ABSTRACT

Title of dissertation: GEOMETRIC REPRESENTATIONS AND
DEEP GAUSSIAN CONDITIONAL
RANDOM FIELD NETWORKS FOR
COMPUTER VISION

Raviteja Vemulapalli
Doctor of Philosophy, 2016

Dissertation directed by: Professor Rama Chellappa

Department of Electrical and Computer
Engineering

Representation and context modeling are two important factors that are criti-
cal in the design of computer vision algorithms. For example, in applications such as
skeleton-based human action recognition, representations that capture the 3D skele-
tal geometry are crucial for achieving good action recognition accuracy. However,
most of the existing approaches focus mainly on the temporal modeling and classifi-
cation steps of the action recognition pipeline instead of representations. Similarly,
in applications such as image enhancement and semantic image segmentation, mod-
eling the spatial context is important for achieving good performance. However, the
standard deep network architectures used for these applications do not explicitly
model the spatial context. In this dissertation, we focus on the representation and
context modeling issues for some computer vision problems and make novel contri-
butions by proposing new 3D geometry-based representations for recognizing human

actions from skeletal sequences, and introducing Gaussian conditional random field

model-based deep network architectures that explicitly model the spatial context
by considering the interactions among the output variables. In addition, we also
propose a kernel learning-based framework for the classification of manifold features
such as linear subspaces and covariance matrices which are widely used for image
set-based recognition tasks.

This dissertation has been divided into five parts. In the first part, we intro-
duce various 3D geometry-based representations for the problem of skeleton-based
human action recognition. The proposed representations, referred to as R3DG fea-
tures, capture the relative 3D geometry between various body parts using 3D rigid
body transformations. We model human actions as curves in these R3DG feature
spaces, and perform action recognition using a combination of dynamic time warp-
ing, Fourier temporal pyramid representation and support vector machines. Experi-
ments on several action recognition datasets show that the proposed representations
perform better than many existing skeletal representations.

In the second part, we represent 3D skeletons using only the relative 3D rota-
tions between various body parts instead of full 3D rigid body transformations. This
skeletal representation is scale-invariant and belongs to a Lie group based on the
special orthogonal group. We model human actions as curves in this Lie group and
map these curves to the corresponding Lie algebra by combining the logarithm map
with rolling maps. Using rolling maps reduces the distortions introduced in the ac-
tion curves while mapping to the Lie algebra. Finally, we perform action recognition
by classifying the Lie algebra curves using Fourier temporal pyramid representation

and a support vector machines classifier. Experimental results show that by com-

bining the logarithm map with rolling maps, we can get improved performance when
compared to using the logarithm map alone.

In the third part, we focus on classification of manifold features such as linear
subspaces and covariance matrices. We present a kernel-based extrinsic framework
for the classification of manifold features and address the issue of kernel selection
using multiple kernel learning. We introduce two criteria for jointly learning the
kernel and the classifier by solving a single optimization problem. In the case of
support vector machine classifier, we formulate the problem of learning a good
kernel-classifier combination as a convex optimization problem. The proposed ap-
proach performs better than many existing methods for the classification of manifold
features when applied to image set-based classification task.

In the fourth part, we propose a novel end-to-end trainable deep network archi-
tecture for image denoising based on a Gaussian Conditional Random Field (CRF)
model. Contrary to existing discriminative denoising approaches, the proposed net-
work explicitly models the input noise variance and hence is capable of handling a
range of noise levels. This network consists of two sub-networks: (i) a parameter
generation network that generates the Gaussian CRF pairwise potential parameters
based on the input image, and (ii) an inference network whose layers perform the
computations involved in an iterative Gaussian CRF inference procedure. Experi-
ments on several images show that the proposed approach produces results on par
with the state-of-the-art without training a separate network for each noise level.

In the final part of this dissertation, we propose a Gaussian CRF model-based

deep network architecture for the task of semantic image segmentation. This net-

work explicitly models the interactions between output variables which is important
for structured prediction tasks such as semantic segmentation. The proposed net-
work is composed of three sub-networks: (i) a Convolutional Neural Network (CNN)
based unary network for generating the unary potentials, (ii) a CNN-based pairwise
network for generating the pairwise potentials, and (iii) a Gaussian mean field in-
ference network for performing Gaussian CRF inference. When trained end-to-end
in a discriminative fashion the proposed network outperforms various CNN-based

semantic segmentation approaches.

GEOMETRIC REPRESENTATIONS AND DEEP GAUSSIAN
CONDITIONAL RANDOM FIELD NETWORKS FOR
COMPUTER VISION

by

Raviteja Vemulapalli

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2016

Advisory Committee:

Professor Rama Chellappa, Chair/Advisor
Professor Larry S. Davis

Professor Min Wu

Professor Amitabh Varshney

Professor Ramani Duraiswami

(© Copyright by
Raviteja Vemulapalli

2016

Dedication

To all those researchers who played a role in the advancement of the field of

computer vision.

i

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and
because of whom my graduate experience has been one that I will cherish forever.

First and foremost, I would like to thank my advisor, Professor Rama Chel-
lappa, for his invaluable guidance over the past five years. I am immensely grateful
to him for giving me the freedom to pursue new ideas and work on problems that
I was interested in. He has always encouraged me to think out of the box and dif-
ferentiate myself from the rest, which I believe is very important to be a successful
researcher. The discussions I had with him broadened my perspective about the
field of computer vision and constantly motivated me throughout my graduate life.
I have also learned a great deal about the qualities required to be a successful in-
dividual by observing him over the past five years. I feel extremely lucky to have
worked with such a great researcher and a wonderful human being.

Next, I would like to thank Dr. Oncel Tuzel from Mitsubishi Electric Research
Laboratories (MERL) for his wonderful guidance while I was an intern at MERL. Dr.
Oncel Tuzel is one of the sharpest minds in the field of computer vision and I cherish
the discussions I had with him. Personally, he is also one of the most wonderful
people I have met in my life, and I feel lucky to have spent a year interning with
him at MERL. Next, I would like to thank Dr. Jaishanker Pillai, Dr. Felipe Arrate,
and Professor Pierre-Antoine Absil for helping me with many technical ideas during
the first half of my PhD. They played a crucial role in jump-starting my research

career and I am grateful to them.

1ii

I would like to thank Professor David Jacobs for his insightful thoughts during
his graduate course on manifolds, which were helpful for my research. I would
also like to thank Dr. Kevin Zhou, Dr. Hien Van Nguyen who mentored me during
my internship at Siemens, and Dr. Ming-Yu Liu for his research inputs during my
internship at MERL.

It is an honor to have Professor Larry Davis, Professor Min Wu, Professor
Amitabh Varshney and Professor Ramani Duraiswami in my dissertation commit-
tee. I am thankful to them for serving in my committee and providing insightful
suggestions to improve this dissertation.

I would like to thank the ECE department for selecting me for the ECE Distin-
guished Dissertation Fellowship Award, and the A. James Clark School of Engineer-
ing for selecting me for the Dean’s Doctoral Research Award. Both these awards
have encouraged me to continue my research in the field of computer vision.

I would like to thank all my colleagues, roommates and friends for making my
graduate life memorable. I would also like to thank the staff in UMIACS, ECE and
Cfar for helping me in various different ways during my graduate life.

I owe my deepest thanks to my parents and sister who have always stood by
me and motivated me throughout my career. Words cannot express the gratitude I
owe them.

Finally, I would like to thank the Office of Naval Research (ONR) and Mit-

subishi Electric Research Laboratories for funding this research.

v

Table of Contents

List of Tables viii
List of Figures ix
List of Abbreviations xi
List of Notations xii
1 Introduction 1
1.1 Motivation 1
1.2 Proposed Algorithms and their Contributions 2
1.3 Organization 7
2 Lie groups, Quaternions and Dual Quaternions 8
2.1 Lie Groups. e 8
2.1.1 Special Orthogonal Group SO(3) 9
2.1.2 Special Euclidean Group SE(3) 12
2.2 Quaternions 14
2.3 Dual Quaternions 16

3 Relative 3D Geometry-based Skeletal Representations for Human Action
Recognition 18
3.1 Introduction 18
3.2 Related Work 23
3.2.1 Joint-based Approaches L. 24
3.2.2 Part-based Approaches L. 27
3.3 Relative 3D Geometry-based Skeletal Representations 28
3.3.1 R3DG Features 30
3.3.2 Scale-invariant R3DG Features 34
3.4 Temporal Modeling and Classification 35
3.5 Experimental Evaluation 36
3.6 Conclusions 45

4 Rolling the Special Orthogonal Group for Skeleton-based Human Action

Recognition 47
4.1 Introduction 47
4.2 Relevant Background 51
421 Group SO(3)2RY 51
4.2.2 Rolling Motion Lo o o1

4.3 Rolling Special Orthogonal Group 53
4.3.1 Rolling along a Non-geodesic Curve 5%)
4.3.2 Unwrapping while Rolling 56
4.3.3 Advantage of Unwrapping while Rolling 57

4.4 Proposed Action Recognition Approach 59
4.5 Experimental Evaluation 0 0000 63
4.6 Conclusions 66
5 Kernel Learning for Extrinsic Classification of Manifold Features 67
5.1 Introduction 67
5.2 Related Work 69
5.3 Relevant Background 71
5.3.1 Linear Subspaces - Grassmann Manifold 72
5.3.2 Covariance Features - SPD Manifold 73

5.4 Extrinsic Support Vector Machines 73
5.4.1 Extrinsic SVM using MKL Framework 7

5.5 Experimental Evaluation 79
5.5.1 Recognition using Image Sets 79
5.5.2 Datasets and Feature Extraction 80
5.5.3 Comparative Methods and Evaluation Settings. 81
5.5.4 Base Kernels and Parameters 82
555 Results.o 83

5.6 Conclusions 84

6 Deep Gaussian Conditional Random Field Network for Image Denoising 86

6.1 Introductiono 86
6.2 Related Work 90
6.3 Gaussian Conditional Random Field Model 94
6.3.1 Patch-based Pairwise Potential Functions 94
6.3.2 Inference 95
6.4 Deep Gaussian CRF network 97
6.4.1 Parameter Generation Network 97
6.4.2 Inference Network 99
6.4.3 Gaussian CRF Network 100
6.4.4 Training Lo 101
6.5 Experimental Evaluation L. 102
6.6 Conclusions e 110

vi

7 Gaussian Conditional Random Field Network for Semantic Segmentation 111

7.1 Introduction 111
7.2 Related Work 116
7.3 Gaussian Conditional Random Field Model 120
7.3.1 Gaussian Mean Field Inference 121

7.3.2 Bipartite Graph Structure for Parallel Updates 122

7.4 Gaussian CRF network 124
741 Training0 Lo 127

7.5 Experimental Evaluation 000 130
7.5.1 Trainingo 130

752 Results. 133

7.6 Conclusions 135

8 Conclusions and Directions for Future Work 136
8.1 Summary 136
8.2 Directions for Future Work 139

A Gaussian Mean Field Inference 141
B Deep Gaussian CRF Network for Image Denoising - Backpropagation 144
B.1 Backpropagation - Combination Layer 144
B.2 Backpropagation - Quadratic Layer 145
B.3 Backpropagation - Patch Inference Layer 146

C Gaussian CRF Network for Semantic Segmentation - Backpropagation 148
C.1 Backpropagation - Matrix Generation Layer 148
C.2 Backpropagation - Similarity Layer 149
C.3 Backpropagation - Odd Update Layer 149
Bibliography 152

vil

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2

6.1
6.2

6.3

7.1

List of Tables

The proposed family of R3DG features. 34
Algorithm for computing a nominal curve. 36
Datasets for skeleton-based human action recognition. 38
Alternative skeletal representations for comparison. 40
Recognition accuracy for various skeletal representations. 41
Contribution of the FTP module in terms of recognition accuracy . . 42
Contribution of the DTW module in terms of recognition accuracy . . 43
Comparison with other skeleton-based action recognition approaches. 44

Algorithm for computing a nominal curve. 60
Comparison between logarithm map at a point and rolling. 64
Comparison with the remaining R3DG features. 65
Recognition accuracy using linear subspaces. 84
Recognition accuracy using covariance features. 84
Comparison of various denoising approaches on 300 test images. . . . 104
Comparison of various denoising approaches on 68 images (dataset

of [1]) under the unquantized setting. 108
Comparison of various denoising approaches on 68 images (dataset

of [1]) under the quantized setting. 108
Comparison with various approaches on PASCALVOC 2012 test set

(when trained using ImageNet and PASCALVOC data). 132

viil

2.1

3.1
3.2
3.3

3.4

4.1

4.2

4.3
4.4

5.1
5.2

6.1

6.2

6.3

List of Figures

[Mlustration of the Lie exponential and Lie logarithm maps between a

Lie group G and its Lie algebra g. 9
Two views of a human skeleton 20
Representation of an action as a curve in an R3DG feature space. . . 22

(a) Rigid body transformation T, , = (0 n, M, dinpn) from e, to e,
measured in the coordinate system of e,,, (b) Rigid body transforma-
tion T),m = (Onm, Mpm, dim) from e, to e, measured in the coordi-
nate system of e,,, (¢) Rigid body transformation 7}, = (0,,, "y, d;y)

of e,, with respect to global z-axis. 29
The proposed action recognition approach: Top row - Training, Bot-
tom row - Testing. L Lo 37

Left: Logarithm map at point P, Right: Unwrapping using the log-

arithm map while rolling along the nominal curve. 48
Sphere rolling over a tangent plane. The red curve is the rolling curve

a(t) and the black curve is the development curve a(t). 52
Unwrapping the blue curve while rolling along the red curve. o7
The proposed action recognition approach: Top row - Training, Bot-

tom row - Testing. L Lo 62
An image set from YouTube dataset. 81
An image set from ETHS80 dataset. 81

The proposed deep Gaussian CRF network: Parameter generation
network followed by inference network. The PGNets in dotted boxes
are the additional parameter generation networks introduced after
each HQS iteration. 89
Parameter generation network: Mean subtracted patches x;; extracted
from the input image X are used to compute the combination weights
{yfj}, which are used for generating the pairwise potential parameters

{30 98
Inference network uses the pairwise potential parameters {3;;(X;;)}
generated by the PGNet and performs 7" HQS iterations. 100

X

6.4

6.5
7.1

7.2

7.3

7.4

Sensitivity analysis of the MLP and the proposed approach. The
noise levels for which MLP was trained are indicated using a circular

marker.
Denoising results by the proposed approach for noise 0 =25.

Proposed Gaussian CRF network: The GMF network performs Gaus-
sian CRF inference using the outputs of unary and pairwise networks.
The output of GMF network is upsampled to full image resolution us-
ing bilinear interpolation. Note that the parameters of this network
are the unary network parameters 05V and the pairwise network

parameters {05V {f,},C =0}

Each pixel in our CRF is connected to every other pixel along both
rows and columns within a spatial neighborhood. Here, all the pixels
that are connected to the center black pixel are shown in red. If the
black pixel is on odd column, all the pixels connected to it will be on

even columns and vice versa.

GMF Network. pf and p! are even and odd column nodes respectively
where ¢ indexes the layers, p' = {u!, u'}. Network is initialized with

unary network output pl=r.

Comparison of the proposed approach with DeepLab CNN [2] and

DeepLab CNN + discrete CRF [2].

List of Abbreviations

AIGD Affine-Invariant Geodesic Distance
BM3D Block Matching and 3D filtering
CNN Convolutional Neural Network
CRF Conditional Random Field
DTW Dynamic Time Warping

EPLL Expected Patch Log Likelihood
FTP Fourier Temporal Pyramid
GMF Gaussian Mean Field

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HMM Hidden Markov Model

HOG Histogram of Oriented Gradients
HQS Half Quadratic Splitting

InfNet Inference Network

LDA Linear Discriminant Analysis
LDS Linear Dynamical Systems

LED Log-Euclidean Distance

MAP Maximum a Posteriori

MKL Multiple Kernel Learning

MLP Multi-Layer Percepton

MRF Markov Random Field

PCA Principal Component Analysis
PGNet Parameter Generation Network
PLS Partial Least Squares

PSNR Peak Signal-to-Noise Ratio
RBF Radial Basis Function

RTF Regression Tree Field

SDP Semi-Definite Programming
SPD Symmetric and Positive Definite
SVM Support Vector Machines

x1

List of Notations

Vectors are represented using boldface lowercase letters.

Matrices are represented using boldface uppercase letters.

R" n-dimensional real vector space

I, n X n identity matrix

1 Matrix of appropriate size with all ones
0 Matrix of appropriate size with all zeros
In(a) Natural logarithm of scalar a

lv]]2 {5 norm of vector v

u<wv Element wise inequalities

vector(A) Column vector representation of matrix A

A1) i" column of matrix A
A(i,:) i row of matrix A
AT Transpose of matrix A
Al Inverse of matrix A

det(A) Determinant of matrix A
trace(A) Trace of matrix A

|A|| Fr Frobenius norm of matrix A
e Matrix exponential of A

log(A) Matrix logarithm of A

A>0 A is symmetric and positive semidefinite
A-0 A is symmetric and positive definite

AxB Hadamard product between matrices A and B
® Direct product between groups

<) Direct sum between vector spaces

TpM Tangent space to manifold M at point P

x1i

Chapter 1: Introduction

1.1 Motivation

Representation and context modeling are two important factors that have im-
proved the performance of computer vision algorithms over the past two decades.
Representations such as Scale-Invariant Feature Transform [3], Histogram of Ori-
ented Gradients (HOG) [4], and more recently, deep network-based features [5-7]
have played a crucial role in various applications such as depth estimation, image
retrieval, 3D reconstruction, object detection, object recognition, etc. Similarly,
context modeling tools such as graphical models [8,9] have played a crucial role in
applications like image enhancement, image segmentation, semantic scene under-
standing, etc.

While it is widely agreed that representation is the most important compo-
nent of any computer vision algorithm, most of the existing skeleton-based human
action recognition approaches still use simple skeletal representations such as joint
positions [10, 11], relative joint positions [12,13] or joint angles [14,15]. However,
capturing the 3D skeletal geometry in the representation is crucial for achieving good
action recognition accuracy. Motivated by this, we introduce various 3D geometry-

based skeletal representations for human action recognition.

Manifold features such as linear subspaces [16] and covariance matrices [17,18]
are used in various computer vision applications such as image set-based object and
face recognition [16,18-23], pedestrian detection [17,24], texture classification [25,26]
and activity recognition [16]. Due to the non-Euclidean nature of the underly-
ing feature spaces, these representations are often classified using kernel-based ap-
proaches [18,20,22-24]. However, for kernel-based methods, choosing an appropriate
kernel is important for achieving good classification performance. Motivated by this,
we propose a kernel learning-based extrinsic classification framework to address the
issue of kernel-selection for the classification of manifold features.

While modeling the spatial context is important for applications such as im-
age enhancement and semantic image segmentation, the standard deep network
architectures [27-31] used for these applications do not explicitly model the spatial
context. Motivated by this, we propose novel deep network architectures based on
Gaussian Conditional Random Field (CRF) models [9] that explicitly model the

spatial context by considering the interactions among the output variables.

1.2 Proposed Algorithms and their Contributions

In this section, we briefly describe the algorithms introduced in this disserta-

tion and their key contributions.

1. R3DG features for skeleton-based human action recognition:
In this part of the dissertation, we try to answer the following basic question:

Which is a good skeletal representation for human action recognition? Inspired

by the observation that for human actions, the relative geometry between var-
ious body parts provides a more meaningful description than their absolute
locations, we propose new skeletal representations that explicitly model the
relative 3D geometry between all pairs of body parts. Given two rigid body
parts, their relative geometry can be described using the rigid body trans-
formation required to take one body part to the position and orientation of
the other. Rigid body transformations in 3D space can be mathematically
represented in different ways using the special orthogonal group, quaternions,
the special Euclidean group, and dual quaternions. Using these mathematical
representations, we introduce a family of relative 3D geometry-based skeletal
representations for human action recognition, which we refer to as R3DG fea-
tures. Using the proposed skeletal representations, we model actions as curves
in R3DG feature spaces, and perform action recognition using a combination
of dynamic time warping [32], Fourier Temporal Pyramid (FTP) representa-
tion [13], and a Support Vector Machines (SVM) classifier [33]. The proposed
representations outperform many existing skeletal representations when eval-
uated on several benchmark action recognition datasets. Since the size of the
skeleton varies from subject to subject, we need to scale-normalize the skeletal
data before using the rigid body transformation-based R3DG features. Instead
of doing explicit scale-normalization, we can obtain scale-invariant skeletal rep-
resentations by using only the rotational part of the rigid body transformation
to describe the relative 3D geometry between body parts. In this part of the

dissertation, we also show that just by using the relative 3D rotations, we

can get a classification accuracy that is close to the accuracy obtained by us-
ing the full rigid body transformation-based representations computed from

scale-normalized skeletons.

. Rolling rotations for skeleton-based human action recognition:

In this part of the dissertation, instead of doing explicit scale-normalization,
we use only the rotational part of rigid body transformation to describe the
relative 3D geometry between body parts. Since 3D rotations are members
of the special orthogonal group SO(3), we represent each skeleton as a point
in the product Lie group SO(3) ® ... ® SO(3), and actions as curves in this
group. Since classification of temporal curves in the Lie group is difficult due
to the non-Euclidean nature of the underlying space, we first map the curves
to the corresponding Lie algebra, which is a vector space, and then classify
the Lie algebra curves using the FTP representation and an SVM classifier.
For mapping the action curves to the Lie algebra, instead of directly using
the standard logarithm map, we combine it with rolling maps. We show that
rolling maps reduce the distortions in the action curves when mapping them
to the Lie algebra and improves the action recognition performance. We also
derive new closed form expressions for the rolling maps in the case of piecewise-

geodesic rolling curves.

. Extrinsic classification of manifold features using kernel learning:
In this part of the dissertation, we try to answer the following important

question: How to find good kernels for the classification of manifold features?

Manifold features such as linear subspaces and covariance matrices are used
in various computer vision applications. Popular learning algorithms such as
Fisher discriminant analysis, partial least squares, support vector machines,
etc., are not directly applicable to such features due to the non-Euclidean
nature of the underlying spaces. Hence, classification is often performed in
an extrinsic manner by mapping the manifolds to Euclidean spaces using ker-
nels. However, for kernel-based approaches, a poor choice of kernel often
results in reduced performance. We address this issue of kernel-selection for
the classification of manifold features using the kernel learning approach. We
propose two criteria for jointly learning the kernel and the classifier using a
single optimization problem. Specifically, for the SVM classifier, we formulate
the problem of learning a good kernel-classifier combination as a convex opti-
mization problem and solve it efficiently following the multiple kernel learning
approach. The proposed approach outperforms various existing methods for
the classification of manifold features when evaluated using image set-based

object and face recognition tasks.

. Deep Gaussian CRF network for image denoising:

State-of-the-art deep network-based denoising methods train a separate model
for each noise level, which is not desirable. In this part of the dissertation, we
address this issue by proposing a novel deep network architecture for image
denoising based on a Gaussian CRF model. The proposed deep network explic-

itly models the input noise variance and hence is capable of handling a range

of noise levels. Our deep network architecture consists of two sub-networks:
(i) a parameter generation network that generates the pairwise potential pa-
rameters based on the noisy input image, and (ii) an inference network whose
layers perform the computations involved in an iterative Gaussian CRF in-
ference procedure. All the components of our network are differentiable and
hence it can be trained end-to-end using standard gradient-based techniques.
Experimental results show that the proposed network can achieve state-of-the-

art results without training specific networks for each noise level.

. Gaussian CRF network for semantic image segmentation:

In the past few years, deep networks have revolutionized the field of com-
puter vision by improving the state-of-the-art results in various applications
by a huge margin. However, standard feed-forward networks do not explic-
itly model the interactions between output variables, which is important for
structured prediction tasks such as semantic image segmentation. Tradition-
ally, graphical models, especially the CRF models, have been widely used to
model the interactions between output variables. In this part of the disserta-
tion, we combine both these ideas and propose a feed-forward deep network
based on a Gaussian CRF model. The proposed Gaussian CRF network is
composed of three sub-networks: (i) a Convolutional Neural Network (CNN)
based unary network for generating the unary potentials, (ii) a CNN-based
pairwise network for generating the pairwise potentials, and (iii) an inference

network whose layers perform Gaussian mean field inference. The proposed

inference network has the desired property that each of its layers produces an
output that is closer to the maximum a posteriori solution of the Gaussian
CRF compared to its input. The proposed network significantly improves the

semantic segmentation results when compared to standard CNN architectures.

1.3 Organization

This dissertation is organized as follows. Chapter 2 introduces the special
orthogonal group, the special Euclidean group, quaternions and dual quaternions,
which will be used in subsequent chapters of this dissertation. Chapter 3 presents
various relative 3D geometry-based skeletal representations for human action recog-
nition. Chapter 4 discusses the rolling of special orthogonal group and its applica-
tion to skeleton-based human action recognition. Chapter 5 presents an extrinsic
framework for the classification of manifold features using multiple kernel learning.
Chapters 6 and 7 present Gaussian CRF-based deep network architectures for image
denoising and semantic image segmentation, respectively. Chapter 8 concludes the

dissertation and discusses future research directions.

Chapter 2: Lie groups, Quaternions and Dual Quaternions

In this chapter, we introduce the special orthogonal group SO(3), the spe-
cial Euclidean group SE(3), quaternions and dual quaternions, which will be used
in subsequent chapters of this dissertation. Please refer to [34,35] for additional
details on Lie groups, and [35-37] for additional details on quaternions and dual

quaternions.

2.1 Lie Groups

A Lie group G is a group that is also a smooth manifold [34]. The tangent
space g at the identity element e of G is referred to as the Lie algebra of G. A
matrix Lie group is a Lie group of n x n invertible matrices with the usual matrix
multiplication and inversion as the group multiplication and inversion operations,
and the n X n identity matrix as the group identity element.

The mapping from a Lie algebra to the corresponding Lie group, referred to
as the Lie exponential map, is given by Lexps(u) = 74, (1), where v, : R — G is the
unique one-parameter subgroup of G whose tangent vector at the identity element e
is equal to w € g. The inverse of Lie exponential map is known as the Lie logarithm

map, and is denoted by Llog.. Figure 2.1 gives an illustration of the Lie exponential

Lie algebra f

Figure 2.1: Illustration of the Lie exponential and Lie logarithm maps between a

Lie group G and its Lie algebra g.

and Lie logarithms maps. In the case of matrix Lie groups, the Lie exponential and

Lie logarithm maps are given by

Lexpg(u) = €*, Llogs(g) = log(g), (2.1)

where e and log represent the usual matrix exponential and logarithm, respectively.

2.1.1 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) is a three dimensional matrix Lie group

formed by the set of all 3 x 3 matrices R that satisfy the following constraints [34,35]:
R'R=1I;, det(R) = 1. (2.2)

The Lie algebra of SO(3), denoted by s0(3), is the three dimensional vector space

spanned by the set of all 3 x 3 skew symmetric matrices. For any element

0 —as (05}
A= as 0 —a € 50(3)7 (23)
—Qas aq 0

its vector representation is given by vec(A) = [ay, as, as]. Since SO(3) is a matrix
Lie group, the Lie exponential and Lie logarithm maps between SO(3) and so(3)
are given by

LeXpso(3)(A) = eA7 LlogSO(3)(R) = log(R). (2.4)

The Lie logarithm map is not unique in the case of SO(3). In this dissertation, we
use the log(R) with the smallest norm.

Elements of SO(3) are commonly used to represent 3D rotations. Let 2z’ be
a 3D point obtained by rotating z € R? by an angle # about an axis . Then, we
have

/ skew(On)

z'=e z, (2.5)

where skew(fn) is a skew-symmetric matrix that satisfies vec(skew(én)) = On.
Hence, the matrix e****(®") ¢ SO(3) represents the 3D rotation by an angle 6 about

an axis mn.

Riemannian geometry of SO(3) [38]: Along with being a Lie group, SO(3) is
also a Riemannian manifold. The tangent space Tgr,50(3) at Ry € SO(3) is the
vector space spanned by the set of all 3 x 3 matrices A such that A = QR for
some skew-symmetric matrix . The inner product in the tangent space Tg,SO(3)

is given by the Frobenius inner product:
<A1, A2>R0 = trace(AlTAz), Ala A2 € TROSO(3> (26)

Under this Riemannian metric, the exponential and logarithm maps between SO(3)

10

and its tangent space at Ry € SO(3) are given by

eXPgo(s)(Ro, A) = ePo R, Ac Tr,SO(3),
(2.7)
logsos)(Ro, R1) = log(R1 Ry)Ry, Ry € SO(3).
The geodesic curve from Ry to Ry is given by e s(BiRI R ¢ € [0,1], and the

geodesic distance between Ry and R, is given by || loggos) (Bo, Ri)| #+-

Interpolation: Various approaches have been proposed in the past for interpolation
on SO(3) [39]. In this dissertation, we use a simple piecewise geodesic interpolation
scheme. Given Ry,..., R, € SO(3) at time instances ti,...,t,, respectively, we
use the following curve for interpolation:

t—t,
7(t) = R; Lexpgos) (—

Liy1 — t;

Al) for t € [ti,ti+1]7 (28)

where A; = Llogggs) (R 'Riyy) fori=1,2,...,m—1.

SOB)R®...® SO(3): We can combine multiple SO(3) groups using the direct
product to form a new Lie group
SO(3)" :=503)®...®S0(3) (2.9)
with the corresponding Lie algebra
50(3)" :=50(3) B ... d s0(3). (2.10)
The Lie exponential and Lie logarithm maps for (A, Ao, ..., A,) € s0(3)" and
(R1, Ry,...,R,) € SO(3)" are given by
Lexpgo(gyn (A1, Az, ..., Ap) = (e41,e42, ... edn),
(2.11)
Lloggoyn (B, Ry, ..., R,) = (log(R:),log(Ry), ..., log(R,)).

11

Interpolation on SO(3)" can be performed by simultaneously interpolating on indi-

vidual SO(3).

2.1.2 Special Euclidean Group SE(3)

The special Euclidean group SE(3) [34,35] is a six dimensional matrix Lie

group formed by the set of all 4 x 4 matrices of the form

R d
P(R,d) = ,deR? RecSO(3). (2.12)

0 1

The Lie algebra of SE(3), denoted by se(3), is the six dimensional vector space

spanned by the set of all 4 x 4 matrices of the form

0 —das a9 w1
as 0 —a1 W2

B = . (2.13)
—Q9 aq 0 ws

0 0 0 O

The vector representation of B € se(3) is given by
vec(B) = [ay, az, ag, wy, wa, w3). (2.14)

Since SE(3) is a matrix Lie group, the Lie exponential and Lie logarithm maps

between SE(3) ans se(3) are given by
LeXpSE(3)<B) = eB7 LlogSE(?))(P) = log(P). (2.15)

The Lie logarithm map is not unique in the case of SE(3). In this dissertation, we
use the log(P) with the smallest norm.

12

Elements of SE(3) are commonly used to represent 3D rigid body transfor-
mations. Let 2’ be a 3D point obtained by transforming z € R? using a rotation by

an angle # about an axis n followed by a translation d. Then, we have

2/ eskew(@n) d =
- . (2.16)
1 0 1 1
R d
Hence, the matrix € SE(3), where R = %) represents the 3D rigid
0 1

body transformation composed of a rotation by an angle # about an axis n and a

translation d.

Interpolation: Various approaches have been proposed in the past for interpolation
on SE(3) [40,41]. In this dissertation, we use a simple piecewise interpolation scheme
based on screw motions [42]. Given P, ..., P, € SE(3) at time instances ti, ..., t,,

respectively, we use the following curve for interpolation:

t—t
v(t) = P; Lexpgp s, (tﬂ——t

Bz> for ¢t € [tiatiJrl]’ (217)

where B; = Llogggs) (Pi_lPHl) forve=1,2,...,m—1.

SEB)®...R® SE(3): We can combine multiple SE(3) groups using the direct

product to form a new Lie group
SE3)":=SE3)®...® SE(3) (2.18)
with the corresponding Lie algebra

se(3)" :=s5¢(3) D ... B se(3). (2.19)

13

The Lie exponential and Lie logarithm maps for (By, B, ..., B,) € se(3)" and
(P, Py,...,P,) € SE(3)" are given by
LeXpSE(S)"<317 BQ? ce 7Bn) = (eBl’ eB27 s 7eBn)7

(2.20)
LlogSE(?,)n(Pla P, ..., P,) = (log(P),log(P,),...,log(P,)).

Interpolation on SE(3)" can be performed by simultaneously interpolating on indi-

vidual SE(3).

2.2 Quaternions

The set of quaternions Q [35,43-45] is equivalent to the 4-dimensional vector
space R* equipped with the quaternion multiplication operation. Let {eg, €1, €2, €3}
be the canonical basis for the vector space R*. The quaternion multiplication is

defined by giving the following multiplication table for the basis:

€0€1 = €1€p9 = €1, €163 = —€2€e; = €3,
€0€2 = €2€p9 = €3, €283 = —€3€3 = €,
(2.21)
€03 = €3€p9 = €3, €3€; = —€1€3 = €3,
€9€p — €p, €1€1 — €99 = €33 — —1.

A quaternion g is commonly represented as (sq, v,), where s, € R is referred
to as the scalar or real part and v, € R? is referred to as the vector or imaginary

part. Addition of two quaternions p = (s,, v,) and q = (s, v,) is given by
P+ q=(sp+ 54,0, +vy). (2.22)
Using (2.21), multiplication of p and g can be computed as

Pq = ($pSq — Up © Vg, 5pUg + SqUp + Vp X V), (2.23)

14

where v, ©® v, and v, X v, represent the dot product and cross product between v,
and v,, respectively. Note that the quaternion multiplication is not commutative.
The conjugate g, the norm ||g||, and the exponential e? of a quaternion g =

(84, vq) are given by

q = (sq;=vq), llgll = /57 + llvgll3.

(2.24)
S S : v

er = (e coslio. e sinflola) 25).
q

The quaternions with unit norm are known as unit quaternions. The set of
unit quaternions, denoted by U Q, forms a Lie group with quaternion multiplication
as the group multiplication operation, and q. = (1, 0) as the group identity element.
The Lie algebra of i Q, denoted by uq, is the three dimensional vector space spanned
by the set of purely imaginary quaternions. The Lie exponential and Lie logarithm

maps for w € uq and g = (s4,v,) € UQ are given by

Lexpyg(w) = ¢* = (cosurwrrz), sin(Hsz)ﬁ) ,
(2.25)

— 2
1 G

Llogyo(q) = cos™(s,)

Unit quaternions are commonly used to represent rotations in 3D space. Let
z be a 3D point, and g, = (0, z) be its quaternion representation. Let 2’ be a 3D
point obtained by rotating z by an angle 6 about an axis n, and gq,» = (0, 2’) be its

8
2

quaternion representation. Then, we have q.,, = rq.r, where r = e™2. Hence, the

ene = (cos (g) , msin (g)) (2.26)

represents the 3D rotation by an angle # about the axis n. We can easily convert

unit quaternion

15

between unit quaternion and SO(3) representations using

w
r = Lexpyo (5> , W = Vec (L10g50(3)(R)) ,

(2.27)
R = Lexpgo (skew(w)), w = 2 (Llogyo(r)) .

UOR...QUQ: We can combine multiple U Q groups using the direct product to

form a new Lie group

UQ" =UQ® ... UQ (2.28)

with the corresponding Lie algebra

ug" :=uqd... D uq. (2.29)

2.3 Dual Quaternions

The set of dual quaternions D is the extension of quaternions using dual num-

ber theory [37]. Each dual quaternion consists of eight elements or two quaternions:

¢ =gq, +eqq, (2.30)

where q, = (s,,v,),94 = (S4,v4) are quaternions, and e is the dual operator, i.e.,
€2 = 0,e # 0. The dual quaternion addition, multiplication, conjugate and magni-

tude are given by

¢+ ¢ = (qir + q2r) + €(q1a + Q24),

C1C2 = q1-q2r + €(q1:G24 + G1492r),
(2.31)

C = q_T +€q_d7

¢l =Tl + ¢ (

5,84 + v, © 'Ud)
||

16

Note that the magnitude of dual quaternion is a dual number. Dual quaternions
that satisfy

HC” = 17 i‘e'7 quH = 17 §rSq + Uy @’Ud = 0, (232)

are called unit dual quaternions. We denote the set of all unit dual quaternions
using UD.

While a unit quaternion can represent a 3D rotation, a unit dual quaternion
can represent a full 3D rigid body transformation, i.e, both rotation and translation.
Let z be a 3D point, and ¢, = (1,0) 4+ €(0, z) be its dual quaternion representation.
Let 2z’ be a 3D point obtained by transforming z using a rotation by an angle 6
about an axis n followed by a translation d, and ¢, = (1,0) + ¢(0, 2’) be its dual

quaternion representation. Then, we have (.» = (,4C.Cq, Where

1
CGra=17T+c¢€ <§tr) e UD,
(2.33)

[

cUQ, t=(0,d) € Q.

r=c"
Hence, the unit dual quaternion (,q represents the 3D rigid body transformation

composed of a rotation by an angle # about an axis n and a translation d.

17

Chapter 3: Relative 3D Geometry-based Skeletal Representations for

Human Action Recognition

3.1 Introduction

Human action recognition has been an active area of research for the past sev-
eral decades due to its applications in surveillance, video games, human computer
interaction, robotics, health care, etc. In the past few decades, several approaches
have been proposed for recognizing human actions from monocular RGB video se-
quences [46,47]. Unfortunately, the monocular RGB data is highly sensitive to
various factors like illumination changes, variations in view-point, occlusions and
background clutter. Moreover, monocular video sensors do not fully capture the
human motion in a 3D space. Hence, despite significant research efforts over the
past few decades, human action recognition still remains a challenging problem.

Human body can be represented as an articulated system of rigid segments
connected by joints, and human motion can be considered as a continuous evolution
of the spatial configuration of these rigid segments [48-50]. So, if we can reliably
extract the human skeleton, action recognition can be performed by classifying its

temporal evolution. Using skeletal data for action recognition has several advan-

18

tages such as ease of interpretability, low processing time, fast/cheap transmission
and storage, etc. Skeletal data makes it easier to analyze which part of the body is
playing a major role in discriminating one action against the other, and allows us to
correlate this with human interpretation of motion. Interpretability is an important
factor in various applications such as exercise monitoring, human computer interac-
tion, post-surgery rehabilitation, etc. Skeletons provide a compact low-dimensional
representation that can be stored easily, transmitted and processed quickly. Storage
and transmission are critical in applications where the recognition module runs on
a central server.

Unfortunately, extracting the human skeleton from monocular RGB videos is
a very difficult task [51]. Sophisticated motion capture systems can be used to get
the 3D locations of landmarks placed on the human body, but such systems are very
expensive, and require the user to wear a motion capture suit with markers which
can hinder natural movements. With the recent availability of cost-effective depth
sensors, extracting the human skeleton has become relatively easier. These sensors
provide 3D depth data of the scene, which is robust to illumination changes and
offers more useful information to infer human skeletons. Recently, a quick method
was proposed in [52] to accurately estimate the 3D positions of skeletal joints using
a single depth image. These recent advances have generated a renewed interest in
skeleton-based human action recognition.

Existing skeleton-based action recognition approaches can be broadly grouped
into two main categories: joint-based approaches and body part-based approaches.

Inspired by the moving lights display experiment of [53], joint-based approaches

19

Set of points Set of rigid rods

(joints) (body parts)
2@ \ T(‘;
e 7N
9, vz
Human skeleton l T" l
[} U10 @ 20N Jen
(] ° 02 1(/ x

Figure 3.1: Two views of a human skeleton

consider the human skeleton as a set of points (Figure 3.1 left). These approaches
try to model the motion of either the individual joints or combinations of multiple
joints using various features like joint positions [11,54-56], joint orientations with
respect to a fixed root node [57, 58], pairwise relative joint positions [13,59,60], etc.
On the other hand, motivated by the 3D-shape representations of [61], body part-
based approaches consider the human skeleton as a connected set of rigid segments
(Figure 3.1 right). These approaches either model the temporal evolution of indi-
vidual body parts [62] or focus on directly-connected pairs of body parts and model
the temporal evolution of joint angles [14, 15,63].

In this chapter, we introduce a new family of body part-based skeletal rep-
resentations for recognizing human actions. Inspired by the observation that for
human actions, the relative geometry between various body parts (though not di-
rectly connected by a joint) provides a more meaningful description than their abso-

lute locations (for example, clapping is more intuitively described using the relative

20

geometry between the two hands), we explicitly model the relative 3D geometry
between different body parts in our skeletal representations.

Given two rigid body parts, their relative geometry can be described using
the rigid body transformation (rotation and translation) required to take one body
part to the position and orientation of the other. Hence, we use the rigid body
transformations between all pairs of body parts to represent a human skeleton. Rigid
body transformations in 3D space can be mathematically represented in various
ways using the special orthogonal group SO(3), quaternions, the special Euclidean
group SFE(3), and dual quaternions. Using these mathematical representations, we
introduce a family of relative 3D geometry-based skeletal representations for action
recognition, which we refer to as R3DG features.

One of the major issues while working with skeletal-data is scale variation.
This can be handled by normalizing all the skeletons (without changing the joint
angles) such that their body part lengths are equal to the corresponding lengths of a
fixed reference skeleton. Interestingly, while the relative translations between various
body parts vary with this scale normalization, the relative rotations do not change.
Hence, we can get scale-invariant skeletal representations by using only the relative
rotations between different body parts. In this chapter, we experimentally show
that just by using the relative 3D rotations, we can get a recognition accuracy that
is close to the accuracy obtained by using the full rigid body transformation-based
representations computed from scale-normalized skeletons. This suggests that the
translational information might possibly be redundant for human action recognition
when the 3D rotations between all pairs of body parts are used.

21

R3DG feature space

Figure 3.2: Representation of an action as a curve in an R3DG feature space.

Using any of the proposed skeletal representations, human actions can be mod-
eled as curves (Figure 3.2) in an R3DG feature space, and action recognition can
be performed by classifying these curves. Irrespective of the skeletal representation
being used, classification of temporal sequences into different action categories is a
difficult problem due to various issues like rate variations, temporal misalignment,
noise, etc. To handle rate variations, for each action category, we compute a nominal
curve using Dynamic Time Warping (DTW) [32], and warp all the curves to this
nominal curve. Then, we represent the warped curves using the low frequency FTP
representation, which was shown to be robust to noise and temporal misalignment
in [13]. Finally, classification is performed using an SVM classifier with the FTP

representation.

Contributions: We introduce a new family of body part-based 3D skeletal rep-
resentations for human action recognition. The proposed representations explic-

itly model the relative geometry between various body parts using 3D rigid body

22

transformations. We use the special Euclidean group and dual quaternions in our
skeletal representations. To the best of our knowledge, they have not been explored
before in the context of skeleton-based human action recognition. We experimen-
tally show that the proposed representations outperform several existing skeletal
representations by evaluating them on several benchmark action datasets. We also
introduce scale-invariant skeletal representations that use only the 3D rotations be-
tween various body parts. We experimentally show that the performance of the
scale-invariant rotation-only representations is very close to that of the full rigid

body transformation-based representations.

Organization: Section 3.2 provides an overview of existing skeleton-based human
action recognition approaches. Section 3.3 introduces the proposed family of R3DG
features, and Section 3.4 presents the proposed temporal modeling and classifica-
tion approach. Experimental results and conclusions are presented in Sections 3.5

and 3.6, respectively.

3.2 Related Work

In this section, we provide an overview of various existing skeleton-based hu-
man action recognition approaches. Various depth map-based action recognition
approaches have also been proposed in the recent past, which use features extracted
from the 3D depth data. Since the focus of this chapter is on skeleton-based ac-
tion recognition, we refer the readers to [64,65] for a review of depth map-based

recognition approaches.

23

Existing skeleton-based action recognition approaches can be broadly grouped
into two main categories: joint-based approaches and body part-based approaches.
While the joint-based approaches consider the human skeleton as a set of inde-
pendent points, the body part-based approaches consider the human skeleton as a
connected set of rigid segments. Approaches that use joint angles for representing
the human skeleton can be classified as part-based approaches since joint angles
measure the geometry between pairs of body parts that are directly connected to

each other.

3.2.1 Joint-based Approaches

A set of 13 joint trajectories in XYZT space was used to represent human
actions in [54], and their affine projections were compared using a subspace angle-
based similarity measure. In [55], the trajectories of individual joints and groups
of joints were modeled using Hidden Markov Models (HMMs). Each HMM was
considered as a weak classifier, which were then combined using AdaBoost. HMMs
were also used in [66] to model the joint trajectories of whole body, upper body and
lower body separately for performing action recognition.

The 3D joint locations were combined with silhouette-based features in [67],
and their temporal evolutions were compared using DTW. Dynamic time warping
was also used in [56] for comparing the sequences of joint positions. Instead of giving
equal weight to all the joints in the DTW distance computation, a feature weighting

approach was used in [56], where each joint was assigned its own weight. In [11], the

24

temporal evolutions of joint locations were modeled using a temporal hierarchy of
covariance features, and action recognition was performed using an SVM classifier.
In [10], the 3D trajectory of each joint was projected onto three Cartesian planes to
get three 2D trajectories. Each 2D trajectory was represented using the histogram
of displacements between consecutive points. The histograms from all the joints
were concatenated to get the final representation, which was classified using an
SVM classifier. Recently, hierarchical recurrent neural networks were used in [68]
for modeling the temporal dynamics of skeletal joints.

A view invariant representation of human skeleton was obtained in [57] by
quantizing the 3D joint locations into histograms based on their orientations with
respect to a coordinate system attached to the hip center. The temporal evolutions
of this representation were modeled using HMMs. In [69], human skeletons were
represented using 3D joint positions, their first and second order derivatives, i.e.,
joint velocities and accelerations, and a nearest neighbor-based approach was used
to perform low-latency action recognition. In [58], one of the joints was selected as a
root joint, and all the remaining joints were represented using their orientations with
respect to a coordinate system attached to the root joint. The temporal evolutions
of this representation were compared using dynamic time warping.

In [13,59], pairwise relative positions of the joints were used to represent the
human skeleton, and the temporal evolutions of this representation were modeled
using low-frequency Fourier coefficients [13] and wavelets [59]. A similar skeletal
representation was also used in [12], where a discriminative learning-based temporal

alignment method was used for comparing temporal sequences.

25

In [70], the human skeleton was represented using distances between all pairs of
joints in the current frame, distances between all pairs of joints in the current frame
and the previous frame, distances between all pairs of joints in the current frame
and the first frame of the sequence. Action recognition was then performed using
a logistic regression-based approach. In [60], the human skeleton was represented
using relative joint positions, temporal displacements of the joints, and offsets of
the joints with respect to the initial frame. Action classification was then performed
using the Naive-Bayes nearest neighbor rule in a low-dimensional space obtained
using Principal Component Analysis (PCA). A similar representation was also used
in [71] along with random forests.

A local skeleton descriptor, referred to as skeletal quad, was introduced in [72],
which encodes the relative position of joint quadruples. This descriptor represents
a set of four joints using the coordinates of third and fourth joints in a coordinate
system with the first joint as the origin and the second joint as (1,1,1). These
skeletal quads were combined with Fisher vectors [73] and a linear SVM classifier to
perform action recognition. An interesting aspect of this descriptor is that it can be
used to represent the relative 3D geometry between two body parts (since two body
parts can be considered as four joints). However, the main difference between the
skeletal quad descriptor and the proposed R3DG features is that while the proposed
features directly use the translation and rotation between body parts, the skeletal
quad descriptor encodes this information indirectly using the joint coordinates.

In [74], human skeleton was divided into five parts and each part was rep-

resented using the coordinates of the joints that belonged to the part. Then, a

26

dictionary of pose templates was learned for each body part, and these templates
were used to obtain a quantized representation of part poses. The authors further
defined spatial-part-sets to capture the spatial configurations of multiple body parts,
and temporal-part-sets to capture the joint pose evolutions of multiple body parts.
Finally, the bag-of-words model was used to get the action representation, which
was classified using a one-vs-one intersection kernel SVM classifier.

Different from the above mentioned approaches, [75] introduced various types
of relational pose features that describe the geometric relations between specified
joints of the skeleton, and used them successfully for indexing and retrieval of motion
capture data. Similar features were later used in [76-78] for skeleton-based human

action recognition.

3.2.2 Part-based Approaches

In [62], the human body was divided into five different parts, and human ac-
tions were represented using the motion parameters of individual parts like horizon-
tal and vertical translations, in-plane rotations, etc. Principal component analysis
was used to represent an action as a linear combination of a set of basis actions,
and classification was performed by comparing the PCA coefficients. In [79], human
skeletons were divided into smaller parts and each body part was represented using
certain bio-inspired shape features. The temporal evolutions of these bio-inspired
features were modeled using Linear Dynamical Systems (LDS), and a discriminative

metric learning approach was used for comparing the LDS models.

27

In [63], human skeletons were represented using 3D joint angles, and the tem-
poral evolutions of this representation were compared using DTW. While [80] rep-
resented human actions as curves in low-dimensional phase spaces related to joint
angles, [15] represented human actions using pairwise affinities between joint angle
trajectories. In [81], human skeletons were represented using joint angle quaternions.
These skeletal features were augmented with RGB and depth-based HOG features,
and a maximum entropy Markov model was used for action detection. In [14], a set
of few informative skeletal joints was selected at each time instance based on highly
interpretable measures such as mean and variance of joint angles, angular velocity
of the joints, etc. Human actions were represented as sequences of these informative

joints, which were compared using the normalized edit distance.

3.3 Relative 3D Geometry-based Skeletal Representations

Let S = (V, E) be a skeleton, where V' = {v,...,vx} denotes the set of joints
and E = {ey,...,epn} denotes the set of oriented rigid body parts. Let €1, €m2
denote the starting and end points of e,,, respectively.

Given a pair of body parts e,, and e,, to describe their relative 3D geometry,
we use the rigid body transformations required to take one body part to the position
and orientation of the other. A full rigid body transformation 7" is composed of a ro-
tation by an angle # about an axis n and a translation d. To measure the rigid body
transformation 75, ,, = (O, Minn, A Tequired to take e, to the position and ori-

entation of e,,, we use a local coordinate system attached to e, (Figure 3.3(a)).

28

Global coordinate
€2 system

8
« g
i3
28
2 R
=2
£s
&
o2

m
Global coordinate
system

(@

Figure 3.3: (a) Rigid body transformation T}, = (0, Mmn, @mrn) from e, to ey,
measured in the coordinate system of e,, (b) Rigid body transformation 7,,,, =
(Onms M ms dim) from e, to e, measured in the coordinate system of e,,, (c) Rigid

body transformation T,,, = (6,,, ", dy,) of €, with respect to global z-axis.

Similarly, to measure the rigid body transformation T, ,,, = (0pm, Mnm, dnm) Te-
quired to take e,, to the position and orientation of e,, we use a local coordinate
system attached to e,, (Figure 3.3(b)). We obtain the local coordinate system of a
body part e,, by rotating (with minimum rotation) and translating the global coor-
dinate system such that e,,; becomes the origin and e,, coincides with the z-axis.
At first glance it might appear that using only 7, ,, or T,, ,, would be sufficient
to represent the relative geometry between e,, and e,. Consider the case in which
e, 1s rotating about an axis parallel to e,,. Though there is relative motion between
the two, T,,, will not change. Similarly, if e,, is rotating about an axis parallel
to e,, then T, ,, will not change. So, if we represent the relative geometry using
only one of them, the representation will not change under certain kinds of relative

motions, which is undesirable. Hence, we use both 7}, , and T, ,, to represent the

29

relative geometry between e,, and e,. Note that both T}, ,, and T,,,, do not change
only when both e, and e, undergo same rotation and translation.
Using the relative geometry between all pairs of body parts, we represent a

skeleton S at time instance ¢ using

C(t) = (Ti2(t), Toa(t), .., Tay—am(t), Trara—1(t)), (3.1)

where M is the number of body parts. The total number of rigid body transfor-
mations used in the skeletal representation is K = M (M — 1). Using the proposed
representation, a skeletal sequence describing an action can be represented as a
curve {C(t), t € [0,7']}, and action recognition can be performed by classifying
such curves into different action categories.

Note that we are using only the relative measurements 7, ,,(t) in our skeletal
representation. We also performed experiments by adding the absolute 3D locations
of body parts to the skeletal representation. The 3D location of a body part e,,
can be described using its rigid body transformation 7, with respect to the global
x-axis (Figure 3.3(c)). But, this did not give any improvement, suggesting that the

absolute measurements are redundant when the relative measurements are used.

3.3.1 R3DG Features

There are multiple ways to mathematically represent the rigid body transfor-
mations in 3D space. In this chapter, we consider the following four representations:
SE(3), SO3)® R, UQ ® R?, and UD. Using each representation we get a full

rigid body transformation-based R3DG feature. Please refer to Chapter 2 for details

30

about the special Euclidean group SFE(3), the special orthogonal group SO(3), the

unit quaternions U Q, and the unit dual quaternions UD.

SE(3) : Each rigid body transformation 7; ;(t) is represented as a member of SE(3)

using the 4 x 4 matrix
PiJ (t> = 7 ’) (32)

where R, ;(t) is the SO(3) representation of 3D rotation (6;,(t),n;;(t)), and the

entire skeleton is represented using

(P1,2(t), Pyy(t),..., Py_1m(), PM,M—1<t)) € SE(3)F. (3.3)

Since SE(3)X is a curved space, classification of action curves in this space is
not an easy task. Standard classification approaches like SVM, which are defined
for vector space representations, are not directly applicable to this non-vector space.
Also, temporal modeling approaches like Fourier analysis are not applicable to this
space. Note that the standard Fourier analysis is defined for functions whose output
varies along the real line. Here, the action curve C(t) evolves in the non-Euclidean
space SE(3)X as a function of time, and the standard Fourier analysis is not defined
for this case. To overcome these difficulties, we map the action curves from the Lie
group SE(3)X to its Lie algebra se(3)%, which is a 6M (M — 1)-dimensional vector

space. The final representation of action curve C(t) is given by

€1(t) = [vec(log(Py1(t))), vec(log(Ps (1)), - . .,

(3.4)
vec(log(Pa—1,m(t))), vec(log(Parar—1(t)))].

31

SO(3) ®R?3 : In this case, the rotations and translations are separately represented
as members of SO(3) and R?, respectively, and the entire skeleton is represented

using

(Ri2(t), Roa(t), ..., Ray—1,m(t), Rar -1 (1),
(3.5)

dio(t),doi(t), ... da—1ar(t), darar—1(t)) € SO(3)K @ R3E.

Similar to SE(3)%, the Lie group SO(3)¥ is also a curved space. So, we map
the action curves from SO(3)% ® R3*X to the 6M (M — 1)-dimensional vector space
50(3)% @ R3E by mapping the rotational part from the Lie group SO(3)¥ to its Lie
algebra s0(3)X. Note that the translational part remains the same. The final vector
space representation of action curve C(t) is given by

&,(t) = [vec(log(Ri2(1))), vec(log(Rs1(t))), - . ., vec(log(Ra—1,m(1))),
(3.6)

Vec(log(RMM_l(t))), dLQ(t), d271(t), ceey dM—l,M (t), dM,M—l(t)} .
UQ ® R3 : In this case, the rotations and translations are separately represented

as elements of U Q and R?3, respectively, and the entire skeleton is represented using

(7”1,2(75)7 ro1(t), ..., rar—1m(t), Parar—1(t),
(3.7)
di2(t),doq(t), dar—1,m (1), dM,Mq(t)) cUQX @ R,
where r; ;(t) = (s;;(t),v;;(t)) is the unit quaternion representation of 3D rotation
(05(2), i ().
Similar to SO(3) and SE(3), the Lie group U Q is also a curved surface. In fact,

the set of unit quaternions forms a three dimensional unit sphere in R*. Hence, to

get a vector space representation, we directly use the 4-dimensional ambient space

32

representation of unit quaternions. With this, we get the following 7M (M — 1)-

dimensional vector space representation for the action curve C(t):

C3(t) = [31,2(15), v12(t), s21(t), v21(t), ..., spr—1.m(t), Var—1.m(t),
(3.8)
8M7M,1(Zf), ’UM’Mfl(t), d172(t), d271(t), e del,M(t), deM,1<t>] .

Here, we could have used the Lie algebra representation instead of the ambient
space representation. But, the uq representation is nothing but a scaled version (a
scaling factor of 1/2) of s0(3) representation (refer to (2.27)). Since so0(3) represen-
tation is already being used in the case of SO(3) ® R3, we chose to use the ambient

space representation for unit quaternions.

UD : In this case, each rigid body transformation 7; ;(¢) is represented using a unit

dual quaternion

Ci(t) = (s1,(t), vi;(t)) +e(si,(t), vi;(1)). (3.9)

The set of unit dual quaternions does not form a vector space. Hence, similar to
the quaternions, we use the 8-dimensional ambient space representation for unit
dual quaternions, which gives the following 8 M (M — 1)-dimensional vector space

representation for the action curve C(¢):

Cy(t) = [31{,2(15)7 ,UI,Q(t)v 561{2@), viQ(t)a 35,1(0» vy (1), Sg (1), 931(t)7 cee
STM—LM (t)v ’U},‘VI—LM(t)7 SlJiM—I,M(t)) 'v%/[—l,M (t)a (310)

S?V[,M—l(t)a UX/I,M—I(t)a 5‘11\4,1\4—1(75)7 v%,Mq(t)] .

33

Table 3.1: The proposed family of R3DG features.

R3DG feature Dimensionality | Needs scale normalization
5e(3) 6M(M —1) Yes
s0(3) @ R3 6M(M —1) Yes
Rigid body transformation-based
UQ®R3 TM(M —1) Yes
up 8M(M —1) Yes
50(3) 3M(M —1) No
Rotation-based
uo AM(M —1) No

3.3.2 Scale-invariant R3DG Features

One of the standard ways to handle scale variations in skeletal data is to

resize all the skeletons to a fixed size. This can be done by normalizing the skeletons

(without changing the joint angles) such that their body part lengths are equal to the

corresponding lengths of a reference skeleton. Interestingly, while the translations

between different body parts vary with this scale normalization, the 3D rotations

do not change. So, by using only the rotations between different body parts, we

can get the following two scale-invariant R3DG features based on the so(3) and U Q

representations of rotations:

Cs5(t) = [vec(log(Ri(t))), vec(log(Rs1(t))), .. -,

vec(log(Ras—1,1(t))), vec(log(Rarn—1(t)))]

Cs(t) = [s1.2(t), v12(t), 52,1 (8), V21 (E), . . .,

(3.11)

spr—1,0 (1), ar— 1,0 (£), snaar—1(t), var -1 (1))

34

Note that at any time instance ¢, €5(¢) is a 3M (M — 1)-dimensional vector and €4(t)
is a 4M (M — 1)-dimensional vector. Table 3.1 summarizes the proposed family of

R3DG features.

3.4 Temporal Modeling and Classification

Classification of vector space curves into different action categories is not a
straightforward task due to various issues like rate variations, temporal misalign-
ment, noise, etc. Following [32,82], we use DTW to handle rate variations. During
training, for each action category, we compute a nominal curve using the algorithm
described in Table 3.2, and warp all the training curves to this nominal curve. We
use the squared Euclidean distance for DTW computations. Note that for comput-
ing a nominal curve all the curves should have equal number of samples. For this, we
re-sample the action curves using the interpolation algorithms presented for SO(3)
and SFE(3) in Sections 2.1.1 and 2.1.2, respectively. In the case of quaternions, we
first interpolate the rotations on SO(3) and then convert them to unit quaternions.
In the case of dual quaternions, we first interpolate the rigid body transformations
on SE(3) and then convert them to unit dual quaternions.

After the DTW step, we represent the warped curves by using the low-frequency
FTP representation that was shown to be robust to temporal misalignment and
noise in [13]. We apply FTP for each dimension separately and concatenate the
low-frequency Fourier coefficients to obtain the final feature vector. Action recog-

nition is performed by classifying the final feature vectors using a one-vs-all SVM

35

Table 3.2: Algorithm for computing a nominal curve.

Input: Curves Si(t),...,Ss(t) att=0,1,...,7T".

Maximum number of iterations maz and threshold §.

Output: Nominal curve S(¢) at t =0,1,...,T".

Initialization: S(t) = Si(t), iter = 0.

while iter < max
Warp each curve S;(t) to the nominal curve S(t) using DTW with

squared Euclidean distance to get a warped curve Sy’ (t).
Compute a new nominal S (t) using S’ (t) = % Ej:l S]"-"(t).
. T’ /

if 30lS) -SBIZ <0

break
end

S(t) = 8'(t); iter = iter + 1;

end

classifier. Figure 3.4 gives an overview of the proposed skeleton-based action recog-
nition approach. The top row shows all the steps involved in training and the bottom

row shows all the steps involved in testing.

3.5 Experimental Evaluation

In this section, we evaluate the proposed R3DG features on five action datasets:
MSRAction3D [83], UTKinect-Action [57], Florence3D [84], MSRPairs [85] and

G3D [86]. Please refer to Table 3.3 for details about these datasets.

Basic pre-processing: To make the skeletal data invariant to the absolute location

of human in the scene, all the 3D joint coordinates were transformed from world

36

“SuIIS9], - mox wojjog ‘Sururel], - mo1 doy, :yoeordde uonrusoosor uonoe posodoid oy, §'¢ 0INSI]

l1alyissed WAS uoiyejuasaldal piwesid ML Buisn 7 ssepd jo

1594 SNSIBA 7 SSB|D <« |edodwia] Jalunoy <« |eulwou ayj o3 buidiepy -
298] sse|d Bunods * * * 2oeds alnleal uonejuasaidal @uanbas
L] L] L]
uonay 3saybiy ayy asooyn OQgY Ul anny |e13|33s pasodold RET——
—_ ! !
121JISSBD WAS - uonejudsaldal plwesid - MLa Buisn T ssepd jo
-« <
1584 SNSJaA T sse|) |edodwia) Jalino4 |eujwou ay3 01 buidiep
13141558)2 WAS - uopejuasaidal pluesid MLQ Buisn 7 ssepd jo 7] SSe|2 uoljoe 4oy
1594 SNSJ9A 7 SSB|D «— |esodwa) Joauno4 «— |eujwou ay3 o3 buidiep «— uojzendwod jeujwoN
P
B\
- - - - rWW LWC
L] - a L] N N
. . . sanind aoeds aimjeay Lonejussaldal saauanbas
- -
. . . Buies; |l . 9gy Ul senn) | 1BIRIRNS Pasodold g oy puujes)
S/ e
L] L] L] - 2] Ad
~) 8
.) . .) N
Js1ssed - uonejuassidal prwelhd Buisn T sse|d jo i SSB|2 UOI1IE 1O,
HISSed WAS « ney p! « ML buisn T 124 « T | [k J

3581 SNSIaA T SSe|D |esodwia) Jauno4 |eujwou ay3 o3 buidiepm uojzeindwod [eujwon

37

Table 3.3: Datasets for skeleton-based human action recognition.

Dataset MSRAction3D | UTKinect-Action | Florence3D | MSRPairs | G3D
Actions 20 10 9 12 20
Subjects 10 10 10 10 10
Sequences 557 199 215 353 663
Joints 20 20 15 20 20
Body parts 19 19 14 19 19

coordinate system to a person-centric coordinate system by placing the hip center
at the origin. We rotated the skeletons such that the ground plane projection of the
vector from left hip to right hip is parallel to the global z-axis. For each dataset,
we took one of the subjects as reference, and normalized all the other skeletons
(without changing their joint angles) such that their body part lengths are equal to
the corresponding lengths of the reference skeleton. This normalization takes care
of scale variations. We also performed experiments by varying the reference sub-
ject, but the results did not vary much. The standard deviation in the recognition

accuracy was around 0.2-0.3%.

Alternative skeletal representations: To show the effectiveness of the proposed

R3DG features, we compare them with the following alternative representations:

e Joint positions (JP): Concatenation of 3D coordinates of all the joints

v, ...,uy (except the hip center).

e Relative positions of the joints (RJP): Concatenation of all the vectors

VU5, 1§Z<]§N

38

e Joint angles (JA): Concatenation of the quaternion representations of all
the joint angles. We also tried the so0(3) and Euler-angle representations for
joint angles, but quaternions gave the best results. Here, we measure each
joint angle in the local coordinate systems of both body parts associated with

that angle.

e Relation pose features (RP): We use the joint distance, plane, normal
plane, velocity and normal velocity features of [77] computed from a single

human skeleton.

e Individual body part locations (BPL): Each body part e, is represented
using its rigid body transformation 7}, with respect to the global z-axis (Fig-
ure 3.3(c)). Similar to R3DG features, we have six different BPL features:

se(3), s0(3) ® R®, UQ ® R?, UD, s0(3), and UQ.

e Skeletal quads (SQ): We use the skeletal quad descriptor of [72] to describe

the relative geometry between every pair of body parts.

For a fair comparison, we use the same temporal modeling and classification
approach described in Section 3.4 with all the representations. Table 3.4 summarizes

the alternative skeletal representations used for comparison.

Parameters: For the FTP representation, we used a three-level temporal pyramid
with one-fourth of the segment length as the number of low-frequency coefficients.
While using one or two levels for the temporal pyramid produced inferior results,

going beyond three did not improve the results significantly. Changing the number

39

Table 3.4: Alternative skeletal representations for comparison.

Representation JP RJP JA RP SQ

Dimensionality | 3(N —1) | SN(N —1) | 8M | N(75+ Y1) | 6M(M — 1)

Requires scale

Yes Yes No Yes Yes
normalization
BPL
Representation
s5¢(3) | 503)®@R3 | UQ@R? | UD | s50(3) | UQ
Dimensionality | 6M 6 M ™ 8M | 3M | 4M

Requires scale
Yes Yes Yes Yes No No

normalization

of low-frequency coefficients from one-fourth of the segment length to one-third or
one-fifth did not significantly change the accuracy (around 0.2%). The value of SVM
parameter C' was chosen using cross-validation. For each dataset, all the curves were
re-sampled to have same length. The reference length was chosen to be the maxi-

mum number of samples in any curve in the dataset before re-sampling.

Comparison with other skeletal representations: Table 3.5 shows the recog-
nition accuracy for various skeletal representations on five action datasets when the
same temporal modeling and classification pipeline (DTW + FTP + linear SVM) is
used with all the representations. For all the datasets, we followed the cross-subject
test setting, in which half of the subjects were used for training and the other half
were used for testing. All the results reported in this table were averaged over ten
different random combinations of training and test data. The best result in each

column is shown in boldface style. We can see that all the proposed R3DG features

40

Table 3.5: Recognition accuracy for various skeletal representations.

Representation | MSRAction3D | UTKinect | Florence3D | MSRPairs | G3D
JP 88.75 95.08 85.26 92.90 87.28
RJP 88.87 95.48 85.17 93.91 90.03
JA 75.39 94.07 80.45 90.46 86.25
RP 87.25 93.46 76.86 84.76 88.19
SQ 83.44 95.18 88.89 90.70 89.79
5¢(3) 82.97 94.58 81.38 89.62 87.40
50(3) @ R3 83.88 94.67 81.26 90.59 87.19
UQBR3 88.74 96.18 84.94 93.32 89.48
BPL

up 87.76 95.48 83.95 92.75 88.73
50(3) 82.46 94.37 80.52 90.70 86.64
uo 86.30 95.18 83.46 92.41 87.76
se(3) 89.55 97.20 90.71 93.65 91.60
s0(3) @ R® 89.37 97.20 90.87 93.82 91.60
UQ®R3 90.24 97.09 92.61 93.60 91.51

R3DG
up 90.69 97.09 91.55 94.33 |92.12
50(3) 89.22 96.78 90.52 93.48 91.48
uo 90.59 96.88 91.27 93.88 |92.12

perform better than all the alternative skeletal representations on all the datasets
except the MSRPairs dataset where the RJP representation performs slightly bet-
ter than some of the R3DG features. Specifically, the accuracy of the best R3DG
feature is better than the accuracy of the best competing skeletal representation
by 1.82% on the MSRAction3D dataset, 1.02% on the UTKinect dataset, 3.72% on
the Florence3D dataset, 0.42% on the MSRPairs dataset, and 2.09% on the G3D

dataset. These results clearly show the superiority of the proposed R3DG features.

41

Table 3.6: Contribution of the FTP module in terms of recognition accuracy

Dataset s5¢(3) | 503) @R |UQR®R3 | UD | s0(3) | UQ
DTW + SVM 87.71 87.52 90.30 90.59 | 86.96 | 90.23

MSRAction3D | DTW + FTP + SVM | 89.55 89.37 90.24 90.69 | 89.22 | 90.59
FTP contribution 1.84 1.85 -0.06 0.10 | 2.26 | 0.36

DTW + SVM 88.13 | 88.28 80.73 | 89.73 | 87.92 | 89.52

G3D DTW + FTP + SVM | 91.60 | 91.60 9151 | 92.12 | 91.48 | 92.12
FTP contribution 3.47 3.32 1.78 2.39 | 3.56 | 2.60

Contribution of the translational information: Comparing the recognition ac-
curacy of rotation-based and full rigid body transformation-based R3DG features,
we can see that on four out of five datasets, the contribution of translational infor-
mation is not that significant. The difference between the best recognition accuracy
of rotation-based and full rigid body transformation-based R3DG features is 0.1%
for the MSRAction3D dataset, 0.32% for the UTKinect dataset, 0.45% for the MSR-
Pairs dataset, and 0% for the G3D dataset. Only on the Florence3D dataset, there

is a significance difference of around 1.34%.

Contribution of the DTW and FTP modules: Our temporal modeling con-
sists of the DTW and FTP modules. To analyze the contribution of these modules
to the final recognition accuracy, we performed experiments on the MSRAction3D
and G3D datasets (the two largest datasets) by removing these modules from the
action recognition pipeline. Table 3.6 compares the final accuracy with and without
the FTP module in the action recognition pipeline. As we can see, the FTP module

contributes significantly to the final accuracy in most of the cases.

42

Table 3.7: Contribution of the DTW module in terms of recognition accuracy

Dataset se(3) | 50(3)®@R3 | UQ@R3 | UD | s0(3) | UQ

FTP + SVM 86.93 86.94 87.58 87.69 | 86.42 | 87.26

MSRAction3D | DTW + FTP + SVM | 89.55 89.37 90.24 90.69 | 89.22 | 90.59

DTW contribution 2.62 2.43 2.66 3.00 | 2.80 | 3.33

FTP + SVM 91.75 | 9175 91.48 | 92.12 | 91.60 | 92.12

G3D DTW + FTP + SVM | 91.60 | 91.60 9151 | 92.12 | 91.48 | 92.12
DTW contribution -0.15 -0.15 0.03 0 -0.12 0

Table 3.7 compares the final accuracy with and without the DTW module in
the action recognition pipeline. While the DTW module contributes significantly
to the final accuracy in the case of MSRAction3D dataset, it does not change the
accuracy much in the case of G3D dataset. This variation is expected since the

contribution of DTW module depends on the rate variations present in the dataset.

Comparison with state-of-the-art approaches: Table 3.8 compares the pro-
posed approach with various existing skeleton-based action recognition approaches
on MSRAction3D, UTKinect, Florence3D and G3D datasets (MSRPairs dataset is
missing since all the results reported in the literature for this dataset are based
on depth data). Since the focus of this work is on skeleton-based human action
recognition, we use only skeleton-based approaches for comparison. We evaluated
our approach using both linear and RBF kernel SVMs, and the kernel SVM per-
formed slightly better on all datasets. When the RBF kernel was used, the U/ Q
R3DG feature gave the best result (among all R3DG features) for the G3D dataset

and the U Q x R3 R3DG feature gave the best result on all the remaining datasets.

43

Table 3.8: Comparison with other skeleton-based action recognition approaches.

UTKinect dataset

Histograms of 3D joints [57]** 90.92
MSRAction3D dataset Hanklets [88]** 86.76
Bag of key poses [67] 89.62 || Motion Trajectories [87]** 91.50
Random forests [71]T 90.90 || Random forests [71] 87.90
HOD features [10] 91.26 || Elastic functional coding [89] 94.87
Covariance descriptors [11]* 90.53 Proposed approach (linear SVM) 97.20
Spatial and temporal part-sets [74]T 90.22 Proposed approach (Kernel SVM) | 97.59
Skeletal quads [72]T 89.86 Florence3D dataset
Moving pose [69] 9L.70 || Multi-Part Bag-of-Poses [84]* 82.00
Actionlets [13] 88.20 || Motion Trajectories [87]* 87.04
MMTW [12] 92.70 || Elastic functional coding [89] 89.67
Motion Trajectories [87] 92.10 || Proposed approach (linear SVM) | 92.61
Hanklets [88] 89.00 || Proposed approach (Kernel SVM) | 93.06
Joint angle similarities [15] 83.53 G3D dataset
Proposed approach (linear SVM) 89.74 || RBM + HMM [90] 86.40
Proposed approach (Kernel SVM) | 90.11 || Proposed approach (linear SVM) | 92.12
T Easier three subset protocol. 92.39

Proposed approach (kernel SVM)

44

* .
Easier leave-one-actor-out scheme.

*k . .
Easier leave-one-action-out scheme.

For the MSRAction3D dataset, we followed the standard protocol of using sub-
jects 1, 3, 5, 7, 9 for training and the remaining for testing. For G3D, UTKinect
and Florence3D datasets, we followed the cross-subject setting and used half of the
subjects for training and the remaining half for testing. Note that this is a more
difficult setting compared to the leave-one-action-out scheme used for the UTKinect
dataset in [57,87,88] and the leave-one-actor-out scheme used for the Florence3D
dataset in [84,87], where more subjects were used for training. We report the results
averaged over ten random combinations of training and test data.

The best accuracy on each dataset is shown in boldface style. We can see
that the proposed approach gives the best recognition accuracy on three out of
four datasets. Specifically, it is better than the state-of-the-art results by 2.72%
on the UTKinect dataset, 3.39% on the Florence3D dataset and 5.99% on the G3D
dataset. The proposed approach also outperforms many recent skeleton-based action
recognition approaches on the MSRAction3D dataset. Note that the main focus of
this work is on skeletal representation, and the proposed R3DG features clearly
outperform various existing skeletal representations when the same classification

pipeline is used with all the representations.

3.6 Conclusions

In this chapter, we introduced a family of body part-based 3D skeletal repre-
sentations for human action recognition, which we refer to as R3DG features. The

proposed representations explicitly model the relative 3D geometry between various

45

body parts (though not directly connected by a joint) using rigid body transfor-
mations. We represented 3D rigid body transformations using SFE(3), SO(3) ® R?,
UQ ® R3, and UD, resulting in four different R3DG features. We also introduced
scale-invariant R3DG features by using only the 3D rotations between various body
parts. Using the proposed representations, we modeled the human actions as curves
in R3DG feature spaces. Finally, we performed action recognition by classifying
these curves using a combination of DTW, the FTP representation and an SVM clas-
sifier. We experimentally showed that the proposed R3DG features perform better
than various existing skeletal representations, and the proposed action recognition

approach outperforms various existing skeleton-based action recognition approaches.

46

Chapter 4: Rolling the Special Orthogonal Group for Skeleton-based

Human Action Recognition

4.1 Introduction

In Chapter 3, we introduced scale-invariant skeletal representations for hu-
man action recognition based on the special orthogonal group SO(3) and unit
quaternions. In this chapter, we further investigate the SO(3)-based representa-
tion. Given a skeletal sequence, we represent each skeleton as a point in the Lie
group SO(3)®...® SO(3) using the relative 3D rotations between all pairs of body
parts, and the entire sequence as a curve in the Lie group. A similar SO(3)-based
representation was also used in [91,92] to represent human skeletons. However,
while [91,92] used only the joint orientations, our skeletal representation includes
the 3D rotations between all pairs of body parts.

Classification of curves in the Lie group SO(3) ® ... ® SO(3) is a non-trivial
task due to the non-Euclidean nature of the underlying space. In Chapter 3, we
first mapped the action curves from the Lie group to its Lie algebra (which is the
tangent space at the identity element) using the logarithm map, and then classified

the Lie algebra curves. But, flattening the Lie group using the logarithm map at a

47

Result of logarithm map Result of unwrapping while rolling
Tangent space . Tangent space

Manifold \ Manifold

Figure 4.1: Left: Logarithm map at point P, Right: Unwrapping using the logarithm

map while rolling along the nominal curve.

single point introduces distortions due to which curves that are nearby in the Lie
group can move away from each other in the Lie algebra. Figure 4.1 (left) illustrates
this pictorially with the example of a sphere. Here, the longitudinal curves moves
away from each other when mapped to the tangent space at P using the logarithm
map. Note that though we use a sphere for illustration in Figure 4.1, the manifold
of interest here is SO(3) ® ... ® SO(3).

To reduce the distortions introduced by flattening the Lie group using the loga-
rithm map at a single point, we combine the logarithm map with rolling maps [93-95]
in this chapter. Rolling maps can be used to flatten the Lie group SO(3)®...®S0(3)
by unwrapping the action curves onto its Lie algebra using the logarithm map while
rolling. Figure 4.1 (right) illustrates the effect of unwrapping (using the logarithm
map) while rolling with the example of a sphere. When rolled along the middle lon-
gitudinal curve, referred to as the nominal curve in the figure, the other curves that
are close to the nominal curve on the sphere remain close to it even after unwrapping

onto the tangent space at P.

48

Though the rolling map is a mathematically well-defined concept, it has not
been explored much by the computer vision community. Recently, Caseiro et. al. [96]
introduced the rolling map to the vision community by using it for the classification
of manifold features. In [96], the Grassmann manifold was first rolled as a rigid
body over the tangent space at identity, and the data samples were unwrapped
onto the tangent space. Then, classification was performed in the tangent space.
Rolling maps have also been used for interpolation on SO(3) [97,98] and Grassmann
manifold [99].

In this chapter, we first compute a nominal curve for each action category in
SO(3)®...® S0(3), and warp all the action curves to these nominal curves using
DTW. This helps us to handle the rate variations. Then, we roll SO(3)®...®S0(3)
(by rolling each SO(3) individually) over its Lie algebra s0(3)®...®s0(3) along the
nominal curves, and unwrap all the action curves (using the logarithm map) onto the
Lie algebra while rolling. The main advantage of unwrapping while rolling is that
the distances between the action curves and the nominal curves are preserved while
mapping the curves from the Lie group to the Lie algebra. Finally, we represent
the unwrapped Lie algebra curves either by directly concatenating the temporal
samples into a single feature vector or by using the FTP representation of [13], and
classify them using a one-vs-all linear SVM classifier. Experimental results show
that flattening by unwrapping while rolling improves the recognition performance
when compared to flattening by using the logarithm map at a single point.

In most of the existing works that use rolling maps, the rolling curve was

chosen as a geodesic curve [96-98]. But, we are interested in rolling SO(3) along

49

the nominal action curves, which are non-geodesic. While [94,96-98] provide closed
form expressions for the rolling map when the rolling curve is a geodesic, they do
not explain how to compute the rolling map in closed form when the rolling curve
is non-geodesic. In this chapter, we show how to obtain a piecewise smooth rolling
map for a given (discrete) non-geodesic rolling curve in SO(3). Specifically, we
derive closed form expressions for a rolling map such that the rolling curve passes

through a given set of points in SO(3) at given instances of time.

Contributions: We combine the logarithm and rolling maps to flatten the special
orthogonal group SO(3) for performing human action recognition from 3D skeletal
data. The rolling map is a mathematically well-defined concept that has not been
explored much by the vision community. To the best of our knowledge, it was never
used in the context of human action recognition. Most existing works on rolling
maps use a geodesic curve as the rolling curve. They do not provide closed form
expressions for the rolling map in the case of a non-geodesic rolling curve. In this
chapter, we show how to compute a piecewise smooth rolling map corresponding to

a given (discrete) non-geodesic rolling curve in SO(3).

Organization: Section 4.2 provides relevant background information on group
SO(3)*R? and rolling maps. Section 4.3 presents the rolling and unwrapping opera-
tions for SO(3) and Section 4.4 presents the proposed action recognition approach.

Section 4.5 presents the experimental results and Section 4.6 concludes the chapter.

20

4.2 Relevant Background

4.2.1 Group SO(3)*R?

The group SO(3)?*R? is the set of all matrix triplets (U, V, X), where X € R3*3
and U,V € SO(3). The group multiplication and group inversion operations for this

group are defined as
(U27 ‘/27 XZ) * (U17 ‘/17 Xl) = <U2U17 ‘/2‘/17 U2X1‘/2T + X2>7

UV, X)" = UV, -UTXV), (4.1)

and the group identity element is given by (I3, I3,0). The group SO(3)*R? acts on

R3*3 via

SOB)P*RY o R¥® = R¥3 (U, V,X)oZ=UZV' + X. (4.2)

4.2.2 Rolling Motion

For two m-dimensional Riemannian manifolds M and M, both embedded in
the same ambient Euclidean space R™ (n > m), the rolling motion describes how
M rolls over M as a rigid body without slip and twist. A classical example of such
a motion is the rolling of 2-dimensional sphere over the tangent plane at a point as
shown in figure 4.2.

The curve {a(t) € M C R" : t € [0,T]} along which the manifold M rolls
is called the rolling curve and the curve {a(t) € M C R™ : t € [0,T]}, where the

rolling curve touches the manifold M while rolling, is called the development curve

o1

", — ""u
",
% A%
[H i 7

Figure 4.2: Sphere rolling over a tangent plane. The red curve is the rolling curve

a(t) and the black curve is the development curve a(t).

of & on M. In figure 4.2, the red curve on the sphere is the rolling curve and the
black curve in the tangent space is the development curve. Since rolling is a rigid
body motion in the ambient space R", it can be mathematically described using a

curve in the special Euclidean group SE(n).

Definition 4.1 A rolling map describing how M rolls over M, without slip and

twist, along a smooth rolling curve a: [0,T] — M, is a smooth map
h:[0,T] — SE(n), t = h(t) = (R(t),d(t)), (4.3)
satisfying the following conditions [94, 95]:

e Rolling conditions

(4.4)
Thtyoatry (h(t) 0o M) = Tg M,
e No-slip conditions
(h(t) o h(t)) o a(t) =0, (4.5)
o No-twist conditions
(A(t) o h(t)™") 0 Ta@yM C (TayM)™, "
4.6

(h(t) o h(t)™") o (TayM)* C TayM,

52

where for a point x € R™ and a vectorn € R" (i.e., there exists a curvey : (—¢€, €) —

R™ such that §(0) = n), the operations h(t) o z, h(t) o x, (h(t) o h(t)™) oz and

(h(t) o h(t)™') o n are defined as
h(t) oz := R(t)x + d(t),

d
= 25 (ls) 0 1)l

. d (4.7)
(h(t) o h(6) ") 0 @ := —((A()h(6)) ©)=,

h(t) oz :

. _ d - _
(h(t) o h(t)™) o := —=((h(t) o h(t) ™) 0 y(s)) o=
Result 4.1 Given any piecewise smooth development or rolling curve, this defini-

tion ensures the ezistence and uniqueness of the corresponding rolling map [94, 95].

4.3 Rolling Special Orthogonal Group

Here, we are interested in rolling SO(3) over the tangent plane Tg,SO(3)
at a point Ry € SO(3). Note that both SO(3) and Tg,SO(3) are 3-dimensional
manifolds embedded in the 9-dimensional Euclidean space R**3. Hence, we can
describe the rolling of SO(3) using a curve h(t) € SFE(9). However, in [94], it
has been shown that for rolling SO(3) over a tangent plane, the rotational and
translational components of the original special Euclidean group SE(9) turn out to
be SO(3)? and R3*3, respectively. Therefore, the rolling map can be represented

using a curve ¢(t) € SO(3)*R’.

93

Result 4.2 Rolling maps for SO(3): Let {Q(t) € s0(3) | t € [0,T]} be any

continuous curve. Let c(t) = (U(t), V(t), X (t)) € SO(3)*RY be the solution of

dX (1)
dt

— Q(t) Ry, %t(t) - —%Q(t)U(t), %t(t) — %Rgn(t)ROV(t), (4.8)

satisfying c(0) = (I3, I3,0). Then, the action of c(t) on SO(3) C R3¥*3 results in
rolling of SO(3) over the tangent plane Tr,SO(3) with the rolling and development

curves given by

(4.9)

The above result says that every continuous curve €2(t) in the Lie algebra
of SO(3) defines a rolling map ¢(t) through the set of differential equations (4.8).

Please refer to [94] for the proof.

Rolling along a geodesic: If 2(t) = Q = log(R, R}), then the solution to (4.8)
is given by

Ut)=e 2 V(t)= Rle?™R,, X(t) =tQR,. (4.10)

In this case, the rolling curve
a(t) =Ut) T RyV (t) = €' Ry = ' °8B1R) Ry (4.11)
is the geodesic from Ry to Ry, and the development curve is given by

a(t) = Ry + tQRy. (4.12)

o4

4.3.1 Rolling along a Non-geodesic Curve

Note that Result 4.2 starts with a curve €2(t) € so(3) and explains how to
obtain the corresponding rolling map ¢(t) and rolling curve a(t). It doesn’t say
anything about how to compute the rolling map ¢(t) starting from a rolling curve
a(t). But, in this chapter, we are interested in rolling SO(3) along specific «(t),
which are the nominal action curves obtained using DTW. If the rolling curve «(t)
is a geodesic, then the corresponding rolling map ¢(t) can be computed using (4.10).
But, the nominal action curves along which we want to roll are usually non-geodesic.

Let {Ro, Ry, ..., Rr} be the discrete representation of the curve along which
we want to roll SO(3). In Theorem 4.1, we show how to obtain a piecewise smooth
rolling map ¢(t) such that the corresponding rolling curve «(t) passes through R;

at time instance ¢t for t =0,1,...,T.

Theorem 4.1 Let {Ry, Ry, ..., Ry} be the given (discrete) rolling curve. Let €,

Qy, ..., Qr be T skew-symmetric matrices defined recursively using

Q, = log <3_% . e_%RnROTe_% e_%;) . (4.13)

Let c(t) = (U(t), V(t), X(t)) be a curve defined as

U(t)=e" e e_%, V(t) = Rge% e e%RO,
n—1

X(t) = ZQiRO+(t—n+1)QnRo, ten—1,n], n=1,2,....T.
i=1

(4.14)

Then, the action of c(t) € SO(3)?*R? on SO(3) results in rolling of SO(3) over the

95

tangent plane Tr,SO(3) with a rolling curve a(t) that satisfies

an)=R,, for n=1,2,...,T. (4.15)

Proof: Let {Q(t) € so(3) | t € [0,T]} be a curve defined as

Q) =69, (t—n+1)—(t—n+1)?), ten-1n], n=12,...,T
(4.16)
For this Q(t), the solution for differential equations (4.8) is given by (4.14). Hence
by Result 4.2, the action of ¢(t) on SO(3) results in rolling of SO(3) over the tangent

space Tr,SO(3) with the rolling curve given by

Q Qp_1 2,1

a(t)=U(t)" RV (1) = ez .. e 7 eltmntlng=5— e%RO, (4.17)

ten—1,n], n=12,...,T.
which satisfies

Q2 Qp_q Q Qp_1
n

an)=ez ...e 27 ete 2 ...e%Roan, for n=0,1,...,T. (4.18)

The above equation follows directly from the definition of €2, in (4.13). W

4.3.2 Unwrapping while Rolling

Rolling maps can be used to flatten SO(3) by unwrapping the action curves
(while rolling) onto the tangent space at a point using the logarithm map. Figure 4.3
illustrates this pictorially. In this figure, the blue curve is unwrapped onto a tangent

space while rolling along the red curve.

o6

Figure 4.3: Unwrapping the blue curve while rolling along the red curve.

Let c(t) = (U(t), V(t), X (t)) € SO(3)*R? be the rolling map corresponding
to the rolling curve a(t) € SO(3). Let a(t) € To)SO(3) be the development curve
of a(t). Then, unwrapping (using the logarithm map) of a curve 5(t) € SO(3) while

rolling along () gives the following curve 3(t) € Tp)SO(3) [98]:

B(t) = loggo) ((0), c(t)oB(t) — a(t) + a(0)) + a(t)
(4.19)

= logsog (a(0). TRFOVHT) +a(0) + X (1)

4.3.3 Advantage of Unwrapping while Rolling

The main motivation for using rolling maps in this chapter is that flattening
of SO(3) by unwrapping (using the logarithm map) the action curves while rolling

is better than flattening it by using the logarithm map at a single point.

Theorem 4.2 Let {a(t), B(t) € SO(3) : t € [0,T]} be two curves. Let a(t), 3(t) €
ToSO(3) respectively be the curves obtained by unwrapping (using the logarithm
map) a(t) and (t) while rolling the SO(3) over the tangent space at a(0) along the

curve a(t). Then, we have

dr,4,S0(3) (B@),a(t)) = dsog) (B(t), a(t)) Vi, (4.20)

27

where dsos) represents the geodesic distance on SO(3) and dTa(O)So(g) represents the

standard Euclidean distance in the tangent space Tt)SO(3).

Proof: Let c(t) = (U(t),V(t), X (t)) € SO(3)*R? be the rolling map corresponding

to the rolling curve a(t). Then, by (4.19) we have

B(t) = logsos (a(0), UMBHV(H)") + a(0) + X(t). (4.21)
Since a(t) is the rolling curve, a(t) = «(0) + X (¢) from Results 4.2. Hence, we have

dr, 50 (B(t), a(t)) = IB(t) — a(t)||
= [[logsos) (a(0), UMBHV()T) | pr
= dsog) ((0), UMBOV(H)T)

= dsog (UM a(OV (1), A1) = dsow (a(t), A(1)).
(4.22)

Here, the second last equality follows from the fact that dgo(s) is bi-invariant [100].1

As mentioned earlier, we first compute a nominal curve for each action cat-
egory, and warp all the action curves to these nominal curves. Then, we roll the
Lie group along the nominal curves and unwrap all the action curves onto the Lie
algebra while rolling. As stated in the above theorem , the main advantage of flat-
tening the action curves by unwrapping while rolling is that the distances between
the action curves and the nominal curves are preserved. This is not the case with

flattening using the logarithm map at a single point.

Alternative interpretation: The idea of unwrapping while rolling along the nom-

inal curve can also be interpreted as the extension of the idea of tangent plane

o8

mapping at the Karcher mean from points to curves. When dealing with points, the
Karcher mean is commonly used as the anchor point for tangent plane projection.
Since we are dealing with curves rather than points, the Karcher mean is replaced by
the mean/nominal curve. In the case of points, the logarithm map at Karcher mean
is used to map the points to a common tangent space. Since we are dealing with
curves (a curve can go through various points that are quite far apart), using the
logarithm map at a single point to flatten entire curves is not a good idea because,
as we move away from the anchor point (which will happen in the case of curves),
the distortion due to the logarithm map increases. Instead, it is better to use the
logarithm maps at multiple points spread over the nominal curve. This is exactly

what we are doing while rolling and unwrapping.

4.4 Proposed Action Recognition Approach

Our human action recognition system consists of the following steps: (1) Skele-
tal representation, (2) Nominal curve computation using DTW, (3) Rolling and un-

wrapping, (4) Linear SVM classification (with concatenated or FTP representation).

Skeletal representation: We represent a 3D human skeleton using the relative
3D rotations between all pairs of body parts. Since 3D rotations are members of

the Lie group SO(3), our skeletal representation becomes a point in the Lie group

SO(B3) ® ... ® SO(3).

Nominal curves: Using the above skeletal representation, we represent human

actions as curves in the Lie group SO(3) ® ... ® SO(3). During training, for each

29

Table 4.1: Algorithm for computing a nominal curve.

Input: Curves &1(t),...,Sn(t) at t =0,1,...,T.

Maximum number of iterations maz and threshold §.

Output: Nominal curve S(t) at t =0,1,...,T.

Initialization: S(t) = Si(t), iter = 0.

while iter < maz
Warp each curve S;(t) to the nominal curve S(t) using DTW to get a warped
curve S} (t).
Compute a new nominal S (t) using S’ () = Karcher mean ({Se()}HL,)
if Z?:o Geodesic distance(S'(t),S(t)) < 0

break
end

S(t) = 8'(t); iter = iter + 1;

end

action category, we compute a nominal curve using the algorithm summarized in
Table 4.1, and warp all the curves to this nominal using dynamic time warping.
This step helps in handling rate variations. For DTW computations, we use the
squared Euclidean distance in the Lie algebra. We also performed DTW using the
geodesic distance in SO(3), but did not get any improvement in the final classifica-
tion results. Hence, for faster computations, we use the Lie algebra distance in this
chapter. Note that in order to compute the nominal curves, all the action curves
must have same number of samples. For this, we use the interpolation algorithm
presented in section 2.1.1 and re-sample the curves in SO(3) ® ... ® SO(3). Inter-
polation on SO(3) ® ... ® SO(3) is performed by simultaneously interpolating on

individual SO(3).

60

We note that the recently proposed transported square-root vector field [101]
representation of curves, which is an extension of the earlier square-root velocity
representation [102] to Riemannian manifolds, provides a distance metric that is
invariant to temporal warping (i,.e., the distance between two curve does not change
if both curves undergo the same temporal warping). Using this distance metric for

DTW and nominal curve computations could further improve the performance.

Rolling and unwrapping: In this step, we roll the Lie group SO(3)®...® S0(3)
over its lie algebra s0(3) @ ... @ so(3) (by rolling each SO(3) individually over its
Lie algebra) along each nominal action curve, and unwrap all the action curves onto
the Lie algebra. The rolling map for a given (discrete) rolling curve can be obtained
using Theorem 4.1 and the unwrapping operation can be performed using (4.19).
Since a nominal action curve may not start from the identity element (remember
that Lie algebra is the tangent space at the identity element), we first roll the Lie
group from the identity element to the starting point of the nominal curve and then

roll along the nominal curve.

SVM classification: In this step, we first represent the unwrapped action curves
either by directly concatenating the temporal samples into a single feature vector or
by using the FTP representation of [13], and then classify them using a one-vs-all
linear SVM classifier. In the case of FTP representation, we apply FTP for each
dimension separately and concatenate all the Fourier coefficients to obtain the final
feature vector.

Figure 4.4 gives an overview of the proposed action recognition approach.

61

“SuI)s9, - MoI wojjog ‘Sururel], - morx doy, :yoroidde uoryugoosar uorjoe pesodord oy [, ' oINS1g

131ISSED AIAS JBaul| uolleuasaldal 414 | Nl SseJ2 jo [eujwou Suisn | 1@ Buisn | ssepd jo |

1581 SNSISA |A] SSB|D 10 pajeusieduo) Suiddeimun puesul|joy |eulwou o3 Suidiepn
ELE]] sse|d 8uliods | €os® - ®@ Amvcm‘ uoineluasalday | sousnbas
. L L -
uonoay | Is3ydly ay3 asooyd - - - - ul anIny

1B39[34S | 1e39|s 358

131JISSB|D NIAS JB3UI| uollejuasaidai d14 | [T sse|d Jo|eulwou Suisn | M1Qa 8uisn T ssep jo
1531 SNSIaA T Sse|D) 10 pajeualeduo) Suiddeimun puesuljjoy |eulwou o3 Buidiepp

, 13141s5B]2 INAS JBaUl| . uo|jejuasaidal 414 | Al ssejd jo |eutwou Suisn || MLQ Buisn |A sse|d jo | Al SSE[2 40} 3AIND |
1531 SNSI3A |A] 558D 10 pa1eus1edIuc) Suiddeamun pueSuljjoy |eulwou o3 Suidiepp Jeulwou andwo)
L L L] L L 5\4\. Mﬁ.
L . . L - Dm (am
5\0 —_——
- - - - - \
. . . . saAIND . O\ (2os® - ® ﬁmvoi uonejussasday saouanbas
o . . . Buluten |y ul SaAIND) 7 1B13|3%S |ea|ays Bulules|
S N :
. o/ &
~/ 8
p p L . - /8
131JISSB|2 |\IAS JBaul| uojjejuasaidal 414 T sse|2 jo|euiwou Suisn MLQ 8uisn T sse|d jo T Ssse|2 Joj amnd

1534 SNSI3A T Sse|D Jo pajeusieduc) Suiddeamun puesul|joy |eulwou o3 Suidaepy |eulwou sndwo)

62

4.5 Experimental Evaluation

In this section, we evaluate the proposed action recognition approach using
three action datasets captured with Kinect sensor: Florence3D-Action [84], MSRAc-

tion Pairs [85] and G3D-Gaming [86].

Florence3D-Action [84] dataset consists of nine different daily actions like drink
water, answer phone, read watch, tight lace, etc. performed by 10 different subjects.
Each subject performed every action two or three times resulting in a total of 215

action sequences. The 3D locations of 15 joints are provided with the dataset.

MSRAction Pairs [85] dataset consists of six action pairs like pick up a boz/put
down a box, wear a hat/take off a hat, etc. performed by 10 different subjects. Each
subject performed every action two or three times resulting in a total of 353 action

sequences. The 3D locations of 20 joints are provided with the dataset.

G3D-Gaming [86] dataset consists of 20 different gaming actions like golf swing,
tennis serve, bowling, aim and fire gun, etc. performed by 10 different subjects. Each
subject performed every action three or more times resulting in a total of 663 action

sequences. The 3D locations of 20 joints are provided with the dataset.

Evaluation setting: We followed the cross-subject test setting, in which half of
the subjects were used for training and the other half were used for testing. All the
results reported in this section were averaged over ten different random combina-

tions of training and test subjects.

63

Table 4.2: Comparison between logarithm map at a point and rolling.

Concatenated representation | FTP representation
Dataset . . - -
Logarithm Rolling Logarithm | Rolling
Florence3D 86.83 89.82 90.89 91.40
MSRPairs 92.96 94.09 94.10 94.67
G3D 87.89 87.77 91.48 91.42

Basic pre-processing: To make the skeletal data invariant to the absolute location
of human in the scene, all the 3D joint coordinates were transformed from world
coordinate system to a person-centric coordinate system by placing the hip center
at the origin. We rotated the skeletons such that the ground plane projection of the

vector from left hip to right hip is parallel to the global z-axis.

Parameters: As explained in section 4.4, for each dataset, all the action curves
were re-sampled to have same length. The reference length was chosen to be the
maximum number of samples in any curve in the dataset before re-sampling. The
value of SVM parameter C' was chosen based on cross-validation. For the FTP rep-
resentation, we used a three-level temporal pyramid with 1/4 length of each segment

as low-frequency coefficients.

Unwrapping while rolling vs logarithm map: In this chapter, we are using
rolling and unwrapping for flattening the Lie group SO(3)®...®S0(3). An alterna-
tive way to flatten this Lie group is to map the action curves to its Lie algebra using
the logarithm map. Table 4.2 compares the performance of both these approaches
in terms of action recognition accuracy when a linear SVM classifier is used with

the concatenated and F'TP representations.

64

Table 4.3: Comparison with the remaining R3DG features.

Dataset se(3) | s03)@R? | UQ®R? | UD UQ | SO(3)+ Rolling
Florence3D | 90.71 90.87 92.61 91.55 | 91.27 91.40
MSRPairs | 93.65 93.82 93.60 94.33 | 93.88 94.67

G3D 91.60 91.60 91.51 92.12 | 92.12 91.42

Note that the concatenated representation is nothing but the vectorized ver-
sion of unwrapped curves. Hence, the results obtained using this representation
directly compare the effects of using the logarithm map at a point and unwrapping
while rolling. As we can see from Table 4.2, unwrapping while rolling outperforms
the logarithm map by 3% on Florence3D dataset and by 1.1% on MSRPairs dataset.
On G3D dataset, both rolling and logarithm map perform equally well. These re-
sults suggest that it is better to flatten SO(3) by unwrapping while rolling instead
of using the logarithm map at a point. When we use additional processing steps like
the FTP representation, the performance gap decreases. This is probably because,
by discarding the high frequency Fourier coefficients, the F'TP representation is able

to remove some of the distortions introduced by the logarithm map.

Comparison with the remaining R3DG features: Table 4.3 compares the
performance of the proposed SO(3)-based approach with the remaining R3DG fea-
tures introduced in Chapter 3. We use the DTW + FTP + linear SVM pipeline
described in Chapter 3 with the other R3DG features. As we can see, while the
proposed approach gives the best result on MSRPairs dataset, its accuracy is 1.2%
and 0.7% less than the accuracy of best competing R3DG feature on Florence3D

and G3D datasets, respectively.

65

4.6 Conclusions

In this chapter, we used the rolling maps for flattening SO(3) to perform hu-
man action recognition from 3D skeletal data. We represented each human skeleton
as a point in the Lie group SO(3) ® ... ® SO(3) using the relative 3D rotations
between all pairs of body parts. Using this skeletal representation, we represented
human actions as curves in SO(3) ® ... ® SO(3). For each action category, we
computed a nominal curve and warped all the action curves to this nominal using
DTW. Then, we rolled SO(3) ® ... ® SO(3) over its Lie algebra along the nominal
curves and unwrapped all the action curves onto the Lie algebra. Finally, we rep-
resented the unwrapped curves using either the concatenated representation or the
FTP representation and classified them using a one-vs-all linear SVM classifier. By
evaluating on three action datasets, we showed that flattening SO(3) by unwrap-
ping while rolling performs better than flattening SO(3) by using logarithm map at
a single point.

Note that in order to roll along the nominal curves, we should be able to
compute the rolling map corresponding to a non-geodesic rolling curve. However,
most of the existing works use a geodesic curve as the rolling curve and do not
provide closed form expressions for the rolling map in the case of a non-geodesic
rolling curve. In this chapter, we showed how to compute a piecewise smooth rolling
map such that the rolling curve passes through a given set of points in SO(3) at

given instances of time.

66

Chapter 5: Kernel Learning for Extrinsic Classification of Manifold

Features

5.1 Introduction

Many applications involving images and videos require classification of data
that obey specific constraints. Such data often lie in non-Euclidean spaces. For
instance, popular features in computer vision such as shapes [103], rotation matri-
ces [35], linear subspaces [16], covariance features [17], etc., are known to lie on
Riemannian manifolds. In such cases, one needs good classification techniques that
make use of the underlying manifold structure.

For features that lie in Euclidean spaces, classifiers based on discriminative
approaches such as Linear Discriminant Analysis (LDA), Partial Least Squares
(PLS) and SVM have been successfully used in various applications. However,
these approaches are not directly applicable to features that lie on Riemannian
manifolds. Hence, classification is often performed in an extrinsic manner by first
mapping the manifold to an Euclidean space, and then learning classifiers in the
new space. One such popularly used Euclidean space is the tangent space at the

mean sample [17,104]. However, tangent spaces preserve only the local structure

67

of the manifold and can often lead to sub-optimal performance. An alternative
approach is to map the manifold to a reproducing kernel Hilbert space by using ker-
nels [18,20,22-24,105]. Though kernel-based methods have been successfully used
in many computer vision applications, a poor choice of kernel can often result in
reduced classification performance. This gives rise to an important question: How
to find good kernels for the classification of manifold features?

In this chapter, we answer the above question using the kernel learning ap-
proach [106, 107], in which appropriate kernels are learned directly from the data.
Since we are interested in learning good kernels for the purpose of classification, we
jointly learn the kernel and the classifier by solving a single optimization problem.
To learn a good kernel-classifier combination for features that lie on Riemannian
manifolds, we propose the following two criteria: (i) Risk functional associated with
the classifier in the mapped space should be minimized for good classification per-
formance, (ii) The mapping should preserve the underlying manifold structure. The
second criterion acts as a regularizer in learning the kernel. Our general framework
for learning a good kernel-classifier combination can be represented as the following

optimization problem

mi/? AT(K) 4+ To(w, K),

where I's(K), I'.(w,) are respectively the manifold-structure and the classifier
costs expressed as functions of classifier parameters w and kernel I, and X is a
regularization parameter.

Due to its superior generalization properties, we focus on using the SVM clas-

68

sifier in this chapter. In order to preserve the manifold structure, we constrain the
distances in the mapped space to be close to the manifold distances. Under this
setting, we formulate the problem of learning a good kernel-classifier combination
as a convex optimization problem. While the resulting formulation is an instance
of SemiDefinite Programming (SDP) and can be solved using standard solvers such
as SeDuMi [108], it is transductive in nature: both training and test data need to
be present while learning the kernel matrix. Solving SDPs is also computationally
expensive for large datasets. To solve both the issues, we follow the Multiple Ker-
nel Learning (MKL) approach of [106,107] and parameterize the kernel as a linear
combination of known base kernels. This formulation results in a simpler convex

optimization problem, that can be efficiently solved using gradient-based methods.

Organization: Section 5.2 provides a brief overview of existing approaches for
the classification of manifold features. Section 5.3 briefly discuss the Riemannian
geometry of two popularly-used manifold features, namely linear subspaces and
covariance features, and Section 5.4 presents the proposed kernel learning-based ex-
trinsic classification approach. Experimental results and conclusions are presented

in Sections 5.5 and 5.6, respectively.

5.2 Related Work

Existing classification methods for manifold features can be broadly grouped
into three main categories: nearest-neighbor methods, Bayesian methods, and FEu-

clidean mapping-based methods.

69

Nearest neighbor: The simplest classifier on a manifold is the nearest-neighbor
classifier based on some appropriately defined distance or similarity measure. In [109],
the trajectories of human joint positions were represented as subspaces using LDS
models, which were then classified using Martin and Finsler distances. In [104], LDS
models were used to get subspace representations for shape deformations and the
Frobenius distance was used for classification. In [19,21,110], image sets were mod-
eled using linear subspaces, which were compared using the direct sum of canonical
correlations in [19], a weighted sum of canonical correlations in [21], and the largest

canonical correlation in [110].

Bayesian framework: Another possible approach for classification is to use the
Bayesian framework by defining probability density functions (pdfs) on manifolds.
In [16] parametric pdfs like Gaussian were defined on the tangent space and then
wrapped back on to the manifold to define intrinsic pdfs for the Grassmann man-
ifold. Alternatively, Parzen-window based non-parametric density estimation was
used in [111] for the Stiefel manifold. Both these approaches along with the Bayes
classifier were used for human activity recognition and video-based face recognition.
In general, parametric approaches are sensitive to the model order, whereas the

model-free non-parametric approaches are sensitive to the choice of window size.

Euclidean mapping: Discriminative approaches like LDA, PLS, SVM, Boosting,
etc., can be extended to manifolds by mapping the manifolds to Euclidean spaces.

One such Euclidean space is the tangent-space. In [17], a LogitBoost classifier was

70

developed using weak classifiers learned on tangent spaces. This classifier was ap-
plied to the pedestrian detection task using covariance features. Alternatively, one
can map manifolds to Euclidean spaces by defining Mercer kernels for manifolds.
In [20,22], discriminant analysis was used for image set-based recognition tasks using
Grassmann kernels. In [18], a kernel defined for the manifold of Symmetric Positive
Definite (SPD) matrices was used with PLS for image set-based recognition tasks.
In [105], Binet-Cauchy kernels defined for non-linear dynamical systems were used
for human activity recognition. In general, the success of kernel-based methods is
often determined by the choice of kernel. Hence, in this chapter, we address the
issue of kernel-selection for the classification of manifold features.

The idea of using manifold structure as a regularizer was previously explored
in the context of data manifolds [112,113], where the given high dimensional data
samples were simply assumed to lie on a lower dimensional manifold. Since the
structure of the underlying manifold was unknown, a graph Laplacian-based empir-
ical estimate of the data distribution was used in [112,113]. Contrary to this, in this
chapter, we are interested in analytical manifolds such as the Grassmann manifold

and the manifold of SPD matrices, whose underlying geometry is well-understood.

5.3 Relevant Background

In this section, we briefly discuss the Riemannian geometry of two represen-
tations that are popularly used in computer vision, namely linear subspaces and

covariance features.

71

5.3.1 Linear Subspaces - Grassmann Manifold

Grassmann manifold, denoted by G, 4, is the set of all d-dimensional linear
subspaces of R". An element S of G, 4 can be represented by any n x d orthonormal
matrix Ys such that the column span of Y is the subspace S. The geodesic distance
between two subspaces S; and Sy on the Grassmann manifold is given by |||z,

where 6 = [0;,...,0,] are the principal angles between S; and S;. The angles 6

s

can be computed using 6; = cos™'(o;) € [0,5], where a; are the singular values

of Y4 |Yss. Other popularly-used distances for the Grassmann manifold are the
Procrustes metric given by 2(327, sin?(6;/2))"/2, and the Projection metric given by
(2L, sin%6;)"/2. We refer the interested readers to [114,115] for further discussions

on the Grassmann manifold.

Grassmann kernels: Grassmann manifold can be mapped to Euclidean spaces
by using Mercer kernels. One popularly-used kernel [18,20,22] is the Projection
kernel given by Kp(Y1,Ys) = ||Y,' Ys||%,. The feature mapping corresponding to
the Projection kernel is given by ®p(Y) = YY . Various kernels can be generated

from Kp and ®p using

KR (Y1, Ys) = exp (—v[|@p(Y1) — p(Ya)[|7,)
(5.1)
K2 (Y1, Ys) = (YKp(Y1, Y2)) .

We refer to the family of kernels K;bf as projection-RBF kernels and the family of

kernels K% as projection-polynomial kernels.

72

5.3.2 Covariance Features - SPD Manifold

The d x d SPD matrices, i.e., full-rank covariance matrices, form a Rieman-
nian manifold [116], and the resulting Affine-Invariant Geodesic Distance (AIGD) is
given by (3% In?)\;(Cy, Cy))/2, where \;(C}, Cy) are the generalized Eigenvalues
of matrices C; and Cs, and In denotes the natural logarithm. Another popularly-
used distance for SPD matrices is the Log-Euclidean Distance (LED) [117] given by

|log(C1) — log(Cs)||rr. We refer the readers to [116,117] for further details.

Kernels for SPD matrices: Similar to the Grassmann manifold, we can define
kernels for the set of SPD matrices. One such kernel based on the log-Euclidean
distance was derived in [18]: Kiy(C1, Cs) = trace[log(C)) log(Cs)]. The map-
ping corresponding to Ky, is given by ®,,(C) = log(C). Various kernels can be

generated from K,y and @,, using

Kim(Ch, Cs) = exp (=7 Piog (C1) = Piog(Co) |1 71)

log

(5.2)
K2V (C1, Co) = (7Kg (C1, Cs))".

log

We refer to the family of kernels K Z"Ol;f as LED-RBF kernels and the family of kernels

K {;‘;ly as LED-polynomial kernels.

5.4 Extrinsic Support Vector Machines

Let M denote the underlying Riemannian manifold. Let {(x;,v;)}Y* be the
set of training samples where z; € M, y; € {+1, -1}, and {z;}_y, |, be the set of
test samples. Let ® be the mapping to be learned from the manifold M to some

73

inner product space H. Let IC(+,) be the associated kernel function, and

Ktr,tr Ktr,te NxN
K = e RV (5.3)
Kte,tr Kte,te
be the associated kernel matrix, with K;; = K(z;, z;) = ®(z;)" ®(z;),Va;, x; € M.
Since we are interested in performing classification in the mapped space, we

jointly learn the kernel and the classifier using a single optimization problem based

on the following criteria:

e Risk minimization: For better classification performance, the risk functional

associated with the classifier in the mapped space should be minimized.

e Structure preservation: Since the features lie on a Riemannian manifold
with a well-defined structure, the mapping should be structure-preserving.

This criterion can be seen as playing the role of a regularizer in kernel-learning.

Combining the above two criteria we formulate the problem of learning a good

kernel-classifier combination as

min A [';(K) + e (w, K), (5.4)

w,K

where I';(K) and I'.(w, K) are respectively the manifold-structure cost and the clas-
sifier cost expressed as functions of classifier parameters w and kernel K. Here, A
is the regularization parameter used to balance the two criteria. Since the mapped
space is an inner product space, one can use standard machine learning techniques
to perform classification. Due to its superior generalization properties, we focus

on the SVM classifier in this chapter. However, it is important to note that the

74

framework introduced here is general and can be applied to other classifiers as well.

SVM classifier in the mapped space: The SVM classifier in the mapped space
is given by
f(z) = w*T®(x) + 0", (5.5)

where the weight vector w* and the bias 0* are given by

Nir
1
w”, b" = argmin §||'w||§ +C E n;
’U’,bﬂ? =1 (5-6)

subject to y;(w ®(x;) +b) >1—m;, 7, >0, i=1,..., Ny

This problem is usually solved in its dual form

1
max <aT1 - EaT (ny * Ktr,tr) a) , (5.7)

ac

where Q = {a e RM |0<a<Cl, a'y=0}, andy" =[y1,...,yn,]

Preserving the manifold structure: To preserve the manifold structure, we
constrain the distances in the mapped space to be close to the manifold distances.
The squared Euclidean distance between two points z; and z; in the mapped space

can be expressed in terms of kernel values as

[®(z:) — ()3 = Kii + Kjj — Kij — Kj. (5.8)
. e N N 2
Hence, we wish to minimize >, >~ ., (i}, where

Gj = Kii+ Kj; — Kij — Kj; — d

YR

(5.9)

and d;; is the manifold distance between the points z; and x;. Since (;; can be

2

positive or negative, we use (;; in the cost.

5

Combined formulation: Combining both the classifier and the structure costs,
the joint optimization problem for learning a good kernel-classifier combination is

given by

1
. 2 T T T
i Nl (@71 gaT (s Ki)a),

N N
subject to Z Z K;; =0, (5.10)

i=1 j=1
Ki+K;;—K;;—Kj;; —d;; =(; for 1<i<j<N,

where Q = {a € RV |0 < a < C1, a’y = 0}, ¢ is the column vector of variables
G; and y € R is the column vector of class labels. The centering constraint
> ;Kij=0in (5.10) is added simply to remove the ambiguity associated with the
origin in the mapped space [118]. Note that in (5.10) we are learning the entire
kernel matrix K directly in a non-parametric fashion, and the classifier term has
only K ;. Therefore, to ensure meaningful values for Ky, and K, we need
additional constraints between the training and test samples [106]. For this, we use
both the training and test samples in the structure-preserving constraints.

By following [106], it can be easily shown that the optimal K for (5.10) can be
found by solving a semidefinite programming problem. SDPs are convex in nature
and can be solved using standard solvers such as SeDuMi. Once the kernel matrix
K is obtained, the SVM classifier in the mapped space can be obtained by solving
the SVM dual problem (5.7). Note that the above formulation is transductive in
nature: both training and test data need to be present while learning the kernel
matrix. Also in general, solving SDPs can be computationally expensive for large

datasets. Both these issues can be addressed by using the MKL approach.

76

5.4.1 Extrinsic SVM using MKL Framework

Instead of learning a non-parametric kernel matrix K, following [107], we

parameterize the kernel function K as a linear combination of fixed base kernels

KL . KM
M
K=Y K" (5.11)
m=1
where u" = [u1, ..., i are positive weights to be learned. Since we use the same

linear combination model for both training and test data, the weights pu can be
learned using only the training data, and the kernel values for test data can be
computed using the known base kernels and the learned weights. Hence, the formu-
lation becomes inductive. Under this linear combination model, the optimization

problem (5.10) becomes

M
1
. 2 T T T m
RS AIClz + (a 1-ca(yy = ZMmKtr,wa)a

m=1

M
subject to Z o (K7 + K — K" — K7) — d, = (5, for 1 <i < j < Ny,

m=1

pn =0,
(5.12)

where Q@ = {a € RMr

0 < a < (1, ozTy = 0}. Note that the centering
constraint ZZ ; Kij=01in (5.10) is not required for the MKL approach as the origin
is automatically decided based on the base kernels and their weights.

Let pj; denote the squared distance between samples z; and z; induced by the

base kernel K™, i.e., pt = Kii' + KJj — Ki7 — K7} . Let Ji(u) and Jy(p) represent

7

the manifold-structure cost and the classifier cost respectively in (5.12). Then,

=1 j=i+1 =1 j=i+1

(5.13)
1 M
Jo(p) = max (aTl — §aT(ny * E ,umKtmm,,)a) .

ac
m=1

Let ®,, be the mapping corresponding to the kernel ™ and ¢,(f) be the hinge loss

function: ¢,,(f) = max(0,1 — f).

Result 5.1 Jo(p) = J3(pu), where

M Ntr M
J. — min L [V ll3 S 0|y VI®, () +0b 5.14
s(p) = min - =) +CY b lwi | D Vi bm(z)+0)). (5.14)

m=1

Please refer to [107] for the proof. Let h(p) = AJ;(w) + J3(p). Then, using Re-

sult 5.1, the optimization problem (5.12) can be written as

min h(p) subject to p > 0. (5.15)
"

Theorem 5.1 h(p) is differentiable and convez if K, >~ 0 form =1,..M.

T,tr

Proof: Ji(p) is a convex quadratic term and hence differentiable with respect to
p. As shown in [107], J3(w) is also convex and differentiable if all the base kernel
matrices K, are strictly positive definite. Hence, h(p) is a differentiable convex
function of pu.

Using Theorem 5.1, the optimization problem (5.15) can be efficiently solved
using the reduced gradient descent method [107] or any other standard algorithm
used for solving constrained convex optimization problems. For any given w, Ji ()

can be evaluated directly using (5.13) and its gradient can be computed as

6‘]1 Z Z (2])” (Z ppts —)) . (5.16)

=1 j=i+1

78

Since J3(p) = Jo(p), it can be computed by solving a standard SVM dual problem

with Ky, 4 = Zf\n/lzl pm K[y, The gradient of Js can be computed using [107]

Nt'r Ntr

9Js _ _lzza oty K (5.17)

Ot i=1 j=1
where a* is the optimal solution for the SVM dual problem used for computing
J3(pe). Once the optimal p* is computed, the classifier in the mapped space can
be obtained by solving the SVM dual problem (5.7) with Ky, = S22, o KT 1
Note that Theorem 5.1 requires the Gram matrices Ky, to be positive definite. To

enforce this property a small ridge may be added to their diagonals.

5.5 Experimental Evaluation

In this section, we evaluate the proposed extrinsic classification approach by
applying it to image set-based face and object recognition tasks using two manifold

features, namely linear subspaces and covariance features.

5.5.1 Recognition using Image Sets

Given multiple images of the same face or object, they can be collectively
represented using a lower dimensional subspace spanned by the feature vectors rep-
resenting individual images. Let X = [z, @,, ..., xy] be the mean-subtracted data
matrix of an image set, where x; € R" is an n-dimensional feature descriptor of
i-th image. Let C = X X " /N be the data covariance matrix. The linear subspace
spanned by the top d Eigenvectors of C' can be used to represent the image set by a
d-dimensional linear subspace. Alternatively, the image set can also be represented

79

using its natural second-order statistic [18], i.e., the covariance matrix C. Since
covariance matrices are positive semi-definite in general, we add a small ridge to

their diagonals to make them positive definite.

5.5.2 Datasets and Feature Extraction

Face recognition — YouTube Celebrities [119]: This dataset has 1910 video
clips of 47 subjects collected from the YouTube. Most of them are low resolution
and highly compressed videos, making it a challenging dataset for face recognition.
The face region in each image was extracted using a cascaded face detector, resized
into 30 x 30 intensity image, and histogram equalized to eliminate lighting effects.
Each video generated an image set of faces. Figure 5.1 shows some of the variations

in an image set from this dataset.

Object recognition — ETH80 [120]: This dataset has images of eight object
categories with each category containing ten different object instances. Each object
instance has 41 images captured under different views, which form an image set.
All the images were resized into 20 x 20 intensity images. Figure 5.2 shows typical
variations in an image set from this dataset.

For both of these datasets, we performed experiments with two different mani-
fold features: covariance matrices and linear subspaces. To avoid matrix singularity,
we added a small ridge 01 to each covariance matrix C, where § = 1073 x trace(C).
For subspace representation, we used twenty dimensional linear subspaces spanned

by the top twenty Eigenvectors of C.

80

Figure 5.1: An image set from Figure 5.2: An image set from

YouTube dataset. ETHRO dataset.

5.5.3 Comparative Methods and Evaluation Settings

We compare the proposed approach with the following methods:

e Nearest neighbor(NN): We used three different distances for the Grass-
mann manifold, namely the geodesic distance, the Procrustes distance and
the Projection metric. We report the best results among the three. For co-
variance features, we used two distances, namely the AIGD and the LED and

report the best results among the two.

e Grassmann discriminant analysis (GDA) [20]: Performs discriminant
analysis followed by NN classification for the Grassmann manifold using the

Projection kernel.

e PLS with the Projection kernel (Proj+PLS) [18]: Uses PLS combined

with the Projection kernel for the Grassmann manifold.

e Covariance discriminative learning (CDL) [18]: Uses LDA and PLS for

covariance features using a kernel derived from the LED metric.

81

e Standard MKL (S-MKL) [107]: In standard MKL, the kernel is learned as
a convex combination of base kernels (I = Z%zl K™, >0, p'l =1),

by minimizing the SVM cost without manifold-based regularization.

Following [18], for the YouTube dataset, for each person, we used three ran-
domly chosen image sets for training and six for testing, and for the ETH80 dataset,
for each category, we used five randomly chosen image sets for training and five for
testing. We report the recognition accuracy averaged over ten random trials. For

GDA, Proj+PLS and CDL approaches, we report the recognition accuracy from [18].

5.5.4 Base Kernels and Parameters

For both the S-MKL and the proposed approaches, we used several base ker-
nels. For experiments with linear subspaces, we used multiple projection-RBF and
projection-polynomial kernels defined in (5.1). For each dataset, the values for the
RBF parameter v and the polynomial degree d were chosen based on their individ-
ual cross-validation accuracy on the training data. Specifically, for the YouTube
dataset, we used ten projection-polynomial kernels and fifteen projection-RBF ker-
nels, and for the ETH80 dataset, we used ten projection-polynomial kernels and
thirteen projection-RBF kernels. The values for RBF kernel parameter v were
taken as %2‘5, where n is the number of dimensions of ®p defined in Section 5.3.1,
§d ={-14,-12,...,12,14} for the YouTube dataset, and § = {—5,—3,...,17,19}
for the ETH80 dataset. Polynomial kernels were generated by taking v = % and

varying the degree from one to ten for both datasets.

82

For experiments with covariance features, we used the LED-RBF and LED-
polynomial kernels defined in (5.2), whose parameters were chosen based on their
individual cross-validation performance. Specifically, for the YouTube dataset, we
used ten LED-polynomial kernels and fifteen LED-RBF kernels. For the ETH80
dataset, we used ten LED-polynomial kernels and twenty LED-RBF kernels. The
values for the RBF parameter v were taken as }125 , where n is the number of di-
mensions of ®;,, defined in Section 5.3.2, § = {-7,—6,...,6,7} for the YouTube
dataset, and § = {—10,-9,...,8,9} for the ETH80 dataset. For both datasets,
polynomial kernels were generated by taking v = % and varying the degree from one
to ten.

For both linear subspaces and covariance features, manifold geodesic distances
were used in the distance preserving constraints. In all the experiments, the param-
eters for the S-MKL method (SVM parameter C') and the proposed approach (SVM
parameter C' and the regularization parameter \) were chosen using cross-validation.

For multi-class classification using SVM, we followed one-vs-all approach.

5.5.5 Results

Tables 5.1 and 5.2 show the recognition accuracy for YouTube and ETHS0
datasets using linear subspaces and covariance features, respectively. We can see
that the proposed approach clearly outperforms various existing approaches for the
classification of manifold features. When compared to the NN baseline method,

the proposed approach performs better with an average increase of 12.2% in the

83

Table 5.1: Recognition accuracy using linear subspaces.

dataset | NN | S-MKL [107] | GDA [20] | Proj + PLS [18] | Proposed approach
YouTube | 62.8 64.3 65.7 67.7 70.8
ETHS80 | 93.2 93.7 92.8 95.3 96.0

Table 5.2: Recognition accuracy using covariance features.

dataset | NN | S-MKL [107] | CDL-LDA [18] | CDL-PLS [18] | Proposed approach
YouTube | 40.7 69.7 67.5 70.1 73.2
ETHS0 | 92.7 93.7 94.5 96.5 98.2

recognition accuracy. This is expected as the simple NN-based classifier may not
be powerful enough to handle the complex visual recognition tasks considered here.
When compared to the S-MKL approach, the proposed approach performs better
with an average increase of 4.2% in the recognition accuracy. This shows that the
proposed manifold-based regularization is effective in finding a better kernel for clas-
sification. Recently, covariance features combined with PLS have been shown [18]
to perform better than various other recent methods for image set-based recognition

tasks. Our results show that the classification performance can be further improved

by combining the covariance features with the proposed approach.

5.6 Conclusions

In this chapter, we introduced a general extrinsic framework for the classifica-

tion of manifold features using kernel learning approach. We proposed two criteria

84

for learning a good kernel-classifier combination for manifold features. In the case
of SVM classifier, based on the proposed criteria, we formulated the problem of
learning a good kernel-classifier combination as a convex optimization problem, and
solved it efficiently following the multiple kernel learning approach. We evaluated
the proposed approach for the image set-based classification task using linear sub-
spaces and covariance features, and obtained superior performance compared to

other relevant approaches.

85

Chapter 6: Deep Gaussian Conditional Random Field Network for

Image Denoising

6.1 Introduction

In the recent past, deep networks have been successfully used in various im-
age processing and computer vision applications [7,28,121]. Their success can be
attributed to several factors such as their ability to represent complex input-output
relationships, feed-forward nature of their inference (no need to solve an optimiza-
tion problem during run time), availability of large training datasets, etc. One of
the positive aspects of deep networks is that fairly general architectures composed
of fully-connected or convolutional layers have been shown to work reasonably well
across a wide range of applications. However, these general architectures do not use
problem domain knowledge which could be very helpful in many applications.

For example, in the case of image denoising, it has been recently shown that
conventional Multi-Layer Perceptrons (MLP) are not very good at handling multiple
levels of input noise [28]. When a single MLP was trained to handle multiple input
noise levels (by providing the noise variance as an additional input to the network),

it produced inferior results compared to the widely-used Block-Matching and 3D

86

filtering (BM3D) [122] approach. Contrary to this, the Expected Patch Log Likeli-
hood (EPLL) framework of [123], which is a model-based approach, has been shown
to work well across a range of noise levels. These results suggest that we should work
towards bringing deep networks and model-based approaches together. Motivated
by this, we propose a new deep network architecture for image denoising based on a
Gaussian conditional random field model. The proposed network explicitly models
the input noise variance and hence is capable of handling a range of noise levels.
Gaussian Markov Random Fields (MRFs) [9] are popular models for various
structured inference tasks such as denoising, inpainting, super-resolution and depth
estimation, as they model continuous quantities and can be efficiently solved us-
ing linear algebra routines. However, the performance of a Gaussian MRF model
depends on the choice of pairwise potential functions. For example, in the case of im-
age denoising, if the potential functions for neighboring pixels are homogeneous (i.e.,
identical everywhere), then the Gaussian MRF model can result in blurred edges and
over-smoothed images. Therefore, to improve the performance of a Gaussian MRF
model, the pairwise potential function parameters should be chosen according to the
image being processed. A Gaussian MRF model that uses data-dependent potential
function parameters is referred to as Gaussian conditional random field [124].
Image denoising using a Gaussian CRF model consists of two steps: a parame-
ter selection step in which the potential function parameters are chosen based on the
input image, and an inference step in which energy minimization is performed for
the chosen parameters. In this chapter, we propose a novel model-based deep net-

work architecture, which we refer to as deep Gaussian CRF network, by converting

87

both the parameter selection and inference steps into feed-forward networks.

The proposed deep Gaussian CRF network consists of two sub-networks: a
Parameter Generation Network (PGNet) that generates appropriate potential func-
tion parameters based on the input image, and an Inference Network (InfNet) that
performs energy minimization using the potential function parameters generated
by the PGNet. Since directly generating the potential function parameters for an
entire image is very difficult (as the number of pixels could be very large), we con-
struct a full-image pairwise potential function indirectly by combining the potential
functions defined on image patches. If we use d x d patches, then our construction
defines a graphical model in which each pixel is connected to its (2d — 1) x (2d — 1)
spatial neighbors. This construction is motivated by the recent EPLL framework
of [123]. Our PGNet directly operates on each d x d input image patch and chooses
appropriate parameters for the corresponding potential function.

Though the energy minimizer can be obtained in closed form for a Gaussian
CRF, it involves solving a linear system with number of variables equal to the
number of image pixels (usually of the order of 10°%). Solving such a large linear
system could be computationally prohibitive, especially for dense graphs (each pixel
is connected to 224 neighbors when 8 x 8 image patches are used). Hence, we use an
iterative optimization approach based on Half Quadratic Splitting (HQS) [123,125—
127] for designing our inference network. Recently, this approach has been shown
to work very well for image restoration tasks even with a few iterations [123]. Our
inference network consists of a new type of layer, which we refer to as the HQS layer,

that performs the computations involved in a HQS iteration.

88

Potential (| PgNet | ;> PgNet |

function trmmmoreet B
X parameters | ; | ;
(Input) —=s| PgNet vil T y2 Y|yt
L e L s HOSr | = (Output)
—
InfNet

Figure 6.1: The proposed deep Gaussian CRF network: Parameter generation net-
work followed by inference network. The PGNets in dotted boxes are the additional

parameter generation networks introduced after each HQS iteration.

Combining the parameter generation and inference networks, we get our deep
Gaussian CRF network shown in Figure 6.1. Note that using appropriate pairwise
potential functions is crucial for the success of a Gaussian CRF model. Since PGNet
operates on the noisy input image, it becomes increasingly difficult to generate good
potential function parameters as the image noise increases. To address this issue, we
introduce an additional PGNet after each HQS iteration as shown in dotted boxes
in Figure 6.1. Since we train this deep Gaussian CRF network discriminatively in an
end-to-end fashion, even if the first PGNet fails to generate good potential function
parameters, the later PGNets can learn to generate appropriate parameters based

on partially restored images.

Contributions: We propose a new end-to-end trainable deep network architecture
for image denoising based on a Gaussian CRF model. Contrary to existing dis-
criminative denoising methods that train a separate model for each noise level, the
proposed network explicitly models the input noise variance and hence is capable of

handling a range of noise levels. We propose a differentiable parameter generation

89

network that generates the Gaussian CRF pairwise potential parameters based on
the noisy input image. We unroll a half quadratic splitting-based iterative Gaussian
CRF inference procedure into a deep network and train it jointly with our parameter
generation network. We show that the proposed approach produces results on par

with the state-of-the-art without training a separate network for each noise level.

Organization: Section 6.2 provides an overview of existing works on Gaussian
CRFs, image denoising and inference unfolding. Section 6.3 presents the Gaus-
sian CRF model used in this chapter, and Section 6.4 presents the proposed deep
Gaussian CRF network. Experimental results and conclusions are presented in Sec-

tions 6.5 and 6.6, respectively.

6.2 Related Work

Gaussian CRF's were first introduced in [124] by modeling the parameters of
the conditional distribution of output given input as a function of the input image.
The precision matrix associated with each image patch was modeled as a linear
combination of twelve derivative filter-based matrices. The combination weights
were chosen as a parametric function of the responses of the input image to a set of
oriented edge and bar filters, and the parameters were learned using discriminative
training. This Gaussian CRF model was extended to Regression Tree Fields (RTFs)
in [128], where regression trees were used for selecting the parameters of Gaussians
defined over image patches. These regression trees used responses of the input image

to various hand-chosen filters for selecting an appropriate leaf node for each image

90

patch. This RTF-based model was trained by iteratively growing the regression
trees and optimizing the Gaussian parameters at leaf nodes. Recently, a cascade of
RTFs [129] has also been used for image restoration tasks. Contrary to the RTF-
based approaches, all the components of our network are differentiable, and hence
it can be trained end-to-end using standard gradient-based techniques.

Recently, [130] proposed a cascade of shrinkage fields for image restoration
tasks. They learned a separate filter bank and shrinkage function for each stage of
their cascade using discriminative training. Though this model can also be seen as
a cascade of Gaussian CRFs, the filter banks and shrinkage functions used in the
cascade do not depend on the noisy input image during test time. Contrary to this,
the pairwise potential functions used in our Gaussian CRF model are generated by
our PGNets based on the noisy input image.

Our approach is also related to the EPLL framework of [123], which decom-
poses the full-image Gaussian model into patch-based Gaussians, and uses HQS
iterations for Gaussian CRF inference. Following are the main differences between
EPLL and this work: (i) We propose a new deep network architecture which com-
bines HQS iterations with a differentiable parameter generation network. (ii) While
the EPLL chooses the potential parameters for each image patch as one of the K
possible matrices, we construct each potential parameter matrix as a convex com-
bination of K base matrices. (iii) While the EPLL learns the K possible potential
parameter matrices in a generative fashion by fitting a Gaussian Mixture Model
(GMM) to clean image patches, we learn the K base matrices in a discriminative

fashion by the end-to-end training of our deep network. As shown later in the

91

experiments section, our discriminative model clearly outperforms the generatively
trained EPLL.
Gaussian CRFs have also been used recently for other applications such as

depth estimation [131], facial landmark detection [132] and document retrieval [133].

Denoising: Image denoising is one of the oldest problems in image processing
and various denoising algorithms have been proposed over the past several years.
Some of the popular algorithms include fields of experts [1], BM3D [122], wavelet
shrinkage [134], Gaussian scale mixtures [135], non-linear diffusion process-based
approaches [136-138], sparse coding-based approaches [139-142], weighted nuclear
norm minimization [143], and non-local Bayesian denoising [144]. Among these,

BM3D is currently the most widely-used state-of-the-art denoising approach.

Denoising with neural networks: Recently, various deep neural network-based
approaches have also been proposed for image denoising [27-29,145-147]. While [145]
used a convolutional neural network, [28,146] used multilayer perceptrons, and [27,
29] used stacked sparse denoising autoencoders. Among these, the MLP [28] ap-
proach has been shown to work very well outperforming the BM3D approach. How-
ever, none of these deep networks explicitly model the input noise variance, and
hence are not good at handling multiple noise levels. In all these works, a different

network was trained for each noise level.

Unfolding inference as a deep network: The proposed approach is also related

to a class of algorithms that discriminatively learn the model parameters by back-

92

propagating the gradient through a fixed number of inference steps. In [148], the
fields of experts [1] MRF model was discriminatively trained for image denoising
by unfolding a fixed number of gradient descent inference steps. In [149], message-
passing inference machines were trained for structured prediction tasks by consider-
ing the belief propagation-based inference of a discrete graphical model as a sequence
of predictors. In [150], a feed-forward sparse code predictor was trained by unfolding
a coordinate descent based sparse coding inference algorithm. In [151,152], deep
CNNs and discrete graphical models were jointly trained by unfolding the discrete
mean-field inference. In [153], a new kind of non-negative deep network was intro-
duced by deep unfolding of non-negative matrix factorization model. Recently, [136]
revisited the classical non-linear diffusion process [154] by modeling it using several
parameterized linear filters and influential functions. The parameters of this diffu-
sion process were learned discriminatively by back-propagating the gradient through
a fixed number of diffusion process iterations. Though this diffusion process-based
approach has been shown to work well for the task of image denoising, it uses a
separate model for each noise level.

In this chapter, we design our inference network using HQS-based inference of
a Gaussian CRF model, resulting in a different network architecture compared to
the above unfolding works. In addition to this inference network, our deep Gaussian
CRF network also consists of other sub-networks used for modeling the Gaussian

CRF pairwise potentials.

93

6.3 Gaussian Conditional Random Field Model

Let X be the given (noisy) input image and Y be the (clean) output image
that needs to be inferred. Let X(i, j) and Y (7, j) represent the pixel (7,) in images
X and Y, respectively. We model the conditional probability density p(Y|X) as a
Gaussian distribution given by p (Y |X) o« exp {—F (Y|X)}, where

B(YX) = o QZ X (i,)] }:: By (Y|X)
(6.1)

+ %Vector(Y)TQ(X)vector(Y) } =E,(Y|X).
Here, 02 is the input noise variance and Q(X) = 0 are the input-dependent param-
eters of the quadratic pairwise potential function E, (Y|X) defined over the image
Y. Note that if the pairwise potential parameters @ are constant, then this model
can be interpreted as a generative model with E; as the data term, £, as the prior
term and p(Y|X) as the posterior. Hence, our Gaussian CRF is a discriminative

model inspired by a generative Gaussian model.

6.3.1 Patch-based Pairwise Potential Functions

Directly choosing the pairwise potential parameters Q(X) for an entire image
Y is very challenging since the number of pixels in an image could be of the order
of 105. Hence, motivated by [123], we construct the (full-image) pairwise potential
function £, by combining patch-based pairwise potential functions.

Let x;; and y;; be d? x 1 column vectors representing the d x d patches centered

on pixel (4, j) in images X and Y, respectively. Let X;; = Gx;; and y;; = Gy;; be the

94

mean-subtracted versions of vectors x;; and y;;, respectively, where G = Iz — d%l
is the mean subtraction matrix. Let

L 1_ 1 _
V(yijlxi) = §y;; (Z4;(%i) ' Vigs Tij(%ij) = 0, (6.2)

be a quadratic pairwise potential function defined on patch y;;, with 3;;(X;;) being
the corresponding (input) data-dependent parameters. Combining the patch-based
potential functions at all the pixels, we get the following full-image pairwise potential
function:

1 L 1 _ -1
E, (Y|X) == DV (yisl%i) = 5 > viGT (Zy(x) " Gy (6.3)
ij ij
Note that since we are using all d x d image patches, each pixel appears in d? patches
that are centered on its d x d neighbor pixels. In every patch, each pixel interacts

with all the d? pixels in that patch. This effectively defines a graphical model of

neighborhood size (2d — 1) x (2d — 1) on image Y.

6.3.2 Inference

Given the (input) data-dependent parameters {3;;(X;;)} of the pairwise po-
tential function E, (Y|X), the Gaussian CRF inference solves the following opti-

mization problem:
* . d2 .o - \12 T~T — —1
Y = argmin > ;[Y(Z,J)—X(%J)] +y,;G' (Zi(Xi5) Gyij). (6.4)
ij

Note that the optimization problem (6.4) is an unconstrained quadratic program
and hence can be solved in closed form. However, the closed form solution for Y
requires solving a linear system of equations with number of variables equal to the

95

number of image pixels. Since solving such linear systems could be computation-
ally prohibitive for large images, we use a half quadratic splitting-based iterative
optimization method, that has been recently used in [123] for solving the above op-
timization problem. This approach allows for efficient optimization by introducing
auxiliary variables.

Let z;; be an auxiliary variable corresponding to the patch y;;. In half quadratic

splitting method, the cost function in (6.4) is modified to

LY@,) = XE N+ Bllyis — 2413
Y + ZZTJ-GT (213 ()_(ZJ))_I GZZ]
Note that as § — oo, the patches {y;;} are restricted to be equal to the auxiliary
variables {z;;}, and the solutions of (6.4) and (6.5) converge.

For a fixed value of 3, the cost function J can be minimized by alternatively

optimizing for Y and {z;;}. If we fix Y, then the optimal z;; is given by

fyij) = argmin (2,G" (2;(%;;)) " Gz + By — 2i5113)

Zij

(GT (2y(%:;) " G + BLe) ' By, (6.6)

The last equality in (6.6) follows from Woodbury matrix identity. If we fix {z;;},

then the optimal Y (7, j) is given by

441
2 2
9({z;j}) = argmin | 5 [Y(7,7) X@NF+ 60 Y [Y(6,7) = 20,)]
2 pa=—|%"]
X(ij) | Bt &
1 + po? (1+ fo?)d? %_w Zpq (i, 7),
p,g=— 2

(6.7)

96

where | |,] | are the floor and ceil operators, respectively, and z,,(7,) is the
intensity value of pixel (7,) according to the auxiliary patch z,,.

In half quadratic splitting approach, the optimization steps (6.6) and (6.7) are
repeated while increasing the value of in each iteration. This iterative approach
has been shown to work well in [123] for image restorations tasks even with few (5-6)

iterations.

6.4 Deep Gaussian CRF network

As mentioned earlier, the proposed deep Gaussian CRF network consists of

the following two components:

e Parameter generation network: This network takes the noisy image X as
input and generates the parameters {X,;(X;;)} of pairwise potential function

Ey (Y[X).

e Inference network: This network performs Gaussian CRF inference using
the pairwise potential parameters {3;;(X;;)}} given by the parameter genera-

tion network.

6.4.1 Parameter Generation Network

We model the pairwise potential parameters {¥;;} as convex combinations of

K symmetric positive semidefinite matrices Wy, ..., Uk :
k k k
k k

97

Patch extraction layer Selection network Combination layer
K
{riw.}

-) k K
X Extract d X d mean Patches Xy Quadratic + Softmax | Weights i) ¥ 5 - Z Yew,
d (%) ‘@ > L= i Pk
(Input image) subtracted patches o2 {(wy, b))} Z 2 &~

(Noise variance) |

Potential function
(%} parameters

Figure 6.2: Parameter generation network: Mean subtracted patches X;; extracted
from the input image X are used to compute the combination weights {’yfj}, which

are used for generating the pairwise potential parameters {X;;}.

The combination weights {%k]} are computed from the mean-subtracted input image

patches {X;;} using the following two layer selection network:

Layer 1 - Quadratic layer : For k =1,2,... . K
(6.9)

1 _
Sk- = —53_(2; (Wk + 021d2> ! }_(1] —+ bk

ij
Layer 2 - Softmax layer : For k =1,2,... K

K

k P

%kj =e%i/ E e’
p=1

Figure 6.2 shows the overall parameter generation network which includes a patch

(6.10)

extraction layer, a selection network and a combination layer. Here, o2 is the noise
variance, and {(Wy = 0, W, = 0,b;)} are the network parameters.

Our choice of the above quadratic selection function is motivated by the fol-
lowing two reasons: (i) Since the selection network operates on mean-subtracted
patches, it should be symmetric, i.e., both X and —X should have the same combi-
nation weights {7*}. To achieve this, we compute each s* as a quadratic function
of X. (ii) Since we are computing the combination weights using the noisy image
patches, the selection network should be robust to input noise. To achieve this,
we include the input noise variance o2 in the computation of {s*}. We choose the

98

particular form (Wy, + 02I;2) " because in this case, we can (roughly) interpret the
computation of {s*} as evaluating the Gaussian log likelihoods. If we interpret { W}
as covariance matrices associated with clean image patches, then {W, + 02?142} can

be interpreted as covariance matrices associated with noisy image patches.

6.4.2 Inference Network

We use the half quadratic splitting method described in Section 6.3.2 to create
our inference network. Each layer of the inference network, also referred to as
the HQS layer, implements one half quadratic splitting iteration. Each HQS layer

consists of the following two sub-layers:

e Patch inference layer (PI): This layer uses the current image estimate Y*

and computes the auxiliary patches {z;;} using f(y;;) given in (6.6).

e Image formation layer (IF): This layer uses the auxiliary patches {z;;}
given by the PI layer and computes the next image estimate Y'*! using
9({z;;}) given in (6.7).

Let {81, B2, ..., pr} be the B schedule for half quadratic splitting. Then, our infer-
ence network consists of 7" HQS layers as shown in Figure 6.3. Here, X is the input

2

image with noise variance ¢°, and {X;;(%;;)} are the (data-dependent) pairwise

potential parameters generated by the PGNet.

Remark 6.1 Since our inference network implements a fired number of HQS 1it-
erations, its output may not be optimal for (6.4). However, since we train our
parameter generation and inference networks jointly in a discriminative fashion, the

99

Potential
function Ly Ly, Xof ;. Xo? X,

J i
parameters i \L l J/ l i
X 2 — Yl YZ Y"[‘fl — ¥ = YT
(input) =22 PI(B1) | IF(B1) | PI(B2) | IF(B2) [-+ | PL(B7) | IF (Br) > {Output)

HQS; HQS, HQST

Figure 6.3: Inference network uses the pairwise potential parameters {X;;(X;;)}

generated by the PGNet and performs T HQS iterations.

PGNet will learn to generate appropriate pairwise potential parameters such that the

output after a fixed number of HQS iterations would be close to the desired output.

6.4.3 Gaussian CRF Network

Combining the above parameter generation and inference networks, we get our
full Gaussian CRF network with parameters {(Wy = 0, ¥y = 0,b;)}. Note that this
Gaussian CRF network has various new types of layers that use quadratic functions,
matrix inversions and multiplicative interactions, which are quite different from the

computations used in standard deep networks.

Additional PGNets: Note that using appropriate pairwise potential functions is
crucial for the success of a Gaussian CRF model. Since the parameter generation
network operates on the noisy input image X, it is very difficult to generate good
parameters at high noise levels (even after incorporating the noise variance o2 into
the selection network). To overcome this issue, we introduce an additional PGNet
after each HQS iteration (shown with dotted boxes in Figure 6.1). The rationale
behind adding these additional PGNets is that even if the first PGNet fails to
generate good parameters, the later PGNets could generate appropriate parameters

100

using the partially restored images. Our final deep Gaussian CRF network consists

of T' PGNets and T' HQS layers as shown in Figure 6.1.

6.4.4 Training

Since all the components of the proposed deep Gaussian CRF network are
differentiable, it can be trained end-to-end in a discriminative fashion. Here, we
show how to back-propagate the loss derivatives through the layers of the proposed
deep network. Please refer to Appendix B for detailed derivations. Let L be the

final loss function.

Backpropagation through the combination layer: Given the derivatives dL/dX%;;

of the loss function L with respect to the pairwise potential parameters 3;;, we can

77
compute the derivatives of L with respect to the combination weights %kj and the

matrices Wy using

dL dL dL dL
o | = k. , 11
o~ trace (k dzij) T a Vi s, (6.11)

)

Backpropagation through the quadratic layer: Given the derivatives dL/ dsfj

of the loss function L with respect to the quadratic layer output sfj, we can compute
the derivatives of L with respect to the selection network parameters (Wy, by) and

the input patches Xx;; using:

AWy, dsk. 2

ij i

S
dL _ (Wk+0'2]:d2)71 (j: dL Xl]XU) (Wk+0'2]:d2)71
(6.12)

L L L L -
d Z d d :—Zd—<wk+021d2> 1)_(1‘]‘.
k

]

101

Backpropagation through the patch inference layer: Given the derivatives
dL/dz;; of the loss function L with respect to the output of a patch inference layer,
we can compute the derivatives of L with respect to its input patches y;; and the

pairwise potential parameters X;; using

dL dL
= (Ip -G (8% -1
inj (d G (ﬁ 1) + G) G) dZij7
6.13)
dL AL s . (

We skip the derivative formulas for other computations such as softmax,
extracting mean-subtracted patches from an image, averaging in the image for-
mation layer, etc., as they are standard operations. Note that we have a con-
strained optimization problem here because of the symmetry and positive semi-
definiteness constraints on the network parameters {Wy} and {¥,}. We convert
this constrained problem into an unconstrained one by parametrizing W; and ¥y

as W, = PkPkT, v, = RkRz, where P, and Ry are lower triangular matrices.

6.5 Experimental Evaluation

In this section, we use the proposed deep Gaussian CRF network for image
denoising. We trained our network using a dataset of 400 images (200 images from
BSD300 [155] training set and 200 images from PASCALVOC 2012 [156] dataset)
by maximizing the Peak Signal-to-Noise Ratio (PSNR) measure. We used limited
memory BFGS [157] for optimization. For testing, we used a dataset of 300 images
(100 images from BSD300 test set and 200 images from PASCALVOC 2012 dataset).
We used white Gaussian noise of various standard deviations in our experiments.

102

For realistic evaluation, all the images were quantized to [0-255] range after adding
the noise. We use the standard PSNR measure for quantitative evaluation.

Though we use Gaussian noise, due to quantization (clipping to 0-255 range),
the noise characteristics deviate from being a Gaussian as the noise variance in-
creases. To cope up with this variation in noise characteristics, we trained two
different networks, one for low input noise levels (o < 25, noise reasonably close to
a Gaussian after quantization) and one for high input noise levels (25 < o < 60,
noise far from being a Gaussian after quantization). When we tried training a single
network for all noise levels, the training was mainly focusing on high noise data.
For training the low noise network, we used o = [8,13,18,25] and for training the
high noise network, we used o = [30, 35,40, 50]. Note that both the networks were
trained to handle a range of input noise levels. For testing, we varied the o from 10
to 60 in intervals of 5.

We performed experiments with two patch sizes (5 x 5 and 8 x 8), and the
number of matrices Wy was chosen as 200. Following [123], we used six HQS iter-
ations with 3 values given by %[1, 4,8,16,32,64]. Optimizing the J values using a
validation set may further improve our performance. To avoid overfitting, we reg-
ularized the network, by sharing the parameters {Wy, ¥} across all PGNets. We
initialized the network parameters using the parameters of a GMM learned on clean
image patches.

Table 6.1 compares the proposed deep Gaussian CRF network with various
image denoising approaches on 300 test images. Here, DGCRF5 and DGCRFy refer
to the deep Gaussian CRF networks that use 5 x 5 and 8 x 8 patches, respectively.

103

Table 6.1: Comparison of various denoising approaches on 300 test images.

Test o 10 15 20 25

ClusteringSR [139] | 33.27 | 30.97 | 29.41 | 28.22

EPLL [123] 33.32 | 31.06 | 29.52 | 28.34

BM3D [122] 33.38 | 31.09 | 29.53 | 28.36

NL-Bayes [144] 33.46 | 31.11 | 29.63 | 28.41

NCSR [140] 33.45 | 31.20 | 29.56 | 28.39

WNNM [143] 33.57 | 31.28 | 29.70 | 28.50

CSF [130] - - - 28.43
MLP [28] 33.43 - - | 28.68
DGCRF;

33.53 | 31.29 | 29.76 | 28.58
Low noise network

DGCRFy

33.56 | 31.35 | 29.84 | 28.67
Low noise network

Test o 30 35 40 45 50 95 60

ClusteringSR [139] | 27.25 | 26.30 | 25.56 | 24.89 | 24.28 | 23.72 | 23.21

EPLL [123] 27.36 | 26.52 | 25.76 | 25.08 | 24.44 | 23.84 | 23.27

BM3D [122] 2742 | 26.64 | 25.92 | 25.19 | 24.63 | 24.11 | 23.62

NL-Bayes [144] 27.42 | 26.57 | 25.76 | 25.05 | 24.39 | 23.77 | 23.18

NCSR. [140] 27.45 | 26.32 | 25.59 | 24.94 | 24.35 | 23.85 | 23.38
WNNM [143] 27.51 | 26.67 | 25.92 | 25.22 | 24.60 | 24.01 | 23.45
MLP [28)] - 27.13 | - - | 2533 | - -

DGCRF;

27.68 | 26.95 | 26.30 | 25.73 | 25.23 | 24.76 | 24.33
High noise network

DGCRFyg
27.80 | 27.08 | 26.44 | 25.88 | 25.38 | 24.90 | 24.45

High noise network

104

For each noise level, the top two PSNR values are shown in boldface style. Note that
the CSF [130] and MLP [28] approaches train a different model for each noise level.
Hence, for these approaches, we report the results only for those noise levels for which
the corresponding authors have provided their trained models. As we can see, the
proposed deep Gaussian CRF network clearly outperforms the ClusteringSR, [139],
EPLL [123], BM3D [122], NL-Bayes [144], NCSR [140] and CSF approaches on all
noise levels, and the WNNM [143] approach on all noise levels except o = 10 (where
it performs equally well). Specifically, it produces significant improvement in the
PSNR compared to the ClusteringSR (0.29 - 1.24 dB), EPLL (0.24 - 1.18 dB), BM3D
(0.18 - 0.83 dB), NL-Bayes (0.10 - 1.27 dB), NCSR (0.11 - 1.07 dB) and WNNM
(upto 1.0 dB) approaches. The CSF approach of [130], which also uses Gaussian
CRFs, performs poorly (0.24 dB for o = 25) compared to our deep network.

When compared with MLP [28], which is the state-of-the-art deep networks-
based denoising approach, we perform better for o = [10, 50], worse for o = 35, and
equally well for ¢ = 25. However, note that while [28] uses a different MLP for
each specific noise level, we trained only two networks, each of which can handle a
range of noise levels. In fact, our single low noise network is able to outperform the
MLP trained for ¢ = 10 and perform as good as the MLP trained for ¢ = 25. This
ability to handle a range of noise levels is one of the major benefits of the proposed
deep network. Note that though we did not use the noise levels ¢ = 10, 15, 20,45
during training, our networks performs very well for these . This shows that our
networks are able to handle a range of noise levels rather than just being effective

for the trained o. Also, our high noise network performs well for ¢ = 55 and 60

105

—#— Deep GCRF
—*— MLP

Improvement in PSNR (dB) over BM3D

25 L L L L L L L L L |
10 15 20 25 30 35 40 45 50 55 60

Noise standard deviation

Figure 6.4: Sensitivity analysis of the MLP and the proposed approach. The noise

levels for which MLP was trained are indicated using a circular marker.

even though these values are out of its training range. This shows that the proposed
model-based deep network can also generalize reasonably well for out-of-range noise
levels.

We acknowledge that the comparisons in Table 6.1 may be biased since some of
the competing methods are not designed for denoising quantized images. However,
we believe that, for the denoising problem, using quantized images is a more realistic
experimental setting than using unquantized images. Please refer to Table 6.2 for
additional results on a benchmark dataset under the unquantized setting.

To analyze the sensitivity of the non-model based MLP approach to the devi-
ation from training noise, we evaluated it on noise levels that are slightly (£5)
different from the training o. The authors of [28] trained separate MLPs for
o = 10,25,35,50 and 65. As reported in [28], training a single MLP to handle

multiple noise levels gave inferior results. Figure 6.4 shows the improvement of the

106

MLP approach over BM3D in terms of PSNR. For each noise level, we used the best
performing model among o = 10, 25, 35, 50,65. As we can see, while the MLP ap-
proach does very well for the exact noise levels for which it was trained, it performs
poorly if the test o deviates from the training o even by 5 units. This is a major
limitation of the MLP approach since training a separate model for each noise level
is not practical. Contrary to this, the proposed approach is able to cover a wide
range of noise levels just using two networks.

Please note that the purpose of Figure 6.4 is not to compare the performance
of our approach with MLP on noise levels that were not used in MLP training,
which would be an unfair comparison. The only purpose of this figure is to show
that, although very powerful, a network trained for a specific noise level is very
sensitive.

Apart from our test set of 300 images, we also evaluated our low noise DGCRFg
network on a smaller dataset of 68 images [1] which has been used in various existing
works. Tables 6.2 and 6.3 compare the proposed deep Gaussian CRF network with
various approaches on this dataset under the unquantized and quantized settings,
respectively. For each noise level, the top two PSNR values are shown in boldface
style. As we can see, the proposed approach outperforms all the other approaches
except RTF5 [129] and MLP [28] under the quantized setting, and TRD [136] under
the unquantized setting. However, note that while we use a single network for both
o = 15 and ¢ = 25, the MLP, TRD and RTF;5 approaches trained their models

specifically for individual noise levels.

107

Table 6.2: Comparison of various denoising approaches on 68 images (dataset of [1])

under the unquantized setting.

Test o | ARF | LLSC | EPLL | opt-MRF | ClusteringSR | NCSR | BM3D
[148] | [142] | [123] [158] [139] [140] | [122]

15 | 30.70 | 31.27 | 31.19 | 31.18 31.08 31.19 | 31.08
25 | 2820 | 28.70 | 28.68 | 28.66 28.59 28.61 | 28.56

Test ¢ | MLP | WNNM | CSF | RTF5; | TRD | DGCRFg
(28] | [143] | [130] | [129] | [136]

15 - 31.37 31.24 - 31.43 31.43

25 28.85 28.83 28.72 | 28.75 | 28.95 28.89

Table 6.3: Comparison of various denoising approaches on 68 images (dataset of [1])

under the quantized setting.

Test o | LLSC | EPLL | opt-MRF | ClusteringSR | NCSR | BM3D
[142] | [123] [158] [139] [140] | [122]
15 | 31.09 | 3111 | 31.06 30.93 31.13 | 31.03
25 | 28.24 | 28.46 | 28.40 28.26 28.41 | 28.38
Test o | NL-Bayes | MLP | WNNM | CSF | RTF; | DGCRFg
[144] [28] [143] | [130] | [129]
15 31.06 - 31.20 - - 31.36
25 28.43 | 28.77 | 28.48 | 28.53 | 28.74 | 28.73

108

Original Image Noisy Image Denoised Image

Figure 6.5: Denoising results by the proposed approach for noise o = 25.

Figure 6.5 shows some example denoising results produced by the proposed
approach for noise standard deviation o = 25. As we can see, the proposed approach

is able to retain the image content while suppressing the noise.

Denoising time: The proposed DGCRFg network takes 4.4s for a 321 x 481 image

on an NVIDIA Titan GPU using a MATLAB implementation.

109

6.6 Conclusions

In this chapter, we proposed a new end-to-end trainable deep network archi-
tecture for image denoising using a Gaussian CRF model. The proposed network
consists of a parameter generation network that generates appropriate potential
function parameters based on the input image, and an inference network that per-
forms approximate Gaussian CRF inference. Unlike existing discriminative denoising
approaches that train a separate model for each noise level, the proposed network
can handle a range of noise levels as it explicitly models the input noise variance.
We achieved results on par with the state-of-the-art by training two deep Gaussian

CRF networks, one for low input noise levels and one for high input noise levels.

110

Chapter 7: Gaussian Conditional Random Field Network for Seman-

tic Segmentation

7.1 Introduction

Semantic segmentation, which aims to predict a category label for every pixel
in the image, is an important task for scene understanding. Though it has received
significant attention from the vision community over the past few years, it still
remains a challenging problem due to large variations in the visual appearance of
the semantic classes and complex interactions between various classes in the visual
world. Recently, CNNs have been shown to work very well for this challenging
task [30,31,159-161]. Their success can be attributed to several factors such as
their ability to represent complex input-output relationships, feed-forward nature of
their inference, availability of large training datasets and fast computing hardware
like GPUs, etc.

However, CNNs may not be optimal for structured prediction tasks such as
semantic segmentation as they do not model the interactions between output vari-
ables directly. Acknowledging this, various semantic segmentation approaches have

been proposed in the recent past that use CRF models [162] on top of CNNs |2,

111

30,151,152,163-165], and all these approaches have shown significant improvement
in the segmentation results by using CRFs. By combining CNNs and CRF's, these
approaches get the best of both worlds: the ability of CNNs to model complex
input-output relationships and the ability of CRF's to directly model the interactions
between output variables. While some of these approaches use CRF as a separate
post-processing step [2,30,163-165], some other approaches train the CNNs along
with the CRFs in an end-to-end fashion [151, 152].

All of the above approaches use discrete graphical models, and hence end up
using graph-cuts or mean field-based approximate inference procedures. Though
these inference procedures do not have global optimum guarantees, they have been
successfully used for the semantic segmentation task in conjunction with CNNs.
Different from discrete graphical models, Gaussian graphical models [9, 124] are
simpler models, and have inference procedures that are guaranteed to converge to
the global optimal solution. Gaussian graphical models have been used in the past
for various applications such as image denoising [124,128], depth estimation [131,
166], deblurring [123,129], edge detection [167], texture classification [168], texture
segmentation [169], etc.

While a discrete CRF is a natural fit for labeling tasks such as semantic seg-
mentation, one needs to use inference techniques that do not have optimality guar-
antees. While exact inference is tractable in the case of a Gaussian CRF, it is not
clear if this model is a good fit for discrete labeling tasks. This leads us to the
following question: Should we use a better model with approximate inference or an
approzimate model with better inference?

112

To answer this question, in this chapter, we use a Gaussian CRF model for
the task of semantic segmentation. To use a Gaussian CRF model for this discrete
labeling task, we first replace each discrete variable with a vector of K mutually
exclusive binary variables, where K is the number of possible values the discrete
variable can take, and then model all the variables jointly as a multivariate Gaus-
sian by relaxing the mutual exclusivity and binary constraints. After the Gaussian
CRF inference, the discrete label assignment is done based on which of the K cor-
responding variables has the maximum value.

Though the Maximum a Posteriori (MAP) solution can be obtained in closed
form in the case of Gaussian CRFSs, it involves solving a linear system with number
of variables equal to the number of nodes in the graph times the dimensionality of
node variables (which is equal to the number of spatial locations times the number
of classes in the case of semantic segmentation). Solving such a large linear system
could be computationally prohibitive, especially for dense graphs where each node
is connected to several other nodes. Hence, instead of exactly solving a large linear
system, we unroll a fixed number of Gaussian Mean Field (GMF) inference steps
as layers of a deep network, which we refer to as the GMF network. Note that the
GMEF inference is different from the mean field inference used in [170] for discrete
CRFs with Gaussian edge potentials.

While GMF updates are guaranteed to give the MAP solution upon conver-
gence, parallel updates are guaranteed to converge only under certain constraints

such as diagonal dominance of the precision matrix of the joint Gaussian [171]. If the

113

nodes are updated serially, then the GMF inference is equivalent to an alternating
minimization approach in which each subproblem is solved optimally, and hence it
will converge (as finding the MAP solution for a Gaussian CRF is a convex problem
with a smooth cost function). But, using serial updates would be very slow when
the number of variables is large. To avoid both these issues, we use a bipartite graph
structure that allows us to update half of the nodes in parallel in each step without
loosing the convergence guarantee even when the diagonal dominance constraint is
not satisfied. Using this bipartite structure, we ensure that each layer of our GMF
network produces an output that is closer to the MAP solution compared to its
input.

By combining the proposed GMF network with CNNs, we propose a new
end-to-end trainable deep network, which we refer to as Gaussian CRF network
(Figure 7.1), for the task of semantic segmentation. The proposed Gaussian CRF
network consists of a CNN-based unary network for generating the unary potentials,
a CNN-based pairwise network for generating the pairwise potentials and a GMF

network for performing the Gaussian CRF inference.

Contributions: Different from existing approaches that use discrete CRF models,
we propose to use a Gaussian CRF model for the task of semantic segmentation.
Compared to discrete CRFs, Gaussian CRFs are simpler models that can be solved
optimally. We propose a novel deep network for Gaussian CRF inference by un-
folding a fixed number of GMF iterations. Using a bipartite graph structure, we

ensure that each layer in our inference network produces an output that is closer to

114

. — 3 ¢ d
{0 =0} ‘ynot}
stojowrered y1omjou osmared oy pue g swojourered YIomjpou Areun oYy ore YIomou sy} Jo sojpurered oY} 1Ry} 90N

‘uorye[odI9)ul IeQUI[I SUIST UOIN[OSeI odewl [[nJ 01 porduresdn st y1omiou JND Jo dino oy], 'syromiou osimired pue Areun

jo smndjno oy} Suisn eousIojul JY) UeIssner) suiiojiod YIomiau JINY) O, :NIomiou JYy)) ueissner) pesodold :1°) oIndrq

yxZx8 yx8x8 EXHX M
H M H M jyiomiau Adeun
sse|2 Bulods n
wnuwixew ayy uilos|as e J}I0MIBU JIND |« (ux56))
. : =1y NND qeldasg
+ uonejodisiul iesul|ig =
I |
521005 '
uoipipald ssepd [
M axSx&
H M
(0% 2) sohe| «m | o Guwsd)
uonesausBxieN | f1¢ | +2ABIAIBIIWIS [, NND geldsag

JMoMiau asimiled

115

the optimal solution compared to its input. We propose a new end-to-end trainable
deep network that combines the Gaussian CRF model with CNNs for the task of
semantic segmentation. We show that the proposed Gaussian CRF network out-
performs various discrete CRF-based approaches on the challenging PASCALVOC

2012 test set [156] (when trained with ImageNet [172] and PASCALVOC data).

Organization: Section 7.2 provides an overivew of existing works on semantic
segmentation, Gaussian CRF's, and inference unfolding. Section 7.3 presents the
Gaussian CRF model used in this chapter, and Section 7.4 presents the proposed
Gaussian CRF network. Experimental results and conclusions are presented in Sec-

tions 7.5 and 7.6, respectively.

7.2 Related Work

Semantic segmentation using CNNs: In the recent past, numerous semantic
segmentation approaches have been proposed based on CNNs. In [121,173], each
region proposal was classified into one of the semantic classes by using CNN features.
Instead of applying a CNN to each region independently as in [121,173], [174]
applied the convolutional layers only once to the entire image, and generated region
features by using pooling after the final convolutional layer.

Different from the above approaches, [30] trained a CNN to directly extract
features at each pixel. To capture the information present at multiple scales, CNN
was applied to the input image multiple times at different resolutions, and the

features from all the resolutions were concatenated to get the final pixel features.

116

This multiscale feature was then classified using a two-layer neural network. Finally,
post-processing steps like CRF and segmentation tree were used to further improve
the results. Building on top of these CNN features, [175,176] introduced a recursive
context propagation network that enriched the CNN features by adding image level
contextual information. Instead of using a CNN multiple times, [2,160,161] proposed
to use the features extracted by the intermediate layers of a deep CNN to capture
the multi-scale information. Recently, [177] trained a deconvolution network for the
task of semantic segmentation. This network was applied separately to each region
proposal, and all the results were aggregated to get the final predictions.

Most of the CNN-based methods mentioned above use superpixels or region
proposals, and hence the errors in the initial proposals will remain no matter how
good the CNN features are. Different from these methods, [31] directly produced
dense segmentation maps by upsampling the predictions produced by a CNN using
a trainable deconvolution layer. To obtain the finer details in the upsampled output,

they combined the final layer predictions with predictions from lower layers.

Combining CNNs and CRFs for semantic segmentation: Though CNNs
have been shown to work very well for the task of semantic segmentation, they may
not be optimal as they do not model the interactions between the output variables
directly, which is important for semantic segmentation. To overcome this issue,
various recent approaches [2,30,163-165] have used discrete CRF [162] models on
top of CNNs. While [30] defined a CRF on superpixels and used graph-cuts based

inference, [2,163-165] defined a CRF directly on image pixels and used the efficient

117

mean field inference proposed in [170]. Instead of using CRF as a post-processing
step, [152] trained a CNN along with a CRF in an end-to-end fashion by converting
the mean field inference procedure of [170] into a recurrent neural network. Similar
joint training strategy was also used in [151].

In all these approaches, the CRF edge potentials were designed using hand-
chosen features like image gradients, pixel color values, spatial locations, etc. and the
potential function parameters were manually tuned. Contrary to this, recently, [178]
has learned both unary and pairwise potentials using CNNs. While all these ap-
proaches learn CNN-based potentials and use message passing algorithms to perform
CRF inference, [179] has recently proposed to use CNNs to directly learn the mes-
sages in message passing inference.

The idea of jointly training a CNN and graphical model has also been used for
other applications such as sequence labeling [180, 181], text recognition [182], hu-
man pose estimation [183], predicting words from images [184], handwritten word
recognition [185]. Recently, various CNN-based semantic segmentation approaches

have also been proposed for semi and weakly supervised settings [164, 186-188].

Unrolling inference as a deep network: The proposed approach is also re-
lated to a class of algorithms that learn model parameters discriminatively by back-
propagating the gradient through a fixed number of inference steps. In [148], the
fields of experts [1] model was discriminatively trained for image denoising by un-
rolling a fixed number of gradient descent inference steps. In [184,189-191] discrete

graphical models were trained by back-propagating through either the mean field

118

or the belief propagation inference iterations. In [149], message passing inference
machines were trained by considering the belief propagation-based inference of a
discrete graphical model as a sequence of predictors. In [150], a feed-forward sparse
code predictor was trained by unrolling a coordinate descent-based sparse coding
inference algorithm. In [153], a new non-negative deep network was introduced by
deep unfolding of non-negative factorization model. Different from these approaches,
we unroll the mean filed inference of a Gaussian CRF model as a deep network, and
train our CNN-based potential functions along with the Gaussian CRF inference

network in an end-to-end fashion.

Gaussian conditional random fields: Gaussian CRFs [124] are popular models
for structured inference tasks like denoising [123,124,128-130], deblurring [123,129,
130], depth estimation [131,166], etc., as they model continuous quantities and can
be efficiently solved using linear algebra routines.

Gaussian CRF was also used for discrete labeling tasks earlier in [192], where
a Logistic Random Field (LRF) was proposed by combining a quadratic model with
logistic function. While the LRF used a logistic function on top of a Gaussian
CRF to model the output, we directly model the output using a Gaussian CRF.
Unlike [192], which used hand-chosen features like image gradients, color values,
etc. to model the potentials, we use CNN-based potential functions.

Recently, [166] trained a CNN along with a Gaussian CRF model for image-
based depth prediction. The Gaussian CRF model of [166] was defined on super-

pixels and had edges only between adjacent superpixels. As the resulting graph was

119

sparse with few nodes, [166] performed exact Gaussian CRF inference by solving a
linear system. Different from [166], we define our Gaussian CRF model directly on
top of the dense CNN output and connect each node to several neighbors. Since
the number of variables in our Gaussian CRF model is very large, exactly solving a
linear system would be computationally expensive. Hence, we unfold a fixed number
of GMF inference steps into a deep network. Also, while [166] used hand-designed
features like color histogram, local binary patterns, etc. for designing their pairwise

potentials, we use CNN-based pairwise potentials.

7.3 Gaussian Conditional Random Field Model

In semantic segmentation, we are interested in assigning each pixel in an image
X to one of the K possible classes. As mentioned earlier, we use K variables (one for
each class) to model the output at each pixel, and the final label assignment is done
based on which of these K variables has the maximum value. Let y; = [yi1, . - ., Yik]
be the vector of K output variables associated with the i*" pixel, and y be the vector
of all output variables. We model the conditional probability density P(y|X) as a

Gaussian distribution given by P(y|X) o exp {—— y|X)}, where

E(y|X) = ZHyz i(X; 0.) Hﬁz Wi (X50,) (vi —y;). (7.1)

The first term in the above energy function E is the unary term and the second term
is the pairwise term. Here, both r; and W;; = 0 are functions of the input image X
with 0, and 6, being the respective function parameters. Note that when W;; = 0
for all pairs of pixels, the unary and pairwise terms can be combined together into

120

a single positive semidefinite quadratic form.

The optimal y that minimizes the energy function E can be obtained in closed
form since the minimization of E is an unconstrained quadratic program. However,
this closed form solution involves solving a linear system with number of variables
equal to the number of pixels times the number of classes. Since solving such a large
linear system could be computationally prohibitive, we use the iterative mean field

inference approach.

7.3.1 Gaussian Mean Field Inference

The standard mean field approach approximates the joint distribution P(y|X)
using a simpler distribution Q(y|X) which can be written as a product of inde-
pendent marginals, i.e, Q(y|X) = [[; Qi(y:/X). This approximate distribution is
obtained by minimizing the KL-divergence between the distributions P and (. In
the case of Gaussian, the mean field approximation) and the original distribution
P have the same mean [171]. Hence, finding the MAP solution y is equivalent to
finding the mean p of the distribution Q).

For the Gaussian distribution in (7.1), the mean field updates for computing
the mean p are given by

i <IK + Z Wij)_l (ri + ZWijuj)' (7.2)

J J

Here, p; is the mean of marginal ();. Please refer to Appendix A for detailed
derivations. It is easy to see that if we use the standard alternating minimization

approach (in which we update one pixel at a time) to find the optimal y that

121

minimizes the energy function in (7.1), we would end up with the same update
equation. Since the energy function is a convex quadratic in the case of Gaussian
CRF and update (7.2) solves each subproblem optimally, i.e., finds the optimal y; (or
;) when all the other y; (or p;) are fixed, performing serial updates is guaranteed
to give us the MAP solution. However, it would be very slow since we are dealing
with a large number of variables.

While using parallel updates seems to be a reasonable alternative, convergence
of parallel updates is guaranteed only under certain constraints like diagonal domi-
nance of the precision matrix of the distribution P [171]. Imposing such constraints
could restrict the model capacity in practice. For example, in our Gaussian CRF
model (7.1), we can satisfy the diagonal dominance constraint by making all W,
diagonal. However, this can be very restrictive, as making the non-diagonal entries
of W;; zero will remove the direct inter-class interactions between pixels ¢ and j, i.e.,

there will not be any interaction term in the energy function between the variables

yip and y,, for p # q.

7.3.2 Bipartite Graph Structure for Parallel Updates

While we want to avoid the diagonal dominance constraint, we also want to
update as many variables as possible in parallel. To address this problem, we use a
bipartite graph structure, which allows us to update half of the variables in parallel
in each step, and still guarantees convergence without any constraints.

Note that our graphical model has a node for each pixel, and each node rep-

122

| NN NN NN
eceeoeee
| BN NN NN
eceooceee
| NON NN NN
eceoeeeee
| ION MW NN

Figure 7.2: Each pixel in our CRF is connected to every other pixel along both rows
and columns within a spatial neighborhood. Here, all the pixels that are connected
to the center black pixel are shown in red. If the black pixel is on odd column, all

the pixels connected to it will be on even columns and vice versa.

resents a vector of K variables. In order to update the i node using (7.2), we
need to keep all the other nodes connected to the 7" node (i.e., all the nodes with
non-zero W,;) fixed. If we partition the image into odd and even columns (or odd
and even rows) and avoid edges within the partitions, then we can optimally update
all the odd columns (or rows) in parallel using (7.2) while keeping the even columns
(or rows) fixed and vice versa. This is again nothing but an alternating minimiza-
tion approach in which each subproblem (corresponding to half of the nodes in
the graph) is optimally solved, and hence is guaranteed to converge to the global
optimum (since we are dealing with a convex problem).

Generally when using graphical models, each pixel is connected to all the
pixels within a spatial neighborhood. Here, instead of using all the neighbors, we
connect each pixel to every other neighbor along both rows and columns. Figure 7.2
illustrates this for a 7 x 7 spatial neighborhood. It is easy to see that with this
connectivity, we can partition the image into even and odd columns (or even and

odd rows) without any edges within the partitions.

123

7.4 Gaussian CRF network

The proposed Gaussian CRF network consists of three components: Unary
network, Pairwise network and GMF network. While the unary and pairwise net-
works generate the r; and W;; that are respectively used in the unary and pairwise
terms of the energy function (7.1), the GMF network performs Gaussian mean field
inference using the outputs of unary and pairwise networks. Figure 7.1 gives an

overview of the proposed Gaussian CRF network.

Unary network: To generate the r; used in the unary term of the energy func-
tion (7.1), we use the DeepLab-MSc-LargeFov network of [2] (along with the softmax
layer), which is a modified version of the popular VGG-16 network [6]. Modifica-
tions compared to VGG-16 include converting the fully-connected layers into convo-
lutional layers, skipping downsampling after the last two pooling layers, modifying
the convolutional layers after the fourth pooling layer, and using the multi-scale
features. Please refer to [2| for further details. For brevity, we will refer to this
DeepLab-MSc-LargeFov network as DeepLab CNN in the rest of this chapter. We

will denote the parameters of this unary DeepLab network using §SVV.

Pairwise network: Our pairwise network generates the matrices W;; that are

used in the pairwise term of the energy function (7.1). We compute each W;; as

Wij = Sijc, C =~ O, (73)

124

where s;; € [0, 1] is a measure of similarity between pixels ¢ and j, and the learned
matrix C encodes the class compatibility information. We compute the similarity

measure s;; using

Sij = e—(zi_zj)TF(zi_zj)’ (7_4)

where z; is the feature vector extracted at i'" pixel using a DeepLab CNN (with

, and the learned matrix F > 0 defines a Mahalanobis distance

CNN
parameters ¢;")

function. Note that the exponent of s;; can be written as

(flz; —f2;)? (7.5)

Ms

(2 — z;) "F(z

m=1
where F = ZM f,.f]. Hence, we implement the Mahalanobis distance computa-
tion as convolutions (of z; with filters f,,) followed by an Euclidean distance com-
putation.

The overall pairwise network consists of a DeepLab CNN that generates the
pixel features z;, a similarity layer that computes s;; for every pair of connected pix-
els using (7.4) and (7.5), and a matrix generation layer that computes the matrices
W,; using (7.3). Note that here {f,,} are the parameters of the similarity layer and

C > 0 are the parameters of the matrix generation layer.

GMF network: The proposed GMF network performs a fixed number of Gaussian
mean field updates using the outputs of unary and pairwise networks. The input
to the network is initialized using the unary output, u* = r = {r;}. The network
consists of several sequential GMF layers, where each GMF layer has two sub-layers

(an even update layer followed by an odd update layer, See Figure 7.3):

125

L GMF network
:'E;'N;F'['""" TTTTTTTTTTTTTS Class prediction
ayer 1
w=r i ' scores
1,1 2 1 - Odd Update | ¢ ,t]| . _ .t
He, Moy Bven Update | g7, g, | Odd Update | 1 yif pi2 Lover | Mo M| Y =1
—* Layer Layer H— ce Y — —
' !
!| Equation (2) Equation (2) ! Equation (2)
e o e e e e e e e e a

Figure 7.3: GMF Network. p! and p! are even and odd column nodes respectively
where t indexes the layers, u* = {uf, ul}. Network is initialized with unary network

output u! =r.

e Even update layer: This sublayer takes the output of previous layer as
input, and updates the even column nodes using (7.2) while keeping the odd

column nodes fixed.

e Odd update layer: This sublayer takes the output of even update layer as
input, and updates the odd column nodes using (7.2) while keeping the even

column nodes fixed.

As explained in the previous section, because of the bipartite graph structure,
the update performed by each of the above sublayers is an optimal update. Hence,
each layer of our GMF network is guaranteed to generate an output that is closer to
the MAP solution compared to its input (unless the input itself is the MAP solution,
in which case the output will be equal to the input).

Combining the unary, pairwise and GMF networks, we get the proposed Gaus-
sian CRF network, which can be trained in an end-to-end fashion. The parameters
of the network are the unary network parameters 6, = 6V~ and the pairwise net-

work parameters 6, = {05V, {f,,},C > 0}. Note that since we use a fixed number

126

of layers in our GMF network, the final output is not guaranteed to be the MAP
solution of our Gaussian CRF model. However, since we train the entire network
discriminatively in an end-to-end fashion, the unary and pairwise networks would
learn to generate appropriate r; and W;; such that the output after a fixed number
of mean field updates would be close to the desired output.

Note that the DeepLab network has three downsampling layers, and hence the
size of its output is 1/8 times the input image size. We apply our Gaussian CRF
model to this low resolution output and upsample the GMF network output to the

input image resolution by using bilinear interpolation.

Discrete label assignment: Note that the final output at each pixel is a K-
dimensional vector where K is the number of classes. Let y! = [yf,...,yx] be
the final output at i"* pixel. Then the predicted class label of i*" pixel is given by

argmax, Y-

7.4.1 Training

We train the proposed Gaussian CRF network discriminatively by minimizing

the following loss function at each pixel

where [; is the true class label. This loss function basically encourages the output
associated with the true class to be greater than the output associated with all the

other classes by a margin 7.

127

We use standard backpropagation to compute the gradient of the network pa-
rameters. Here, we show how to backpropagate the loss derivatives through the

layers of the proposed network. Please refer to Appendix C for detailed derivations.

Backpropagating through the odd update layer: Given the derivatives dL /dpug"

2

of the loss function with respect to the output of an odd update layer, we can com-

pute the derivatives of L with respect to its inputs r;, W;; and pé” using

dL (I + >, Wa) ™! #{}ut if node 7 is in an odd column
d—ri —

0 elsewise,

-1
dL dL 4
s = (IK + zk:Wm) ot (pi — ,u;’“t)T, for 7 in odd columns,

dL #qut +>. <Wij (Ix + >, Wz’k)fl d;f%) if node j is in an even column

0 elsewise.
(7.7)
Backpropagating through the similarity layer: Given the derivatives dL/ds;;
of the loss function with respect to the output of the similarity layer, we can compute

the derivatives of L with respect to its input z; and parameters f,,, using

dL S dL
dZ,L- =2 <Z fmfm> (Z Sij@ (Zj — Zz)) s

m=1 7

dL dL
Fra (Z 50 G (2 — 2;) (2 — ij) fin-

128

Backpropagating through the even update layer: Given the derivatives dL/du

of the loss function with respect to the output of an even update layer, we can com-

pute the derivatives of L with respect to its inputs r;, W;; and ,ué” using

—1 . C. .
dL (Ix + >, W) #;M if node 7 is in an even column

dri
0 elsewise,

~1
dL dL ,
= (IK + Z Wlk> (/J,;” — uf“t)T , for 7 in even columns,
k

dW,; dps™t
dl % +> (Wij (I + 3, Wi) ™! %) if node j is in an odd column
dps
0 elsewise.
(7.9)

Backpropagating through the matrix generation layer: Given the derivatives
dL/dW,; of the loss function with respect to the output of the matrix generation
layer, we can compute the derivatives of L with respect to its input s;; and param-

eters C using

dL dr \ ' dL dL
—t o iy 1
dsy; el ((dwij) C) Ve z} AW, (7.10)

We skip the derivative formulas for CNNs since they are composed of standard
layers. Note that we have a constrained optimization problem here due to the
symmetry and positive semidefiniteness constraints on the parameter C. We convert
this constrained problem into an unconstrained one by parametrizing C as C =

RR', where R is a lower triangular matrix.

129

out
7

7.5 Experimental Evaluation

We evaluate the proposed deep network using the PASCALVOC 2012 segmen-
tation dataset [156], which consists of 20 object classes and one background class.
The original dataset consists of 1464, 1449 and 1456 training, validation and test
images, respectively. Similar to [2], we augment the training set with the additional

annotations provided by [193], resulting in a total of 10,582 training images.

Parameters: In our Gaussian CRF model, each node was connected to every other
node along both rows and columns (Figure 7.2) within a 23 x 23 spatial neighbor-
hood. Note that since our Gaussian CRF model is applied to the CNN output whose
resolution is 1/8 times the input resolution, the effective neighborhood size in the
input image is 184 x 184. For our experiments, we used a five layer GMF network,
which performs five full-image updates in the forward pass. During training, we
used a value of 0.5 for the margin 7" used in our loss function. The number of filters

M used in the similarity layer was set to be equal to the number of classes.

7.5.1 Training

We used the open source Caffe framework [194] for our experiments. We initial-
ized both of our CNNs with the trained model provided by the authors of [2]. Note
that this model was finetuned using only the PASCALVOC segmentation data start-
ing from the ImageNet-trained VGG-16 model [6]. For training, we used stochastic

gradient descent with a weight decay of 5 x 1072 and a momentum of 0.9.

130

Pretraining: Before training the full Gaussian CRF network, we pre-trained the
similarity layer and CNN of the pairwise network such that the output s;; of the
similarity layer is high for a pair of pixels that have the same class label and low
for a pair of pixels that have different class labels. For pre-training, we used the

following loss function for each pair of connected pixels:
Lij = —H[ZZ = lj]sij + ﬂ[ll 7& l]] min((), Sij — h,), (711)

where [; and [; are respectively the class labels of pixel 7 and j, and h is a threshold
parameter. This loss function encourages s;; to be high for similar pairs and below a
threshold h for dissimilar pairs. The value of h was chosen as e~!°. For training, we
used a mini-batch of 15 images and a starting learning rate of 10~ for the similarity
layer parameters {f,,} and 10~ for the CNN parameters «9]70 NN After training for
8000 iterations, we multiplied the learning rate of the similarity layer parameters by

0.1 and trained for additional 5000 iterations.

Finetuning: After the pre-training stage, we finetuned the entire Gaussian CRF
network using a mini-batch of 5 images and a starting learning rate of 1072 for all
parameters except MV for which we used a small learning rate of 1075, Since the
Unary DeepLab CNN was trained by [2] using PASCALVOC segmentation data,
it was already close to a good local minima. Hence, we finetuned it with a small
learning rate. After training for 6000 iterations, we multiplied the learning rate by

0.01 and trained for additional 25000 iterations.

131

Table 7.1: Comparison with various approaches on PASCALVOC 2012 test set

(when trained using ImageNet and PASCALVOC data).

Method bkg | areo | bike | bird | boat | bottle | bus | car | cat
MSRA-CFM [174] 87.7|75.7126.7]69.5| 48.8 | 65.6 |81.0]69.2|73.3
FCN-8s [31] 91.2|76.8 |34.2|68.9| 494 | 60.3 |75.3|74.7|77.6
Hypercolumns [160] 89.3 | 68.7 [33.5]69.8| 51.3 | 70.2 |81.1|71.9|74.9
DeepLab CNN [2] 91.6 | 78.7 | 51.5| 75.8 | 59.5 | 61.9 |82.5|76.6 | 79.4
ZoomOut [161] 91.1|85.6 | 37.3|83.2| 625 | 66.0 |85.1|80.7|84.9

Deep message passing [179] 93.9190.138.6|77.8]61.3| 74.3 [89.0|83.4]83.3
Approaches that use CNNs and CRFs

DeconvNet + CRF [177] 92.9|87.8141.9|80.6|63.9| 67.3 |88.1|784]81.3
object clique potentials [165] 92.8 1 80.0 | 53.8 | 80.8 | 62.5 | 64.7 | 87.0|78.5|83.0
DeepLab CNN-CRF [2] 93.3|84.4 |54.5|81.5|63.6| 659 |85.1]79.1|83.4
CRF-RNN [152] 94.0|87.5|39.0|79.7 | 64.2 | 68.3 |87.6|80.8|84.4

DeconvNet + FCN + CRF [177] {93.1|89.9 | 39.3 | 79.7 | 63.9 | 68.2 |87.4|81.2|86.1
Proposed Gaussian CRF network | 93.4 | 85.2 | 43.9 | 83.3 | 65.2 | 68.3 | 89.0 | 82.7 | 85.3

chair | cow | table | dog | horse | mbk | person | plant | sheep | sofa | train | tv | mean
30.0 [68.7] 51.5 | 69.1| 68.1 | 71.7| 67.5 | 50.4 | 66.5 |44.4| 58.9 | 53.5| 61.8
214 1625| 46.8 | 71.8| 639 | 76.5| 73.9 | 452 | 724 | 37.4| 709 | 55.1| 62.2
23.9 | 60.6 | 46.9 | 72.1| 68.3 | T4.5| 729 | 52.6 | 64.4 | 45.4| 64.9 | 57.4| 62.6
26.9 |67.7| 54.7 | 74.3| 70.0 | 79.8 | 773 | 52.6 | 75.2 [46.6 | 66.9 |57.3| 67.0
272 |73.2| 575 | 781| 79.2 | 81.1| 771 | 53.6 | 74.0 [49.2| 71.7 | 63.3| 69.6
36.2 |80.2| 56.4 |81.2| 81.4 | 83.1| 829 | 59.2 | 834 |54.3| 80.6 | 70.8| 73.4
Approaches that use CNNs and CRF's
259 |73.7| 61.2 | 72.0| 77.0 | 79.9 | 787 | 59.5 | 783 [55.0| 75.2 |61.5| 70.5
29.0 |82.0| 60.3 | 76.3 | 78.4 |83.0| 79.8 | 57.0 | 80.0 [53.1| 70.1 |63.1| 71.2
307 | 74.1] 59.8 |79.0| 76.1 | 83.2 | 80.8 | 59.7 | 82.2 |50.4| 73.1 |63.7| 71.6
30.4 | 78.2| 60.4 |80.5| 77.8 | 83.1| 80.6 | 59.5 | 82.8 |47.8| 78.3 |67.1| 72.0
285 | 77.0| 62.0 [79.0| 80.3 | 83.6 | 80.2 | 58.8 | 83.4 |54.3| 80.7 | 65.0| 72.5
31.1 [79.5] 63.3 | 80.5| 79.3 | 85.5| 81.0 | 60.5 | 85.5 |52.0| 77.3 | 65.1| 73.2

132

7.5.2 Results

For quantitative evaluation, we use the standard mean intersection-over-union
measure (averaged across the 21 classes). Table 7.1 compares the proposed Gaussian
CRF network with state-of-the-art semantic segmentation approaches on the chal-

lenging PASCALVOC 2012 test set. We can infer the following from these results:

e The proposed Gaussian CRF network performs significantly (6.2 points) better
than the DeepLab CNN, which was used for initializing the unary network.
This shows that Gaussian CRF's can be successfully used for discrete labeling

problems even though they are continuous models.

e The proposed approach outperforms several recent approaches that use dis-
crete CRF models with CNNs. This shows that, despite being a continuous
model, the Gaussian CRF model can be a strong competitor to discrete CRF's

in discrete labeling tasks.

Figure 7.4 provides a visual comparison of the proposed approach with DeepLab
CNN (which is same as our unary network) and DeepLab CNN + discrete CRF. As
we can see, the proposed Gaussian CRF model is able to correct the errors made by
the unary network, and also produces more accurate segmentation maps compared

to the discrete CRF-based DeeplLab approach.

Computation time: The proposed Gaussian CRF network takes around 0.6 sec-

onds to segment a 505 x 505 image on an NVIDIA TITAN GPU.

133

Input Ground truth DeepLab CNN DeepLab CNN-CRF Proposed

Figure 7.4: Comparison of the proposed approach with DeepLab CNN [2] and

DeepLab CNN + discrete CRF [2].

134

7.6 Conclusions

In this chapter, we proposed a Gaussian CRF model for the discrete labeling
task of semantic segmentation. We proposed a novel deep network for Gaussian
CRF inference, which we refer to as GMF network, by unfolding a fixed number of
Gaussian mean field inference steps. By combining this GMF network with CNNs,
we proposed an end-to-end trainable Gaussian CRF network. When trained discrim-
inatively, the proposed Gaussian CRF network outperformed various recent discrete
CRF-based semantic segmentation approaches on the challenging PASCALVOC
2012 segmentation dataset. Our results suggest that, despite being a continuous

model, Gaussian CRF can be successfully used for discrete labeling tasks.

135

Chapter 8: Conclusions and Directions for Future Work

8.1 Summary

In this dissertation, we focused on two important factors that are critical in
the design of computer vision algorithms, namely representation and context mod-
eling, and made novel contributions by proposing new 3D geometry-based repre-
sentations for recognizing human actions from skeletal sequences, and introducing
Gaussian conditional random field model-based deep network architectures that ex-
plicitly model the spatial context by considering the interactions among the output
variables. In addition, we also proposed a kernel learning-based framework for the
classification of manifold features such as linear subspaces and covariance matrices.

In the first part of this dissertation, we introduced a family of body part-based
3D skeletal representations for human action recognition, which we refer to as R3DG
features. The proposed representations explicitly model the relative 3D geometry
between various body parts using rigid body transformations. We represented 3D
rigid body transformations using SF(3), SO(3) ® R?, UQ @ R3, and UD, result-
ing in four different R3DG features. We also introduced two scale-invariant R3DG
features by using only the 3D rotations between various body parts. Using the pro-

posed representations, we modeled the human actions as curves in R3DG feature

136

spaces. Finally, we performed action recognition by classifying these curves using
a combination of DTW, FTP representation and SVM classifier. We experimen-
tally showed that the proposed R3DG features perform better than various existing
skeletal representations, and the proposed action recognition approach outperforms
various existing skeleton-based action recognition approaches.

In the second part of this dissertation, we used rolling maps for flattening
SO(3) to perform human action recognition from 3D skeletal data. We represented
each human skeleton as a point in the Lie group SO(3) ®...® SO(3) using the rela-
tive 3D rotations between all pairs of body parts. Using this skeletal representation,
we represented human actions as curves in SO(3)®...®S0(3). For each action cate-
gory, we computed a nominal curve and warped all the action curves to this nominal
using DTW. Then, we rolled SO(3) ® ... ® SO(3) over its Lie algebra along the
nominal curves and unwrapped all the action curves onto the Lie algebra. Finally,
we represented the unwrapped curves using either the concatenated representation
or the F'TP representation and classified them using a one-vs-all linear SVM classi-
fier. We experimentally showed that flattening SO(3) by unwrapping while rolling
performs better than flattening SO(3) by using logarithm map at a single point. In
this part of the dissertation, we also showed how to compute a piecewise smooth
rolling map such that the corresponding rolling curve passes through a given set of
points in SO(3) at given instances of time.

In the third part of this dissertation, we introduced a general extrinsic frame-
work for the classification of manifold features using kernel learning approach. We

proposed two criteria for learning a good kernel-classifier combination for manifold

137

features. In the case of SVM classifier, based on the proposed criteria, we formulated
the problem of learning a good kernel-classifier combination as a convex optimization
problem, and solved it efficiently following the multiple kernel learning approach.
We evaluated the proposed approach for the image set-based classification task us-
ing linear subspaces and covariance features, and obtained superior performance
compared to other relevant approaches.

In the fourth part of this dissertation, we proposed a new end-to-end trainable
deep network architecture for image denoising based on a Gaussian CRF model.
The proposed network consists of a parameter generation network that generates
appropriate potential function parameters based on the input image, and an infer-
ence network that performs approximate Gaussian CRF inference. Unlike existing
discriminative denoising approaches that train a separate model for each noise level,
the proposed network can handle a range of noise levels as it explicitly models the
input noise variance. We achieved results on par with the state-of-the-art by train-
ing two deep Gaussian CRF networks, one for low input noise levels and one for
high input noise levels.

In the last part of this dissertation, we proposed to use a Gaussian CRF model
for the discrete labeling task of semantic segmentation. We proposed a novel deep
network for Gaussian CRF inference, which we refer to as GMF network, by unfold-
ing a fixed number of Gaussian mean field inference steps. By combining this GMF
network with CNNs, we proposed an end-to-end trainable Gaussian CRF network
for semantic segmentation. When trained discriminatively, the proposed Gaussian
CRF network outperformed various recent discrete CRF-based semantic segmenta-

138

tion approaches on the challenging PASCALVOC 2012 segmentation dataset. Our
results suggest that, despite being a continuous model, Gaussian CRF can be suc-

cessfully used for discrete labeling tasks.

8.2 Directions for Future Work

In Chapter 3, we used the relative 3D geometry between all pairs of body
parts in the skeletal representation. However, each action is usually characterized
by the interactions of a specific set of body parts. Hence, using feature selection
approaches such as multiple kernel learning to automatically identify the set of body
parts that differentiates a given action from the rest could further improve the action
recognition performance.

In Chapter 4, we used the concept of rolling maps for mapping temporal
sequences from the Lie group SO(3) to its Lie algebra. Though we focused on
SO(3) in this dissertation, the rolling map is a general concept that can be used
with any Riemannian manifold. So, the proposed approach can also be used for
the classification of time series data on other manifolds like Grassmann manifold
and the manifold of SPD matrices. While we focused only on actions performed
by a single person in this dissertation, the proposed representations and action
recognition approaches can also be used for classifying multi-person interactions.

In Chapter 5, we focused on the SVM classifier and formulated the problem of
learning a good kernel-classifier combination as a convex optimization problem. The

proposed framework can also be extended to discriminant analysis as kernel learning

139

can be formulated as a convex optimization problem in the case of Fisher discrimi-
nant analysis [195,196]. Another possible direction of future work is to explore more
sophisticated regularizers that can make use of the underlying manifold structure
instead of the simple distance-preserving constraints used in this dissertation.

In Chapter 6, we proposed a Gaussian CRF-based deep network architecture
for image denoising. Although we focused on image denoising in this dissertation,
the proposed network design strategy can also be used for other full-image inference
tasks like super-resolution, depth estimation, etc. We used half quadratic splitting
and Gaussian mean field based inference approaches to design our inference networks
in Chapters 6 and 7, respectively. Instead, one can also consider other inference

approaches such as belief propagation.

140

Appendix A: Gaussian Mean Field Inference

In this appendix, we derive the Gaussian mean field inference update equation
for the Gaussian CRF model presented in Section 7.3. We modeled the conditional

probability density P(y|X) as a Gaussian distribution given by
1
P(y|X) o exp {—5 E(y]X)}, where

EyX) =Y llyi—nl+>_ (vi—y) Wi (yi—y;)
% i

=Yy (IK+ZWZ-]-> yi—2) rlyi+ Y rlri-2) y/Wyy;
i j i i ij A1)
The standard mean field approach approximates the joint Gaussian distribu-
tion P(y|X) using a simpler Gaussian distribution Q(y|X) which can be written
as a product of independent marginals, i.e, Q(y|X) = [[, Q:i(y:|X), where Q(y;|X)
is a Gaussian distribution with mean p; € R¥ and covariance 3; € RE*K. The
parameters {p;, X;} of) are obtained by minimizing the KL-divergence between

the distributions Q and P.
KL(Q||P) = /Q(YIX) log [Q(y[X)] — /Q(yIX) log [P(y|X)]
-3 [@) g Qi 0] - [Q) g [PHIX] (a2)
= =2 glos 2o 5] - [QX tog PO

141

{p;, X7} = argmin KL(Q||P)

. 1 K
= smmin 3 gl [1270) 1] - [Q1) tog [P(yIX)

= argmin — ZlOgHEiH + Z/Q(y,x) yi (IK + ZWU> Yi
{mi, 2} i i J
=Y QX ey -2 Y [QX yT Wy,
i tj
yiT (IK + ZW”> Yi]
J
— QZE r/y:] - QZE [y Wiy;]
i]

trace (yiyf (IK + z]: Wi))]

_9 Z E[r/y:] —2) Etrace (y;y, Wy)]

ij

— argmin — Zlog [135]] + Ztrace (E [yiy;] (IK + ZW11)>

{wi,3:} J

= argmin — Zlog [132:]] + ZE

= argmin — Zlog [132:]] + ZE

-2 Z E [rjyi} -2 Z trace (E [yjyﬂ Wij)
= argmin — Zlog [135:]] + Ztrace ((El + pip) <IK + ZWU>>

{mi,2:} J

-9 Z r) p; — 2 Z trace (NjMiTWz‘j)
i i

(A.3)
Note that in the last step, we have used the fact that y; and y; are independent

under the distribution @. From (A.3) we have,

37 = argmin trace <Ei (IK + ZWU>> — log [|%]] (A.4)

3 j

Note that (A.4) is a convex problem. Differentiating the cost function and setting

142

-1
the gradient to zero, we get 37 = <IK +22 Wij> . From (A.3) we have,

p; = argmin trace (uiuj (IK + ZWU>> —2r) p; — 2 Ztrace (u;‘fuiTWij)

22 j j

= argmin MT <IK + sz]> Hi — 21‘?#@ - 2#; <Z Wz‘jﬂj’)
Hi : .

J J

(A.5)
Note that (A.5) is a convex problem. Differentiating the cost function and setting

the gradient to zero, we get

Hy = (IK + Z Wij) (Fz’ + ZWUH;> . (A.6)

Hence, for the Gaussian distribution in (A.1), the mean field update for computing

the means {u;} is given by

i <IK + Z Wij)l <ri + Z Wijl"j)' (A7)

J J

143

Appendix B: Deep Gaussian CRF Network for Image Denoising -

Backpropagation

In this appendix, we derive the formulas used for backpropagating the loss
derivatives through the layers of the deep Gaussian CRF network presented in Sec-
tion 6.4. Let L be the final loss function.

B.1 Backpropagation - Combination Layer

Forward step:

= Z 75 P (B.1)
k
Backward step:
Z d%;(p, q)
drYz] dzl] p? q) dezkj
(B.2)

dL dL
= — W.(p, q) = trace (\IlT)
2 T,) L,

Z d¥i;(p, q)
dlIlk: pv dzl] b, q dq?k()

_Z L D
dE 7”' aw, 4= igsy

i p7 ij

144

B.2 Backpropagation - Quadratic Layer

Forward step:

1_ _
Backward step:
k

L o - (B.5)
dby, - dsg; dby, - ds;;

dL dL dsg; dL L

Ty~ 2 a2 g (Wit o'le) sy (B.6)

) k 1]) k ij
dWi(p,q) 4= dsj; dWi(p,q)

i g
1« dlL - AW, + 0%L)
-5 — X;; (W I \)\% I, i
2;dijzy(kT O d2) de(p,q) (kKt o d) Xij

From (B.7), we have

de Z (W, +0%Le) ™" %55 X, (Wi +0712) 7]

(B.8)

dL X X;; -
= (W +0Lp)™! (e 12 J) (W + 02Lz2) !
ij

145

B.3 Backpropagation - Patch Inference Layer

Forward step:
2= (Lo —GT (5%, + GGT) ' G}y, (B.9)

Backward step:
Let Ay =1p — G' (8%, + GGT) G. Let I, be a matrix with (p, ¢) element as
one and all other elements as zero. Note that the matrix G = I — d%l satisfies

GG’ =G.

dL _ AT dL
dyzj / dzij

zij = Ayyi; —

dL
- (IdZ -G (BZ,;+GG")" G) o (B.10)
_ dL
= (I -G (8, +G) 'G .
< d (7)) dZZ‘j
dL dL

dA;(r, s) dL \' dA,
=1t . B.12
dzun E:dA (r.5) d%4(p.q) I“E<<my) =00) O

dAy o d(BZ;+GGT)
d¥i;(p, q) d%i;(p,q)
1 d(8Z; +GGT)
dXi;(p, q)

T (6=, +GGT) (62 +GGT) ' @

T (62, +GGT) " (BL,) (B, +GGT) " G.
(B.13)

146

From (B.12) and (B.13), we have

AL e [(E T(GT (555 +GGT) ™ (L) (65, +GGT)™" G)
A% (p,q) dA; ” " !

= trace ((5zij+GGT)‘1 G (dﬁj)TGT (B, + GGT) ™" (AL,
(B.14)
From (B.11) and (B.14), we have
. T
dC;LZ-j -8 <(521-j+(;cﬁ)‘1 G (d‘ij) GT (52M+GGT)‘1>
— B(f%;+GGT) T G <dcjij) G (55, +GGT)” (B.15)

dL
dz.:.

)

=B(BS;+G) G ——y/ G (B2, +G)™".

147

Appendix C: Gaussian CRF Network for Semantic Segmentation -

Backpropagation

In this appendix, we derive the formulas used for backpropagating the loss
derivatives through the layers of the Gaussian CRF network presented in Section 7.4.
Let L be the final loss function.

C.1 Backpropagation - Matrix Generation Layer

Forward step:

Wij = SijC. (Cl)
Backward step:
dL dL dW;;(p,q)
dSz'j B " dWij(p> Q) dsij
C.2
—ZLC@ q) = trace (dL)TC o
” dWij(p> Q) ’ dWij .
Z sz](pv)
dC (p,q dWU p,q) dC(p,q)
(C.3)
- Z s L= dar _ dL
dWU p,q) " dC %ij dWU

148

C.2 Backpropagation - Similarity Layer

Forward step:

5y = e Tt (tha i)’ (C.4)
Backward step:
M
dL dL ds;; dL d(Elz) .o
= s 9. T _fTg.
dZi ; dSij dZi ; dSij (% mzzl dZZ' (m%i mZJ)
AL <
=) 25, £.£) (z; — z)
zj: iy 2 (C.5)
M
dL
=2 (fmf;> (Z Sij d5s (z; z2)>
m=1 j
dL dL dsy; dL d (£ (z; — z;)) T
— = -2 f
df,, 2. dsy; df,, 2. dsi; < %4 £, (2 = 2j)
dL .
= 2si; (z; — z;) (z; — z;) £
pr dSU < J J J) (06)
dL
= -2 (Z Sij g — (z; — 2;) (2 zj)T> £,
ij 5ij
C.3 Backpropagation - Odd Update Layer
Forward step:
A <ri + Zj Wiju§”> if node ¢ is in an odd column
gt = (C.7)

(2

wi" elsewise,

where A = (Ix + 3, Wa) ™.

149

Backward step:
If node 7 is in an even column, then r; does not play a role in the forward step and

hence dL/dr; = 0. If node 7 is in an odd column, then

out

dL d(A(p,)r;)
drz Z dplout Z du’out dI’Z

Zduout "p)

—1
dL dL
—AT- (1 W | -
dpg™ (ot %: i) dpg

If node j is in an odd column, then ué-" does not play a role in the forward step and

hence dL/ du;'»” = (. If node j is in an even column, then

dL B “out()
d“;n - out Z Z d“out p d“;n

((AW3) (p,) pi”
out Z Z out djp’;n ’)

d[,LOUt ZZ d[.,l,OUt AWij)T (:7p) (Cg)

dL dL
- dIJ/?Ut + ;WZJAd ?Ut

-1
dL dL
d“;ut + - J < K + - k) dugut

150

Let I,, be a matrix with (p, ¢) element as one and all other elements as zero. For i

in odd columns,

L (dL)T dpgt
dWy;(p.q) \dp) dWii(p,q)
(i y e wa))
-\ dugt dWi;(p, q)
dr \ ' dA~! dW ;;
_ —A ; Wz] z‘n
(du‘i’“t) (dWi;(p; q) (r +Z &) AW (p,0)")
dL ' ou in
= (dum> (— AL + AlLgus")
dL out\\ T
— nace (5 (AL (i~ i)
dL o
= trace (W (H] pi)]quAT>
dL outn T
= trace (AT dpo (lf’] —H; t) qu)
dL o
- {AT e (17" — ™)] (p,q)
dL dL T
—_ AT out
= dWU du?ut (I'I'J l'l'l)

L,
- (IK +) Wik) dpet (W5~)
k 7

(C.10)

151

1]

2]

[6]

[7]

Bibliography

Stefan Roth and Michael J. Black. Fields of experts. International Journal of
Computer Vision, 82(2):205-229, 2009.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. Semantic image segmentation with deep convolutional
nets and fully connected CRFs. In International Conference on Learning
Representations, 2014.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In IEEFE Conference on Computer Vision and Pattern Recognition,
2005.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In IEFE
Conference on Computer Vision and Pattern Recognition, 2014.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles
and Techniques. MIT Press, 2009.

Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory
and Applications. Chapman & Hall/CRC, 2005.

152

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Mohammad Abdelaziz Gowayyed, Marwan Torki, Mohammed Elsayed Hus-
sein, and Motaz El-Saban. Histogram of oriented displacements (HOD): De-
scribing trajectories of human joints for action recognition. In International
Joint Conference on Artificial Intelligence, 2013.

Mohamed E. Hussein, Marwan Torki, Mohammad Abdelaziz Gowayyed, and
Motaz El-Saban. Human action recognition using a temporal hierarchy of
covariance descriptors on 3D joint locations. In International Joint Conference
on Artificial Intelligence, 2013.

Jiang Wang and Ying Wu. Learning maximum margin temporal warping for
action recognition. In IEEFE International Conference on Computer Vision,
2013.

Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet
ensemble for action recognition with depth cameras. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

Ferda Ofli, Rizwan Chaudhry, Gregorij Kurillo, René Vidal, and Ruzena Ba-
jesy. Sequence of the most informative joints (SMIJ): A new representation
for human skeletal action recognition. Journal of Visual Communication and
Image Representation, 25(1):24-38, 2014.

Eshed Ohn-Bar and Mohan M. Trivedi. Joint angles similarities and HOG2
for action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2013.

Pavan K. Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chel-
lappa. Statistical computations on Grassmann and Stiefel manifolds for im-
age and video-based recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(11):2273-2286, 2011.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Pedestrian detection via classifi-
cation on Riemannian manifolds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(10):1713-1727, 2008.

Ruiping Wang, Huimin Guo, Larry S. Davis, and Qionghai Dai. Covariance
discriminative learning: A natural and efficient approach to image set classi-
fication. In IEEE Conference on Computer Vision and Pattern Recognition,
2012.

Tae-Kyun Kim, Josef Kittler, and Roberto Cipolla. Discriminative learning
and recognition of image set classes using canonical correlations. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29(6):1005-1018, 2007.

Jihun Ham and Daniel D. Lee. Grassmann discriminant analysis: A unifying
view on subspace-based learning. In International Conference on Machine
Learning, 2008.

153

[21]

[22]

[23]

[24]

[25]

[26]

28]

[29]

[30]

[31]

[32]

Tae-Kyun Kim, Ognjen Arandjelovic, and Roberto Cipolla. Boosted man-
ifold principal angles for image set-based recognition. Pattern Recognition,
40(9):2475-2484, 2007.

Mehrtash Tafazzoli Harandi, Conrad Sanderson, Sareh Abolahrari Shirazi,
and Brian C. Lovell. Graph embedding discriminant analysis on Grassmannian
manifolds for improved image set matching. In IEEFE Conference on Computer
Vision and Pattern Recognition, 2011.

Masoud Faraki, Mehrtash Tafazzoli Harandi, and Fatih Porikli. Image set
classification by symmetric positive semi-definite matrices. In IEEE Winter
Conference on Applications of Computer Vision, 2016.

Sadeep Jayasumana, Richard I. Hartley, Mathieu Salzmann, Hongdong Li, and
Mehrtash Tafazzoli Harandi. Kernel methods on the Riemannian manifold of
symmetric positive definite matrices. In IEEFE Conference on Computer Vision
and Pattern Recognition, 2013.

Masoud Faraki, Mehrtash Tafazzoli Harandi, and Fatih Murat Porikli. Mate-
rial classification on symmetric positive definite manifolds. In IEEE Winter
Conference on Applications of Computer Vision, 2015.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast de-
scriptor for detection and classification. In Furopean Conference on Computer
Viston, 2006.

Forest Agostinelli, Michael R Anderson, and Honglak Lee. Adaptive multi-
column deep neural networks with application to robust image denoising. In
Advances in Neural Information Processing Systems, 2013.

Harold Christopher Burger, Christian J. Schuler, and Stefan Harmeling. Im-
age denoising: Can plain neural networks compete with BM3D? In IEEFE
Conference on Computer Vision and Pattern Recognition, 2012.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting
with deep neural networks. In Advances in Neural Information Processing
Systems, 2012.

Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learn-
ing hierarchical features for scene labeling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1915-1929, 2013.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

Ashok Veeraraghavan, Anuj Srivastava, Amit K. Roy-Chowdhury, and Rama
Chellappa. Rate-invariant recognition of humans and their activities. IEEFE
Transactions on Image Processing, 18(6):1326-1339, 20009.

154

[33]

[34]

[35]

[36]
[37]

[41]

[42]

[44]

[45]

[46]

Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction. Springer, 2003.

Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical In-
troduction to Robotic Manipulation. CRC press, 1994.

J. M. McCarthy. Introduction to Theoretical Kinematics. MIT Press, 1990.

Ben Kenwright. A beginners guide to dual-quaternions: What they are, how
they work, and how to use them for 3D character hierarchies. In International
Conference on Computer Graphics, Visualization and Computer Vision, 2012.

Daniel Bump. Lie Groups, Graduate Texts in Mathematics, volume 225.
Springer, New York, 2004.

Frank C. Park and Bahram Ravani. Smooth invariant interpolation of rota-
tions. ACM Transactions on Graphics, 16(3):277-295, 1997.

Calin Belta and Vijay R. Kumar. An SVD-based projection method for
interpolation on SE(3). IEEE Transactions on Robotics and Automation,
18(3):334-345, 2002.

Milos Zefran and Vijay Kumar. Two methods for interpolating rigid body
motions. In IEEE International Conference on Robotics and Automation,
1998.

Milos Zefran, Vijay Kumar, and Christopher Croke. Choice of Riemannian
metrics for rigid body kinematics. In ASMFE Design Engineering Technical
Conference and Computers in Engineering Conference, 1996.

Ted J. Broida, S. Chandrashekhar, and Rama Chellappa. Recursive 3-D mo-
tion estimation from a monocular image sequence. [EEFE Transactions on
Aerospace and Electronic Systems, 26(4):639-656, 1990.

Ted J. Broida and Rama Chellappa. Estimating the kinematics and structure
of a rigid object from a sequence of monocular images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(6):497-513, 1991.

Gem-Sun J. Young and Rama Chellappa. 3-D motion estimation using a
sequence of noisy stereo images: Models, motion estimation and uniqueness
results. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
12(8):735-759, 1990.

Pavan K. Turaga, Rama Chellappa, V. S. Subrahmanian, and Octavian Udrea.
Machine recognition of human activities: A survey. IEEFE Transactions on
Circuits and Systems for Video Technology, 18(11):1473-1488, 2008.

155

[47]

[48]

[49]

[50]

[51]

[58]

[59]

J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM
Computing Surveys, 43(3):16:1-16:43, 2011.

Vladimir M. Zatsiorsky. Kinematics of Human Motion. Human Kinetics
Publishers, 1997.

Aravind Sundaresan and Rama Chellappa. Model driven segmentation of
articulating humans in Laplacian Eigenspace. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(10):1771-1785, 2008.

Aravind Sundaresan and Rama Chellappa. Multi-camera tracking of artic-
ulated human motion using shape and motion cues. IFEE Transactions on
Image Processing, 18(9):2114-2126, 2009.

Thomas B. Moeslund, Adrian Hilton, and Volker Kriiger. A survey of advances
in vision-based human motion capture and analysis. Computer Vision and
Image Understanding, 104(2-3):90-126, 2006.

Jamie Shotton, Andrew W. Fitzgibbon, Mat Cook, Toby Sharp, Mark Finoc-
chio, Richard Moore, Alex Kipman, and Andrew Blake. Real-time human
pose recognition in parts from single depth images. In IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

Gunnar Johansson. Visual perception of biological motion and a model for its
analysis. Perception & Psychophysics, 14(2):201-211, 1973.

Yaser Sheikh, Mumtaz Sheikh, and Mubarak Shah. Exploring the space of a
human action. In IEEE International Conference on Computer Vision, 2005.

Fengjun Lv and Ramakant Nevatia. Recognition and segmentation of 3D
human action using HMM and multi-class adaboost. In European Conference
on Computer Vision, 2006.

Miguel Reyes, Gabriel Dominguez, and Sergio Escalera. Feature weighting
in dynamic time warping for gesture recognition in depth data. In [FEFE
International Conference on Computer Vision Workshops, 2011.

Lu Xia, Chia-Chih Chen, and J. K. Aggarwal. View invariant human action
recognition using histograms of 3D joints. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2012.

Zhanpeng Shao and Youfu Li. A new descriptor for multiple 3D motion tra-
jectories recognition. In IEEFE International Conference on Robotics and Au-
tomation, 2013.

Ping Wei, Nanning Zheng, Yibiao Zhao, and Song-Chun Zhu. Concurrent
action detection with structural prediction. In IEEE International Conference
on Computer Vision, 2013.

156

[60]

[61]

[68]

[69]

[71]

Xiaodong Yang and Yingli Tian. Effective 3D action recognition using Eigen-
joints. Journal of Visual Communication and Image Representation, 25(1):2—
11, 2014.

David C. Marr and H. Keith Nishihara. Representation and recognition of
the spatial organization of three-dimensional shapes. Proceedings of the Royal
Society of London, Series B, Biological Sciences, 200(1140):269 — 294, 1978.

Yaser Yacoob and Michael J. Black. Parameterized modeling and recognition
of activities. Computer Vision and Image Understanding, 73(2):232-247, 1999.

Dariu M. Gavrila and Larry S. Davis. Towards 3-D model-based tracking and
recognition of human movement: A multi-view approach. In International
Workshop on Automatic Face and Gesture Recognition, 1995.

Lulu Chen, Hong Wei, and James M. Ferryman. A survey of human motion
analysis using depth imagery. Pattern Recognition Letters, 34(15):1995-2006,
2013.

Mao Ye, Qing Zhang, Liang Wang, Jiejie Zhu, Ruigang Yang, and Juergen
Gall. A survey on human motion analysis from depth data. In Dagstuhl
Seminar on Time-of-Flight Imaging and GCPR Workshop on Imaging New
Modalities, 2013.

Junxia Gu, Xiaoqing Ding, Shengjin Wang, and Youshou Wu. Action and gait
recognition from recovered 3-D human joints. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 40(4):1021-1033, 2010.

Alexandros Andre Chaaraoui, José Ramoén Padilla-Lgpez, and Francisco
Florez-Revuelta. Fusion of skeletal and silhouette-based features for human
action recognition with RGB-D devices. In IEEFE International Conference on
Computer Vision Workshops, 2013.

Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

Mihai Zanfir, Marius Leordeanu, and Cristian Sminchisescu. The moving pose:
An efficient 3D kinematics descriptor for low-latency action recognition and
detection. In IEEFE International Conference on Computer Vision, 2013.

Christopher Ellis, Syed Zain Masood, Marshall F. Tappen, Joseph J. LaViola
Jr., and Rahul Sukthankar. Exploring the trade-off between accuracy and

observational latency in action recognition. International Journal of Computer
Vision, 101(3):420-436, 2013.

Yu Zhu, Wenbin Chen, and Guodong Guo. Fusing spatiotemporal features and
joints for 3D action recognition. In IEEFE Conference on Computer Vision and
Pattern Recognition Workshops, 2013.

157

[72]

[76]

[77]

[80]

[81]

[82]

[83]

Georgios Evangelidis, Gurkirt Singh, and Radu Horaud. Skeletal quads: Hu-
man action recognition using joint quadruples. In International Conference
on Pattern Recognition, 2014.

Tommi S. Jaakkola and David Haussler. Exploiting generative models in dis-
criminative classifiers. In Advances in Neural Information Processing Systems,
1998.

Chunyu Wang, Yizhou Wang, and Alan L. Yuille. An approach to pose-based
action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

Meinard Miiller, Tido Roder, and Michael Clausen. Efficient content-based
retrieval of motion capture data. ACM Transactions on Graphics, 24(3):677—
685, 2005.

Angela Yao, Juergen Gall, and Luc J. Van Gool. Coupled action recognition
and pose estimation from multiple views. International Journal of Computer
Vision, 100(1):16-37, 2012.

Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L. Berg, and
Dimitris Samaras. Two-person interaction detection using body-pose features
and multiple instance learning. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2012.

Angela Yao, Juergen Gall, Gabriele Fanelli, and Luc J. Van Gool. Does human
action recognition benefit from pose estimation? In British Machine Vision
Conference, 2011.

Rizwan Chaudhry, Ferda Ofli, Gregorij Kurillo, Ruzena Bajcsy, and René
Vidal. Bio-inspired dynamic 3D discriminative skeletal features for human
action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2013.

Lee W. Campbell and Aaron F. Bobick. Recognition of human body motion
using phase space constraints. In IEEE International Conference on Computer
Vision, 1995.

Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Unstruc-
tured human activity detection from RGBD images. In IEEFE International
Conference on Robotics and Automation, 2012.

Kaustubh Kulkarni, Georgios Evangelidis, Jan Cech, and Radu Horaud. Con-
tinuous action recognition based on sequence alignment. International Journal
of Computer Vision, 112(1):90-114, 2015.

Wangqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on
a bag of 3D points. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2010.

158

[84]

Lorenzo Seidenari, Vincenzo Varano, Stefano Berretti, Alberto Del Bimbo,
and Pietro Pala. Recognizing actions from depth cameras as weakly aligned
multi-part bag-of-poses. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2013.

Omar Oreifej and Zicheng Liu. HON4D: Histogram of oriented 4D normals for
activity recognition from depth sequences. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

Victoria Bloom, Dimitrios Makris, and Vasileios Argyriou. G3D: A gaming
action dataset and real time action recognition evaluation framework. In IEEFE
Conference on Computer Vision and Pattern Recognition Workshops, 2012.

Maxime Devanne, Hazem Wannous, Stefano Berretti, Pietro Pala, Mohamed
Daoudi, and Alberto Del Bimbo. 3D human action recognition by shape
analysis of motion trajectories on Riemannian manifold. IEEE Transactions
on Cybernetics, 45(7):1340-1352, 2015.

Liliana Lo Presti, Marco La Cascia, Stan Sclaroff, and Octavia I. Camps. Ges-
ture modeling by hanklet-based hidden Markov model. In Asian Conference
on Computer Vision, 2014.

Rushil Anirudh, Pavan K. Turaga, Jingyong Su, and Anuj Srivastava. Elastic
functional coding of human actions: From vector-fields to latent variables. In
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Sigi Nie and Qiang Ji. Capturing global and local dynamics for human action
recognition. In International Conference on Pattern Recognition, 2014.

Salem Said, Nicolas Courty, Nicolas Le Bihan, and Stephen J. Sangwine. Exact
principal geodesic analysis for data on SO(3). In European Signal Processing
Conference, 2007.

Maxime Tournier, Xiaomao Wu, Nicolas Courty, Elise Arnaud, and Lionel
Revéret. Motion compression using principal geodesics analysis. Computer
Graphics Forum, 28(2):355-364, 2009.

Knut Hiiper, Martin Kleinsteuber, and F. Silva Leite. Rolling Stiefel mani-
folds. International Journal of Systems Science, 39(9):881-887, 2008.

Knut Hiiper and F. Silva Leite. On the geometry of rolling and interpolation
curves on Sn, SOn, Grassmann manifolds. Journal of Dynamical and Control
Systems, 13(4):467-502, 2007.

R. W. Sharpe. Differential Geometry. Springer-Verlag, NewYork, 1996.

Rui Caseiro, Pedro Martins, Joao F. Henriques, Fatima Silva Leite, and Jorge
Batista. Rolling Riemannian manifolds to solve the multi-class classification
problem. In IEEE Conference on Computer Vision and Pattern Recognition,
2013.

159

[97]

[100]

[101]

[102]

[103]

[104]

[105]

106]

107]

108

Knut Hiiper and F. Silva Leite. Smoothing interpolation curves on manifolds
with applications to path planning. In Mediterranean Conference on Control
and Automation, 2002.

Yueshi Shen, Knut Hiiper, and F. Silva Leite. Smooth interpolation of orienta-
tion by rolling and wrapping for robot motion planning. In IEEE International
Conference on Robotics and Automation, 2006.

Rui Caseiro, Joao F. Henriques, Pedro Martins, and Jorge Batista. Beyond
the shortest path: Unsupervised domain adaptation by sampling subspaces
along the spline flow. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

Du Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Journal
of Mathematical Imaging and Vision, 35(2):155-164, 2009.

Jingyong Su, Sebastian Kurtek, Eric Klassen, and Anuj Srivastava. Statistical
analysis of trajectories on Riemannian manifolds: Bird migration, hurricane
tracking, and video surveillance. Annals of Applied Statistics, 8(1):530-552,
2014.

Anuj Srivastava, Eric Klassen, Shantanu H. Joshi, and Ian H. Jermyn. Shape
analysis of elastic curves in Euclidean spaces. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 33(7):1415-1428, 2011.

David G. Kendall. Shape manifolds, Procrustean metrics, and complex pro-
jective spaces. Bulletin of the London Mathematical Society, 16(2):81-121,
1984.

Ashok Veeraraghavan, Amit K. Roy-Chowdhury, and Rama Chellappa.
Matching shape sequences in video with applications in human movement
analysis. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
27(12):1896-1909, 2005.

Rizwan Chaudhry, Avinash Ravichandran, Gregory D. Hager, and René Vidal.
Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear
dynamical systems for the recognition of human actions. In IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui,
and Michael I. Jordan. Learning the kernel matrix with semidefinite program-
ming. Journal of Machine Learning Research, 5:27-72, 2004.

Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grand-
valet. SimpleMKL. Journal of Machine Learning Research, 9:2491-2521, 2008.

Jos F. Sturm. Using sedumi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.

160

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

119]

[120]

Alessandro Bissacco, Alessandro Chiuso, Yi Ma, and Stefano Soatto. Recog-
nition of human gaits. In IEEE Conference on Computer Vision and Pattern
Recognition, 2001.

Osamu Yamaguchi, Kazuhiro Fukui, and Ken-ichi Maeda. Face recognition
using temporal image sequence. In International Conference on Face and
Gesture Recognition, 1998.

Pavan K. Turaga, Ashok Veeraraghavan, and Rama Chellappa. Statistical
analysis on Stiefel and Grassmann manifolds with applications in computer
vision. In IEEE Conference on Computer Vision and Pattern Recognition,
2008.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization:
A geometric framework for learning from labeled and unlabeled examples.
Journal of Machine Learning Research, 7:2399-2434, 2006.

Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point cloud:
From transductive to semi-supervised learning. In International Conference
on Machine Learning, 2005.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian
geometry of Grassmann manifolds with a view on algorithmic computation.
Acta Applicandae Mathematicae, 80(2):199-220, 2004.

Alan Edelman, T. A. Arias, and Steven T. Smith. The geometry of algorithms
with orthogonality constraints. SIAM Journal of Matriz Analysis Applica-
tions, 20(2):303-353, 1998.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework
for tensor computing. International Journal of Computer Vision, 66(1):41-66,
2006.

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geo-
metric means in a novel vector space structure on symmetric positive-definite
matrices. SIAM Journal of Matriz Analysis Applications, 29(1):328-347, 2006.

Kilian Q. Weinberger and Lawrence K. Saul. Unsupervised learning of image
manifolds by semidefinite programming. International Journal of Computer

Vision, 70(1):77-90, 2006.

Minyoung Kim, Sanjiv Kumar, Vladimir Pavlovic, and Henry A. Rowley. Face
tracking and recognition with visual constraints in real-world videos. In IFEFE
Conference on Computer Vision and Pattern Recognition, 2008.

Bastian Leibe and Bernt Schiele. Analyzing appearance and contour based
methods for object categorization. In IEFEE Conference on Computer Vision
and Pattern Recognition, 2003.

161

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

131]

[132]

[133]

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, 2014.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen O. Egiazar-
ian. Image denoising by sparse 3-D transform-domain collaborative filtering.
IEEE Transactions on Image Processing, 16(8):2080-2095, 2007.

Daniel Zoran and Yair Weiss. From learning models of natural image patches
to whole image restoration. In IEEFE International Conference on Computer
Vision, 2011.

Marshall F. Tappen, Ce Liu, Edward H. Adelson, and William T. Freeman.
Learning Gaussian conditional random fields for low-level vision. In IEFE
Conference on Computer Vision and Pattern Recognition, 2007.

Donald Geman and Chengda Yang. Nonlinear image recovery with half-
quadratic regularization. IEEE Transactions on Image Processing, 5(7):932—
946, 1995.

Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-
Laplacian priors. In Advances in Neural Information Processing Systems, 2009.

Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang. A new alternat-
ing minimization algorithm for total variation image reconstruction. STAM
Journal on Imaging Sciences, 1(3):248-272, 2008.

Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Loss-specific train-
ing of non-parametric image restoration models: A new state of the art. In
FEuropean Conference on Computer Vision, 2012.

Uwe Schmidt, Jeremy Jancsary, Sebastian Nowozin, Stefan Roth, and Carsten
Rother. Cascades of regression tree fields for image restoration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 38(4):677-689, 2016.

Uwe Schmidt and Stefan Roth. Shrinkage fields for effective image restoration.
In IEEFE Conference on Computer Vision and Pattern Recognition, 2014.

Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3-D depth recon-
struction from a single still image. International Journal of Computer Vision,

76(1):53-69, 2008.

Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. Continuous
conditional neural fields for structured regression. In Furopean Conference on
Computer Vision, 2014.

Tao Qin, Tie yan Liu, Xu dong Zhang, De sheng Wang, and Hang Li. Global
ranking using continuous conditional random fields. In Advances in Neural
Information Processing Systems, 2008.

162

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142)

[143]

[144]

[145]

[146]

Eero P. Simoncelli and Edward H. Adelson. Noise removal via Bayesian wavelet
coring. In International Conference on Image Processing, 1996.

Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli.
Image denoising using scale mixtures of Gaussians in the wavelet domain.
IEEE Transactions on Image Processing, 12(11):1338-1351, 2003.

Yunjin Chen, Wei Yu, and Thomas Pock. On learning optimized reaction
diffusion processes for effective image restoration. In IEEFE Conference on
Computer Vision and Pattern Recognition, 2015.

Mohammad Reza Hajiaboli. An anisotropic fourth-order diffusion filter for
image noise removal. International Journal of Computer Vision, 92(2):177—
191, 2011.

Gerlind Plonka and Jianwei Ma. Nonlinear regularized reaction-diffusion filters
for denoising of images with textures. IEEE Transactions on Image Processing,
17(8):1283-1294, 2008.

Weisheng Dong, Xin Li, Lei Zhang, and Guangming Shi. Sparsity-based image
denoising via dictionary learning and structural clustering. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2011.

Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally central-
ized sparse representation for image restoration. IEEE Transactions on Image
Processing, 22(4):1620-1630, 2013.

Michael Elad and Michal Aharon. Image denoising via sparse and redun-
dant representations over learned dictionaries. IEEE Transactions on Image
Processing, 15(12):3736-3745, 2006.

Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, and Andrew
Zisserman. Non-local sparse models for image restoration. In IEEE Interna-
tional Conference on Computer Vision, 2009.

Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nu-
clear norm minimization with application to image denoising. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014.

Marc Lebrun, Antoni Buades, and Jean-Michel Morel. A nonlocal Bayesian
image denoising algorithm. SIAM Journal on Imaging Sciences, 6(3):1665—
1688, 2013.

Viren Jain and H. Sebastian Seung. Natural image denoising with convolu-
tional networks. In Advances in Neural Information Processing Systems, 2008.

Shuangteng Zhang and Ezzatollah Salari. Image denoising using a neural
network based non-linear filter in wavelet domain. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005.

163

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Yi-Tong Zhou, Rama Chellappa, Aseem Vaid, and B. Keith Jenkins. Image
restoration using a neural network. IEFEE Transactions on Acoustics, Speech,
and Signal Processing, 36(7):1141-1151, 1988.

Adrian Barbu. Training an active random field for real-time image denoising.
IEEFE Transactions on Image Processing, 18(11):2451-2462, 2009.

Stéphane Ross, Daniel Munoz, Martial Hebert, and J. Andrew Bagnell. Learn-
ing message-passing inference machines for structured prediction. In IEEFE
Conference on Computer Vision and Pattern Recognition, 2011.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding.
In International Conference on Machine Learning, 2010.

Alexander G. Schwing and Raquel Urtasun. Fully connected deep structured
networks. CoRR, abs/1503.02351, 2015.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vi-
neet, Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr. Con-
ditional random fields as recurrent neural networks. In IEEE International
Conference on Computer Vision, 2015.

John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep unfolding:
Model-based inspiration of novel deep architectures. CoRR, abs/1409.2574,
2014.

Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):629-639, 1990.

David R. Martin, Charless C. Fowlkes, Doron Tal, and Jitendra Malik. A
database of human segmented natural images and its application to evalu-
ating segmentation algorithms and measuring ecological statistics. In IEFE
International Conference on Computer Vision, 2001.

Mark Everingham, S. M. Ali Eslami, Luc J. Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of Computer Vision,
111(1):98-136, 2015.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45(1-3):503-528, 1989.

Yunjin Chen, Thomas Pock, René Ranftl, and Horst Bischof. Revisiting loss-
specific training of filter-based MRF's for image restoration. In German Con-
ference on Pattern Recognition, 2013.

164

[159]

[160]

161]

162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Pedro H. O. Pinheiro and Ronan Collobert. Recurrent convolutional neural

networks for scene labeling. In International Conference on Machine Learning,
2014.

Bharath Hariharan, Pablo Andrés Arbeldez, Ross B. Girshick, and Jitendra
Malik. Hypercolumns for object segmentation and fine-grained localization.
In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Mohammadreza Mostajabi, = Payman Yadollahpour, and Gregory
Shakhnarovich. Feedforward semantic segmentation with zoom-out fea-
tures. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
In International Conference on Machine Learning, 2001.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recogni-
tion in the wild with the materials in context database. In IEEFE Conference
on Computer Vision and Pattern Recognition, 2015.

George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L. Yuille.
Weakly- and semi-supervised learning of a DCNN for semantic image segmen-
tation. In IEEFE International Conference on Computer Vision, 2015.

Xiaojuan Qi, Jianping Shi, Shu Liu, Renjie Liao, and Jiaya Jia. Semantic
segmentation with object clique potentials. In IEEFE International Conference
on Computer Vision, 2015.

Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neural fields
for depth estimation from a single image. In IEEFE Conference on Computer
Vision and Pattern Recognition, 2015.

Josiane Zerubia and Rama Chellappa. Mean field annealing using compound
Gauss-Markov random fields for edge detection and image estimation. I[EEFE
Transactions on Neural Networks, 4(4):703-709, 1993.

Rama Chellappa and Shankar Chatterjee. Classification of textures using
Gaussian Markov random fields. IEEE Transactions on Acoustics, Speech and
Signal Processing, 33(4):959-963, 1985.

B. S. Manjunath and Rama Chellappa. Unsupervised texture segmentation
using Markov random field models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(5):478-482, 1991.

Philipp Krahenbiihl and Vladlen Koltun. Efficient inference in fully connected
CRFs with Gaussian edge potentials. In Advances in Neural Information
Processing Systems, 2011.

165

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponen-
tial families, and variational inference. Foundations and Trends in Machine
Learning, 1(1-2):1-305, 2008.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Im-
agenet: A large-scale hierarchical image database. In IEEFE Conference on
Computer Vision and Pattern Recognition, 20009.

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. Si-
multaneous detection and segmentation. In European Conference on Computer
Vision, 2014.

Jifeng Dai, Kaiming He, and Jian Sun. Convolutional feature masking for
joint object and stuff segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

Abhishek Sharma, Oncel Tuzel, and David W. Jacobs. Deep hierarchical
parsing for semantic segmentation. In IEFE Conference on Computer Vision
and Pattern Recognition, 2015.

Abhishek Sharma, Oncel Tuzel, and Ming-Yu Liu. Recursive context propaga-
tion network for semantic scene labeling. In Advances in Neural Information
Processing Systems, 2014.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In IEEE International Conference on
Computer Vision, 2015.

Guosheng Lin, Chunhua Shen, Ian D. Reid, and Anton van den Hengel. Effi-
cient piecewise training of deep structured models for semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Guosheng Lin, Chunhua Shen, Tan D. Reid, and Anton van den Hengel. Deeply
learning the messages in message passing inference. In Advances in Neural
Information Processing Systems, 2015.

Trinh Minh Tri Do and Thierry Artieres. Neural conditional random fields.
In International Conference on Artificial Intelligence and Statistics, 2010.

Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Advances
in Neural Information Processing Systems, 2009.

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep structured output learning for unconstrained text recognition. In Inter-
national Conference on Learning Representations, 2014.

Jonathan J. Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint
training of a convolutional network and a graphical model for human pose
estimation. In Advances in Neural Information Processing Systems, 2014.

166

[184]

[185]

[186]

[187]

18]

[189)

[190]

[191]

192]

193]

[194]

Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, and Raquel Ur-
tasun. Learning deep structured models. In International Conference on
Machine Learning, 2015.

Yoshua Bengio, Yann LeCun, and Donnie Henderson. Globally trained hand-
written word recognizer using spatial representation, convolutional neural net-
works, and hidden Markov models. In Advances in Neural Information Pro-
cessing Systems, 1993.

Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploiting bounding boxes
to supervise convolutional networks for semantic segmentation. In IEEFE In-
ternational Conference on Computer Vision, 2015.

Seunghoon Hong, Hyeonwoo Noh, and Bohyung Han. Decoupled deep neural
network for semi-supervised semantic segmentation. In Advances in Neural
Information Processing Systems, 2015.

Pedro H. O. Pinheiro and Ronan Collobert. From image-level to pixel-level la-
beling with convolutional networks. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

Justin Domke. Learning graphical model parameters with approximate
marginal inference. [IEFEE Transactions on Pattern Analysis and Machine
Intelligence, 35(10):2454-2467, 2013.

Philipp Krahenbiihl and Vladlen Koltun. Parameter learning and convergent
inference for dense random fields. In International Conference on Machine
Learning, 2013.

Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk mini-
mization of graphical model parameters given approximate inference, decod-
ing, and model structure. In International Conference on Artificial Intelligence
and Statistics, 2011.

Marshall F. Tappen, Kegan G. G. Samuel, Craig V. Dean, and David M.
Lyle. The logistic random field - A convenient graphical model for learning
parameters for MRF-based labeling. In IEEE Conference on Computer Vision
and Pattern Recognition, 2008.

Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdev, Subhransu Maji,
and Jitendra Malik. Semantic contours from inverse detectors. In IEFE In-
ternational Conference on Computer Vision, 2011.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. CoRR, abs/1408.5093, 2014.

167

[195] Jieping Ye, Shuiwang Ji, and Jianhui Chen. Multi-class discriminant kernel
learning via convex programming. Journal of Machine Learning Research,

9:719-758, 2008.

[196] Raviteja Vemulapalli, Vinay Praneeth Boda, and Rama Chellappa. MKIL-
RT: Multiple kernel learning for ratio-trace problems via convex optimization.
CoRR, abs/1410.4470, 2014.

168

	List of Tables
	List of Figures
	List of Abbreviations
	List of Notations
	Introduction
	Motivation
	Proposed Algorithms and their Contributions
	Organization

	Lie groups, Quaternions and Dual Quaternions
	Lie Groups
	Special Orthogonal Group SO(3)
	Special Euclidean Group SE(3)

	Quaternions
	Dual Quaternions

	Relative 3D Geometry-based Skeletal Representations for Human Action Recognition
	Introduction
	Related Work
	Joint-based Approaches
	Part-based Approaches

	Relative 3D Geometry-based Skeletal Representations
	R3DG Features
	Scale-invariant R3DG Features

	Temporal Modeling and Classification
	Experimental Evaluation
	Conclusions

	Rolling the Special Orthogonal Group for Skeleton-based Human Action Recognition
	Introduction
	Relevant Background
	Group SO(3)2R9
	Rolling Motion

	Rolling Special Orthogonal Group
	Rolling along a Non-geodesic Curve
	Unwrapping while Rolling
	Advantage of Unwrapping while Rolling

	Proposed Action Recognition Approach
	Experimental Evaluation
	Conclusions

	Kernel Learning for Extrinsic Classification of Manifold Features
	Introduction
	Related Work
	Relevant Background
	Linear Subspaces - Grassmann Manifold
	Covariance Features - SPD Manifold

	Extrinsic Support Vector Machines
	Extrinsic SVM using MKL Framework

	Experimental Evaluation
	Recognition using Image Sets
	Datasets and Feature Extraction
	Comparative Methods and Evaluation Settings
	Base Kernels and Parameters
	Results

	Conclusions

	Deep Gaussian Conditional Random Field Network for Image Denoising
	Introduction
	Related Work
	Gaussian Conditional Random Field Model
	Patch-based Pairwise Potential Functions
	Inference

	Deep Gaussian CRF network
	Parameter Generation Network
	Inference Network
	Gaussian CRF Network
	Training

	Experimental Evaluation
	Conclusions

	Gaussian Conditional Random Field Network for Semantic Segmentation
	Introduction
	Related Work
	Gaussian Conditional Random Field Model
	Gaussian Mean Field Inference
	Bipartite Graph Structure for Parallel Updates

	Gaussian CRF network
	Training

	Experimental Evaluation
	Training
	Results

	Conclusions

	Conclusions and Directions for Future Work
	Summary
	Directions for Future Work

	Gaussian Mean Field Inference
	Deep Gaussian CRF Network for Image Denoising - Backpropagation
	Backpropagation - Combination Layer
	Backpropagation - Quadratic Layer
	Backpropagation - Patch Inference Layer

	Gaussian CRF Network for Semantic Segmentation - Backpropagation
	Backpropagation - Matrix Generation Layer
	Backpropagation - Similarity Layer
	Backpropagation - Odd Update Layer

	Bibliography

