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Error in the Propagation of Error Formula

In a paper by Park and Himmelblau (1980), the authors draw
the attention to the fact that the widely used formula for error
propagation may give systematic errors in the estimation of the
mean and the variance of a variable. Their formula for the
propagation of errors is a simple truncation of a standard Taylor
series, which has a validity as long as the approximation by the
truncation is adequate for the application in question.

The phenomenon studied by these authors is mainly due to
the curvature of the nonlinear relationship between the input
and the response of an experiment and a mathematical model.
The authors claim that the formula is in error, but the main
reason for the discrepancy they observe, is that the propagation
of error formula is used beyond its proper validity of approx-
imation. The purpose of this short note is to draw some general
conclusions as to the range of validity of the basic Taylor series
approximation and to give some practical and more general
advice to extend this range. For simplicity, a basic single-input,
single-output system is considered.

Let the input variable to a nonlinear mathematical model be
u and the output be x. Consider first a static situation where
the model is given by the general nonlinear relationship:

x = flu). oy

Now, let the probability distribution of the input u be a true
Gaussian distribution, with constant mean and variance. The
so-called propagation of error formula will only use the first
two terms in a Taylor series expansion of flu), and calculate
the expected value of x accordingly:

= i) + L - Bl @

and consequently the expected variance in x,

- v = () b - pam ®

where the derivative of f is calculated at the expected value of
u.

It is well known that a first-order Taylor series expansion is
not a valid approximation if the standard deviation in the input
variable is large and the second- and higher-order derivatives
with respect to u are significant (Asbjornsen, 1975). Therefore,
in those cases a simple and efficient improvement of the mean
and variance estimation may be obtained by a simple extension
of the Taylor series (Asbjornsen, 1975; Marketos, 1975).
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Let a general Taylor series apply to the region [E(u) — Au,
E(u) + Au). Then:

x = fIE)] + i 4f 11 [u — E@)]. (4)

Since the probability distribution in u is assumed to be Gaus-
sian, all uneven moments in [u — E(u)] will vanish. The ex-
pected value of x may therefore be written:

- d%f 1
= fIE@)] + X =L — E{lu — E@)]*}. 5
fIE@] + X 2 s Bllu — E@I. )

Similarly, the expected variance in x may be written as:

E{lx ~ E@)} E({E} jj 1, [u - Etu )]} )

d2f1 :
( T o e — EG): })
s fdzk' 1 1
=2 Z L ok =g El
— E(u))? }

i Sdf ey 1
“. duz' du2k- x)( ) ( (k — ,))1

Bilu — BQ@PE(u — BP0}

which again makes use of the fact that odd moments of [u —
E(u)] are zero.

This general analysis makes it possible to develop a more
appropriate set of estimates of the expected values of the mean
and the variance of x, once the mean and variance of the original
Gaussian variable u are given. Furthermore, Egs. 5 and 6 make
it possible to judge what terms in the Taylor series approxi-
mation would be appropriate to include. The number of terms
required will depend on the convergence properties of the
Taylor series.

Take as an example the chemical equilibrium constant for
the gaseous ammonia reaction (Hougen et al., 1959), the case

reported by Park and Himmelblau:
K = exp(—AF,/RT). (7)

Select a temperature of 1,000 K. Assume the formula of Hougen
et al. for AF, to apply. Then a temperature of 1,000 K gives a

AIChE Journal (Vol. 32, No. 2)



value of AF, = 61,588 J - K-! - mol~?, which is assumed to
be the expected value of AF,. Now, assume that the standard
deviation in the estimate of AF, is given by:

var(u) = var(AF ,)/[E(AF,)]? = 0.01 (8)

Then, Eq. 5 gives the series expansion of the expected value
of the equilibrium constant:

E(K) = exp|—E(AF,)/RT) [1 + %yz

1 + Lo + 9)
8y 48_1/ c.
where y = [E(AF,)/RT]0f,. Inserting AF JRT = 7.4, the se-
ries and the expected value of the equilibrium constant be-
comes:

E(K) = exp[—E(AF,/RT] [1 + 0.2738 + 0.03748
+ 0.00342 + .. .] = 1.315 exp[ — E(AF,YRT] (10)

which is close to identical to the results obtained by Park and
Himmelblau in their Figure 2. The analysis above shows that
terms after the sixth derivative may be truncated, due to the
convergence nature of the series.

The estimated variance in x is more complicated to evaluate,
as more terms are envisaged necessary. The variance is more
sensitive to higher-order terms in the Taylor series expansion,
and one would expect the convergence for the series approx-
imation to the variance to exhibit slower convergence than the
series for the mean value. Taking the same values and defi-
nitions as above, the expression for the expected variance is:

— 21 2 g 4 z 6 247

E{[K - EK)* = y* + QU Tyt 576y + ... (11

This agrees indeed with the point made above that the con-
vergence is slower, as now the eighth derivative in the Taylor
series has to be included. Inserting the value for y above gives
the terms in the series:

Eloy) = yl1 + 0.8303 + 0.3498

+0.0704 + ... ]2 =4[1.5] (12)

which again agrees very well with the results obtained by Park
and Himmelblau in their Figure 3.

If one now considers a similar system, but with the tem-
perature as a stochastic input, this is a much more common
situation in chemical engineering. The question now is how
serious the systematic errors are in derived properties such as
reaction rates or vapor pressure. The integrals for the expected
values derived by Park and Himmelblau are no longer analyt-
ically solvable, since the exponent in the Arrhenius-type
expression now is a nonlinear function of the independent sto-
chastic variable, the temperature.

Take as an example, a vapor pressure thermometer shown
schematically in Figure 1. The heat transfer and the heat bal-
ance of the thermometer act as a low-pass filter which will
attenuate fluctuations in the temperature outside the ther-
mometer. If the outside temperature has superimposed Gaus-
sian noise, then the interior temperature will also have a low-
pass filtered Gaussian noise.

The relationship between the interior and the exterior tem-

peratures may be written:
dT
(V,p,c,,, + Vo ——) = = AUT, - T) 13)

when the heat capacity of the wall is neglected and the liquid
phase is assumed to be perfectly mixed and always in equilib-
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Figure 1. A simple vapor pressure thermometer.

rium with the vapor. The partial derivative of the density is
therefore taken along the saturation curve of the vapor.

The low-pass filter in Eq. 13 may be expressed as an auto-
regressive model in discrete space:

Tk) = aTtk — 1) + (1 — )T, k) (14)

where the filter constant a is a function of the sampling time
At and the thermometer time constant 7

T = (VIpIC,,I + Vgpg)\apg/c')T)/A U (15)
a = exp(—At/T)

For random fluctuations in T,, the mean values in T, and T

are the same, since:
E(T) = « E(T) + (1 — o)E(T,) (16)
as long as the stochastic variable T, is stationary. However, the

variance in T will be different, due to the effect of the low-
pass filter:

var(T) = 2 2

PR+ 4

[1 + 2 zj: (1 - a)‘r(i)] (17)

where r(i) is the autocorrelation coefficient of the exterior tem-
perature fluctuations, given by:

llm-—E T,k

Novw N

Tk — i)var(T,) (18)

Only when a = 1(t = 0), are the variances equal. If a = 0(t
= o), then the variance of the interior temperature is zero.

The vapor pressure p in the thermometer is usually taken
as a measure of the temperature T, and the relationship be-
tween p and T (which is practically instantaneous) is of a non-
linear nature (the Clausius-Clapeyron model):

MRT) = fiT). ' (19)

Hence, the analysis of mean and variance for a general non-
linear relationship will apply here, as shown above. One will
now get slightly modified derivatives:

= k exp(—

& _ emyea = [~ NRE(T)]

d2f _ _ .

T = Kl = 2 EMYED)] (20)
daf 2 3
Th= 120 = D) + k@ (c — 2] SIEMVIED)

and further for higher derivatives. However, if one considers
the example below, the third derivative will be sufficient.
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Let the outside temperature have uncorrelated white noise
(all r(i) terms are zero). Assume a thermometer time constant
of 10 s and a sampling interval of 2 s. Assume that the variance
of the exterior temperature is 1,600 K2 (o, = 40 K), then the
variance of the temperature of the liquid inside the thermom-
eter is:

o =

2 o2 = 160 K2 @1)
2 -«
Assume further, that E(T) = E(T,) = 400 K and that M/RT =
10. Then the relationship between the expected pressure and
the expected temperature of the thermometer is:

EP) = fIE(T)] [1.04] (22)

Similarly, by the use of the general expression Eq. 6 and the
derivatives in Eq. 20, the relationship between the expected
variance in the pressure and the temperature is:
d 2

s - e = (L) e - rop s e
The reverse estimation is now possible, where one is interested
in the estimation of the real mean value and variance of the
process. Then:

E(T,) = E(T) = f'[E(P)1.04] 24)
or, =220, = }j—’; =25

The problem of nonlinear characteristics and their effects on
the estimation of mean and variance is a very significant one
in instrumentation (Asbjornsen; 1975), in particular in mass or
energy flow metering, where even small systematic errors in
the mean value estimate may have very large effects financially,
due to the large production, consumption, or export quantities.
The general analysis shown here, even extended to multiple
inputs, helps in the evaluation of such errors.

In an attempt to illustrate some of the phenomena arising
from nonlinear characteristics, the example above elucidates a
number of points:

1. The Arrhenius type of nonlinear relationship has very large
higher-order derivatives with respect to temperature or acti-
vation energy, which are the main reasons for the phenomenon
described by Park and Himmelblau. An analysis based on an
extended Taylor series expansion will be more generally ap-
plicable as shown, and normally fully adequate. A judgment
can then be made at which term the Taylor series approxi-
mation could be truncated.

2. The most likely variable to exhibit random fluctuations in
the Arrhenius expression is the temperature. The variance in
this variable is usually small enough to justify a second- or
third-order Taylor series approximation for the mean and the
variance. Therefore, the practical implications of Parks and
Himmelblau’s rigorous analysis are not so pronounced as their
article may seem to indicate. Furthermore, it is not applicable
to temperature fluctuations.

3. In most practical cases, the primary stochastic variable is
exposed to a linear low-pass filter before it enters the nonlinear
expression. Hence, the filter reduces the variance and the
problem. The effects of systematic errors caused by a neglect
of higher-order derivatives in the Taylor series approximation
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are reduced accordingly. In computer control, the inverse
transformation u = f~'(x) may compensate for the nonlinearity,
whereby the problem disappears completely.

4. When the nonlinearity has an inflection point (in the Ar-
rhenius case MRT = 2 for temperature), the systematic error
in the mean value shifts sign. The systematic error in the es-
timates of both mean and variance has a minimum in the in-
flection point, which is intuitively obvious.
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NOTATION

A = heat transfer surface

C,. = specific heat capacity of liquid

E( ) = expectation operator

fl) = nonlinear function

AF, = Gibbs free energy

i = counting index

k = preexponential factor

K = equilibrium constant

p = pressure

r(i) = correlation coefficient

R = gas constant

At = sampling time

T = temperature

u = input variable

U = heat transfer coeflicient

V, = gas volume (constant)

v, = liquid volume (constant)

x = output variable

y = dimensionless variable, explained in the text
Greek Letters

a = filter factor

K = dimensionless variable, explained in the text
A = latent heat of evaporization

. = gas density

P = liquid density

T = time constant, explained in the text
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