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Abstract

In this paper, we present an e�cient resource allocation scheme for scheduling and
bu�er management in a bottleck hybrid internet gateway. We use Fair Queueing in
conjunction with Probabilistic Fair Drop, a new bu�er management policy, to allocate
bandwidth and bu�er space in the gateway to ensure that all TCP 
ows threading
the gateway achieve high end-to-end throughput and fair service. We propose the use
of bu�er dimensioning to alleviate the inherent bias of the TCP algorithm towards
connections with large Round Trip Time and validate our scheme through simulations.

1 Introduction

In recent years, the feasibility of using existing internet protocols in the TCP/IP suite in hy-
brid satellite-terrestrial networks has become an active research area. Transmission Control
Protocol (TCP) is an adaptive window based protocol used for 
ow and congestion control
over the internet. The sliding window used by the TCP algorithm at the source dynam-
ically varies in response to acknowledgements, timeouts or packet losses. When multiple
TCP connections share a link with high bandwidth-delay product, it has been observed [1]
that synchronization of multiple TCP connections results in low link utilization. The na-
ture of the algorithm causes severe degradation of TCP throughput when a connection loses
multiple packets. Recent simulation studies [2] have shown that per-
ow scheduling and
bu�er management policies, in spite of their higher computational complexity and control
overhead, perform better than their global counterparts, which consider aggregated 
ows.
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TCP's inherent unfairness to connections with long Round Trip Time (RTT) is especially
evident when a connection that includes a long latency satellite hop shares a bottleneck link
with other connections that have relatively smaller RTT's as illustrated in �g. [1].
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Figure 1: Motivation

The traditional internet, with its characteristic \best-e�ort" service now carries tra�c
of widely varying throughput, delay, jitter or loss requirements. In order to provide service
di�erentiation between these di�erent tra�c classes, network bandwidth needs to be man-
aged e�ciently. The mechanism that facilitates this management is the scheduling algorithm
used in intermediate routers or gateways. The choice of the scheduling discipline at these
switching nodes determines the per-connection end-to-end performance guarantees that the
network can provide. Important factors that determine this choice are the e�ciency of the
algorithm in enforcing the Quality of Service (QoS) guarantees, the computational complex-
ity and the fairness and 
exibility of the algorithm in handling excess tra�c.

While fair scheduling ensures e�cient use of network bandwidth, the role of bu�er man-
agement becomes evident at the time of network congestion. Packets must be dropped
in accordance to a policy that provides isolation (protection from misbehaving sources),
fairness (proportional use of available bu�er) and e�ciency (decision to discard a packet).
In this paper, we propose the use of Probabilistic Fair Drop (PFD), a bu�er management
strategy, which in combination with an e�cient fair scheduling algorithm will improve TCP
throughput signi�cantly. We compare the performance of our scheme with that of other
bu�er management schemes such as Random Early Detection (RED) [7], Longest Queue
Drop (LQD) and Random Drop (RND) [2].
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2 Fair Scheduling : An Introduction

Fair scheduling algorithms that provide end-to-end delay guarantees on a per-
ow basis try
to emulate the ideal behavior of the Generalized Processor Sharing Algorithm (GPS) which
is based on a 
uid 
ow model of tra�c. The GPS policy is ideally fair in handling excess
tra�c. IfWi(t1; t2) is the amount of service 
ow i recieves in the interval (t1; t2), GPS ensures
that for any two 
ows, i; j back-logged during the interval (t1; t2), the following relation holds

Wi(t1; t2)

�i
=

Wj(t1; t2)

�j
(1)

where �i and �j are the weights assigned to the 
ows i; j respectively.

Weighted Fair Queuing(WFQ) [3] and Packet-by-Packet generalized Processor Sharing
(PGPS) [4] are approximations to GPS scheduling that do not make GPS's in�nitesimal
packet size assumption. The end-to-end delay bound resulting from PGPS can be computed
based on the weight assigned to the 
ow. The complexity of the insertion and deletion from
sorted priority queue is O(logN), making it infeasible for a very large number of 
ows. Worst-
case Fair Wieghted Fair Queueing (WF2Q) uses both the start and �nish times of packets in
the reference GPS system to achieve a more accurate emulation of GPS. Self-Clocked Fair
Queuing (SCFQ) [5] is a way to speed up PGPS's biggest limitation - the round-number
computation. The end-to-end delay bound of SCFQ, however, is much larger than PGPS. In
our study, we use Start-time Fair Queuing (SFQ) [6] as the scheduling discipline. SFQ uses
the e�cient computational aspects of SCFQ but does not have the large worst case delay
and short term unfairness su�ered by SCFQ. In SFQ, packets are serviced in the increasing
order of start tags, the assignment of which is O(1) in computational complexity. SFQ is
computationally e�cient, has a bounded fairness measure and achieves low average as well
as maximum delay for low throughput connections.

3 Related Approaches to Bu�er Management

The \random drop" notion of RED gateways was motivated by the systematic discrimination
against some connections by a \Drop-Tail" gateway in a TCP/IP network with strongly pe-
riodic tra�c. The decision to accept an incoming packet in RED is based on whether the low
pass �ltered average queue size exceeds or conforms to predetermined thresholds. As long
as the average queue size is between minth and maxth, an arriving packet is dropped with a
probability that increases linearly with average queue size. Flows are penalized roughly in
proportion to their bu�er occupancy. While RED tries to ensure per-
ow fairness without
per-
ow state having to be maintained in the router, it turns out to be unfair to low rate
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TCP 
ows. The randomness of the drop decision combined with the dropping of the arriving
packet could cause the congestion window of a 
ow to be halved irrespective of whether it
exceeds its fair share of the bu�er. Flow RED (FRED) [8] was proposed to alleviate some
of RED's limitations. FRED monitors bu�er occupancies on a per-
ow basis with minth
and maxth being de�ned for each 
ow. This rigid allocation of thresholds, however, is not
e�ective in managing excess bandwidth when the network is not congested.

Figure 2: Multiple drops in RND : connection 1 and connection 3 su�er drops with high
temporal locality and drop their windows simultaneously. connection 2 su�ers multiple drops
initially and experiences severely degraded performance.

The notion of having higher packet drop rates for connections with longer queues is
re
ected in the LQD and RND policies of [2]. Each 
ow is allocated a \soft threshold"
bi with the total bu�er capacity given by B =

Pn
i=1 bi. The instantaneous queue size qi

is monitored for each 
ow. These schemes, unlike RED and its variants, do not drop the
incoming packet. When the total bu�er occupancy,

Pn
i=1 qi is B is exceeded, a packet is

chosen to be discarded from a connection whose current occupancy exceeds its allocation. In
LQD, a packet is dropped from a connection i for which (qi� bi) is the largest. In RND, the
connection i is chosen at random from amongst connections for which (qi > bi). Once the
connection is chosen, the packet is dropped from the front of the queue in order to trigger
TCP's FRR mechanism faster [9]. While being innovative, these schemes necessarily have
to drop packets during congestion. They do not try to predict the onset of congestion by
monitoring the queue size and use the instantaneous queue size to determine the drop queue.
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By waiting until congestion occurs, it is highly likely that multiple packet drops occur
with high temporal locality, leading to one of two undesirable behaviors.

1. The same source is penalized multiple times, leading to severe degradation in the
throughput of this source (LQD).

2. Multiple sources are penalized, causing 
ow synchronization and hence degradation in
the link utilization(RND).

In summary, and to motivate our approach, we make the following observations on ex-
isting bu�er management schemes.

1. Predicting the onset of congestion helps avoid multiple drops with high temporal lo-
cality.

2. Per 
ow schemes such as FRED however, are rigid in their threshold allocations, and
do not allow a 
ow to expand into the global bu�er space even when bu�er space is
available.

3. Schemes with a global threshold such as RED are unfair to low rate TCP 
ows.

4 The Probabilistic Fair Drop (PFD) Algorithm

In the presence of per 
ow queuing, we dynamically share the total available bu�er B equally
among all currently active connections n. A soft threshold bi is allocated for each 
ow bi =

B
n
.

Later sections discuss bu�er dimensioning to alleviate TCP's unfairness to long RTT con-
nections.

We attempt to predict the onset of congestion by monitoring the total instantaneous
bu�er occupancy q size = (

Pn
i=1 qi) against a single global threshold, thresh. As long as the

bu�er occupancy does not exceed thresh, no packets are discarded and a 
ow may expand to
�ll all the available bu�er space. Once thresh is exceeded, a drop decision is evaluated with
a �xed probability p. This decision is independent of the choice of the 
ow to be penalized.

If the decision is made to discard a packet, a 
ow is chosen as follows. We de�ne a
normalized instantaneous 
ow size, ni = qi=bi. We now choose the 
ow with the highest
normalized instantaneous 
ow size and push out the packet at the head of the chosen 
ow.
The drop probability, p and threshold, thresh prove to be e�ective measures to counter the
e�ects of multiple packet losses for a single connection as well as 
ow synchronization.
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Speci�ed Parameters :

p : �xed drop probability
thresh : �xed threshold (% of global bu�er space) (0 < thresh < 1)
B : global bu�er space

Variables :

q size : global instantaneous bu�er occupancy
qi : instantaneous occupancy of queue i
ni : normalized instantaneous occupancy of queue i
bi : dynamic soft threshold of queue i
drop q : queue to discard from i

Algorithm :

For each packet arrival
increment q size
classify packet into 
ow i
increment qi
compute ni =

qi
bi

if q size > B
drop from longest normalized q

else if q size > thresh �B
with prob p
drop from longest normalized q

else continue

drop from longest normalized q

choose drop q =
argmax

i (ni)
push-out the packet at the head of drop q
decrement q size

Figure 3: The Probabilistic Fair Drop Algorithm

Probabilistic discard with a conservative threshold and a low value of p ensure that a
bursty connection will su�er packet losses that are further apart on the time axis, and not be
penalized repeatedly. This also allows more time for the connection to respond to congestion.
Unlike RND, where packets necessarily had to be discarded from a set of 
ows when the
bu�er over
owed, with PFD, packet discards from di�erent sources occur with low temporal
locality, thus preventing 
ow synchronization.

Packet drops in PFD are not always from non-conformant sources, thus providing an
early warning mechanism for conformant sources with large queue buildups as well. Since
PFD penalizes the queue which utilizes its largest normalized bu�er share, the drop proba-
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bility for a queue is proportional to its normalized bu�er occupancy.

5 Simulation Methodology and Results
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Figure 4: Simulation Model

Simulations were carried out using the OPNET Network simulator [12]. We adopt the n
source TCP con�guration for the network model. In this con�guration the TCP sources
share a common bottleneck link of capacity C and are subjected to varying propagation de-
lays. The TCP sources implement TCP Reno with the Fast Retransmit and Fast Recovery
algorithms [13]. In this section, we use data sources with very large �le sizes to compare the
steady state performance of PFD versus that of other bu�er management schemes. Studies
on short transient connections are documented in a later section.

The router at the bottleneck link implements packetized versions of several bu�er man-
agement strategies including Tail Drop, Drop from Front, RED, LQD, RND and PFD.
Scheduling strategies such as FCFS, Round Robin and FQ are also con�gurable at this
router. Queuing e�ects are limited to the IP queues in the gateway by matching the IP
forwarding rate at the router with the desired bottleneck link rate C.

In our simulations, we studied the performance of the PFD bu�er management scheme
with a FQ scheduler when multiple TCP connections with di�erent rates and propagation
delays share a bottleneck link with high bandwidth delay product. The router at this bottle-
neck link is con�gured with various bu�er management and scheduling policy combinations
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used for the study. We compare the performance of FQ-PFD with FCFS-RED, FQ-RED,
FQ-LQD and FQ-RND.

5.1 Performance Measures

We evaluate the performance of the various schemes using the TCP "goodput". We de�ne
the goodput as the average rate of data delivered to the application by TCP. The total scalar
goodput is obtained by averaging the goodput across all connections. To evaluate the steady
state performance lare data sources are used for long periods of time until the average rate
stabilizes.

Figure 5: Evolution of TCP goodput with time for 10 low RTT TCP-reno connections
sharing a bottleneck link of 2 Mbps

The ideal combination of scheduling discipline and bu�er management policy would en-
sure that each 
ow threading the bottleneck router receives the same amount of service over
any interval of time. A good scheme would penalize a 
ow that exceeds its fair share and
ensure that excess bandwidth is shared fairly among backlogged 
ows when the network is
not congested. We use the Fairness Coe�cient de�ned in [10] as a measure of how fairly
the scheme distributes bandwidth among competing 
ows. The Fairness Coe�cient, F is
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de�ned as

F =
(
PN

k=1 bi)
2

n
PN

k=1 b
2

i

(2)

where n is the number of 
ows and bi is the bandwidth obtained by flow i. From this de�ni-
tion, we see an ideally fair scheme would have a fairness coe�cient of 1, while a completely
unfair scheme would result in a coe�cient of 1=n. We study the fairness of our scheme over
di�erent bu�er sizes and compare performance with the other schemes.

5.2 Performance results
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Figure 6: TCP goodput (after 500 sec) versus bu�er size at the bottleneck router for 10 low
RTT TCP-reno connections sharing a bottleneck link of 2 Mbps

We compare the performance of RED, LQD and RND with PFD with an SFQ scheduler.
From �g. [5] we see that in steady state PFD outperforms RED,LQD and RND. The early
warning system of PFD combined with the pushout drop policy allows PFD to ramp up to
a higher average rate.

Fig. [6] shows that PFD in general outperforms other schemes even in the case of short
RTT connections sharing a bottleneck link. For this simulation setup it was observed that
all the schemes have a fairness coe�cient of close to 1. This may be attributed to the similar
RTTs and behavior of the connections sharing the bottleneck link.

We now turn our attention to connections with widely varying RTTs. We consider the
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goodput of 10 TCP-reno connection with RTTs varying from 20 ms to 200 ms (of the order
of a satellite RTT) sharing the same bottleneck link. Note that our version of TCP-reno
also implements the TCP window scale option [14] and hence the goodput of the large RTT
connections are not limited by the TCP congestion window growth.
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Figure 7: TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er size at the
bottleneck router for 10 TCP-reno connections with RTTs varying between 20 and 200 ms

We plot the performance over a widely varying range of bu�er sizes and attempt thereby
to capture the goodput and the fairness metrics over this range. The range of bu�er sizes
is chosen to capture regions in which the queuing delay is insigni�cant in comparison to the
longest RTT as well as regions in which the queuing delay is signi�cant and is comparable
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to the RTT of the longest RTT connection.

From �g.7 we see that for lower bu�er sizes RND performs better than PFD in terms
of goodput. A comparision with the fairness coe�cient curve indicates, however, that the
improved goodput is at the expense of fairness to long RTT connections. This may be at-
tributed to the random choice that RND makes from the set of non-coformant connections
when choosing a 
ow to penalize. Not surprisingly, LQD is observed to be consistently fairer
than RND. PFD's higher fairness coe�cient can be explained by observing that while both
LQD and PFD are similar in 
avor when picking a 
ow to penalize, the early drop nature
of PFD allows longer RTT 
ows more time to react.

As expected, RED experiences the worst performance in terms of goodput. The high
degree of fairness of RED in this case may be explained by observing that like PFD, RED
also employs an early detection mechanism and the random choice of 
ow appears to even
out over longer periods of time. The fairness of PFD becomes more evident over shorter time
scales. Also, for asymmetric channels studied in [2] and later in this paper, RED performs
very poorly in terms of fairness due to its drop tail nature. We note that PFD o�ers the
best performance from a combined fairness and goodput perspective. In PFD, fairness is
achieved without a corresponding decrease in goodput. We further verify our results by
studying a mix of 10 TCP-reno connections, 5 of which experience short RTTs and 5 of
which experience satellite delay RTTs. The results are presented in and lend themselves to
similar observations.

5.3 Bu�er Dimensioning to improve the performance of long RTT


ows

An analysis of TCP throughput as a function of loss probability [11] has shown that TCP
throughput varies inversely as the Round Trip Time (RTT). The dynamics of the algorithm
also causes the rate of window growth to be inversely proportional to RTT, both in the
Slow Start and Congestion Avoidance phases of the algorithm. This inherent bias towards
long RTT connections is further worsened by global bu�er management strategies, that
do not allow long RTT connections to build up the larger windows they need in order to
maintain the same throughput as shorter RTT connections. First Come First Served (FCFS)
scheduling, which o�ers service to a connection in proportion to its bu�er occupancy, is
known to be more unfair to long RTT connections than Fair Queuing (FQ). In this paper,
we address both these issues. We examine the throughput of long RTT connections when
FQ is used in conjunction with proportional bu�er allocation and PFD. The \soft" per-
ow
bu�er thresholds are allocated in proportion to RTT, with bi now being allocated as

bi = fRTTi=(
Pn

i=1RTTi)gB
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This proportional allocation of soft thresholds allows longer RTT connections a better chance
to build up their larger windows. PFD is used for packet discard decisions. The assignment
of equal weights to all connections ensures that the scheduler still treats all connections with
equal priority, giving each a fair share of the link bandwidth.
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Figure 8: TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er size at the
bottleneck link with and without bu�er dimensioning

Fig. [8] illustrates the e�ects of bu�er dimensioning as outlined earlier and raises the is-
sue of a trade-o� between fairness coe�cient and TCP goodput. While the proposed scheme
results in increased fairness towards connections with long RTT (and therefore an increased
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fairness coe�cient), this comes at the cost of a decrease in TCP goodput. The overall de-
crease in TCP goodput resulting from bu�er dimensioning is o�set by the increased goodput
for the higher RTT connections. This trend is favourable from the point of view of individual

ows threading a satellite gateway, where a user is charged for the duration of time that the
uplink bandwidth is utilized.

An interesting observation in this context is the decline of the fairness coe�cent with
increasing bu�er size. For the same tra�c conditions, an increase in bu�er size implies
fewer packet drops. As the bu�er size approaches in�nity, there are vitually no discards.The
TCP throughput for a connection is then determined by its RTT. The dynamics of the TCP
algorithm then come into play and a bias towards long RTT connections is observed inspite
of Fair Queueing.

6 Conclusions

In this paper, we study the performance of an e�cient resource allocation scheme in a
bottleneck hybrid internet gateway with per-
ow queueing. We combine a fair scheduling
algorithm with Probabilistic Fair Drop, a new bu�er management scheme and use simu-
lations to evaluate the end-to-end performance parameters of TCP goodput and Fairness
Coe�cient for the scheme. Our simulations indicate that this allocation scheme performs
well with respect to both these parameters in comparison to other schemes that use Fair
Queueing in conjunction with other bu�er management policies such as Random Early De-
tection (RED), Longest Queue Drop (LQD) and Random Drop (RND). We study the use of
bu�er dimensioning as a method to counter the unfairness of TCP towards connections with
large RTT. We conclude from our simulations that the degradation in overall throughput is
compensated by increased fairness to longer RTT connections and therefore better through-
put for such connections. While the �xed parameters for the PFD scheme worked extremely
well for our simualtion set-up, parameter estimation for a wide range of tra�c conditions
would be required to make the scheme more viable in a dynamically changing environment.
We intend to study methods of estimation of drop probability and threshold as a function
of bu�er size and tra�c characteristics in the course of future work.
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