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During the normal cycle of transfer between its vector (the flea) and a 

mammalian host, Yersinia pestis (Y. pestis) is exposed to significantly different 

environmental conditions.  Studies have shown gene expression patterns in Y. pestis 

differ significantly under these separate conditions.  In many bacteria, large-scale 

gene expression changes are modulated by DNA methylation.  To date, methylation 

patterns of the Y. pestis genome have not been examined.  In this study, the 

methylome of Y. pestis was characterized and whether a change in methylation 

accounts for change in gene expression was determined.  

The methylation pattern of the Y. pestis genome, having been characterized, provides 

a reference methylome.  A comparison of the methylation state at different 

temperatures selected to represent vector and host conditions, showed no significant 

change in methylation pattern.  It is concluded from this study that the methylation 



 

  

pattern of the Y. pestis genome is not altered according to the temperature of its vector 

or mammalian host. 
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Table 1  - Sequencing coverage obtained for each reference sequence 

Sample 
Plasmid 
pPCP1 

Coverage 

Plasmid 
pCD1 

Coverage 

Plasmid 
pMT1 

Coverage 

Chromosome 
Coverage 

Control 1080.2x 400.7x 184.08x 497.32x 

28°C 3958.07x 1537.3x 802.93x 773.31x 

37°C 1062.53x 453.35x 261.58x 391.07x 

 

 

Table 2  - Motifs Detected in samples, the counts detected, when the QV threshold was set 
to 100 due to the high coverage to reduce the false positive identification of motifs 

Sample Motif 
Modification 

Type 

# 
Detected 
of Motif 

# 
Predicted 

in 
Reference 

% 
Detected 
in Sample 

Control 

GATC 6-mA 

0 0 0% 

28°C 37816 37886 99.82% 

37°C 37714 37886 99.55% 

Control 

CCWGG 4-mC 

0 0 0% 

28°C 2334 5824 40.08% 

37°C 0 0 0% 

 

Table 3  -ANOVA analysis results of the each nucleotide position IPD at each comparison 
performed (numbers are the overall IPD percent similarity) 

Sequence 28°C  to 37°C 
28°C  to 
Control 

37°C  to Control 

Plasmid pPCP1 100 99.45 99.45 

Plasmid pCD1 100 99.58 99.53 

Plasmid pMT1 100 99.87 99.81 

chromosome 100 99.38 99.36 
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Figure 1 – Genomic maximum parsimony tree and divergence dates of Yersinia pestis.  
Black text is the name of the strain, colored text is the branch and population name, grey 
text is the min/max dates of divergence.  Figured obtained from Yersinia pestis genome 

sequencing identifies patterns of global phylogenetic diversity1. 
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Figure 2– Fully parsimonious minimal spanning tree of the SNPs in 282 isolates of Yersinia 
pestis.  Strains are listed near terminal nodes.  Figured obtained from Yersinia pestis 

genome sequencing identifies patterns of global phylogenetic diversity1. 
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Figure 3– Image of the Pacific Biosciences zero-mode waveguide, with a molecule of DNA, 
bound polymerase, free dNTPs, and the method of reading the base incorporation.  Figure 

obtained from Real-Time DNA Sequencing from Single Polymerase Molecules2. 

 

Figure 4– Image of the Pacific Biosciences detection of methylated bases.  In the top 
portion of the image, when the base is incorporated at a methylated A location, there is 
an increase in the kinetics compared to the non-methylated base, lower portion. Figure 

obtained from Direct detection of DNA methylation during single-molecule, real-time 
sequencing3. 
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Figure 5 – Modifications quality score (QV) vs. Coverage graph for Y. pestis CO92 

grown on TSA agar @ 30°C for 48 hrs.  The peak of red scatter plots indicate an 

increase in methylated A bases, an indication of 6mA sites being present in the sample. 

 

 
Figure 6 - Modifications quality score (QV) vs. Coverage graph for Y. pestis CO92 

grown on BHI agar @ 35°C for 48 hrs. The peak of red scatter plots indicate an 

increase in methylated A bases, an indication of 6mA sites being present in the sample. 
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Figure 7 - Modifications quality score (QV) Histogram graph for Y. pestis CO92 grown 

on TSA agar @ 30°C for 48 hrs.  The histogram shows a divergence of the A base 

quality scores from the other bases.  This is another visualization that there are 

modified A bases present in the sample. 

 
Figure 8 - Modifications quality score (QV) Histogram graph for Y. pestis CO92 grown 

on BHI agar @ 35°C for 48 hrs. The histogram shows a divergence of the A base quality 

scores from the other bases.  This is another visualization that there are modified A 

bases present in the sample. 
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Figure 9 – Biological replicate comparison at the base level.  This method was used to 

determine if the biological replicates were significantly similar to each other to pool 

together to form a larger dataset for further analysis. 

 

 
Figure 10 – Combination of biological replicates to one sample and the comparisons at 

the base level.  This was the grouping done to create a larger pool of data for the 

temperature comparisons. 
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Figure 11 - Modifications quality score (QV) vs. Coverage graph for MDA treated Y. 

pestis CO92.  The absence of a defined population of C or A populations indicates that 

there are no methylated bases present in the sample. 

 
 

 
Figure 12- Modifications quality score (QV) vs. Coverage graph for Y. pestis CO92 

grown at 28°C. The peak of red scatter plots indicate an increase in methylated A bases, 

an indication of 6mA sites being present in the sample.  There is also a visible amount of 

C bases above the base but below the dense A population.  This shows possible C 

methylation present in the sample. 
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Figure 13 - Modifications quality score (QV) vs. Coverage graph for Y. pestis CO92 

grown at 37°C. The peak of red scatter plots indicate an increase in methylated A bases, 

an indication of 6mA sites being present in the sample.  
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Introduction 

Background on Yersinia pestis 

Y. pestis disease 

There are three clinical forms of plague:  bubonic, septicemic, and pneumonic.  

Most cases are of the bubonic and septicemic versions of the disease.  If the disease is 

not treated, bubonic plague mortality is approximately 40-60%, whereas septicemic 

and pneumonic plague are 100% fatal. 

Bubonic plague received its name because this form causes swollen, tender 

lymph nodes, known as buboes.  Buboes usually form in the lymph node closest to 

the site of the bite from a flea, from which the infection is transmitted.  Other 

symptoms include fever, headache, chills, and weakness, which usually last between 

two to eight days4-6. 

Septicemic plague is defined when blood culture is positive and the symptoms 

are similar to those of gram-negative bacterial septicemias.  Septicemic plague has a 

30-50% mortality rate, even with antibiotic treatment.  The incubation period for 

septicemic plague is one to four days5-6. 

Pneumonic plague is very rare, but extremely deadly.  It is estimated that the 

infectious dose is as low as 100 to 500 organisms.  The methods of transmission are 

inhalation of the bacteria via respiratory droplets of infected individuals or animals.  

Accidental inhalation of plague bacteria in the laboratory has also been reported5-6. 
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History of Y. pestis outbreaks 

Three pandemics have been described in the history of Y. pestis, the first being 

the Justinian plague, 541-767 AD.  During this pandemic that occurred in the 

Eygptian and the Mediterranean basins, approximately 100 million people died from 

the disease.  The second and most famous pandemic is the Black Plague that occurred 

during the Middle Ages (from 1346 to the 1800s) and is believed to have killed 

approximately a third of the population of Europe5-7.  The third pandemic began in 

the mid-1800s5-7.  With the exception of Australia, Y. pestis is globally endemic and 

today the disease results from contact with infected wild animal reservoirs, rather 

than being transmitted by infected rats.  Thus, human cases of plague usually are 

preceded by an epizootic outbreak in the geographic region of an epidemic5-6. 

Yersinia pestis, the causative agent 

Y. pestis, the causative agent of plague, is a Gram-negative bacterial pathogen 

discovered by Alexandre Yersin during his studies of the fluid from enlarged lymph 

nodes of plague victims.  At the time Yersin was able to prove only that the disease 

was caused by a gram-negative bacterium and it was Paul-Louis Simond who made 

the discovery that Y. pestis was transmitted by rat fleas5-6.   

 Y. pestis has been shown to survive in soil for long periods of time and in his 

studies Yersin was able to isolate Y. pestis from the soil around homes of infected 

individuals8.  In 2008, a study was done to examine the ability of Y. pestis to survive 

in soil, showing Y. pestis could remain viable in soil for up to 40 weeks8.  However, 

Y.pestis will die rapidly in soil at temperatures of 40°C or greater and also in 

desiccated soil6,8. 
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Modes of transmission 

Rodents are the primary reservoir of Y. pestis in the wild and fleas are the 

principal vector of Y. pestis.  While only a few species of flea are known to serve as a 

vector for the disease, over 100 species have been shown to be capable of harboring 

the bacterium9.  Typically, Y. pestis is transmitted between hosts when a flea acquires 

the bacteria while feeding upon an infected rodent and moves on to feed on an 

uninfected rodent.  The disease often spreads outside its typical cycle when an 

infected flea feeds on another mammalian host, including humans.  Other modes of 

infection include aerosols and handling contaminated fluids or tissue.   

The most commonly considered transmission system is the proventricular 

blockage model.  In this model, fleas become infected by feeding on the blood of 

infected rodents.  After feeding, Y. pestis begins to grow and multiply within the gut 

of the flea.  Once the bacteria have multiplied sufficiently to block the gut of the flea, 

the flea will regurgitate its meal, causing the bacteria to be introduced into the bite 

wound during feeding9-12.  Even with this being the most widely accepted model, a 

study carried out in 2006 presented data demonstrating transmission of Y. pestis was 

efficient, even when flea guts were not blocked and suggesting there are other 

mechanisms of early-phase transmissions13. 

A mechanistic transmission model has been proposed that is similar to sharing 

an infected needle.  When fleas feed on infected hosts, blood left on the mouth part of 

the flea is infected with Y. pestis.  When the flea takes another blood meal, the new 

host is infected with the contaminated blood present on the mouth of the flea12.  
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Temperature is also believed to have an impact on the ability of Y. pestis to 

spread and be transmitted.  A study reported in 2011 showed that Y. pestis can be 

transmitted even at high temperatures.  It was also concluded that plague outbreaks 

would be hard to maintain when temperatures are in the range of 27°C -30°C.  Thus, 

it is concluded that other factors contribute to the success of transmission at high 

temperatures14. 

Formation of biofilms has been linked to the blockage model.  The ability of 

Y. pestis to produce biofilms was discovered when the bacterium was grown on 

Congo red agar at 28°C.  The colonies are pigmented, but when grown at 37°C 

pigmentation is blocked, a characteristic phenomenom of bacterial biofilms.  In the 

case of Y. pestis, biofilm formation has been shown to play a vital role in transmission 

from the flea.  The bacterium, when exposed to the lower temperature of the flea, will 

form a biofilm matrix which, in turn, allows the bacterium to colonize the 

proventricular spines of the flea, thereby aiding transmission15. 

Genetic information 

The genome of Y. pestis comprises a 4.6 MB chromosome and three plasmids 

-- pCD1 (~70kb), pPCP1 (~9.6 kb), and pMT1 (~100 kb)16.  The known virulence 

genes reside predominantly on the plasmids17.  Y. pestis has been grouped into four 

biotypes:  Antiqua, Medievalis, Orientalis, and Microtus.  Assignment to biotype is 

determined by ability of the isolates to reduce nitrate and ferment sugars1,18.  

Sequence data indicate Y. pestis has undergone many structural changes in its genome 

that allow for adaptation, including (but not limited) to horizontal gene transfer, gene 

loss, recombination, and mutation9,16. 
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Plasmid pCD1 is also known as pLCR, pYV, or the low calcium response 

plasmid, and contains virulence genes of the type III secretion17-18.  Proteins for 

which the genes code are referred to as Yersinia outer proteins or Yops for short.  

There are a few proteins that interfere with phagocytosis and these include GTPase 

activating protein (YopE), and tyrosine phosphatase (YopH), both of which are 

antiphagocytic, and a serine threonine kinase (YopO/YpkA).  YopM, located on this 

plasmid, is linked to a transcription event of cytokine genes19.  The YopJ/P gene is 

also located on this plasmid and has been associated with inhibition of 

proinflammatory cytokines, tumor necrosis factor-α, and production and induction of 

macrophage apoptosis17.  A cytotoxin (YopT) has been shown to cause filament 

disruption.   

There are six additional genes and these are involved in control and 

translocation of Yops and include yopN, yopB, yopD, tyeA, lcrG, and lcrV17.  The 

LCR genes on the Y. pestis pCD1 plasmid have been shown to be 98% identical to the 

two Yersinia enterocolitica plasmids17.  It has also been determined that the YopM 

gene contains two extra copies of a repeat sequence in the Y. pestis pCD1 plasmid, 

compared to the two Yersinia enterocolitica plasmids17. 

Plasmid pPCP1 contains the plasminogen activator (Pla or Pst) which has 

been shown to be essential for Y. pestis virulence when transmitted by flea bite17.  

Plasmid pMT1, also known as pFra, encodes the gene for the murine toxin and the 

fraction 1 (F1) capsular antigen.  The murine toxin is a toxin required for survival of 

Y. pestis in the flea and the F1 capsular antigen is thought to be required for full 
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virulence of Y. pestis17.  Both plasmids, pPCP1 and pMT1, are specific to Y. pestis 

and are not found or shared by any other enteropathogenic Yersiniae17. 

Y. pestis genome analysis suggests it evolved from Yersinia 

pseudotuberculosis as early as 1,500-20,000 years ago1,16.  See Figure 1.  About 13% 

of the Yersinia pseudotuberculosis genome is not present in the genome of Y. pestis18.  

Y. pestis is believed to have spread through the trade routes that originate in China.  

During traveling across and populating into other regions, Y. pestis evolved into 

different lineages18.  A review of all Y. pestis isolates that have been sequenced and 

their unique SNPs, presented in the tree, shown in Figure 2, suggests that Y. pestis 

evolved in China and spread to other locations, supporting the trade route theory1. 

DNA methylation  

Known Methylation roles 

DNA methylation has been identified as being important for many bacterial 

processes, including mismatch repair, regulation of gene expression, and 

pathogenicity20-22.  Genome methylation in bacteria usually occurs as 5-

methylcytosine (5-mC), N4-methylcytosine (4-mC), or N6-methyladenine (6-mA).  

The most common form of methylation in bacteria is 6-mA of the sequence GATC 

and this process is catalyzed by DNA adenine methyltransferase (dam)20.  For the 

above mentioned processes, the events are signaled by the hemimethylated state of 

DNA21.  Hemimethylated DNA is where one strand of DNA is methylated while the 

other is not.  Dam moves along the DNA in a linear fashion, methylating 5’-GATC-3’ 

sites at a rate of 20-100 sites per minute20-21. 
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Methylation impact on Yersinia pestis 

A mutation to the dam gene has been shown to affect virulence of Y. pestis22.  

In one study, a version of Y. pestis was constructed in which the dam gene was 

inactivated.  Mice were individually exposed to the mutant or the wild type strain.  

Those mice exposed to the mutant survived, indicating the strain had been attenuated 

and subsequently, when the mice were exposed to the wild type strain, they also 

survived, showing the mutant induced protection as well.  From these results, it was 

concluded that the dam gene plays a role in the virulence of Y. pestis.  This 

experiment was also carried out with Y. pseudotuberculosis in mice, showing 

protection against exposure to Y. pestis after the mice had been dosed with the dam 

mutant strain of Y. pseudotuberculosis23.   

Overproduction of the dam gene product was shown to attenuate strains of 

Yersinia24-25.   This was tested by exposing mice to the strains that were 

overproducing product of the dam gene.  The mice survived exposure, hence the 

conclusion that the strain had been attenuated.  Mice subsequently exposed to the 

virulent strain survived, suggesting protection.  It should be noted that overproduction 

has an impact on secretion of the Yop genes, which are known to be essential 

virulence factors24-25.  

Sequencing Technology 

Pacific BioSciences Technology 

The SMRT® technology of Pacific Biosciences (PacBio) utilizes DNA 

polymerase along with phospholinked dNTPs to capture DNA sequences in real-

time2.  The technology utilizes wells in a chip called zero-mode waveguide (ZMW) to 
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capture a single molecule of DNA.  While the bases are incorporated there is a pulse 

which is the elevation of fluorescence output from the ZMW2.  With this technology, 

strands of DNA can be sequenced in real-time and these strands of DNA can be long 

reads (a limitation in other Next-Generation sequencing machines).  A ZMW 

depiction is shown in Figure 3.  Within this image, there is a single strand of DNA 

located in the ZMW.  While the polymerase is incorporating a dNTP, emission of the 

phospholinked dNTP creates a pulse.  Based on color and pulse duration, the 

sequence can be determined2. 

Methylation Detection 

PacBio technology uses kinetic measurements to identify positions in a DNA 

sequence that may contain base modifications, such as methylation, because 

modification affects the rate of nucleotide addition by the polymerase during the 

sequencing reaction.  The interpulse distance (IPD) is a measurement representing the 

time between the pulse corresponding to the addition of nucleotiden in a growing 

strand of DNA and the pulse of nucleotiden+1.  Numerous studies have shown that an 

IPD is significantly longer if nucleotiden+1 is opposite a methylated template base3.  

Figure 4 shows a representation of how the kinetics are affected when a base is 

incorporated in the presence of methylation versus a non-methylated base. 

 

Objectives of this Study 

The overall goal of this project was to improve understanding of how DNA 

methylation impacts the Yersinia pestis genome.  Little is known about how DNA 

methylation affects virulence and studies of DNA methylation in Y. pestis are limited.  
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Therefore, the research proposed here was to analyze DNA methylation in Y. pestis 

and determine the potential effect, if any, on pathogenicity.  Y. pestis DNA 

methylation patterns were analyzed after growth at the two classic temperatures and 

media mimicing the flea (vector) and rodent/human (host) growth conditions.  The 

objective, thus, was to determine whether Y. pestis has a small (localized) or wide 

(whole genome) scale pattern of DNA methylation within its genome.   

The overall aim was to determine if the Y. pestis genome contains methylated 

bases detectable within its genome and to define genome-wide methylation patterns 

occuring under relevant growth conditions.  It is not known what percentage of the Y. 

pestis genome is methylated.  Methylation is an important part of several systems and 

processes, such as defense mechanisms, gene expression, cell cycle and DNA 

replication, DNA damage and repair, and pathogenicity.  To examine methylation 

patterns, different growth conditions are employed and methylomes compared to 

determine significant differences, if any, between the DNA methylation patterns. 

In this study, it was hypothesized that the Y. pestis genome is methylated, 

based on results obtained in an earlier study using the dam mutant strain, and a 

significant difference in methylation patterns for Y. pestis under different growth 

conditions would be found. 
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Methods and Materials 

Bacterial Strain Employed in Study 

Y. pestis CO92, containing the three intact plasmids pCD1, pMT1, and 

pPCP1, was selected for analysis because it is a virulent strain16. 

Genome Sequencing 

Y. pestis CO92 was grown on 5% Sheep Blood Agar plates at 28°C for 2-3 

days to revive the culture from a glycerol stock.  A single colony was selected and 

transferred to 1 mL of Trypticase Soy Broth (TSB).  A total of nine Congo Red Agar 

plates were inoculated with 100 µL of the TSB culture.  Three of the Congo Red Agar 

plates were incubated at 37°C and the remaining six plates were incubated at 28°C for 

four days.  Temperatures of 28°C and 37°C, are temperatures routinely used to 

culture Y. pestis as they represent vector and host temperatures, respectively.  DNA 

was extracted from each plate using Wizard® Genomic DNA Purification Kit 

(Promega).  Of the nine DNA preparations, three were subjected to Multiple 

Displacement Amplification using the illustra Ready-To-Go GenomiPhi V3 DNA 

Amplification Kits (GE Healthcare Life Sciences) to remove all methylation from the 

DNA. 

Pacific Biosciences (PacBio) libraries were prepared following Procedure & 

Checklist 10 kb Template Preparation and Sequencing (with Low-Input DNA) 

(http://www.smrtcommunity.com/SampleNet/Sample-Prep) using the SMRTbell™ 

http://www.smrtcommunity.com/SampleNet/Sample-Prep
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Template Prep Kit 1.0 (Pacific Biosciences).  The libraries were sequenced on the 

PacBio RSII instrument using DNA/Polymerase Binding Kit P4 (Pacific 

Biosciences), DNA Sequencing Reagents 2.0 (Pacific Biosciences), and SMRT® Cell 

V3 (Pacific Biosciences). 

Detection of DNA Methylation 

Detection of DNA methylation was carried out using the PacBio SMRT 

Analysis pipeline (http://www.pacb.com/devnet/).  Each modified base position was 

determined using the RS_Modification_and_Motif_Analysis protocol within the 

PacBio SMRT® Portal SMRT® Analysis v2.2.0.  The minimum modification QV 

score was adjusted to 100 from the default 30 because of the high coverage obtained. 

DNA Methylation Comparison 

The cmp.h5 file that resulted from alignment to the reference sequences (Y. 

pestis CO92 complete chromosome, NC_003143.1; Y. pestis CO92 complete genome 

pCD1, NC_003131.1; Y. pestis CO92 complete genome pMT1, NC_003134.1, Y. 

pestis CO92 complete genome pPCP1, NC_003132.1) was processed through the 

PacBio python script cmph5tools.py to extract all reads associated with each 

reference (command line was:  source /dir/smrtanalysis/current/etc/setup.sh  

cmph5tools.py select --groupBy Reference aligned_reads.cmp.h5).  Each resulting 

cmp.h5 file was processed with an in-house bash script that utilized multiple cores to 

process the large reference sequences efficiently.  The bash script processed an in-

house R script which utilized an available PacBio R script source to parse through 

each base of the reference sequence, obtain the IPD’s for each read at that base, and 

http://www.pacb.com/devnet/


 

 12 

 

 

then perform an ANOVA test.  ANOVA was used to compare sample group tests as 

shown in Figures 9 and 10.  
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Results 
 

Preliminary Analysis 

Y. pestis grown at both temperatures (approximating temperatures of the flea 

vector and the human host) had a genome containing extensive DNA methylation.  

The IPD distributions in the Y. pestis sequence data were examined using PacBio 

software, revealing a population of modified adenines in the genomic DNA samples 

from both sets of DNA, i.e., from cells grown at 30°C on Trypticase Soy agar (TSA) 

and 35°C on Brain Heart Infusion (BHI) agar.  Figures 5 and 6 show quality values 

assigned to base modifications by the Pacific Biosciences software; methylation at the 

adenine bases is indicated by high Modification QV scores for the subpopulation of 

red “A” residues.  Modifications were observed at both 30°C on Trypticase Soy agar 

(TSA) (Figure 5) and those grown at 35°C on Brain Heart Infusion (BHI) agar 

(Figure 6).  Figures 7 and 8 show the associated quality score histogram plots and the 

skew of adenines toward higher QV scores than other bases, namely the presense of 

extensive methylation of the adenine bases.  Although qualitative comparison could 

be made, the sequence coverage was insufficient for quantitative comparison of 

patterns for the samples.  Therefore, the focus was on obtaining additional data on Y. 

pestis grown at the two different temperatures and performing quantitative 

comparative analysis. 
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Results 

Methylome Identification 

 The methylome of Y. pestis CO92 was determined by analyzing Pacific 

Biosciences sequencing data and identifying methylation motifs.  The data from the 

28°C sample showed two different motifs with large coverage of the sequence.  The 

motifs were 5’-GATC-3’ and 5’-CCWTGG-3’, with base modifications of 6-mA and 

4-mC, respectively.  Data for the 37°C sample revealed a single motif most likely due 

to lower coverage, with the motif of 5’-GATC-3’ and a base modification of m6A.  

The control sample yielded no motifs, which was expected since MDA removed all 

methylation from the nucleotides prior to preparing the PacBio libraries.  Table 1 

shows depth of coverage obtained and Table 2 a breakdown of the motifs, number of 

detections of motif, predicted number of motifs in the reference sequence, and overall 

percent of the predicted motifs detected. 

 

Methylome Comparison 

Y. pestis CO92 control and experimental replicates were sequenced using the 

Pacific Biosciences platform.  Average depth was greater than 200x coverage of the 

chromosome.  Table 1 shows the complete listing of coverage for the chromosome 

and three plasmids.  The IPDs at each base (for all positions in the genome) for each 

biological replicate were tested for significant differences using ANOVA, with a p-

value threshold of p <1E-8, as shown in Figure 9.  This result is akin to a quality 

control step, where the degree of relatedness for the replicates within a set is 

determined.  The biological replicates in each of the groups (Control, 28°C, and 
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37°C) were similar (within each set) at the base level, indicating methylation patterns 

of the replicates were not significantly different.  Based on this finding, the data 

within replicates were merged to allow a larger comparison and avoid the possibility 

that a single replicate would skew the analysis.  Comparison of all data collected for 

the sequences obtained from cultures grown at the two temperatures is shown in 

Figure 10.  Results of the analysis showed that, although comparison of unmethylated 

samples from each of the growth temperatures identified a large number of 

methylated adenosines, the methylation profiles from the DNA of cells grown at the 

two different temperatures were indistinguishable—there were no positions in the 

genome at which one profile was significantly different.  Even though the motif 

finder was able to identify a second motif in the 28°C sample and not the 37°C 

sample, IPD values for the two samples were not significantly different, taken as 

proof that the coverage allowed the motif finder to identify a different motif with 

confidence.  As shown in Figures 11-13, modification profiles for the samples 

showed an obvious difference between control and test samples.  However, the 

differences between the 28°C and 37°C profiles, though visually different, were not 

statistically significant.  The percentage of similar IPD values, when subjected to 

ANOVA analysis, showed the 28°C and 37°C DNA sequences were 100% identical 

at the base level for both the chromosome and plasmids.  When compared to the 

control, both the 28°C and 37°C sequences were >99% identical to the IPD values of 

the unmethylated control.  Table 3 provides a complete breakdown of the percent 

similarity between tests performed for the results obtained for two growth 

temperatures. 
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 Discussion 

 

Yersinia pestis methylome 

The methylome of Y. pestis was successfully determined and consists of 5’-

GATC-3’ and 5’-CCWTGG-3’ motifs, with base modification of 6-mA and 4-mC, 

respectively.  As shown in Table 3, the second motif was not detected in the 37°C 

sample, due to different coverage.  If the QV threshold had been adjusted to be less 

stringent for the 37°C sample, the motif would have been identified.  However, with 

high coverage, the QV threshold should have been set more stringently to eliminate a 

false motif from being identified as a potential motif.  Preliminary results were 

obtained using the Tet1 method to determine if any 5-mC motifs were present and the 

results showed none. 

Methylome pattern comparison 

A comparison of the methylations obtained for Y. pestis grown at two 

temperatures, representing temperatures of the vector and host, showed no significant 

difference in their methylation patterns.  The conclusion is that Y. pestis does not alter 

its methylation pattern to control growth at different temperatures and, more likely, 

utilizes methylation for other purposes.  One such purpose may be regulation of gene 

expression.  To test this hypothesis, an RNA-seq experiment, with analysis at the 

sequence level, should show changes in gene expression patterns for Y. pestis grown 

at different temperatures.  This, in fact was attempted previously, but was done using 

microarrays which have limitations22.  An RNA-seq experiment is preferred since all 
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of the RNA present would be analyzed, compared with the limited known sequences 

on a microarray.  A dam mutant can be utilized to observe the impact on gene 

regulation at the two temperatures.  Lastly, overproduction of the dam gene could be 

utilized to observe effects, if any, on gene expression from overproduction of dam.  

This has been done with Y. pseudotuberculosis and has shown that virulence factors 

are inhibited24-25.  Obtaining better understanding of dam gene regulation of genes in 

Y. pestis should provide valuable insight with respect to finding better antibiotics, 

antimicrobial cleaners, and potential vaccines against plague, a disease which remains 

a global threat. 

  In the course of this study, a multiprocessor software tool that runs 

comparison analysis and reports the percentage of bases with similar IPD profiles, 

was developed.  The tool significantly decreases hands-on time and is available upon 

request. 
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