only available for front-loading high efficiency washers 

(Itron 2009). PG&E offers a $35 rebate for selected clothes washers with a minimum 

MEF of 2.0 and a maximum WF of 6.0 and a $75 rebate for clothes washers with a 

minimum MEF of 2.2 and maximum WF of 4.5. The San Diego County Water 

Authority provides financial incentives to customers who purchase a high efficiency 

washer with a maximum WF of 5.0. The program is co-funded by SDG&E and offers 

a rebate of up to $185.   

 

Water Heater Choices 

Among households served by PG&E in the RASS dataset, 90.5 percent 

reported to have a primary water heater. Among those households with primary water 

heaters, 92.6 percent have natural gas tank (storage) systems, 4.6 percent have electric 

tank (storage) systems, 1.8 percent have whole-house gas tankless systems, and 0.4 

percent have solar systems with or without backup of a gas or electric tank. Other 

water heater choices include propane tank systems (0.2%) and electric heat pump 

(0.2%).45

                                                 
44 Source: “Market Impact Analysis of Potential Changes to the ENERGY STAR

® 

Criteria for Clothes 
Washers”, January 9, 2008.  

   

45 In addition, 3.6 percent of the households reported to have a second water heater system of known 
type. The most frequently reported secondary water heaters are electric-based systems (e.g, electric 
tanks, heat pumps, point-of-use tankless systems, and whole house tankless systems) and the next 
group is solar-based systems. Since households choosing an additional water heater are a small fraction 
of the sample, the analysis focuses on the choices of primary water heaters. 
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The water heater technology choice analysis only considers three natural gas- 

and electric-fueled technology alternatives due to the availability of historic capital 

cost data: natural gas tank system, natural gas tankless system, and electric tank 

system.46 The choice frequencies of these three alternatives are 95.6 percent, 1.3 

percent, and 3.1 percent, respectively. These three alternatives represent over 99% of 

household choices of the primary water heating system.47

According to household appliance energy efficiency surveys conducted in 

2000 and 2005, majority of water heaters in California were 40 gallon tank systems 

(RLW Analytics 2000 and 2005). The average energy efficiency, measured by energy 

factor (EF), was 0.57-058 for gas tank systems and 0.89-0.90 for electric tank 

systems. Gas tankless water heaters have significantly higher energy efficiency than 

gas tank systems, with average energy factors in the range of 0.80-0.82 during the 

study years. Studies show that energy efficiency for tank water heating systems had 

changed modestly in the last few decades. In 1990, the shipment-weighted energy 

factor was 0.55 for gas tank water heaters and 0.88 for electric tank water heaters 

(Hanford et al. 1994 and Wenzel et al. 1997). Therefore, using average energy 

efficiency levels from the recent surveys will unlikely introduce significant 

measurement errors in the choice analysis.   

  

With higher energy efficiency, the average purchase price of gas tankless 

systems is significantly higher than that of the gas tank systems, by about $500-800 

                                                 
46 Analysis of household choices of solar heating systems is of interest given the energy and 
environmental benefits of solar energy. However, conversations with industry experts suggest that 
despite generous federal tax credits and various state and utility incentive programs, a mature solar hot 
water heater market does not yet exist in California or elsewhere in the U.S.  
47 A formal test cannot reject the null hypothesis of independence of irrelevant alternatives (IIA) of the 
smaller set of alternatives included in the analysis, suggesting that omitting choice alternatives will 
unlikely alter the results significantly. 
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even though the price gap has reduced over time.48 The average installation cost of 

gas tank water heaters is about $150 higher than the price for electric tank water 

heaters. The average annual operating cost of tankless systems is about $100 lower 

than that of gas tank systems and about $200 lower than that of electric tank 

systems.49

The first federal water heater energy efficiency standards were implemented 

in 1990 based on the size of water heater systems. The 1990 minimum standard was 

0.54 EF for 40-gallon gas tank water heaters and 0.90 EF for 40-gallon electric water 

heaters. The standards did not change till 2004 when the equivalent standards 

tightened to 0.59 EF for gas tank water heaters and 0.92 EF for electric tank water 

heaters. Energy Star criteria did not include water heaters until 2008.

 The rates of changes in real water heating equipment manufacturing costs 

in the Producer Price Index are used to calculate the equipment costs of water heater 

alternatives. According to the Producer Price Index, the real value of electric water 

heater manufacturing had decreased by 1 percent per year between 1990 and 2003. 

The real value of natural gas water heater manufacturing had increased by 1 percent 

per year between 1990 and 2003. 

50

                                                 
48 The higher cost of tankless products is partially offset by the federal Energy Incentives Act of 2005, 
which provides tax credits of up to $300 per unit for gas water heaters with EF ≥0.80.  

 The water 

heater choice analysis covers the period from 1990 to 2003. Therefore, the effects of 

water heater energy efficiency standards and Energy Star criteria cannot be identified. 

49 Source: American Council for Energy-Efficient Economy (http://www.aceee.org/consumer/water-
heating). 
50 Press release “U.S. Department of Energy Implements Criteria for ENERGY STAR® Water 
Heaters”, U.S. Department of Energy, released on April 1, 2008. 
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The federal Energy Incentives Act of 2005 provides tax credits of up to $300 

per unit for gas water heaters with energy factor greater than 0.80, which partially 

offset the higher cost of tankless products. 

Space Heating System Choices 

Of the 7,295 PG&E households in the subsample, 7,053 households report a 

primary space heating device. The primary space heating systems are predominantly 

(90 percent) natural gas-based systems. Electricity-based systems account for about 8 

percent of primary space heaters. A small percentage of primary space heaters (2 

percent) are fueled by bottled gas, solar and wood. The PG&E subsample used in the 

empirical estimation contains three electric- and natural gas-consuming space heating 

technology choices: natural gas central forced-air systems (96.3 percent), natural-gas-

based radiator systems (0.4 percent), and electric central forced-air systems (3.3 

percent).51 These three alternatives represent 74 percent of space heating system 

choices among PG&E households.52

                                                 
51  Nine electricity- or natural gas-based space heating technology choice alternatives are reported in 
the RASS data and are included in the short-run fuel demand analysis in the subsample. However, only 
five choice alternatives are included in the long-run technology choice analysis, of which three are 
natural gas-based systems (gas central forced-air furnaces, gas floor/wall heaters and natural gas 
radiator systems) and two are electricity-based systems (electric resistance systems and electric central 
forced-air furnaces). These five alternatives represent 95 percent of choices by PG&E households. The 
other four, of which three are electricity-based systems (central heat pumps, through-the-wall heat 
pumps and portable heaters) and one is a natural gas-based system (other natural gas system type), are 
excluded in the analysis due to the lack of reliable capital cost data. These four alternatives represent 
3.3 percent of choices by PG&E households. When the observations with missing values for income, 
fuel consumption and household variables are removed (as explained in footnote 18), only the three 
choice situations described above remain. Because the excluded observations are removed for reasons 
unlikely to be related to space heating system choice, their exclusion likely does not cause any serious 
bias in the estimation results. 

 

52 About 35 percent of the PG&E households with a primary space heating system also reported to 
have a secondary space heating device. The secondary heaters are predominantly wood-fired stoves or 
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The energy efficiency of space heating equipment is expressed as annual fuel 

utilization efficiency (AFUE), a percentage of energy output per energy input. 

Electric heating equipment is usually assumed to be 100 percent efficient (RLW 

Analytics 2005). Based on appliance energy efficiency surveys conducted in 

California, the average energy efficiency of gas-based central forced-air heating 

equipment is 0.78 and the average energy efficiency of gas radiator systems is 0.80 

(RLW Analytics 2000). In addition to the heating units, the three system choice 

alternatives also involve heating distribution systems. According to Hanford et al. 

(1994) and Wenzel et al. (1997), the average distribution efficiency of central forced-

air systems is estimated to be 0.7, and the hydronic radiator system is estimated to 

have an average distribution efficiency of 0.9.  

The average installation cost of a gas central forced-air heater is about $150-

200 (2000$) higher than an electric central forced-air heater. The average installation 

cost of a radiator system is significantly higher, about $1500 (2000$) higher than a 

gas central forced-air heater. In addition, the distribution system of a hydronic 

radiator system costs about $1.22 more, on a per square foot basis, than the 

distribution system of a central forced-air system. The rates of change in real space 

heating equipment manufacturing costs in the Producer Price Index are used to 

calculate the equipment costs of space heating alternatives over time. The Consumer 

Price Index is used to calculate changes in installation costs. 

                                                                                                                                           
fireplaces (45 percent) for which no data on wood consumption was available, followed by electric-
based heaters (38 percent) and natural gas-based systems (12 percent). The remaining 5 percent of 
secondary heaters are bottled gas and solar-based systems.  



 

 71 
 

Effective in 1990, the U.S. Department of Energy established minimum 

energy performance standards for space heating furnaces and boilers. The standards 

require that fossil-fueled warm-air furnaces must meet a minimum energy efficiency 

of 0.78 AFUE and fossil-fueled boilers must meet a minimum energy efficiency of 

0.80 AFUE.53

Energy-efficient heating furnaces and boilers are subject to financial 

incentives. For example, currently, the federal government offers a tax credit of 

$150for high-efficiency gas or oil-fired furnace with energy efficiency equal to or 

above 0.95. The California state government offers rebates of up to $4,000 for system 

upgrades including furnaces. PG&E offers $150-300 for energy-efficient central 

natural gas heating units.

  

54

Clothes Dryer Choices 

 

In the PG&E subsample, 40.9 percent of households have gas-fired clothes 

dryers and 59.1 percent have electric-fired dryers. The energy performance of the two 

types of clothes dryers is fairly similar. According to RLW Analytics (RLW 

Analytics 2000), in California the average energy efficiency of gas-fired clothes 

dryers is 2.67 measured by the energy factor (EF) and the average energy efficiency 

of electric-fired clothes dryers is 3.01. As a result, clothes dryers are not included in 

the U.S. Department of Energy’s minimum energy efficiency standards for home 

appliances. The technology costs of the two clothes dryer alternatives are also fairly 

similar. According to California technology cost data sources, on average, gas-fired 

clothes dryers cost about $30 more than electric-fired clothes dryers.  
                                                 
53 Source: http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12530 
54 Source: http://www.dsireusa.org  

http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12530�
http://www.dsireusa.org/�
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4.3 Conclusions 

 This chapter describes the available data and California household energy use 

and technology choice characteristics. Notwithstanding a few weaknesses, this unique 

dataset provides rich details for meaningful empirical investigation of household 

energy use decisions pertaining to short-run energy demand and long-run technology 

choices formulated in Chapter 3. 
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Chapter 5:  Estimation Strategy 

The discrete/continuous model developed in Chapter 3 consists of a system of 

simultaneous equations with continuous demand and discrete choice endogenous 

variables and a set of exogenous explanatory variables consisting of prices, income 

and household characteristics. The maximum likelihood (ML) method is suitable to 

obtain consistent and asymptotically efficient estimators for the set of parameters. 

Estimation by ML can be implemented using two different approaches: limited 

information maximum likelihood (LIML) and full information maximum likelihood 

(FIML). 

In principle, all the unknown parameters in the system of equations can be 

estimated simultaneously using FIML. With LIML, equations are estimated 

individually or in groups. One possible approach in this case is to use a two-step 

procedure that first maximizes the likelihood function of the continuous demand 

equations, and then maximizes the conditional log-likelihood functions of the discrete 

choice equations using parametric estimates from the continuous demand model.  

If the specification of all equations is correct, then LIML and FIML both yield 

the same results asymptotically because both methods produce consistent estimators, 

although FIML estimation is asymptotically efficient. If some part of the model is 

incorrectly specified, however, then specification errors propagate through the system 

with FIML estimation, possibly affecting all equations, and possibly making LIML 

the more reliable of the two approaches, i.e., the adverse implications of a 
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specification error are confined to the particular equation in which specification error 

is present.  

Beyond the preference for estimation properties of LIML when some 

specification error may exist in any particular equation, FIML is more complicated to 

implement in practice in the case of discrete/continuous modeling. Greene (2008) 

notes that it can be very complicated to derive the joint distribution since the 

continuous and discrete variables come from different kinds of populations.55

Maximizing the joint log-likelihood can also be computationally costly or 

infeasible particularly when a large number of coefficients are involved (Blanchard 

1983). In addition, the normal equations may have multiple roots so that convergence 

to the global maximum is not always guaranteed (Hanemann 1984). This is perhaps 

why the two-step approach is more widely applied to evaluate discrete/continuous 

models (e.g., Hausman 1979, Dubin and McFadden 1984, Vaage 2000, Newell and 

Pizer 2005, and Mansure et al. 2005).

 In some 

cases, it is unclear theoretically what the joint distribution might be (Murphy and 

Topel 2002).  

56

The empirical estimation of the discrete/continuous model in this study also 

adopts a two-step LIML approach. This system notably has a recursive structure 

between the discrete and continuous components whereby energy consumption 

depends on observed appliance choice but not vice versa. In this case, when 

 

                                                 
55 This is due to the fact that not all households make appliance choice decisions in every period as 
energy consumption.   
56 Kline (1988) developed a model of household energy demand and technology choice for energy 
service (space heating) that jointly considers energy service production and consumption. Space 
heating production cost, expenditure share and demand equations are derived and estimated 
simultaneously using a 3SLS procedure. 
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disturbances are uncorrelated between the continuous and discrete components, the 

LIML approach becomes asymptotically efficient aside from imposing common 

parameter constraints. Furthermore, because the vast majority of observations on 

appliance choice pertain to decisions made in a different time period, the assumption 

of uncorrelated disturbances is well motivated. This yields a block recursive system 

of equations in which blocks of equations can normally be estimated separately with 

asymptotic efficiency.  

The estimation procedure is implemented as follows. The first step estimates 

the system of short-run demand equations conditioned on the current appliance stock 

using the iterated feasible generalized nonlinear least squares (FGNLS) method to 

produce asymptotically consistent estimators. With normally distributed disturbances, 

estimates using iterated FGNLS are theoretically equivalent to ML estimates (Greene 

2008). The technology choice equations are evaluated separately using the method of 

ML to provide a benchmark without imposing any structural constraints. Because 

choices of different appliances are made at different points in time, correlation among 

the disturbances is likely minor if present at all, in which case separate estimation 

does not sacrifice efficiency aside from ignoring parameter constraints among 

equations.  

Based on these results, estimates of the short-run demand system and the 

long-run technology choices are compared to test applicability of structural parameter 

constraints implied by the underlying utility maximization model. Thus, a second step 

is implemented by imposing parametric constraints on technology choices implied by 
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parameters estimated in the short-run demand analysis in step one. The remaining 

vector of parameters is estimated using the ML method.  

The rationale for imposing the first-step estimates in the second step is as 

follows. The parameters estimated in the first step (appliance use) appear only in 

highly aggregated form in the second-step (appliance choice) model as is evident in 

equation (34). Thus, the second-step estimation provides no information regarding the 

individual parameters estimated in the first-step given aside from these aggregates. 

Thus, even if a fully efficient estimation method incorporating parameter constraints 

were feasible in practice, the impact of second-step information on the estimates of 

parameters of the first-step model would likely be minor. Thus, I proceed by testing 

applicability of the first-step estimates to the second-step model as a means of model 

validation. The asymptotic covariance matrix derived in step two is corrected based 

on the method developed by Murphy and Topel (2002). The following section details 

the empirical procedure of the LIML estimation. 

5.1 Step one: Estimating the Short-run Demand System  

The system of short-run demand functions consist of three nonlinear budget 

share equations for the numeraire, electricity, and natural gas. For household n, 

equations (20) and (21) are rewritten as follows: 
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where 0,nω is household n’s budget share for the numeraire good, en,ω  is budget share 

of electricity consumption, gn,ω is budget share of natural gas consumption, 

),.( dn βh Χ denotes the nonstochastic, nonlinear portion of the demand functions, 

nΧ is the vector of exogenous variables, dβ is the vector of coefficients of interest, 

jα  is constant associated with the jth energy service demand, jθ is household 

variable that influences demand for the jth energy service,57

j = 0 is the numeraire good,  

 j = 0,..,5, where  

j = 1 is clothes washing (cw),  

j = 2 is water heating (wh),  

j = 3 is clothes drying (cd),  

j = 4 is space heating (sph), and  

j = 5 is an index of all other energy services (oth).  

All other notation is the same as defined in Chapter 3.  

                                                 
57 Inclusion of household variables is guided by the significance of specification tests.  
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The column vector of the system of short-run budget share equations for the 

sample is  

(53) . 
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And the column vector of disturbances of the system is defined as 
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where µ has a multivariate normal distribution with mean vector zero and covariance 

matrix Σ. The adding-up condition implies that Σ is singular and nondiagonal. 

Therefore, one of the demand equations is dropped from the system to obtain 

identification.  In this case, the share equation for electricity, ωe, is dropped and the 

remaining two share equations for the numeraire (ω0) and natural gas (ωg) 

consumption are estimated. This specification fully utilizes constraints for the 

translog system and estimates all parameters of the system directly, which provides 

important identifying structure to the estimation.58

Seemingly unrelated regression (SUR) is appropriate for estimation of linear 

systems when each equation includes only one endogenous variable. The underlying 

 

                                                 
58 Specification tests show that among different combinations using two of the three budget share 
equation specifications, the system of budget share equations for the numeraire and natural gas yields 
the highest log likelihood value, although all choices should yield the same asymptotic results.  
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theory for nonlinear estimation of systems of equations is similar to that for linear 

systems (Greene 2008). Specifically, the generalized nonlinear least-squares system 

estimator is defined as59

(55) 
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An estimate of Σ is required to make the estimator feasible. The iterated procedure 

first sets I=Σ̂ , which results in an inefficient but consistent estimator nlsdβ ,
ˆ

 of dβ . 

Thus, residuals are 
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A new estimate dβ̂  is then obtained and the procedure is iterated until the relative 

change in dβ̂  and Σ̂  is less than specified tolerance values. The variance-covariance 

matrix of dβ̂ is  
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and the robust covariance matrix estimator, rdV ,
ˆ , is 
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59 The iterated feasible generalized nonlinear least square procedure outlined here is based on –nlsur- 
procedure for estimation of nonlinear systems of equations developed by Stata Corp.  
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The concentrated log-likelihood function for the two equations of N households is 
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Iterated FGNLS yields a consistent maximum likelihood estimator dβ̂  of dβ , and the 

associated robust covariance matrix ,d̂ rV .   

5.2 Step Two: Estimating Energy Technology Choice Equations 

Four separate energy technology choice equations are then estimated, 

representing clothes washing, water heating, space heating and clothes drying. 

Technology choice sets consist of two choice alternatives for clothes washing (cw) 

and clothes drying (cd). Thus a binary logit choice model is appropriate. For water 

heating (wh) and space heating (sph), three choice alternatives are involved in each 

case so a multinomial logit choice model is appropriate. The binary choice model is a 

special case of the multinomial logit choice model. The general procedure is thus 

illustrated for the multinomial logit choice model.  

The multinomial choice probability that alternative i is chosen by household n 

from choice set Ij for energy use j is represented as 

(61) ,
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where j ={1,2,3, and 4} as defined in equation (52), and nj ,θ  is the vector of 

household variables included in the choice equation for energy use j. The model is 

estimated using the method of maximum likelihood (ML) that maximizes the 

likelihood function,  
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where jc,β is the vector of multinomial choice parameters for energy use j, and nijd , is 

an indicator variable equal to one if technology alternative i is chosen for energy use j 

by household n and equal to zero otherwise. Equation (62) is transformed into a log-

likelihood function for ML estimation, 
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The ML estimators of A0 and Aj from equation (63) are compared with the implied 

parametric estimates derived from the short-run demand analysis in step one. With 

the exception of the clothes washer choice equation, parametric estimates of A0 and Aj 

are statistically equivalent between the short-run demand model and the three 

equations of the long-run technology choice model for water heating, space heating 

and clothes drying. This provides considerable validation of the underlying translog 

indirect utility specification.  

A second step of constrained estimation is then implemented by re-estimating 

equation (61) by imposing parametric constraints on parameters A0 and Aj implied by 

parameter estimates from the short-run demand model estimated in step one, 
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the maximum likelihood estimators of common parameters A0 and Aj obtained from 
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step one. The vector of the remaining parameters, , ,c jβ  is estimated, producing the 

ML estimator of the parameters jc,β̂  and the associated ML estimator of the 

covariance matrix of the parameters, jcV ,
ˆ . 

However, jcV ,
ˆ

 is not the appropriate estimator of the asymptotic covariance 

matrix of jcβ ,
ˆ without a correction that accounts for the covariance matrix estimator 

d,rV̂  of dβ̂ . Following Murphy and Topel (2002), the following formula is used to 

obtain the asymptotic covariance matrix of jcβ ,
ˆ 60

(65) 
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5.3  Conclusions 

In the context of the discrete/continuous model developed in this study, 

empirical application of the FIML approach has proven to be computationally 

cumbersome and problematic. The main challenges stem from (i) the nonlinearity of 

the system of short-run demand equations with a sizable number of coefficients, and 

                                                 
60 Murphy and Topel (2002) showed that a two-step approach without correcting for standard errors 
would vastly exaggerate the precision of the second step estimates. One of their examples also shows 
that standard errors from the two-step procedure are similar to those obtained from FIML estimation.  
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(ii) multicollinearity and singularities that result from demand aggregation of 

individual energy services to match observed household fuel consumption data. 

However, as shown in the subsequent chapter, the block recursive system approach 

devised in this chapter proves to have strong statistical properties for three out of four 

cases in which statistical tests do not invalidate parametric restrictions across blocks 

of equations representing energy use and appliance choice. 
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Chapter 6:  Estimation Results 

This chapter presents the results of the empirical analysis of household energy 

consumption and technology choices using the model developed in Chapter 3. Section 

6.1 summarizes the results of the short-run demand analysis; Section 6.2 presents 

results of technology choice analysis for clothes washing, water heating, space 

heating and clothes drying, respectively; Section 6.3 synthesizes the findings.  

6.1 Short-Run Energy Demand 

 The system of short-run budget share equations (52) is estimated by dropping 

the electricity share equation. Among different combinations of budget share 

equations and specifications, the system of budget share equations for the numeraire 

and natural gas yields the highest log likelihood value. However, any combination of 

two equations should yield the same asymptotic results because the specification fully 

utilizes constraints for the translog system and estimates all parameters of the system.  

Table 3 below presents the estimation results of four specifications using the 

iterated feasible generalized nonlinear least squares (FGNLS) procedure. Model 1a 

includes only price variables jrln , the income variable *ln y , and demand interaction 

terms. Inclusion of demand interaction terms is guided by the features of energy 

service demands and significance of statistical tests. Four demand interaction terms 

are introduced: one between clothes washing and clothes drying, one between clothes 
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washing and water heating, one between water heating and the “other” energy use 

category, and one between space heating and the “other” energy use category.61

Model 1b builds on Model 1a and adds household-demand interaction terms. 

Inclusion of household and demand interaction terms is based on similar principles. 

Four household and demand interaction terms are introduced, one between household 

size and water heating, one between building square footage and space heating, one 

between heating degree days and space heating, and one between the age of the house 

and the “other” energy use category.

   

62

A log likelihood ratio test between Model 1a and Model 1b rejects the null 

hypothesis that the household-demand interaction terms in the model are jointly zero 

with a p-value less than 0.001, suggesting household variables—household size, 

dwelling square footage, heating degree days and the age of dwelling in this 

specification—influence household energy demand significantly. 

 

Model 1c builds on Model 1b and instead of using average energy efficiency 

indicators to derive the price variable for clothes washing, cwrln , it treats energy 

efficiency of clothes washers as an estimable linear function of the energy efficiency 

standards (“Standard”) and the EnergyStar information program (“EnergyStar”) aside 

from an error term, i.e., ( ) 1 2 ( ) ( )ln Standard EnergyStar ,  ( ) 0,i cw i i i cw i cwe E eφ γ γ= + + =  

where )()()()( lnln)/ln(ln cwicwlcwicwlcw ppr ϕϕ −== . Average energy efficiency indicators 

                                                 
61 Demand interaction between water heating the and “other” energy use category captures interactions 
between water heating and dishwashing; demand interaction between space heating and the “other” 
energy use category captures potential demand interaction between primary space heaters and 
secondary space heaters as 35 percent of households have a secondary space heating device. Secondary 
heating systems are not modeled explicitly due to the lack of technical specifics and are grouped in the 
“other” energy use category. 
62 Inclusion of other demographic interaction terms, such as with ownership, was tested. Interacting 
ownership with various energy services is not statistically significant in explaining the short-run 
demand for fuel.  
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are used to derive the price variables for water heating, space heating, and clothes 

drying. 

Compared with Model 1b, the model fit of Model 1c improves significantly 

with much higher log likelihood and R2 values with a p-value less than 0.001. The 

results indicate potential measurement errors by using the average energy efficiency 

of the clothes washer stock in the demand analysis. This is likely due to a substantial 

improvement in energy efficiency performance of clothes washers over the past two 

decades as a result of technology improvement and energy efficiency policy.  

Changes in the energy efficiency performance of some other home appliances, 

such as water heaters, has been modest during the same period. Nonetheless, a 

specification test is performed to see whether use of average energy efficiency 

indicators for water heaters is statistically equivalent to modeling energy efficiency of 

water heaters as an estimable function of appliance age (Model 1d). In Model 1d, the 

energy efficiency of water heaters is modeled a linear function of the age of water 

heater (“age_wh”) and an error term, i.e., ,0)( ,age_whln )()(1)( =+= whiwhiiwhi eEeλϕ  

The log likelihood ratio test between Model 1d and Model 1c suggests that modeling 

energy efficiency of water heaters as a function of technology change is preferred to 

using average energy efficiency indicators with a p-value of 0.021.63

Model 1d is used as the main specification for subsequent discussions and the 

parametric estimates imposed in the second stage estimation of technology choice.

  

64

                                                 
63 An additional specification test shows that using average energy efficiency indicators for space 
heating systems is not statistically different from explicitly modeling the energy efficiency of space 
heating systems with a p-value of 0.072. Thus, using average space heating energy efficiency 
indicators does not introduce significant measurement errors.   

  

64 In the PG&E subsample, about 35.5 percent of households reported having a secondary heater, such 
as a portable electric heater, a fireplace, or a gas-fired floor or wall heater. The specifications reported 
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Table 3. Coefficient estimates of the short-run demand equations 

Coefficient Definition 

Model 1a  Model 1b  Model 1c  Model 1d  

Without 
household 
variables 

With 
household 
variables 

With energy 
efficiency of 

clothes 
washers 

With energy 
efficiencies of 

clothes 
washers and 
water heaters 

a0 intercept – 
numeraire 

1.07892*** 0.92969*** 0.81503*** 0.80212*** 

 
(149.241) (166.703) (84.181) (65.717) 

 
 

    a1 intercept-cw -0.03500* -0.03577*** 0.06756*** 0.10859*** 

 
(-2.385) (-4.121) (5.456) (6.854) 

 
 

    a2 intercept-wh 0.06316 0.02998 -0.02994 -0.01002 

 
 (1.279) (0.893) (-0.857) (-0.226) 

 
 

    a3 intercept-cd -0.03620** 0.03689*** 0.03209*** -0.00099 

 
(-3.101) (4.138) (3.774) (-0.118) 

 
 

    a4 intercept-sph -0.03062 0.02915 -0.02322 -0.01592 

 
(-0.882) (1.214) (-0.925) (-0.619) 

 
 

    01β  cross demand 
numeraire-cw 

-0.01047*** 0.01596*** 0.01142*** 0.01094*** 

 
(-8.144) (14.497) (7.430) (6.680) 

 
 

    02β  cross demand 
numeraire-wh 

0.00265* 0.00341* -0.00265 -0.00222 

 
(2.447) (2.498) (-1.401) (-1.226) 

  
    

03β  cross demand 
numeraire-cd 

0.00158* 0.00194*** 0.00116 -0.00180** 

 
(2.425) (3.736) (1.764) (-3.114) 

     04β  cross demand 
numeraire-sph 

-0.00072 0.00643*** 0.00271 0.00318* 

 
(-0.667) (4.798) (1.731) (2.022) 

 
 

    
05β  cross demand 

numeraire-oth 
0.04241*** 0.02293*** 0.03754*** 0.03999*** 

 
(32.445) (12.234) (14.173) (14.105) 

 
 

    
11β  own demand 

cw 
0.02324*** 0.02383*** 0.04820*** 0.05129*** 

 
(7.540) (30.328) (15.794) (15.795) 

 
 

    
12β  cross demand 

cw-wh 
-0.00609*** 0.00056*** -0.00208 -0.0023 

 
(-6.231) (3.471) (-1.127) (-1.156) 

(Continued on next page) 
 

                                                                                                                                               
in Table 3 explicitly model energy demand of only the primary heating device in the “sph” category 
and group energy demand of secondary heaters in the “other” category. A sensitivity test was 
performed by adding a set of secondary heater dummies in the space heating demand expression to see 
if demand interactions between the primary and the secondary heaters may be an issue. Results show 
that the secondary heater interaction terms are not statistically significant. This result is reasonable as 
less than 10 percent of the households in the subsample use their secondary heaters often. 
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13β  cross demand 
cw-cd 

0.00042 0.00046** -0.00252** -0.00085 

 
(1.395) (2.749) (-2.769) (-0.719) 

 
 

    
22β  own demand 

wh 
0.09579 0.01308 -0.01877 0.00505 

 
(1.630) (0.352) (-0.437) (0.147) 

 
 

    
25β  cross demand 

wh-oth 
-0.09331 -0.01231 0.01938 -0.00501 

 
(-1.582) (-0.331) (0.450) (-0.147) 

 
 

    
33β  own demand 

cd 
-0.00422** 0.00260*** 0.00403*** -0.00057 

 
(-3.250) (3.454) (3.912) (-0.344) 

 
 

    
44β  own demand 

sph 
-0.11814 -0.02305 -0.0569 -0.06193 

 
(-1.877) (-0.579) (-1.445) (-1.559) 

 
 

    
45β  cross demand 

sph-oth 
0.12151 0.02735 0.05789 0.0642 

 
(1.921) (0.685) (1.468) (1.615) 

 
 

    
55β  own demand 

oth 
-0.06206 -0.0249 -0.07699 -0.05884 

 
(-0.783) (-0.496) (-1.455) (-1.200) 

 
 

    d1 hh_size-wh 
interaction  

-0.00038*** -0.00037*** -0.00038*** 

  
(-7.049) (-6.649) (-6.620) 

 
 

    d2 sqft–sph 
interaction  

0.00053*** 0.00069*** 0.00072*** 

  
(4.781) (6.031) (6.080) 

 
 

    d3 age–oth 
interaction  

-0.00069*** -0.00074*** -0.00075*** 

  
(-10.822) (-11.098) (-10.888) 

 
 

    d4 hhd–sph 
interaction  

0.00213*** 0.00220*** 0.00226*** 

  
(10.792) (10.869) (10.776) 

 
 

    
1γ  Standard-cw 

  
-0.00515 -0.00521 

   
(-0.428) (-0.430) 

      
2γ   EnergyStar-cw 

  
-0.00647 -0.00714 

   
(-0.640) (-0.694) 

 
 

    
1λ  technology  

   
0.04578 

 
change-wh 

   
(0.146) 

      Observations 
 

2408 2408 2408 2408 
Log likelihood 14827 15414 15516 15519 
R2 numeraire 0.385 0.579 0.604 0.604 
R2 gas 

 
0.414 0.777 0.788 0.788 

Notes: (1) Asterisks in the table denote significance in terms of p-values as follows: ‘*’ for p < 0.05, 
‘**’ for p < 0.01, and ‘***’ for p < 0.001. (2) Values in parentheses are t-statistics. 

 
 



 

 89 
 

The coefficients derived from the estimation are difficult to interpret on their 

own. Demand elasticities are more revealing. The income elasticities of demand for 

fuels are 
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the 'jjβ  are cross-demand coefficients, j = 1,…,5.  The own price elasticities of 

demand for fuels are 
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The estimated income and own price elasticities are presented in Table 4 and 

5 below, respectively. Cross price elasticities between electricity and natural gas are 

unlikely to be important as substitution between the fuels is limited in the short run.  
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Table 4. Estimated short-run income elasticities of demand for fuels  

Model Mean Standard 
Deviation Minimum Maximum 

Electricity     

Model 1a 0.0816 0.0843 -0.2623 2.1148 

Model 1b 0.3436 0.0804 0.2560 0.8703 

Model 1c 0.5032 0.0658 0.4267 1.0038 

Model 1d 0.4182 0.1786 0.3189 1.6974 

     
Natural Gas    

Model 1a -0.0698 0.0358 -0.0933 0.1417 

Model 1b -0.7127 0.2457 -0.9537 0.8085 

Model 1c -0.3096 0.1201 -0.4029 0.4024 

Model 1d -0.4201 0.1639 -0.5963 0.5113 
 
 
Table 5. Estimated short-run price elasticities of demand for fuels 

Model Mean Standard 
Deviation Minimum Maximum 

Electricity     

Model 1a 0.2533 0.1480 0.1538 2.8310 

Model 1b -0.1313 0.0609 -0.5339 -0.0474 

Model 1c -0.0641 0.0831 -0.7499 -0.0359 

Model 1d -0.1343 0.1410 -1.0913 -0.0677 

     
Natural Gas    

Model 1a -0.2060 0.4769 -0.3311 2.8901 

Model 1b -0.1473 0.1992 -0.2611 1.0758 

Model 1c -0.1262 0.1107 -0.3432 0.6230 

Model 1d -0.1188 0.1439 -0.1775 0.8373 
 

As shown in Table 4, the mean estimates of income elasticity for electricity 

are positive in all four specifications and less than unity. Model 1c yields the highest 

average estimate (0.503) and Model 1a has the smallest mean estimates (0.082). 
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Model 1d, the preferred specification, has a mean estimated income elasticity of 

0.418 for electricity and a range between 0.319 and 1.697. The maximum estimates of 

income elasticity for electricity are greater than unity in three out of the four cases. As 

expected, the results show that electricity is a superior good. 

The estimated mean income elasticity for natural gas is consistently negative 

in all four cases. However, in all four cases, income elasticities range widely over 

both negative and positive values. For Model 1d, the mean estimate of income 

elasticity for natural gas is -0.420 with a minimum value of -0.596 and a maximum 

value of 0.511. These results suggest that natural gas is an inferior good for many 

households, which is not surprising.  

The mean estimates of own price elasticity for electricity are all negative 

except for Model 1a (Table 5), the least preferred model. For Model 1d, the estimated 

own price elasticity for electricity has a mean of -0.134 and a range between -1.091 

and -0.068, which appears quite plausible. The mean estimates of price elasticity for 

natural gas are consistently negative as they should be. Similar to estimates of income 

elasticity for natural gas, however, the ranges of estimates among individual 

households include both negative and positive values. In Model 1d, the estimate of 

own price elasticity for natural gas has a mean of -0.119 and a range between -0.177 

and 0.837, although very few households (3.3 percent) fall in the positive range. 

Obtaining wrong signs for price elasticities for some households while 

obtaining plausible signs as a mean is quite common with the translog specification. 

In fact, being able to obtain negative own price elasticities for electricity demand for 
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all households and negative own price elasticities for natural gas demand for 96.7 

percent of the households (by Model 1d) is quite exceptional. 

Taylor (1975) reviewed the econometric literature on the demand for 

electricity. Among the U.S. studies he reviewed, the short-run income elasticity 

estimates ranged from 0.02 to 0.14. All the studies he cited used either state- or city-

level data. Using the U.S. state-level energy demand data, Maddala et al. (1997) 

estimated average short-run income elasticities for electricity ranging from 0.137 to 

0.429 and the short-run income elasticities for natural gas ranged from 0.048 to 0.307, 

depending on the estimation approach used. Using household level expenditure data, 

Branch (1993) estimated an average income elasticity of 0.23 for electricity. In an 

analysis of energy demand among British households, Baker et al. (1989) estimated a 

mean income elasticity of 0.131 for electricity and a mean income elasticity of 0.115 

for natural gas.  

Thus, the mean income elasticities for electricity demand estimated here are 

not only consistent with theoretical expectations, but are also roughly in line with 

previous econometric studies, although on the high end of the range of previous 

estimates. The mean income elasticities for natural gas estimated here are negative 

whereas the mean estimates in previous studies are positive. However, the range of 

estimated income elasticities here is wide enough to include the mean estimates of the 

previous studies referenced above. The difference in mean elasticities may be due to 

the relatively high income status of households in the area of California served by 

PG&E. For example, Baker et al. (1983) noted that the top decile of the income 

distribution in their study has a small and negative median income elasticity for 
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natural gas demand. Overall, household demands for fuels are found to be fairly 

inelastic with respect to income in the short run, as is expected given the fixed nature 

of appliances in the short run. 

Taylor (1975) reported short-run price elasticities for electricity in the range 

of -0.13 and -0.90 among the studies he reviewed. Maddala et al. (1997) reported 

short-run price elasticity estimates in the range of -0.158 and -0.214 for electricity 

and -0.092 and -0.177 for natural gas. Examining nonlinear pricing structures, Reiss 

and White (2005) estimated a mean annual electricity price elasticity of -0.39 for 

California households. Aside from the Model 1a estimates for electricity demand, the 

mean estimates of price elasticities for both electricity and natural gas reported here 

are consistent with estimates in the literature, although the mean electricity price 

elasticity is on the low end of estimates among other studies.   

Reiss and White (1995) reported differences in estimated price elasticities for 

different income groups among California households finding that lower income 

households are more responsive to electricity price changes. In my analysis, the 

estimated income and price elasticities based on Model 1d do not vary significantly 

across different income groups or between home owners and renters even though the 

model has the flexibility to represent such relationships.  

6.2 Energy Technology Choices  

Clothes Washer Choices 

The binary logit model of clothes washer choices is estimated using the 

method of maximum likelihood. Various specifications are tested in the first stage 

analysis. Table 6 reports the estimation results of four specifications with a robust 
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covariance matrix estimator. Model cw1a and Model cw1b investigate two 

specifications using average energy efficiency indicators to derive the expected 

operating costs; Model cw2a and Model cw2b have the same sets of specifications 

except that the perceived energy efficiency of the choice alternatives is modeled as a 

function of the energy efficiency standards and the Energy Star program as in the 

short-run demand analysis. The energy efficiency standards implemented during the 

study period induced changes in the energy efficiency of clothes washers on the 

market. The Energy Star program was launched in the middle of the study period. 

These programs likely enhanced consumers’ awareness of energy performance of 

clothes washers.  

Model cw1a and Model cw2a evaluate the roles of the initial capital cost and 

the expected operating cost of technology alternatives in clothes washer choices. 

Variable ln_incCW is the negative of the logarithm of household income not already 

committed to fixed payments minus the annualized capital costs between the choice 

alternatives according to equation (61). In Model cw1a, the expected operating cost is 

represented by the logarithm of the operating cost derived from average energy 

efficiency indicators (ln_oCostCW). In Model cw2a, the expected operating cost 

consists of three components: the logarithm of fuel price (ln_fuel), a dummy variable 

representing the presence of clothes washer energy efficiency standards (Standard), 

and a dummy variable representing the presence of clothes washer Energy Star 

criteria (EnergyStar).  

Model cw1b and Model cw2b add household variables to examine whether 

household characteristics may have influenced clothes washer choices. Specifically, 
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three household variables are included: (1) the home ownership dummy (own), (2) the 

household size (household size), and (3) a college education dummy (college). The 

college education dummy is an instrument to represent consumers’ ability to 

understand and interpret energy consumption and performance information pertaining 

to home appliances. 

A second step of constrained estimator is performed with the specification of 

Model cw2b by imposing parametric constraints on the common variables (ln_incCW 

and ln_fuel) based on coefficient estimates from the short-run demand model (Model 

1d). Column 5 in Table 6 presents the results of the constrained estimation as Model 

cw2b*. 

As shown in Table 6, the coefficient of the household expenditure variable 

that incorporates the initial cost of clothes washer alternatives (ln_incCW) is 

significant across all specifications. The negative coefficient of ln_incCW suggests 

that a reduction in the initial capital cost will increase the probability of front-loading 

clothes washer adoption. (Recall that ln_incCW is the negative of household 

expenditure minus the annualized capital cost of the clothes washer alternative.) The 

expected operating cost, derived using average energy efficiency indicators (Model 

cw1a and Model cw1b), also significantly influences clothes washer choices. 
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Table 6. Estimated coefficients of the clothes washer choice model  

Regressor 
Model 

cw1a cw1b cw2a cw2b cw2b* 
      

ln_incCW -100.190*** -65.476*** -184.026*** -145.925***  
 (-5.47) (-3.95) (-4.50) (-3.62)  

ln_oCostCW 1.516*** 2.738***    
 (20.96) (8.60)    

ln_fuel   0.635 0.695  
   (0.73) (0.78)  

Standard    1.127** 1.092** 0.889* 
   (2.70) (2.61) (2.12) 

EnergyStar   2.144*** 2.136*** 1.925*** 
   (7.68) (7.66) (8.37) 

Own  0.620  0.635 0.847* 
  (1.94)  (1.92) (2.59) 

Household size  0.102*  0.049 0.062 
  (2.56)  (0.99) (1.39) 

College  0.586***  0.447* 0.798*** 
  (3.71)  (2.73) (5.00) 

Constant   -2.683 -3.689* -5.910*** 
   (-1.60) (-2.09) (-11.15) 
      

Observations 2408 2408 2408 2408 2408 
Log likelihood -841 -828 -718 -712 -734 
Notes: (1) Asterisks in the table denote significance in terms of p-values as follows: ‘*’ for p < 0.05, 
‘**’ for p < 0.01, and ‘***’ for p < 0.001. (2) Values in parentheses are t-statistics. (3) A top-loading 
clothes washer is the base case in this analysis. 
 

The positive coefficient of ln_oCostCW implies that an increase in expected 

operating cost encourages adoption of front-loading clothes washers. When the 

perceived energy efficiency of choice alternatives is modeled as a function of policy 

interventions (Model cw2a and Model cw2b), the positive coefficient of ln_fuel also 

implies that a higher energy price increases the propensity of front-loading clothes 

washer choice. However, the effect of energy price appears not to be statistically 

significant. This could suggest an exceptionally high discount rate or great 
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uncertainty regarding future energy prices on the part of consumers when they make 

their choices. 

When the household perception of energy efficiency of alternative clothes 

washer choices is modeled as a function of the energy efficiency standard and the 

Energy Star program (Model cw2 in columns 3 and 4), the model fit improves 

significantly compared to using average energy efficiency indicators, suggesting that 

households’ formation of energy efficiency perceptions for clothes washers is more 

likely influenced by information conveyed through energy efficiency standards and 

Energy Star labels. The positive and significant coefficients for both the energy 

efficiency standards and Energy Star program suggest that these policy interventions 

have strong influences over the propensity of front-loading clothes washer adoption.65

The fitted probabilities from the various estimation specifications are 

compared with the data. Table 7 below presents the predicted probabilities of Model 

cw1a, Model cw1b, Model cw2a and Model cw2b. Compared with the data in the 

sample, predicted probabilities also show that the specifications that model consumer 

perception of energy efficiency as a function of policy variables fit the data much 

better than using average energy efficiency indicators.  

 

                                                 
65 In the specifications reported in Table 6, dummy variables are used to indicate the presence of 
energy efficiency standards and the Energy Star program. Numerical values of the clothes washer 
energy efficiency standards and Energy Star criteria were also tested. A potential problem with this 
specification is the change of efficiency standards from using the “energy factor” to use of the 
“modified energy factor” during the study period. The two measures are not comparable. Regression 
results using the numerical values show that energy efficiency standards have a negative and 
significant effect in the choice of energy-efficient front-loading washers. These results were counter-
intuitive and thus discarded. 
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Table 7. Predicted probabilities of clothes washer choice from alternative models   

Model Mean Standard 
Deviation Minimum Maximum 

Data  0.113787 0.317619 0.000000 1.000000 

Model cw1a 0.113787 0.028822 0.003341 0.144919 

Model cw1b 0.113787 0.043405 0.006094 0.332771 

Model cw2a 0.113787 0.102490 0.000108 0.285870 

Model cw2b 0.113787 0.106290 0.000228 0.348701 
 

Model cw2b* is the constrained model with parametric commonality imposed 

from the first step analysis of the short-run demand model. A log ratio test of the 

restricted model (Model cw2b*) and the unrestricted model (Model cw2b) rejects the 

null hypothesis that the common parameters between the short-run demand model 

and the long-run clothes washer choice model are equivalence with a p-value less 

than 0.001. This is a very different outcome from the results for the other three end 

uses analyzed below. 

The rejection of parametric equivalence between the short-run demand model 

and the clothes washer choice model raises concern that the household clothes washer 

choice behavior may be mis-specified in the preference function developed in 

Chapter 3. However, in California where water supply is constrained, the water 

saving benefits of front-loading washers may be a further significant factor that drives 

clothes washer choice decisions. Unfortunately, water price data were not available to 

further test this hypothesis at the time this study was completed. 
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However, as shown in Table 6, estimated coefficients are fairly consistent 

across specifications except for the common parameters.66

The Energy Star program emerges as the most significant factor influencing 

the adoption of front-loading clothes washers, followed by energy efficiency 

standards. Based on Model cw2b, the establishment of Energy Star criteria for clothes 

washers increased the propensity of front-loading washer adoption by 17.4 percent. In 

comparison, the establishment of energy efficiency standards for clothes washers 

increased front-loading clothes washer adoption by 8.4 percent. The propensity of 

front-loading washer adoption is 7.4 percent higher for a home owner than a renter. A 

household with at least a college education is 6.5 percent more likely to adopt a front-

loading washer.  

 Household characteristics 

are found to play a role in the choice decisions. Specifically, having a college 

education positively and significantly influences the choice of front-loading clothes 

washers. Home ownership also positively influences the choice of front-loading 

washers. However, the significance of this effect varies by specification. In addition, 

having a larger household size appears to favor adoption of top-loading clothes 

washers, possibly due to preference for the larger capacity of top-loading washers 

over the more compact front-loading washers. But the effect of household size is not 

significant except for specification Model cw2b.  

On the other hand, the economic factors are found to be less significant factors 

influencing clothes washer choice decisions. Model cw2b provides insights on the 

effects of economic factors. The estimated coefficients imply that a $100 reduction in 

                                                 
66 Since the parametric commonality is rejected, the coefficient interpretation focuses on Model_cw2b 
specification. 
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the purchase cost of front-loading washers (e.g., through appliance rebates) on 

average would increase the propensity of its adoption by 0.5 percent. A $50 income 

tax credit for the purchase of energy-efficient front-loading washers on average 

would increase its adoption by 1 percent. Although the coefficient is statistically 

significant, the estimated impacts of an income tax credit and capital cost reduction 

are minimal, especially compared with the Energy Star program and energy 

efficiency standards. A 20 percent increase in the electricity price would increase the 

front-loading washer choice propensity by 0.5 percent. Again, the price effect is 

found to be statistically insignificant.  

Water Heater Choices 

The multinomial logit model of water heater choices illustrated in equation 

(61) is also estimated using the method of maximum likelihood. Table 8 reports three 

specifications. Model wh1a evaluates the effect of a household expenditure term that 

incorporates the initial capital cost of water heaters and the effect of expected 

operating cost of alternative water heaters. Two variables are included in Model 

wh1a: the negative of the logarithm of household income not already committed to 

fixed payments minus annualized capital costs of water heater choice alternatives 

(ln_incWH), and the logarithm of the expected operating costs of technology 

alternatives using average energy efficiency indicators (ln_oCostWH). Since the 

energy efficiency of water heaters has only changed moderately during the study 

period, using average energy efficiency indicators of the alternative water heater 

stock is likely a reasonable proxy for consumers’ perceptions of water heater 

alternatives.  
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Model wh1b adds household variables to test the significance of household 

characteristics in determining water heating technology choices. Three household 

variables are included: the home ownership dummy (own), the household size 

(household size), and the college education dummy (college).  

A second step constrained estimation is carried out by imposing parametric 

constraints from the short-run demand analysis on Model wh1b. Results of the 

constrained estimation are presented in column 3 of Table 8 as Model wh1b*. 

A log likelihood ratio test between the constrained model (Model wh1b*) and 

the unconstrained model (Model wh1b) cannot reject the null hypothesis of 

parametric equivalence between the short-run demand model and the long-run water 

heater choice model with a p-value of 0.297. The parametric equivalence between the 

short-run demand model and water heater choice model suggests that the theoretical 

model developed in Chapter 3 is robust as common parameters explain both 

consumer water heater choice behavior and short-run use behavior. 

In contrast to the clothes washer choice analysis, the household expenditure 

variable (ln_incWH) is not a statistically significant determinant of water heater 

choices.67

 

 The expected operating cost (ln_oCostWH) is also a statistically 

insignificant predictor of water heater choices. 

                                                 
67 Another set of unreported specification tests shows that when the expenditure variable ln_incWH is 
separated into two terms (the log of income not already committed to fixed payments and the log of the 
capital cost of technology alternatives), the model fit does not change significantly and both the 
income variable and capital cost variables are statistically insignificantly. 



 

 102 
 

Table 8. Estimated coefficients of the water heater choice model 

Regressor  Model  
wh1a wh1b wh1b* 

                   

ln_incWH -10.059 -21. 845  
 (-0.57) (-0.99)  

ln_oCostWH 1.499 1.425   
 (1.86) (1.87)  

Water heater choice = natural gas tankless system 
    
Own  -0.814 -0.695 
  (-1.66) (-1.34) 

Household size  0.151 0.163 
  (1.74) (1.96) 

College  -0.820*   -0.682 
  (-1.99) (-1.81) 

Constant -3.569*** -2.769*** -3.824*** 
 (-8.38) (-4.33) (-7.83) 

Water heater choice = electric tank system 
    
Own  -1.260*** -1.269*** 
  (-4.25) (-4.28) 

Household size  -0.052 -0.071 
  (-0.49) (-0.66) 

College  0.370 0.428 
  (1.44) (1.63) 

Constant -5.495*** -4. 424*** -2.388*** 
 (-4.85) (-3.99) (-6.20) 
    

Observation 2408 2408 2408 
Log_likelihood -496 -483 -485 
Notes: (1) Asterisks in the table denote significance in terms of p-values as follows: ‘*’ for p < 0.05, 
‘**’ for p < 0.01, and ‘***’ for p < 0.001. (2) Values in parentheses are t-statistics. (3) A natural gas 
tank system is the base case in the analysis. 
  
 Home ownership is a significant predictor of water heater choices. A home 

owner is estimated to be more likely to choose a gas tank system over an electric tank 

system compared to a renter. This can be explained by the fact that a home owner is 
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more likely to pay for the operating cost of water heater usage than a renter. Along 

this line of thinking, one would expect that a home owner is more likely to choose a 

tankless system than a tank system, which has much lower operating cost. The 

regression results show that a home owner is less likely to choose a tankless gas 

system over a tank system, but the estimated coefficient is statistically insignificant. 

Furthermore, the logistics as well as high cost of retrofitting an existing home with a 

tankless system may be an important deterrent. 

The college education dummy is also a significant explanatory variable for 

water heater choices. A household with at least a college education is also more likely 

to choose a natural gas tank water heater over a tankless system but more likely to 

choose an electric tank system over a natural gas tank system, although only the 

former relationship is statistically significant. Larger household sizes tend to choose a 

tankless system over a natural gas tank system and a natural gas tank system over an 

electric tank system, but neither estimated effect is statistically significant.  

 The results of the water heater choice analysis should be interpreted with 

some caution. Due to data availability, the analysis evaluates household choices 

among broad categories of water heater systems, rather than choices among different 

brands and models of a technology. Thus, energy efficiency performance may vary 

widely within these groups. The weak predictability of the expenditure and operating 

cost variables likely reflects the fact that the decision regarding the water heating 

system may not be made by consumers but rather depend heavily on an earlier stage 

of building construction. Once pipes and other infrastructure are installed, households 

are less likely to change, say, from a gas tank system to a tankless system than from a 
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less efficient tank system to a more efficient tank system, because such a system-wide 

change involves a major renovation effort, which can be costly.68

Space Heating System Choices 

 The logistics as 

well as the high cost of retrofitting an existing home with a tankless system may be an 

important deterrent. 

The multinomial logit model of space heating choices is evaluated similar to 

the water heater choice model. Table 9 reports the results of three specifications. 

Similar to water heater choice model, Model sph1a evaluates the logarithm of 

household expenditure, which incorporates the capital costs of choice alternatives 

(ln_incSPH) and the logarithm of the expected operating costs of technology 

alternatives using average energy efficiency indicators (ln_oCostSPH). Using average 

energy efficiency estimates is reasonable in this case as the energy efficiency of space 

heating systems did not change dramatically during the study period. Model sph1b 

includes household variables to detect whether housing and household characteristics 

influence space heating technology choices. Four household variables are included: 

(1) the home ownership dummy (own), (2) age of the house (house age), (3) historic 

mean heating degree days between 1985 and the year of system installation 

(hdd_mean), and (4) the college education dummy (college).  

A second step constrained estimation is also carried out by imposing 

parametric constraints from the short-run demand analysis on Model sph1b. The 

constrained results (Model sph1b*) are reported in Column 3 of Table 9. 

                                                 
68  Unfortunately, data on retrofitting cost from a tank water heating system to a tankless water heating 
system was not available.  
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Table 9. Estimated coefficients of the space heating system choice model 

Regressor  Model  
sph1a sph1b sph1b* 

                   

ln_incSPH -3.083 -4.576  
 (-0.78) (-1.62)  

ln_oCostSPH 0.430 0.310  
 (0.91) (0.65)  

Space heater choice = natural gas radiator 
    
Own  -1.038 -0.964 
  (-1.36) (-1.21) 
House age  -0.258 -0.259 
  (-0.68) (-0.78) 

Hdd_mean  2.881** 2.861* 
  (2.60) (2.39) 

College  -0.198   -0.106 
  (-0.31) (-0.16) 

Constant -5.244*** -11.413*** -11.726*** 
 (-13.97) (-3.35) (-3.43) 

Space heater choice = electric central forced-air system 
    
Own   -0.050 -0.054 
  (-0.12) (-0.13) 

House age  0.285** 0.291** 
  (3.08) (3.16) 

Hdd_mean  -0.322 -0.368 
  (-0.78) (-0.84) 

College   -0.528* -0.517* 
  (-2.28) (-2.24) 

Constant -3.955*** -3.105* -2.566* 
 (-6.14) (-2.38) (-2.19) 
    

Observation 2408 2408 2408 
log_likelihood -412 -400 -399 
Notes: (1) Asterisks in the table denote significance in terms of p-values as follows: ‘*’ for p < 0.05, 
‘**’ for p < 0.01, and ‘***’ for p < 0.001. (2) Values in parentheses are t-statistics. (3) A natural gas 
central forced-air system is the base case in this analysis. 
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 A log likelihood ratio test between the constrained model (Model sph1b*) and 

the unconstrained model (Model sh1b) cannot reject the null hypothesis of parametric 

equivalence between the short-run demand model and the long-run space heater 

choice model with a p-value of 0.634. Again, the parametric equivalence between the 

short-run demand model and space heater choice model suggests that the theoretical 

model developed in Chapter 3 is robust in as an explanation of both consumer space 

heater choice behavior and short-run energy demand.  

 Similar to the water heater choice analysis, the household expenditure 

variable, which incorporates annualized capital cost of the technology alternatives 

(ln_incSPH) and the expected operating cost (ln_oCostSPH) are found not to be 

significant determinants of space heating technology choices.  

 On the other hand, the age of dwelling and average heating degree days 

significantly influence space heating system choices. Older houses are more likely to 

have an electric central forced-air heating system than a natural gas central forced-air 

system, and are less likely to have a natural gas-based radiator system, although only 

the former relationship is statistically significant. This former effect seems plausible 

given the fact that natural gas had gained popularity over time with its cost-

effectiveness as a residential fuel source. This effect represents the impact of 

increasing energy consciousness with rising energy prices. In areas where the heating 

load is higher (as reflected in higher heating degree days), a hydronic gas-based 

radiator system is preferred over a central forced-air system, probably because of the 

higher energy efficiency performance of radiator systems, and thus the lower 

operating cost. Electric central force-air systems are less preferred in colder areas, as 
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one would expect, but the estimated effect is not statistically significant. In addition, a 

college education is estimated to be a significant predictor of space heating system 

choices whereby a natural gas forced-air system is preferred over an electric forced-

air system.  

The household education level is estimated to be a significant predictor of 

space heating system choices while home ownership is not. This is likely due to the 

fact that the decision regarding the type of space heating system in a home is an 

integral part of building design and construction. Thus, a home owner would have a 

weaker role in the decision making unless involved in the original construction. In 

contrast, the two types of housing that dominate the PG&E area of California are the 

older homes that are beyond their first owner and the more recent large-scale 

developments of builders. Thus, energy technology durables such as space heating 

and water heating equipment are likely heavily determined by developers if not the 

more aged housing stock. 

While one might argue that a developer would tailor these choices to potential 

buyers’ preferences, a home buyer likely will weigh other attributes of a house (such 

as location and size) more heavily than the type of space heating system. The 

significance of college education in choosing a natural gas space heating system over 

an electricity-based space heating system, on the other hand, suggests that a 

household with better ability to interpret energy performance information of different 

energy systems is more likely to make a rational choice of the system that has lower 

operating cost.  
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Clothes Dryer Choices 

Similar to the clothes washer choice analysis, a binary logit model of clothes 

dryer choices is evaluated using the method of maximum likelihood. Table 10 reports 

the estimation results. Model cd1a evaluates the negative of the logarithm of 

household expenditure which incorporates the capital costs of choice alternatives 

(ln_incCD) and the logarithm of the expected operating costs of technology 

alternatives assuming average energy efficiency indicators (ln_oCostCD). Again, 

average energy efficiency estimates of the clothes dryer choice alternatives are seen 

as reasonable to represent consumers’ perception of energy efficiency as the energy 

performance of clothes dryers had not changed significantly during the study period. 

Model cd1b includes household variables. Three household variables are included: 

(1) the home ownership dummy (own), (2) household size (household size), and (3) 

the college education dummy (college).  

A second step constrained estimation is carried out by imposing parametric 

constraints from the short-run demand analysis on Model cd1b. The results (Model 

cw1b*) are reported in Column 3 of Table 10. 

In this case, the log likelihood ratio test of parametric equivalence between the 

short-run demand model and the long-run clothes dryer choice model can be mildly 

rejected at the 10 percent level but cannot be rejected at more conservative levels of 

1, 2, or 5 percent. The p-value is 0.051.  

One possible mis-specification of the clothes dryer choice model has to do 

with the electricity voltage in the laundry area of a dwelling. Most electric dryers 

operate on 240-volt current, twice the strength of ordinary household current. If the 
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laundry area is not equipped with a 240-volt outlet, one either has to choose a natural 

gas clothes dryer or install a 240-volt outlet in order to run an electric clothes dryer. If 

natural gas service is already available, a household might choose a gas clothes dryer 

over reconfiguration of the electricity outlet, especially if the home is not equipped 

with a 240-volt service panel as is the case with many older homes. Unfortunately, 

the electricity voltage data are not available to be included in the model for further 

tests.  

Table 10. Estimated coefficients of the clothes dryer choice model  

Regressor  Model  
cd1a cd1b cd1b* 

    

ln_incCD -333. 829* -165.752  
 (-2.51) (-1.21)  

ln_oCostCD 0.604 -0.087  
 (0.87) (-0.12)  

Own  -0.430** -0.471** 
  (-2.65) (-2.92) 

Household size  -0.106*** -0.111*** 
  (-3.51) (-3.98) 

College  -0.029 -0.080 
  (-0.32) (-0.92) 

Constant -0.636 1.138 1.155 
 (-0.61) (1.01) (6.34) 
    

Observations 2408 2408 2408 
Log likelihood -1624 -1615 -1618 
Notes: (1) Asterisks in the table denote significance in terms of p-values as follows: ‘*’ for p < 0.05, 
‘**’ for p < 0.01, and ‘***’ for p < 0.001. (2) Values in parentheses are t-statistics. (3) A gas-fired 
clothes dryer is the base case in this analysis. 

 
Comparing results of Model cd1b with Model cd1a shows that household 

characteristics are significant predictors of clothes dryer choices. Home owners are 

more likely to choose a gas-fired clothes dryer than an electric clothes dryer. A 
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household with more members is more likely to choose a gas clothes dryer than an 

electric clothes dryer. Even though the operating cost variable turns out to be 

statistically insignificant in the analysis, one may still reach the conclusion that the 

significant coefficients of ownership and household size suggest that the operating 

cost of clothes dryer usage is taken into consideration when making clothes dryer 

choices. 

The negative coefficient on the expected operating cost (ln_oCostCD) 

suggests that when the expected operating cost increases a household is more likely to 

choose a gas-fired clothes dryer over an electric-based dryer. This result is sensible. 

However, similar to the analyses of water heater choices and space heating 

technology choices, the household expenditure variable which incorporates 

annualized capital cost of technology alternatives (ln_incCD) and the expected 

operating cost (ln_oCostCD) are not significant determinants of clothes dryer choices.  

 In addition, in the case of clothes dryer choices, a household’s education level 

does not appear to be a significant factor influencing technology choice decisions.  

6.3 Conclusions 
 

This chapter presents an empirical application of the household energy 

demand and technology choice model developed in Chapter 3 by estimating the short-

run household demand for electricity and natural gas and the long-run technology 

choices of clothes washers, water heaters, space heating systems, and clothes dryers 

among California households.  

The empirical analysis shows that the discrete/continuous model based on the 

second-order translog indirect utility function is fairly robust across energy forms and 
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appliance choices in explaining household energy consumption and technology 

choice behavior. With the exception of parametric estimates in the clothes washer 

choice model, the parameters obtained from the short-run demand analysis are 

statistically equivalent to the parameters obtained in the long-run technology choice 

model, although weakly so for clothes drying. The non-equivalence of parametric 

estimates in the clothes washer choice model is likely due to the omission of water 

price and water efficiency in the clothes washer choice model. These are potentially 

important factors influencing clothes washer choices in the water scarcity conditions 

of California. For clothes dryer choices, a potentially important unobserved factor 

influencing choices between a natural gas clothes dryer and an electric-based clothes 

dryer is the presence of 240-volt service.   

The mean short-run income and price elasticities of energy consumption 

derived from the short-run demand model are all in reasonable ranges. A few of the 

price elasticities of natural gas demand of individual households are implausible 

ranges but no more than typically obtained with the flexibility of the translog model. 

Technology choice analysis of the four energy uses shows varying effects of 

technology capital cost, expected operating cost, and household characteristics. The 

policy implications of the empirical findings are discussed in the following chapter. 
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Chapter 7:  Policy Implications for Household Energy Efficiency 

Findings from the empirical analysis using the unified modeling framework of 

discrete technology choice and continuous energy consumption have important 

implications for policy design aimed to reduce greenhouse gas emissions and improve 

energy efficiency in the residential sector.  

7.1 Energy-efficient Technology Adoption 

Household-level energy durable choice decisions have long-lasting impacts on 

energy consumption and greenhouse gas emissions as major home appliances 

typically have lifetimes from ten to twenty years. The diffusion rates of apparently 

cost-effective energy efficiency investments are often low. This phenomenon is 

referred to as the “energy paradox.” 

This study confirms two important market failures with respect to household 

energy technology choice behavior: the principal/agent problem and information 

imperfection. Home ownership appears to significantly influence household choices 

of some energy durables, suggesting that policy programs targeting residential energy 

efficiency should carefully distinguish the principal decision makers and 

appropriately differentiate market segments. For instance, ownership is found to be a 

significant factor influencing the choices of clothes washers, water heaters and 

clothes dryers, but is not a significant determinant of space heating system choices, 

which have longer life. Unlike home appliances such as clothes washers, decisions for 
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home-wide systems such as for space heating and cooling are more complex and are 

often made as an integral part of building design and construction. Once the system is 

determined, retrofitting can be expensive. In the situation of home-wide system 

choices, policy intervention should thus be best designed to target developers and 

contractors, such as through building codes.  

In the case of clothes washer choices, the voluntary, information-based 

Energy Star program emerges as the most significant factor influencing adoption of 

energy-efficient front-loading clothes washers, followed by energy efficiency 

standards. The establishment of Energy Star criteria for clothes washers produces an 

average increase in the propensity of energy-efficient front-loading clothes washers 

by 17 percent. The presence of energy efficiency standards is predicted on average to 

increase the propensity of front-loading washers adoption by 8 percent. The results 

suggest that policy programs aimed at providing energy technology performance 

information are highly effective in promoting the adoption of energy-efficient 

technology at the household level as these programs likely reduce consumers’ search 

cost. In fact, they may override cost considerations that are highly uncertain at the 

point of decision making in the store. 

Surprisingly, the financial incentives for energy-efficient appliances, such as 

through popular federal income tax credits or federal and state rebate programs, are 

found to be far less effective in influencing the adoption of energy-efficient 

appliances. For instance, a $100 reduction in the purchase cost of energy-efficient 

front-loading washers increases the propensity of front-loading clothes washer 

adoption by only 0.5 percent. Perhaps consumers who take advantage of such 
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programs have a priori preferences for energy efficiency, so that financial incentives 

only provide a windfall to such consumers. In the case of water heater and space 

heating system choices, the capital cost of technology alternatives appear to be an 

insignificant determinant of technology choices, suggesting that changes in the 

relative cost of energy-efficient technologies would have limited impacts on their 

adoption.69

Furthermore, contrary to the claim that incentives for the adoption of new 

technologies is greater under market-based instruments than under direct regulation 

(e.g., by Jaffe et al. 2003), this empirical study finds that market-based policy 

instruments, such as a carbon cap-and-trade programs or carbon taxes which induce 

energy price changes, have limited impacts on energy-efficient technology adoption 

decisions at the household level. For instance, a 20 percent increase in energy 

(electricity) price increases the propensity of front-loading washer adoption by only 

2.5 percent.  

 Given their popularity, these financial incentive programs and their cost-

effectiveness should be carefully examined.  

The 20 percent increase in electricity price represents the estimated long-run 

electricity price increase that might be due to a carbon cap-and-trade program under 

the proposed HR 2454 bill (the American Clean Energy and Security Act of 2009, 

also referred to as the “Waxman-Markey Bill”). This effect appears to be insignificant 

                                                 
69 However, it should be pointed out that the technology choice analyses for water heating and space 
heating examine the choices among broad categories of technology systems (e.g., a tank water heater 
versus a tankless system), rather than choices among different brands and models of a technology that 
have varying energy efficiency performance. Further, the absence of statistical significance of cost 
variables in these cases may be largely due to the minor differences in costs among technologies even 
though consumers may respond to more substantial cost variation. Inference about incentive policy 
based on these results should be made carefully. 
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and much smaller than the effects of energy efficiency standards or information-based 

programs such as the voluntary Energy Star program.  

7.2 Short-run Household Energy Efficiency 

The study finds that in the short-run, energy price-induced household energy 

efficiency is moderate. According to the analysis, the average price elasticity is -0.13 

for electricity and -0.12 for natural gas. Therefore, a 20 percent increase in the 

electricity price on average would reduce its consumption by 2.6 percent; a 20 percent 

increase in the natural gas price on average would reduce its consumption by 2.4 

percent. These results are reasonable given estimates and conventional wisdom that 

implies household energy demand is highly inelastic in the short run. 

The short-run demand analysis also highlights the importance of using 

accurate estimates of appliance energy efficiency in energy demand modeling. The 

energy efficiency level of household energy durables affects the amount of energy 

consumed by a household to meet energy service demands. Very often, the energy 

efficiency of home appliances is unknown. At best, modelers and researchers rely on 

market surveys with estimates of the average energy efficiency of the appliance stock. 

In this study, two alternative representations of appliance energy efficiency are tested 

for clothes washers and water heaters. The first approach uses average energy 

efficiency indicators of energy technology based on market surveys. The second 

approach assumes household appliance energy efficiency is unobserved and explicitly 

models energy efficiency as a function of technological change and possible policy 

interventions such as energy efficiency standards. Compared to the survey data on 

average energy efficiency, embedding this causal model of energy efficiency 
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improves model fit for clothes washers and water heaters significantly, producting 

higher R2 and log likelihood values, and suggesting potential measurement errors by 

using average energy efficiency data on the appliance stock.  
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Chapter 8:  Conclusions 

Residential consumer energy consumption is a critical aspect of energy and 

climate change policy and an important application of consumer theory. This study 

develops an internally consistent theoretical framework that can be used for practical 

analysis of various aspects of household energy use behavior.  

8.1 Summary and Main Contributions 

This study develops a unified discrete technology choice and continuous 

demand model (the “discrete/continuous model”) which can be used to examine 

household short-run energy consumption and long-run technology choice behavior. 

The model, derived from underlying utility maximization using a second-order 

translog indirect utility function, provides a transparent and cohesive structure with 

considerable flexibility to investigate consumer preferences and the role of economic 

factors, household characteristics, and policy interventions in household energy use 

and technology choice decisions. 

An empirical application of the model is carried out using a rich and unique 

micro-level energy consumption and appliance holdings dataset of California 

households. I estimate the household short-run demand for electricity and natural gas 

and long-run technology choices for four energy uses—clothes washing, water 

heating, space heating, and clothes drying—using the modeling framework.  
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Results of the empirical analysis show that the discrete/continuous model 

developed in this study is quite robust in explaining household energy consumption 

and technology choice behavior across energy forms and appliance choices. Income 

and price elasticities derived from the short-run analysis appear to be sensible and 

within the range of estimates documented in the literature. With the exception of the 

clothes washer choice model for which misspecification is a potential concern, the 

estimated parameters from the short-run demand analysis are all statistically 

equivalent to the parameters obtained in the long-run technology choice model 

(weakly so for clothes drying), validating the appropriateness of the modeling 

framework for both the continuous and discrete choices.70

This study is the first known application of the second-order translog flexible 

functional form or of any second-order flexible form to energy demand analysis that 

encompasses both discrete and continuous choices in a unified parametric structure. 

This model addresses several unique features of consumer energy use and allows 

analysis of demand interactions, demand aggregation, and fuel substitution.  

 

In addition, the model extends the existing discrete/continuous models (e.g., 

Dubin and McFadden 1984) by modeling demands for multiple fuels and technology 

choices for different categories of energy uses. Existing studies mostly deal with 

demand for a single fuel (e.g., electricity or natural gas) and technology choices for a 

single energy use. The joint modeling of demand for both electricity and natural gas 

                                                 
70 Parametric equivalence is rejected for the expenditure variable in the clothes washer choice model. 
The non-equivalence of the parameter between the short-run demand model and the long-run choice 
model for clothes washers is likely due to a misspecification of the clothes washer choice model by 
omitting the water price and water efficiency of alternative clothes washer choices, which are 
significant factors that potentially drive clothes washer choices in California.  
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permits the identification of tradeoffs both in the short run and the long run as well as 

between short-run and long-run considerations.   

Another unique contribution of this study is the empirical insights that allow 

evaluation of the effectiveness of energy and environmental policy instruments (e.g., 

the market-based carbon cap-and-trade program, energy technology performance 

standards, financial incentives, and information programs) in encouraging residential 

short-run and long-run energy efficiency.  

8.2 Future Research 

 Several assumptions used in the model and analysis can be relaxed and tested. 

First, the analysis assumes that consumers form expectations of future operating costs 

of energy technology alternatives based on the current energy prices. Preliminary 

analysis suggests that households may indeed have some form of price expectations 

while making energy durable choices. This assumption can be further investigated 

empirically by introducing more general expectation mechanisms in the model 

structure.  

Second, the analysis assumes that consumers respond to average energy prices 

in making both short-run energy use and long-run technology choice decisions. The 

assumption is made partially due to data limitations. If actual household energy tariffs 

and billing data are available, this assumption can be tested. Nonlinear pricing for 

energy is an important feature of energy demand in most applications. The empirical 
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evidence of consumer response to marginal versus average energy prices is mixed and 

worth further investigation.  

Third, research that utilizes the full information maximum likelihood 

approach to estimate discrete/continuous models remains an unconquered empirical 

challenge. Like most existing studies, this study adopts a two-step limited information 

maximum likelihood approach. Despite the merits of the second-order translog 

flexible functional form of consumer preference functions, estimation of the system 

of demand functions is computationally cumbersome and problematic due to 

nonlinearity of the likelihood function. In this study, the typical problem of 

nonlinearity is further complicated by multicollinearity when energy uses by 

appliance type are not observed and must be aggregated for estimation. A structural 

approach that estimates the entire system of equations with full information is a 

challenge, but is worth further pursuit, particularly if energy uses by appliance types 

can be observed. 

Fourth, the clothes washer choice model rejects the parameter commonality 

between the short-run demand model and the long-run choice model for clothes 

washers. One possible explanation is the omission of effective water price and water 

efficiency of alternative clothes washers, which is possibly a significant issue in 

California. The specification could be further investigated by including representation 

of water cost if appropriate data can be identified.  
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