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Abstract

Heuristic search procedures are useful in a large number of problems of practical
importance. Such procedures operate by searching several paths in a search space at
the same time, expanding some paths more quickly than others depending on which
paths look most promising. Often large amounts of time are required in keeping track
of the information control knowledge.

For some problems, this overhead can be greatly reduced by preprocessing the prob-
lem in appropriate ways. In particular, we discuss a data structure called a threaded
decision graph, which can be created by preprocessing the search space for some prob-
lems, and which captures the control knowledge for problem solving. We show how
this can be done, and we present an analysis showing that by using such a method, a
great deal of time can be saved during problem solving processes.

1 Introduction

Heuristic search procedures are useful in a large number of problem domains. Most heuris-
tic search procedures (for example, A*, SSS* B*, AO*, and alpha-beta) have been shown
to be special cases of best-first Branch-and-Bound search [3,4]. These procedures search
several solution paths at the same time, expanding some paths more quickly than others
depending on which paths look most promising.

One source of computational overhead during such search is the time spent keeping
track of the alternate partial solutions that the procedure is examining. Typically, the
search algorithm stores these partial solutions on a list called the agenda, open list, or
active list, in order of their estimated cost. Any time a new partial solution is generated,
its estimated cost must be compared with the estimated costs of the other partial solutions
already on the list, in order to find the appropriate place to put it on the list. Thus,
significant computational overhead is required just to maintain the active list.
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Certain problem domains have special properties which allow us to eliminate this over-
head. In particular, in some problem domains it is possible to do automatic preprocessing
or “compiling” of the search space, to extract control knowledge which can be used to do
the heuristic search without having to maintain the active list explicitly. In this paper, we
discuss what kind of domains allow us to do such preprocessing, how to do the preprocess-
ing, how to use the information gathered from the preprocessing, and how much time can
be saved by doing this preprocessing. We also present an example from a problem domain
of particular interest to us: generative process planning for the manufacture of machined
parts.

42 Problem Characteristics

Preprocessing of the search space is possible whenever the following conditions are satisfied:

1. With the exception of feasibility /infeasibility of nodes, the search space has the same
shape regardless of the particular problem instance being considered. Thus, if P and
P’ are two problem instances, then there is a one-to-one mapping between the nodes
of their search spaces § and §’, such that if some feasible node a in S has n children,
then its corresponding node a' in S’ will either have n children or be infeasible.

2. Corresponding nodes need not have the same cost—but if two nodes @ and b in S;
have cost(a) > cost(b), then for the corresponding nodes a' and ¥ in S’, we must
have cost(a’) > cost(d’).

Nearly all heuristic search problems satisfy the first condition above. One example of
particular interest to us is generative process planning for the manufacture of machined
parts. Our ongoing work on the development of SIPP (a generative process planning system
written in Prolog) and SIPS (a more sophisticated system written in Lisp) is described
in [5,6,7,9,8,10,11]. Both SIPP and SIPS consider a machinable part to be a collection of
machinable features. For each feature, they find an optimal plan for that feature via a best-
first Branch-and-Bound search. For example, Figure 1 shows the search tree developed by
SIPS for the problem of machining a hole. The nodes labeled with an “X” are nodes which
were found to be infeasible and thus were not considered further; the nodes labeled with
a “P” are the nodes along the solution path found by SIPS, and the nodes with no labels
were nodes which SIPS did not get around to examining because they were too costly.

Fewer heuristic search problems satisfy the second condition, but there are still many
problems which do satisfy it—and process planning is such a problem. SIPS’s knowledge
base consists of information on a large number of different machining processes, organized
in a taxonomic hierarchy. For two different machinable features, different machining pro-
cesses may have different costs-but if process a costs more than process b on feature f, it
generally also costs more than process b on feature f' as well. In such cases, preprocessing
is possible.



3 Threaded Decision Graphs

Suppose that for a given problem instance the search space is as shown in Figure 2. The
goal is to search for the cheapest leaf node for which all the nodes along the path from
the root are feasible. In Figure 2, suppose the problem solver is checking the conditions
associated with node c. If ¢ succeeds, we know that the next node to check will be f, since
¢ must be the current minimum costly node to be checked, and f has a cost the same as
¢’s. Similarly, if ¢ fails, the next node to check in the search space must be j. This is
because at the time c is being checked, nodes a, b,d, e, h and k& must all have been checked,
since they all have costs less than that of ¢’s. Control information like this is independent
of the particular goals to be achieved, and can be gathered before the problem solving
process starts. Therefore, we can assign a success link from node ¢ to node f, and failure
link from c to j. During the course of finding the cheapest actions to achieve a given goal,
once we reach node c, if all the conditions are satisfied, we can follow the success link of ¢
to get to the next node to be checked. On the other hand, if they are not satisfied, then
the failure link at ¢ can be followed to get to the next node to be checked. Figure 3 shows
such a structure.

If all the deterministic control information is gathered, it is no longer necessary to
maintain an active list for storing control information. Before problem solving starts,
the information can be used to construct a data structure, which contains one or more
occurrences of each action, and for each action occurrence there is a success pointer and a
failure pointer. We will call such a data structure a threaded decision graph of the original
search space. Problem solving can then be completely guided by its threaded decision
graph. Figure 4 shows the threaded decision graph for the search space in Figure 2.

Two special nodes in Figure 4 are worth noting. The node marked “success” is called a
success node. If this node is reached through the success links, the search process terminates
with success. The path from the root node to success in the threaded decision graph
contains the solution path which should be returned. The node marked “fail” is called a
. failure node, which marks the termination of the search process without success.

In the following, we first discuss in detail how problem solving is done with the help of
threaded decision graphs. We then consider how such a data structure could be automat-
ically constructed.

4 Problem Solving With the Threaded Decision Graphs

Given a search space, assume that we have constructed its threaded decision graph. A
request to solve the problem would correspond to finding out the cheapest path in the
trec. For the given threaded decision graph, this is done by checking the conditions at
each node, starting from the root node. If the node being tested is feasible, then the next
node to test would he the one led to by the success link of the current one. If, on the
other hand, the node is infeasible, then its failure link will be followed. If a success node is
reached via a success link, then the search ends with success. If a failure node is reached
through failure link, then no actions satisfying the criteria exist. In this case, search is



terminated with failure.

If, in the process of searching through the threaded decision graph, a non-leaf node fails,
then before getting to the next node by following the failure link, all of its descendents in
the original search space are marked as fail. Such a process is called failure marking. If
any of marked nodes are reached later, no checking for condition need be made, the failure
link is automatically followed.

5 The Construction of Threaded Decision Graphs

In this section, we consider the problem of how the threaded decision graphs are con-
structed. For simplicity, we assume the search space is in the shape of a tree and is finite.
The same technique should also be applicable to a search space in the shape of a graph
which is not a tree. Later we will discuss the cases where the search space is not finite.

With the above restrictions, the following algorithm generates the threaded decision
graph. This algorithm is a modified version of best-first search.

procedure Construct
A:={a0} (A is the active list, and a0 is the root of the search space)
While A is not empty do
begin
n := pop(4).
If A is empty then Failure-link(n):=Failure-node
else Failure-link(n):= head(A);
If n is a leaf node, then Success-link(n):=Success-node
else begin
Success-link(n ):=the cheapest node among {Successors(n), head(A)};
A:=insert( A, Successors(n));
end{else}
end{while}
end Construct

Several properties of this algorithm should be noted. First of all, since any node in
the search space appears at the head of the search space once and only once, the resultant
threaded decision graph must have the same number of nodes as the original search space.
Since every node has only two edges, the success link and the failure link, the number of
edges of the threaded decision grapl is twice the number of nodes as that of the search
space. The same argument also guarantees the absence of cycles in the graph.

As discussed before, we require failure marking during search. There exist special cases
when such a marking is not necessary. Let nq,n,,...,n; be the successors of the root of
the search space tree in the increasing order of their cost. If the costs of all the nodes in
the subtree of n; is no greater than the cost of n;y;, then no failure-marking is needed.
This is because when all of the siblings in the tree are sorted in ascending order of their
cost from left to right, then the above requirement on cost ensures that all the failure links



in the threaded-decision-graph point from left to right. Therefore, once we leave a node
via failure link, there is no chance for us to come back to any of the successors of this node
via failure links, and thus no failure-marking is needed.

In the case when the search space is a graph, i.e., some nodes in the search space have
more than one parent, we can make a slight modification to our procedure construct in
order to guarantee the linearity of the graph. Notice that if node n appears in the active-
list more than once, then the nodes between the two occurrences of n must have the same
cost as n. If we move all these nodes to the front of n, the two n’s can be merged to be
one. This guarantees the uniqueness of n in the resultant threaded decision graph. With
such a modification, all of the previous results apply to search spaces which are graphs.

6 Infinite Search Space

When the search space is infinite, we can preprocess a finite portion of it. This partial
threaded decision graph can be created by running the algorithm Construct for a finite
number of iterations, until one or more goal states appear in the graph.

During the problem solving process, the threaded decision graph can be used in the
same manner as described in the previous sections, until a node which has no success and
failure links is reached. At this point, Branch-and-Bound search can be utilized as follows:
An active list is constructed by including all of the successor nodes of the current node
and the feasible nodes along the path back to the root node in the state space. This list is
sorted according to the costs of its nodes, and least costly of these is expanded.

7 Analysis

By gathering all the possible static control information beforehand, preprocessing of the
search space can greatly improve problem solving efficiency. In order to see this claim
more quantitively, let’s look at a simplified example. Assume that the search space is in
the shape of a tree with a branching factor of m and depth k(the root of the tree has a depth
of 1). We would like to see how much time the problem solver spends on manipulating the
list of incomplete paths. To do this, let’s consider two extreme cases in the following.

In the best case, the search procedure expands only one path down the tree. Along this
path, the number of nodes inserted into the active list is k. The time for manipulating the
list is the same as the time taken to sort this number of elements, which is O(km log(km)).

In the worst case, the search procedure expands the tree in a breadth first manner. The
total time spent on manipulating the list in this case is bounded by mn x E:’if_l) log(exm) =
O(m* log m*).

To sumn up, the time saved by using the threaded decision graph to guide the search
procedure can be between O(kmlog(km)) and O(mn* log m*), where k is the depth of the
tree and m is the branching factor.



8 Discussion

In this paper we presented a technique for preprocessing search space in order to gather
control information for problem solving. We also discussed a number of conditions under
which the method works. Through complexity analysis, we demonstrated that by using
preprocessing, a great deal of computational effort is saved during the search process.

Our idea of preprocessing the search spaces has some similarity to that of threading of
binary trees for tree traversal. However, the way such threading is done, and the way it is
used, are both clearly different from our threaded decision graphs.

As described in the paper, our technique only works on state-space graphs. An ex-
tension of the work is to allow the search space to be an AND/OR graph. When AND
branches are allowed, the problem can be very complicated depending on how the costs
are assigned its nodes. In the worst case, the threaded decision graph can contain an
exponential number of the occurrences of nodes in the original search space. An example
of this situation is given in figure 5. The problem is that the i** and i + 1** best paths,
for i = 1,2,..., are not next to each other, but on the left and right subtrees respectively.
One way to tackle this problem is to partially preprocess the search space. For example,
we can assign success and failure links only to the nodes which are in the first k best paths.

If the search space is very large, the time it takes to preprocess it may be prohibitive.
In such a case, we could build the search space with the following learning strategy: During
the use of the search space, every time a node is tested we will look for its success or failure
links. If they do not exist, we will use the search procedure to find out which node we
should test next. The success or failure links can then be assigned to this node. In other
words, the threaded decision graph is built on the job.

Another problem which needs more attention is that the relative costs of some nodes
in different problems may not be the same, but may change with different situations.
However, if the cost of nodes change with different situations in some predicatable manner,
and if the number of such changes is finite, the preprocessing technique can still be made to
work. For example, we may be able to differentiate the situations into separate classes, each
with a different threaded decision graph. Many domains satisfy this property, including
process planning in automated manufacturing.
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Figure 2: An example search space. The numbers associated
with the nodes are their cost values.

Fiﬁure 3: The search space in figure 2 with threads inserted at node ¢. The
thick solid tine is ¢'s success-link, and the thick dotted line its failure-link.
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Figure 4: The threaded decision graph for the search space in figure 2. In this figure,
solid lines represent success links, while the dotted ones the failure ones.

Figure 5: An example AND/OR tree in the worst case situation.
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Abstract: Certain subvarieties of flag manifolds arise from the study of Hessenberg and
banded forms for matrices. For a matrix A € gl(n,C) (or si(nC)) and a nonnegative
integer p, the p** Hessenberg variety of A is the subvariety of the (complete) flag manifold
consisting of those flags (S1,...,Ss—1) satisfying the condition AS; C Si4+p, Vi. The
definition of these varieties extends to an arbitrary connected complex semisimple Lie group
G with Lie algebra g using the root-space decomposition. We investigate the topology of
these varieties for the classical linear Lie algebras. If A is a regular element, then for p > 1,
the p'® Hessenberg variety is smooth and connected. The odd Betti numbers vanish, while
the even Betti numbers represent (apparently new) generalizations of the classical Eulerian
numbers which are determined by the height function on the root system of the Lie algebra.
In particular, for g = sl(n,C), they yield a family of symmetric unimodal sequences which
link the classical Eulerian numbers (p = 1) to the classical Mahonian numbers (p = n —1),

while if g = sp(n,C) and p = 1, they are f-Eulerian numbers in the sense of R.P. Stanley.
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List of Notations

connected complex semisimple Lie group
Lie algebra of G

Borel subgroup of G

Lie algebra of B (Borel subalgebra)

variety of Borel subalgebras of g

Cartan subalgebra of g

root-space decomposition

p** Hessenberg subspace of g (relative to b)
regular elements of g

k x k height-p Hessenberg matrices (h;; =0, Vi —j > p)
k x k unipotent lower-triangular matrices

k x k upper-triangular matrices

k x k nonsingular upper-triangular matrices
k x k symmetric matrices

k x k skew-symmetric matrices

If ¢; is the j** standard unit column vector inC®, 6 = [ey, ..., e1], 2 = (I 0)’ and

0 6

X = QXQ. (For any 2n X 2n matrix or set of such matrices, overbar denotes conjugation

by €.)

If G is a group and H is a subgroup, (X )y denotes the left coset X H.



¥ X € LT(k), X = (i), p = diag(p1,...,px) and 1 £ f < a < k, then

a—f-1

FOXY = (pa—pe)zap+ 3, D, (=1)'(Pw = PB)Tam = * Ty
t=1 a>I'i>F

where 't = (71,...,7¢) and 11 > ... > 7e.



I. Introduction

The purpose of this paper is to study the topology of certain subvarieties of flag
manifolds which arise from fundamental algorithms in numerical linear algebra-primarily
the QR-algorithm for matrix eigenvalue problems. These varieties, which we refer to
collectively as Hessenberg varieties, are of interest for at least three reasons: Firstly, there is
a close relationship between their topology and the convergence properties of the numerical
algorithms. Secondly, these varieties can be viewed as generalizations of the varieties of
fixed flags. Thirdly, the topology of these varieties yields (apparently new) generalizations
of the classical Eulerian numbers in combinatorics.

The QR-algorithm is the most commonly used method for finding the eigenvalues and
invariant subspaces of a matrix. (See e.g., [1].) The QR-algorithm applied to a given
A € GL(n, C) can be interpreted as the discrete dynamical system A induced by A on the
manifold Flag(n) of complete flags in €C" [2,3,4,5]. Consequently, the convergence behavior
of the algorithm is closely related to the topology of the flag manifold, especially to the
Bruhat decomposition [4].

However, in actual practice, the QR—algprithm is rarely applied directly to a given ma-
trix A. Instead, the computational complexity is reduced (from O(n?) to O(n?) operations
per iteration) by first reducing A to Hessenberg form using a finite sequence of elementary
unitary transformations. (An n X n matrix C is in Hessenberg form if ¢;; = 0 fori—j > 1.)

This corresponds to the restriction of the dynamical system A to the invariant subvariety
Hess(1, A) = {(S1,...,Sn—1) € Flag(n) | AS; C Si}1, Vi}.

(For details, see [3,6].) Consequently, the properties of the QR-algorithm as applied to
Hessenberg matrices are closely related to the topology of Hess(1, A).

This motivation led us to investigate the topology of Hess(1,A4) and of its natural
generalization

Hess(p, A) = {(S1,...,5n-1) € Flag(n) | AS; C Siyp, Vi}

(which corresponds to initializations for the QR-algorithm which are zero below the p**
diagonal). We refer to Hess(p, A) as the p** Hessenberg variety of A.
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If A is nilpotent, the subvariety of invariant flags, Hess(0, A), has a very complicated
geometric structure which has received considerable attention in recent years. (See e.g., [7-
15).) In contrast to the case of Hess(0, A), the varieties Hess(p, A), p > 1 have interesting
topological structure even when A has distinct eigenvalues. It was shown in [16,17] that
for such an A, Hess(p, A) is smooth and connected. Its odd Betti numbers vanish, while
its even Betti numbers are an apparently unstudied generalization of the classical Eulerian
numbers. (For p = 1, they are the classical Eulerian numbers, while for p = n — 1, they

are the classical Mahonian numbers.) These results are summarized in Section II.

Since the key step in the QR-algorithm is the Q R-factorization, and since this factor-
ization essentially corresponds to the Iwasawa decomposition of G, a QR-like algorithm
can be defined for any connected complex semisimple Lie group, or, using the exponential
map, for its Lie algebra. Recently, there has been considerable interest in such algorithms,
especially for sp(n, C) [3,18] (in order to solve, for example, algebraic Riccati equations
arising from optimal control and filtering problems). Consequently, it is of interest to un-
derstand the structure of “Hessenberg varieties” for G a connected complex semisimple Lie
group. This is the purpose of the present paper, although we focus mostly on the classical
cases.

Let G be a connected complex semisimple Lie group with Lie algebra g. Let B be
a Borel subgroup of G, and let b be the corresponding Borel subalgebra. Let s denote
any Cartan subalgebra which is contained in b, and let g = s + }__ 5 g% be the root-
space decomposition for g relative to s. For each nonnegative integer p, we define the pih
Hessenberg subspace of g relative to b to be
(1.1) hp(b,g) =s+ E g% (direct sum)

a€®,h(a)2~p
where h(a) denotes the height of the root a relative to the unique base A for which
ho(b,g) = b. It is easily verified (see Section III) that hy(b,g) is well-defined—i.e.,
independent of the choice of s. Thus, to each Borel subalgebra b there is associated a
partial flag in g which contains b, namely

b = ho(b,g) C hi(b,g) C ... C hn(b,g) =g,

2
'



where N = maxaes h(a).
Fix B, and let A € g. The p'* Hessenberg variety of A is the subvariety of the flag
manifold G/B defined by

(1.2) Hess(p, A) = {(X) 5 € G/B | (Ad X~1)(4) € hy(b, g)} :

It is easily shown (Section III) that h,(b,g) is Ad(B)-invariant, so Hess(p, 4) is well-
defined. If G/B is identified with Borel(g) (the variety of all Borel subalgebras of g) by
identifying (X) g with Ad(X)b, then Hess(p, A) is identified with the subvariety of Borel(g)
consisting of those Borel subalgebras b’ for which the p'* Hessenberg subspace hy(b’,g)

contains A.

In the present paper, we generalize the results in [17] to the case where g is any
classical linear Lie algebra—i.e., of type Apn—1, By, Cn or D,. (The results for A,y
and C, are also contained in the Ph.D. thesis of the first listed author [16].) Let & be
a reduced root system with Weyl group W, and let ®* (respectively, &) be the set of
positive (respectively, negative) roots with respect to some fixed basis A. Let h(-) be the
height function on ® with respect to A, and let w € W. Define the p** Eulerian dimension
of w to be

(1.3) E:’(w) = card {a € ot l k(a) £ p, w(a)€ <I>"} ,
and define the generalized Eulerian numbers of height p on @ to be

(1.4) &(p, k) = card {w e W | E}(w) = k-1}.

Let g be a linear Lie algebra of classical type with root system &, and let A be
a regular element of g. We show that Hess(p, A) is smooth and connected. Its odd
Betti numbers vanish, while its even Betti numbers are given by the generalized Eulerian
numbers of height p on ®. Since the numbers {®(p, k)} occur as the even Betti numbers
of a nonsingular irreducible projective variety, it then follows from results of Stanley [19]
that (for fixed p), they form a sequence which is both unimodal and symmetric.

3



As mentioned previously, in the special case where ® = A, (i.e., g = sl(n,C)),p=1
(respectively, p = n — 1), the generalized Eulerian numbers correspond to the classical
Eulerian (respectively, Mahonian) numbers. We also analyze in detail the generalized
Eulerian numbers in the case where & = C, (i.e., g = sp(n, €)) and p = 1. We determine
the recurrence relation, exact values and generating function, and show that these numbers

are f-Eulerian numbers in the sense of Stanley [20], with f(s) = (2s + 1)".

Several generalizations of the Eulerian numbers have been considered in the combi-
natorics literature. (See e.g., [20-25].) However, we are unaware of any studies in which
the Eulerian numbers are generalized via the combinatorics of root systems and the height
function. Although we have limited our analysis to the classical cases, the nature of both
the techniques (e.g., the Bruhat decomposition) and the results (e.g., combinatorial prop-
erties of the height function on the root system) suggest that the results may hold in more
generality.

The organization of this paper is as follows: In Section II, we review the results
for G = GL(n, C) contained in [16,17]. In Section III, we extrapolate from the cases
G = SL(n,C), p arbitrary, and G = Sp(n, C), p=1, to obtain the general definitions
(1.1), (1.2) given above for Hessenberg subspaces and Hessenberg varieties. In Sections
IV, V and VI, we study the topology of Hess(p, A) for the linear Lie algebras of types C,,
D,, and B,, respectively. Finally, in Section VII, we show that the (even) Betti numbers
computed in the previous sections are in fact generalized Eulerian numbers (of height p) on
the appropriate root systems, and we examine in detail the symplectic Eulerian numbers

of height one.

II. Review of Results for G = GL(n, C)

In this section, we review the definitions and results from [16,17] which are needed in
the sequel. Let G = GL(n, C) and let g be the Lie algebra of G. Let Reg(g) denote the
set of regular elements in g consisting of those matrices which have distinct eigenvalues.
Let Flag(n) denote the variety of complete flags in €". This can be identified with G/B
where B is the Borel subgroup consisting of upper-triangular matrices. In this context, for

X € G, (X)p denotes the image of X under the projection G — G/B and is interpreted

4
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as the flag S; C ... C Sp—1, where S; is the subspace of C" spanned by the first ¢ columns
of X.

A covering system of analytic charts for G/B is given by
ch(o) = {{cX)B| X € L*(n)}, o € X(n),

where L*(n) denotes the group of unipotent lower triangular n x n complex matrices,

and I(n) denotes the symmetric group of permutation matrices. The correspondence

(¢X)p — X is a bijection of ch(o) onto L*(n), this latter being identified with o(3).

Local calculations will be performed in these coordinates.

(IL.1) Definition: Let A€ g, 0 < p <n—1. A Hessenberg flag of height p for A is a flag
S1 C...C Sp—~1 such that

(2.1) ASiCSiyp i=1,...,n—p—1.

The set of all such flags is denoted Hess(p, A) and called the p** Hessenberg variety of A.
Remarks: The set Hess(0, A) is the set Invar(A) of flags invariant under A. One has the

inclusions

Invar(A) C Hess(1,A4) C ... C Hess(n — 1, A) = Flag(n).

Notice that (X)p € Hess(p, A) if and only if
(2.2) AX = X H,,

where H), is a matrix in Hessenberg form of height p, namely

(hn ee. hin
(2.3) Hy, = hpt1,
\ 0 ... hunp oo hos

In other words, Hp is in Hessenberg form of height p provided h;; = 0 whenever 1 — j > p.
The vector space of all such matrices will be denoted hy(gi(n, €)), or more simply Hy(n).
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We denote by h,(sl(n, €)) its intersection with the special linear Lie algebra. The set
Hess(p, A) is a projective algebraic variety.

(I1.2) Theorem: Let A € Reg(g). For 1 < p < n-—1, Hess(p, A) is a compact, connected
and smooth submanifold of G/B of complex dimension p(2n — p — 1)/2. In particular, it
is an irreducible variety.

The above result can be obtained from the local algebraic equations expressing the
Hessenberg conditions (2.2) in the charts {ch(0)}, o € L(n). It is shown in [16,17] that
if A = diag(\1,...,2n) and X = (z;;) € L*(n), then (¢X)}p € ch(o) is an element in
Hess(p, A) if and only if for a — 8 > p,

a—fg—1

24)  fap(X) =A@, B)zap+ ) Y D)'A(6B)Tay - Ty =0,

=1 a>1>.>o%n>8
where A(p,v) = (Ao(u) = Aow))-

Let G = [[,c5(n) BoB be the Bruhat decomposition of G, and let

G/B= ][] (Bo)s

o0€X(n)

be the induced Bruhat decomposition of G/B. We will write B, = (Bo)p and we observe

now for later use that

(2.5) B, = (cL}(n))s
where
(2.6) L¥(n) = {X = (zi;) € L*(n)| zi; = 0if o (i) > 0 (j)}.

It is known (see e.g. [26]) that B, = C"(?), where I(o) is the length of o-i.e., card{(i,5)| 1 <
j <i<nando(z) <o(4)}
(I1.3) Theorem: Let A € Reg(g), 0 € X(n), 1 < p < n—1. Then B, N Hess(p, A) is
analytically isomorphic to €F? (@), where

Ey(0) = card{(i,j)| 1 <i,j <n, 1 <i—j <p, o(i) < o(j)}-
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The number E,(0) is called the p** Eulerian dimension of o, for reasons that will be
discussed in Section VII.

The decomposition of Hess(p, A) into the disjoint union of the “cells” B, N Hess(p, A)
is not cellular, in that the boundary of a cell of dimension &k can contain points of a cell of
the same dimension. However, a recent theorem of A.H. Durfee [27] enables us to compute

the Betti numbers from this decomposition, yielding the following result:
(I1.4) Theorem: Let A € Reg(g), 1 <p<n-—1. Then

bak+1(Hess(p, 4)) =0,
bok(Hess(p, A)) = Ap—1(p, b + 1)

where b, (Hess(p, A)) is the v** Betti number of Hess(p, A) and
(2.7 An_1(p, k) = card{o € L(n)| Ey(0) =k —1}.

The numbers {Ap-1(p, k)} are called generalized Eulerian numbers of height p. Again we

refer to Section VII for more details.

Remark: The results described in this sectiou specialize without essential changes to the
case where GL(n, €) is replaced by its subgfoup SL(n, ).

Remark: The existence of a decomposition of Hess(p, A) into affine spaces also follows
from a general theorem of Bialynicki-Birula [28]. This result shows that if any algebraic
torus acts on a smooth projective variety with isolated fixed points, then the variety admits
a natural decomposition into locally closed subvarieties each of which is isomorphic to a
vector space and contains exactly one fixed point. In the case at hand, the centralizer
of A in the unitary group U(n) is an algebraic torus which acts naturally on Hess(p, A).
The fixed points of this action are precisely the n! elements of Hess(0, A), namely {{o)5p |
o € X(n)}. The resulting decomposition coincides with the decomposition obtained by

intersecting the Bruhat cells with Hess(p, A).

II1. Hessenberg Flags for a Semisimple Lie Group

The geometric approach to matrix eigenvalue problems extends to the case when the

given matrix A satisfies the additional property of being, for instance, an element in the
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symplectic group G = Sp(n, C) or its Lie algebra g = sp(n, €). (Seee.g., [3].) In particular,
the appropriate homogeneous space and QR-type factorization can be obtained from the
Iwasawa decomposition of Sp(n, C). This means that if KAN is such a decomposition,

then @ € K and R € AN. Explicitly, @ € Sp(n) = U(n) N Sp(n, €) and

Re {(‘5 ,‘;’1‘1) | u € V(n), mES(n)}éB,

where V(n) denotes the set of n X n nonsingular upper-triangular (complex) matrices, and
S(n) denotes the set of n x n symmetric matrices. (To make the factorization unique, one
can require that the diagonal entries of u be positive real numbers.) One obtains then a
symplectic QR-algorithm which can be interpreted as a linear-induced dynamical system
on G/B, which can be identified with the so-called Lagrange-flag manifold

JFlag(n) = {S1 C ... C San-1 € Flag(2n)| S = S and Sn4i = S},

where | denotes orthogonality with respect to the symplectic form

0 I,
1=(5% %)

K X € Sp(n, C), then (X)p is identified with the Lagrangian flag (51, ..., S2n-1), where
for 1 < n, S; is the subspace spanned by the first ¢ columns of X, while for : > n, S; is the
subspace spanned by the first n and last § — n columns of X. Using the exponential map,
the QR-algorithm for Sp(n, C) extends to sp(n, C). (See e.g., [3,18].)

An analogue of height-one Hessenberg form for matrices in sp(rn, €) was introduced

by Byers [18] and referred to as Hamiltonian-Hessenberg form. A matrix H; in such form

k
Hy = (z -:"zh)’

where h € Hy(n), m € S(n) and z = (2;;) is such that z;; =0 unless { = j = n.

is of the type

It follows that initial reduction of A to Hamiltonian-Hessenberg form-i.e., choosing P
such that P~1 AP = H;-simply means that
(P)p € JHess(1,A) = {T1 C ... C Tan-1 € JFlag(n)| AT; C Tiy,, Vi}.

8
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Thus, we are led to investigate the topology of the varieties JHess(p, A) whose definition

is the obvious one—namely,

JHess(p, A) = {T1 C ... Tan-1 € JFlag(n)| AT; C Tiyp, Vi}.
Notice that the elements (X)p in JHess(p, A) are those for which an equation of the type
(3.1) AX =XH,

holds, where

(32) g=(4 %)

with h € Hy(n), m € S(n) and z = (2;;) is such that z;; =0 unlessi+j > 2n+1—p. We
let hy(sp(n, €)) denote the vector space of such matrices Hj, which we refer to as being

in Hessenberg form of height p.
The above discussion suggests that a QR-type algorithm can be defined for all con-

nected semisimple Lie groups. For these groups, the Iwasawa decomposition holds and
B = AN is known to be a solvable Lie subgroup of G. Reduction of A to Hessenberg-type
form, and consequently a good definition of p** Hessenberg variety, depends on the exis-
tence of a good Lie-theoretic interpretation of the Hessenberg-type matrices H,. Such an
interpretation comes, in the opinion of the authors, from the root-space decomposition of

the Lie algebra g of G.
In each of the cases G = SL(n, €), Sp(n, C) discussed above, a specific choice of Borel

subgroup B was made, and then a nested sequence of subspaces of g was defined, namely

b = ho(g) C h1(g) C ... C hn(g) =8,

where b denotes the Borel subalgebra associated with B, and N is an appropriate positive
integer. It is obvious that B could be replaced by gBg~! for ¢ € G, in which case h,(g)
must be replaced by Ad(g) kp(g). In other words, eny Borel subgroup of G can be chosen
as B, and this choice determines the sequence {hp(g)} of Hessenberg subspaces. When we

wish to emphasize the dependence of h,(g) on B, we will use the symbol k,(b, g).
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We would like to extrapolate the examples of si(n, €) and sp(n, €) considered above
to obtain a general definition of hy(b,g) where g is an arbitrary complex semisimple Lie
algebra, and b is any Borel subalgebra of g. To do this, we examine more closely the
mathematical relationship between b and h,(b,g) in the two examples. For the specific
choices of B (and hence b) in the cases of sl(n, €) and sp(n, C), we choose the following
Cartan subalgebra’s (CSA’s) which are contained in b:

s = 2;511 C(Eii — Eiy1,i41) for si(n, C)
Yoin1 C(Bii — Enyingi) for sp(n, €)

where E;; denotes the square matrix of the appropriate dimension whose entries are all 0
except for the ij**, which is 1. These choices yield the standard root-space decompositions

for sl(n, €) and sp(n, €). In particular, for the root systems
(33) An:  {ei—all<ij<n, i#j)
(3-4) Co: {ej—ell<i,j<n, i#jlU{t(e;+e)|1<j<i<n}

thereby arising, we have the following well-known data for the corresponding root-spaces
and heights of the roots with respect to the unique base with the property that b is the sum
of s and the root-spaces for the positive roots: For An_1, the root e; — e; has root-space
CEj; and height ¢ — j, 1 # j. For C,,, the root e; — e; has root-space C(Ej; — En+tin+j)
and height ¢ — j, ¢ # j; the root e; + e; has root-space C(Ejnti + Fint;) and height
2n+1-(i+j), Jj<i;theroot —e; — e; has root-space C(En4;j,i + En4i,;) and height
(+5)-2n-1, j<i

It follows immediately from (2.3) and (3.2) that for both sl(n, €) and sp(n, €) with
the standard choices of Borel subalgebra, H), is in Hessenberg form of height p if and only
if

H, € s+ Z g°. (direct sum)
a€®, h(a)2-p

Here, ® denotes the set of roots of g relative to s ; h(a) denotes the height of the root a;

and g is the root-space of a.

This motivates the following
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(I11.1) Definition: Let G be a connected complex semisimple Lie group with Lie algebra
g. Let B be a Borel subgroup of G, and let b be the corresponding Borel subalgebra. Let
8 be any CSA contained in b, and let g =8+ )4 8 be the root-space decomposition
for g relative to s. The p'* Hessenberg subspace of g relative to b is defined as

(3.5) hp(b,g) =8+ Z g%.  (direct sum)
OIE‘I’, h(a)Z"P

where h(a) denotes the height of the root a relative to the unique base A for which
b = ho(b,g). We will often suppress the dependence on b and use the notation h,(g).
Remark: It is easy to see that hy(b,g) is well-defined—i.e., independent of the choice of
the CSA s. Let hy(s,b,g) denote the righthand side of (3.5). It follows from the choice
of A that b = hy(s, b, g), regardless of the choice of s. It follows trivially from this that
hy(s,b,g) is ad(b)-invariant, and hence Ad(B)-invariant. Also, if 5 is any automorphism
of g, then hy(ns,nb,g) = nhy(s,b,g). Let s and s’ be a pair of CSA’s in b. Then
there exists 7 in the subgroup of Aut(g) generated by Ad(B) such that s = s’. Then
hp(s',b,g) = hp(5, 75, 8) = nhy(5, b, ) = hy(s, b, &).

With this definition available, one can read equations (2.2) and (3.1) as adjoint actions,

thereby obtaining the next

(II1.2) Definition: Let G be a connected complex semisimple Lie group with Lie algebra
g , and let B be a Borel subgroup with Borel subalgebrab . Let A € g. The p** Hessenberg
variety of A is

(3.6) Hess(p, 4) = {{X)p € G/B| (AdX™)(4) € hy(b,g)}.

Since hy(b, g) is Ad(B)-invariant, Hess(p, A) is well-defined.

Remark: The flag manifold G/B is often identified with Borel(g), the variety of all
Borel subalgebras of g. The flag (X)p is identified with Ad(X)b. The condition that
(X)B € Hess(0,A) is equivalent to the condition that A € Ad(X)b. Thus, Hess(0, A)
is identified with the subvariety of Borel(g) consisting of those Borel subalgebras which
contain A. More generally, Hess(p, A) can be identified with a subvariety of Borel(g) as
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follows: The condition that (X)p € Hess(p, A)-i.e., Ad(X~1)A € hy(b,g)-is equivalent
to the condition that A € Ad(X)h,(b,g) = hp(Ad(X)b, g). Thus, Hess(p, A) is identified
with the subvariety of Borel(g) consisting of those Borel subalgebras b' for which the pt*
Hessenberg subspace hp(b',g) contains A.

In this section, we have demonstrated how Hessenberg elements H, and Hessenberg
varieties Hess(p, A) can be defined for an arbitrary connected complex semisimple Lie
group using the root space decomposition and height function. In the case G = SL(n, €),
the Betti numbers of Hess(p, A) (for a regular element A) are described in terms of the
p'* Eulerian dimension E,(c) of a permutation o € E£(n), the Weyl group of SL(n, ).
Consequently, one might hope for a root-system type interpretation for Ey(c). This is

indeed the case:

(I11.3) Proposition: For o € I(n),
Ey(0) = card{a € ®* | h(a) < p and o(a) € 7}.

Proof: Let a = ej—e; € &% besuch that h(a) = i—j < p. Then o(a) = e,(j)—e€,(i) € B~
if and only if o(i) < o(j). Conversely, if (1,7) is a pair with 1 <i—j < p and o(i) < o(j),
thenej —e; € ®Y, h(ej—e;)<pando(ej—e;)€ED. W

IV. C,.-type Hessenberg Varieties

In this section, g = sp(n, €) and G = Sp(n, €). We make the standard choice of Borel
subgroup

B= {(‘5 ,;‘fl) Iu €V(n),s € S(n)}.

B stabilizes the Lagrangian flag py defined by

sp{er} C ... C sp{e1,...,en} C sp{er,... en €20} C ... C sp{er,...,€ns€20,.-. 6042},

and can be written as

B=QV(2n)QNG.
The (C,-type) p** Hessenberg variety JHess(p, A) for A € g can be written
JHess(p, A) = JFlag(n) N Hess(p, A),
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a projective algebraic variety. From now on we make the assumption that A € Reg(g) N,

the set of regular elements in the Cartan subalgebra s chosen in Section III, namely

A=(‘3 —?A)’ A = diag(X1,..., ), Ak ) £0ifi#j.

If g = [g1,...,920] € G, then the flag n({g)B) corresponding to {g)p € G/B under
the isomorphism n : G/B — JFlag(n), n({9)B) = gpo is

sp{g1} C ... C sp{g1,---,9n} C 3P{g15---19n,920} C 3p{g1,.--s9n,92n,-- -, Int2}-

On the other hand, if a = [a1,...,a2,] € GL(2n, ), then the flag corresponding to
(a}v € GL(2n,C)/V(2n), say é({a)v), is sp{ar} C ... C sp{ai1,...,azn-1}. Thus, if
j : G/B — GL(2n,C)/V(2n) denotes the injection j({9)g) = (¢Q)v, then §0j = 7.
Therefore, (Y)p € JHess(p, A) if and only if A(YQ) = (YQ)H,, where H, € Hy(2n). In

other words,
(4.1) AY =Y H,.

(Overbar denotes conjugation by Q.) Observe that H, € k,(sp(n, C),b), where b is the
Borel subalgebra associated with the Borel subgroup B.

We want to derive (local) algebraic equations from (4.1). A covering system of analytic
charts for G/B can be obtained as follows: Let Z,, denote the n-fold Cartesian product
of the two-element group {£1}. To each € = (€&,...,€;) € Z,, we associate two n X n

matrices

S+(€) = diag(&,e,, ey 61,5")
(4.2)

S_(€) = diag(b_1,e,---,6-1,¢,)

and we form

o w=(530 53) = (38 58)

It is immediate to check that o, € G, while o} ¢ G. Next, to each 7 € £(n), we associate

(4.4) rh= (6 2),
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and we consider the sets Wg = {0.7% | e € Z,,, 7 € Z(n)} C G and
(4.5) wWg = {oFrt|e€ Z,, 7€ T(n)}CI(2n).
The set W¢ endowed with the group multiplication law
(cr)ott) = ok (), TN @) = (e-11)s- o r-r(m)

is isomorphic to the Weyl group of G, namely the semidirect product of ¥£(n) with Z,.

Observe that the above multiplication does not agree with the matrix multiplication in
Z(n).
Finally, put

(4.6) L=TF@)nG = {(,,_’lg t,‘ll) [1e*(), g € S(n)},

a closed Lie subgroup of G of dimension n?. Then, the sets
ch(r) = {(r2)p | Zel}, meWs,

give rise to a system of analytic charts for G/B, where L is topologically identified with
i
Let now Y = nX, m € Wg, X € L. Then (4.1) becomes

(4.7) (xTA7)X = XH,,  Hp € hy(Cn) C Hp(2n).
Now, if * = 07!, then

(4.8) (7—TAr) = diag(p1,. .., p2n) = p,

where p; = €,(i)Ar(i) for § < n, and y; = —€r iy Ar(acy) for ¢ > n, with
(4.9) dla)=2n+1-a.

Then the following result is an immediate consequence of (2.4):
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(IV.1) Proposition: Let X € L*(2n) be such that X € L and let 7 € Wg. Then
(xX)p € JHess(p, A) if and only if f(X)=0,Va~8>p.

It turns out that in the set of equations { f‘g',‘,)(X ) =0, a-—p > p}, there is great
redundancy, due to the fact that X satisfies X € L. For this reason, we now analyze the

equations that such a condition yields.

X1 O

xe (%8

) € L*(2n), so that X;,X, € L*(n) and Z is an arbitrary n x n

matrix. Then

tRIX = (‘X19Z -Z6X, ‘X10X20) .

—6'X20X, 0
Therefore, X € L if and only if

(J1) tX16X,0 =1
(J2) X,0Z € S(n).

Writing X = (z;;) and computing the above products, one gets

(IV.2) Proposition: The matrix X = (z;;) € L*(2n) is such that X € L if and only if
for1<j<i<n

i—j—1
(J1)(,5) Tij + Ta(j)aG) + Z Ti—t,jTd(i~1)d(5) = 0
t=1
n-—t n—j
(J2)(,5) Tai + Y TiktiTd(i+n)i = Ta(i)i + ) T+, iTa(i4 i
=1 t=1

In the next two lemmas, we give equivalent formulations of conditions (J1) and (J2).

For this purpose, we introduce the following notation:

a—3—1

(4.10) 9up(X) = zap+ D D (~1)'Tay, ** T
t=1 oa>I>8

where X = (z;;) € Lt(2n), 1<f<a<2n.
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(IV.3) Lemma: Let X = (z;;) € L*(2n). Then (J1) holds if and only if z;;

—ga(pai(X), 1 £j < i < n, which holds if and only if z4(jya) = —9ij(X), 1<

j<t<n.

Proof: We only prove the first equivalence. The proof of the second is analogous.
Assume first that (J1) holds. We prove by induction on i —j that zi; = —ga(j)a(i)(X)-

Ifi—j =1, this is (J1)(i,i-1). Assume now the result for all pairs (p,v) with1 S p—v < s.

Fix i > s + 1. By (J1)(i,i-s-1):

Tii-s—1 = —Td(i—s-1)d(s) — E Ti—u,i-s—1Td(i—u)d(i)-
u=1

The pair (i — u,i — s — 1) is such that (i ~u) = (i —s—1) < sforallu =1,...,s. Hence,

by induction

u=1

s
Tii—s~1 = —Td(i—s-1)d(i) — Z Jd(i—s—1)d(i—u)Td(i—u)d(i) = —gd(i—s—l)d(i)(x)-

Conversely, assume zi; = —ga(j)d(i)(X ) for all pairs (¢,7) with 1 < j <t < n. Then
the above string of equalities gives (J1)(i,j) for the same set of pairs. B

(IV.4) Lemma: Let X = (z;;) € L*(2n) and assume that (J1) bolds. Then (J2)
holds if and only if z445); = 94(5i(X), 1 <J <i < n, which holds if and only if
zaj)i = gaij(X), 1< Jj <i<n. Moreover, if both (J1) and (J2) hold, then

(4.11) zaeiyi = 9aci)i(X), 1<i<n,

which is not a condition on z4(;);.
Proof: Again we only prove the first equivalence. Assume first that (J2) holds. We will
use induction on d(i) — j. If d(i) — j = 2, then (§,5) = (n,n — 1) and (J2)(n,n-1) gives

Zd(n),n—1 = Tnt2,n + Tnn-1Zn+1,n = Tni2,m + Zat1,n(—Tni2,n41),

where Tp n—1 = —Tn+42,n41 is simply (J1)(n,n-1).
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Fix now (3,j) with 1 < j < ¢ < n and assume that for all pairs (g, v) such that
1<v < p<nand dp)—v < d(i) — j we have 24(,)y = ga(w)u(X). Thus, from (J2)(i,j),

Lemma (IV.3) and the induction assumption,

n—j n—i
Ta(i)j = Ta(j)i T E Zj+t,5Td(j4+1)i — Z Titt,iTd(i+t)j
t=1 t=1
n—j n-—i
= Td()i — Z 9a(i)a(i+0)(X)Tagi+ei — Z 9a(),i+t(X)Zite,i
t=1 t=1
= ga(;)i(X)-

Conversely, if z4;); = ga(j)i(X) for all pairs (¢,5) with 1 < j < ¢ < n, then decom-
posing ga(;)i(X) as above, we derive (J2)(i,j) for the same set of pairs.

Assume finally that both (J1) and (J2) hold. Then

d(i)—i-1 n—i n—i
> > (1) 'y Tpi =~ > 9agiyagi+(X)za+ei — Z 94G) i+ t(X)Tite,i
t=1  d()>T;>i t=1 t=1

=0,

by Lemma (IV.3) and the first part of this lemma. W

(IV.5) Proposition: Let X € L*(2n) be such that X € L. Then

(4.12) (“)(X) = "'fd(])d(:)(X)9 1<j<isn
(413) fi0 = +£0(X),  1<ji<isn.

Proof: First of all we observe that, by virtue of (4.8), the coefficients M(a, 8) = (tta — pg)
satisfy M(a, B) = M(d(B),d()).

We first prove (4.12) using inductionon t—j. If i —j = 1, then (J1)(i,i-1) immediately
gives the desired result. Fix now (7, j) and assume that (4.12) is true for all pairs (g, v)
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with1<v<pu<nand g—v <i-—j. ByLemma (IV.3) and the induction assumption,

i—j-1
FiP(X) = M(i,j)is - 2_; Ziji-a f2) (X)
i—jm1

= ~M(d(5), d))9aciya(X) = Y 9ai-aya ) X)FEDagizsy(X)-
s=1

It should be clear that this last expression can be written as

i—j—1
—{M(d(j),dl(i))ﬂvd(j)d(s)+ >y (-1)‘C(i,j,1‘t)ma(j>71---z,,a(.‘)}.

t=1 d(j)>T¢>d(s)

Thus, all we have to show is that ¢(z,j,I't) = M(1,d(3)). In order to do so, we look at

the coefficients corresponding to the various monomials, according to their degrees.

(1) Monomials of second degree. For any fixed I'; = (v1), we have

c(3,5,T1) = M(d(5),d(7)) — M(d(5), 1) = M(71,d(3)).
(2) Monomials of third degree. For any fixed I'; = (v1,72), we have
—c(i,j,T2) = —M(d(j), d(z)) + M(d(j),71) + M(711,72) = —M (72, d(?)).

(3) Monomials of degree > 3. For any fixed I't = (11,...,%), &> 2, we have:

t—1

—c(i, 4, Te) = —M(d(5), d(3)) + M(d(5), 1) + M(Ve1,7) + Y M(Ys-1,7%)

=2

= M(d(i), 11) + M(%e-1,7) + M(1,7%-1)
= M(d(2), 1),

as desired. This concludes the proof of (4.12).

We now prove (4.13) using induction on d(i) — j. f d(i) —j = 2, then ¢ = n and
j = n—1. By Lemmas (IV.3) and (IV.4), we have Zy(n_1)d(n) = —gn,n-1(X). Le.,
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Tnt2,n+l = —Tn,n-1, and Zg(n-1),n = —gd(n),,,_l(X), which implies that Tp41,0-1 =

Zni2,n + Tp41,0Tn,n-1- Hence,
£ (X)) = M(n 41,0 = Dengrne1 = M0 = Dont1nfan-
=M(n+1,n—1)Tny2,n + {M(n+1,n-1)— M(n,n - D}Znt1,nTn,n-1
= M(n+2,n)Tni2,n — M(n 4+ 1,n)Za42,04+1Tn+1,n-

Assume now (4.13) for all pairs (y,v) with 1 <v < p < n and d(p) —v < d(i) —j. Then

n—t 2n—i—j

£ (X) = MG )zas = U+ D Y@aram-Fily-ai(X0)-

=1 s=n—i+1
Now,if1<s<n-—i,then1<j<i+s<nandso (i) the induction hypothesis implies
that f(" ) (X)) = 8 (X); (i) lemma (IV.3) implies that Za(iya(i+s) = —gi+a,i(X )-

d(i+s)j d(j),i+s
Next,if n—i+1< s <2n—1i—j, then j < d(i+s) <nandso (iii) (4.12) implies
that f(i")_'_.) J(X ) = (’)’, iro(X ); (iv) lemma (IV.4) implies that Zagi)d(i+s) = i+s, i(X).

Observe that in (iv), we have used (4.11). From (i), (ii), (iii) and (iv), we see that for
s=1,...,2n—i—j |

3d(:)d(s+a)fd(.+,),,( ) (6)),.+.(X)9i+s,i(x)-

Therefore, using once more Lemma. (IV.4),

2n—t—j

sé‘t))]('X) M(d(z)’J)xd(t)J‘l' Z fd(,),,_.,,(X)g..;-“(X)

=1

2n—i—j

= M(d(3),)9aiX) + Y L) i a(X)Gita,i(X)-

=1
At this point one concludes the result via a term by term analysis which is completely
analogous to that carried out for the proof of (4.12). B

From Lemmas (IV.3) and (IV.4), we deduce that each X € L*(2n) such that XelL
has free entries zqp, Where
(@19 @pell={G), k| 1<j<isn, 1<5k<isn)
={6i]1gi<isom, i+j<2n+1}.
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Put now

(4.15) i, ={Gier

i—j>p}.

An easy calculation shows that the cardinality of I] , is n? — np + [p?/4], where [p?/4]
denotes the largest integer < p?/4.

(IV.6) Corollary: Let X € L*(2n) be such that X € L, and let 7 € Wg. Then
(rX)p € JHess(p, A) if and only if (”)(X) =0, Y(e,B)el],.
(IV.7) Theorem: If A € Reg(g), then for p > 1, JHess(p, A) is a smooth submanifold of
JFlag(n) of dimension np — [p?/4].
Proof: Analogous to the proof of [17, Theorem (II1I.4)].
(IV.8) Lemma: For p > 1 and » € Wg, ch(n) N JHess(p, A) is contractible.
Proof: Let X = (z,,) € L*(2n) be such that (nX)p € JHess(p, A). This is equiva-
lent to saying that (i) zaj)ac) = —gii(X), (z',j)VE IJ, 1 <j <i<n; (i) Tag)i =
ga;i(X), (G,5) €I, 1<j <i<n; () fA(X)=0, (a,8) € I, Foruel0,1],
put

yij(u, X) =u'zy,  Y(u,X) = (s, X)).
Then Y(u X) € L*(2n) for u € [0,1], and Y(0,X) = I. Moreover, for 1 < j < i <n and
(a,B) € I ,, we have

— i (Y (4, X)) = —u 7 g;j(X) = w?D =4Oz = yagyagey(u, X)
94i); (Y (4, X)) = yag5yi(u, X)

(I‘)(Y(u X))—u a—-f (I‘)(X)

Therefore, (7Y (u,X))p € JHess(p, A) for all u € [0,1]. Thus, the continuous map H :
[0,1] x ch(r) N JHess(p, A) — ch(r) N JHess(p, A) given by H(u,(rX)p) = (xY (u,X))n
is a homotopy between the constant map H(0,-) and the identity map H(1,-) on ch(7) N
JHess(p, A). &

(IV.9) Corollary: For p > 1 and = € Wg, ch(w) N JHess(p, A) is connected.
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(IV.10) Theorem: If A € Reg(g), then for p > 1, JHess(p, A) is connected.

Proof: By (IV.9), it is enough to show that for any 7,0 € Wg, there exist w,,...,w,, €
Wg such that

Wy Wm =0  (matrix product in G)
(4.16)
ch(mw; -+ w;) N ch(rwy + - wj_q) N JHess(p,A) #0, j=1,...,m.

On the other hand, since JHess(1,4) C JHess(p, A) for all p > 1, it is enough to show
(4.16) for p = 1. Moreover, every element in Wg can be written as a finite product (in G)
of elements in {o(,), 'r,-h |i=1,...,n -1}, where én)=(1,...,1,-1)and 1; € X(n)is
the adjacent transposition which interchanges ¢ and ¢ + 1. Therefore, it is enough to show
that for all # € Wg,

(4.17) ch(m) N ch(noe(ny) N THess(1, A) 5 §

(4.18) ch(m)Nch(rrl) N JHess(1,4) #0, i=1,...,n—1.

We prove (4.17) first. Let X = (z;) € L*(2n) be given by

pos = { 1 1f(z,3) =(n+1,n)
i 0 f(5,5)#(m+1n), 1<j<i<2n.
It is immediate to check that (X )B € JHess(1, A) for all * € Wg. The matrix ae(,,))-(
differs from X only at rows n and 2n, and these two rows are, respectively, !(en + €2,,) and
*(—en).
Define now a 2n x 2n matrix b(e(n)) by stipulating that its j** column b(e(n)); is

given by

en —€en if3=92n
LCOVES Dol S vk

Clearly, b(e(r)) € B. Moreover, the symplectic matrix Z = (2i5) = 0¢(n)Xb(e(n)) differs
from ae(n)X’ only at column 2n. However, Zign =0for 1 <1 <n and Z2n,2n = 1. Thus,
Z is of the form Y for some Y € L*(2n). Finally,

(7X)p = (v Xb(e(n)))p = (roym)Y )5 € ch(wo¢(n)) N JHess(1, A),
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and since (7.X)p € ch(r), (4.17) is proved.
To prove (4.18), fix ¢ € {1,...,n — 1}, and let X = (z1;) € L*(2n) be given by

-1 if (1,5) = (d(s),d(i + 1))

1 if (I,j) = (i+1,1)
Ty =
0  otherwise,1 < j <1< 2n.

It is immediate to check that (7X)p € JHess(1, A) for all = € W, and that the flag (X)p
is fixed by 7). Le., (r1X)p = (X)p. Thus, (xX)p = (r7}X)p, proving (4.18). m
Let G = J],ew, BwB be the Bruhat decomposition of G and G/B =[], ¢, (B7)n

the induced decomposition of G/B. Let 0 € £(2n). We have seen in (2.5),(2.6) that
(Volv = (oL} (2n))v, where V = V(2n). This equality can actually be extended to

(4.19) (Vé)yy = (6L} (2n))v,

where G is any matrix obtained from ¢ by changing the signs of some of its entries.

Define now a map ¢ : G/B — GL(2n,C)/V(2n) by :({g)8) = (g)v. This is imme-
diately checked to be injective. Let # = 07" € Wg and n+ = o}rh € WL c 2(2n).
Then i({x(QL}, (2r)Q N G))B) = (An(QLL,(20)Q N G)Q)y = (LY, (2n))v Ni(G/B) =
(VE)y Ni(G/B) = (QQVQxQ)y Ni(G/B) = (AQVL N G)rQ)y = i((Bx)s). Thus,

(4.20) (Br)p = (x(TF; (2n) N G))5.

This shows that the Bruhat cell By = (B)p is the slice of ch(r) obtained by setting equal

to zero those coordinates z;; for which #*(2) > #%(j).

(IV.10) Proposition: B, N JHess(p, A) is a (quasiprojective) subvariety of JHess(p, A)
which is analytically isomorphic to a C-affine space of dimension

(4.21) Ej(m) = card {(i,j) € I] - 17, | () < 1’r+(j)} :

Proof: The proof is essentially identical to that of [17, Proposition (V.1)]. Therefore, we

only give an outline of it.
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Consider the mapping { fi';)}(a,ﬂ)e 1, obtained by restricting { fi;)}(a,ﬂ)e 1z, from
ch(r) to Bx = (Br)p. As in [17], one sees that .3 vanishes identically if and only
if #+(a) > 7+(B). Next, if X = (zi;) € L*(2n) is such that (rX)p € By, equations
fc(!';)(X) =0, #t(a)<#t(8), (a,B)€ I],, determine all the z,,’s for which (g,v) €
I, and 7+ () < 7*(v) as polynomial functions of the =;;’s for which (i) € IJ — IJ
and 7#+(i) < 7t(j). W
We refer to E;,’ () as the p** symplectic Eulerian dimension of m.

(IV.11) Definition: For p<2n and k =1,...,np— [p?/4] + 1, we define the generalized
symplectic Eulerian numbers of height p by

(4.22) Cu(p, ) = card {w € Wg | Ej(r)=k-1}.

For justification of this terminology, see Section VIL.
For the next theorem, we use the following result of A.H. Durfee [27):

Theorem (Durfee): Let X be a smooth complex projective variety. Suppose that X is a
finite disjoint union X; U...U X, where the X; are smooth contractible quasiprojective

subvarieties. Then
be(X) = card{X; | 2(dim X;) = k},

where bi(X) denotes the k** Betti number of X.

(IV.12) Theorem: Let A € Reg(sp(n, C)). Then for p > 1,

b2i+1(JHess(p, A)) =0
beox(JHess(p, A)) = Cun(p, k + 1).

Le., the odd Betti numbers of JHess(p, A) vanish, while the even Betti numbers are gen-
eralized symplectic Eulerian numbers of height p.

Proof: Readily follows from (IV.10) and Durfee’s Theorem. B
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V. D, -type Hessenberg Varieties

Let G denote the identity component of the group of linear transformations preserving

the symmetric bilinear form on €*" defined by the matrix

L=(? g)

Thus,
(5.1) G ={X e GL(2n,©) | XLX =L, detX =1},
and the Lie algebra g of G is

(5.2) g={X egl(2n,0) | XL+ LX =0}

= {(g _QA) | B,C € sofm, a:)},

a semisimple Lie algebra of the classical type Dy,. An explicit isomorphismw : so(2n, €) —

g is given by w(X) = S71X S, where

I I
5= (z‘I —z'I)'

We make the standard choice of Borel subalgebra, namely
(5.3) b= Qu(2r)2Ng

={(g _'s,u)luEU(n), s€so(n,®)}.

A Cartan subalgebra contained in b is

(5.4) s = Z C(Eii — Enyinti)
=1
The corresponding root-system is
(55) Dn: f{ej—ei|1<ji<n, i#j}U{(ej+e)|1<j<i<n).
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The root-spaces and heights of the roots (with respect to the base determined by b) are
as follows: The root e; — e; has root-space C(Ej; — n+i,n+j) and height ¢ — j; the root
¢j + ¢ has root-space C(Ein+j — Ej n+i) and height 2n — (i + j); the root —e; — e; has
root-space ©(En+i,j — Entji) and height (i +j) — 2n.

It follows immediately from Definition (III.1) that the p** Hessenberg subspace of g

relative to b is given by

(56) hy(b,g) = {(" _“",h) | k€ Hy(n), s €s0(n, @), z€ g;} ,

4

where

g;:-'—{Z=(z,-_,-)€so(n,®)Iz.-_,'=0ifi+j<2n—p}.

Observe that if H, € hy(b,g), then Hp € Hp41(2n).
Let B be the connected Lie subgroup of G with Lie algebra b. Le.,

(5.7 B=QV(2n)QNnG
= {(8 g::f.l) I u € V(n), s€ so(n, C)} .

Let LFlag(n) denote the subvariety of Flag(2n) consisting of those flags which are isotropic
with respect to L—i.e., for which St = Sapn_i, ¢ =1,...,n, where orthogonals are taken
with respect to L. Let LFlagg(n) denote the component of LFlag(n) containing the element
(v (2n). G acts transitively on LFlagg(n), and B is the stabilizer of (Q)v(2s). Thus,
G/B is identified with LFlago(n). In this identification, (9)B is identified with the flag
TyC... C Ty C To41 C ... C Ton-1, where Tj is the span of the first ¢ columns of g if

i < n, and the span of the first n and last ¢ — n columns of gif i > n.

The condition AX = XH,, A € g, Hy, € hy(b,g), can be rewritten as A(XQ) =
(X)H,, and so we see that (T1,...,T2n—1) € LFlagy(n) is an element in the Dy-type
Hessenberg variety of height p, LHess(p, A), if and only if

p+1 ifmax(l,n—p)<i<n

(5.8) AT; C Tigp(i)s (i) = { p otherwise.

25



Remark: The fact that the “shift” p is now varying reflects the structure of the D, -type

root-system and its height function.

The Wey! group of G is isomorphic to the group of conjugations of s by elements of
the form o 7! (see (4.3),(4.4)), where now € € Z, the subgroup of Z, consisting of those

elements with an even number of negative signs. We put
(5.9) Wg = {aj"rh ‘ e€Z., TE E(n)} c GNXE(2n).

Let now

(5.10) L=I*2n)NG = {(,1_113 ‘19'1) | le L*(n), sé€ so(n, (D)} .

Then the sets
(5.11) ch(m) = {(x¥)5 |V € L}, weWs

give rise to a system of analytic charts for G/B.

From now on we assume that A is a regular element in s. This amounts to saying

that A has the form
(5.12) A =diag( A1,y An, —A15-- 1 =An), AiEAj#0, Vi # j.

Let X € L+(2n) be such that X € L. Then if # € Wg, (rX)p € LHess(p, 4) if and only
if

(5.13) (x1Am)X = XH,,  Hp € hy(g) C Hp41(2n).
If # = o} 7Y, then
(5'14) (W—IA”) = diag(l"h sevy ”2'8) = p,

where g = €,(j)Ar() for ¢ < n, and p; = —€r(d(i)) A r(d(i)) for ¢ > n. (As in Section IV,
dla) =2n+1-a) f Hy=(hij), Hp€ hy(g), then

h;,-=0if(i,j)€M-—'={(p,u)I1_<_V<p52nandi+j=2n+lori—j>P(i,j)}
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where

(5.15) p(,-,j)={p+1 fl<j<nandn+1<i<2n

P otherwise.

Thus we obtain the following
(V.1) Proposition: Let X € L*(2n) be such that X € L, and let * € Wg. Then
{rX)5 € LHess(p, A) if and only if f5(X) =0,V (a,f) € M.

Let now

(X 0
X = ( Zl Xz) € L+(2n).

Then X € L if and only if
(L1) X16X,0 =1
(L2) X16Z € so(n, T).

These conditions are equivalent to the set of equations

imj—1
(L1)(5,5)  =ij + Tagyay + ), Ti-t,iTaGi—d(s) = 0
t=1
n—j n—g
(L£2)(3,5) (zd(,-).- + Z xj+t,j$a(j+t).') + (xd(i)j + Z w.‘+t,i=vd(i+t)j) =0
t=1 t=1
for all pairs (¢,5) with 1 < j <: < n, and
n-—§
(L2)'(3) Ta()i + Z Titt,iZd(i+t)i = 0, 1<:<n.
t=1

As in Section IV, we obtain equivalent formulations of (L1),(L2), namely:
(V.2) Lemma: Let X = (z;;) € L*(2n). Then

(i) (L1) holds if and only if z;; = —g4¢j)ai(X), 1< j <t < n, which holds if and
only if zg4(jyat) = —9ij(X), 1<j<i<n.

(i) If (L1) holds, then (L2) holds if and only if zag); = —ga(ji(X), 1<j<i<n,
which holds if and only if z4(j); = —gai);(X), 1<j<i<n.
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(111) If both (Ll) and (L2) hold, then Za(i)i = —gd(,-),-(X) for: = 1, S (B In particula.r,
Tn+l,n = 0.
From the above lemmas, one derives the following:

(V.3) Proposition: Let X € L*(2n) be such that X € L. Then
FPX) = —fhnX), 1<ji<is<on

In particular, fori =1,...,n—1, f,z‘,)).(X) =

Put §os(X) = (1/2) Z::lﬂ_l E:‘,DF‘>ﬂ(—-1)t:r:,,,,71 -+-z,p. Then the relation z4(;); =
—ga(i)i(X) can be written as z4(;)i = —da(i)i(X) where now, on the righthand side, there
is no dependence on z4(;);. Thus, a matrix X € L¥(2n) such that X € L can be thought

of as having free variables with indices

(5.16) (a,ﬂ)eI,f‘é{(i,j)|1$j<z'$2n, i+j<2n+1}.
Let
(5.17) Ity = {G) € IF [i-3 > PG}

(V.4) Corollary: Let X € L*(2n) be such that X € L, and let 7 € Wg. Then (rX)p €
LHess(p, ) if and only if f5(X) =0, V(a,8) €1,
Remark: The set IX — I | has cardinality min(p,n — 1) + p(n — 1) — [p?/4].
(V.5) Theorem: Let A € Reg(g). Then for p > 1, LHess(p, A) is a smooth submanifold
of LFlagy(n) of dimension min(p,n — 1) + p(n — 1) — [p?/4].

The proofs of (V.1)~(V.5) are easy modifications of the arguments used in Section IV

to prove the corresponding results; hence we omit them. For the same reason, we only

outline the proof of the following
(V.8) Theorem: If A € Reg(g), then for p > 1, LHess(p, A) is connected.
Sketch of Proof: As for the C, case, one shows that for 7 € Wg, ch(w) N LHess(p, A) is

contractible and hence connected. To prove the theorem, it is enough to show that

(5.18) ch(w) N ch(nw) N LHess(1, 4) # 0
(5.19) ch(m) N ch(vrr,-h) N LHess(1,A) # 0, i=1,...,n—1,
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where w = aa,...,l,—x,—1)rﬂ—1’ and as before, ; € £(n) is the adjacent transposition which
interchanges ¢ and ¢ + 1.

The proof of (5.19) is essentially identical to that of (4.18). To prove (5.18), let
X = (zi;) € L*(2n) be defined by

-1 if (4,§) = (n +2,n) = (d(n — 1),d(n + 1))

0 otherwise.

. {1 if (i,7) =(n+1,n—1)
zi; =

Then (vX)p € LHess(1, A) for all 7 € Wg, and the flag (X)p is fixed by w-i.e., (wX)p =
(X)p. Therefore, (rX)p = (rwX)p, proving (5.18). W

Arguing as for the Cy, case, it is easy to see that a Bruhat cell By = (Bw)g, =€ W,
can be written as (W(MDG» B, and it is therefore the slice of ch(w) obtained by setting
equal to zero all the entries z;; for which 7(3) > #(j).
(V.8) Proposition: Let By be a Bruhat cell of G/B. Then B N LHess(p, A) is a
(quasiprojective) subvariety of LHess(p, A) which is analytically isomorphic to a C-affine

space of dimension

(5.20) EL(r) = card {(i, eIt -1t | #6) < Tr(j)} :

(V.9) Definition: For p < 2n and k = 1,...,min(n — 1,p) + p(n — 1) — [p?/4] + 1, we
define the generalized Eulerian numbers of type Dy, and height p by

(5.21) Du(p, k) = card {1r € Wg | E,f‘(ﬂ') =k— 1} .

(V.10) Theorem: Let A € Reg(g). Then for p > 1,

bzk+1(LHess(p, A)) =0
bai(LHess(p, A)) = Dn(p, k + 1).
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V1. B,-type Hessenberg Varieties

Let G denote the identity component of the group of linear transformations preserving

the symmetric bilinear form on €*"*? defined by the matrix

00 6
(6.1) K=[0 1 0)eGL@n+1,0).
g 0 0
Thus,
(6.2) G={XeGLn+1,0) | KX =K, detX =1},

and the Lie algebra g of G is
(6.3) g={X egl(2n+1,0) | XK + KX =0}

= {X € gl(2n+1,C) l Ts(iyee) = —Tij, 154,75 <2n+ 1} ,

where §(a) = 2n+2—a. g is a semisimple Lie algebra of the classical type B,. An explicit
isomorphism w : so(2n + 1, €) — g is given by w(X) = T~1XT, where

I 0 6
T=[0 V2 0 }.
iI 0 -—if

Remark: Alternatively, the bilinear form could be defined by the matrix

(o0 I
E=l010],
I 00

which more closely resembles the matrices J and L in Sections IV and V. However, the

use of K conveniently simplifies the notation in the case B,,.

We make the standard choice of Borel subalgebra, namely

(6.4) b=V(2n4+1)Nng.
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Le., b consists of the upper-triangular elements of g. A Cartan subalgebra contained in b

is

(6.5) s = i C(Eii — Esi)s(5))-

=1

The corresponding root-system is

(66) Bn: {ej—ei|1<iji<n, i#i}U{(e;+e)]1<i<i<n)

U{txei|1<i<n}.

The root-spaces and heights of the roots (with respect to the base determined by b) are
as follows: The root e; — e; has root-space C(Ej; — Es(;)s(j)) and height i — j; the root
e; + e; has root-space C(Ejs(;) — Ejs(j)) and height §(i+ j); the root —e; — e; has root-space
C(Es(iy; — Es(j)i) and height —6(i+j); the root e; has root-space C(E; 541 —E,41,5(:)) and
height n + 1 —4; the root —e; has root-space €(En+1,i ~ Es(i),n+1) and height i — (n + 1).

It follows immediately from Definition (IIL.1) that the p'* Hessenberg subspace of g

relative to b is given by
(6.7) ho(b,g) = {X € g |2 =0, Vi~j>p}.

Le., hy(b,g) = gNH,(2n +1).

Let B be the connected Lie subgroup of G with Lie algebra b. Le., B=GNV(2n+1).
Let KFlag(n) denote the subvariety of Flag(2n + 1) consisting of those flags which are
isotropic with respect to K-i.e., for which §§* = S3n41-i, ¢ =1,...,n, where orthogonals
are taken with respect to K. G acts transitively on KFlag(n), and B is the stabilizer of
the flag sp{e1} C --- C sp{e1,...,e2n}. Thus, G/B is identified with KFlag(n). In this
identification, (g)p is identified with the flag Ty C --- C Tb,, where T; is the subspace
spanned by the first ¢ columns of the matrix g. Notice that there is no reversal of the
order of the last n columns of g, as was the case for JFlag(n) and LFlag(n). (If K had
been used to define the bilinear form in place of K, then the identification of G/B with
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KFlag(n) would reverse the order of the last n columns of g.) From Definition (IIL.2) and
(6.7), it follows that the By,-type Hessenberg variety of height p is given by

(6.8) KHess(p, 4) = {(Tl,...,Tz,,) € KFlag(n) | AT: € Tiyyp, ‘v’i}.

The Weyl group of G is isomorphic to the group of conjugations of s by elements of

the form
Si(e) 0 S_(e)f T 0 0
(6.9) afr":(—l)‘( 0 1 0 )(0 1 0 )
6S_(e) 0 6S;i(e)f 0 0 0r¢

where € € Z,, 7 € X(n), S4(¢), S-(¢) are defined as in (4.2), and (—1)¢ is minus one if €

has an odd number of —1 entries and plus one otherwise. We put

(6.10) Wo = {o?r® | €€ Za, TER(M)} CENE@n+1).
Let now
(6.11) L=L*2n+1)NG.

Then the sets

(6.12) ch(m) = {(xY)5 | YeL}, neWs

give rise to a system of analytic charts for G/B.
Let X € L. If # € Wg, then (X)p € KHess(p, A) if and only if
(6.13) (v7'Ar)X = XH,, H, € hy(g).
It is easy to see that if 7 = 0%7? and A is the regular element
A =diag(A1,.. 30,0, =Ap,...,=A1), AitAj#0, Vi#j,

then

(6.14) 7 Ar = diag(v1,...,Ven41) = v,
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where v; = €,(j)Ar(i) for i < n, vpyy =0, and v; = —€7(8(i)) Ar(é(iy) for ¢ > n 4+ 1. Hence

we obtain

(V1.1) Proposition: Let X € L, * € Wg. Then (xX)p € KHess(p, A) if and only if
F(X)=0,Y a=B>p.

Let now
X; 0 0
X=|% 1 0 }eLt?@n+1).
pA u Xz
Then X € L if and only if
(K1) X.6X; =6
(K2) v+ X10u=0
(K3) Z0X: +vv+ X10Z =0.

These conditions are equivalent to the set of equations

i—j—1
(K1)(,5) zij + Z55)8¢i) + Z Ti—t,iTs(i-1)6(i) = 0, 1<j<i<n
=1
(K2)(2) Trt1,i + To(i),n+1 + Z Titt,iTsii+e)nt1 =0, 1<i<n

n— n—j
(K3)(3,4) ("’5(01 + Z Titt '3’6(=+t)1) ("’5(J)t + Z $J+t,J$6(J+t)=)

t=1

+ Tn41,iTo41,; = 0, 1<

Similarly to the cases C,, and D, one obtains the following equivalent formulations:
(V1.2) Lemma: Let X = (z;;) € L*(2n 4 1). Then

(i) (K1) holds if and only if z;; = —gs(;)s(:)(X), 1 <Jj < i< n, which holds if and
only if zs(j)s;) = —9ij(X), 1<j<i<n.

(ii) If (K1) holds, then (K2) holds if and only if Zp41,i = —gs(i),n4+1(X), 1<i<n,
which holds if and only if z53) n41 = —gn+1,i(X), 1<i<n.
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(iii) If (K1) holds, then (K3) holds if and only if zs(s); = —gs(jpi(X), 1<j<i<n,
which holds if and only if z4(;); = —gs(:);(X), 1<j<i<n.
(iv) (K1), (K2) and (K3) hold if and only if z;; = —gs(js;)(X), 1<j<i<2n+41.
From the above lemmas, one derives the following
(V1L.3) Proposition: If X € L, then for all pairs (i,j) with 1 < j < ¢ < 2n + 1,
(X)) = — £ )55 (X). In particular, for i =1,...,n, f5:(X) =o0.

Put now

Ifé{(i,j)|15j<i52n+1, i+j$2n+1}
(6.15)

1%, = {,j) e IX |i-j>p}.

From (VI.1) and (V1.3), we obtain the following

(V1.4) Corollary: Let X € L, * € Wg. Then (7X)p € KHess(p, A) if and only if
(X)) =0,¥ (o, 8) € IX,. ’

Remark: card(IX — IX,) =np—[p*/4].

(VL.5) Theorem: Let A € Reg(g). Then for p > 1, KHess(p, A) is a smooth submanifold
of KFlag(n) of dimension np — [p?/4].

(V1.6) Theorem: If A € Reg(g), then for p > 1, KHess(p, A) is connected.

Sketch of Proof: As for the Cy and Dy, cases, one shows that for # € Wg, ch(x) N
KHess(p, A) is contractible and hence connected. Thus, it is enough to show that for all

n € Wg,
(6.16) ch(m) N ch(wqf(n)) N KHess(1,A4) # 0
(6.17) ch(m) N ch(xf) N KHess(1, A) # 0, i=1,...,n—1,

where e(n) = (1,...,1,—1) and 7; € X(n) is the adjacent transposition which interchanges

tand ¢4 1.
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The proof of (6.17) is essentially identical to that of (4.18). To prove (6.16), let
X = (z;;) € L*(2n + 1) be defined by

V2 if (¢,7) = (n +1,n)

2 f(5,))=(n+2,n+1)
-1 if (1,7) =(n+2,n)
0 otherwise.

Tij =

Then {(vX)p € KHess(1, A) for all # € Wg. Next, let b be the element of B given by

v w —wwhul4/2
b=10 1 w9 |,
0 0 ATy

where u = diag(—1,...,—1,1) and w = 90,...,0,—~+/2]. Then it is straightforward to
check that o )Xb €L m

e(n

Arguing in the usual way, one sees that a Bruhat cell By = (Bx)g, * € Wg, of G/B

can be written as (v(L¥, N G))B, where if # = g7, 7+ = (—1)*r. We put
(6.18) wg = {x* | TEWg}.

Thus, By is the slice of ch(7) obtained by setting equal to zero all the entries z;; for which
xt () > 7 t(j).

(VL.7) Proposition: Let B, be a Bruhat cell of G/B. Then By N KHess(p, A) is a
(quasiprojective) subvariety of KHess(p, A) which is analytically isomorphic to a C-affine

space of dimension
(6.19) EX(r) = card{(i,j) € IK - IK, | 7+()) < 7*(5)} .

(VI1.8) Definition: For p < 2n and k = 1,...,np — [p?/4] + 1, we define the generalized
Eulerian numbers of type B, and height p by
(6.20) Ba(p, k) = card {r € Wo | EX(r)=k-1}.
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(VI1.9) Theorem: Let A € Reg(g). Then for p> 1,

bak+1(KHess(p, A)) =0
b2k (KHess(p, A)) = By(p, k + 1).

VII. Generalized Eulerian Numbers
Let 0 € X(n). Then, o is said to have a fall (or descent) at ¢, 1 < i < n-—1,if
o(i) > o(i +1). The total number of falls in o is evidently E)(0), the first Eulerian

dimension of 0. (See Theorem (I1.3).) The numbers
A(n,k) = card{a € X(n) I Eiy(o)=k— 1}

are the well-known Eulerian numbers, which occur in a variety of combinatorial problems.
(See e.g., [29,30].)

The fact that the numbers {A,—1(p,k)} as defined in (2.7) coincide with {A(n,k)}
for p = 1 is our primary motivation for referring to {An,—1(p, k)} as generalized Eulerian
numbers. We observe that the numbers A,,—1(p, k) are also well-known in the case p = n—1.
Indeed, for p =n — 1, E,_;(0) is the number of inversions in o, an inversion being a pair
(3,j) with 1 < j < i £ n and o(f) < 0(j). Thus, {As—1(n — 1,k)} coincide with the
so-called Mahonian numbers (see e.g., [31]), which are best-known as the coefficients in
the expansion of (1 +t)(1 +t +12)---(1+t+...+t""!). However, to the best of the
authors’ knowledge, the numbers {A,—1(p,k¥)}, 1< p < n —1, have not been studied in

the literature.

In this section, we show that the numbers A,_1(p, k), Ba(p, k), Cu(p, k) and D, (p, k)
as defined in the previous sections admit a unified interpretation as statistics on (reduced)
root-systems, thereby justifying Definition (VIL1) below. Next, we give some explicit
formulas for Cy(1,k) = Ba(1,k). The similarity of the obtained formulas with the cor-
responding ones for the classical Eulerian numbers is striking. In particular, we discover
that these numbers are f-Eulerian in the sense of Stanley [20], with f(s) = (25 + 1)".
(VIL.1) Definition: Let ® be a reduced root system with Weyl group W, and let &+

(respectively, @) be the set of positive (respectively, negative) roots with respect to some
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fixed basis A. Let h(-) be the height function on & with respect to A. Let w € W. We

define the pt* Eulerian dimension of w by

(7.1) Ef(w) = card{a € ot I h(a) <p, w(a)€ <I>"} ,
and the generalized Eulerian numbers of height p on ® by

(7.2) &(p, k) = card{w eEW ' E:’(w) =k— 1} .

Remark: A comparison of the data for B, and C}, in the Appendix reveals immediately
that, in general, two different root systems with isomorphic Weyl groups have different

generalized Eulerian numbers.

(VIL.2) Theorem: For & of type An—1, By, Cy, and D,,, the generalized Eulerian numbers
as defined in (2.7), (6.20), (4.22) and (5.21) respectively coincide with those defined in (7.2).

Proof: For A,_1, this is Proposition (II1.3).

Case B,: Let ® be as in (6.6). Then W is the group of n X n signed permutation matrices.
Let WJ be as in (6.18) and define the bijection % : Wi — W, wherefori=1,...,n,

N K ax (i ifl<at@@i)<n
() = { —égw)"'(i)) otherwise(. )
(Note that n+(8(:)) = §(z*(3)). In particular, 7+ (n+1) =n +1.)

Next, if IX and I,{fp are as in (6.15), for (i,j) € IX put

ej ~ €; ifi<n
a,‘jé €; ifz=n+1

e; + esi) ifi>n+1.

Then (3,j) — ajj is a bijection of IX onto &*, and it is tedious but trivial to verify
that h(a;;) < p if and only if (i,j) € IK — I,I,{,P, and Y(nt)(ai;) € @~ if and only if
7+ () < 74 ().

Case C,: Let ® be as in (3.4). Then W is again the group of n x n signed permutation
matrices. Let W¢ be as in (4.5). As usual, W} denotes QW2 ). Define the bijection
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p: WS — W, wherefori=1,...,n,

vy« ®E() f1<at(@)<n
$(EE) = {td('i?'*(z)) otherwise.
(Note that #1(d(2)) = d(71(¢)).)
Next, if I} and I} , are as in (4.14), (4.15), for (3,5) € I}, put

=\ ej+eqy 1<) <n<i<dj)

Then (3,§) — «ij is a bijection of IJ] onto ®*+. Furthermore, h(a;;) < p if and only if
(i,5) € I] — I] ,, and $(7*)(ai;) € @~ if and only if (i) < #*(j).

Case D,: Let ® be as in (5.5) Then W is the group of n x n even-signed permutation
matrices. Let Wg be as in (5.9). As usual, W denotes QWgQ. Define the bijection
Y: Wg — W, wherefori =1,...,n,

w00+ (S S0

Next, if IX and I\, are as in (5.16), (5.17), for (i,j) € I%, put

. fei—ei ifl<j<i<n
dij = €; + ea(s) if1$j<n<i<d(j).

Then (i,5) — «;; is a bijection of I} onto ®*. Furthermore, h(«;;) < p if and only if
(i,5) € I} — I% ,, and ¢(7)(ai;) € @~ if and only if #(i) < %(j). W

Remark: In the very special case where the root system is of type A,—; and p = 1, Theo-
rem VIL.2 gives the following characterization of the classical Eulerian numbers {A(n, k)}:
A(n, k) is equal to the number of permutations on n letters which map exactly k—1 simple

roots to negative roots. Although this fact is rather obvious, we were not able to locate it

in the literature.

Remark: It follows from Theorem VIL.2 that Cyn(1,k) = B,(1,k). Indeed, the root
systems of types By, and C, have the same Weyl group, and the sets of simple roots are,

respectively, {e; —ei+1 |1 <i<n—-1}U{e,} and {&; —€i41 |1 <1 <n—1} U {2e,}.
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Remark: For the classical linear Lie algebras, we now have three characterizations of the
p** Eulerian dimension of an element of the Weyl group, and hence of the corresponding
generalized Eulerian numbers as well-one which is purely combinatorial, a second which
is Lie algebraic, and a third which is topological. For example, in the case of sp(n, €), the
p'* symplectic Eulerian dimension of 7 € Wg is defined combinatorially (see (4.21)) as

E](r) = card{(1,§) |1<j<i<2n, i+j<2n+1, i—j<p, 7@ <7(j)).

Equivalently, E,;’ (7) can be characterized Lie algebraically (see the proof of Theorem VII.2)
as the number of positive roots of height at most p which are taken to negative roots by the
corresponding element 1(#%) in the Weyl group W. Topologically, EI‘,’ () is characterized
as the dimension of the intersection of the Bruhat cell B, with the variety JHess(p, A),
for any regular A € s. These three characterizations of EJ(w) yield three corresponding
characterizations of the generalized Eulerian numbers {Cy(p, k¥)}. In particular, the topo-
logical characterization of these numbers is as the (even) Betti numbers of JHess(p, A)
(Theorem IV.12)). Similar statements apply to the Eulerian dimensions and generalized

Eulerian numbers for the other three classical cases—A, -1, By, and D,,.

The topological characterization of the generalized Eulerian numbers in the classi-
cal cases enables us to obtain a result concerning unimodality. A sequence of numbers
ag,...,ay, is said to be unimodal if a0 < ... < apnyy and @41 2 ... 2 a,. Tt is
symmetric if ax = an—;.

(VIL3) Theorem: If @ is a reduced root system of classical type, then the generalized
Eulerian numbers of height p on ¢ are unimodal and symmetric.

Proof: From the results in Sections II, IV, V and VI, we know that the generalized
Eulerian numbers {®(p, k)} are the even Betti numbers of an appropriate p** Hessenberg
variety, a smooth, connected, compact complex projective variety. By Poincaré duality, the
sequence is symmetric. It follows from a result of Stanley [19] (applying the hard Lefschetz
theorem for nonsingular irreducible projective varieties) that the even Betti numbers form

a unimodal sequence. B

We now examine in more detail the properties of the generalized symplectic Eulerian
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numbers of height one. There is a rather striking similarity between these properties and

those of the classical Eulerian numbers.

(VIL4) Proposition: The numbers Cy(1, k) satisfy the recurrence relation
(7.3) Cn(1,k) = (2k — 1)Crn-1(1,k) + (2n — 2k 4+ 3)Cr—1(1,k —~ 1).

Proof: Let W2 (n) be as in (4.5), where we now make explicit the sizen. If o0 = Qo} Q2 €
WZ(n), then for 1 <i<n,

~ _ [ 7(2) if e,y =1
o(i) = {d('r(i)) if €,y = —1

a(d(z)) = d(a(3)).

For j =1,...,2n, we define maps n; : Wg(n—1) = WZ(n) as follows: If 0 € W (n—1),
then 7;(o) is obtained from o by inserting the values 0 and 2n — 1 in ¢ at positions j and
d(j) = 2n + 1 — j respectively, and then adding 1 to each of the 2n values. (For example,
if 0 = (5,1,4/3,6,2) € WZ(3), then (o) ='(6,1,2,5I4, 7,8,3).) Such maps are clearly
injective, and U2, n;(Wd(n - 1)) = W (n) or, equivalently, ni(Wa(n-1)Nn;(Wt(n -
1)) = 0 whenever i # j.
Let now 0 € W(n—1) and 1 < j < n. Then
E{(0) ifj=1

E{(nj(0)) = {Exj(ﬂ) if j >1and o(j —1) > o(j)
El(0)+1 ifj>1and o(j —1) < o(j)

El(o)+1 ifj=1
E{(nagj)(9)) = { E{(0) if j >1and o(j — 1) > o(j)
El(c)+1 ifj>1ando(j —1)<a(y).
Hence,
card{j |1<j <2n, Ei(nj(0)) = E{(0)} = 2E{ (o) +1
card{j |1<j <2n, Ej(1j(0))=Ej(c)+1}=2(n—-E{(s)) -1
Fix k. All the ¢ € W (n — 1) for which E{(¢) = k — 2 will be mapped, under the various
15’8, into [2(n — (k—2))—1]Crn-1(1,k—1) = (2n —2k 4+ 3)Cp_1(1, k— 1) elements in W} (n)
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with E{ equal to k — 1, and all the elements o € Wg(n — 1) for which E{(0) =k —1 will
be mapped into [2(k — 1) + 1]Cpn—1(1, k) = (2k —1)Cn-1(1, k) elements in WZ(n) with E{
equal to k — 1. This implies (7.3). &

Remark: For the classical Eulerian numbers A,,—1(1,k), the corresponding recurrence

relation is

Apoi(1,k) = kAna(1, k) + (n = k+1)An_z(1,k —1).

(VIL5) Proposition: The exact value of the numbers Cn(1,k) is

k-1 41l
(7.4) Cn(1,k) = Z(—l)’( ; )(Zk —2j —1)".

=0
Proof: The recurrence relation (7.3) together with Ci(1,1) = C1(1,2) = 1 determines all
the numbers {Cn(1,k)}. Now, for k = 1, the righthand side of (7.4) is equal to 1 for any
n. It is also equal to 1 if k = 2 and n = 1. Thus, it suffices to show that the righthand

side of (7.4) satisfies the recurrence (7.3). This is an elementary exercise.

Remark: The exact values of the classical Eulerian numbers are given by

Aoa(1, B = 31 ("I

j=0 J
(VIL.6) Proposition: If Cp1(z) = it Ca(1, k)z*, then

(7.6) Caa(z) = A —2)"* ) (25 +1)"z*+1.

=0
Proof: A classical result in the calculus of finite differences (see e.g., [20]) is that if
f: N = € and n € N (where N denotes the nonnegative integers), then f(s) is a
polynomial in s of degree at most n if and only if (1 —z)"*+1 3 2 | f(s)z* is a polynomial
in = of degree at most n.

Consider now the degree n polynomial function f(s) = (2s+1)". Then

(1-=2)"* ) fo)z

=0
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is a polynomial in z of degree at most n, and we have

a=0 J=0

0o n+l o
e () ()

n+1 [ k-1 ; n+1 - . i
=Z{Z(—1)( ; )(2k-—2]——1) }z"

k=1 { j=0

n+1
= Z Cn(l, k)xk—l.
k=1

Thus, Cp1(z) = z(1 — )1 Y 22, f(s)z*. W

Remark: For the classical Eulerian polynomial A,—1,1(z) = Y 5, An-1(1,k)z*, we have

Ap_1a(z)=(1- :1:)"+‘1 is"m’.
8=0

Remark: In [20], Stanley has introduced the following terminology: f f: N— €, n€ N
and Y52, f(s)z* = P(z)/(1 — z)**!, where the polynomial P(z) has degree at most n,
then the coefficients of P(z) are called f-Eulerian numbers. Thus, the numbers Cy(1,k) =
B,(1,k) are (2s + 1)"-Eulerian numbers.

Tables of the first values of the numbers An—1(p, k), Bn(p, k), Cn(p, k) and D,(p, k)
are included in the Appendix.

Acknowledgement: We would like to thank Philip Hanlon for computing the tables of
generalized Eulerian numbers in the Appendix. Also, we would like to thank both he and
Robert Proctor for useful suggestions.

References

[1] G.H. Golub and C.F. Van Loan, Mairiz Computations, John Hopkins Univ. Press,
Baltimore, MD, 1984.

[2] R. Hermann, Cartenian Geometry, Nonlinear Waves, and Control Theory, Part A,
Math Sci Press, Brookline, 1979.

42



[3] G.S. Ammar and C.F. Martin, “The geometry of matrix eigenvalue methods,” Acta
Aplicandae Mathematicae, 5 (1986), 239-278.

[4] M. Shub and A.T. Vasquez, “Some linearly induced Morse-Smale systems, the QR-
algorithm and the Toda lattice,” Contemp. Math, 64 (1986), 181-194.

[5] L.E. Faibusovich, “Generalized Toda flows, Riccati equations on Grassmann manifolds
and QR-algorithm,” Functional Analysis and Its Applications, 21 (1987), 88-89. (In
Russian)

[6] G.S. Ammar, “Geometric aspects of Hessenberg matrices,” Contemporary Math., 68
(1987), 1-21.

[7] R. Steinberg, “Desingularization of the unipotent variety,” Invent. Math., 36 (1976),
209-224.

[8] T.A. Springer, “A construction of representations of Weyl groups,” Invent. Math., 44
(1978), 279-293.

[9] N. Spaltenstein, “The fixed point set of a unipotent transformation on the flag mani-
fold,” Proc. Kon. Akad. Wetensch. Amsterdam, 79 (1978), 452-456.

[10] R. Hotta and N. Shimomura, “The fixed point subvarieties of unipotent transforma-
tions on generalized flag varieties and the Green functions—combinatorial and coho-
mological treatments centering GL(n),” Math. Ann., 241 (1979), 193-208.

[11] N. Shimomura, “A theorem on the fixed point set of a unipotent transformation on
the flag manifold,” J. Math. Soc. Japan, 32 (1980), 55-64. -

[12] N. Spaltenstein, Sous-groupes de Borel Contenant un Unipotent Donné, Lecture Notes
in Math. 948, Springer, New York, 1982.

[13] N. Shimomura, “The fixed point subvarieties of unipotent transformations on the flag
varieties,” J. Math. Soc. Japan, 37 (1985), 537-556.

[14] U. Helmke and M.A. Shayman, “The biflag manifold and the fixed points of a unipo-
tent transformation on the flag manifold,” Linear Alg. Appl., 92 (1987), 125-159.

[15] C. De Concini, G. Lusztig and C.'Procesi, “Homology of the zero-set of a nilpotent
vector field on a flag manifold,” J. Amer. Math. Soc., 1 (1988).

[16] F. De Mari, On the Topology of the Hessenberg Varieties of a Matriz, Ph.D. thesis,
Washington University, St. Louis, Missouri, 1987.

43

#



[17] F. De Mari and M.A. Shayman, “Generalized Eulerian numbers and the topology of
the Hessenberg variety of a matrix,” Acta Aplicandae Mathematicae, to appear.

[18] R. Byers, “A Hamiltonian QR-algorithm,” SIAM J. Sci. Stat. Comput., 7 (1986),
212-229.

[19] R.P. Stanley, “Weyl groups, the hard Lefschetz theorem, and the Sperner property,”
SIAM J. Alg. Disc. Meth., 1 (1980), 168-184.

[20] R.P. Stanley, Enumerative Combinatorics, Vol I, Wadsworth and Brooks/Cole, Mon-
terey, 1986.

[21] L. Carlitz, “Eulerian numbers and polynomials of higher order,” Duke Math. J., 27
(1960), 401-423.

[22] L. Carlitz and R. Scoville, “Generalized Eulerian numbers: combinatorial applica-
tions,” Jour. fir die Reine und Angew. Math., 265 (1974), 110-137.

[23] J. Dillon and D. Roselle, “Eulerian numbers of higher order,” Duke Math. J., 35
(1968), 247-256.

[24] D. Lehmer, “Generalized Eulerian numbers,” Jour. of Combin. Theory, Series A, 32
(1982), 195-215.

[25] D. Rawlings, “The r-major index,” Jour. of Combin. Theory, Series A, 31 (1981),
175-183.

[26] H. Hiller, The Geometry of Cozeter Groups, Pitman, London, 1982.

[27] A.H. Durfee, “Algebraic varieties which are a disjoint union of subvarieties,” in Geom-
etry and Topology, Manifolds, Varieties, and Knots, (ed. C. McCrory and T. Shirfin),
Dekker, New York, 1987.

[28] A. Bialynicki-Birula, “Some theorems on actions of algebraic groups,” Annals Math.,
98 (1973), 480-497.

[29] L. Comtet, Analyse Combinatosre, Vol. 1& II, Presses Univ. de France, Paris, 1970.

[30] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

[31] D. Foata, “Distributions Eulériennes et Mahoniennes sur le groupe des permutations,”

in Higher Combinatorics (ed. M. Aigner), Reidel, Dordrecht, 1977.



Appendix: Tables of Generalized Eulerian Numbers

Ap, k) |1 2 3 4

1 |1 41

2 |12 21
As(p,k) |1 2 3 4 5 6 7
1 |1 11 111

2 |1 3 88 31
3 |1 3 56531

Apk)|1 2 3 4 5 6 7 8 9 10 11

1 1 26 66 26 1

2 |1 4 17 38 38 17 4 1
3 |1 4 9 10 271 27 19 9 4 1
4 |1 4 9 15 20 22 20 15 9 4 1
Bip,k)|1 2 3 4 5
1 |1 6 1
2 (1331
3 |12 221
Bi(p,k)|1 2 3 4 56 7 8 9 10
1 |1 23 23 1
2 |1 5 18 18 5 1
3 |1 3 7 13 13731
4 |1 3 5 91295 31
5 |1 3 5 7 88 75 1




Bp,k)[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 7 230 76 1
2 1 7 45 139 139 45 7 1
3 1 4 12 38 83 108 83 38 12 4 1
4 1 4 9 22 47 70 78 70 47 22 9 4 1
5 1 4 O 16 27 44 59 64 59 44 27 16 9 4 1
6 1 4 9 16 24 35 48 55 55 48 35 24 16 9 4 1
7 1 4 9 16 24 32 39 44 46 44 39 32 24 16 9 4 1
Cs(p,k)|1 2 3 4 5 6 7 8 9 10
1 1 23 23 1
2 1 4 19 19 4 1
3 1 3 6 14 14 6 3 1
4 1 3 6 910 9 6 3 1
5 1 3 5 7 88 753 1
Cip,b)|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 76 230 76 1
2 1 5 51 135 135 51 5 1
3 1 4 10 34 8 116 8 34 10 4 1
4 1 4 10 20 43 72 8 72 43 20 10 4 1
5 1 4 9 17 27 44 59 62 59 44 27 17 9 4 1
6 1 4 9 17 27 37 46 51 51 46 37 27 17 9 4 1
7 1 4 9 16 24 32 39 44 46 44 39 32 24 16 9 4 1
Dip,k)|1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 44 102 44 1
2 1 4 30 61 61 30 4 1
3 1 4 9 20 38 48 38 20 9 4 1
4 1 4 9 16 27 39 39 27 16 9 4 1
5 1 4 9 16 23 28 30 28 23 16 9 4 1




