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With the continuous and rapid changes in modern societies, such as the in-

troduction of advanced technologies, aggressive marketing strategies and innovative

policies, it is more and more recognized by researchers in various disciplines from

social science to economics that choice situations take place in a dynamic environ-

ment and that strong interdependencies exist among decisions made at different

points in time. The increasing concerns about climate change, the development of

high-tech vehicles, and the extensive applications of demand models in economics

and transportation areas motivate this research on vehicle ownership based on dis-

aggregate discrete choices. Over the next five to ten years, dramatic changes in the

automotive marketplace are expected to occur and new opportunities might arise.

Therefore, a methodology to model dynamic vehicle ownership choices is formulated

and implemented in this dissertation for short and medium-term planning.

In the proposed dynamic model framework, the car ownership problem is de-

scribed as a regenerative optimal stopping problem; when a purchase is made, the

current vehicle state (vehicle age, mileage driven, etc.) is regenerated. The model



allows the estimation of the probability of buying a new vehicle or postponing this

decision; if the decision to buy is made, the model further investigates the vehicle

type choices. Dynamic models explicitly account for consumers’ expectations of fu-

ture vehicle quality or market evolution, arising endogenously from their purchase

decisions.

Both static and dynamic formulations are applied first to simulated data in

order to test the ability to recover the true underlying parameters of the synthetic

population. Results obtained attest that the dynamic model outperforms the static

MNL in terms of goodness of fit, parameters bias and predictive power. In particular,

it is found that MNL captures the general trends in choice probabilities, but fails to

recover peaks in demand and behavioral changes due to rapidly evolving external

conditions.

The extension to a real case study required a data collection effort. A pre-

liminary pilot survey was designed and executed in the State of Maryland in fall

2010; the survey was self-administrated and web-based. Choices were made under

the hypothesis that an interval time period of six months passed from a decision to

the successive decision and choices over a hypothetical time period of six years were

recorded.

Finally, the application of dynamic discrete choice models to vehicle owner-

ship decisions in the context of the introduction of new technology is proposed.

Results from the real case study confirm our initial expectations, as the model fit is

significantly superior to the fit of the static model.
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1. INTRODUCTION

1.1 Background

The classical economic theory of consumer behavior provides a logically con-

sistent foundation for the empirical analysis of many aspects of individual’s choice

decision. This realm of behavior involves choice among discrete alternatives, taste

variation in the population and individual’s choice making procedure.

The origin of discrete choice models is in economics. These statistical pro-

cedures describe choices made by people among a finite set of alternatives. Daniel

McFadden won the Nobel prize in 2000 for his pioneering work in developing the the-

oretical basis for discrete choice. In marketing research, discrete choice models can

be used to study the consumer demand, to predict market share, and to solve some

business related problems, such as pricing and product development. In energy and

environmental studies, discrete choice models are utilized to make forecasts (e.g.,

households’ and firms’ choice of heating system), and to examine people’s choice of

fishing or skiing site. Some labor economists use discrete choice models to exam-

ine occupation choice, retirement choice, and education or training program choice

[Aguirregabiria and Mira, forthcoming, 2009]. In transportation area, planners have

been using discrete choice models for decades to predict demand for transportation
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facilities, travelers’ transportation mode, route, destination, and time choice, and

even to predict the travelers’ one-day-activity [Ben-Akiva and Lerman, 1985, Daly,

1982, Edited by Randolph W. Hall, 2003].

In recent years, the objectives of transportation planning have evolved from

adding road and transit capacity to managing travel demand, connecting modes/trips,

and reducing emissions. Car ownership models play a central role in the planning

and decision making of various public agencies and private organizations: a) The

US Department of Energy, b) State Departments of Transportation, c) The auto

industry and d) Local transit Agencies [Train, 1979]. The Clean Air Act of 1990

strengthens the role of demand-side policies and requires that MPOs with over

200,000 populations have their planning procedures recertified by USDOT every

three years. MPOs are now required to greatly improve their capabilities for model-

ing travel and land development and the effects of the resultant travel and land use

patterns on the economy, environment, and social equity. However, some behaviors

are generally missing from the MPOs Transportation Model Systems completely

(for which new sub-models must be created); this includes car ownership (number

of cars and types per household), which strongly affects trip/tour/chain generation

and mode choice [Johnston, 2003]. In an ongoing project started in 2003, the federal

government (jointly administered by the Federal Highway Administration (FHWA)

and the Federal Transit Administration) provides support to MPOs who wishes to

conduct a peer review of their travel modeling. Reviewers frequently suggest im-

proving or including a car ownership model in the transportation modeling system.

Rising oil prices and environmental consciousness - in particular on climate

2



change - are major drivers for the global race of developing and promoting high

technology cars. So is the concern over energy security, especially at times of turmoil

in the Middle East. Technological advances have also brought electric vehicles closer.

Energy prices in the twenties century rose sharply and will rise steadily once the

global economy fully recovers and creates a competitive marketplace for alternative

energy sources. Besides, state and national governments are interested in adjusting

public policy to reduce dependence on foreign oil, decrease air pollution, and combat

climate change. Therefore, technology, energy, and policy development create an

interesting opportunity for changes in the automotive marketplace over the next

five to ten years. The traditional static discrete choice models cannot truly make

the prediction of consumer preferences for future vehicles under the expected changes

in technology and environment awareness.

Dynamic in car ownership choice, both at intertemporal dimension (resis-

tance to change in ownership levels due to uncertainty of financial position) and

intratemporal dimensions (acquired taste for a certain lifestyle) has been studied

by researchers in the US, but in many cases their analysis is based on panel sur-

veys collected oversees (often the models are based on the Dutch National Mobility

Panel) [Kitamura and BUNCH, 1990]. In the majority of these studies the state

variable of current period is influenced by state in the past. However, the state of

each period is only represented by the number of cars owned by a household but

not by exogenous attributes. A real dynamic framework is therefore necessary when

modeling consumer demand that explicitly accounts for consumers’ expectations of

future vehicle quality, evolving market and consumers’ outflow from the car market.
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The purpose of this research is to present a dynamic discrete choice model of con-

sumers’ car ownership and develop an estimation technique for analyzing the impact

of technological changes and the marketing evolution on the dynamics of consumers’

demand.

1.1.1 In Economics

A significant portion of the literature focusing on the extension of discrete

choice models into a dynamic frame can be found in economics and related fields. In

dynamic discrete choice structural models, agents are forward looking and maximize

expected inter-temporal payoffs; the consumers get to know the rapidly evolving

nature of product attributes within a given period of time and different products are

supposed to be available on the market. Changing prices and improving technologies

have been the most visible phenomena in a large number of important new durable

goods markets. As a result, a consumer can either decide to buy the product or to

postpone the purchase at each time period. This dynamic choice behavior has been

treated in a series of different research studies.

In his pioneer work, John Rust[Rust, 1987] formalized the optimal stopping

problem and estimated the optimal stopping time to replace a used bus engine. In

this first dynamic version of McFadden’s logit model, a single agent was considered,

and random components were assumed to be additively separable, conditionally

independent and extreme value distributed. Berry, Levinsohn and Parkes [Berry

et al., 1995] - BLP had shown the importance of incorporating consumer hetero-

geneity for obtaining realistic predictions of elasticities and welfare but their models
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were static and did not account for the inter-temporal incentives of market partic-

ipants. In 2000, Oleg Melnikov [Melnikov, 2000] expanded the engine replacement

model and released the BLP limitations to model the decision of whether to buy a

printer machine or to postpone the purchase based on the expected evolution of the

product quality and price. The Melnikov formulation was transferred to model the

adoption of other durable goods, such as computers, digital products, etc. [Song

and Chintagunta, 2003, Gordon, 2006, Nair, 2007] whose quality was rapidly im-

proving overtime. In the Melnikov’s framework, the products were heterogeneous

while consumers were homogeneous; error terms were in fact assumed to be inde-

pendently distributed across consumers, products and time periods; furthermore,

the purchase was only made once in the consumers’ lifetime. In addition, the pa-

rameters of the static problem part were estimated separately from the dynamic

part; the participation probability of a consumer was directly obtained from ob-

serving the number of purchases in the total market. The estimation of dynamic

discrete choice models was computationally costly because the solution of the fixed

point problem as defined by Rust was required on all points along the estimation

algorithm. In conclusion a three-step method was used to solve the estimation

problem. Szabolcs Lorincz [Lorincz, 2005] added a persistent effect to the optimal

stopping model which completed the standard optimal stopping problem. This per-

sistence means that customers who already had a product may choose to upgrade

it, (i.e. upgrade the operating systems). For this application, the model not only

included the likely future quality of the product, but also the industry evolution.

These dynamic economic models were generally applied to evaluate price and elas-
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ticities, intertemporal substitution and the welfare gains from industry innovations.

In 2006, Carranza [Carranza, 2006] examined digital cameras market and proposed

a logit utility model with one time purchase; the model incorporated fully hetero-

geneous consumers and extended standard estimation techniques to account for the

dynamics in consumers’ characteristics. The model was estimated in a reduced-

form specification that was relatively easy to compute. Gowrisankaran and Rysman

[Gowrisankaran and Rysman, 2007] also analyzed the importance of dynamics when

modeling consumer’s preferences over digital camcorder industry products using a

panel data set on prices, sales and characteristics. Their model combined the BLP

techniques for modeling consumer heterogeneity in a discrete choice context and the

Rust techniques for modeling optimal stopping decisions. This model was based

on an explicit dynamics of consumer behavior and allowed for unobserved product

characteristics, repeated purchases, endogenous prices and multiple differentiated

products.

1.1.2 In Transportation

In the transportation field, dynamic models have been widely used for dynamic

network equilibrium [Lam et al., 2006]. For transportation demand analysis, a num-

ber of dynamic models were proposed and calibrated but they were not based on

dynamic optimization. Landau et al. [Landau et al., 1981] defined and tested em-

pirically a framework for trip-generation models sensitive to temporal constraints;

households decided whether or not to perform a trip for a specific purpose during

the day, and which period was taken. Hirsh et al. [Hirsh et al., 1986] estimated a
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parametric model of dynamic decision-making process for weekly shopping activity

behavior. The individual was assumed to proceed from period to period and the

observed weekly activity pattern was the outcome of successive decisions. Action

plans were then modified on the basis of actual behavior and of the additional infor-

mation acquired in previous periods. Liu and Mahmassani [Liu and Mahmassani,

1998] calibrated a day-to-day dynamic model of commuters’ joint departure time

and route switching decisions that took into account commuters’ learning from ex-

perience. The analysis provided insight into day-to-day effects of real-time traffic

information on user decisions.

Most recently, Train [Train, 2002b] gave the concept of dynamic decision mak-

ing and described a two/more-periods model in his book Qualitative Choice Analy-

sis, which was very well known amongst demand modelers in transportation. Moshe

Ben-Akiva and Maya Abou-Zeid [Ben-Akiva and Abou-Zeid, 2007] proposed a dy-

namic framework to model the evolution of latent variables and observed choices

over time. Their approach involved the integration of discrete choice with Hidden

Markov chains which contained behavioral dynamics such as individuals’ plans, well-

being states and actions. Shortly after, the methodology of Hidden Markov chains

was used again to model dynamic driving behavior [Choudhury, 2007]. Choudhury

in her MIT PhD thesis studied the effects of unobserved plans for four traffic sce-

narios: freeway lane changing, freeway merging, urban intersection lane choice and

urban arterial lane. These dynamic applications of discrete choice model in trans-

portation focused on the evolution of individuals’ previous plans and actions but

did not consider the changes in external conditions. Possible applications of dy-
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namic discrete choice models in transportation include modeling car ownership for

short and medium-term planning applications; customer choices for dynamic pricing

schemes in airline or rail industry; route choice and lane change behavior; weekly

(or longer term) activity patterns. Therefore, in transportation the development of

dynamic discrete choice models has not been as comprehensive as in economics or

marketing.

1.2 Objective of the Research

In transportation, dynamic discrete choice models have not been studied ex-

tensively and applications are rather limited; this dissertation aims at widening this

gap from the methodological perspective and proposes an application of dynamic

discrete choice models on car ownership for short and medium-term planning. This

research has multiple objectives:

• Integrate dynamic behavioral processes into discrete choice models.

• Propose a general dynamic framework for car ownership.

• Develop an efficient algorithm to estimate dynamic discrete choice models.

• Extend the framework to heterogeneous consumer problems and evolving prod-

uct quality.

• Generate an efficient and simple method for collecting real behavioral data

over time.
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• Validate the superiority of dynamic model to the traditional multinomial logit

model.

1.3 Outline of the Dissertation

This dissertation is composed of eight chapters. Chapter 2 reviews car own-

ership forecasting methodology used by transportation researchers; popular static

formulations and dynamic models based on panel data are presented. Chapter 3 dis-

cusses dynamic discrete choice models (DDCMs) used by econometricians to forecast

the demand for durable products. DDCMs are usually specified as an optimal stop-

ping problem, where agents decide the time period of making a stopping decision.

Chapter 4 formulates DDCMs for car ownership forecasting and the dynamic na-

ture of the problem is carefully detailed. Chapter 5 proposes results obtained from

a simulated experiment; dynamic and static models are compared in terms of coeffi-

cients’ bias and prediction power. Chapter 6 presents the methodology adopted for

survey design and execution; it reports on the revealed preference experiment and

on the three stated choice games corresponding to vehicle technology, fuel choice,

and taxation policy. In Chapter 7, the statistical analysis of the sample collected is

described. The application of the DDCM based on real data is presented in Chapter

8; results are then compared with those deriving from a static model with equivalent

specification. Finally, Chapter 9 summarizes the main findings of this dissertation,

presents the main contributions and offers avenues for future research.

9



2. CAR OWNERSHIP FORECASTING METHODOLOGY

REVIEW

Different car ownership models are being used for a wide variety of purposes.

National governments (notably the Ministries of Finance) make use of car ownership

models for forecasting tax revenues and the regulatory impact of changes in the level

of taxation. Regional and local governments (particularly traffic and environment

departments) use car ownership models to forecast transport demand, energy con-

sumption and emission levels, as well as the likely impact on this of policy measures.

Car manufacturers apply models to the consumer valuation of attributes of cars that

are not yet on the market. Oil companies want to predict the future demand for

their products and might benefit from car ownership models. International organi-

zations, such as the World Bank, use aggregate models for car ownership by country

to assist investment decision-making [Fox et al., 2004]. The estimation of future car

ownership and car users’ preferences are modeled with demand models, using one

of the two possible forms: aggregate or disaggregate. The literature on car owner-

ship forecasting models is reviewed in this chapter with a focus on the disaggregate

models and their framework, variables specifications, and estimation methods.
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2.1 Aggregate Models

In the year 2004, De Jong published a paper on a comprehensive review of car

ownership models. In this paper, the models have been classified into nine types

[Fox et al., 2004]. I simplify the classification into: (1) aggregate models, (2) static

disaggregate car ownership models (number of car choice model, type choice model),

(3) joint discrete-continuous models, (4) Pseudo-panel methods, and (5) Dynamic

car transaction models with vehicle type conditional on transaction.

Aggregate car ownership models are mainly of three types: (1) time series

models [Tanner, 1981, Dargay and Gately, 1999], (2) cohort models [Algers et al.,

1989] and (3) car market models [Leuven, 1989]. Aggregate models no longer appear

in academic journals but are still used in practice; their major limitation is the

impossibility of modeling vehicle type and use; they also usually include limited

socio-demographic variables.

• Aggregate time series models

Aggregate time series models usually contain a sigmoid-shape function for the de-

velopment of car ownership over time as a function of income or gross domestic

product (GDP). The function increases slowly in the beginning (at low GDP per

capita), then rises steeply, and ends up approaching a saturation level. Examples

are the work done in the late 1980s by Tanner [Tanner, 1981] and in the early 1990s

by Button [Button et al., 1993]. They mainly used logistic function. In more recent

application, Ingram and Liu [K.Ingram and Liu, 1997] used a double logarithmic

specification to explain car ownership; the National Road Traffic Forecasts (NTRF)
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in the UK [Whelan, 2001, Whelan et al., 2000] applied a logistic curve for satura-

tion, and extended this by including the saturation levels (by household type) to the

overall disaggregate tree logit calibration. Dargay and Gately [Dargay and Gately,

1999] used the more flexible function to predict the motorization rate (the number of

cars per 1000 persons) on the basis of GDP/capita for a large number of countries.

These models had the lowest data requirements, and were attractive for application

to developing countries. Income was generally considered to be the main driving

force behind car ownership growth.

• Aggregate cohort models

Aggregate cohort models segmented the current population into groups with the

same birth year (often five-year cohort), and then shifted these cohorts into the fu-

ture, describing how the cohorts as they became older, acquired, kept and lost cars.

Examples are the models of Van den Broecke [den Broecke/Social Research] for

the Netherlands, cohort-based car ownership models in France (Madre and Pirotte,

1991) and Sweden. The Van den Broecke car ownership model was a combination

of cohort survival model and an econometric model. The econometric component

was used for producing the impact of changes in income on car ownership. Aggre-

gate cohort models were most suited for predicting the impact on car ownership of

changes in the size and composition of the population. The demographic force be-

hind car ownership growth can be expected to remain important in Western Europe

for another couple of decades.

• Aggregate car market models
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Examples of aggregate car market models are Mogridge, the Cramer car ownership

model [Cramer and Vos, 1985], Manski [Manski, 1983], Berry [Berry et al., 1995],

the TREMOVE model [Leuven, 1989], the ALTRANS model [Kveiborg, 2001], and

the software package TRESIS [Hensher and Ton, 2002]. Mogridge distinguished

between demand for cars and supply for cars in the car market which was different

from aggregate time-series models. Cramer’s model was based on time-series data

and depended on car prices, income, variation of income and development over

time in the utility of using a car. The second hand car price was endogenous.

Manski’s aggregate car demand and supply model had endogenous used car price

on the market as well. Berry modeled the market for new cars only, with consumer

demand, oligopolistic manufacturers and endogenous prices which was an innovation

in the the most car market models.

TREMOVE was designed to analyze cost and emission effects of a wide range of

measures in the European Union to reduce emission from road transport. TREMOVE

was a simulation model but not a forecasting model. It was specially used to ana-

lyze changes in behavior as a result of changes in economic conditions. ALTRANS

(ALternative TRANSport systems) was a model developed for analyzing the envi-

ronmental impact of different policy proposals on car and public transport usage

in Denmark. The software package TRESIS was developed in 2002 for integrated

strategic planning of transport, land use and the environment. It included disaggre-

gate models for household fleet size, vehicle type choice and car use. The aggregate

car demand of the households by vintage in each year was compared with aggregate

supply. The used vehicle prices were used to reach equilibrium and the new vehicle
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prices were exogenous.

2.2 Disaggregate Static Models

Disaggregate car ownership and type choice models have been extensively de-

veloped and applied in the last two decades in several countries: The Netherlands

[AVV., 2000, HCG, 1989], Norway [HCG and TOI, 1990], Sydney [Hensher et al.,

1992, HCG, 2000], and US [Manski, 1983, Bhat and Pulugurta, 1998]. Their success

is due to their behavioral foundations and the possibility of including a large number

of policy variables, as well as car types and use.

• Car ownership models

This category is discrete choice models and they deal with the number of cars

owned by a household. The car ownership submodel within the Dutch national

model system (LMS) for transport [HCG, 1989] is an early example. The car own-

ership choices of the household were conditioned on household license holding, i.e.

household without licenses had zero cars, household with one license chose between

zero cars or one, and household with two or more licenses chose between one car

or two more cars. The models were binary logit based on random utility theory.

Monthly income that a household can freely spend was an important explanatory

variable from which the monthly expenditures on food, clothing and housing had

already been subtracted. Another important variable was fixed car cost. Therefore,

if monthly incomes rose, the probability of car ownership would rise accordingly.

If the fixed car costs rose, the car ownership probability would decrease. The rest
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explanatory variables were age, gender, household size, number of workers in the

household and region-specific variables. These household car ownership models in

the LMS , combined with personal and household license holding, then influenced

tour frequencies and mode/destination in the model system.

Bhat and Pulugurta [Bhat and Pulugurta, 1998] in the year 1998 proposed

ordered-response choice mechanism to model car ownership choice; they compared

it with unordered-response choice mechanism and both of them applied disaggre-

gate models. Ordered-response choice mechanisms were not consistent with global

utility maximization. They were based on the hypothesis that a single continuous

variable represented the latent car owning propensity of the household. The deci-

sion process can be viewed as a series of binary choice decisions. A given household

assigned utility values for each car ownership outcome, and then made an indepen-

dent utility maximization decision for each range. Only one set of M household

parameters needed to be estimated in this approach, but variation in sensitivity

to income cannot be specified to vary between alternatives. The ordered-response

mechanism was Ordered Response Logit (ORL). Unordered-response mechanisms

were consistent with the theory of global utility-maximization. The choice was de-

termined by the alternative with highest utility and the process was simultaneous

among alternatives. This method had more parameters to estimate and allowed for

variation in sensitivity to household income to vary with car ownership alternative.

The unordered-response mechanism was Multinomial Logit. ORL and MNL models

were estimated. Three socio-economic variables were significant across the data set:

number of working adults, number of non-working adults and household income.
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After comparison, it was found that the MNL was superior according to the rooted

mean-square error measure. The average probability of correct prediction showed the

MNL was superior as well. Therefore, Bhat and Pulugurta concluded that the ap-

propriate choice mechanism for modeling car ownership was the unordered-response

structure, such as MNL or probit models.

Hague Consulting Group did the Sydney Strategic Transport Model (STM)

[HCG, 2000] in 2000 in which company and total car ownership at the household

level were estimated. The data set was from two sources, one collected during

1991/1992 and the other one during 1997/1998. Three approaches were tested in

the disaggregate models: modeling private and company car ownership behavior in-

dependently, modeling private car ownership conditional on company car ownership,

and modeling company car ownership conditional on private car ownership. The re-

sults showed that the second approach performed better. The model structure was

a two-level MNL model system which had company car ownership models as the

upper level and total car ownership models as the lower level. Both the company

and total car models were dependent on the logarithm of net household income.

The total car model accounted for the impact on the net household income of car

ownership cost. The number of license holders in the household was a significant

factor. Parking cost was significant negative in the lower car ownership zones since

parking was more expensive in those areas. The head of the household was identified

with the highest income, and it reflected car ownership differences according to the

age and gender. The variable accessibility from the home-work mode-destination

model was important as well. It accounted for higher car ownership in the certain
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zones which were accessible to work places.

The UK Department of Transport made a number of possible improvements

for NRTF forecast in the year 1999 [Whelan, 2001, Whelan et al., 2000]. The 1997

NRTF included two binary models for each household, a P1+ model to predict the

probability of owning at least one car each household, and a P2+|1 model that was

a conditional probability of owning two or more cars given the household owned at

least one car. The improved model was introduced in NRTF-2001 with an additional

submodel which was the conditional probability of a household owning three or

more cars (P3+|2+|1+). Considering the impact of company car ownership on total

household car ownership, company car dummies were included into the ownership

models. This was consistent with the findings of HCG’s work in Sydney described

before.

Another example is from Rich and Nielsen [Rich and Nielsen, 2001] who mod-

eled a long-term travel demand for households with up to two workers. The model

was specified as a nested logit model with two components: a work model (W-

model) modeling the choice of work location and car ownership and a residential

location model (R-model) modeling the zone and type of residence. Car ownership

was treated within this model structure, but not separately estimated. The W-

model was at the bottom of the structure, therefore it was assumed that individuals

chose the work location depending on their residential location. Car ownership was

modeled as a decision conditional on both residential and work location choice, and

the alternatives were zero, one or two cars per household. They did not consider

company cars in the models.
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• Car-type choice models

This category deals with the choice of car type of the household given car ownership.

Hensher et al.[Hensher et al., 1992], Manski and Sherman [Manski and Sherman,

1980] and Train [Train, 1986] have made influential studies. Hensher et al. and Train

not only included detail vehicle types, but also included the number of vehicles

in the household and car use. Disaggregate models for the number of cars per

household had usually been developed to provide inputs for multimodal transport

model system, while the car-type choice models form a part of standard models to

forecast the size and composition of the car fleet.

Among recently developed car ownership models, some new vehicle type mod-

els are described. Page et al.[Page et al., 2000] developed a model of new car sales

for incorporation within the Vehicle Market Model (VMM) of the UK Department

of the Environment, Transport and the Regions (DETR). Both revealed preference

(RP) and stated preference (SP) data were used in the model. RP data contained

some household socio-economic characteristics and the attributes of the household’s

vehicle fleet. The SP data collected information from households that were either

planning to acquire a new car, or had just bought a new car. The potential vehicle at-

tributes were presented to respondents that included purchase prices, running costs,

resale value, engine size, vehicle emissions, safety measurement, fuel type (petrol,

diesel or hybrid petrol-LPG) and fuel economy. The SP and RP data were com-

bined to form two nested models. One model predicted the binary choice between

a private and company car. The other one predicted a multinomial choice between
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different vehicle types. Separate models were used for company and private cars.

In the private car model, variables were population density, log of annual household

income, log of purchase price, number of children, running costs, variations in emis-

sions, safety features, resale value, fuel economy, standing charges, hybrid engine

type and diesel engine type. In the company car ownership model, the variables

were population density, log of annual household income, log of monthly cost, num-

ber of children, fuel cost, engine size, variations in emissions, safety features, hybrid

engine type. There was a scale factor used to scale the SP data relative to the RP

data. An interesting result in both models was that in areas with high population

densities with scarce parking spaces, there was a higher probability of acquiring a

smaller vehicle.

Brownstone et al. [Brownstone et al., 2000] compared multinomial logit (MNL)

and mixed logit models for data on California households’ RP and SP for vehicle

type choice. Before estimating joint SP/RP models, separate SP and RP models

were estimated. However, some preference were only identified in the SP while some

preference only in the RP. In the joint SP/RP models, a scale factor was used. MNL

model showed the scale factor was less than 1, indicating the stochastic error term in

the SP data had a larger variance than in the RP dataset. Mixed logit model had the

scale factor greater than 1 and its preference heterogeneity was captured by fuel-type

error components. The results showed that pure SP models predicted unrealistically

high sports car market shares compared with the RP/SP model which demonstrated

the superiority of combining RP and SP data. The mixed logit models showed

results with higher market shares for the alternative fuel vehicles. Because of the
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Independence from Irrelevant Alternatives (IIA) properties of MNL, a proportionate

share of each new vehicle must come from all other vehicles, whereas the mixed

logit models resulted in more plausible results that the market share for electric

fuel vehicles came disproportionately from other mini and subcompact vehicles.

Therefore, mixed logit models were feasible for joint RP/SP data.

Hensher and Green [Hensher and Greene, 2000] estimated both MNL and

mixed logit models with combined RP/SP data for vehicle choice. In the SP survey,

vehicles were categorized according to the following attributes: three size categories

based on engine size (within a given engine size, respondents were asked to indicate

a preferred body type), price of vehicle, registration fee, fuel cost to travel 500 km

(variable described as approximate cost of filling a tank so respondents understood

levels), fully fuelled range, acceleration and boot size. The SP survey followed a two-

stage process. The household member was required to consider three conventionally

fuelled vehicles (one from each size class) and choose one in the first stage. In the

second stage, three electric vehicles and three alternative fuel vehicles were added

to the choice set, and the respondent was asked to choose one vehicle from the nine

options. This process was repeated three times. The RP model was defined by a

10-alternative choice set, using a random sampling procedure within each size class

to assign vehicles of each vintage to the 10 alternatives given their size class. One

nested logit and three mixed logit models were estimated. In the mixed-logit mod-

els, random parameters were estimated for the electric and alternative fuel vehicle

constants (normally distributed), and for the vehicle price (log-normally distributed

to ensure the parameter is alwasnegative). After comparing nested MNL and the
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mixed logit formulation, MNL was found to over allocate to new fuels market shares

and therefore underestimate shares on the conventionally fuelled classes relative to

mixed-logit models.

2.3 Joint Discrete-continuous Models

Part of Train’s models [Train, 1986] for California and Hensher’s et al. [Hen-

sher et al., 1992] for Sydney and the models of De Jong [Jong, 1989a,b, 1991] for the

Netherlands belong to this category. These models explain household car ownership

and car use in an integrated micro-economic framework.

De Jong [Jong, 1989a] developed two disaggregate models in his studies. Both

of his models explained whether or not a household would own a private car, and

the number of kilometers driven per year conditional on car ownership. The idea

from his models was that decision of household on car ownership and car use

were strongly interrelated and should be studied together. Both models were joint

discrete-continuous models. The first model was called the ”statistical model” and it

was under the situation without major policy changes. It assumed that a household

had a desired annual kilometrage, which depended on attributes of the household.

When this desired kilometrage exceeded a threshold, the household would own a

car. The observed kilometrage can deviate from the desired kilometrage through a

random disturbance term. Explanatory variables for both models were household

income, household size, age, gender and occupation of the head of the household.

De Jong’s second model was the ”indirect utility model” [Jong, 1989b]. Train
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[Train, 1986] and Hensher et al.[Hensher and Greene, 2000] used this model in their

studies after that. This model was based on micro-economic theory. The basic

idea was that households compared combinations of car ownership and car use with

each other and chose the combination that gave the highest utility. Fixed car cost

and variable car cost were incdlued besides the variables that were in the statistical

model.

Train [Train, 1986] and Hensher et al. [Hensher and Greene, 2000] developed

similar ”indirect utility” equations for car ownership and annual kilometrage, but

embedded these models in a larger framework which also contained car type choice,

conditional on car ownership. Hensher et al.’s model system was developed based

on panel data for Sydney and contained both static and dynamic vehicle choice and

use models.

2.4 (Pseudo)-panel methods

• Panel models

Panel data has been used since 1980s. Early in the 1987, Kitamura [Kitamura,

1987] developed an integrated model simultaneously determining car ownership and

the total number of trips in a week. The model contained lagged effects. All the

equations were linear. The data set consisted of the first waves from the Dutch

National Mobility Panel (LVO). 10 waves were collected between March 1984 and

March 1989. Kitamura and Bunch [Kitamura and BUNCH, 1990] used four waves

of the same LOV panel data set to develop an ordered-response probit model for the
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car ownership per household. They included lagged variables to account for state

dependence and individual-specific error components to account for unobserved het-

erogeneity across households. Meurs [Meurs, 1991] also had car ownership models

estimated on the panel data of LVO. The models included linear simultaneous equa-

tion models of car ownership and use, discrete choice car ownership models, and

joint car ownership and mobility models [Meurs, 1993]. Income was used as the

variable but car cost variables were not included.

Here are some recent panel models. Nobile [Nobile et al., 1996] estimated a ran-

dom effect multinomial probit (MNP) model of car ownership level with longitudinal

data collected in the Netherlands. Nobile et al. noted that panel data enabled the

incorporation of both intertemporal dimensions and intratemporal dimensions. The

data source for modeling was drawn from Dutch National Mobility Panel. Waves

3, 5, 7 and 9 of the period were analyzed. The approach used for estimation was

Bayesian: a prior distribution of the parameters of the longitudinal MNP model was

specified and the posterior was examined using Markov chain Monte Carlo methods.

A total of 50,000 draws were used for the Markov chain, with an initial burn-in of

5000 draws excluded to ensure that the Markov chain had stabilized. The results

showed wave dummies were all negative, suggesting generic temporal effects. In the

cross-sectional terms, standard disaggregate household model term were estimated

for one and two or more car alternatives with no cars as the base. These terms

included the level of urbanization, number of licenses in the household, number of

full and part-time workers, number of adults, number of children, and household

income.
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Hanly and Dargay [Hanly and Dargay, 2000] used 4-year panel data from

the British Household Panel Survey. This panel model had dependent variable,

the number of cars owned per household in each year. The dependence on past

experience was incorporated by introducing lagged endogenous variables. Three

types of models were estimated: a model without a lagged dependent variable, a

model with a lagged dependent variable and a model with dummies for the number

of cars in the last year.

Golounov et al.[Golounov et al., 2001] in the year 2002 first developed a the-

oretical model for the purchases and consumption of cars, other durable goods and

other day-to-day and long-term purchases. They stated that most existing dynamic

car ownership models (panel models, cohort models, duration models) did not have

a strong theoretical underpinning. Another theoretical foundation for dynamic own-

ership and replacement model is from John Rust [Rust, 1987] who combined utility

theory from micro-economics with optimal stopping process decision-making rules

from dynamic programming. His application concerned the replacement of bus en-

gines in a single agent over time.

• Pseudo-panel models

The pseudo-panel method is a relatively new econometric approach to estimate dy-

namic transport demand models that circumvents some problems of panel data such

as attrition. A pseudo-panel is an artificial panel based on cohort averages of re-

peated cross-sections. There are some restrictions imposed on pseudo-panel data.

One of the important is that the cohorts should be based on time-invariant char-
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acteristics of the households, such as the birth year of the head of the household.

The cohorts should have homogeneity within them and heterogeneity between them.

Another important feature of pseudo-panel data is that averaging over cohorts trans-

forms disaggregate values of variables into cohort means losing information about

the individuals.

Dargay and Vythoulkas [Dargay and Vythoulkas, 1999a] used the pseudo-panel

dataset of 5-year cohorts constructed from repeated cross-section data contained in

the UK Family Expenditure Survey. Their model was a fixed effect model but

resulted in an error-in-variables estimator. A generation effect was added to the

model proposed by Deaton and a lagged dependent variable was included to estimate

the dynamics of the model. There were three other models estimated to compare

with the fixed effect model: OLS, random effect specification and random effect with

a first-order autoregressive scheme. The dependent variables was the number of cars

per household and it indicated the average number of cars for that particular cohort.

The explanatory variables were socio-economic characteristics of the household such

as number of adults and children, income, metropolitan and rural areas, and a

generation effect for the head of the household. Car purchase costs, car running

costs and public transport fares were also included. Dargay and Vythoulkas [Dargay

and Vythoulkas, 1999b] had another paper which extended the previous paper by

defining the pseudo-panel observations not only as 5-year cohorts, but also in terms

of area type (e.g. rural, urban).
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2.5 Dynamic car transaction models

Hocherman et al.[Hocherman et al., 1983], Smith et al.[Smith et al., 1989] and

Gilbert[Gilbert, 1992] did some early studies on vehicle transaction models. Hocher-

man et al. used a nested logit model for vehicle transactions and the conditional

vehicle type choice. The transaction options for a zero-car household were purchas-

ing a car or doing nothing; for a one-car household, the options were replacing or

doing nothing. For the purchase and replace options, there were type choice mod-

els. Smith et al. only studied the transaction of one-car households. Gilbert used

duration models to explain car ownership duration. Bunch et al.[Bunch et al., 1996]

and the Dutch Dynamic Vehicle Transaction Model (DVTM) are the most recent

examples. Duration models in these models determine whether a household will

make a purchase. Vehicle type model is used if a transaction is made.

Bunch et al.’s model for California contained transaction models for adding

a car, disposing a car and replacing a car for single- and multivehicle households.

The overall dynamic simulation system also included the type choice models from

Brownstone et al. [Brownstone et al., 2000] and car use equations.

The DVTM model was developed and tested by the Hague Consulting Group.

The main objective of the modeling was to extend the static disaggregate mod-

eling approach for the size and composition of the car market into the dynamic

models. The DVTM consisted of four submodels. Hazard-based duration models

explained the time that elapsed between two household vehicle transactions. They

used continuous time and were intrinsically stochastic models. Several functional
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forms they used in the models were exponential, Weibull, and log-normal. Vehicle

type choice models in this study were for households replacing or extending their

fleet. Vehicle types were distinguished by brand, model and vintage. For each

brand-model-vintage combination, the engine size, weight, average fuel efficiency,

fuel type, type of catalytic converter and fixed and variable cost were known. MNL

model was used. Model for annual car use was similar to the indirect utility model

(discrete-continuous model). Model for style of driving, the last submodel deter-

mined a possible deviation from the average fuel efficiency.

In the dynamic vehicle transaction model such as the DVTM or Bunch et

al.’s model for California, the number of cars per household was predicted based

on current car ownership of the household. The duration model predicted the time

(e.g. months) until the next vehicle transaction and the type of transaction (e.g.

replacement, disposal, adding a car). Time was discrete in this model. Households

that did not transact in year t would have the same vehicle ownership in year t+ 1

as in year t. Households that had transactions involved replacing a car or adding

a car, the conditional type choice model would therefore be used to get new type

choice probabilities. The duration model then could be used to predict transactions

each time based on the car ownership situation of the previous year. Meanwhile,

vehicle scrappage transactions could be integrated in the model.

For both duration model and a panel model of vehicle transactions, short term

predictions (up to 5 years ahead) might be done without updating the population

in the sample used. But for medium and long term forecasts, the population needs

to be updated.
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The discrete vehicle type choice model was applied conditional on specific vehi-

cle transactions in the DVTM. The choice alternatives were the brand-model-vintage

combinations and there were about 1000 distinguished alternatives. In addition, av-

erage emission rates and fuel consumption for the brand-model-vintage combination

can be used to give outcomes on these variables.

2.6 Summary

This chapter reviewed car ownership models with a classification into five

types: aggregate models, static disaggregate models, joint discrete-continuous mod-

els, (pseudo)panel models and dynamic models. Table 2.6 compared the car own-

ership model types discussed above on the basis of 16 criteria proposed by De Jong

in 2004 [Fox et al., 2004].

The aggregate models which included time series models, cohort models and

car market models could not model vehicle type and use and they lacked a lot of

variables. Therefore, the aggregate models were not the right type for the devel-

opment of a fully fledged car fleet model. They can only predict the total number

of cars in the medium and long term and then used the results as a starting point

in other models. However, when the data were very scarce, aggregate time series

models might be the only method available for forecasting.

The static car ownership models and discrete car-type choice models were

suitable for a long-term prediction to forecast the number of cars and the distribution

over households and car types. Their advantages compared to the aggregate models
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were the possibility of including a large number of policy variables, cost and price

variables with RP and SP data. Car-type choice models were predicted given car

ownership. After comparing nested MNL and mixed logit formulation, mixed logit

was found to reasonably allocate the car-type market shares.

Joint discrete-continuous models explained household car ownership and car

use in an integrated micro-economic framework. The idea from these models were

that decision of household on car ownership and car use were strongly interrelated

and should be studied together.

Discrete car type choice models can be added to panel models for the tran-

sitions between car ownership states of households. The panel models could then

be used to give the evolution of the fleet from the present fleet. For medium- and

long-term forecasts, panel models can be carried out when changes in the size and

composition of the population need to be predicted. Pseudo-panel models provide

an convenient way to get short- and long-term policy-sensitive forecasts of the car

ownership based on cohort averages of repeated cross-sections. But the restrictions

of losing information about the individuals determine pseudo-panel models cannot

take over the role of a choice-based model for the number of cars and car type.

Dynamic transaction models included duration models for determining whether

a household would make a purchase. These dynamic models had been combined

with detailed policy-sensitive type choice models to predict brand-model-vintage

combination. For long-term forecasts, as for panel models, population needed to be

updated. Long-term changes in the supply of car types could be simulated through

scenarios.
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3. DYNAMIC DISCRETE CHOICE MODELS REVIEW

A significant portion of the literature focusing on the extension of discrete

choice models into a dynamic frame can be found in economics and related fields.

In dynamic discrete choice structural models, agents are forward looking and maxi-

mize expected inter-temporal payoffs; the consumers is aware of the rapidly evolving

nature of product attributes within a given period of time and different products

are supposed to be available on the market. Changing prices and improving tech-

nologies have been the most visible phenomena in a large number of important new

durable goods markets. This chapter provides a review of dynamic theory and its

application in economics, with a special focus on the combination of behavioral dy-

namics and discrete choice. Successively, possible applications in transportation are

discussed. Finally, conclusions and the avenues for future research opportunities in

transportation are presented.

3.1 Discrete Choice Models and the Dynamics

Discrete choice models based on Random Utility Maximization (RUM) theory

have been of interest to researchers for many years in a variety of disciplines. These

methodologies are used to analyze and predict individual choice behavior. Classical
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formulations assume that utilities are linear, additive and include both individual

characteristics and alternative attributes. The multinomial logit (MNL) [Ben-Akiva

and Lerman, 1985] model has been the most widely used structure for modeling

discrete choices in travel behavior analysis. Nested logit (NL) model [Daly, 1982]

relaxes in part MNL model assumptions; it is derived from McFadden’s [McFadden,

1978] generalized extreme value (GEV) model. Other relaxations of the MNL model,

designed to consider similarity between pairs of alternatives, have been derived from

McFadden’s GEV model as well. These include the ordered generalized extreme

value (OGEV) model [Small, 1987], the paired combinatorial logit (PCL) model

[Chu, 1981, 1989] and the cross-nested logit (CNL) model [hua Wen and Koppelman,

2001, Abbe et al., 2007, Papola, 2000]. Non-closed form discrete choice models as

Probit [Daganzo et al., 1977] and Mixed logit [McFadden and Train, 2000] have

been adopted by researchers to deal with heterogeneity over consumer preferences,

correlation across alternatives and state dependency. All these models have been

mainly developed in a static context. However, the static framework is limited by

the assumption that consumers are not affected by past and future states when

choosing their preferred alternative in the present. The gap between discrete choice

model and dynamics in individual behavior has spurred various developments that

are mainly intended to enrich the basic theory by including in the formulation the

changes occurring in the system to be modeled.

A significant portion of the literature focusing on the extension of discrete

choice models into a dynamic frame can be found in economics and related fields.

In dynamic discrete choice structural models, agents are forward looking and maxi-
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mize expected inter-temporal payoffs; the consumers is aware of the rapidly evolving

nature of product attributes within a given period of time and different products are

supposed to be available on the market. Changing prices and improving technologies

have been the most visible phenomena in a large number of important new durable

goods markets. Although sometimes the future effects are not fully known, or de-

pend on factors that have not yet transpired, the person knows that in the future,

he/she will maximize utility among the alternatives that are available at that time.

This knowledge enables him/her to choose the alternative in the current period that

maximizes his expected utility over the current and future periods [Train, 2002a].

As a result, a consumer can either decide to buy the product or to postpone the

purchase at each time period.

This dynamic choice behavior has been treated in a series of different research

studies and the modeling procedures were applied in various areas, such as Wolpin’s

model for women’s fertility probability[Wolpin, 1984], Pakes’ model about patent

options [Pakes, 1986], and Wolpin’s model on job search [Wolpin, 1987]. John Rust

formalizing the optimal stopping problem and estimating the optimal stopping time

to replace a used bus engine have been considered as a breakthrough on dynamic

modeling in both transport and economic fields. In this dynamic version of McFad-

den’s logit model, a single agent was considered, random components were assumed

to be additively separable, conditionally independent and extreme value distributed.

Berry, Levinsohn and Parkes [Berry et al., 1995] - BLP had shown the importance

of incorporating consumer heterogeneity for obtaining realistic predictions of elas-

ticities and welfare but their models were static and did not account for the inter-

33



temporal incentives of market participants. In 2000, Oleg Melnikov expanded the

engine replacement model and released the BLP limitations to model the decision

of whether to buy a printer machine or to postpone the purchase based on the ex-

pected evolution of the product quality and price. The Melnikov formulation was

transferred to model the adoption of other durable goods, such as computers, dig-

ital products, etc. [Song and Chintagunta, 2003, Gordon, 2006, Nair, 2007] whose

quality was rapidly improving overtime. Szabolcs Lorincz [Lorincz, 2005] added a

persistence effect to the optimal stopping model which completed the standard op-

timal stopping problem. This persistence means that customers who already had

a product may choose to upgrade it(i.e. upgrade the operating systems). For this

application, the model not only included the likely future quality of the product,

but also the industry evolution. These dynamic economic models were generally

applied to evaluate price and elasticities, intertemporal substitution and the welfare

gains from industry innovations.

In 2006, Carranza examined the digital cameras market and proposed a logit

utility model with one time purchase [Carranza, 2006]; the model incorporated fully

heterogeneous consumers and extended standard estimation techniques to account

for the dynamics in consumers’ characteristics. The model was estimated in a

reduced-form specification that was relatively easy to compute. Gowrisankaran and

Rysman also analyzed the importance of dynamics when modeling consumer’s pref-

erences over digital camcorder industry products using a panel data set on prices,

sales and characteristics [Gowrisankaran and Rysman, 2007]. Their model combined

the BLP techniques for modeling consumer heterogeneity in a discrete choice con-
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text and the Rust techniques for modeling optimal stopping decisions. This model

was based on an explicit dynamics of consumer behavior and allowed for unob-

served product characteristics, repeated purchases, endogenous prices and multiple

differentiated products.

In the transportation field, dynamic models have been widely used for dynamic

network equilibrium [Lam et al., 2006]. For transportation demand analysis, a

number of dynamic models were proposed and calibrated but they were not based

on dynamic optimization. In transportation the development of dynamic discrete

choice models has not been as comprehensive as in economics or marketing.

3.2 Markov Decision Process and Dynamic Discrete Choice

Structure

3.2.1 Theory of Dynamics

According to the formulation proposed by John Rust in 1987, any dynamic

problem can be formulated as a Markov decision process (MDP) in which two compo-

nents should be defined at each discrete period and for each individual: (1) a vector

of system state variable st and (2) an action or decision variable dt. The state and

action determine current utility u(st, dt) and affect the distribution of the next pe-

riod’s state st+1 via the Markov transition probability p(st+1|st, dt) . In each period t,

the individual maximizes the expected utility V (s) =maxE(
∑τ

t=0 β
τu(st, dt)|s0 = s)

and decides the optimal decision rule d . In this equation, E denotes expectation

with respect to the controlled stochastic process st, dt and β ∈ (0, 1) is the discount
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factor. By applying the Bellman’s principle of optimality the value function can be

obtained using a recursive procedure:

V (st) = max
d∈D(st)

[u(st, dt) + β

∫
V (st+1)p(dst+1|st, dt)] (3.1)

and the optimal decision rule is obtained from V by finding a value d(s) ∈ D(s) that

attains the maximum utility in equation (3.1) for each s (Rust, 1994 draft)[Rust,

1994].

dt(st) = arg max
d∈D(st)

[u(st, dt) + β

∫
V (st+1)p(dst+1|st, dt)] (3.2)

3.2.2 Dynamic Discrete Choice Models

Dynamic discrete choice models describe the behavior of a forward-looking

agent who chooses among some available alternatives repeatedly over time and in-

tends to maximize expected inter-temporal payoffs. The parameters in the dynamic

function describe agents’ preferences and beliefs about technological and institu-

tional constraints, and the whole utility function contains both the static parameters

and the transition probabilities. The ultimate objective is to estimate the structural

parameters in preferences, state transition probabilities and the discount factor β.

The application of dynamic discrete choice models in economics are intended

for the consumer i to decide whether to buy a product or not at time t, that is the

consumer chooses one of Jt products in period t or chooses to postpone buying. From

these Jt choices, the consumer chooses the alternative which maximizes the sum of

the expected discounted value of utilities at time t+1 conditional on the information
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at time t . Generally, product j is characterized by observed static characteristics

xj, dynamic characteristic yjt (such as price) and unobserved characteristics ξj (e.g.

policy, technology innovation). Consumer preferences over xj and yjt are defined

respectively by coefficients αxi and αyi which need to be estimated with ξj. It is

assumed that xj and ξj stay constant over infinite life of the product. In each period,

the consumer obtains a utility from the product that has just been purchased or

from the product that has already been owned. The utility function of discrete

choice from product j purchased at time t can be generalized as

uijt = αxi xj + αyi yjt + ξj + εijt (3.3)

εijt is an individual-specific random term depending on the individual i , the product

j and the time period t . It is usually assumed that εijt is distributed type I extreme

value, independent across consumers, products and time.

The consumer i will decide to buy a product at time period t when the max-

imum utility is greater than a specific utility which will depend on the expected

evolution of products’ quality and prices in the future. Let vit = maxj uijt denotes

the maximum utility consumer i can get from any product purchased at time t .

The reservation utility is the value of not purchasing anything at current time pe-

riod t and postponing until the next period t+ 1 when the individual evaluates the

problem again. The reservation utility could be written as:

V (Ωit) = βE[max {vi,t+1, V (Ωi,t+1)} |Ωit] (3.4)
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where Ωit is a vector of sufficient statistics for the distribution of vit and its Markov

transition probability. The specific settings of V (Ωit) might differ depending on the

specific application considered while the estimation methods used are mostly based

on Rust’s nested fixed point maximum likelihood algorithm. Both specification and

estimation will be discussed in the following Sections.

3.3 Discussion by Model Type

3.3.1 Rust Optimal Stopping Problem

Modeling framework

An early example of dynamic framework for agent decisions is the optimal

stopping model proposed by John Rust in 1987 and applied to the problem of bus

engine replacement. This work is the basis for later dynamic studies [Melnikov,

2000, Lorincz, 2005, Carranza, 2006, Gowrisankaran and Rysman, 2007]. In this

specific case, the optimal stopping rule is defined as ”whether or not to replace the

current bus engine” in each period and based on observed and unobserved variables.

The stochastic dynamic problem formalizes the trade-off between the conflicting

objectives of minimizing maintenance costs versus minimizing unexpected engine

failures. Rust’s framework focuses on two ideas: (1) a ”bottom-up” approach for

modeling the replacement problem and a (2) ”nested fixed point” algorithm for

estimating dynamic programming models in the presence of discrete choices.

The bottom-up approach generates replacement investments by aggregating

single replacement demands for some specific capital goods such as bus engine
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(Rust’s case is to aggregate all the models of bus engine ). The demand is the

sum of a large number of stochastic processes, each characterized by a decision vari-

able dt , where dt = 1 if a replacement occurs and 0 otherwise, and by a state variable

st which is the mileage cumulated by the bus engine at time t. At each time period

the agent faces the following discrete decisions: (i) perform normal maintenance on

the current bus engine and incur operating cost c = (st, θ1)1 or (ii) cannibalize the

old bus engine for scrap value P and install a new bus engine at cost P and incur

operating cost c = (0, θ1) . It is also assumed that the mileage travelled each month

is exponentially distributed with parameter θ2. Besides, there are still some vari-

ables that can be observed by the agent but not by the econometrician, a solution

is to add an error term εt to the utility function u(st, dt, θ) + εt(d) which realizes

single period utility value when alternative d is selected and the state variable is st,

θ = {θ1, θ2}.

Suppose the vector of state variables obey a Markov process with transition

density given by a parameter function π(st+1,εt+1|st, εt, dt, θ) . The behavioral hy-

pothesis is that agent chooses a decision rule to maximize his expected discounted

utility over an infinite horizon where the discount factor β ∈ [0, 1) . The solution to

this optimal stopping problem is given by the recursive Bellman’s equation:

Vθ(st, εt) = max
dt∈D(st)

[u(st, dt, θ) + εt(dt) + βEVθ(st, dt, εt)] (3.5)

1 Costs are in general not directly observable, so they are inferred from observations. In Rust
case study a total cost function is estimated with parameter θ1
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where the utility function u is given by:

u(st, dt, θ1) =


−c(st, θ1) + ε(0) if dt = 0

−[P − P + c(0, θ1)] + ε(1) if dt = 1

(3.6)

In function (3.5), Vθ(st, εt) is the maximum expected discounted utility obtained by

the agent when the state variable is (st, εt). The expected function EVθ is defined

by

EVθ(st, εt, dt) =

∫
Vθ(st+1, εt+1)π(dss+1, dεt+1|st, εt, dt, θ) (3.7)

The transition probability defines the regeneration property through evolution of

the mileage variable st:

p(st+1|st, dt, θ2) =



θ2exp {θ2(st+1 − st)} if dt = 0, st+1 ≥ st

θ2exp {θ2(st+1)} if dt = 1, st+1 ≥ 0

0 otherwise

(3.8)

With all the functions defined above, it is concluded that Section by saying that

(st, dt) is a realization of a controlled stochastic process whose solution is an optimal

decision rule dt that attains the maximum in Bellman’s equation (3.5). The objective

is to use the observed data to infer the unknown parameter vector θ.
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Estimation

Maximum likelihood is the method used to infer the unknown parameters

and to derive the probability density function L(s1, ..., sT , d1, ...dT |θ) from the data

and to compute the estimate θ̂ which maximizes the likelihood function. Rust

set Conditional Independence (CI) Assumption yielding a simple formula for the

likelihood function so the procedure to compute (3.5) is substantially simplified.

CI π(st+1, εt+1|st, εt, dt, θ) = p(st+1|st, dt, θ)q(εt|st, θ) (3.9)

CI limits the pattern of dependence in (st, εt) in two ways. First, st+1 is a sufficient

statistic for εt+1 so that any statistical dependence between εt and εt+1 is transmitted

entirely through the vector st+1 . Second, the probability density for st+1 depends

only on st and not on εt . If it is assumed that q yields some specific functional

form such as multivariate extreme value distribution, the likelihood function can be

written as:

L(s1, ...sT , d1, ...dT |θ) =
T∏
t=1

P (dt|st, θ)P (st|st−1, dt−1, θ) (3.10)

Where the conditional choice probability P (d|x, θ) , is given by the standard multi-

nomial logit formula:

expu(s, d, θ) + βEVθ(s, d)∑
d′∈D(x) expu(s, j, θ) + βEVθ(s, j)

(3.11)
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where EVθ is the fixed point to the contraction mapping Tθ(EVθ) computed by:

EVθ(x, d) = Tθ(EVθ)(s, d) ≡
∫
log

 ∑
d′∈D(s′ )

exp
{
u(s

′
, d
′
, θ) + βEVθ(s

′
, d
′
)
} p(ds′ , d, θ)

(3.12)

Tθ is a contraction mapping and EVθ is the unique solution to (3.12). To conclude,

the nested fixed point optimization finds a θ that maximizes the likelihood function

(3.10). Further details about the optimization algorithm can be found in Rust, 1988.

3.3.2 Melnikov Demand Model for Differentiated Durable Products

The bus engine replacement problem only describes one single agent’s choosing

behavior that limits the application of dynamic discrete choice models. Another ex-

ample of dynamic demand framework is the Melnikov’s model for computer printers.

The computer hardware market is similar to many other high-technology product

markets; the quality rapidly improves over time and product durability impacts

the evolution of prices and sales [Melnikov, 2000]. In Melnikov’s model, only one

purchase is made; this is the same assumption made by Rust in his optimal stop-

ping problem. Furthermore, all consumer heterogeneity is captured by a term that

is independently distributed across consumers, products and time. The significant

difference between the two approaches is that Melnikov mainly deals with differ-

entiated durable products rather than homogenous products (i.e. the bus engine

in Rust’s example). The framework is divided into three parts: consumer optimal

stopping problem, industry evolution and sales dynamics and aggregation.
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Consumer Optimal Stopping Problem

The consumer optimal stopping problem gives a general formulation of this

choice decision. In each period t , consumer i has two options, Sit = {0, 1} . sit = 0

means i does not own any product at t; sit = 1 otherwise; in the latter case consumers

are out of market. In each period t consumers who have no product either choose

to buy one of the products j or to postpone the purchase until the optimal time.

If the consumer buys a product, the terminal payoff which is the utility when the

consumer decides to buy is:

uijt = f(xj, yjt; θi) + εijt (3.13)

where xj is a vector of static product attributes for product j, yjt is a vector of

dynamic characteristics such as price for product j at time t, θi is a vector of pa-

rameters for homogenous consumer preferences over x and y, so it can be simplified

as θ under the author’s assumption; random terms εijt are individual-specific ran-

dom utility components of J-dimensional random vector ε which are assumed to be

independent and identically-distributed amongst individuals and periods. ε is also

required to follow generalized extreme value (GEV) distribution. Based on the de-

scription above, uijt are therefore i.i.d amongst individuals as well. We can neglect

the different individuals in (3.13) because of the assumption of homogeneity and

decompose it as ujt = δjt + εjt, where δjt is the mean utility E[uijt].

Generally, the consumer makes the decision following two steps: first he

chooses j∗t that maximizes the utility from set J and then he decides whether to
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buy or to postpone the purchase until the next period. j∗t is the product which

contributes the maximum utility and set J includes all the products j available to

the consumer. This optimal stopping problem can be generated as the following

formula:

D(uit, ..., uJt) = maxτ

{
τ−1∑
k=t

βk−tc+ βτ−tE[maxj∈JuJτ ]

}
(3.14)

where β is a common discount factor; c is the utility payoff and E denotes a condi-

tional expectation. Let vt = maxj∈Jujτ and vt has type I extreme value (Gumbel)

distribution according to the described assumption about εijt. The distribution of

vt is Gumbel distributed with a scale factor 1 (because of the assumption defined in

this paper), so

Fv(z; rt) = exp(−exp(−(z − rt))) (3.15)

where rt in formula (3.15) is the mode of the distribution of vt given by rt =

lnG(exp(δ1t, ..., δJt, t)) = lnR (proof see Appendix A of Melnikov’s paper). The

consumer’s decision can be finally transformed from (3.14) into:

D(vt, ct) = max {vt, c+ βE[D(vt+1)]} (3.16)

Industry evolution

Melnikov’s model contains a very important factor rt which characterizes the

distribution of the maximum utility; it represents the evolution of the industry and it

is formulated as the mode of the Gumbel distribution of vt. It is also assumed that
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the evolution of the mean utility can be characterized by a homogenous Markov

process with transition density Φ(rt+1|rt, θr). Besides, rt here follows a diffusion

process defined by:

rt+1 = µ(rt) + σ(rt)νt+1 (3.17)

where νt are assumed to be i.i.d. standard normal N(0, 1). µ(r) and σ(r) are

continuous and almost everywhere differentiable and µ(r) > r. The diffusion process

can be expressed by means of different formulations; those formulations are reported

in Melnikov’s paper but not implemented into the framework presented. Here rt has

a homoschedastic random walk with drift, rt+1 = rt + γ+ σν(where γ ≥ 0 ). In this

case, the Bellman equation (3.16) becomes:

D(vt, rt) = max {vt, c+ βE[D(vt+1(rt+1))|rt]} (3.18)

where vt has Gumbel distribution with mode rt. Meanwhile, the stopping set is

Γ(r) = {v|v ≥ c+ βE[D(.)|r]} and it is convenient to define W (r) = c+ βE[D(.)|r]

as the reservation utility. W (r) can be integrated as:

W (r) = c+ β

∫ ∞
∞

∫ ∞
∞

max(v,W (z))dF (v|z)dΦ(z|r) (3.19)

where from (3.15), F (v|z) = exp(−exp(−(v − z))), dΦ(z|r) = φ( z−µ(r)
σ(r)

)dz and φ(.)

is the standard normal density.
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Sales dynamics and aggregation

• Demand structure

The dynamics of the demand structure is determined by the probability of postpon-

ing the purchase, which the author denotes as:

π0t(rt) = P {Si,t+1 = 0|Sit = 0, rt} = Fv(W (rt), rt) = exp(−exp(−(W (rt)− rt)))

(3.20)

The probability of buying the product is defined as the individual hazard rate of

the product adoption, h(rt) = 1 − π0t(rt). Furthermore, product-specific purchase

probability is:

πjt(rt, .) = P {ujt ≥ ukt,∀k 6= j;ujt ≥ W (rt)} (3.21)

= P {ujt ≥ W (rt)|ujt ≥ ukt,∀k 6= j}P {ujt ≥ ukt,∀k 6= j} (3.22)

= P {ujt ≥ W (rt)} p {ujt ≥ ukt,∀k 6= j} (3.23)

= h(rt)
exp(δjt)Gj(e

δj1 , ..., eδjt)

G(eδj1 , ..., eδjt)
= h(rt)

exp(δjt)Gj(.)

Rt

(3.24)

Gj(.) is the partial derivative of G(.) with respect to jth argument.

One important issue in this Section is the calculation of the hazard rate

with equation (3.20). By setting Y (rt) = W (rt) − rt and by combining (3.17),
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(3.18),(3.19), Y (rt) can be integrated as:

Y (rt) = c+ βµ(r)− r + β

∫ ∞
∞

E[max(ε, Y (rt+1))]φ

{
z − µ(r)

σ(r)

}
dz (3.25)

Recall that equation (3.17) and rt’s random walk with drift, Y (rt) is obtained from

(3.25). Thus, the hazard rate h can be computed from (3.20).

• Aggregation

The transition of consumer state can be presented by a Markov matrix H : {0, 1} →

{0, 1}:

H1(rt) =

π0t(rt) h(rt)

0 1

 (3.26)

The model can also accommodate product’s ”break down”, which is given a

probability q; the consumer i under the state sit = 1 has probability q to return to

the market. Therefore the transition matrix can be expressed by:

H2(rt) =

π0t(rt) h(rt)

q 1− q

 (3.27)

Participation rate is composed by two components: (1) the market share that does

not own a product and (2) the market share that has break-down product (i.e. ϕt =

P [sit = 0]). The participation rate evolves over time according to the Kolmogorov-

Chapman equation (3.28).

ϕt+1 = ϕtπ0t(rt) + q(1− q) (3.28)
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The hazard rate and product-specific purchase probability of (3.24) are adjusted

into:

h
′

t = ϕtht (3.29)

π
′

jt = ϕth(rt)
exp(δjt)Gj(.)

Rt

(3.30)

Rather than using Rust nested fixed point maximum likelihood algorithm, Melnikov

uses an easier three-stage method to estimate the models that includes: (1) iden-

tifying static parameters by OLS, (2) using maximum likelihood to get parameters

γ and σ from transition density Φ(rt+1|rt, θr) , and (3) estimating the remaining

parameters (c, β, q, ϕ0) by fitting predicted sales to the data with the moment con-

dition. This method is based on the assumption that sales of product j can be

aggregated, total market size is known and that the consumers are homogeneous.

3.3.3 Computer Server Choice Model with Persistence Effect

In the previous examples, dynamic discrete choice models are applied by Rust

to describe the optimal stopping time for bus engine replacement decision and by

Melnikov to model the choice from a set of differentiated durable goods with quality

stochastically improving over time. Lorincz’s paper incorporates a persistence effect

into the Melnikov optimal stopping problem [Lorincz, 2005]. If the consumer already

has one product, he can upgrade it without getting rid of the old one. Hence, besides

deciding about the optimal time to buy a product, the consumer who already has

a product can choose between simply using the original product and specifically

upgrading its format. Overall, this model is built on three principles: product
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differentiation, optimal stopping problem and persistence effect. In this example,

the model is applied to low-end server computers where formats are represented by

operating systems (OSs). Since reliability and security are essential characteristics

for servers, upgrades of OSs often need to be carried out. Meanwhile, servers are

very important parts in a computer network which is ever changing, evolving and

being upgraded; so the right server choice needs to be based on a more sophisticated

forward-looking behavioral model. In particular, a dynamic nested logit model is

estimated here, where nests are represented by different operating systems.

General dynamic nested logit model

Lorincz represents the evolution of the state vector by a Markov-transition

probability and models the problem by using the Bellman equation:

V (st) = maxj∈J(s)

[
uj(st) + β

∫
V (st+1)p(dst+1|st,j)

]
(3.31)

The choice set J(s) is partitioned into G+1 mutually exclusive subsets: J(s) =⋃G
g=0 g(s). The subset g = 0 means that customers are not buying any product.

The other G subsets correspond to different OSs which are nested. The state is

composed of three elements: x, y and ε. x is a set of product specific state variables

such as characteristics and price; y is the customer specific state variable observed

by econometrician and y ∈ 0, 1, ..., G. y = 0 indicates that the customer does not

own anything at the beginning of the current period. y = g indicates that the

product owned currently belongs to nest g. This latter specification differentiates
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this approach from the Melnikov’s formulation where only states y = 0 (not owning

a product) and break-down probability are considered.

Different utilities need to be specified depending on the conditions y and g:

In case 1, y = 0 and g = 0 the customer owns nothing and does not buy,

uj = c+ ε0. The constant c is a payoff.

In case 2, y = 0 and g ∈ {1, ...G}, j ∈ g the customer owns nothing but

buys one from nest g. Payoff is then the sum of a product specific value uj =

xjγg + εg + (1 − σg)εj where γg is a vector of parameters and σg ∈ (0, 1) governs

correlation in nest g . The terms εg and εj represent the heterogeneity of nests

and products within nests respectively. And they are distributed identically and

independently across nests and periods with extreme value distributions.

In case 3, y ∈ {1, ..., G} and g = 0 the customer does not buy anything when

he already owns one product. So he gets a format specific ”continuation value”’ cy.

uj = cy + εu0 .

In case 4, y ∈ {1, ..., G} and g ∈ {1, ..., G}, j ∈ g = y the customer already

has a product and decides to upgrade it. So the customer chooses an alternative j

from the upgrade nest y of the original product. uj = xuj γ
u
g + εug + (1− σug )εuj .

Some assumptions are given. ε0 and εu0 are iid distributed across all alternatives

and periods with extreme value. εg + (1 − σg)εj and εg are iid distributed across

nests and periods with extreme value, that is the same as εug + (1− σug )εuj and εug .

Then, transition probabilities are specified as following:

p(xt+1, yt+1, εt+1|xt, yt, εt, j) = h(εt+1|xt+1, yt+1)f(xt+1|xt)l(yt+1|yt, j) (3.32)
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Simplified dynamic nest logit model

The customer is supposed to choose between nests; this assumption reduces the

state and choice dimensional space. Since the specific product index j is identified

by its nest g, the author replaces j by g in the transition probability function of state

y . So in equation (3.32) l(yt+1|yt, j) can be changed into l(yt+1|yt, g) while equation

(3.31) becomes V (st) = maxj∈J(s)

[
uj(st) + β

∫
V (st+1)p(dst+1|st, g)

]
. Therefore, it

is assumed that the formats of all products belonging to the same nest g are the

same and that customer specific persistence effect is carried out through time by

the format but not by the product itself.

pj is defined as the probability of choosing product j belonging to nest g.

As in classical nested logit model pj can be obtained by multiplying the conditional

probability of choosing j from g and the probability of choosing g , that is pj = pj|gpg

. Let wg(s) =
∫
V (st+1)p(dst+1|st, g) . So pj of case 2 is represented by the following

nested logit structure:

pj =
exp [(xjγg/(1− σg))]

Rg

exp [(1− σg)lnRg + βwg(s)]∑G
g′=1 exp

[
(1− σ′g)lnRg′ + βw′g(s)

] (3.33)

where Rg ≡
∑

j∈g exp [xjγg/(1− σg)]. In this formula, the first term and the second

term are both standard logit models. The mean utility of the first term is (xjγg/(1−

σg)). The value γg ≡ lnRg is the expected maximum utility of the conditional choice

problem. The mean utility of the second term is the weighted sum of the value γg

of this nest g and the discounted value of the next period problem. Similar formula

can be generated for case 4 where the corresponding inclusive value is γug .
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Through reducing the state vector of the problem, the state is composed of

(γ, y, ε) with transition probability p(γt+1, yt+1, εt+1|γt, yt, εt, j) = h(εt+1|γt+1, yt+1)

f(γt+1|γt)l(yt+1|yt+1, g). Here γt is the vector of γg’s and γug ’s. The Bellman equation

is updated as

V (st) = maxg∈(0,1,...,G)

[
ug(zt) + β

∫
V (zt+1)p(dzt+1|zt, g)

]
(3.34)

Estimation

The model is estimated following three steps. First, specify static conditional

logit models of within nest choices are estimated; second, the transition probabilities

for the models’ inclusive values are calculated; then a dynamic logit model of choice

between nests including the results from the last two steps is calibrated. More

technical details can be found in Lorincz’s (2005).

3.3.4 Dynamic Durable Goods Demand with Consumer Heterogeneity

In previous examples, consumers are assumed to be homogeneous and ran-

domly i.i.d. Under this assumption the parameters of the static problem can be

estimated separately from the dynamic one. Homogeneity simplifies the problem

formulation although the computation cost associated to the fixed point algorithm

is still high. Furthermore, when extending the original technique to fully heteroge-

neous consumer problems, the integration of the individual demand function over

the distribution of consumers’ characteristics is needed. In this context, Juan Es-

teban Carranza [Carranza, 2006] models digital camera demand by using models
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similar to those described in previous Sections but incorporates fully heterogeneous

consumers into a reduced form of the participation probability. The author is then

able to estimate the joint distribution of consumers’ preferences and the parameters

associated to the participation function which is based on the observed number of

purchases.

A dynamic model of demand

Suppose individual i buys product j, the lifetime utility of this purchase is:

uijt = ςij + αxjxj − α
p
i pjt + εijt (3.35)

Similarly with the framework presented in Section 2, ςij is an unobserved product

attribute common to all consumers who purchase product j at time t; pjt is the

price of product j at time t and xj is the vector of observed static characteristics of

product j. Preference parameters (ςij, α
x
i , α

p
i ) vary across consumers. The author

lets ςij = ςj + σςeiς , α
x
i = αx + σxeix, and αpi = αp + σpeip, where ei is drawn from a

know iid distribution Fe . So (3.35) can be rewritten as:

uijt = (ςj + αxxj − αppjt) + (σςeiς + σxeixxj − σpeippjt) + εijt (3.36)

= δjt(xj, pjt; θ0, ςj) + µijt(xj, pjt; θ1, ei) + εijt (3.37)

In this formula, θ0 = (αx, αp), θ1 = (σς , σx, σp) and ei = (eiς , eix, eip) . The utility

function has mean δjt which is common to all consumers, variance µijt which captures
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the variability of tastes across consumers and an idiosyncratic product-consumer

random component εijt .

The reservation utility of the consumer is the value of not purchasing anything

at time t and waiting until the next period to decide. The problem can be formulated

as:

W (Sit) = 0 + βE [MAX {Vi,t+1,W (Si,t+1)} |Sit] (3.38)

Let vit = maxj {uijt(.)} be the maximum utility consumer i can get from any product

purchased at t and it is assumed that its distribution Fvit is known (recall that in

Melnikov case Fvit is GEV distributed). The probability that the consumer buys

any product at time can be expressed as a hazard rate (see 3.2.2) and obtained from

the known distribution of vit:

Pr(purchase) ≡ hit(Sit) = P [vit > W (Sit)] = 1− Fvit(W (Sit)) (3.39)

It is assumed that εijt have an independent extreme value distribution. Accord-

ing to Melnikov’s deduction (Melnikov, 2000-see appendix), vit has extreme value

distribution with mode rit :

rit(.) = log

[∑
k∈Jt

exp(δkt(.) + µikt(.))

]
(3.40)

Since vit is assumed to be Markovian, state Sit in formula (3.39) and (3.40) can be
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replaced by rit . Then the specific product purchase probability is

hijt(., ei) = hit(rit(., ei))
expδjt(.) + µijt(., ei)

exp(rit(., ei))
(3.41)

Estimation

To obtain the predicted market share for product j, (3.41) has to be integrated

across consumers which can be based on the distribution of Fg.

sjt(θ0, θ1) =

∫ [
ht(rt(θ0, θ1, e))

exp(δjt(θ0) + µjt(θ0, θ1, e))

exp(rt(θ0, θ1, e))

]
dFe (3.42)

θ = (θ0, θ1) can be obtained by equating the predicted and observed demand but

the premise is the observed demand for product j at t and market size are known,

that is:

Mtsjt(θ0, θ1) = Qjt (3.43)

where Qjt is the observed demand for product j at t and Mt the market size. The

integration of (3.42) can be simplified by using simulation techniques, to obtain N

draws of {en}n=1,...,N . See formula (3.44).

sjt(θ0, θ1) ≈ 1

N

N∑
n−1

[
Ψnthnt(rnt(θ0, θ1, en))

exp(δjt(θ0) + µnjt(θ0, θ1, en))

exp(rnt(θ0, θ1, en))

]
(3.44)

In (3.44), Ψn,1 = 1 and Ψn,t>1 = Ψn,t−1(1 − hn,t−1) is the probability that

consumer n is still in the market in period t. When computing mean utility δj

from (3.43), a fixed point for each simulated consumer is required. This procedure
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is computationally costly and it is not clear whether the computable points have

a contraction across all the relevant parameter space. To circumvent the nested

computation, the author imposes a parametric structure on hit and estimate its

parameter θ2i as a part of the whole model. If the transition probability of rit

follows a Makov process, the participation probability can be approximated as hit =

h̃i(rit(.); θ̃2i) and the function ˜h(.) varies across consumers. (3.44) will be updated

as:

sjt(θ0, θ1, θ2) ≈ 1

N

N∑
n−1

[
Ψnth̃nt(rnt(.); ˜θ2n)

exp(δjt(θ0) + µnjt(θ0, θ1, en))

exp(rnt(θ0, θ1, en))

]
(3.45)

The detail estimation procedure of θ0, θ1 and ˜θ2n can be referred from Carranza’s

paper in 2006.

3.3.5 Dynamic Durable Goods Demand with Repeat Purchases

Carranza’s model incorporates consumer heterogeneity into differentiated prod-

uct demands but does not account for repeat purchases. Gowrisankaran and Rysman

[Gowrisankaran and Rysman, 2007] generate a dynamic model of consumer prefer-

ence for the digital camcorder. It allows for unobserved product characteristics,

repeat purchases, endogenous prices and differentiated products.

It is assumed that a consumer who purchases product j at t would receive

a net flow utility uijt = δfjit − αpi ln(pjt) + εijt, where δfjit = αxi xjt + ςjt . δfjit is

the gross flow utility from product j purchased at time t . xjt is observed char-

acteristics and ςjt is unobserved; pjt is price; εijt is an idiosyncratic unobservable

56



parameters. Let Ωt denote current product attributes and it evolves according to

the Markov process P (Ωt+1|Ωt). The author defines a consumer who does not pur-

chase a new product at time t has net flow utility as well: ui0t = δfi0t + εi0t . Then

the value function could be V (εit, δ
f
i0t,Ωt) and the expectation of the value func-

tion is EVi(δ
f
i0t,Ωt) =

∫
ei,t
V (εit, δ

f
i0t,Ωt)dPε. εit is iid and it satisfies the conditional

independence assumption in Rust’s 1987 paper. Bellman equation is represented as:

Vi(εit, δ
f
i0t,Ωt) = max

{
ui0t + βE[EVi(δ

f
i0t,Ωt+1)|Ωt],maxj=1,...Jt

{
uijt + βE[EVi(δ

f
ijt,Ωt+1)|Ωt]

}}
(3.46)

The problem so far is the large dimensionality of Ωt that leads to the heavy difficul-

ties to compute (3.46). Therefore, the author substitutes Ωt with a scalar variable,

the logit inclusive value of purchasing in time t :

δit(Ωt) = ln(
∑

j=1,...Jt

exp(δijt(Ωt))) (3.47)

Besides, there is a main simplifying assumption, the logit inclusive value depends

only on the current logit inclusive value that is termed Inclusive Value Sufficiency.

This assumption indicates that if two states have the same inclusive value δit for

consumer i at current time t , they have the same distribution of inclusive value

for this consumer for the future time. The simplification from this assumption is

represented in this formula:

EVi(δ
f
i0t,Ωit, E[δit+1, δit+2, ...|Ω]) = EVi(δ

f
i0t, δit) (3.48)
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To specify the density P (δi,t+1|δit) , a simple function is assumed with linear

autoregressive specification with drift δi,t+1 = γ1i +γ2iδit +uit ,where uit is normally

distributed with mean 0 and γ1i , γ2i are parameters.

The estimation algorithm includes three levels of optimization. The inner loop

evaluates the predicted market shares as a function of δ̄fjt and parameters by solving

the consumer dynamic programming problem for the simulated consumers and then

integrating across consumer types. The middle loop performs a fixed point equation

and iterates until the new and old δ̄fjt converge. The outer loop is a search over the

parameters. Details can be found in paper (Gowrisankaran and Rysman, 2007).

The model allows for consumers’ repeat purchases but does not introduce

any new parameters over the static model that is because there are some strong

assumptions for the product. The assumptions include: durable goods do not wear

out; there is no resale market for them; and there are no households with more than

one good at the same type. Therefore, the second purchased good will only have

new features which are observed and very different from previous good’s type.

3.4 Summary of Dynamic Demand Models in Economics

Finally the five dynamic models are compared and presented in Table 2.6 which

includes the case description, the main formulation and the estimation results.

Rust’s optimal stopping problem provides the basic model framework and the

estimation method for the dynamic models developed later in the literature. It is

a single agent problem describing the decision of time to make one purchase over
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a set of products with homogeneous attributes (bus engines with different mod-

els). The estimation method is the nested fixed point algorithm that computes

the maximum likelihood estimates and reduces the computational burden of solving

the contraction fixed point EVθ. Melnikov’s dynamic demand model of computer

printers contains the concept that product quality rapidly improves over time and

the product durability impacts the evolution of prices and sales. Same as Rust’s

example, only one purchase is made and all consumer heterogeneity is captured by

a term that is independently distributed across consumers, products and time. The

difference is that it deals with differentiated durable products rather than homoge-

nous products. The estimation method is a three-stage procedure that replaces the

more complicated nested fixed point maximum likelihood algorithm. Then Lorincz’s

model extends Melnikov’s optimal stopping problem with a persistent effect. The

consumer can choose to upgrade the product instead of getting rid of it. Given

that different product alternatives and two conditions are considered: without a

product (when alternatives are not to buy and to buy a new product) and with the

current product (when alternatives are not to upgrade and to upgrade the owned

product), thus the decision problem in this case is specified as a dynamic nested

logit model. The estimation follows a sequential procedure with three steps. Juan

Esteban Carranza incorporates fully heterogeneous consumers into a reduced form

of the participation probability for a digital camera demand problem. He estimates

the joint distribution of consumers’ preference and parameters of the participation

function which is based on the observed number of purchases. The distribution of

preference is defined as a continuous parametric distribution. The complicated in-
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tegration across consumers in the estimation part needs simulation. Gowrisankaran

and Rysman’s dynamic model for digital camcorder demand allows for repeat pur-

chases which is different from previous studies. The estimation algorithm includes

three levels of optimization and the repeat purchases estimation could be simpli-

fied only with strong assumptions. Table 3.1 shows the summary of these dynamic

models.
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Name Bus engine
replacement

Computer
printer
demand

Low-end
computer

server demand
with

persistence
effects

Digital
camera
demand

Digital
camcorder
demand

Author (year) John Rust
(1987)

Oleg
Melnikov

(2000)

Szabolcs
Lorincz (2005)

Juan Esteban
Carranza

(2006)

Gautam
Gowrisankaran

and Marc
Rysman
(2009)

Data ten years of
monthly data

on bus
mileage and

engine
replacements

for a
subsample of

104 buses

monthly data
on sales and

average
prices of
computer

printers and
multifunction
devices. 462
models from
27 manufac-

turers.
1998-1999

quantities,
prices and
technical

characteristics
for all server

models in
three regions.

1996-2001

a panel of
sales, prices

and
characteristics

of digital
cameras,
1998-2001

monthly level
for 378

models and
11 brands,
number of
units sold,

price, others
Mar 2000-
May 2006

Characteristics Single agent,
one purchase,
homogeneous
attributes of
the products

Homogeneous
consumers
with one
purchase,

differentiated
durable

products.
Potential

market size is
required.

Homogeneous
consumers
with one
purchase,

differentiated
servers and
upgraded
formats

Fully
heterogeneous

consumers
and

differentiated
durable

products.
Potential

market size is
required.

Repeat
purchases,
heteroge-

neous
consumers

and
differentiated

products

Main formula Described
recursively

by Bellman’s
principle of
optimality

Formulate
the timing of
consumers’
purchase as
an optimal
stopping

problem and
the solution
defines the
hazard rate

of production
adoptions

The utility
function in

the Bellman
equation has
four cases.
The nested

logit
assumptions
describe the
unobserved

heterogeneity
term.

The
endogenous

participation
probability

has a reduced
form. The

identification
of the

participation
function is

based on the
observation
over time.

Described
recursively

by Bellman’s
principle of
optimality
with logit
inclusive
value of

purchasing in
a given time.

Estimation method Nested
fixed-point
maximum
likelihood
algorithm

that
computes
theta and
associated

value
function

A nested
three-step

method that
allows for
sequential
parameters

with
aggregate
data from
relatively
short time

series

Estimated by
a sequential
procedure,
specifying

static
conditional
logit models

of within nest
choices,

estimating
transition

probabilities
and the

dynamic logit
model of

choice
between nests

Integrating
across

consumers by
simulation
methods to
obtain the

market
demand for

each product.
Estimate the

parameter
vector by

equating the
predicted and

observed
demand.

Three levels
of non-linear
optimization:
a search over
parameters
outside, a
fixed point

calculation of
population
mean flow

utilities
outside and

calculation of
predicted
market

shares inside

Tab. 3.1: Comparison of the five dynamic models
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4. DYNAMIC CAR OWNERSHIP FORMULATION

Discrete choice models based on Random Utility Maximization (RUM) theory

have been of interest to researchers for many years in a variety of disciplines. These

methodologies are used to analyze and predict individual choice behavior [Ben-

Akiva and Lerman, 1985, Daly, 1982, McFadden, 1978, Small, 1987, Chu, 1981, hua

Wen and Koppelman, 2001, Papola, 2000]. However, discrete choice methods are

commonly based on a static framework which is limited by the assumption that

consumers are not affected by past and future states when choosing their preferred

alternative in the present. The gap between discrete choice model and dynamics in

individual behavior has spurred various developments that are mainly intended to

enrich the basic theory by including the changes occurring in the system over time.

This chapter presents a comprehensive modeling framework for car ownership

modleing; it includes the consumer utility specification, the definition of the dy-

namic programming problem, the industry evolution equation and the optimization

algorithm.
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4.1 Car Ownership Formulation

4.1.1 General Consumer Stopping Problem

We consider a consumers set I = {1, . . . ,M}, where each consumer i ∈ I can

be in one of two possible states at each time period t ∈ {0, 1, . . . , T}. More precisely,

we have the state space

S = {0, 1}, ∀i ∈ {1, . . . ,M}, t ∈ {0, 1, . . . , T}.

Each state sit ∈ S can therefore take two values:

s =


0 i in the market,

1 i out of market.

‘In the market’ typically means the consumer, also referenced as the individual has

the possibility to buy a product while ‘out of the market’ means the individual

never considers to make a purchase at all. State is evolving from period to period

depending on the consumer’s decision as well as some external factors. In other

words, in an optimal stopping problem, a consumer in state 0 tries to choose the

best transition period in order to attain state 1. The decision process continues even

when he/she reaches state 1 because the framework is used for repeated purchases.

In the car ownership case, ‘in the market’ means the individual considers to buy a

car no matter whether he/she currently owns a car. If the individual does not own

a car, it is quite possible he/she considers to buy one; if he/she does own a car but
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with some problematic condition (or plan to sell the previous car), he/she can also

consider to replace it. ‘Out of market’ means the individual does not consider to

buy a car at all.

The car ownership problem is described by a regenerative optimal stopping

problem, i.e. when the individual reaches state 1, this state is replaced by the state

0, and some variables of the problem such as current vehicle age and mileage are

reinitialized. The regeneration can sometimes happen at each period in state 1 with

some probability (strictly less than 1).

In each time period t, consumer i in state sit = 0 has two options

1. to buy one product j ∈ Jt and obtain a terminal period payoff uijt, where

Jt = {1, . . . , Jt} is the set of products available at time t;

2. to postpone and obtain a one-period payoff cit, which is a function of individ-

ual i’s attributes and the characteristics of current product owned by i, i.e.

c(xit, qit; θi, αi). xit is a vector of attributes for individual i at time t, e.g., sex,

education, income, age, etc., and qit is the vector of characteristics of current

product owned by this individual. θi and αi are parameters vectors for xit and

qit respectively.

It is here assumed that the choice set Jt is consistent in each time period t, so the

subscript t from Jt and Jt can be dropped, and keep J and J respectively. The

payoff uijt is expressed as a random utility function

uijt = u(xit, dj, yjt, θi, γi, λi, εijt), (4.1)
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where

• xit, θi ∈ <Q are defined as above;

• dj ∈ <K is a vector of static attributes for potential choice j and γi is a vector

of parameters related to dj;

• yjt ∈ <H is a vector of dynamic attributes for product j at time t; yjt can

be energy (typically fuel) cost per mile1, buying cost, environment incentives,

etc. λi is a vector of parameters related to yjt.

• εijt is an individual-specific random term depending of i, the product j and

the time period t. It is assumed the random terms εijt are components of

J-dimensional random vectors ζit (i = 1, . . . ,M , t = 0, . . . , T ), which are in-

dependent and identically-distributed amongst individuals and periods, and

have zero means (so for convenience, the subscripts i and t are sometimes

dropped). It is also required that ζit follows the generalized extreme value

(GEV) distribution, characterized by the cumulative joint distribution func-

tion Fζ(ε1, . . . , εJ) of the form e−G(e−ε1 ,...,e−εJ ). The function G(a1, . . . , aJ) =

G(a) has the following properties:

(i) G(a) ≥ 0, ∀a ∈ J , a ≥ 0;

(ii) G(a) is homogenous of degree κ > 0; here let κ = 1;

(iii) limaj→∞G(a1, . . . , aJ) =∞,∀j = 1, . . . , J ;

1 This allows us to summarize car consumption and current fuel price into one attribute.
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(iv) for any distinct sequence (j1, . . . , jk), ∂
kG/∂aj1 . . . ∂ajk is greater than 0

if k is odd and less than 0 if k is even.

Besides, Gj(·) is the first partial derivative of G(·) with respect to jth argument.

It is further assumed that equation (4.1) can be rewriten with error acting in an

additive way:

uijt = Vijt + εijt,

where Vijt is the mean utility, i.e. Vijt = E[uijt]. It also assumed so far that these

parameters are the same over individuals, i.e. θi = θ, αi = α, γi = γ, and λi = λ,

i = 1, . . . ,M (in other words, there is no heterogeneity between individuals).

Relying on McFadden seminal paper [McFadden, 1978], ζ follows a multivari-

ate extreme value distribution. An example of a quite general G function is

G(a) =
N∑
n=1

(∑
j∈Bn

a
1

1−δn
j

)1−δn

(4.2)

where Bn ⊆ {1, . . . , J}, ∪Nn=1Bn = {1, . . . , J}, and 0 ≤ δn < 1. Each Bn (n =

1, . . . , N) can therefore be seen as a nest, with possible overlappings between the

nests. δn can be interpreted as an index of the similarity of the unobserved attibutes

in Bn. The choice probabilities for the function (4.2) satisfy

Pi =
N∑
n=1

P [i |Bn]P [Bn]

=

∑
i∈Bn e

Vi
1−δn

(∑
j∈Bn e

Vj
1−δn

)−δn
∑N

n=1

(∑
k∈Bn e

Vk
1−δn

)1−δn , (4.3)
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where

P [i |Bn] =


e

Vi
1−δn∑

j∈Bn e
Vj

1−δn

if b ∈ Bn;

0 if b /∈ Bn.

In the special caseG(a1, . . . , aJ) =
∑J

j=1 aj, we have Fζ(ε1, . . . , εJ) = F (ε1), . . . , F (εJ),

so εj are all independent, and δn = 0 (n = 1, . . . , N). When all alternatives are avail-

able, probabilities (4.3) simplify to usual multinomial logit probabilities.

The two-step decision process is that, at each period, first, the consumer de-

cides to buy or to postpone the purchase until the optimal time period τ , that is the

time when the consumer decides to buy instead of postponing; then, the consumer

chooses the product j∗t that maximizes utility (4.1) from J . The consumer deciding

to buy or postpone is the optimal stopping problem at time t:

D(ui1t, . . . ,uiJt, cit, t) = max
τ

{
τ−1∑
k=t

βk−tcit + βτ−tE

[
max
j∈J

uijτ

]}
(4.4)

where

• β is a discount factor in [0,1);

• cit is the payoff function of individual i’s attributes and the characteristics

of current product owned by i when choosing to postpone the purchase, as

defined before.

Let vit = maxj∈J uijt. According to the previously described assumption about

εijt, vit is Gumbel distributed with a scale factor equals to 1 since it is assumed in
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property (ii) that G(a) is homogenous of degree one. In other terms, there are

Fv(z; rit) = e−e
−(z−rit) , (4.5)

fv(z; rit) = erite(−e−(z−rit)−z)

= −e−(z−rit)Fv(z; rit),

where rit is the mode of the distribution of vt, that is

rit = lnG(eVi1t , . . . , eViJt). (4.6)

Later, rit will replace rit(yit) in order to stress the functional relationship between

the distribution mode and the dynamic attributes. Based on dynamic programming

theory, the consumer’s decision can be transformed from (4.4) into:

D(vit, cit) = max {vit, cit + βE[D(vi,t+1)]} (4.7)

4.1.2 Utility Formulation

The Bellman equation (4.7) becomes:

D(vit, cit) = max
{
vit, cit + βE[D(vi,t+1(yt+1, ci,t+1)) | yt]

}
(4.8)
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where yt = (y1t, ...yJt). This is a standard regenerative optimal stopping problem.

The stopping set is given by:

Γ(yt) = {vit | vit ≥ cit + βE[D(·) | yt]} (4.9)

W (yt), as the reservation utility level is defined by function:

W (yt) = cit + βE[D(vi,t+1(yt+1, ci,t+1)) | yt] (4.10)

and consider the optimal policy:


vit if vit ≥ W (yt)

W (yt) otherwise.

Using (4.10), (4.7) can be simplified as:

D(vit) = max {vit,W (yt)} .

At this step, the way to calculate expectation utility E is complicated and will

be discussed later.

As presented in (4.9), the consumer i will buy some product at time t only

when vit > W (yt). The probability of postponing the purchase until the next period
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can therefore be written as:

πi0t(yt)
def
= P [vit ≤ W (yt)] = P [postpone | sit = 0, yt]

= Fv(W (yt), yt) = e−e
−(W (yt)−rit) (4.11)

The probability of the product adoption is h(yt) = P [buy | sit = 0, yt] = 1− π0t(yt),

and the product-specific purchase probability is:

πijt(yt)
def
= P [Uijt ≥ Uikt,∀k 6= j, uijt ≥ W (yit)]

= P [Uijt ≥ W (yit) |Uijt ≥ Uikt,∀k 6= j]P [Uijt ≥ Uikt, k 6= j]

= P [vit ≥ W (yt)]P [Uijt ≥ Uikt, k 6= j]

= h(yjt)
eVijtGj(e

Vij1 , . . . , eVijt)

G(eVij1 , . . . , eVijt)
. (4.12)

As introduced in Section 4.3.1, Gj(·) is the partial derivative of G(·) with respect

to jth argument.

4.1.3 Industry Evolution

As expressed in Section 4.3.1, yjt represents the evolution of the product j’s

attributes and the market environment. yjt here is assumed to follow a normal

diffusion process:

yj,t+1 = µ(yjt) + L(yjt)νj,t+1, (4.13)

where
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• νjt (j = 1, . . . , J , t = 1, . . . , T ) are i.i.d. multivariate standard normal random

vectors, N (0, I), where I denotes the identity matrix;

• µ(yjt) : <H → <H and L(yjt) : <H×H → <H×H are continuous and have

Jacobian matrices for almost every yjt; L(yjt)L(yjt)
T = Σ(yjt), the variance-

covariance matrix of the random vector yj,t+1; Σ(yjt) is semi-definite positive,

for almost every yjt;

• limn→∞ β
nµn(yjt) < +∞, where 0 ≤ β < 1, µ0(yjt) = µ(yjt) and µn(yjt) =

µ(µn−1(yjt)).

The random vector yj,t+1 therefore follows a multivariate normal distribution where

L is the Cholesky factor of the variance-covariance matrix Σ and is lower triangular.

The vector µ is the expected value of yj,t+1. yj,t+1 can for instance be specified

as a random walk with drift ηj, i.e. yj,t+1 = ψjyjt + ηj + Lνj,t+1. For simplicity,

it is assumed that ψj and ηj are the same over all the alternatives. Therefore,

µ(yjt) = ψyjt + η and L(yjt) = L.

4.1.4 Objective Function and Parameters to Estimate

We can summarize the parameters to estimate in the car ownership problem:

• θ, a vector of stationary consumer preference parameters related to individual

attributes xit.

• γ, a vector of parameters related to attributes for potential choice dj.
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• λ, a vector of parameters related to dynamic attributes of product j, yjt.

λ = (ψ, η, L).

• β, the discount factor. It is usually set to 1.

• α, a vector of parameters for characteristics of current owned car qit.

The parameters estimation is finally performed by maximizing the likelihood

function:

L(θ, γ, λ, β, α) =
M∏
i=1

T∏
t=1

Pit[decision]. (4.14)

The decision probability is presented as:

Pit[decision] = Pit[decision, sit = 0] + Pit[decision, sit = 1]

= Pit[decision | sit = 0]P [sit = 0] + Pit[decision | sit = 1]P [sit = 1]

In the car ownership problem, since the individual decision is observed in the survey,

• if the individual reports consider to buy, sit = 0, therefore P [sit = 0] = 1 and

P [sit = 1] = 0, and

Pit[decision] = Pit[decision | sit = 0];

• if the individual reports not consider to buy, sit = 1, therefore P [sit = 0] = 0
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and P [sit = 1] = 1, and

Pit[decision] = Pit[decision | sit = 1].

Under this second condition, the respondent is out-of-market, so Pit[not to buy] = 1

and Pit[to buy] = 0. When the individual’s decision is ‘not to buy’, the probability

does not affect the result of the likelihood function (whatever are the parameters).

If and only if one interviewee reports he will buy but under the condition that

sit = 1, the likelihood function (4.14) becomes L(θ, γ, λ, β, α) = 0. Thus, the whole

system collapses (indicating a problem in the underlying dataset). As a result, in

car ownership example, the complete likelihood function is:

L(θ, γ, λ, β, α) =
∏

(i,t)∈V

Pit[decision | sit = 0], (4.15)

where V = {(i, t) | i ∈ 1, . . . ,M, t ∈ 1, . . . , T and sit = 0}. The ”decisions” include

postponing and product-specific purchase. So Pit[decision | sit = 0] = {πi0t, πijt}.

4.1.5 Dynamic Estimation Process

Maximum log-likelihood estimation method is used to optimize the function

(4.15). First πi0t must be obtained and then πijt calculated. In the function

πi0t(yt) = e−e
−(W (yt)−rit) (4.11), rit can be obtained by (4.6) and W (yt) is the reserva-

tion utility in time period t. W (yt) can be calculated by cit+βE[D(vi,t+1(yt+1, ci,t+1)) | yt]

(4.10), which is composed by the current product utility and the expected utility in
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next time period t + 1, E[D(vi,t+1)]. The key point during the whole process is to

figure out how to calculate the expected utility.

At each time period, the respondent might have a perspective about the future

scenarios in the short-term horizon which is characterized by alternatives’ attributes

changing over time (i.e. fuel price, rapidly technology development, etc.); therefore

the expectation utility should account for the possible market conditions in the

respondent’s perspective scenarios. It is assumed that the respondent has the per-

spective on a limited number of time periods, such as T. Starting from the generic

time period t, the respondent faces two possible alternatives, buy one type of car and

not buy; at t+1, each of the two scenarios from time t generates another two buy

and not buy scenarios, for a total of four scenarios. Therefore, the decision process

is formulated with a scenario tree (see Figure 4.1). This scenario tree constitutes

the base for the calculation of the expected utility. An example is provided here on

the procedure adopted to calculate πi0,0 and E[D(vi1)] which will be indicated for

simplification purpose by E[D1] because all the expectations in the example are for

individual i.

• Assumption. At each time period, the respondent has expectation over a lim-

ited number of future time periods, which is limited to two in order to reduce

the number of leafs in the tree scenarios. At time period 0, the respondent

can anticipate the possible alternative characteristics (i.e. fuel price, MPG)

for time periods 1, and 2. E[D3] = 0 because he/she knows nothing for time

period 3 when he/she decides at time period 0.
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• Calculate E[D1]. Since the reservation utility W (y0) = c0 + E[D1] can be

calculated according to (4.10), E[D1] must be calculated first in order to get

πi0,0. At time 0, the respondent has two alternatives for successive time 1, buy

the car with the highest utility or not buy (see Figure 4.1). The right side of

the utility function E[D1] = E {max [v1, c1 + βE[D2]]} represents the utility

of the ”not buy” alternative; therefore when calculating E[D2] we only take

the terms corresponding to the right leave of the tree in the Figure 4.1. The

calculation of E[D2] (E[D2] = E {max [v2, c2 + βE[D3]]}) demands the same

function to be calculated for period 3 (E[D3]), which is assumed to be zero

according to the above assumption.

The process of calculating E[D1] is recursive with known utility at the end of

the perspective horizon (assumed to be two periods long in this formulation).

Having calculated E[D1], reservation utility at time 0 W (y0) can be obtained.

• These steps can be repeated to calculate πi0,1 with the assumption that the

respondent can anticipate alternative characteristics for time periods 2, 3 and

E[D4] set equal to zero.

For a receding horizon, a terminal value for the expected utilities has to be fixed,

therefore the expectation of the last time period under the person’s perspective,

E[D(viT )] must have a constant value . Since it is difficult to predict a particular

value, we assume it to be zero. In the long term, the individual has not enough

information to predict the future; he/she cannot anticipate the utility of buying

or postponing. Under this assumption, after a limited number of time periods
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information on future market trends is just ignored.

Fig. 4.1: Scenario tree

4.2 Conclusions

Dynamic models based on a regenerative optimal stopping problem of car

ownership, and with non-linear formulation were presented in this Chapter. The

car ownership model targeted consumers with heterogeneous characteristics and

allowed the repeated purchases along the time periods. For each individual, we

intended to explore the probability of buying or postponing the purchase of a vehicle;

furthermore, if the individual chose to buy, the probability of buying a certain type

of vehicle would be explored as well. Calculating the probability of postponing was

the most significant step and it was calculated through the Reservation Utility. The

reservation utility was constituted of the current vehicle information utility and the

expected utility for the successive time period. The way to calculate the expected
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utility for each time period was a recursive process with the known terminal utility

value at the final time period in the individual’s perspective time horizon. The

individual’s perspective time horizon at each current time point was assumed to

be two time periods; at the third time period which was also the terminal time of

perspective time horizon, the individual was supposed to know nothing about the

market trend information and the expected utility was set to zero. With the expected

utility calculated, reservation utility was obtained and so was the probability of

postponing. Maximum log-likelihood function was used as the optimization method

to estimate parameters.
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5. EXPERIMENTS USING SIMULATED DATA

Synthetic households’ choices over different time periods have been simulated

to validate the proposed dynamic discrete choice formulation. Simulated data are

necessary to ensure that the model to be estimated is fully coherent with the hy-

pothesis formulated by the analyst. In this case, data are created with known

characteristics to test the ability of the dynamic formulation to recover the value

of parameters used to generate the data (true values) and to reproduce individual

choices over time (observed choices). The synthetic sample is composed of 200 indi-

viduals. Each of them is supposed to provide responses in 12 time periods starting

from the current year; each time period is assumed to be six month long. A total of

2,400 observations are then generated. There are four alternatives in the choice set:

(1)gasoline vehicle, (2) hybrid vehicle, (3) electric vehicle, and (4) keep the current

vehicle. One important assumption made in the simulated process is that at each

time period previous decisions affect the alternatives in the current choice set. If the

previous period choice is ”to buy”, the current vehicle situation will be regenerated;

the current vehicle will be the newly bought car and its age re-set to zero. If the

previous period choice is ”not buy”, the current vehicle age is adjusted to reflect the

fact that six months have passed since last decision.
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5.1 Simulated Data Format and Generation

In total, five datasets are generated: household characteristics, current vehicle

attributes, potential vehicle static attributes, potential vehicle dynamic attributes,

and choice. In each file, the first column is the household identification number and

constitutes the key variable used to merge the information from the five files. In

appendix A, more details about the formatting of the five datasets are provided.

The criteria that have determined the characteristics of the variables generated are

described in the following subsections.

5.1.1 Household Characteristics

This set includes two variables: number of family members and household

income. The number of family members is assumed to be uniformly distributed in

the range 1-6. Household income is also assumed to be uniform and varies on four

levels of variation: (1) low, (2) medium, (3) medium high and (4) high.

5.1.2 Current Vehicle Attributes

Car age is the only current vehicle attribute used in this experiment. Age for

the first time period varies in the range: 0-10 years. Once age is generated randomly

for the first time period, it is increased by 0.5 for each successive time period, unless

a new car is bought which will imply that the car age in the following time period

is 0.5.
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5.1.3 Static Potential Vehicle Attributes

Vehicle size and vehicle price are the two attributes that characterize new

vehicles. Vehicle size is classified as (1) small, (2) medium and (3) large. Small

size vehicles have price range between $15,000 and $25,000. Medium vehicles have

price range between $25,000 and $50,000. Large vehicles have price range between

$50,000 and $70,000. The price for each size of vehicle is generated from an uniform

defined within the corresponding range. Vehicle price in the simulated dataset is

multiplied by 10−3.

5.1.4 Dynamic Attributes

We limit our analysis to one dynamic attribute, which is future gasoline price.

The function that defines gasoline price over time is generated using historical

monthly prices in the past thirty years. Based on the assumption discussed in

section 4.3.3, the dynamic variable is assumed to follow a normal diffusion process

and specified as a random walk with drift. The calibration function is :

yt+1 = 0.9757 ∗ yt + 4.49 + draw (5.1)

where: drift ηj = 4.49 and auto-regressive factor ψj = 0.9757. Monte Carlo

simulation with 1000 draws is applied to generate gasoline fuel price for each time

period. The average gasoline price for the initial time period is set to be $3.5; future

prices are generated from Equation 4.13 and transformed into equation 5.1; draws

are obtained from a normal distribution N(0, 16). In the utility function the price
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is expressed in cent.

5.1.5 Choice

Respondents choose between four alternatives (gasoline car, hybrid car, electric

car and not buy). Decision in each time period is made after comparing totally

purchase probabilities of different alternatives. Based on the methodology described

in Chapter 4, the purchase probabilities among four alternatives at time period 0

are calculated, and compared. The individual makes the choice (with the highest

probability) for time period 0. If the choice is buying a car, the car age in the

following period will be 0.5; if the choice is not buying, the car age will be increased

by 0.5 in the successive time period. After generating car age for the following time

period, choices at this time period will be made by comparing all the probabilities

again.

5.2 Utility Specification

Generally, respondents choose between two alternatives: buy and not buy a

vehicle. If respondents choose to buy, they also need to decide which vehicle type

they are going to buy amongst gasoline vehicle, hybrid vehicle or electric vehicle.

Therefore, there are actually four alternatives in the choice set: gasoline car, hybrid

car, electric car and not buy. Details of the utility specifications are given in equation

5.2. In the model, only one static potential vehicle attribute is used which is vehicle
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size.

Ui1t = ASC1 + gapt ∗ βgap + εi1t + εi

Ui2t = ASC2 + hh no ∗ βhh no + income ∗ βinc + veh size2t ∗ βveh size2

+gapt ∗ βgap + εi2t + εi

Ui3t = hh no ∗ βhh no + income ∗ βinc + veh size3t ∗ βveh size3 + εi3t + εi

Ui4t = current aget ∗ βcurrent age + εi4t + εi

(5.2)

where ASC is alternative specific constant; gapt is gas price; hh no is household

number; veh size2t is vehicle size for hybrid car; veh size3t is vehicle size for electric

car; current aget is current vehicle’s age. εijt is the random error term for each

alternative at a given time period. εi is the individual error term that is assumed

to be constant across all observations derived by the same respondent.

5.3 Model Estimation

Using the simulated data and the specification defined above two models were

estimated: dynamic model and static MNL model.

The dynamic model algorithm derived from the formulation in Chapter 4 is

coded in C language and makes use of a number of optimization tools derived from

AMLET (Another Mixed Logit Estimation Tool), a mixed logit estimation software

created by Fabian Bastin (http://amlet.slashbin.net/). Appendix E presents the C

code developed for the probability calculation and the estimation process.

Static model is estimated using the software Alogit (http://www.alogit.com/).

82



In the static model, respondents are not considering future market evolution and

possible vehicle technology improvements when making decisions in each time pe-

riod. The model is simply formulated as the traditional MNL model with four al-

ternatives; utilities include both static and dynamic variables, for consistency with

the dynamic model formulation.

There are two experiments conducted with the simulated data sets. The first

one is to estimate coefficients by both static and dynamic models based on the full

sample size; the second one is to estimate coefficients by both models based on

the first 160 samples out of 200, and then use the estimated parameters to forecast

market shares of the rest 40 samples. Experiment two aims to show that the dynamic

model can be used in different populations.

Table 5.1 and 5.2 show the results from the static and the dynamic models

estimated on the whole and part set of simulated data. As expected, the fit of the

model improves when considering the dynamic nature of the problem. In experiment

one, the rho-squared increases from 0.5, the value obtained with the logit model and

nine degrees of freedom to 0.7 for the dynamic model and eight degrees of freedom.

In experiment two, rho-squared increases from 0.49 for the static model to 0.52 for

dynamic model.

All estimated parameters, although not very close to the true values, are highly

significant. The alternative specific constant values of static model have higher bias

than those estimated with the dynamic formulation.

In order to validate which model better recover the true values, Root Mean

Square Deviation (RMSD) is adopted as measure of the differences between the
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true values and the predicted values. The bigger the RMSD, the poorer the model’s

ability to reproduce the true phenomenon. The RMSD is defined as

RMSD(θ̂) =

√
E((θ̂ − θ)2) =

√∑n
i=1(θ̂i − θi)2

n
(5.3)

which n is the number of parameters. The last row of Table 5.1 and 5.2 reports the

RMSD.

MNL Dynamic

Alternative G
as

H
y
b

ri
d

E
le

ct
ri

c

C
u

rr
en

t
True

Values Estim t-Stat Estim t-Stat
ASC gas X 2.2 -0.97 0.9 2.79 6.6
ASC gas-ASC ele 2.29
ASC hyb X -0.4 -5.74 5.1 0.03 0.1
ASC hyb-ASC ele -2.48
ASC ele X -3.26 11
hh no X X -0.65 -0.14 3.8 -1.06 32.3
income X X 0.35 0.21 3.4 0.42 2.7
veh size2 X 1.9 2.15 12.4 2.63 26.2
veh size3 X -0.1 -0.17 1.9 -0.13 2.9
gas price X X -1.4 -1.04 3.5 -2.12 19.2
current age X -1.8 -1.37 17.3 -1.63 60
N observed 2,400 2,400
LL(0) -3327.10 -2472.27
LL(final) -1656.05 -685.05
Likelihood ratio index 0.5 0.7
RMSD 0.79 0.39

Tab. 5.1: Model Estimation of Experiment One

5.4 Model Application

Coefficient estimates are used in application to calculate the prediction power

of the models. The choice probability for each alternative observed and predicted

together with a measure of errors are reported in Table 5.3 and 5.4. The absolute
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MNL Dynamic

Alternative G
a
s

H
y
b

ri
d

E
le

ct
ri

c

C
u

rr
en

t

True

Values Estim t-Stat Estim t-Stat
ASC gas X 2.2 -1.30 1.2 2.69 23
ASC gas-ASC ele 1.60
ASC hyb X -0.3 -6.11 4.9 -2.67 12
ASC hyb-ASC ele -3.21
ASC ele X -2.90 9
hh no X X -0.6 -0.16 3.5 -0.53 21
income X X 0.3 0.15 2.2 0.75 18
veh size2 X 2 2.17 11 2.62 33
veh size3 X -0.1 -0.22 2.2 -0.11 2.9
gas price X X -1.4 -0.88 2.7 -1.23 34
current age X -1.8 -1.30 15 -1.21 59
N observed 1,920 1,920
LL(0) -2661.68 -2369.82
LL(final) -1348.43 -1148.27
Likelihood ratio index 0.49 0.52
RMSD 1.10 0.92

Tab. 5.2: Model Estimation of Experiment Two

error D is defined as

D = |Mpred −Mobs| (5.4)

where D is error norm; Mpred is vector of model shares predicted; Mobs is vector of

model shares observed. The results indicate that the dynamic model has stronger

prediction power than the static model in the full sample experiment. In experiment

one, D value from dynamic model is smaller than the value from static model; in

experiment two, D values are the same for both models.

For experiment one, Figure 5.1, 5.2, 5.3, and 5.4 present the observed and pre-

dicted market trends of gasoline vehicle, hybrid vehicle, electric vehicle and keeping

the current vehicle along the twelve time periods in the six years considered. The

vertical axes indicates choice probability. In general, the market shares trends are
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Alternative Observed Predicted (Static) Predicted (Dynamic)
Gas car 1 0.005 0.0185 0.005
Gas car 2 0.025 0.039 0.015
Gas car 3 0.045 0.0595 0.035
Gas car 4 0.06 0.0695 0.03
Gas car 5 0.05 0.0585 0.035
Gas car 6 0.05 0.056 0.035
Gas car 7 0.085 0.06 0.06
Gas car 8 0.035 0.058 0.035
Gas car 9 0.085 0.0535 0.06
Gas car 10 0.06 0.044 0.03
Gas car 11 0.035 0.034 0.025
Gas car 12 0.055 0.0375 0.035
Hybrid car 0.015 0.0315 0.02
Hybrid car 2 0.08 0.066 0.075
Hybrid car 3 0.075 0.0825 0.07
Hybrid car 4 0.095 0.1037 0.105
Hybrid car 5 0.095 0.088 0.085
Hybrid car 6 0.1 0.095 0.1
Hybrid car 7 0.11 0.095 0.105
Hybrid car 8 0.1 0.0945 0.095
Hybrid car 9 0.105 0.0815 0.095
Hybrid car 10 0.045 0.0615 0.04
Hybrid car 11 0.055 0.059 0.035
Hybrid car 12 0.035 0.0525 0.02
Electric car 1 0.035 0.054 0.03
Electric car 2 0.065 0.09 0.06
Electric car 3 0.11 0.124 0.085
Electric car 4 0.19 0.15 0.15
Electric car 5 0.12 0.15 0.105
Electric car 6 0.165 0.144 0.14
Electric car 7 0.14 0.1357 0.13
Electric car 8 0.1 0.122 0.085
Electric car 9 0.14 0.135 0.125
Electric car 10 0.18 0.1395 0.165
Electric car 11 0.115 0.1395 0.125
Electric car 12 0.19 0.167 0.19
Current car 1 0.945 0.8955 0.945
Current car 2 0.83 0.8045 0.85
Current car 3 0.77 0.7345 0.81
Current car 4 0.655 0.6775 0.715
Current car 5 0.735 0.705 0.775
Current car 6 0.685 0.705 0.725
Current car 7 0.665 0.7075 0.705
Current car 8 0.765 0.725 0.785
Current car 9 0.67 0.73 0.72
Current car 10 0.715 0.755 0.765
Current car 11 0.795 0.7675 0.815
Current car 12 0.72 0.743 0.755
D 1.005 0.88

Tab. 5.3: Model Validation: Market Shares of Experiment One
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Alternative Observed Predicted (Static) Predicted (Dynamic)
Gas car 1 0 0.0225 0.0136
Gas car 2 0.025 0.045 0.022
Gas car 3 0.025 0.0575 0.059
Gas car 4 0 0.0675 0.034
Gas car 5 0.05 0.0675 0.043
Gas car 6 0.025 0.065 0.085
Gas car 7 0.075 0.075 0.044
Gas car 8 0 0.063 0.023
Gas car 9 0.075 0.0525 0.03
Gas car 10 0.05 0.038 0.03
Gas car 11 0 0.038 0.031
Gas car 12 0 0.045 0.070
Hybrid car 0 0.03 0.038
Hybrid car 2 0.125 0.085 0.104
Hybrid car 3 0.075 0.108 0.079
Hybrid car 4 0.05 0.12 0.151
Hybrid car 5 0.15 0.098 0.169
Hybrid car 6 0.075 0.085 0.091
Hybrid car 7 0.15 0.0925 0.102
Hybrid car 8 0.175 0.118 0.099
Hybrid car 9 0.225 0.088 0.089
Hybrid car 10 0 0.053 0.054
Hybrid car 11 0.025 0.055 0.029
Hybrid car 12 0.05 0.05 0.061
Electric car 1 0.025 0.06 0.04
Electric car 2 0.075 0.1 0.078
Electric car 3 0.075 0.118 0.065
Electric car 4 0.275 0.14 0.107
Electric car 5 0.075 0.153 0.106
Electric car 6 0.15 0.156 0.143
Electric car 7 0.1 0.16 0.136
Electric car 8 0.15 0.133 0.091
Electric car 9 0.125 0.13 0.097
Electric car 10 0.1 0.108 0.099
Electric car 11 0.175 0.135 0.155
Electric car 12 0.225 0.173 0.161
Current car 1 0.975 0.888 0.907
Current car 2 0.775 0.773 0.795
Current car 3 0.825 0.718 0.798
Current car 4 0.675 0.67 0.709
Current car 5 0.725 0.685 0.682
Current car 6 0.75 0.693 0.681
Current car 7 0.675 0.673 0.719
Current car 8 0.675 0.685 0.786
Current car 9 0.575 0.728 0.785
Current car 10 0.85 0.805 0.819
Current car 11 0.8 0.773 0.784
Current car 12 0.725 0.733 0.708
D 2.0 2.0

Tab. 5.4: Model Validation: Market Shares of Experiment Two
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quite realistic; the probability of keeping the current car is relatively high, start-

ing at 95% in the first time period and declining to about 75% after four-five time

periods. New gasoline vehicles, hybrid and electric vehicles occupy smaller market

shares; all types become more popular in later time periods with the exception of

hybrid vehicles that have a significant drop after the tenth period. The four figures

indicate that the choice probability obtained from the dynamic model are closer to

the observed market shares when compared to those obtained from the static model.

The static model is able to capture the general trend through the years but fails to

correctly recover peaks and suddenly changing behaviors.

Fig. 5.1: Market Trend for Gasoline Car-Experiment 1
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Fig. 5.2: Market Trend for Hybrid Car-Experiment 1

Fig. 5.3: Market Trend for Electric Car-Experiment 1

Fig. 5.4: Market Trend for Current Car-Experiment 1
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For experiment two, Figure 5.5, 5.6, 5.7, and 5.8 present the observed and

predicted market shares of the rest 40 samples. The four figures show similar mar-

ket trends of the alternative vehicles as the trends from experiment one. But the

predicted values have bigger bias to the observed ones, although the dynamic model

is still able to capture the changes of choices through time periods.

Fig. 5.5: Market Trend for Gasoline Car-Experiment 2

Fig. 5.6: Market Trend for Hybrid Car-Experiment 2
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Fig. 5.7: Market Trend for Electric Car-Experiment 2

Fig. 5.8: Market Trend for Current Car-Experiment 2

5.5 Conclusion

In this Section results obtained from both static and dynamic model formu-

lations were presented. Models were applied to a simulated dataset containing 200

households each observed along a twelve-time period. Two experiments were done

in this chapter. One was estimating coefficients and applying them to models based

on the full sample size; another experiment was estimating coefficients from the
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first 160 samples and applying the predicted values to models based on the rest

40 samples. The analysis indicates that the dynamic model outperforms the static

model in terms of goodness of fit and that it produces estimators which are closer

to the true values used to produce the synthetic population (smaller bias). More in-

vestigations are, however, needed in order to understand why significant bias exists

for both types of models. The models have been also applied in order to test the

ability to reproduce the observed choices. Again, the dynamic model is superior to

the traditional logit model, as the absolute error D between observed and predicted

choices is smaller for the dynamic case in experiment one. It can be observed that

the static logit model recovers the general trend in the market, but fails to detect

peaks in choice distributions as results of rapidly changing market conditions. Bias

is bigger in magnitude when estimating on the part set of samples and validating

on the rest of the samples (due to the smaller sample sizes); but the dynamic model

is still capable to mimic the real trends of market shares in experiment 2.
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6. SURVEY DESIGN AND METHODOLOGY

In order to apply the models discussed in Chapter 4 to real data, a survey

has been designed and executed. This Chapter presents the design of a car owner-

ship survey that includes Revealed Preference (RP) questions and three games of

Stated Preference (SP) questions. This survey is web based and was designed and

implemented by Michael Maness [Maness, 2010].

6.1 Survey Design

The survey aimed at exploring consumers’ preferences over future gasoline

vehicle, hybrid vehicle, and electric vehicle. Forecasting the demand for new tech-

nology in transportation requires information about users’ preferences for services

that do not exist in the current system. SP data are commonly used to provide

behavioral choice information in hypothetical contexts. The survey was divided

into three parts: (1) household characteristics; (2) current vehicle and (3) Stated

Preference games. The survey consisted of approximately 50 questions; a printed

version of the survey is in appendix B.
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6.1.1 Household Characteristics

In this section, the individual is asked to describe his

her socioeconomic situation via the following questions:

• Gender

• Age

• Education Level

• Head of Household

• Work Status

• Driver’s License

• Commute Distance

• Work Parking

The questions also include household information:

• Household Income

• Number of Kids

• Number of Adolescents

• Number of Adults

• Number of Workers

• Household Location
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• Home Type

• Five-Year Vehicle Purchase Plans

• Number of Vehicles

• Make/Model of Vehicles

• Home Parking

6.1.2 Current Vehicle

Current Vehicle section gathers data on households’ primary vehicle character-

istics for possible use in the SP games and modeling. This section has the following

questions:

• Vehicle Type

• Model Year

• Purchase Year

• Miles Traveled per Year

• Fuel Type

• Price

• Fuel Economy

• Tank Capacity

• Seating Capacity
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6.1.3 Stated Preference

The stated preference (SP) portion of the survey presents respondent with one

of the three SP experiments: (1) Vehicle Technology; (2) Fuel Type; and (3) Tolling

and Taxing. Each respondent randomly receives one SP game. Game (1) has a 50%

chance of being picked while games (2) and (3) each have a 25% chance.

Each stated choice game generates multiple SP scenarios over a six year time

period, from 2010 to 2015. The variables in the scenarios change from year to year.

For example, vehicle price generally increases over time, hybrid tax credit decreases

with time, and the range for gasoline vehicles remains constant. Two scenarios per

year are presented for a total of 12 observations.

Respondents are given the following instructions when making decisions:

• Make realistic decisions. Act as if the respondent were actually buying a

vehicle in a real life purchasing situation. If you would not normally consider

buying a vehicle, then do not. But if the situation presented would make you

reconsider in real life, then take them into account.

• Assume that your current living situation has moderate increases in income

from year to year.

• Each scenario is independent from one another. For example, if you purchase

a vehicle in 2011, then in the next scenario forget about the new vehicle and

just assume you have your current real life vehicle. This instruction is not

adapted to the dynamic model data collection rule. Because in the dynamic

model, if the person chooses to buy a vehicle in 2011, he/she is supposed to
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keep the new vehicle and increase vehicle age by 0.5 in the next scenario based

on the description in Chapter 5.

Game 1 - Vehicle Technology

The vehicle technology game focuses on presenting respondents with differ-

ent characteristics for the vehicles and pricing to discover preferences for vehicle

technology. This game design consists of four alternatives and five variables. Each

variable has 16 - 24 levels of variation per alternative (about four levels per vehicle

size). Respondents have a choice set size of eight.

The four alternatives include the current owned vehicle and a new gasoline

vehicle , hybrid vehicle, and electric vehicle. Gasoline vehicles are the traditional

option. Hybrid vehicles are growing in the market which is led by the Toyota Prius,

in the US. Although electric vehicles are new to the marketplace, major automobile

manufacturers have significant interest in exploring this paradigm, such as the Nissan

Leaf.

The variables of interest in the vehicle technology game include: vehicle price,

fuel economy, refueling range, emissions, and vehicle size.

Vehicle price is a major factor in the household vehicle purchase decision.

Prices depend on the size of the vehicle and increase from year to year. For gasoline

and hybrid vehicles, the base price was determined from the average vehicle price

for each vehicle type and size. For electric vehicles, the base price was determined

by the average projected price of future electric vehicles and/or European prices (if

a similar vehicle is sold in Europe). This base price is increased by 2% per year.
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From this base price, the other three levels are determined by increasing the base

price by 4.5%, 9%, and 18%.

Vehicle fuel economy which is presented in miles per gallon (MPG), has an

impact on the operating cost of a vehicle. For electric vehicles, the fuel economy

is not presented (when research began, a standard for displaying fuel economy of

electric vehicles was not established by the Environmental Protection Agency). Fuel

economy begins with a base value that is the average of current vehicle MPG per

vehicle type and class. This base was set to be constant from 2010 to 2015 because

the recent history record shows that the average fuel economy changes slightly. The

fuel economy for the other three classes varies linearly from factors of 1.07, 1.13, and

1.18 in 2010 to factors of 1.10, 1.25, and 1.50 respectively in 2015. This formulation

accounts for the uncertainty in fuel pricing over the next five years.

A vehicle’s range which is miles between refueling periods plays an signifi-

cant role in the decision of choosing electric vehicles considering commute distances

and their long recharge times. Gasoline and hybrid vehicle have refueling ranges of

approximately 300-500 miles. Electric vehicles have refueling ranges primarily de-

pendent on vehicle size. In this stated choice game, the refueling range for gasoline

and hybrid vehicles do not vary in the periods. For electric vehicles, the range level

chosen are dependent on projected ranges for current and future vehicles. The levels

are set in 2010 and are generally increased geometrically by a factor between 1.05

and 1.1 depending on the detail in the data collected on range estimates by size.

A vehicle emissions variable was introduced to test if emission levels signif-

icantly influenced household vehicle purchasing decisions. The designer chose to
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present emission level as a percent difference versus the average 2010 vehicle(about

24 mpg). Levels for electric vehicle emissions were zero.

Vehicle sizes chosen are based only on designs that could be found in literature.

The size system used is an abbreviated version of the EPA size class: small/compact

car, midsize car, large car, minivan, sports utility vehicle, and pickup truck.

The choice set for the vehicle technology experiment includes all combination

of buying a new vehicle (gasoline, hybrid, or electric) or not buying with selling or

retaining the current vehicle. A summary of the vehicle technology game is available

in Table.

Variables Vehicle Price
Fuel Economy
Refueling Range
Emissions
Vehicle Size

Alternatives Shown Current Vehicle
New Gasoline Vehicle
New Hybrid Vehicle
New Electric Vehicle

Choice Set I Will KEEP My Current Vehicle
I Will BUY the Gasoline Vehicle And SELL My Current Vehicle
I Will BUY the Hybrid Vehicle And SELL My Current Vehicle
I Will BUY the Electric Vehicle And SELL My Current Vehicle
I Will BUY the Gasoline Vehicle And KEEP My Current Vehicle
I Will BUY the Hybrid Vehicle And KEEP My Current Vehicle
I Will BUY the Electric Vehicle And KEEP My Current Vehicle
I Will SELL My Current Vehicle and NOT REPLACE It

Tab. 6.1: Vehicle Technology Game Summary

Game 2 - Fuel Type

The fuel type game presents respondents with different fuel options for future

vehicle purchases. This game design consists of four alternatives and four variables.
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Each variable has three or six levels of variation per alternative. Respondents have

a choice set size of seven. The four alternatives (fuel types) are: gasoline, alterna-

tive, diesel, and electricity. These fuel types are currently available in Maryland’s

marketplace - gasoline, alternative (ethanol, E85), diesel via some gas stations, and

electricity via the home.

The variables of interest in the fuel type game include: fuel price, fuel tax,

average fuel economy, and refueling availability.

Fuel price (pre-tax) is a operating cost of a vehicle and measured in US dollars

per unit of energy. Gasoline price is in dollars per gallon of gasoline. Alternative

fuel price is in dollars per gallon of alternative fuel. Diesel price is in dollars per

gallon of diesel fuel. Electricity price is in dollars for 33.7 kwh of electricity, which

is the electrical equivalent of the energy in one gallon of gasoline. The fuel price

for the liquid fuels (gasoline, alternative, and diesel) is based on historical data in

the Mid-Atlantic region, mostly from the US Department of Energy. Gasoline and

diesel prices range from $2.00 to $4.00 in 2010. Alternative fuel prices, which are

based on E85, are 10% less than gasoline prices based on historical data (due to

subsidies and lower energy density). Electricity prices for 2010 scenarios are based

on residential prices in Maryland during June 2009 and a four cent per kwh change

in price for the levels. The prices were assumed to vary geometrically at an annual

rate of 1.10 for liquid fuels and 1.03 for electricity.

Fuel tax is measured in dollars per fuel unit. The fuel tax varied by three

levels, the current tax and two higher tax rates. Tax levels did not change annually

because there has been no history in Maryland of tying fuel tax rates to inflation.
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Fuel efficiency means how much fuel is used per mile traveled and provide re-

spondents with an idea of how efficient their vehicle choice could be in fuel economy.

For liquid fuels, the fuel efficiency base level is based on current data regarding av-

erage fuel economy in the US by fuel type with one level being higher and one level

being lower. Electric efficiency was difficult to find as there are various methods of

presenting the efficiency of electric vehicles. Therefore the base vehicle used was the

preliminary fuel economy sticker from a Mini E, which has a fuel efficiency of 100

miles per gallon equivalent (mpge). To be conservative, the other two levels for elec-

tric fuel efficiency were lower. Fuel efficiency was assumed to increase annually by

2 mpg for gasoline and diesel, 1 mpg for alternative fuel, and 5 mpge for electricity.

Fueling station availability was represented by the distance from home to the

nearest station for liquid fuels and the time to charge the vehicle at home for elec-

tricity. This variable does not change over time for gasoline and diesel fuels. Avail-

ability increases (distance from home decreases) for alternative fuel over time and

the charging time decreases over time for electricity.

The choice set for this game includes keeping and selling the respondent’s

current vehicle or buying a new vehicle that runs on one of the fuel choices. A

summary of the fuel type game is available in Table 6.2[Maness, 2010].

Game 3 - Taxation policy

The taxation policy game presents respondents with different toll and tax

policies impacting on their effect on future vehicle purchases. For the 2010 and 2011

scenarios, the game design consists of four alternatives and two variables with three
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Variables Fuel Price, Before Tax
Fuel Tax
Fuel Efficiency
Fueling Station Availability

Alternatives Shown Gasoline Fuel
Alternative Fuel
Diesel Fuel
Electric

Choice Set I Will KEEP My Current Vehicle
I Will BUY a Gasoline Vehicle (or normal hybrid) that runs on
Gasoline
I Will BUY an Alternative Fuel Vehicle that runs on Alternative
Fuel
I Will BUY a Diesel Vehicle that runs on Diesel Fuel
I Will BUY an Electric Vehicle that runs on Electric Fuel
I Will BUY a Plug-In Hybrid Electric Vehicle that runs on Gasoline
and Electric Fuel
I Will SELL My Current Vehicle and NOT REPLACE It

Tab. 6.2: Fuel Type Game Summary

levels of variation per alternative. The choice set size is eight. For the 2012 through

2015 scenarios, the game design consists of four alternatives, three variables with

three levels of variation per alternative, and nine choices.

The four alternatives include the current vehicle and a new gasoline vehicle,

hybrid vehicle, and electric vehicle. The variables of interest in the tolling and taxing

game include: income tax credits, toll cost, and vehicle-miles traveled (VMT) tax

rate (2012-2015).

The income tax credit is shown for hybrid and electric vehicles based on current

federal guidelines for credits. It is used to encourage adoption of new technology

through reducing one’s tax burden.

The toll policy variable attempts to encourage adoption of new technology

by reducing toll costs for users of that technology. This variable is presented to
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respondent as the percent reduction in normal toll prices for users of hybrid and

electric vehicles.

The VMT tax is to encourage adoption of new technology by reducing the

operating cost of using the vehicle. The VMT tax rate is presented as a cost (in

US dollars) per 1000 miles traveled that is collected by the respondent’s insurance

provider.

The choice set for the taxation policy experiment includes all combination of

buying a new vehicle (gasoline, hybrid, or electric) or not buying with selling or

retaining the current vehicle. 8 possible choices for 2010 and 2011 scenarios are

available. For the 2012 through 2015 scenario, an additional choice is added to keep

one’s current vehicle and drive less.

Variables Income Tax Credit
Toll Price
VMT Tax (2012-2015)

Alternatives
Shown

Current Vehicle

New Gasoline Vehicle
New Hybrid Vehicle
New Electric Vehicle

Choice Set I Will KEEP My Current Vehicle
I Will KEEP My Current Vehicle and DRIVE LESS (2012-2015)
I Will BUY the Gasoline Vehicle And SELL My Current Vehicle
I Will BUY the Hybrid Vehicle And SELL My Current Vehicle
I Will BUY the Electric Vehicle And SELL My Current Vehicle
I Will BUY the Gasoline Vehicle And KEEP My Current Vehicle
I Will BUY the Hybrid Vehicle And KEEP My Current Vehicle
I Will BUY the Electric Vehicle And KEEP My Current Vehicle
I Will SELL My Current Vehicle and NOT REPLACE It

Tab. 6.3: Tolling and Taxing Game Summary
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6.2 Survey Methodology

The survey was conducted by volunteers from September to October in 2010.

The target population are households living in suburban and urban Maryland State

and five counties are selected as the sample districts. Volunteers used two modes

to conduct the survey: face to face to help people finish the survey and distribute

flyers printed with the link of website to people and make a very short introduction.

6.2.1 Sample design

A two stage cluster design was adopted for this survey. Household were clus-

tered by county then by zip code. This approach was used for cost and human

capital reasons. Therefore there may be some sampling error from this technique as

some biases may develop from a pseudo-random clustering of zip codes. Volunteers

were also allowed to decide on the recruitment method in those zip codes which was

either limited to door-to-door flyer handouts or flyer handouts at a local gathering

place (e.g. mall, supermarket). The distribution of respondent location is available

in appendix D.

6.3 Platform for the Web-based Survey Design

Free software commonly used for online surveys handles simple questions (e.g.

multiple choice, open-ended) and basic question ordering functions; however, to

the best of our knowledge, web-based survey applications suited for stated choice

games are not available in open-source. Therefore, a web-based survey framework
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(called Julie) that could perform stated-choice experiments was specifically created

to collect real data. JULIE depends on the following:

• Ruby, a programming language

• Rails, a web-application framework

• SQLite, a database

• JULIA, a domain-specific language for creating surveys

JULIE was built using the dynamic, reflective, object-oriented Ruby program-

ming language. Ruby is the backbone of JULIE and provides it with the capabilities

it needs to perform calculations and conditional logic in order to create and cus-

tomize surveys to different purposes and different respondents. In JULIE, the model

and controller are based in Ruby while the view is based in HTML. The basic premise

is that JULIE displays a sequence of questions to the user, records his responses,

and ensures that the responses are in the expected format. This process is essential

as the surveys are designed to be self-administered online, an environment where

the researcher cannot help the respondent.

The view is written in HTML with embedded Ruby. The view visually provides

the user with a place to see and respond to questions. The view primarily consists

of two parts: the survey and scenario views. These views have corresponding con-

trollers with the same name. The survey view displays questions corresponding to all

question types except choice experiments. The scenario view displays the scenarios

from the stated choice experiments.

105



6.4 Conclusion

This Chapter describes in detail the design of the car ownership survey which

includes RP questionnaire and three games of SP questions. The SP experiments

were designed in order to collect future vehicles preferences in the case that (1) new

technology vehicles will be available in the market; (2) fuel prices will drastically in-

crease and that new and more environmental friendly fuel types could be purchased;

and (3) tolls will be introduced and new tax schemes implemented. The survey is

web-based and created by software JULIE which is self-programmed. The target

population were residents of the State of Maryland.
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7. DESCRIPTIVE STATISTICS

The web-survey was executed from September 10th through October 31st,

2010. It is observed that once the respondents accepted to login in our website the

majority of them completed the questionnaire. This resulted into a completion rate

of 94%; the final sample include 141 valid responses, while 13 incomplete question-

naires were discarded. Given the relative small size of the sample available, it is not

possible to generalize the findings derived from both the descriptive statistics and

from the model estimation. Real data are collected in this context to verify that

dynamic behavior can be captured by way of Stated Preference methods and that

the deriving responses can be used to estimate a dynamic discrete choice model.

The remaining of this chapter essentially describes the main characteristics of the

sample and gives details about the stated choices collected from Game (1), which

has been used for estimation. The contents given here heavily draw from Michael

Maness’s Master thesis completed in December, 2010.

7.1 Socioeconomics Results

Socioeconomic information includes respondent’s gender, age, education, house-

hold position, occupation, and commute time; and household characteristics, in-
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come, number of workers in the household, location, and building type. The results

are shown in 7.1

• Gender. 52% of respondents were male.

• Age. The average respondents’ age was 43 and the median age 41. The

youngest respondent was 18 and the oldest respondent was 83.

• Education. 77 respondents had graduate or professional degrees, 30 respon-

dents had bachelor degrees, and 7 respondents had associate degrees. Of the

remaining respondents, 1 did not have a high school diploma, 12 respondents

had high school diplomas, and 14 respondents had some college coursework.

• Head of Household. 61% of respondents were the head of their household.

• Income. The income distribution was generally above the Maryland median.

22% of households had incomes above $150,000. 21% of household had incomes

between $100,000 and $149,999. 18% of households had incomes between

$75,000 and $99,999. 12% of households had incomes between $50,000 and

$74,999. 15% of households had incomes between $25,000 and $49,999. 8%

of households had incomes less than $25,000 with the remaining households

(4%) refusing to answer the question.

• Household Age Distribution. The average household size was 2.74 people

with 2.07 adults per household, 0.45 children under 12 years old and 0.22

adolescents. The median household size was 2.00.
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• Workers. The average number of workers per household was 1.63 with a me-

dian number of workers 2.00. One household chose not to respond.

• Location. The majority of respondents (138) lived in the state of Mary-

land with one respondent each from Virginia, Washington, D.C. and ”Other.”

The most common zip codes of respondents were 20770 (Greenbelt), 20850

(Rockville), 21213 (Baltimore), and 20877 (Gaithersburg). By county, 48% of

all households were located in Montgomery County, 25% in Prince George’s

County, 9% in Anne Arundel County, 6% in Baltimore City, 5% in Howard

County, and the remainder from Kent and Frederick Counties and outside

of Maryland. This corresponds to an eligible respondent rate of 93%. Ap-

pendix D shows the distribution of locations on a map. Two respondents did

not respond to the zip code question and two respondents provided invalid

responses.

• Home Type. A majority of respondents lived in single-family dwellings: 62

respondents lived in detached houses and 45 respondents lived in townhouses

or rowhouses. In the remaining samples, 21 described their home as an apart-

ment, 9 lived in condominiums, and 1 lived in student housing. One household

did not respond to the question.

• Work Status. The work statuses of respondents were generally full-time (104

respondents). Eight respondents described themselves as part-time workers,

six were homemakers, five were students, twelve were retired, and three were

”Other.” Only three described themselves as ”looking for work” and it is not
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clear whether the people in the ”Other” category were unemployed or not.

• Commute Time. The round-trip commute time of working respondents (full-

time, part-time, and students) was 30 minutes on average. The median com-

mute time was 24 minutes with a maximum commute of 130 minutes. 39% of

commuters had commute times of 15 minutes or less, while 25% had commute

times between 16 and 30 minutes. 25% of commuters had commute time be-

tween 31 and 60 minutes. 8% of commuters had round-trip commutes of over

an hour. One household chose not to respond.

• Driver’s License. 96% of respondents had driver’s licenses.

• Home Parking. 20% of respondents have personal garages, 28% have drive-

ways, 20% park on-street, and 23% park in outdoor lots.

• Work Parking. 87% of workers said that parking was available at their work-

place. The median parking cost was $0 with 75 out of 100 workers stating that

they had free work parking. Of the workplaces with parking costs, the average

parking cost was $100 per month. The highest parking cost stated was $300.

7.2 Current Vehicle Characteristics

In the RP survey, respondents were asked about their household vehicles and

the characteristics of their current primary vehicles.

• Vehicles Per Household. 35% of household had one vehicle, 34% had two

vehicles, and 21% had three vehicles.
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• Primary Vehicle Make and Model. Of the 134 households with at least one

vehicle, only 11 respondents did not provide a model name and 3 respondents

provided a model name without corresponding make. This is a 90% appropri-

ate response rate.

• Primary Vehicle Size. 38% of respondents used a compact/small car as their

primary vehicle. 24% drove a mid-size car and 10% drove a large car. 16%

of households used a pickup truck as a primary vehicle. Of the remaining

household, 6% drove a van as primary transport and 1% of households used a

sports utility vehicle (SUV) as a primary vehicle.

• Primary Vehicle Age. The average age of primary vehicles was 6.37 years with

a median age of 6.00 years. 36% of primary vehicles were less than five years

old, 44% were six to ten years old, and 20% were over ten years old. Two

households skipped this question.

• Primary Vehicle Mileage. The average annual mileage was about 15,000 miles.

The median mileage was 10,000 miles. Twenty-five respondents (18%) did not

know the average annual mileage of their primary vehicle.

• Primary Vehicle Hybrid. 7% of households used a hybrid electric vehicle as

their primary vehicle.

• Primary Vehicle Purchase Condition. The purchase condition of 63% of the

primary vehicles was new, with the remaining 37% of vehicles purchased used

or pre-owned.
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• Primary Vehicle Purchase Price. The average vehicle purchase price was

$19,245 with a median price of $18,000. The minimum purchase price was

$1,500 and the maximum purchase price was $46,000. The average purchase

price of new vehicles was $23,763. The average purchase price of used vehicles

was $11,367. This question had a 4% nonresponse rate.

• Primary Vehicle Fuel Economy. The average fuel economy was about 27 miles

per gallon. The median fuel economy was 25 mpg. 24% of respondents did

not know their vehicle’s fuel economy.

• Primary Vehicle Fuel Capacity. The average fuel economy of vehicles was

14.59 gallons with a median of 12 gallons. 22% of respondents did not know

their vehicle’s fuel capacity.

• Purchase Plans. 62% of respondents planned to buy a vehicle within five

years. Of those respondents, 36 respondents plan to buy a new vehicle, 40

respondents plan to buy a used vehicle, and 10 respondents had no preference.

7.3 Stated Preference experiment: vehicle technology game

This Section describes the main characteristics of the sample collected from

the SP survey on vehicle technology. Eighty-nine respondents were given this exper-

iment, each of them was presented to 12 scenarios; a total of 1068 valid responses

were collected from this game.

Table 7.3 summarizes how often respondents bought new vehicles in the pro-
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posed scenarios. Data in the second and third columns describe the choice frequency

of respondents who intended to purchase a vehicle over the next five years. The fifth

and sixth columns describe choice frequencies for respondents who did not intend

to purchase a vehicle over the next five year.

As expected, those who expressed the intention to buy a vehicle had a higher

choice frequency for new vehicles than people who did not intend to buy. However,

those who initially were not inclined to buy, showed a propensity towards the pur-

chase of new vehicles, especially when technology offered interesting options or fuel

price was at very high rates.

Table 7.4 summarizes how often respondents bought new technology vehicles

in the scenarios. Data in the second and third columns describe the choice frequency

of respondents who intended to purchase a vehicle over the next five years. The fifth

and sixth columns describe choice frequencies for respondents who did not intend

to purchase a vehicle over the next five year.

By comparing results between Table 7.3 and Table 7.4, we see that respondents

who did not intend to purchase a vehicle tended to buy non-conventional vehicles

over gasoline vehicles. This may imply that household individuals who did not

intend to buy a new vehicle because their current vehicle are their most preferable

gasoline vehicle. It may also imply that as gasoline prices increase or a VMT tax is

implemented, all households will tend to explore non-conventional options, such as

hybrid and electric vehicles.

Table 7.5 summarizes the choices made by all the respondents. The percentage

of respondents choosing to keep their current vehicle gradually decreases over time
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from about 75% to about 50%. New gasoline, hybrid, and electric vehicles occupy

similar shares of the market. This shows that maturing vehicle technology may have

an impact on adoption rates as the expected. Finally, it should be noted that almost

none of our respondents decide to sell the car and to not replace it.

7.4 Conclusion

The SP sample collected in Maryland in fall 2010 is characterized by respon-

dents that are middle aged, highly educated, have middle or high income, and live in

townhouses or detached houses. The majority of them owns one or more cars, most

of these family cars are compact and mid-sized, and in average five year old. The

current cars have average fuel economy. Most of the respondents plan to purchase a

car in the next five years. In the near future, people will gradually give up their cur-

rent vehicle. Maturing vehicle technology has an impact on people’s willingness to

buy a new car and in particular on the adoption of new hybrid and electric vehicles.
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Category Percentage
Gender Male 52%
Age 26-35 23%

36-45 24%
46-55 18%
56-55 17%

Education Less than High School 1%
High School Diploma or Equivalent 9%
Some College 10%
Associate 5%
Bachelor Degree 21%
Graduate or Professional Degree 55%

Head of Household Yes 62%
Income above $150,000 22%

$100,000 - $149,999 21%
$75,000 - $99,999 18%
$50,000 - $74,999 12%
$25,000 and $49,999 15%
less than $25,000 8%

Home Type Dorm/Student Housing 1%
Apartment 15%
Condo 6%
Townhouse 30%
Rowhouse 1%
Detached Home 44%

Work Status Full Time 74%
Part Time 6%
Retired 9%
Student 4%
Homemaker 4%

Commute Time 15 minutes or less 39%
16-30 minutes 25%
31-60 minutes 25%
over 60 minutes 8%

Home Parking Personal Garage 20%
Personal Driveway 28%
On-street 20%
Outdoor Parking Lot 23%
Parking Garage 2%

Work Parking Yes 87%

Tab. 7.1: Socioeconomics Results
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Category Percentage
Cars per Household None 5%

One 35%
Two 34%
Three 21%
Four 4%
More than Four 1%

Primary Vehicle Size Compact car 38%
Mid-size car 24%
Large car 10%
Van 6%
SUV 1%
Pickup truck 16%
No car 5%

Primary vehicle age Less than five years old 36%
Six to ten years old 44%
Over ten years old 20%

Primary vehicle Above 20000 17%
anuual mileage 15000-19999 11%

10000-14000 28%
5000-9999 18%
0-4999 4%
Unknown 18%

Primary Vehicle Hybrid Yes 7%
Primary Vehicle Purchase New 63%
Condition pre-owned 37%
Primary Vehicle Purchase 40000-50000 4%
Price ($) 35000-39999 3%

30000-34999 9%
25000-29999 11%
20000-24999 12%
15000-19999 22%
10000-14999 9%
5000-9999 8%
0-4999 16%

Primary Vehicle Fuel 20-24 21%
Economy 15-19 7%

25-29 19%
30-39 16%
40-49 6%

Primary Vehicle Fuel 11-15 37%
Capacity 16-20 23%
Purchase Plans Plan to Buy a New Vehicle 62%

within 5 Years

Tab. 7.2: Current Vehicle Characteristics
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SP Game
Intend to
Buy

Bought
a New
Vehicle

Rate
Not Intend
to Buy

Bought
a New
Vehicle

Rate

Game1:Vehicle
Tech

696 312 44.8% 372 108 29.0%

Tab. 7.3: Scenarios In Which Respondents Bought a Vehicle

SP Game
Intend to
Buy

Bought
a New
Vehicle

Rate
Not Intend
to Buy

Bought
a New
Vehicle

Rate

Game1:Vehicle
Tech

696 189 27.2% 372 70 18.8%

Tab. 7.4: Scenarios in Which Respondents Bought a New Non-Conventional Gaso-
line Vehicle

Vehicle Type Choice Index 2010 2011 2012 2013 2014 2015
Current vehicle 0 74% 66% 63% 63% 47% 50%
New Gasoline Vehicle 1 10% 13% 14% 10% 13% 13%
New Hybrid Vehicle 2 8% 10% 11% 15% 17% 16%
New Electric Vehicle 3 8% 11% 11% 10% 21% 20%
Sell Current Vehicle 4 0% 0% 0% 1% 1% 2%

Tab. 7.5: SP Game 1 Vehicle Type Choice as Percentage

117



8. EXPERIMENTS USING DATA COLLECTED

Data collected in Maryland from a multiple-game stated preference experiment

are used to estimate a dynamic model of new vehicle adoption over a time horizon

of six years. For this modeling exercise we use SP game 1 on vehicle technology,

for which a higher number of observations was available. Although 141 respondents

completed the survey, only 53 of them could be included in the final sample. Each

respondent expressed preferences in 12 time periods spanning over six years. How-

ever, given the definition of the scenario tree in the dynamic model, utilities and

probabilities can be calculated for the first 10 time periods only. For consistency,

the static model is estimated on the same dataset and using the same specification

as for the dynamic formulation. In this Chapter, results from both dynamic and

static model calibration are presented and the performance of both models in terms

of goodness of fit and models’ predictions is assessed.

8.1 Static Model Results

Game 1 of the SP survey has a structure that is similar to the one used to

generate the simulated data. Four alternatives constitute the choice set: current

car (not buy), new gasoline vehicle, hybrid vehicle and electric vehicle. Variables
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included in the final model specification are: gasoline car price, hybrid car price,

electric car price, electric car range, mpg, and current car age. A multinomial logit

model was first estimated; Equation 8.1 shows the specification of the model.

Ui1t = gas price ∗ βprice st + gas mpg known ∗ βmpg known

+gas mpg unknown ∗ βmpg unknown + εij

Ui2t = ASC2 + hyb price ∗ βprice st + gas mpg known ∗ βmpg known

+hyb mpg unknown ∗ βmpg unknown + εij

Ui3t = ASC3 + ele price ∗ βprice dy + ele range ∗ βrange + εij

Ui4t = ASC4 + veh age ∗ βveh age + εij

(8.1)

Two coefficients for vehicle price were estimated; βprice dy is specific to the alternative

electric car; βprice st is common to both gasoline and hybrid vehicles. Generally,

vehicle prices, as cost factors, should only have one corresponding coefficient to

estimate, so that the estimated parameter can be used for the elasticity calculation.

But here, the electric car price will be chosen as the only dynamic variable in the

dynamic model formulation, and the elasticities will not be discussed in the thesis,

so two coefficients for vehicle prices (one is for static variables and the other one is

for dynamic variable)are required in this special case.

For fuel economy, respondents were split into groups based on their knowledge

of the current vehicle fuel economy, measured in MPG. For respondents who knew

their vehicle MPG, the difference between the current vehicle MPG and the MPG

of the new vehicle was used for estimation. For respondents who did not know

119



their vehicle MPG, the actual new vehicle MPG was used for estimation. All the

coefficients estimated have the correct sign and are statistically significant, except

for the price of the non-electric vehicles and for the alternative specific constant of

electric car. The results are presented in Table 8.1.

MNL

Alternative ga
s

h
y
b

ri
d

el
ec

tr
ic

cu
rr

en
t

Estim t-Stat
ASC2 X -0.4044 1.6
ASC3 X -0.50 0.9
ASC4 X 1.52 3.2
mpg known X X 0.052 4.0
mpg unknown X X 0.016 2.1
veh age X -0.097 4.3
price st X X -0.26 1.8
price dy X -0.37 2.4
range X 0.44 2.1
N observed 530
LL(0) -734.74
LL(final) -614.66
likelihood ratio index 0.22

Tab. 8.1: Static Logit Model Estimation
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8.2 Dynamic Model Results

The dynamic model has the same specification of the MNL presented. The

price of the electric car is treated as a dynamic variable, and is assumed to vary

according to a random drift. Electric car prices generated for the SP scenarios

were used to calibrate the auto-regression factor, drift, and variance of random

draws under the hypothesis of residuals distributed as normal. After calibration,

the dynamic variable function assumes the following form:

for electric car price

yj,t+1 = −0.103 ∗ yjt + 2.617 +N(0, 1.78)

(8.2)

Respondent’s perspective dynamic car prices in the scenarios tree are then generated

according to equation 8.2.

Unfortunately, the auto-regressive factor is very small; contrary to the one used

for the simulated case and relative of the evolution of fuel price, which was estimated

on a time-series of real observations. That is due to the fact that scenarios in the

survey were designed to be independent. Further research is needed to generate

time dependent scenarios in the context of experimental design. The dynamic model

estimation results are presented in Table 8.2.

The estimated coefficients are all significant except the static vehicle price. As

expected, the fit of the model improves when considering the dynamic nature of

the problem; the rho-squared increases from 0.22, the value obtained with the logit

model to 0.42 for the dynamic model.
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Dynamic

Alternative g
as

h
y
b

ri
d

el
ec

tr
ic

cu
rr

en
t

Estim t-Stat
ASC2 X -1.09 4.05
ASC3 X 1.18 1.94
ASC4 X -1.10 6.96
mpg known X X 0.078 6.20
mpg unknown X X 0.042 3.66
veh age X -0.133 4.26
price st X X -0.062 0.46
price dy X -1.01 5.37
range X 0.723 4.32
N observed 636
LL(0) -1683.09
LL(final) 981.43
likelihood ratio index 0.42

Tab. 8.2: Dynamic Model Estimation

8.3 Model Application

Coefficient estimates are used in application to calculate the prediction power

of the models. The market share of each alternative observed and predicted together

with a measure of errors are reported in Table 8.3.

The error norm D from the dynamic model is smaller than the value obtained

by applying the static model. Figure 8.1, 8.2, 8.3, and 8.4 present the observed

and predicted market trends of gasoline vehicle, hybrid vehicle, electric vehicle and

keeping the current vehicle along the ten time periods in the five years considered.

The probability of keeping the current car is relatively high, starting around 70% in

the first time period; acceptance of new vehicles starts already in early stages of the

time horizon, although volatility is observed at some points. New gasoline vehicles,

hybrid and electric vehicles occupy smaller market shares (around 10% each) at the

end of the five year periods; all new typologies become more popular after the fifth
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Alternative Observed Predicted (Static) Predicted (Dynamic)
Gas car 1 0.151 0.117 0.081
Gas car 2 0.170 0.134 0.120
Gas car 3 0.189 0.128 0.098
Gas car 4 0.208 0.147 0.137
Gas car 5 0.151 0.136 0.118
Gas car 6 0.208 0.142 0.136
Gas car 7 0.113 0.147 0.141
Gas car 8 0.132 0.151 0.102
Gas car 9 0.226 0.168 0.139
Gas car 10 0.189 0.158 0.113
Hybrid car 1 0.094 0.119 0.072
Hybrid car 2 0.094 0.111 0.071
Hybrid car 3 0.151 0.125 0.110
Hybrid car 4 0.094 0.106 0.058
Hybrid car 5 0.113 0.111 0.083
Hybrid car 6 0.170 0.130 0.088
Hybrid car 7 0.245 0.142 0.143
Hybrid car 8 0.151 0.138 0.114
Hybrid car 9 0.170 0.121 0.116
Hybrid car 10 0.226 0.147 0.105
Electric car 1 0.057 0.245 0.062
Electric car 2 0.019 0.245 0.038
Electric car 3 0.094 0.262 0.098
Electric car 4 0.132 0.262 0.076
Electric car 5 0.132 0.264 0.056
Electric car 6 0.132 0.245 0.108
Electric car 7 0.113 0.272 0.092
Electric car 8 0.113 0.270 0.075
Electric car 9 0.189 0.306 0.107
Electric car 10 0.151 0.279 0.111
Current car 1 0.698 0.519 0.786
Current car 2 0.717 0.509 0.770
Current car 3 0.566 0.483 0.694
Current car 4 0.566 0.485 0.730
Current car 5 0.604 0.489 0.742
Current car 6 0.491 0.483 0.668
Current car 7 0.528 0.442 0.624
Current car 8 0.604 0.442 0.709
Current car 9 0.415 0.408 0.638
Current car 10 0.434 0.415 0.671
D 3.24 2.93

Tab. 8.3: Model Validation: Market Shares
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time period. Static models have a tendency to average choice probabilities over time

and are incapable of recovering peaks in the demand function. More specifically,

multinomial logit underestimates the market share of the ”not buy” alternative,

and dramatically overestimates the share occupied by electric vehicles in the next

five years; it predicts quite well the market for new gasoline vehicles and for hy-

brid vehicles. Dynamic model formulation overestimates the number of respondents

keeping their current vehicles, but it is capable to reproduce the descending trend

for this alternative. DDCM does an excellent job in recovering market trend for the

electric vehicles, that starts at 5% and terminates at around 10% in 2015. For the

remaining alternatives the DDCM captures the general behavior, but shows gaps in

model prediction higher than those delivered by the static model.

Fig. 8.1: Market Trend for Gasoline Car
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Fig. 8.2: Market Trend for Hybrid Car

Fig. 8.3: Market Trend for Electric Car

Fig. 8.4: Market Trend for Current Car
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8.4 Conclusion

This chapter presented the results obtained from the application of both static

and dynamic models to data derived from a SP survey on vehicle preferences, with

focus on new technology vehicles. Overall, DDCM is superior to MNL in model

fit and in prediction. However, better results can be obtained if more observations

would be available and if the data are collected in accordance to the dynamic prin-

ciples that are expected to characterize the dynamics in the automobile industry

products and in consumer behavior. In addition, this first attempt to estimate

dynamic models just accounts for two stages in time when calculating individual

expectations. Future research should allow for more flexibility when working with

the number of scenarios defined in the tree. Finally, estimation and validation on

real data collected over past consequent periods of time is desirable; in this case

however, it would be difficult to estimate market penetration of new technology

vehicles.
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9. CONCLUSIONS

Increasingly, energy efficient and environmentally friendly highway transporta-

tion technologies are under development and could be available on the market in the

near future; they could ensure the freedom of mobility and energy security, while

lowering costs and reducing the impact on the environment. Estimation techniques

for analyzing the impact of technological improvements and rapid changes in energy

costs are necessary to understand the mobility of tomorrow and adapt the prod-

ucts of our car industry. This dissertation has developed a dynamic econometric

model that accounts for the evolving characteristics of the products offered by the

automobile industry and consumers’ expectations of future vehicle quality. The

timing of consumers’ purchases is formalized as an optimal stopping problem where

the agent (consumer) must decide on the optimal time of purchase. The modeling

framework is further enriched by explicitly considering the consumer’s choice from a

set of different types of vehicles whose quality changes stochastically over time. The

proposed approach extends the theory of discrete choice models on a temporal ba-

sis and improves existing dynamic discrete choice models based on a pure dynamic

programming perspective. The modeling framework has been applied to both sim-

ulated and real data. In both cases, results show that dynamic models are superior

to static models based on MNL; in particular, they are able to recover peaks in the
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demand evolution over time, while static models fail to detect dramatic changes due

to the rapid mutation of external conditions.

The remaining of this chapter summarizes the findings from this research work,

identifies the main contributions and proposes future research directions.

9.1 Contributions

1. Static discrete choice models assume that individual utilities are linear func-

tions of the alternatives and individuals characteristics; attributes are not

time-dependent and can be defined for the actual situation (RP data) or fu-

ture scenarios (SP data). Dynamic models estimated in this thesis are non-

linear in utilities; utilities include information on both current alternatives and

individual expectations about future alternatives.

2. The model proposed is more complex than traditional dynamic discrete choice

models used in economics. Usually stopping problems are characterized by

just two state options, assume homogeneous population and choice sets are

composed of just one product. More importantly, the consumer is considered

out of the market when his/her status changes. In the problem modeled here

decision makers have more than one starting condition; each household can

actually not own any vehicle, own one or multiple vehicles. Moreover, the pop-

ulation is heterogeneous, and every time a household decides to change his/her

status, there are multiple alternatives available, each characterized by differ-

ent vehicle technologies. A regenerative process allows for the consideration
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of multiple purchases.

3. The optimization problem for parameters’ estimation is solved using Maximum-

Likelihood estimation method. Dynamic discrete choice models based on dy-

namic programming are usually estimated by using the nested fixed point

optimization algorithm, which is valid under the restrictive assumption that

the time horizon is infinite.

4. The dynamic discrete decision process is solved by generating a scenario tree

from the underlying stochastic process. This approach is generally adopted

in stochastic optimization programs that consist of a stochastic model and an

optimization model. In my formulation the stochastic problem is related to

the nature of the attributes that change stochastically over scenarios and to

the uncertainty in the individuals’ future expectations; the optimization prob-

lem concerns individuals’ utility maximization according to the random utility

maximization paradigm. The optimization problem is expressed and solved in

a recursive manner. Such model formulation and presentation, as well as the

associated visual structure has suggested a computational method of solution.

This provides a graphically intuitive model construction and evaluation capa-

bilities for transportation modelers who may be less familiar with stochastic

modeling and algorithms.

5. A pilot survey is designed and executed in order to estimate dynamic mod-

els in a real context and to test their performance with respect to traditional

static models. Hypothetical scenarios are separated by six month intervals
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and span a six year period. The designs correspond to changing vehicle tech-

nology, fuel type, and taxation policy. Between scenarios, the vehicle and fuel

attributes dynamically change to mimic marketplace conditions. Empirical

analysis shows that respondents are able to create trade-offs between different

vehicle technology as well as the price of various fueling options. In addition

about 65% respondents intend to buy a vehicle in the next six years; this re-

sult definitely shows that a potential market exists for new and more efficient

gasoline cars and for electric and hybrid vehicles.

9.2 Future Work

This dissertation does the pilot research on dynamic discrete choice models

in transportation and has proposed an application to car ownership modeling and

forecasting. It is expected that this work will generate innovations in demand mod-

eling and that it will be extended to other problems which are dynamic in nature.

The following points indicate possible avenues for future research:

The model formulation allows for just one dynamic attribute in the utility

specification; the random walk is actually estimated on a univariate time series.

The analysis should be extended to multivariate random walks.

The number of scenarios considered for the calculation of the expected utility

is limited to two. This is a rather restrictive assumption; it would be desirable

to extend the time horizon over which the respondents consider future information

about new alternatives.
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Data collection techniques should be improved in order to capture interde-

pendency amongst successive observations in time. Methods to incorporate random

walks into orthogonal experimental design (for SP data) should be developed.

The dynamic model should be estimated on a Revealed Preference panel

dataset. In France, INRETS organized and maintained a panel dataset that fol-

lows the evolution of car ownership and car use from 1984 to 2000.

From the optimization perspective, it would be interesting to compare the

results obtained from maximum likelihood estimation with those obtained from the

nested fixed point procedure and to demonstrate if the underlying hypotheses are

valid for our case, which is developed for a finite horizon problem.

This dynamic framework can be adapted and transferred to other case studies:

dynamic pricing for revenue management, route choice behavior under dynamic

tolling, activity scheduling for activity based analysis just to cite a few.
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APPENDIX



A. SIMULATED INPUT DATA FILE FORMAT

Fig. A.1: Household Characteristics
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Fig. A.2: Current Vehicle Attributes

Fig. A.3: Potential Vehicle Attributes
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Fig. A.4: Dynamic Attributes

Fig. A.5: Choice
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B. LIST OF POSSIBLE QUESTIONS FOR THE SURVEY

Q Please indicate your gender.

• Male

• Female

Q What is your age?
Q What is your level of education?

• Less than high school

• High school graduate

• Some college

• Associate degree

• Bachelor’s degree

• Graduate or professional degree

Q During most of last week, were you...

• Working full time (35 hours per week or more)

• Working part time (less than 35 hours per week)

• Temporarily absent from a job or business

• Looking for work

• A homemaker

• Going to school

• Retired

• Other

Q How far (in miles) is your commute to work or school?
Q Do you have a driver license?
Q Are you the head of the household?
Q What is your household income?
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• Less than $24,999

• $25,000 to $49,999

• $50,000 to $74,999

• $75,000 to $99,999

• $100,000 to $149,999

• $150,000 or more

Q How many children in age 12 or under live in your household?

• 0

• 1

• 2

• 3

• 4

• 5

• More than 5

Q How many people in age 13 through 17 (13, 14, 15, 16, or 17) live in your
household?

• 0

• 1

• 2

• 3

• 4

• 5

• More than 5

Q How many adults (including yourself) in age 18 or over live in your house-
hold?

• 0

• 1

• 2
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• 3

• 4

• 5

• More than 5

Q How many people in your household work?

• 0

• 1

• 2

• 3

• 4

• More than 4

Q What state do you currently live in?

• Maryland

• Virginia

• District of Columbia

• Other

Q What is the zip code of your living place?
Q How many car does your household have?

• No Cars in the Household

• One Car in the Household

• Two Cars in the Household

• Three Cars in the Household

• Four Cars in the Household

• More than 4 Cars in the Household

Q Which of the following best describes your home?

• College Dorm or similar student-based housing

• Apartment

• Condominium
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• Townhouse

• Rowhouse

• Single-Family Home, Detached House, or Separated House

• Other

Q Where do you typically park your vehicle when at home?

• Personal Garage

• Personal Driveway

• On-street

• Outdoor Parking Lot

• Parking Garage or Covered Parking Lot

• Other

Q Is parking available at your job or school?
Q How much does it cost you to park at work per month? If free, type in 0.
Q What is the make and model of your primary vehicle?
Q Which of the following types best describes your primary vehicle?

• Compact / Small Car

• Mid-size Car

• Large Car

• Luxury Car

• Sports Car

• Minivan / Van

• Pickup Truck

• Sports Utility Vehicle (SUV)

Q How old (in years) is your primary vehicle?
Q When did you purchase your primary vehicle?
Q On average, approximately how many miles does this vehicle travel per

year?
Q What type of fuel does your primary vehicle use?

• Gasoline

• Hybrid
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• Diesel

• Electric

• Alternative Fuel (for example: ethanol, natural gas, biodiesel, propane, hy-
drogen)

• Other

Q Did you buy this vehicle new? (The car has not been owned by anyone else)
Q Approximately, how much did this vehicle cost?
Q What is your primary vehicle’s fuel efficiency (MPG)?
Q How many gallons of fuel can your vehicle hold?
Q What is the seating capacity of your vehicle?

• 2

• 3

• 4

• 5

• 6

• 7

• 8

• More than 8

Q How far (in miles) do you travel off of your normal route to find refuel your
vehicle? If your refueling station is usually on your route, then input 0.

Q Approximately, how much do you pay in tolls on an average day?
Q Approximately, how much did you your car cost?
Q How much were your tax deductions (if any) on your car?
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C. SAMPLE SCENARIO DESIGNS
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D. DISTRIBUTION OF HOUSEHOLDS
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E. MAJOR C CODE FOR THE FORMULATION AND
ESTIMATION
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
data.h 
  
#ifndef __DATA_H__  

#define __DATA_H__  

//#include "memory.h"  

#ifdef __cplusplus  

extern "C" {  

#endif  

#include <oratio/oratio.h>  

typedef struct {  

// individual ID  

int id;  

// socioeconomic variables for each individual  

double *indiv;  

} ind;  

typedef struct {  

// variable for current product in each time, for each person  

double **current;  

} cur;  

// information for each potential product  

typedef struct {  

// decision variable, 0 or 1 at each time period to each product type for 

each person  

double **decision;  

// static attributes for potential choice j in time t  

double **stati;  

} poten;  

// Define the type of data used for the samplings.  

typedef struct {  

// number of individuals  

int indivNum;  

// number of time period  

int time;  

// number of individual variables  

int numINDIVAR;  

// number of current car variables  

int numCURTVAR;  

// number of static vars for potential choice  

int numSTATIC;  

// number of dynamic vars for potential choice  

int numDYNAMIC;  

// number of choice  

int numch;  

} glo;  
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//put all data files together  

typedef struct {  

ind* in;  

cur* curr;  

poten* pot;  

glo* glonum;  

double*** prob_matrix; // Probability matrix  

Random *rand_seed; // Random seed  

double** draw; //drawn from Random normal distribution  

double ***err1; //error term for i,j,t  

double *err2; //error term for i  

double **p; //the random value (0 <= p <= 1) for calculating normal dynamic 

variable y.  

double vp; //the random value (0 <= p <= 1) for calculating MC v  

double ***perror;//the random value (0 <= p <= 1) for calculating gumbel 

error_ijt for different i,j,t  

double *perrori;//the random value (0 <= p <= 1) for calculating gumbel 

error_ijt for different i  

double *y_int;//current gas prices(the varible will be seen as dynamic )  

} Aldata;  

//get number of parameters (dimension of the problem)  

int get_dimension(Aldata* d);  

//read data from four data structures and allocate memory  

Aldata* format_data();  

//generating gas prices for scenario tree  

double** draw_random_y(Aldata* d, double** draw);  

//mode in scenario tree  

double*** calculate_mode(Aldata* d, double* x, double** y);  

//mode that is correlated to current situation in each time  

double** calculate_mode_real(Aldata* d, double* x);  

//calculate log sum utility of three car alternatives  

double*** calculate_v(Aldata* d, double* x, double** y, double vp);  

//recursive process for scenario tree to calculate expectation utility E  

double cal_E(Aldata* d, int t, int T, double *v, double current, int n, 

double* x, int indiv);  

//probability of buying cetern kind of car  

double*** cal_probcar (Aldata* d, double* x);  

//probability of not buying, PI0  

double** cal_prob (Aldata* d, double* x, double** y);  

// functions of reading four .txt data files  

void read_new_indiv(glo* paraNB, ind* paraIN);  

void read_new_current(glo* paraNB, cur* paraC, ind* paraIN);  

void read_new_poten(glo* paraNB, ind* paraIN, poten* paraP);  

void read_new_choice(glo* paraNB, ind* paraIN, poten* paraP);  

// function of reading coefficient data files  

void read_new_para(double *x, glo* paraNB);  
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// functions of allocating memories to four structures and their elements  

glo* getGlo();  

ind* getIn(glo *glonum);  

cur* getC(glo *glonum);  

poten* getP(glo *glonum);  

//memory allocation functions for probability matrix  

double*** c_malloc_P(glo* paraNB);  

//function of allocating memory to error terms  

double*** c_malloc_e(glo* paraNB);  

// function of allocating memory to the array of utility U[i][j][t]  

double*** c_malloc_u(glo* paraNB);  

double**** c_malloc_uy(glo* paraNB);  

// function of allocating memory to the array of summumation of exp(U[i][j]) 

for each person i  

double* c_malloc_w(glo* paraNB);  

//function of allocating memory to v_itj (the dimension of j is for 1000 

draws)  

double*** c_malloc_v(glo* paraNB);  

// free functions  

void free_ind (ind* in, glo* paraNB);  

void free_cur (cur* c, glo* paraNB);  

void free_poten (poten* p, glo* paraNB);  

void free_uy(double**** u, glo* paraNB);  

void free_glo (glo* g);  

void free_w(double* W);  

void free_v(double*** v, glo* paraNB);  

void free_u(double*** u, glo* paraNB);  

void free_p(double*** u, glo* paraNB);  

void free_err (Aldata *d);  

// Function to help in calculating t-stats  

double amlet_t_statistics(int n, double *theta, double *hypothetical, double 

**I, double alpha, double *t);  

//function to inverse matrix  

void op_matrix_inverse(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO 

Uplo, double *I, int npar);  

//function to print out matrix  

void nt_matrix_print(FILE *out, char *name, double **A, int m, int n);  

#ifdef __cplusplus  

}  

#endif  

#endif  
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 data.c  
 

#include "data.h"  

#include <stdlib.h>  

#include <string.h>  

#include <stdio.h>  

#include <oratio/oratio.h>  

//read data from four data structures and allocate memory  

Aldata* format_data(){  

Aldata *d;  

int i,j,t,n;  

d= malloc(sizeof(Aldata));  

d->glonum = getGlo();  

d->in = getIn(d -> glonum) ;  

d->pot = getP(d -> glonum);  

d->curr = getC(d -> glonum);  

read_new_indiv(d->glonum, d->in);  

read_new_current(d->glonum, d->curr, d->in);  

read_new_poten(d->glonum, d->in, d->pot);  

read_new_choice(d->glonum, d->in, d->pot);  

d->prob_matrix = c_malloc_P(d -> glonum);  

d->rand_seed = ran_random();  

d->y_int=malloc(d->glonum->time*sizeof(double));  

/*  

Place the current dynamic variables into the array.  

They are calculated by normal diffusion process with  

the same factors as function draw_random_y, initial  

y is 3.5  

*/  

d->y_int[0] = 3.50;  

d->y_int[1] = 3.27;  

d->y_int[2] = 3.20;  

d->y_int[3] = 3.25;  

d->y_int[4] = 3.43;  

d->y_int[5] = 3.42;  

d->y_int[6] = 3.24;  

d->y_int[7] = 3.23;  

d->y_int[8] = 3.41;  

d->y_int[9] = 3.63;  

d->y_int[10] = 3.86;  

d->y_int[11] = 3.95;  

d->p=nt_matrix_new(d->glonum->time+1, 20);  

for (t=0; t<d->glonum->time; t++){  

for (n=0; n<20; n++){  

d->p[t][n] = ran_random_get_val(d->rand_seed );  

}  

}  

d->vp = ran_random_get_val(d->rand_seed );  
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d->perror=c_malloc_e(d -> glonum);  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t = 0; t < d->glonum->time+2; t++) {  

for(j = 0; j < d->glonum ->numch+1; j++) {  

d->perror[i][j][t] = ran_random_get_val(d->rand_seed );  

}  

}  

}  

d->perrori=malloc(d->glonum ->indivNum*sizeof(double));  

for(i = 0; i < d->glonum ->indivNum; i++) {  

d->perrori[i] = ran_random_get_val(d->rand_seed );  

}  

d->draw=nt_matrix_new(d->glonum->time, 20);  

for (t=0; t<d->glonum->time; t++){  

for (n=0; n<20; n++){  

d->draw[t][n] = st_normal_icdf(d->p[t][n], 0, 16);  

}  

}  

d->err1=c_malloc_e(d->glonum);  

d->err2=malloc(d->glonum ->indivNum*sizeof(double));  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t = 0; t < d->glonum->time+2; t++) {  

d->err2[i]=st_gumbel_icdf(d->perrori[i], 0, 1 );  

for(j = 0; j < d->glonum ->numch+1; j++) {  

d->err1[i][j][t]=st_gumbel_icdf(d->perror[i][j][t], 0, 1 );  

}  

}  

}  

free_p(d->perror, d->glonum);  

free(d->perrori);  

return d;  

}  

//check number of parameters (dimension of the problem)  

int get_dimension(Aldata* d){  

int l0= d->glonum->numch-1;//asc  

int l1= d->glonum->numINDIVAR;//indiv var  

int l2= d->glonum->numSTATIC;//static var  

int l3= d->glonum->numDYNAMIC;//dynamic var  

int l4= d->glonum->numCURTVAR;//current var  

return l0+l1+l2+l3+l4;  

}  

/*  

**  

* get a glo variable  

*/  

glo* getGlo() {  

glo *glonum;  
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glonum = (glo *)malloc(sizeof(glo));  

glonum->indivNum = 200;  

glonum->time=12;  

glonum->numINDIVAR=2;  

glonum->numCURTVAR=1;  

glonum->numSTATIC=2;  

glonum->numDYNAMIC=1;  

glonum->numch=3;  

return glonum;  

}  

/**  

* get a ind variable  

*/  

ind* getIn(glo *glonum) {  

ind* individual = malloc((glonum->indivNum) * sizeof(ind));  

return individual;  

}  

/**  

* get a cur variable  

*/  

cur* getC(glo *glonum) {  

int i;  

cur *curr;  

int ttnumCUR=(glonum->time+2) * glonum->numCURTVAR;  

curr = (cur *)malloc(sizeof(cur));  

curr->current = malloc( glonum->indivNum * sizeof(double *));  

for(i=0;i<glonum->indivNum;i++) {  

curr->current[i]=malloc(ttnumCUR * sizeof(double));  

}  

return curr;  

}  

/**  

* get a Potential variable  

*/  

poten* getP(glo *glonum) {  

int i;  

poten *pot;  

int ttnumSTA = (glonum->time+2) * glonum->numch * glonum->numSTATIC;  

int ttnumDEC = glonum->time *( glonum->numch+1);  

pot = (poten *)malloc(sizeof(poten));  

pot->stati = malloc(glonum->indivNum * sizeof(double *));  

for(i = 0;i < glonum->indivNum;i++) {  

pot->stati[i]=malloc(ttnumSTA * sizeof(double));  

}  
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pot->decision = malloc(glonum->indivNum * sizeof(double));  

for(i = 0;i < glonum->indivNum;i++) {  

pot->decision[i]=malloc(ttnumDEC * sizeof(double));  

}  

return pot;  

}  

void read_new_indiv(glo* paraNB, ind* paraIN) {  

FILE *inn;  

FILE *out;  

int i=0, j=0;  

// read the indivX.txt file  

inn=fopen("indivX.txt","r");  

out=fopen("oput1.txt","w");  

if (inn == NULL) {  

printf ("File could not be opened\n");  

exit(-1);  

}  

for(i = 0; i < paraNB ->indivNum; i++) {  

paraIN[i].indiv = malloc( (paraNB ->numINDIVAR) * sizeof(double));  

// read the individual's index number  

fscanf(inn, "%d", &paraIN[i].id);  

for (j=0;j<(paraNB->numINDIVAR);j++) {  

// read the x variables for this individual  

fscanf(inn, "%lg", &paraIN[i].indiv[j]);  

// printf("%d\n", in[i].x[j]);  

}  

//fscanf(inn,"\n");  

}  

for(i=0;i<paraNB->indivNum;i++) {  

// print out the person's index number  

fprintf(out,"%d", paraIN[i].id);  

for (j=0;j<(paraNB->numINDIVAR);j++) {  

// print out the x variables for each individual  

fprintf(out, "%lg", paraIN[i].indiv[j]);  

}  

fprintf(out,"\n");  

}  

fclose(inn);  

fclose(out);  

}  

void read_new_current(glo* paraNB, cur* paraC, ind* paraIN) {  

FILE *inn;  

FILE *out;  

int i=0, j=0;  
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int ttnumCURT = paraNB->time * paraNB->numCURTVAR;  

inn=fopen("current.txt","r");  

out=fopen("oput2.txt","w");  

if (inn == NULL) {  

printf ("File could not be opened\n");  

exit(-1);  

}  

for(i=0;i<paraNB->indivNum;i++) {  

fscanf(inn, "%d", &paraIN[i].id);  

for (j=0;j<ttnumCURT;j++) {  

fscanf(inn, "%lg", &paraC->current[i][j]);  

}  

}  

for(i=0;i<paraNB->indivNum;i++) {  

fprintf(out,"%d", paraIN[i].id);  

for (j=0;j<ttnumCURT;j++) {  

fprintf(out,"%lg",paraC->current[i][j]);  

}  

fprintf(out,"\n");  

}  

fclose(inn);  

fclose(out);  

}  

void read_new_poten(glo* paraNB, ind* paraIN, poten* paraP) {  

FILE *inn;  

FILE *out;  

int i=0, j=0;  

int ttnumSTAT = (paraNB->time+2) * paraNB->numch * paraNB->numSTATIC;  

inn=fopen("poten.txt","r");  

out=fopen("oput3.txt","w");  

if (inn == NULL) {  

printf ("File could not be opened\n");  

exit(-1);  

}  

for(i = 0;i < paraNB->indivNum;i++) {  

fscanf(inn, "%d", &paraIN[i].id);  

for (j=0;j<ttnumSTAT;j++) {  

fscanf(inn, "%lg", &paraP->stati[i][j]);  

}  

}  
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for(i=0; i<paraNB->indivNum; i++) {  

fprintf(out,"%d", paraIN[i].id);  

for (j=0; j<(ttnumSTAT); j++) {  

fprintf(out,"%lg",paraP->stati[i][j]);  

}  

fprintf(out,"\n");  

}  

fclose(inn);  

fclose(out);  

}  

void read_new_choice(glo* paraNB, ind* paraIN, poten* paraP) {  

FILE *inn;  

FILE *out;  

int i=0, j=0;  

int ttnumDEC = paraNB->time * (paraNB->numch+1);  

inn=fopen("choice.txt","r");  

out=fopen("oput4.txt","w");  

if (inn == NULL) {  

printf ("File could not be opened\n");  

exit(-1);  

}  

for(i=0; i< paraNB->indivNum; i++) {  

fscanf(inn, "%d", &paraIN[i].id);  

for (j = 0;j<(ttnumDEC);j++) {  

fscanf(inn, "%lg", &paraP->decision[i][j]);  

}  

}  

for(i=0;i<paraNB->indivNum;i++) {  

fprintf(out,"%d", paraIN[i].id);  

for (j=0;j<(ttnumDEC);j++) {  

fprintf(out,"%lg",paraP->decision[i][j]);  

}  

fprintf(out,"\n");  

}  

fclose(inn);  

fclose(out);  

}  

void read_new_para(double *x, glo* paraNB){  

FILE *inn;  

int i;  

int j = 0;  

float f;  
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inn=fopen("parady.txt","r");  

if (inn == NULL) {  

printf ("File could not be opened\n");  

exit(-1);  

}  

// Reads the ASCs  

for(i=0; i< paraNB->numch-1; i++) {  

fscanf(inn, "%f", &f);  

x[j++] = f;  

}  

// Reads the individual specific parameters  

for(i=0; i< paraNB->numINDIVAR; i++) {  

fscanf(inn, "%f", &f);  

x[j++] = f;  

}  

fscanf(inn, "\n");  

// Reads the static parameters  

for(i=0; i< paraNB->numSTATIC; i++) {  

fscanf(inn, "%f", &f);  

x[j++] = f;  

}  

// Reads the dynamic parameters  

for(i=0; i< paraNB->numDYNAMIC; i++) {  

fscanf(inn, "%f", &f);  

x[j++] = f;  

}  

// Reads the current product parameters  

for(i=0; i< paraNB->numCURTVAR; i++) {  

fscanf(inn, "%f", &f);  

x[j++] = f;  

}  

}  

double*** c_malloc_P(glo* paraNB){  

double ***P;  

int i,j;  

P = (double***)malloc(paraNB ->indivNum*sizeof(double**));  

for(i = 0; i < paraNB->indivNum; i++) {  

P[i] = (double**)malloc(4 *sizeof(double*));  

for(j=0;j<4;j++){  

P[i][j]=(double*)malloc(paraNB->time*sizeof(double));  

}  

}  

return P;  

}  

double*** c_malloc_e(glo* paraNB){  

double ***e;  

int i,j;  
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e = (double***)malloc(paraNB ->indivNum*sizeof(double**));  

for(i = 0; i < paraNB->indivNum; i++) {  

e[i] = (double**)malloc(4 *sizeof(double*));  

for(j=0;j<4;j++){  

e[i][j]=(double*)malloc((paraNB->time+2)*sizeof(double));  

}  

}  

return e;  

}  

double*** c_malloc_u(glo* paraNB){  

double ***U;  

int i,j;  

U = (double***)malloc(paraNB ->indivNum*sizeof(double**));  

for(i = 0; i < paraNB->indivNum; i++) {  

U[i] = (double**)malloc(paraNB->numch *sizeof(double*));  

for(j=0;j<paraNB->numch;j++){  

U[i][j]=(double*)malloc(paraNB->time*sizeof(double));  

}  

}  

return U;  

}  

double**** c_malloc_uy(glo* paraNB){  

double ****U;  

int i,j,t;  

U = (double****)malloc(paraNB ->indivNum*sizeof(double***));  

for(i = 0; i < paraNB->indivNum; i++) {  

U[i] = (double***)malloc(paraNB->numch *sizeof(double**));  

for(j=0;j<paraNB->numch;j++){  

U[i][j]=(double**)malloc((paraNB->time+1)*sizeof(double*));  

for(t=0; t<paraNB->time+1; t++){  

U[i][j][t]=(double*)malloc(20*sizeof(double));  

}  

}  

}  

return U;  

}  

double*** c_malloc_v(glo* paraNB){  

double ***v;  

int i,j;  

v = (double***)malloc(paraNB ->indivNum*sizeof(double**));  

for(i = 0; i < paraNB->indivNum; i++) {  

v[i] = (double**)malloc((paraNB->time+1) *sizeof(double*));  

for(j=0;j<paraNB->time+1;j++){  

v[i][j]=(double*)malloc(20*sizeof(double));  

}  

}  
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return v;  

}  

void free_ind(ind* in, glo* paraNB){  

int i;  

for(i=0;i<paraNB->indivNum;i++) {  

free(in[i].indiv);  

}  

free(in);  

}  

void free_cur(cur* curr, glo* paraNB){  

int i;  

for(i=0;i<paraNB->indivNum;i++){  

free(curr->current[i]);  

}  

free(curr->current);  

free(curr);  

}  

void free_poten(poten* p, glo* paraNB){  

int i;  

for(i=0;i<paraNB->indivNum;i++){  

free(p->stati[i]);  

free(p->decision[i]);  

}  

free(p->stati);  

free(p->decision);  

free(p);  

}  

void free_err (Aldata *d) {  

free_p(d->err1, d->glonum);  

free(d->err2);  

}  

void free_glo (glo* g){  

free(g);  

}  

void free_v(double*** v, glo* paraNB){  

int i, t;  

for(i = 0; i < paraNB ->indivNum; i++) {  

for(t=0; t<paraNB->time+1; t++) {  

free(v[i][t]);  

}  

free(v[i]);  

}  

free(v);  

}  

void free_u(double*** u, glo* paraNB){  
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int i, j;  

for(i = 0; i < paraNB ->indivNum; i++) {  

for(j=0; j<paraNB->numch; j++) {  

free(u[i][j]);  

}  

free(u[i]);  

}  

free(u);  

}  

void free_uy(double**** u, glo* paraNB){  

int i, j, t;  

for(i = 0; i < paraNB ->indivNum; i++) {  

for(j=0; j<paraNB->numch; j++) {  

for (t=0; t<paraNB->time+1; t++){  

free(u[i][j][t]);  

}  

free(u[i][j]);  

}  

free(u[i]);  

}  

free(u);  

}  

void free_p(double*** u, glo* paraNB){  

int i, j;  

for(i = 0; i < paraNB ->indivNum; i++) {  

for(j=0; j<paraNB->numch+1; j++) {  

free(u[i][j]);  

}  

free(u[i]);  

}  

free(u);  

}  
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cal_v.c  
 

#include <math.h>  

#include <float.h>  

#include <stdio.h>  

#include <stdlib.h>  

#include <string.h>  

#include "data.h"  

#include <oratio/oratio.h>  

/*  

U is utility of each i, j, t;  

v is utility of each i, t, gumbel distributed, vit is randomly generated  

r is mode of v  

j=0, choice gas vehicle, u=asc+y*beta_y  

j=1, choice hybrid vehicle, u=asc+indiv*beta_indiv+static1*beta_sta1+y*beta_y  

j=2, choice electrical vehicle, u=indiv*beta_indiv+static2*beta_sta2  

*/  

/*make draws for y from normal distribution;  

parameters are from JM's calibration;  

There is a concept of scenario tree. From each current gas price, one 

scenario tree is generated with a two-time-period  

expansion which means the respondent can imagine all the possible situations 

happen for the next two time periods when standing at  

current time.  

y[t][n] is gas price in scenario trees which is dynamic variable.  

From the root of the tree, there are two levels of gas prices generated. From 

every price, four hypothetical prices are generated.  

The root price is gas price at current time period, y_int[t]. For example, 

from root price y_int[0], four prices at time 1  

in the scenario tree are generated; from each of the four prices at time 1, 

another four prices at time 2 are generated seperately.  

Therefore, for each current time period, total 20 gas prices will be 

generated. In the function, the 20 prices are put in one array,  

but this array is divided by two levels.  

From the current price y_int[t] at time t, four prices y[t+1][0], y[t+1][1], 

y[t+1][2], y[t+1][3] at time t+1 are generated first;  

then, from y[t+1][0],we have y[t+1][4],y[t+1][5],y[t+1][6],y[t+1][7] 

generated;from y[t+1][1],we have y[t+1][8],y[t+1][9],y[t+1][10],y[t+1][11] 

generated;  

from y[t+1][2],we have y[t+1][12],y[t+1][13],y[t+1][14],y[t+1][15] 

generated;from y[t+1][3],we have y[t+1][16],y[t+1][17],y[t+1][18],y[t+1][19] 

generated;  

*/  

/*  

y_int[t] is 3.XX, but the calibration function is only adapted to 3XX, so i 

put d->y_int[t]*100 for the function;  

therefore, y[t][n] generated will be 3XX, but the utility function will need 

3.xx, so i divide y[t][n] by 100 in the end.  

*/  

double** draw_random_y(Aldata* d, double **draw){  

int t, n;  

double **y;  
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y=nt_matrix_new(d->glonum->time+1, 20);  

for (t=0; t<d->glonum->time; t++){  

for (n=0; n<4; n++){  

y[t+1][n]=0.9757*d->y_int[t]*100+4.49+draw[t][n];  

y[t+1][4*n+4+0] = 0.9757*y[t+1][n]+4.49+draw[t][4*n+4+0];  

y[t+1][4*n+4+1] = 0.9757*y[t+1][n]+4.49+draw[t][4*n+4+1];  

y[t+1][4*n+4+2] = 0.9757*y[t+1][n]+4.49+draw[t][4*n+4+2];  

y[t+1][4*n+4+3] = 0.9757*y[t+1][n]+4.49+draw[t][4*n+4+3];  

}  

}  

for (t=1; t<d->glonum->time+1; t++){  

for (n=0; n<20; n++){  

y[t][n]=y[t][n] /100.0;  

}  

}  

return y;  

}  

/*calculate mode r[i][t] for the current time period with y_int[t] and all 

other variables correlated  

r_it=sum(exp(U_ijt));  

j=0,choice gas vehicle, u=asc+y*beta_y  

j=1,choice hybrid vehicle, u=asc+indiv*beta_indiv+static1*beta_sta1+y*beta_y  

j=2, choice electrical vehicle, u=indiv*beta_indiv+static1*beta_sta1  

*/  

double** calculate_mode_real(Aldata* d, double* x){  

int i=d->glonum->indivNum;  

int j=d->glonum->numch;  

int t;  

int k, l, m;  

double sum=0;  

int l0= d->glonum->numch-1;  

int l1= d->glonum->numINDIVAR;  

int l2= d->glonum->numch;  

int l3= d->glonum->numDYNAMIC;  

double **r_real;  

r_real= nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

double ***U=c_malloc_u(d->glonum);  

// calculate utility for three choices, from time 0  
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for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t=0; t<d->glonum->time; t++) {  

j=0;  

sum = 0.0;  

sum+=x[j];  

for (m=0; m<l3;m++ )  

{  

sum+=d->y_int[t]*x[l0+l1+l2-1+m];  

}  

U[i][j][t] = sum;  

j=1;  

sum = 0.0;  

sum+=x[j];  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+l];  

}  

for (m=0; m<l3;m++ )  

{  

sum+=d->y_int[t]*x[l0+l1+l2-1+m];  

}  

U[i][j][t] = sum;  

j=2;  

sum = 0.0;  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

U[i][j][t] = sum;  

}  
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}  

for(t=0; t<d->glonum->time; t++) {  

for(i = 0; i < d->glonum ->indivNum; i++) {  

sum=0;  

for (j = 0;j<d->glonum->numch;j++) {  

sum+=exp(U[i][j][t]);  

}  

r_real[i][t]= log(sum);  

}  

}  

free_u(U,d->glonum);  

return r_real;  

}  

/*calculate mode for the scenario tree, r[i][t][n], n means the position in 

the tree;  

in order to get mode, utilities need to be calculated, UY[i][j][t][n];  

utilities for each time period have two levels,  

UY[i][j][t][n],n=0,1,2,3 are in the first level with correlated variables at 

time t and y[t][n],  

n=0,1,2,3; UY[i][j][t][n],n=4...19 are in the second level with correlated 

variables at time t+1  

and y[t][n],n=4...19;  

so for the mode r[i][t][n], n=0,1,2,3 are in the first level; n=4...19 are in 

the second level.  

*/  

double*** calculate_mode(Aldata* d, double* x, double** y){  

int i=d->glonum->indivNum;  

int j=d->glonum->numch;  

int t;  

int k, l, m, n;  

double sum=0;  

double ***r;  

int l0= d->glonum->numch-1;  

int l1= d->glonum->numINDIVAR;  

int l2= d->glonum->numch;  

int l3= d->glonum->numDYNAMIC;  

r= c_malloc_v(d->glonum);  

double ****UY = c_malloc_uy(d->glonum);  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t=1; t<d->glonum->time+1; t++) {  

//calculate utilities for the first level of scenario tree, n=0,1,2,3  

for(n=0; n<4; n++){  

j=0;  
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sum = 0.0;  

sum+=x[j];  

for (m=0; m<l3;m++ )  

{  

sum+=y[t][n]*x[l0+l1+l2-1+m];  

}  

UY[i][j][t][n] = sum;  

j=1;  

sum = 0.0;  

sum+=x[j];  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

for (m=0; m<l3;m++ )  

{  

sum+=y[t][n]*x[l0+l1+l2-1+m];  

}  

UY[i][j][t][n] = sum;  

j=2;  

sum = 0.0;  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

UY[i][j][t][n] = sum;  

}  

//calculate utilities for the second level of scenario tree, n=4,...19  

for(n=4; n<20; n++){  

j=0;  

sum = 0.0;  
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sum+=x[j];  

for (m=0; m<l3;m++ )  

{  

sum+=y[t][n]*x[l0+l1+l2-1+m];  

}  

UY[i][j][t][n] = sum;  

j=1;  

sum = 0.0;  

sum+=x[j];  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+(t+1)*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

for (m=0; m<l3;m++ )  

{  

sum+=y[t][n]*x[l0+l1+l2-1+m];  

}  

UY[i][j][t][n] = sum;  

j=2;  

sum = 0.0;  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+(t+1)*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

UY[i][j][t][n] = sum;  

}  

}  

}  

for(i = 0; i < d->glonum ->indivNum; i++) {  
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for(t=1; t<d->glonum->time+1; t++) {  

for(n=0; n<20; n++){  

sum=0;  

for (j = 0;j<d->glonum->numch;j++)  

{  

sum+=exp(UY[i][j][t][n]);  

}  

r[i][t][n]= log(sum);  

}  

}  

}  

free_uy(UY,d->glonum);  

return r;  

}  

/*  

v is randomly drawn from gumbel distribution with mode r_itn, also in the 

scenario tree;  

n means the position of v in the tree;  

v[i][t][n], n=0,1,2,3 are in the first level; n=4...19 are in the second 

level  

*/  

double*** calculate_v(Aldata* d, double* x, double** y, double vp){  

int t,i,n;  

double*** v= c_malloc_v(d->glonum);  

double*** r=calculate_mode(d, x, y);  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t=1; t<d->glonum->time+1; t++) {  

for(n=0; n<20; n++){  

v[i][t][n]= st_gumbel_icdf(vp, r[i][t][n], 1 );  

}  

}  

}  

free_v(r, d->glonum);  

return v;  

}  

inline double max(double a, double b) {  

if (a<b) {  
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return b;  

}  

return a;  

}  

/*p_ijt is probability of purchasing the j kind of car;  

p is calculated through traditional logit way;  

err1 is error term for i,j,t; err2 is error term for i,t;  

*/  

double*** cal_probcar (Aldata* d, double* x){  

int i=d->glonum->indivNum;  

int j=d->glonum->numch;  

int t;  

int k, l, m;  

double sum=0;  

double ***err1, *err2;  

int l0= d->glonum->numch-1;  

int l1= d->glonum->numINDIVAR;  

int l2= d->glonum->numch;  

int l3= d->glonum->numDYNAMIC;  

int T=d->glonum->time;  

double ***P =c_malloc_u(d->glonum);  

double **w=nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

double ***U = c_malloc_u(d->glonum);  

err1 = d->err1;  

err2 = d->err2;  

for(t=0; t<T; t++) {  

for(i = 0; i < d->glonum ->indivNum; i++) {  

j=0;  

sum = 0.0;  

sum+=x[j];  

for (m=0; m<d->glonum->numDYNAMIC;m++ )  

{  

sum+=d->y_int[t]*x[l0+l1+l2-1+m];  

}  

U[i][j][t] = sum+err1[i][j][t]+err2[i];  

j=1; //choice hybrid vehicle, 

u=asc+indiv*beta_indiv+static1*beta_sta1+y*beta_y  

sum = 0.0;  

sum+=x[j];  

for (k=0; k<l1;k++ )  

{  



166 
 

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

for (m=0; m<l3;m++ )  

{  

sum+=d->y_int[t]*x[l0+l1+l2-1+m];  

}  

U[i][j][t] = sum+err1[i][j][t]+err2[i];  

j=2; //choice electrical vehicle, u=indiv*beta_indiv+static1*beta_sta1  

sum = 0.0;  

for (k=0; k<l1;k++ )  

{  

sum+=d->in[i].indiv[k]*x[l0+k];  

}  

for (l=0; l<d->glonum->numSTATIC-1;l++ )  

{  

sum+=(d->pot->stati[i][ (d->glonum->numSTATIC)*j+l+t*d->glonum-

>numSTATIC*l2])*x[l0+l1+(d->glonum->numSTATIC-1)*(j-1)+l];  

}  

U[i][j][t] = sum+err1[i][j][t]+err2[i];  

}  

}  

for(t=0; t<d->glonum->time; t++) {  

for(i = 0; i < d->glonum ->indivNum; i++) {  

sum=0;  

for (j = 0;j<d->glonum->numch;j++)  

{  

sum+= exp(U[i][j][t]);  

}  

w[i][t]=sum;  

for (j = 0;j<d->glonum->numch;j++)  

{  

P[i][j][t]= exp(U[i][j][t])/w[i][t];  

}  
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}  

}  

nt_matrix_free(w);  

free_u(U,d->glonum);  

return P;  

}  

/*recursive process for calculating E_AVE;  

n is the position in the tree  

*/  

double cal_E(Aldata* d, int t, int T, double *v, double current, int n, 

double* x, int indiv){  

int i;  

double e_ave;  

double ***err1, *err2;  

double c;  

err1 = d->err1;  

err2 = d->err2;  

int l0= d->glonum->numch-1;  

int l1= d->glonum->numINDIVAR;  

int l2= d->glonum->numch;  

int l3= d->glonum->numDYNAMIC;  

// Base case to cover the last time period  

/*  

if (T < t)  

return 0;  

*/  

c = current* x[l0+l1+l2-1+l3]+err1[indiv][3][t]+err2[indiv];  

if (t==T) // Base Case  

return max(v[n], c);  

else // Recursive Step  

e_ave=0;  

for(i=0; i<4; i++){  

e_ave+=cal_E(d, t+1, T, v, current+0.5, (4+4*n)+i, x, indiv);// go further to 

reach the second level in the tree  

}  

e_ave=e_ave/4;  

return max(v[n], c+e_ave);  

}  



168 
 

/*PI0,PI1 is probability of buying and not buying;  

C_it is utility payoff when not buying, =indiv*beta_indiv+mile*beta_mile;  

PI0 = F(v<W), Wit=Cit+Eit+1, E_it+1=max(v_it+1, C_it+1+E_it+2);  

E_AVE, the average expectation at each time period from 8 children 

excpectations;  

*/  

double** cal_prob (Aldata* d, double* x, double** y){  

double **PI0,**PI1, **C, **W, **E_AVE;  

double sum;  

double ***err1, *err2;  

int t, t2, i, n;  

int l0= d->glonum->numch-1;  

int l1= d->glonum->numINDIVAR;  

int l2= d->glonum->numch;  

int l3= d->glonum->numDYNAMIC;  

int T=d->glonum->time;  

err1 = d->err1;  

err2 = d->err2;  

C=nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

W=nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

E_AVE=nt_matrix_new(d->glonum-> indivNum, d->glonum->time+1);  

PI0=nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

PI1=nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

double ***v=calculate_v(d,x,y,d->vp);  

double **r_real=calculate_mode_real(d,x);  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t=0; t<d->glonum->time; t++) {  

sum = 0.0;  

sum+=d->curr->current[i][t]* x[l0+l1+l2-1+l3];  

C[i][t] = sum+err1[i][3][t]+err2[i];  

}  

}  

// calculate expecations E_AVE in the first level of the tree in a recursive 

way;  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for (t=0; t<T; t++){  

t2 = t+2;  

/*  
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if(t2 == T)  

t2 = T-1;  

else {  

if(t2 == T+1)  

t2 = 0;  

}  

*/  

E_AVE[i][t+1]=0;  

for(n=0; n<4; n++){  

E_AVE[i][t+1]+= cal_E(d, t+1, t2, v[i][t+1], d->curr->current[i][t]+0.5, n, x, 

i);  

}  

E_AVE[i][t+1]=E_AVE[i][t+1]/4;  

W[i][t]= C[i][t]+E_AVE[i][t+1];  

}  

}  

//calculate probabilities of postponing PI0 with reservation utility W, mode 

r  

for(i = 0; i < d->glonum ->indivNum; i++) {  

for(t=0; t<d->glonum->time; t++) {  

PI0[i][t]=st_gumbel_cdf(W[i][t], r_real[i][t], 1);  

PI1[i][t]=1-PI0[i][t];  

}  

}  

nt_matrix_free(C);  

nt_matrix_free(W);  

nt_matrix_free(E_AVE);  

free_v(v,d->glonum);  

nt_matrix_free(r_real);  

nt_matrix_free(PI1);  

return PI0;  

}  
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 LL.c  
 

#include <math.h>  

#include <float.h>  

#include <stdio.h>  

#include <stdlib.h>  

#include <string.h>  

#include "data.h"  

#include <ophelia/nlp.h>  

#include <ophelia/nlp_collection.h>  

#include <oratio/oratio.h>  

//#include "tstat.h"  

/*PB is the product specific purchase probability (j-0,1,2);  

PB=PI1*P  

j=3 PB is the probability of not buy  

*/  

double fLL(double* x, int n, void* data) {  

Aldata* d = (Aldata*) data;  

double ***PB = d->prob_matrix;  

double** y= draw_random_y(d, d->draw);  

double ***P =cal_probcar(d,x);  

double **PI0=cal_prob (d,x,y);  

int i, j, t;  

double ***ch, LL;  

ch=c_malloc_P(d->glonum);  

for(i = 0; i < d->glonum ->indivNum; i++){  

for (t=0; t<d->glonum->time; t++) {  

for (j = 0;j<d->glonum->numch+1;j++) {  

ch[i][j][t]=d->pot->decision[i][t*4+j];  

}  

}  

}  

for(i = 0; i < d->glonum ->indivNum; i++){  

for (t=0; t<d->glonum->time; t++) {  

for (j = 0;j<d->glonum->numch;j++)  

{  

PB[i][j][t]= (1-PI0[i][t])*P[i][j][t];  

}  

PB[i][j][t]= PI0[i][t];  

}  

}  

LL=0;  
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for(i = 0; i < d->glonum ->indivNum; i++) {  

for (t=0; t<d->glonum->time; t++) {  

for (j = 0;j<d->glonum->numch+1;j++)  

{  

LL+=ch[i][j][t]*log(PB[i][j][t]);  

}  

}  

}  

// printf("Log likelihood:");  

//printf(" %f", LL);  

//printf("\n");  

free_p(ch, d->glonum);  

nt_matrix_free(PI0);  

nt_matrix_free(y);  

free_u(P, d->glonum);  

return -LL/(200*12);  

}  

/* optimization;  

H, preallocated array of size btr->n*btr-btr->n, if the hessian is needed;  

I, Hessian matrix;  

I1, inversed Hessian matrix;  

*/  

int btr_unconstrained_opt(NTLog *log, BTR *b, Aldata* d)  

{  

double **H;  

double *t, *h;  

int n=get_dimension(d);  

int i;  

double tol=0; //sets tolerance and scale for hessian derivation  

double scale[n];  

int s;  

FILE *out;  

out=fopen("matrix.txt","w");  

t=malloc(n*sizeof(double));  

double work[100*(b->n)];  

//b->retro = 1;  

H = nt_matrix_new(n, n);  

nt_matrix_identity(n, n, *H, n);  

nt_log_subsection(log, "optim of Log likelihood");  

nlp_btr_init(b, n, 0);  
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/* Starting point */  

// b->x[0] = -1;  

read_new_para(b->x, d->glonum);  

b->printer = btr_print_iteration;  

nlp_btr(b, (C_GENERIC)fLL, NULL, d, log->f, H, work);  

//derive hessian matrix  

for(s = 0; s < n; ++s)  

scale[s]=1.0;  

h = malloc(n*sizeof(double));  

nt_derive_hess_cd((C_GENERIC)fLL, b->x, H, h, tol, scale, n, NULL, work, 

(void*) d);  

op_matrix_inverse(CblasRowMajor, CblasUpper, *H, n);  

double bugfound[n];  

int bugindex = 0;  

for(bugindex=0; bugindex<n; ++bugindex)  

bugfound[bugindex] = 0;  

amlet_t_statistics(n, b->x, bugfound, H, 0.05, t);  

//Print out inversed hessian matrix  

nt_matrix_print(out, "matrix", H, n, n);  

// Print out the t-statistics  

printf("t:");  

for(i=0; i < n; i++) {  

printf(" %f", t[i]);  

}  

return 0;  

}  

int main(int argc, char **argv) {  

BTR *b = malloc(sizeof(BTR));  

NTLog *log;  

Aldata *d = (Aldata*) format_data();  

int n=get_dimension(d);  

nlp_btr_init(b, n, 0);  

log = nt_log_new(NULL);  

btr_unconstrained_opt(log, b, d);  
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nt_log_free(log);  

nlp_btr_free(b);  

free_ind(d->in, d->glonum);  

free_cur(d->curr, d->glonum);  

free_poten(d->pot, d->glonum);  

free_err(d);  

free_glo(d->glonum);  

free(d);  

return 0;  

}  

; 
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