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As modern computing becomes increasingly data-intensive and distributed, it

is becoming crucial to effectively manage and exploit end-to-end network bandwidth

information from hosts on wide-area networks. Inspired by the finding that Internet

bandwidth can be represented approximately in a tree metric space, we focus on

three specific research problems.

First, we have designed a decentralized algorithm for network bandwidth pre-

diction. The algorithm embeds the bandwidth information as distance in an edge-

weighted tree, without performing full n-to-n measurements. No central and fixed

infrastructure is required. Each joining node performs a limited number of sam-

pling measurements. Second, we designed a decentralized algorithm to search for

a centroid node that has high-bandwidth connections with a given set of nodes.

The algorithm can find a centroid accurately and efficiently using the bandwidth

data produced by the prediction algorithm. Last, we have designed another type of

decentralized search algorithm to find a cluster of nodes that have high-bandwidth



interconnections. While the clustering problem is NP-complete in a general graph,

our algorithm runs in polynomial time with the bandwidth data predicted in a tree

metric space. We provide proofs that our algorithms for bandwidth prediction and

node search have perfect accuracy and high scalability when a network is modeled

as a tree metric space. Also, experimental results with real-world data sets validate

the high accuracy and scalability of our approaches.
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Chapter 1

Introduction

1.1 Motivation

Modern computing applications are increasingly more data-intensive and widely

distributed. As the fourth paradigm of data-intensive science is emerging [33], grid

applications being employed to effectively manage the data flood caused by sci-

entific simulations and experiments. For example, wide-area computing resources

in TeraGrid infrastructure [10] are used for earthquake forecasting in the Cyber-

Shake project [20]. Scientists schedule data-intensive tasks on grid resources using

distributed workflow frameworks such as Pegasus [28] and DAGMan [4] and an-

alyze a large amount of sensor data. Multi-player online games such as Second

Life [8] are another example of data-intensive applications. Since central dedicated

servers cannot handle huge traffic to send 3-d object data to massive clients, several

studies [42, 68] propose to distribute the role of central servers through peer-to-

peer (P2P) technologies. Also, file-sharing applications such as BitTorrent [24, 3]

are used to share a huge amount of data among globally distributed users.

Network bandwidth is a key performance factor in data-intensive applications

because it determines data transfer times for large data sets. Since bandwidth is

relatively low and widely varying in wide-area networks, many applications want to

utilize high-bandwidth connections.
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1.2 Important Problems in Bandwidth Management

This dissertation considers research issues for effective network bandwidth

management. The ultimate goal is to support data-intensive wide-area applications

to exploit high-bandwidth connections. This section briefly describes three problems

to be investigated in this dissertation, and introduces several applications that can

benefit from solving the problems.

1.2.1 Decentralized Network Bandwidth Prediction

Data-intensive wide-area applications can increase their performance by identi-

fying end-to-end network bandwidth and transferring data through high-bandwidth

connections. Since bandwidth measurements are generally expensive to perform, it

would not be desirable for applications to keep track of bandwidth information for

all pairs of nodes. Thus, there is a need to design an algorithm to predict a full

set of n-to-n bandwidth values from a limited number of sampling measurements.

If the prediction algorithm could be executed in a completely decentralized fashion,

it would be helpful to preserve scalability and reliability of distributed applications.

We can apply a decentralized bandwidth prediction algorithm to peer selection in file

sharing systems. In the current implementation of BitTorrent [24], each peer down-

loads file pieces from random peers. If BitTorrent runs the bandwidth prediction

algorithm, peers can estimate quickly the bandwidth of each connection with other

peers. Then each downloading peer can selectively choose high-bandwidth peers so

that file pieces can be transferred at a high rate. It is expected to be challenging
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to find an effective method to achieve high accuracy in prediction data with only

a small number of sampling measurements. Also, it would not be easy to design a

decentralized algorithm that maintains distributed data structures and requires no

landmark nodes for sampling measurements.

1.2.2 Decentralized Centroid Search

The second problem that this dissertation explores is searching for a node

called a centroid under bandwidth constraints. A centroid is informally defined as

a node connected via high-bandwidth connections to a given set of nodes. Suppose

that we can design an efficient algorithm that finds centroids in a decentralized fash-

ion. Then by sending or receiving data to or from a centroid node, applications can

optimize data locality and thereby increase their overall performance. Applications

that use super-peers to distribute system workloads can benefit from a decentralized

centroid search algorithm. For example, P2P online games [42, 68] divide a game

space and let super-peers coordinate game players in each divided game space. Using

the centroid search algorithm, we can choose the centroid of the players in a divided

game space as a super-peer. Then the super-peer will be able to send a large amount

of object data to the players in the assigned game space at a high rate. It is not

desirable to naively perform exhaustive searches in a large-scale wide-area network.

So we have to develop an efficient search algorithm that can finish within a small

number of network hops. Achieving highly accurate results with limited costs is

another challenge. Also, we need to have the search algorithm exploit bandwidth

3



prediction data in order to avoid measurement delays.

1.2.3 Decentralized Cluster Search

The third issue is for another type of node search algorithm. We want to

design a decentralized algorithm to find a cluster of hosts that are all intercon-

nected with high bandwidth. Searching for clusters is beneficial to data-intensive

distributed applications as nodes in the same cluster can send large amount of data

to one another at a high rate. Data-intensive grid computing is one example of such

applications of a cluster search algorithm. Current desktop grid computing frame-

works such as BOINC [13, 14] and P2P Grid [40, 39, 41, 44] can utilize large-scale

wide-area computing resources. But those systems cannot execute data-intensive

workflow or parallel jobs such as CyberShake [20] because it is not feasible to trans-

fer large-scale data over low-bandwidth wide-area networks. Local cluster frame-

works such as Condor [48] and workflow management systems such as Pegasus [28]

and DAGMan [4] can execute data-intensive jobs, require running on grid resources

in a high-bandwidth local-area network. The cluster search algortihm can combine

advantages of both local-area and wide-area grid technologies: we can schedule data-

intensive jobs on virtual clusters of large-scale computing resources in a wide-area

network. The clustering problem is difficult to solve, in that it is NP-complete for

a general graph. So we have to find an approximate algorithm that guarantees a

given degree of accuracy. Also, it is challenging to design a decentralized algorithm

that finishes within a small number of network hops.
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1.3 Thesis Statement and Contributions

With these motivations, my thesis is that a decentralized approach can be em-

ployed to predict end-to-end network bandwidth and search for nodes under network

bandwidth constraints in an accurate and scalable way. In support of this thesis, I

made the following contributions:

• A decentralized bandwidth prediction algorithm

We can accurately predict bandwidth information with only O(log2 n) sam-

pling measurements for each node. The algorithm is completely decentralized:

all the data structures are distributed, and there exists no landmark node for

sampling measurements. Theoretical proofs for correctness and performance

are also provided. We also have confirmed that our approach performed more

accurately than the existing approaches with extensive simulations.

• A decentralized algorithm to find centroids

The algorithm runs based on the prediction data so that we can avoid measure-

ment delays. We theoretically prove that a centroid can be found accurately

in a decentralized fashion within O(log n) network hops. Simulation results

are also provided to show the high accuracy and scalability of our approach.

• A decentralized algorithm to find clusters

We first show that the clustering problem can be solved in polynomial time if

we use the bandwidth data produced by the prediction framework. Then we

describe a decentralized algorithm with theoretical analyses to show that the

5



algorithm can find clusters accurately within O(log2 n) network hops. Simula-

tion results confirm that our approach achieves high accuracy and scalability.

1.4 Thesis Organization

The rest of the dissertation is organized as follows. We first discuss the under-

lying intuition behind this work in Chapter 2. Chapter 3 presents research related

to the dissertation. Chapters 4, 5, and 6 discuss our approaches for each of three re-

search problems described in Section 1.2. Chapter 7 discusses future work. Finally,

we conclude in Chapter 8.
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Chapter 2

Background

This chapter defines terms and provides background information that is needed

to understand our overall approach. Three types of end-to-end network bandwidth

measures are first presented. Then we describe how bandwidth can be represented

in a tree metric space. We also introduce the skip list data structure that is used as

the basis for our approach for bandwidth prediction.

2.1 Types of Network Bandwidth

The term end-to-end network bandwidth of a network path can refer to related

yet different measures [37]. The capacity is the maximum rate that the path can

provide to a flow, when there is no other traffic in the path. The available bandwidth

is the maximum rate that the path can provide to a flow, without reducing the rate

of the rest of the traffic in the path. The bulk transfer capacity is the maximum rate

that a TCP transfer can attain over the path.

Among the three measures, we consider predicting the available bandwidth

between the Internet nodes and search for nodes under constraints of available band-

width. Thus, this dissertation will use the term bandwidth to refer to the available

bandwidth unless there is a special reason not to. Although we use the available

bandwidth for prediction and node search, we expect that our approach would also
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work for the capacity and the bulk transfer capacity as all three measures have some

degree of correlation. Yalagandula et. al [71] show that there is a strong correlation

between the capacity and the available bandwidth, so orderings of nodes for both

measures are similar. Also, a high-capacity path tends to have high bulk transfer

capacity.

2.2 Network Bandwidth in a Tree Metric Space

As a tree metric space is a kind of metric space, we first discuss how network

bandwidth can be represented in a metric space. Then we will discuss why a tree

metric space is a good model to embed network bandwidth information.

Definition A metric space is an ordered pair (V, d) where V is a set of nodes and

d is a metric or distance function on V such that for any u, v, w ∈ V , the following

properties hold:

1. d(u, v) ≥ 0 (non-negative)

2. d(u, v) = 0 if and only if u = v (identity of indiscernibles)

3. d(u, v) = d(v, u) (symmetry)

4. d(u, w) ≤ d(u, v) + d(v, w) (triangle inequality)

Higher values are considered better for bandwidth while closer is generally more

desirable for distance in a metric space. So, Ramasubramanian et. al [58] used

the linear transform function d(u, v) = C − BW (u, v) to represent bandwidth as

a metric, where BW (u, v) is the bandwidth between nodes u and v, d(u, v) is the

8



distance in a metric space, and C is a constant. Representing bandwidth as a

metric satisfies the four properties of metrics. The first property is satisfied by

having a large value for C, for example, the expected maximum bandwidth. By

setting BW (u, u) = C, we can also satisfy the second property. We satisfy the third

property by setting both BW (u, v) and BW (v, u) to the average bandwidth of the

forward and reverse directions. So our research focus on predicting and utilizing

the average bandwidth values. Even though no effective method has been found

to directly address the last assumption, we provide several heuristics to accurately

embed bandwidth information into a metric space in the real Internet, as described

in Section 4.3.

For further discussions, the following definitions about tree metric space are

provided.

Definition An edge-weighted tree is a connected graph without cycles, and with

non-negative edge weights.

Definition The distance between two nodes u and v on an edge-weighted tree T ,

denoted dT (u, v), is defined as the sum of the weights of the edges on the path from

u to v.

Definition An edge-weighted tree T induces a metric space (V, d) if and only if T

contains all nodes in V and ∀u, v ∈ V , d(u, v) = dT (u, v) holds.

Definition A metric space (V, d) is called a tree metric space if there exists an

edge-weighted tree that induces (V, d).

9



Definition The four-point condition (4PC) on a metric space (V, d) states that

for any set of four nodes w, x, y, z ∈ V , d(w, x) + d(y, z) ≤ d(w, y) + d(x, z) ≤

d(w, z) + d(x, y) implies d(w, y) + d(x, z) = d(w, z) + d(x, y).

Theorem 2.1. A metric space (V, d) is a tree metric space if and only if (V, d)

satisfies 4PC.

There are three pieces of evidence to verify that the Internet is close to a

tree metric space for bandwidth. First, Ramasubramanian et. al [58] verify that a

bandwidth data set produced many small ε values. ε was introduced by Abraham

et. al [11] to quantify how closely a set of four nodes satisfies 4PC. If all ε values

in a metric space are zero, the metric space is a perfect tree metric space. Second,

there is a theoretical model of network topology such that bandwidth between two

nodes is bottlenecked in the first hop of a routing path. This “edge-bandwidth”

network model is proposed by Ramasubramanian et. al [57] based on Hu et. al’s

empirical research [34] showing that 60% of paths between random end hosts in the

wide-area Internet have a bottleneck in the first or second hop. And it has been

proved that a metric space for this model is a perfect tree metric space [57]. Last,

an attempt to embed bandwidth into a tree metric space has resulted in a high

accuracy. Theorem 2.1, proved by Buneman [21], shows the relationship between

4PC and a tree metric space. Based on Theorem 2.1, Ramasubramanian et. al [58]

constructed an edge-weighted tree to embed bandwidth measurements into. Their

results showed low relative errors of the embedded bandwidth values compared to

the real data.
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Figure 2.1: An example of skip list data structure

2.3 Skip List

A skip list [55, 56] is a randomized data structure to store items represented

by keys. The list is organized as multiple levels of linked lists of nodes. Each node

has a tower of pointers, each of which points to the next node in a linked list at

each level. Each node in level i − 1 appears in level i with a fixed probability of

1
2

(or more generally p), which results in a tower height bounded by O(log n) with

high probability. 1 So the linked lists at higher levels are sparser than lists in lower

levels, and are used as express lanes for traversing a sequence of nodes. A skip list

searches for a node with an input key by traversing nodes starting from the head

towards the tail, and terminates in O(log n) time with high probability. The search

algorithm starts at the top-level list and moves down to a lower-level list when the

next node in the current level has a key larger than the input key.

Figure 2.1 shows an example of skip list data structure. Each node has a skip

1An event occurs with high probability if, for any α ≥ 1, the event occurs with probability at

least 1− cα

n
α
, where cα depends only on α.

11
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Figure 2.2: A skip list as a distributed structure

list tower that is represented as a set of boxes, each of which contains a pointer to

the next nodes at each level. Numbers at the bottom represent node keys. The

thick dashed arrow shows a path to search for a node with the key of 20. The search

algorithm starts at the top level of the head and “skips” some nodes by utilizing

high-level pointers until reaching at the node with key 20.

We use a skip list as a distributed set of doubly-linked lists that connects com-

puters in a network. Each node provides other nodes with a distributed operation,

denoted by findPred(k), to search for a predecessor of an input key k. A predecessor

of key k is defined as a node that has the maximum key among nodes with key ≤ k

in a skip list. The predecessor search operation starts at any node and traverses

either right towards a tail or left towards a head. At each traversed node, if k is

equal to the key of the current node, the operation returns the current node as a

predecessor of key k. When k is larger than the key of the current node, 1) if the

next node in the level-0 list has key > k, the current node is determined as a prede-

cessor of k, or 2) the operation moves to the next node in the highest-level list that
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has a key ≤ k. Similarly, when k is smaller than the key of the current node, 1) if

the previous node in the level-0 list has key < k, the previous node at level zero is

determined as a predecessor of k, or 2) the operation moves to the previous node in

the highest-level list that has a key ≥ k. This search operation is divided into two

phases. The first phase is before the traversal moves down to a lower-level list for

the first time, so the traversal level stays the same or increases. The second phase

is the rest of the procedure where the traversal level stays the same or decreases

until the predecessor is found. Since each phase follows the similar procedure to the

original search algorithm of skip list, the predecessor search operation will complete

in O(log n) hop counts. Likewise, each node provides findSucc(k) to search for a

successor that has the minimum key among nodes with key ≥ k.

Figure 2.2 shows an example of skip list that is used as a distributed data

structure. Each node in a network has a skip list tower that contains pointers to

neighbors at each level. Alphabets at the bottom represents node id’s, and numbers

above the id’s are node keys. The thick dashed arrow shows a network path that an

operation b.findPred(20) traverses to search for a node with the key of 20 starting at

node b. The path from node b to e shows the first phase of non-decreasing skip list

level, and the path from node e to h is for the second phase. Note that h.findPred(6)

will exactly reverse the path in the figure from h to b.
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Chapter 3

Related Work

This chapter discusses other methods for network distance prediction and node

search.

3.1 Tree Metric Approaches for Network Distance Prediction

The original theoretical underpinnings of tree metric spaces were provided

by Buneman [21], including the first constructive algorithm to induce tree metric

spaces. However, Buneman’s algorithm does not allow nodes to be incrementally

added to existing edge-weighted trees. Since the result edge-weighted tree would not

be expandable, we cannot directly apply the algorithm in practice to a dynamically

changing real-world system.

The theoretical work of Abraham et. al [11] proposes a tree construction

algorithm for an approximate tree metric space and provides upper and lower bounds

on the accuracy of tree embedding. Since their approach uses a non-incremental

recursive algorithm, it suffers the same problem as Buneman’s algorithm for practical

uses. Another reason why that algorithm is not feasible in the real world is that

the algorithm uses a predetermined parameter ε. The parameter must be calculated

for an input metric space before the algorithm is executed, but there is no way to

predetermine the parameter in the real world because it requires information about
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which nodes will join the system. Instead of using such a predetermined parameter,

our algorithm uses several heuristics to achieve high accuracy for an imperfect tree

metric space.

Our research is inspired by the Sequoia system [58], which uses a tree-embedding

model for bandwidth prediction and proposes an incremental iterative tree construc-

tion algorithm for the first time. We naturally use the same terms as the Sequoia

authors do to explain our algorithm even though some terms have somewhat dif-

ferent meanings. However, our study has several contributions relative to Sequoia.

First, our system is decentralized and does not require any fixed infrastructure. To

participate in the Sequoia system, each node must measure bandwidth with sev-

eral nodes starting from a single fixed node called the lever node, and this can

cause a load imbalance problem. On the other hand, each node joins our system

by performing sampling measurements starting at a random node. Second, Sequoia

has a scalability problem as each node needs to perform O(n) sampling measure-

ments in the worst case. On the other hand, our new approach described in this

dissertation is highly scalable. Each node in our system performs O(log2 n) sam-

pling measurements with high probability. Last, we provide novel heuristics that

increase prediction accuracy in a real world network. Sequoia uses an algorithm

that fits a perfect tree metric space directly in practice, and results in low accuracy,

as shown in Section 4.4. Even though Sequoia addresses this inaccuracy problem

by constructing multiple trees, multiple trees will cause a significant amount of ex-

tra measurement workload. Our techniques succeed in achieving high accuracy for

real-world networks without imposing significant overhead.
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Before developing the prediction framework described in Chapter 4, we de-

signed another decentralized system [64, 65] that can predict pairwise bandwidth

on a tree metric space. Unlike Sequoia [58], our original approach [64, 65] does not re-

quire any landmark nodes for sampling measurements. More specifically, while each

node in Sequoia starts sampling measurements at the root node of a data structure

called an anchor tree, our old system allows each node to start at a random node.

Also, our old system achieves higher accuracy than Sequoia by introducing several

heuristics similar to those used by our new approach described in this dissertation.

However, our old approach is not highly scalable. Each node needs to store infor-

mation of size O(n) and perform O(n) sampling measurements in the worst case.

which implies an inefficient prediction method. On the other hand, each node in

the algorithm described in Chapter 4 only stores information of size O(log n) and

performs O(log2 n) sampling measurements with high probability.

There is another system called PathGuru [73] for bandwidth prediction, which

embeds bandwidth information in an ultrametric space. Unlike our approach,

PathGuru is a landmark-based system. More importantly, PathGuru provides quite

poor accuracy [19], even worse than Sequoia. An ultrametric space (V, d) satisfies the

three-point condition (3PC) that states that for any set of three nodes x, y, z ∈ V ,

d(x, y) ≤ d(x, z) ≤ d(y, z) implies d(x, z) = d(y, z). An ultrametric space is a kind

of tree metric space because 3PC is a stronger assumption than 4PC of tree metric

space. Thus tree metric approaches can cope more accurately than PathGuru with

bandwidth data that violate the ultrametric space assumption.
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3.2 Non-Tree Metric Approaches for Network Distance Prediction

There have been several research efforts on coordinate-based latency predic-

tion. Each node is assigned synthetic coordinates in an Euclidean space. End-to-

end latencies are then estimated as the distance between the coordinates of a pair

of nodes. GNP [53], which pioneered this research area, calculates coordinates of

each node relying on a small number of landmark nodes. Vivaldi [26] and PIC [25]

eliminate such designated landmark nodes and provide a decentralized algorithm to

compute network coordinates. All of these systems show high accuracy in latency

prediction. However, the coordinates-based approach does not work well for band-

width prediction, and accordingly, attempts to use Vivaldi for bandwidth prediction

result in poor accuracy [57, 58]. On the other hand, approaches [58, 65] based on a

tree metric space, including the approach in this dissertation, can accurately predict

both latency and bandwidth.

To cope with violations of the triangular inequality, IDES [51] considers non-

metric embeddings and predicts end-to-end network latency by using the matrix

factorization technique. As the IDES system requires a set of landmark nodes, a

system called DMF [46] has been proposed for decentralized matrix factorization.

Although DMF is initially designed for latency prediction, one study [19] shows

that DMF can predict network bandwidth more accurately than coordinate-based

approaches. Despite its successful bandwidth prediction, DMF has two downsides

compared to our approach. First, DMF executes multiple iterations to adjust pre-

diction data until reaching convergence. Multiple iterations are needed even when
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predicting a static snapshot of network data, which results in high communication

costs among participating nodes. On the other hand, our approach computes all

the prediction data correctly after each node finishes its sampling measurements and

performs the join process. Also, search algorithms for centroids or clusters have not

been explored based on the prediction results of DMF. It is presumably not easy to

find efficient distributed algorithms for node search on non-metric spaces.

Last-mile [19] is a decentralized system that predicts end-to-end network band-

width, and shows higher accuracy than Sequoia [58] and Vivaldi [26]. Last-mile is

based on the assumption of an edge-bandwidth network model that is described in

Chapter 2. So each node is characterized by two values of incoming and outgoing

bandwidth, and the bandwidth between two nodes is determined as the minimum of

the incoming bandwidth of one node and the outgoing bandwidth of the other. The

approach of last-mile is too simple to cover many practical cases that violate the

edge-bandwidth assumption. It will be difficult to predict all end-to-end bandwidth

values accurately with only two simple values per each node. Since motivations of

our tree metric approach include the edge-bandwidth assumption as described in

Chapter 2, our approach would be able to cover more varied data sets with high ac-

curacy than last-mile. In addition, last-mile needs high communication costs coming

from multiple convergence steps just like DMF. Also, unlike our approach, it will not

be easy to extend last-mile to search for nodes because last-mile produces prediction

data on a non-metric space.
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3.3 Node Search Algorithms

There are many approaches to search for nodes with network metric con-

straints, but most of them [43, 59, 69] are about searching for the nearest neighbors

for a given node. As network coordinates put a geometric meaning to node search

problems, we can try to find centroids in a distributed fashion by building an overlay

network on Euclidean coordinate spaces. For example, Sherpa [50] builds an overlay

network on Vivaldi [26] following a Voronoi diagram. Then it finds a node that

minimizes a given cost function using the gradient decent method. So Sherpa can

be applied to solve the centroid search problem by searching for the nearest node

to a virtual centroid point of its input nodes. However, a Euclidean space is a good

model only for network latencies, so searching for centroids on a Euclidean space for

bandwidth will result in low accuracy. To our best knowledge, there exist no efficient

approaches to search for centroids using network bandwidth. A possible centralized

approach is to perform exhaustive searches in the entire system based on predic-

tion data provided by Sequoia [58] or last-mile [19]. We provide a decentralized,

accurate, and low-cost algorithm to find bandwidth-constrained centroids.

Chapter 6 describes an algorithm to find a cluster of k nodes with minimum

interconnection bandwidth b. The cluster search problem is not easy to solve because

it is equivalent to the k-clique problem. k-clique is a well-known problem as NP-

complete and is about finding a clique of size k in an undirected graph G, where a

clique in G is a complete sub-graph of G. We can show that k-clique is equivalent to

the cluster search problem by creating an undirected graph with V and adding an
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edge between nodes u, v ∈ V such that the average of forward and reverse bandwidth

between u and v is greater than or equal to a bandwidth constraint b. Before

developing the cluster search algorithm described in Chapter 6, we designed another

decentralized algorithm [66]. Our old algorithm employs the similar approach to the

new algorithm described in this dissertation, finding clusters based on bandwidth

data that are accurately embedded in a tree metric space. So clustering accuracy

should be similar in both approaches. However, the old algorithm runs on top of our

old prediction framework [65] that is not highly scalable as described in Section 3.1.

Accordingly, the old clustering algorithm inherits the scalability problems of the old

prediction framework. Each node needs to store additional information of size O(n)

and requires O(n) network hops to find a cluster in the worst case. On the other

hand, each node in the algorithm described in Chapter 6 only stores information of

size O(log n) and spends O(log2 n) network hops with high probability.

There are several theoretical centralized approaches to find a set of k nodes

with a maximum diameter in a 2-d Euclidean space. Aggarwal et. al [12] pro-

vide an O(k2.5n log k + n log n) algorithm, and Eppstein et. al [30] improved it to

O(k2n log2 k + n log n). In spite of the beauty of these algorithms, we could not

successfully use it for our problem because bandwidth does not fit Euclidean space

well. Instead, we have designed an O(n3) algorithm to solve the clustering problem

in a tree metric space that fits bandwidth better. It is an open question if the time

complexity of our algorithm can be improved.

There have been several research efforts about resource clustering. Liu et.

al [49] introduce a hierarchical structure and propose an approximate algorithm to
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answer queries. Like our approach, they support a query with two constraints of clus-

ter size and diameter. However, they only consider latency-constrained clustering.

Also, unlike our decentralized approach, they construct a centralized hierarchical

structure. Shen et. al [63] present a hierarchical cycloid overlay (HCO) architecture

for locality-preserving clustering. HCO is used to discover wide-area grid resources

with multiple attributes such as CPU speed and memory capacity. The difference

from our approach is that their work only considers latency-constrained cluster-

ing, does not support a distance constraint for queries, and relies on a fixed set

of landmark nodes to form clusters. Beaumont et. al [18] designed a distributed

approximation algorithm for resource clustering and proved its correctness theo-

retically. They solved a problem to answer a query with both distance constraint

and storage capacity constraint. However, they only provide an approximation, and

restrict their work to a 1-d Euclidean space, which is not a good model to em-

bed bandwidth measurements. SWORD [54] provides a decentralized algorithm to

discover wide-area resources with multiple inter-node and per-node characteristics.

Even though they consider both latency and bandwidth to find a cluster, they ex-

haustively search for clusters, require an exponential time, and stop searching when

a timeout occurs. On the other hand, our approach guarantees answering a query

in polynomial time under the assumption of a tree metric space.
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Chapter 4

Decentralized Network Bandwidth Prediction

This chapter presents a framework for decentralized network bandwidth pre-

diction. We first describe motivations and requirements of this work. Then the

design of algorithm is provided with theoretical proofs of its correctness and perfor-

mance. We will explain how distributed data structures are used and maintained for

effective bandwidth prediction. Last, we will evaluate our approach with extensive

experiments.

4.1 Introduction

We investigate a scalable and decentralized method to predict pairwise band-

width without performing full n-to-n measurements. Bandwidth prediction can

help distributed applications identify bandwidth between nodes and choose high-

bandwidth connections without performing expensive bandwidth measurements.

Unfortunately, however, there exists no effective framework that can predict band-

width between hosts in a decentralized fashion. Euclidean coordinate spaces are not

a good model for embedding bandwidth measurements. Accordingly, attempts [57,

58, 19] to use a network coordinate system do not work well in predicting band-

width, resulting in poor accuracy. Ramasubramanian et. al [58] developed a system

named Sequoia that embeds bandwidth information into a tree metric space, and
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could achieve higher accuracy than a Euclidean space. However, Sequoia requires

centralized data structures, and a single fixed landmark node is used for sampling

measurements. There are decentralized approaches [19, 46] that can predict network

bandwidth without any landmark nodes. But those systems cause high communica-

tion costs to reach convergence of prediction data. Also, unlike our approach, it is

not easy to extend those systems to node search problems because prediction data

do not fit any kind of metric spaces.

Our approach is to embed bandwidth information into a tree metric space like

Sequoia, but in a decentralized fashion. We choose a tree metric approach because

we are able to design novel methods to predict bandwidth with high accuracy and

low cost. Also, we could develop node search algorithms based on the prediction

data produced on a tree metric space, which will be described in Chapter 5 and 6.

The goal is to design a prediction algorithm that satisfies the following requirements

for a system with n nodes:

• Decentralization: There exists no central component. Data structures are

distributed, and no landmark node for sampling measurements is used.

• Scalable Message Complexity: A node join operation requires less than O(n)

measurements.

• Scalable Space Complexity: Each node maintains information of size less than

O(n).

• High Accuracy: Predicted bandwidth values are close to the real ones.
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• Self-Organization: The algorithms handle dynamic network conditions.

The contributions of this work are fourfold. First we describe the design of a de-

centralized bandwidth prediction system that satisfies all the above requirements.

Second, we provide a theoretical proof of the algorithm’s correctness. The edge-

weighted tree constructed by our algorithm embeds bandwidth measurements with

100% accuracy when we assume that bandwidth measurements can be exactly rep-

resented as a tree metric space. The third contribution is a set of heuristics that

allow high prediction accuracy in the real Internet. Since a real network cannot be

represented as a perfect tree metric space, we need an extra effort to improve the

prediction accuracy. Finally, we present extensive simulation results validating the

high accuracy, low cost, and scalability for our algorithm.

4.2 Design

There are two main design goals for scalable and decentralized network band-

width prediction. The first is to store O(n2) bandwidth values for all pairs of nodes

in a network in a distributed data structure, using only a few sampling measure-

ments per node. The other goal is, given two nodes, to compute their bandwidth as

stored in the data structure in a completely distributed way. This section describes

1) two distributed data structures used to achieve these goals, 2) how to retrieve

bandwidth information from the structures, and 3) how to construct and maintain

the structures.
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Figure 4.1: Distributed data structures used for bandwidth prediction

4.2.1 Distributed Data Structures

We build two distributed structures called a prediction tree and a skip anchor

tree. This section describes these data structures, their properties, how they are

used, and how they are distributed.

4.2.1.1 Prediction Tree

A prediction tree is an edge-weighted tree that embeds bandwidth information.

A leaf node represents a real host in the network, and an inner node in the tree is

a virtual node created as the prediction tree grows. Each edge is assigned a weight

value, so that the bandwidth information is stored as distances in the graph. Given

any two nodes u and v in a network, a prediction tree is used to compute their stored

bandwidth BW (u, v). The linear transform function d(u, v) = C−BW (u, v) is used

to represent bandwidth as a metric, as discussed in Section 2.2, and BWT (u, v) =

C − dT (u, v) computes a bandwidth measurement from a prediction tree T . For
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example, in Figure 4.1 if C = 100, the predicted bandwidth value BWT (b, e) is 77

because dT (b, e) = 23. A prediction tree is incrementally constructed by adding

nodes one at a time. Each new node x is added along with an inner node tx and

a weighted-edge (tx, x). We then say that tx is owned by x. Anchor relationships

are defined during the incremental construction of a prediction tree. If tx is located

on a path between a node a and ta owned by a, a is called the anchor parent of x,

and x is called the anchor child of a. Assuming nodes are added in alphabetical

order in Figure 4.1, node c is the anchor parent of f because tf is positioned on

path tc ∼ c. Nodes sharing the same anchor parent are called anchor siblings. The

top-level anchor parent is called the root, denoted by R.

4.2.1.2 Skip Anchor Tree

A skip anchor tree is a hierarchical structure of skip lists that are described

as a distributed data structure in Section 2.3. The skip anchor tree contains the

connectivity information for the corresponding prediction tree. The skip anchor tree

is used for scalable construction of the prediction tree by having each joining node

perform only O(log2 n) sampling measurements. The skip anchor tree is also used

as an overlay network structure.

The structure of a skip anchor tree is determined by anchor relationships. All

the anchor child nodes of a node a build one skip list called the child list of a. a

is connected only to the head b of the child list of a. Then a is called b’s anchor

parent neighbor, and b is a’s anchor child neighbor. At different levels of skip list
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tower, each node has left neighbors (and right neighbors) that are the previous (and

next) nodes in linked lists. All the anchor siblings of a form one skip list called the

sibling list of a. Each node x uses dT (tR, tx) as a key to determine its location in

the skip list, where tR is an inner node owned by the root R. The maximum depth

of the anchor relationship is called the height of the skip anchor tree. The height

is bounded by O(log n), as we will show in Section 4.2.4. In the skip anchor tree

shown in Figure 4.1, there are six separate skip lists, each of which is represented

by a dashed box. Each edge connects nodes that are level-0 neighbors to each other

in a skip list. Links for the higher-level neighbors are omitted in Figure 4.1. Node c

is connected to the head f of its child list, which contains three anchor child nodes

f , g, and h. Since a is the root, f has key dT (ta, tf) = 18.

We use a skip list [55, 56] as our distributed data structure as described in

Section 2.3. Any type of self-balancing binary search tree structure, such as an AVL

tree or a treap [15, 62], can be considered as a data structure to store anchor child

nodes. We have chosen a skip list because its simplicity made it easier to design

and build for a dynamically changing distributed system. Also, our system can be

extended to use a distributed version of a skip list, such as SkipNet [32] and Skip

Graphs [17].

4.2.1.3 Data Structure Distribution

Each node x maintains the network information shown in Table 4.1. We

build a prediction tree in a distributed fashion by having each node maintain graph
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Table 4.1: Network information maintained by each node x

Variable Content

x.e dT (tx, x)

x.k dT (tR, tx), the key of x used in a skip list (tR is the inner node

owned by the root R.)

x.P the id of anchor parent neighbor of x

x.C the id of anchor child neighbor of x

x.ht skip list tower height

x.L[i] the id’s of left neighbors (with key ≤ x.k) in the sibling list of x at

each level i of skip list

x.R[i] the id’s of right neighbors (with key ≥ x.k) in the sibling list of x

at each level i of skip list

x.kL[i] the keys of left neighbors

x.kR[i] the keys of right neighbors

x.label the distance label, a list of triplets (a’s id, a.k, a.e) of each successive

anchor parent a from x to the root R
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distances (x.e and x.k in Table 4.1) and the neighbor information derived from

anchor relationships. A skip anchor tree is built from the neighbor information,

also in a distributed way. x also maintains a distance label, represented by x.label,

which is a list of triplets (a’s id, a.k, a.e) of all anchor parents a between x and the

root. A distance label is then equivalent to a partial prediction tree and is used for

distributed bandwidth computations. Since the skip list tower height is bounded by

O(log n) and the size of a distance label is limited by the height of a skip anchor

tree, the storage size required in each node is O(log n).

4.2.2 Distributed Bandwidth Computation

Given two nodes u and v in a prediction tree T , we can compute dT (u, v) in

a distributed fashion by building a partial prediction tree containing u and v with

the two following methods. The first option is to collect distance information on

demand. Starting at u, we move left towards a head in each skip list and up towards

the root in a skip anchor tree, and collect m.k and m.e for each successive anchor

parent m of u. We run the same procedure in parallel starting at v, and finish

when the algorithm finds the common anchor parent. Then we can build a partial

prediction tree containing u and v using the collected information, and compute

dT (u, v). This method returns an accurate result since it computes a distance based

on the current information. However, it has some communication costs. We need

O(log n) messages to move to the head of each sibling list through skip list links.

Since the height of the skip anchor tree is bounded by O(log n), collecting the
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distance information requires O(log2 n) messages.

The second option is a one-shot computation using previously collected dis-

tance information. We can build a partial prediction tree using u.label and v.label,

and compute dT (u, v) on it. Unlike the on-demand method, this method sends only

O(1) messages for retrieving two distance labels. However, the one-shot method may

produce an inaccurate result because distance labels are maintained via a periodic

background mechanism, as will be described in Section 4.2.5. Nodes can have stale

information in the distance labels as a skip anchor tree restructures itself to recover

from node failures. Fortunately, for the same reason as for the on-demand method,

only O(log2 n) hops are required for each node to propagate its distance information

through the entire set of nodes.

4.2.3 Node Join

This section describes a node join algorithm that constructs a distributed

prediction tree and a skip anchor tree. The join algorithm does not require any

landmark node to be used for performing bandwidth measurements. Also, each

joining node performs only O(log2 n) bandwidth measurements. Here we assume

that a network is represented by a tree metric space that satisfies the four-point

condition (4PC), as described in Section 2. In Section 4.3 we will discuss how to

improve accuracy in a real network.
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Algorithm 1: x.join(z)

if z = null then x.k ← 0; x.e← 0; return1

y ← x.findOpt(z, null)2

T ← a sub-prediction tree containing every node v such that d(x, v) is3

measured so far

Add x to T along with tx, where dT (z, tx) = g(y) and4

dT (tx, x) = d(x, z)− g(y)

a ← x’s anchor parent node in T5

x.k ← dT (tR, ta) + dT (ta, tx); x.e ← dT (tx, x)6

if a.C = null then x.P ← a7

else8

xL ← a.C.findPred(x.k)9

if xL = null then x.P ← a; x.R[0]← a.C10

else x.L[0]← xL; x.R[0]← xL.R[0]11

Notify x.P , x.C, x.L[0], and x.R[0] of the join event12

4.2.3.1 Overall Algorithm

Algorithm 1 is the join algorithm for a node x. Each new node x is added to

a prediction tree along with an inner node tx and a weighted edge (tx, x). If x is

the first joining node, x becomes the root R and tx is located at the same position

as x, which means x.k = 0 and x.e = 0. The join algorithm for subsequent nodes

starts by contacting any node z in the network, called a base node. x finds another
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Algorithm 2: x.findOpt(m, mprev)

Measure d(x, m) // measure BW (x, m) and convert it to d(x, m)1

p ← m.findSucc(−∞).P ; Measure d(x, p)2

if mprev = null then3

yc ← x.findChildOpt(m.C.findPred(+∞), Left)4

else if mprev = p then5

yc ← x.findChildOpt(m.C, Right)6

else7

ycL ← x.findChildOpt(mprev.L[0], Left)8

ycR ← x.findChildOpt(mprev.R[0], Right)9

if g(ycL) ≥ g(ycR) then yc ← ycL10

else yc ← ycR11

mnext ← a maximizer of g(s) ∀s ∈ {m, p, yc} \ {mprev}12

if g(m) ≥ g(mnext) then return m13

return x.findOpt(mnext, m)14

node y that is called an end node. y is chosen as the maximizer of the Gromov

product g(y) = 1
2
(d(x, z) + dT (y, z)− d(x, y)). We provide some intuition into why

we maximize g(y). Suppose that, in a prediction tree x and tx are added at the

unique positions that make every distance correct. Given three nodes u, v, and w

in a prediction tree, let’s define a joint node of u, v, and w as an inner node that is

located on all the three paths u ∼ v, u ∼ w, and v ∼ w. Then tx should not be closer
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Algorithm 3: x.findChildOpt(b, dir)

if b = null then return null; else Measure d(x, b)1

if dir = Right then c1 ← b.R[0]; else c1 ← b.L[0]2

if c1 = null then return b; else Measure d(x, c1)3

if g(b) > g(c1) then return b4

if g(b) = g(c1) and b.k 6= c1.k then return b5

for t← b.ht − 1 to 0 do6

if dir = Right then c1 ← b.R[t]; c2 ← c1.R[0]7

else c1 ← b.L[t]; c2 ← c1.L[0]8

if c1 = null then continue; else Measure d(x, c1)9

if c2 = null then continue; else Measure d(x, c2)10

if g(c1) 6= g(c2) then break11

return x.findChildOpt(c1, dir)12

to z than any joint node of z, x, and another node. Note that g(y) should be equal

to the distance between z and the joint node of z, x, and y. So maximizing g(y)

will determine the correct positions of tx and x, and dT (z, tx) should be equal to the

maximum g(y). After finding the position of x in a prediction tree, the algorithm

determines the anchor parent of x and assigns graph distances x.k and x.e. Finally,

x is inserted in the child list of the anchor parent of x using the key of x.k. Note

that x updates only level-0 skip list neighbors to make the join operation fast. The

links for higher-level neighbors will be connected by periodic update mechanisms

that will be described in Section 4.2.5.

33



4.2.3.2 How to Find an Optimizer y

x finds an optimizer y by traversing nodes in the skip anchor tree, starting

at z. Algorithm 2 shows the procedure executed with the currently visited node m

and the previous node mprev. The intuition is that the global optimizer y must exist

in the direction of a local optimizer around m because nodes satisfy the four-point

condition in a tree metric space. In Algorithm 2, x executes Algorithm 3 to find yc

that maximizes g(yc) in the child list of m. For the anchor parent p of m, if g(m)

is the local maximum among g(m), g(p), and g(yc), m is chosen as y. Otherwise,

the algorithm visits a maximizer p or yc, and repeats the procedure in Algorithm 2.

In this way, x can move toward where the global optimizer y exists. For example,

if yc is a local optimizer, y will be located in a sub-skip anchor tree rooted at yc.

Algorithm 3 finds a local optimizer yc in the child list of m by traversing either

right towards a tail or left towards a head starting at node b. The intuition is that,

for two level-0 neighbors c1 and c2 in a skip list, the comparison of g(c1) and g(c2)

can determine the direction where yc exists and shrink the search space by around

half. Algorithm 3 chooses c1 as a high-level skip list neighbor of b within the search

space, and keeps shrinking the search space until finding yc. For example, when

g(c1) 6= g(c2), the algorithm ignores b and nodes between b and c1, and moves to c1

because yc must exist in the new range starting at c1.
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4.2.3.3 Proof of Correctness

This section gives several lemmas and proof sketches to show the correctness

of the join algorithm given in Theorem 4.1. Lemma 4.1 shows that by comparing the

Gromov products, we can exclude part of a prediction tree from end node searches.

Lemma 4.1. Let S be the set of all leaf nodes in a prediction tree. For three leaf

nodes z, y, and w and their joint node t, let Sw be the set of leaf nodes including w in

sub-trees rooted at inner nodes between t and w, and Sy between t and y. Then with

the base node z, if g(y) > g(w), then g(y) > g(s) ∀s ∈ S \ Sy. Also, if g(y) = g(w),

then g(y) = g(s) ∀s ∈ Sw.

Proof. We first show that g(y) > g(w) ⇒ g(y) > g(s) ∀s ∈ S \ Sy. The proof is

divided into the two following parts as S \Sy can be divided into Sw and S \Sy \Sw.

• Part 1: Show g(y) > g(w)⇒ g(y) > g(s) ∀s ∈ Sw.

Because g(y) > g(w) and 4PC holds for z, y, w, and x, d(y, x) + d(z, w) <

d(y, w)+d(z, x) is satisfied, which implies d(y, x)+d(z, s) < d(y, w)+d(z, x)−

d(z, w)+d(z, s). From the location of s ∈ Sw in the prediction tree (Figure 4.2),

d(y, w)−d(z, w)+d(z, s) = d(y, s) holds, so d(y, x)+d(z, s) < d(y, s)+d(z, x).

Since 4PC holds for z, y, s, and x, d(z, y) + d(s, x) > d(y, x) + d(z, s). So,

g(y) > g(s) ∀s ∈ Sw.

• Part 2: Show g(y) > g(w)⇒ g(y) > g(s) ∀s ∈ S \ Sy \ Sw.

Because g(y) > g(w) and 4PC holds for z, y, w, and x, d(y, x) + d(z, w) <

d(y, w)+d(z, x) is satisfied, which implies d(y, x)+d(z, s) < d(y, w)+d(z, x)−
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d(z, w) + d(z, s) = d(y, s) + d(z, x) + d(z, s) + d(y, w) − (d(z, w) + d(y, s)).

From the location of s ∈ S \ Sy \ Sw in the prediction tree (Figure 4.2),

d(z, s)+d(y, w) ≤ d(z, w)+d(y, s) holds, so d(y, x)+d(z, s) < d(y, s)+d(z, x).

Since 4PC holds for z, y, s, and x, d(z, y) + d(s, x) > d(y, x) + d(z, s). So,

g(y) > g(s) ∀s ∈ S \ Sy \ Sw.

Thus, g(y) > g(w)⇒ g(y) > g(s) ∀s ∈ S \ Sy.

We now show that g(y) = g(w)⇒ g(y) = g(s) ∀s ∈ Sw. Because g(y) = g(w)

and 4PC holds for z, y, w, and x, d(y, w) + d(z, x) ≤ d(y, x) + d(z, w) = d(z, y) +

d(w, x) is satisfied, which can be divided into the two following cases.

• Case 1: d(y, w) + d(z, x) = d(y, x) + d(z, w) = d(z, y) + d(w, x)

The assumption of Case 1 implies d(z, x)+d(w, s) = d(z, y)+d(w, x)−d(y, w)+

d(w, s) = d(z, s) + d(w, x) + d(z, y) + d(w, s)− (d(z, s) + d(y, w)). From the

location of s ∈ Sw in the prediction tree (Figure 4.2), d(z, y) + d(w, s) <

d(z, s)+d(y, w) holds, so d(z, x)+d(w, s) < d(z, s)+d(w, x). Since 4PC holds

for z, w, s, and x, d(z, x)+d(w, s) < d(z, s)+d(w, x) = d(z, w)+d(s, x) holds.

The assumption of Case 1 implies d(y, x)+d(z, s) = d(z, y)+d(w, x)−d(z, w)+

d(z, s) = d(z, s)+d(w, x)+d(z, y)−d(z, w). Since d(z, s)+d(w, x) = d(z, w)+

d(s, x), d(y, x)+d(z, s) = d(z, y)+d(s, x) is satisfied. So, g(y) = g(s) ∀s ∈ Sw.

• Case 2: d(y, w) + d(z, x) < d(y, x) + d(z, w) = d(z, y) + d(w, x)

The assumption of Case 2 implies d(y, x)+d(z, s) > d(y, w)+d(z, x)−d(z, w)+

d(z, s) = d(y, s) + d(z, x) + d(z, s) + d(y, w) − (d(z, w) + d(y, s)). From the

location of s ∈ Sw in the prediction tree (Figure 4.2), d(z, s) + d(y, w) =
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Figure 4.2: The prediction tree used in the proof of Lemma 4.1

d(z, w)+d(y, s) holds, so d(y, x)+d(z, s) > d(y, s)+d(z, x). Since 4PC holds for

z, y, s, and x, d(y, x)+d(z, s) = d(z, y)+d(s, x) holds. So, g(y) = g(s) ∀s ∈ Sw.

Thus, g(y) = g(w)⇒ g(y) = g(s) ∀s ∈ Sw.

Lemma 4.2. Algorithm 3 finds yc that maximizes g(yc) among nodes from b in the

direction of dir in a skip list.

Proof. We assume the traversal goes right toward the tail (dir = Right) as the other

case can be proved in the similar way. Also, we assume every node has a unique key

in the skip list for simplicity, although the algorithm supports the case of duplicate

keys (which should happen rarely in practice). With given c1 and c2, the algorithm

shrinks the search space in two cases. When g(c1) = g(c2), g(c1) = g(s) for all nodes

s from c2 to the tail by Lemma 4.1, and the algorithm correctly shrinks the search

space from the right by moving down to the lower level in b’s skip list tower. When

g(c1) 6= g(c2), yc must be located among nodes from c1 to the tail by Lemma 4.1,
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and the algorithm correctly shrinks the search space from the left by moving to

c1. The algorithm terminates with three different cases. If b is the tail, b = yc. If

g(b) > g(c1) for b’s level-0 neighbor c1, g(b) > g(s) for all nodes s in the search space

by Lemma 4.1, so b = yc. Likewise, when g(b) = g(c1), b = yc. In all three cases,

the algorithm correctly returns b as yc.

Lemma 4.3. Algorithm 2 finds y that maximizes g(y).

Proof. Three cases are possible depending on mprev, as shown by the if statements

in Algorithm 2. Here, we only prove the case where mprev = p as the other two

proofs are similar. The algorithm moves from p to m because g(p) < g(m). If

g(m) ≥ g(yc), m = y by Lemma 4.1. Otherwise, y must exist in the sub-skip anchor

tree rooted at yc, by Lemma 4.1, and the algorithm correctly moves to yc. Thus,

Algorithm 2 finds a correct y.

Theorem 4.1. When x is added to a prediction tree T by Algorithm 1, d(x, s) =

dT (x, s) for all leaf nodes s in T .

Proof. For a leaf node s in T , let t be the joint node of s, z, and y. As shown in

Figure 4.3, two cases for the shape of prediction tree can be considered with respect

to the location of t and s.

• Case 1: dT (z, t) ≤ dT (z, tx)

Since g(s) ≤ g(y) by Lemma 4.3, d(z, s) + d(x, y) ≤ d(z, y) + d(x, s). And

dT (z, t) ≤ dT (z, tx) implies d(z, s) + d(x, y) ≤ d(z, x) + d(y, s). 4PC holds for

z, y, x, and s, which implies d(x, s) = d(z, x) + d(y, s) − d(z, y). From the
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Figure 4.3: Two cases of prediction tree used in the proof of Theorem 4.1

structure of T , d(z, x) = dT (z, tx) + dT (tx, x), d(y, s) = dT (y, tx) + dT (tx, s),

and d(z, y) = dT (z, tx)+dT (tx, y). So, d(x, s) = dT (tx, x)+dT (tx, s) = dT (x, s).

• Case 2: dT (z, t) > dT (z, tx)

Since g(s) ≤ g(y) by Lemma 4.3, d(z, y) − d(x, y) ≥ d(z, s) − d(x, s). And

dT (z, t) > dT (z, tx) implies d(z, x) − d(x, y) < d(z, s)− d(y, s). 4PC holds for

z, y, x, and s, which implies d(x, s) = d(x, y) + d(z, s) − d(z, y). From the

structure of T , d(x, y) = dT (x, tx) + dT (tx, y), d(z, s) = dT (z, tx) + dT (tx, s),

and d(z, y) = dT (z, tx)+dT (tx, y). So, d(x, s) = dT (x, tx)+dT (tx, s) = dT (x, s).

Thus, d(x, s) = dT (x, s) for all leaf nodes s in T .

4.2.3.4 Performance Analysis

This section analyzes the performance of the join algorithm by proving Theo-

rem 4.2.
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Lemma 4.4. Algorithm 3 performs measurements with O(log n) nodes with high

probability.

Proof. Let yc be the optimizer in x’s child list. Consider the node traversal path

for executing b.findPred(yc.k) to find the node yc with key yc.k starting at b. This

traversal path of findPred must be equal to the traversal path of b in Algorithm 3

when searching for yc because both algorithms are executed in exactly the same

pattern. Both algorithms return the current node b when b is determined to be yc.

Otherwise, both algorithms move to b’s highest-level neighbor c1 such that yc exists

behind c1.

At each network hop, x performs measurements with two nodes as shown in

lines 1 and 3 of Algorithm 3. Also, for each horizontal move to another node and each

downward move in a skip list tower, x performs measurements with two more nodes

in lines 9 and 10 of Algorithm 3. The findPred operation takes O(log n) network

hops with high probability and the skip list tower height is O(log n) as described in

Section 2.3. Thus, the number of measurements performed by Algorithm 3 should

be O(log n), with high probability.

Theorem 4.2. Algorithm 1 performs measurements with O(log2 n) nodes, with high

probability.

Proof. Algorithm 3 runs on O(log n) skip lists as the skip anchor tree height is

O(log n). By Lemma 4.4, Algorithm 1 takes O(log2 n) measurements, with high

probability.
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4.2.4 Height-Bounding of Skip Anchor Tree

The height of a skip anchor tree should be bounded by O(log n). Bounding

height is important because it limits 1) the cost of the join algorithm, 2) the size

of a distance label, and 3) the time taken by periodic information aggregation that

will be described in Section 4.2.5.

Let x.h be the height of the sub-skip anchor tree rooted at a node x. Select a

node m1 such that m1.h is the maximum in the child list of x. m2 is the node with

the second greatest m2.h. Then the height-bounding factor of a node x is defined

by (m1.h−m2.h). Each node x computes its height-bounding factor by periodically

aggregating the id’s of m1 and m2, and m1.h and m2.h. The aggregation is done

from tail to head in each skip list and in a bottom-up way towards the root.

Every node (except the root) should have a height-bounding factor of zero or

one, which is called the height-bounding property. Then the skip anchor tree height

is bounded by O(log n) as shown in Theorem 4.3. The id of a node x violating the

height-bounding property is also periodically aggregated up to the root. Then the

root node periodically restructures its trees by requesting x to perform a rotation,

as shown in Figure 4.4. x and m1 are rotated with a pivot tm1
in a prediction tree.

x is switched with m1, and a sub-tree B is switched with C in the skip anchor tree.

Anchor relationships are changed in the rotation, but the distance information in

the prediction tree remains the same. Also, a rotation requires only O(1) messages

to update x, m1, and their new neighbors: anchor parent, anchor child, level-0 left,

and level-0 right. The reason that rotations are managed by the root node is to avoid
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unnecessary rotations. One node join operation affects the height-bounding factor

of all the successive anchor parents from a newly joined node to the root. There

are multiple possible violators of the height-bounding property in the set of anchor

parent nodes. Those multiple violations can be fixed by executing just one rotation

at the violator in the lowest level in the skip anchor tree. So the root aggregates

the id of the lowest level violator and performs one rotation instead of allowing

unnecessary rotations to be performed at multiple nodes. Since not every node join

or leave leads to a rotation, rotations do not need to be executed very frequently.

So rotations can be managed relying on the periodic aggregation mechanism.

Theorem 4.3. The height of a skip anchor tree is O(log n).

Proof. The minimum number of nodes Nh in a skip anchor tree with height h can

be computed as Nh = Nh−1 + Nh−2. (N0 = 1 and N1 = 2)

N0 = 1 is true because a skip anchor tree with only one node has height zero.

N1 = 2 is also true because if the root has only one node in its child list, the height

is one. Let Ai denote the skip anchor tree with height i and the minimum Ni nodes.

And let A′
i denote the remaining skip anchor tree after removing the root from Ai.

For h ≥ 2, we can create Ah with A′
h−1 and A′

h−2 in the following way. First, we

create a skip list with the root of A′
h−1 as the head and the root of A′

h−2 as the tail.

Then we create a node p and connect p to the root of A′
h−1 as a parent neighbor.

Finally, we create another node and connect it to p as a parent neighbor. Then

the result structure is Ah because all the nodes except the root satisfy the height-

bounding property. Also, the structure contains the minimum number of nodes for
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Figure 4.4: Rotation of x and m1 by the height-bounding operation

given height h because it is constructed using the smallest structures A′
h−1 and A′

h−2.

So Nh should be equal to the sum of 1 (for the root), 1 (for p), Nh−1− 1 (for A′
h−1),

and Nh−2 − 1 (for A′
h−2), which is Nh−1 + Nh−2.

Nh is a shifted sequence of Fibonacci numbers, which evaluates to approxi-

mately 1√
5
(1+

√
5

2
)h+2. Note that Nh ≤ n for the total number of nodes n. Thus,

h ≈ 1.44 log2 Nh ≤ 1.44 log2 n = O(log n).

4.2.5 Failover and Network Changes

Our system reorganizes itself in response to a changing network environment.

We first discuss dealing with failover. A node leave operation can be handled sim-

ilarly to failover. When node x fails, one of its neighbors in the overlay network
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detects the event from missing periodic heartbeat messages and performs a rotation,

in a similar way to the height-bounding mechanism. Let m1 be the tail of x’s child

list. The rotation is performed between x and m1 with pivot tm1
. Imagine the situ-

ation where B is empty in Figure 4.4. Restructuring finishes by removing x in both

trees. The rotation changes anchor relationships, but all the graph distances in the

prediction tree remain exactly the same. The failover operation requires O(log n)

messages to find the tail m1 in the skip list.

We employ a periodically executing background mechanism that gradually

updates high-level skip list neighbor entries after a node joins or fails. Each node

performs the background mechanism periodically and independently to propagate

high-level neighbor information forward to the tail and backward to the head in

each skip list. This allows join and failover operations to finish quickly and makes

the system resilient to frequent node joins, leaves and failures. Distance labels

are also updated by a periodic background mechanism. After a failover operation

for node x, we must remove x from the distance labels of nodes in the sub-skip

anchor tree of x. It is not desirable to update distance labels of O(n) nodes (the

worst case) whenever a failover operation occurs. So nodes periodically propagates

distance labels in a top-down and head-to-tail direction in a skip anchor tree, so

that receivers can update their distance labels. This mechanism runs quickly using

only O(log2 n) network hops with the help of skip list links and the bounded height

of the skip anchor tree.

In a real network environment, bandwidth can change dynamically over time.

Reconstructing the entire prediction tree to adapt to dynamic changes would have
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a high cost. We restructure only the part of the system where bandwidth changes

occur, by periodic adjustment of the tree. Each node x maintains a fixed-size set

M of random nodes whose bandwidth with x has been measured during node join

operations. x periodically performs a measurement with each node in M . If x

detects significant changes in the measurement data, x leaves the overlay network

and joins back at a new position. We leave it as an open problem to determine

the proper set size of M . If |M | is large, we can adjust the prediction tree quickly

following dynamically changing network environments. However, large |M | implies

high maintenance costs that come from many measurements. So, it is necessary to

find the proper set size of M so that the prediction tree can adjust itself quickly

with low measurement costs.

4.3 Tolerating Imperfect Data

The algorithms described in the previous section can construct a prediction

tree that embeds distance information of a tree metric space with no errors. How-

ever, since the Internet cannot be modeled as a perfect tree metric space, directly

applying the previously described algorithms in practice results in prediction and

search errors. We now describe heuristics to improve the accuracy of our algorithms

for real networks.
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4.3.1 Rational Transform Function

Following Ramasubramanian et. al’s approach [58], we used the linear trans-

form function BWT (u, v) = C − dT (u, v) for bandwidth prediction as described in

Section 2.2. If a network is not modeled as a perfect tree metric space, dT (u, v)

might not be equal to d(u, v). If dT (u, v) is much larger than d(u, v), that can re-

sult in predicting a negative bandwidth value and will decrease overall prediction

accuracy. So we introduce a rational transform function to overcome this problem.

We use d(u, v) = C
BW (u,v)

and BWT (u, v) = C
dT (u,v)

with a positive constant C to

transform between bandwidth and distance, instead of the linear transform func-

tion. Then the predicted bandwidth will always be positive even when dT (u, v) is

overestimated in a real world scenario. As does the linear function, the rational

transform function inverts ordering of bandwidth after performing the transforma-

tion, so it can be used as a distance function in a metric space. The first metric

space property d(u, v) ≥ 0, described in Section 2.2, is satisfied by using a positive

constant C. The second property which states that d(u, v) = 0 if and only if u = v,

can be satisfied by setting BW (u, u) = ∞. The other two properties about sym-

metry and triangle inequality are also satisfied for the rational transform function,

similarly to the linear function as described in Section 2.2.

4.3.2 Error Minimization

The algorithms described in the previous section maximize the Gromov prod-

uct g(y) to construct a prediction tree. Since we use a graph distance value to
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compute g(y), the graph distance should be close to the real distance so that we

can construct an accurate prediction tree. However, the distance information in a

prediction tree must contain some errors in a real network where the tree metric as-

sumption does not hold. Adding each node to a prediction tree using the inaccurate

values of g(y) will accumulate errors in graph distances.

So we modify the node join algorithm to directly minimize the relative predic-

tion error rather than maximize the Gromov product. The relative prediction error

is defined as |BW−BWT |
min{BW,BWT } [53, 19] for the predicted bandwidth BWT of a node pair

and the real bandwidth BW . Unlike the general relative error |BW−BWT |
BW

, this metric

avoids underestimating BWT because the error goes to infinity as BWT approaches

zero. We define e(u) as the average relative prediction errors of node pairs (x, t)

such that BW (x, t) has been measured so far, based on the position of x computed

by a temporary end node u. In Algorithms 2 and 3, we replace g(u) with e(u), for

any node u used in g(u) comparisons. Also, we reverse the comparison condition,

for example, replacing g(u) < g(v) with e(u) > e(v). The revised join algorithm

finds an end node y that minimizes e(y) instead of maximizing g(y). Once an error

minimizer is found using the heuristic, x determines its final position using all its

collected measurement data. For each pair of nodes in the set of measured nodes,

x chooses a temporary base node and an end node, and computes the temporary

position of x. The position that minimizes the error is selected as the final position

of x. Note that this heuristic also works well in a perfect tree metric space, causing

no errors like the original algorithm. The original algorithm finds the position of a

new node that makes e(y) = 0, so maximizing g(y) produces the same result in a
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tree metric space as minimizing e(y).

4.3.3 More Sampling Measurements

In the error minimization technique, collecting more sampling measurements

results in a more accurate prediction tree. We therefore modify the node join algo-

rithm to collect more samples as follows. First, whenever x performs measurements

with c1 and c2 in Algorithm 3, x collects more sampling measurements for two

successive level-0 neighbors of c1 and c2 in their sibling list and their anchor child

neighbors. Second, for each visited node m in Algorithm 2, x performs measure-

ments with all neighbors of m in m’s sibling list. Last, we modify Algorithm 2 to

proceed further to the second optimum even though the currently visited node m is

the local optimum. That is, we choose either p or yc as the next visited node mnext,

and the algorithm returns m when there is nowhere to move. Despite performing

more samples, this heuristic still keeps the measurement cost at O(log2 n) per node.
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4.4 Evaluation

This section evaluates our approach for bandwidth prediction. The experi-

mental results show the high accuracy and scalable cost of our algorithms compared

to prior approaches.

4.4.1 Experimental Setup

Our simulations are based on two bandwidth measurement data sets. The

first data set, HP-PlanetLab [58], contains bandwidth measurements between Plan-

etLab [23] nodes, and has been collected at HP Labs using pathChirp [60] in June

2006 for the S-cube project [7, 72]. Since the raw data set is incomplete and has many

unmeasured pairs of nodes, we first extracted measurements for the 190 nodes (out

of 459) that give a full n-to-n asymmetric matrix containing bandwidth measure-

ments. To represent bandwidth in a metric space, we then converted the matrix to

a symmetric one by averaging bandwidth values from forward and reverse directions

for each pair of nodes. This symmetric matrix is considered as containing a set of

real-world bandwidth measurements for our simulations. The second set, UMD-

PlanetLab [66], contains measurements between PlanetLab nodes, and was collected

at the University of Maryland at College Park using pathChirp during two weeks

starting in late October 2010. We preprocessed this new data set into a full sym-

metric matrix of 317 nodes (out of 497) in the same way as for the HP-PlanetLab

data set.

We will show the results of four different bandwidth prediction systems: SEQ,
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OLD, NEW, and FUL. The simulator for these algorithms is implemented in Java

using PeerSim [38] as a starting point. All four approaches embed bandwidth into a

tree metric space. We will also compare our approach with other systems based on

Euclidean spaces at the end of this section. SEQ refers to our implementation of the

centralized Sequoia algorithm [58]. As described in Section 3.1, SEQ embeds band-

width information into a centralized prediction tree. Each node in SEQ performs a

measurement with a single landmark node. OLD is our original decentralized but

not highly scalable approach [65], as described in Section 3.1. NEW is our decen-

tralized and scalable algorithm described in Section 4.2. OLD and NEW are similar

to each other in the sense that both construct a distributed prediction tree without

using any landmark nodes. But a joining node in OLD performs measurements with

all the anchor child nodes at each visited node. On the other hand, NEW chooses

only a few anchor child nodes in a skip list for sampling measurements. FUL is

a prediction tree constructed by doing exhaustive n-to-n measurements to achieve

the possible highest accuracy in a tree metric space, so would be very expensive to

create and maintain. For each approach and each bandwidth data set, we run 100

rounds of system construction with different node join orderings.

4.4.2 Accuracy

For each round, we recorded relative bandwidth prediction errors, as defined

in Section 4.3, across all possible pairs of nodes in a data set. Figure 4.5(a) shows

results from five rounds for the HP-PlanetLab data. (Figure 4.5(b) is for UMD-
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PlanetLab.) The y-axis in the graph indicates median, 25-th, and 75-th percentile

values over a total of 17955 relative prediction error values across 190 nodes for

HP-PlanetLab (total 50086 values across 317 nodes for UMD-PlanetLab). While we

show the results of only five rounds, all 100 rounds show similar trends.

First, NEW shows lower error than SEQ. For example in Figure 4.5(a), the

median error is 0.1 for NEW while the error for SEQ is around 0.3. This is because

NEW applies the heuristics described in Section 4.3 to improve the prediction ac-

curacy in a real network that is not modeled exactly by a tree metric space. On

the other hand, SEQ does no extra work to support an imperfect tree metric space.

Second, NEW closely tracks FUL. FUL provides an upper bound on the prediction

accuracy that we can achieve in a tree metric space. While FUL uses exhaustive

measurements, NEW has much less cost (fewer measurements) to achieve slightly

lower accuracy. Last, NEW shows similar accuracy to OLD as both approaches use

the similar techniques to improve prediction accuracy as described in Section 4.3.

However, NEW has more scalable cost than OLD as will be shown below.

4.4.3 Total Measurement Cost

Figure 4.6(a) shows the total number of measurements performed to construct

each system in Figure 4.5(a) for HP-PlanetLab. Figure 4.6(b) shows the same

data for UMD-PlanetLab. Since FUL uses exhaustive measurements, FUL has the

highest cost. NEW has less cost than OLD and SEQ. This is because NEW bounds

the join operation cost to O(log2 n) measurements with high probability by using
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the skip list structure and limiting the height of the skip anchor tree, as discussed

in Section 4.2. On the other hand, each node join operation for OLD and SEQ

requires O(n) measurements in the worst case. The cost of NEW is consistent

across multiple rounds while the cost is widely varying for OLD and SEQ. For

example, in Figure 4.6(a) NEW consistently requires around 2500 measurements

while SEQ varies between 9000 and 12000. Since the best-case join cost is O(1)

for all three approaches, the total cost of OLD and SEQ varies between O(n) and

O(n2). However, the total cost of NEW varies only between O(n) and O(n log2 n).

4.4.4 Scalable Node Join Cost

We recorded the number of measurements used for each node join opera-

tion. Figure 4.7(a) and Figure 4.7(b) show the maximum join cost among the 100

rounds (node join orderings). The cost for FUL and SEQ increases linearly as the

system size increases. OLD shows a little lower cost than SEQ, but still increases

almost linearly. As expected, the cost for NEW increases most slowly.

4.4.5 Tree Metric Space vs. Euclidean Space

We introduce two more systems that embed network distances in a 2-d Eu-

clidean coordinate space: VIV- and VIV. VIV- is our simulation of the Vivaldi [26]

system with a linear transform function d(u, v) = C − BW (u, v). VIV means the

Vivaldi system with a rational transform function d(u, v) = C
BW (u,v)

. For both cases,

we produced the best accuracy that Vivaldi could achieve for bandwidth prediction.
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Each node has all other nodes as neighbors. 100000 bandwidth measurements are

performed for random pairs of nodes, so that Vivaldi converges to the best result

using a large number of measurements. Also, C in VIV- is set to be the maximum

bandwidth value in each data set, which results in the best accuracy. (C = 398 in

HP-PlanetLab and C = 1308 in UMD-PlanetLab) C = 10000 is set for VIV just

like other tree metric space approaches as C does not affect the prediction accu-

racy. For each approach and each bandwidth data set, we run 100 rounds of system

construction with different orderings of sampling measurements.

Figure 4.8(a) and 4.8(b) show the cumulative distribution function (CDF)

of relative prediction error of all six approaches. While we show the results of

only one round, all 100 rounds show similar trends. For the four systems using the

rational transform function, FUL, NEW, and OLD show lower prediction error than

VIV. Also, for the other two systems using the linear transform function, SEQ has

better accuracy than VIV-. This shows a tree metric space is better than a 2-d

Euclidean space to embed bandwidth information. More to the point, NEW has a

higher accuracy than VIV with much lower measurement cost. Note that VIV shows

much higher accuracy than VIV-. This shows the efficacy of a rational transform

function in combination with error minimization in Vivaldi. Vivaldi reduces the

relative error |d−dT |
d

, which is equal to lowering |BW−BWT |
BWT

with a rational transform

function. Although |BW−BWT |
BWT

is not exactly the same as our metric of relative

prediction error |BW−BWT |
min{BW,BWT } , both metrics have some degree of correlation. Thus,

VIV shows quite high accuracy, even slightly higher than SEQ, which uses a linear

transform function.
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4.5 Summary

This chapter has presented an algorithm to predict end-to-end network band-

width. Our approach is completely decentralized: no central landmark node exists

for sampling measurements, and data structures are distributed. We proved that

the algorithm has the perfect accuracy assuming bandwidth can be represented in

a tree metric space. We also described heuristics to achieve high accuracy in a real

network that is not perfectly modeled as a tree metric space. The algorithm is also

highly scalable as each joining node only performs O(log2 n) sampling measurements.

Simulation results validate the high accuracy and scalability of our approach.
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(a) HP-PlanetLab: Prediction error
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(b) UMD-PlanetLab: Prediction error

Figure 4.5: Bandwidth prediction error
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Figure 4.6: Total measurement cost for bandwidth prediction
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(b) UMD-PlanetLab: Worst-case join cost

Figure 4.7: Worst-case measurement cost for each node
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Figure 4.8: CDF of relative prediction errors: Tree metric space approaches are

more accurate than 2-d Euclidean space approaches.
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Chapter 5

Decentralized Centroid Search

This chapter discusses a decentralized method to find a centroid node that

has high-bandwidth connections to a given set of nodes. We first formulate the

centroid search problem and describe requirements an algorithm must satisfy. Then

the design of algorithms is provided with proofs of correctness. Last, the accuracy

and scalability of our approach will be evaluated with several experiments.

5.1 Introduction

We investigate a decentralized algorithm to answer the following question:

Given a set Q of nodes, find a centroid x that maximizes the objective

function f(x) = minq∈Q{BW (x, q)}.

By sending or receiving data to or from a centroid node, applications can optimize

data locality and thereby increase their overall performance. Unfortunately, there

has been little research for decentralized centroid search, especially for bandwidth

measurement. There is a distributed approach [50] to find nodes with network

distance constraints on a Euclidean coordinate space. But the method only works

with network latency constraints rather than bandwidth, as a Euclidean space is

not a good model to embed bandwidth as shown in Section 4.4. Although several

systems [58, 19] can produce accurate bandwidth prediction data, no effective search
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algorithms have been studied for those systems. Our approach is to find a centroid

using accurate prediction data that are produced on a tree metric space by the

algorithm described in Chapter 4. The goal is to design a centroid search algorithm

that satisfies the following requirements for a system with n nodes:

• Decentralization: There exists no central component.

• Scalable Message Complexity: A centroid can be found in less than O(n)

network hops.

• Scalable Space Complexity: Each node maintains information of size less than

O(n).

• High Accuracy: A result centroid should be close to the optimal one.

• Self-Organization: The algorithms handle dynamic network conditions.

This work makes several contributions. First, we provide the design of decentralized

centroid search algorithm that has the desired properties. The algorithm avoids sig-

nificant measurement delays by running on top of the bandwidth prediction frame-

work. The second contribution is a thorough theoretical analysis of our algorithm.

The third contribution is a heuristic to increase the accuracy of the algorithm.

Finally, we present extensive simulation results validating the high accuracy and

scalability of our algorithm.
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5.2 Design

To search for a bandwidth-constrained centroid, we define and solve the cor-

responding distance problem in a metric space:

Given a set Q of nodes, find a node x that minimizes the objective

function fd(x) = maxq∈Q{d(x, q)}.

We will use graph distances produced by the algorithms described in Section 4.2,

so that we can avoid any measurement delays in centroid search. We first construct

the prediction framework, have each node maintain some additional information

described in Section 5.2.1, then are able to process a centroid search query as shown

in Section 5.2.2.

5.2.1 Dynamic Information Aggregation

Figure 5.1 shows a prediction tree from the perspective of a node x and an

inner node tx owned by x. To support decentralized centroid search, x maintains

distance labels for five other nodes: p, sp, sL, sR, and sC . p is the anchor parent

of x. sp, sL, sR, and sC refer to the closest leaf node to tx in the sub-trees Tp,
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TL, TR, and TC , respectively. Since the size of a distance label is O(log n), the

space complexity of each node remains O(log n). This information is maintained

by a periodic aggregation mechanism in the skip anchor tree. Each node x receives

distance labels for p, sp, and sL from x.P or x.L[0], sC from x.C, and sR from

x.R[0]. For example, after aggregating sC and sR, x will send to x.L[0] the closest

node to tx in the set {x, sC , sR}. Then x.L[0] will update x.L[0].sR with the received

information. Distance labels are used to compute distance and determine the closest

node as described in Section 4.2.2.

Since it takes some time for each node to propagate the information to other

nodes, the aggregated information in each node can be stale. The stale information

will decrease the accuracy of centroid search. Fortunately, the information prop-

agation time is reasonably short in our approach, so the possibility of the stale

information is low. By utilizing high-level links in a skip list and from the bounded

height of the skip anchor tree, it takes only O(log2 n) hops to propagate the infor-

mation across all nodes in the system.

5.2.2 Query Processing

Algorithm 4 finds a centroid for a query set Q. When |Q| = 1, the algorithm

returns the only node in Q because every node is the closest to itself. For the case of

|Q| ≥ 2, the algorithm first determines the longest path q1 ∼ q2 in a prediction tree.

To do that, the algorithm retrieves the distance labels of nodes in Q and computes

the distances of all-to-all node pairs in Q. Lemma 5.1 shows that a centroid is
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the closest node to the midpoint tm of q1 ∼ q2. So the algorithm finds the owner

node u of the inner node tu that is adjacent to tm in the prediction tree. Then the

closest node to tm in {u, u.p, u.sp, u.sL, u.sR, u.sC} is chosen as a centroid. Note that

Algorithm 4 requires only O(log n) messages to find u in a skip list.

Lemma 5.1. The centroid of Q is the closest node in the prediction tree T to the

midpoint tm of the longest path q1 ∼ q2 between nodes in Q.

Proof. (∀qi ∈ Q) dT (tm, qi) ≤ dT (tm, q1) = dT (tm, q2). For a leaf node x in T ,

(∀qi ∈ Q) dT (x, qi) ≤ dT (x, tm) + dT (tm, qi) ≤ max{d(x, q1), d(x, q2)}. So fd(x) =

max{d(x, q1), d(x, q2)}. Let x∗ be a leaf node in T such that (∀x) dT (x∗, tm) ≤

dT (x, tm). (∀x) fd(x
∗) = max{d(x∗, q1), d(x∗, q2)}= dT (x∗, tm)+dT (tm, q2)≤ dT (x, tm)+

dT (tm, q2) = fd(x). Thus, x∗ is the centroid.

Theorem 5.1. Algorithm 4 correctly finds a centroid for Q.

Proof. Since the case with |Q| = 1 is obvious, we only show the case of |Q| ≥ 2.

Rename x and tx in Figure 5.1 to u and tu, respectively. Then put tm between

tu and TR. Since dT (s, tm) = dT (s, tu) + dT (tu, tm) ∀s ∈ Tp, u.sp is the closest to

tm in Tp. Likewise, u.sL, u.sR, and u.sC are the closest to tm in TL, TR, and TC ,

respectively. Thus, the closest node x∗ to tm in {u, u.p, u.sp, u.sL, u.sR, u.sC} must

be the closest leaf node to tm in the whole prediction tree. By Lemma 5.1, x∗ is the

correct centroid of Q.
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Algorithm 4: findCentroid(Q)

if |Q| = 1 then1

return the only node in Q2

q1 ∼ q2 ← the longest path between nodes in Q3

T ← a partial prediction tree containing q1 and q24

Add a midpoint tm of the path q1 ∼ q2 to T5

a← a node in T such that tm is located on a path ta ∼ a6

if a.C = null then u← a7

else8

u← a.C.findPred(dT (tR, tm))9

if u = null then u← a.C10

Add u, u.p, u.sp, u.sL, u.sR, and u.sC to T11

return the closest node to tm among the six added nodes12

5.2.3 Probing for Higher Accuracy

Since the bandwidth prediction information contains errors, the result of a

centroid search may not optimize the objective function. To increase the accuracy

of centroid search, we modify the algorithm to return the top-k candidate nodes

that optimize the objective function based on graph distances. We then perform

extra probing measurements between the k candidates and all nodes in Q, and

choose the optimal node as the result centroid based on the real measurement data.

If we use more candidates with large k, the result of centroid search will become
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more accurate. However, we cannot use a very large value of k because the probing

measurement costs will increase in proportion to k. In Section 5.3, we will see how

k affects the centroid search accuracy with experimental results.

To support this technique, we first generalize the dynamic aggregation mech-

anism described in Section 5.2.1 so that each node aggregates the information of k

nodes from each neighbor direction. Then the query processing algorithm (Algo-

rithm 4) is modified as follows. When |Q| ≥ 2, line 12 of Algorithm 4 is changed to

return the top-k nodes from the set of u and k aggregated nodes from each neighbor

direction, which are the closest to tm. When |Q| = 1 and q is the only node in Q,

the centroid search algorithm should choose the top-k nodes from the set of q and

all aggregated nodes that are closest to q.
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5.3 Evaluation

This section evaluates our centroid search algorithm. Simulation results will

show the high accuracy and scalable cost of our approach.

5.3.1 Experimental Setup

The two data sets described in Section 4.4 to evaluate the prediction algo-

rithms are also used to evaluate centroid searches. We show results from five dif-

ferent approaches for centroid search: VIV, SEQ, NEW, NEW-HEU-2, and

NEW-HEU-5. VIV refers to a centralized and exhaustive search for centroids

based on the bandwidth prediction data produced by the Vivaldi simulation named

VIV in Section 4.4. SEQ refers to a centralized and exhaustive search for cen-

troids based on the prediction data produced by the Sequoia system named SEQ

in Section 4.4. NEW is our decentralized centroid search algorithm running on the

prediction data produced by our bandwidth prediction framework named NEW in

Section 4.4. NEW-HEU-2 is the improved version of NEW where the probing heuris-

tic is applied with k = 2, as described in Section 5.2.3 for higher centroid search

accuracy. NEW-HEU-5 also uses the probing heuristic with k = 5. As described in

Section 4.4, for each approach and each bandwidth data set, we run 100 rounds of

system construction with different node join orderings and sampling measurements.
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5.3.2 Centroid Search Error

For each round of system construction, 200 queries are submitted to search for

a centroid of three randomly selected nodes (|Q| = 3). Therefore the total number

of queries submitted for each data set is 20000. Although we only show the results

for the case of |Q| = 3, the experiments with |Q| = 5 and |Q| = 10 produce the

similar results.

The real network cannot be modeled as a perfect tree metric space. So, finding

the optimal centroid in a tree metric space does not also imply finding the optimal

node when real bandwidth values are considered. For each query, we order all nodes

in the system by the value of the objective function for centroid search in terms of

real bandwidth, and identify the rank of the centroid found by an algorithm. Then

we measure the centroid search error for each query by a relative rank error, defined

by a rank normalized to the total number of nodes. The relative rank error would

be zero if an algorithm has found the correct centroid, and 0.1 means the result

centroid ranks in the top 10% across all nodes. Figure 5.2(a) shows the cumulative

distribution function (CDF) of the relative rank error values for all 20000 queries

into the HP-PlanetLab data set, and Figure 5.2(b) is for the UMD-PlanetLab data

set.

NEW shows smaller rank error than SEQ and VIV, even though SEQ and VIV

employ exhaustive search methods. This is because NEW searches for centroids us-

ing more accurate predicted bandwidth information than SEQ and VIV, as shown

in Figures 4.5(a) and 4.5(b). Better prediction accuracy results in better centroid
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search accuracy. SEQ is more accurate for centroid search than VIV, while VIV

shows slightly higher accuracy than SEQ for bandwidth prediction in Figures 4.5(a)

and 4.5(b). This is because the error minimization technique of VIV can overesti-

mate a predicted bandwidth value BWT . As described in Section 4.4, VIV minimizes

|d−dT |
d

which is equal to |BW−BWT |
BWT

= |1 − BW
BWT

|. So when it is difficult to predict

bandwidth accurately, VIV tends to produce very large BWT and make errors close

to one. Then VIV can mistakenly choose a centroid node with a low rank when

the centroid node has many overestimated BWT values for its connections to other

nodes.

Despite the high accuracy of NEW, we found that there is still much room to

improve NEW. For example, in Figure 5.2(a), only 60% of queries return centroids

that rank within the top 20% of nodes that could be selected. This is because the

bandwidth data predicted by our NEW framework is still not perfect. So we applied

the probing heuristic in NEW-HEU-2 and NEW-HEU-5. NEW-HEU-2 returns two

candidate nodes instead of only one node. Then NEW-HEU-2 performs six mea-

surements between each of the two candidate nodes and each of the three nodes in a

query input set. The best node is chosen from the two candidate nodes based on the

real measurement data. In Figures 5.2(a) and 5.2(b), NEW-HEU-2 shows higher

accuracy than NEW. Since NEW-HEU-5 performs more probing measurements us-

ing five candidates, NEW-HEU-5 improves the centroid search accuracy even more

than NEW-HEU-2. In Figures 5.2(a) and 5.2(b), 90% of queries for NEW-HEU-

5, compared to less than 80% for NEW-HEU-2, return centroids that rank within

around the top 20% of nodes.
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5.3.3 Relative Error of Objective Function Values

The goal of centroid search is to find the top-ranker that maximizes the ob-

jective function f(x) = minq∈Q{BW (x, q)}. We have shown that our algorithm

successfully finds highly-ranked nodes that are associated with large f(x) values for

real bandwidth. In addition to confirming low rank errors, it is also important to

check how close the quality of a result centroid is to the optimal. So we computed

the relative errors of objective function values. Let x∗ is the optimal top-ranked

centroid that maximizes f(x). For each query result x, we define the relative error

of f(x) as f(x∗)−f(x)
f(x∗)

. Since f(x∗) ≥ f(x) must be true for every node x, the error

values should range in [0, 1].

Figures 5.3(a) and 5.3(b) show the CDF of the relative errors of f(x). The

trend among the five approaches is similar to that in relative rank errors. For both

data sets, NEW shows lower error than SEQ and VIV. Also, the approaches using

probing heuristics help lowering errors. In HP-PlanetLab, NEW shows quite high ac-

curacy in that more than 70% of queries only produce errors less than 0.2. However,

all the approaches in UMD-PlanetLab show higher errors than HP-PlanetLab. For

example, only 20% of queries in NEW show errors less than 0.2 in UMD-PlanetLab.

Also, there is a large gap between the perfect accuracy and all approaches in UMD-

PlanetLab. We can find the reason of the high errors in UMD-PlanetLab from

the high variance of bandwidth in the data set. Figure 5.3(c) shows the CDF of

bandwidth of all node pairs in the two data sets. Bandwidth ranges widely from

0.01 Mbps to 1308 Mbps in UMD-PlanetLab while HP-PlanetLab shows bandwidth
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between 5 Mbps and 398 Mbps. Because of the long tail of UMD-PlanetLab, the

failure to find the optimal centroid x∗ can result in very high relative error of f(x).

In other words, a result centroid can have a very high error for f(x) even though it

has a low rank error.

We will leave it as an open problem to optimize the relative error of f(x)

regardless of bandwidth distribution. Note that the primary goal is to find a top-

ranker for f(x), and our algorithm can find high-ranked nodes correctly. The only

open problem is how to reduce the relative error of f(x) in a network condition

where bandwidth shows high variance and a long tail in CDF.

5.3.4 Scalable Query Cost

For each round of system construction, we submitted 200 search queries for

several different system sizes n. We measured the query cost as the number of

network hops that each query needed to find a centroid. Figures 5.4(a) and 5.4(b)

show the average, 95-th percentile, and maximum of the centroid search costs across

20000 queries. Since the query costs for NEW, NEW-HEU-2, NEW-HEU-5 are the

same, we only show NEW in the figure. Note that VIV and SEQ are not compared

here as neither of those is a distributed approach. As expected, the cost of our

approach increases in a scalable way as n increases. The cost of our centroid search

algorithm should be bounded by O(log n) hops with high probability, as discussed

in Section 5.2. Thus, we confirm that our algorithm finds centroids accurately with

scalable query cost.
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5.4 Summary

This chapter has presented a decentralized, accurate, and scalable algorithm

that can support data-intensive widely distributed applications. The algorithm can

find a centroid node with high-bandwidth connections to the desired set of nodes.

Our approach requires no centralized component or data structure. The algorithm

runs on top of the bandwidth prediction framework, which provides accurate pre-

diction data. We proved the correctness of our centroid search algorithm assuming

bandwidth can be represented in a tree metric space. We also described a heuristic

to achieve higher accuracy in a real network. Our algorithm requires only O(log n)

network hops to process a search query. Simulation results show the high accuracy

and scalability of our approach.
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Figure 5.2: Centroid search error
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Figure 5.4: Query cost of centroid search
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Chapter 6

Decentralized Cluster Search

This chapter describes another node search algorithm that works on top of the

decentralized bandwidth prediction framework described in Chapter 4. We consider

finding a cluster of nodes with high-bandwidth interconnections. We first formulate

the cluster search problem and describe the requirements it must satisfy. Then

we describe what additional information is needed to support decentralized cluster

search and how the information is maintained. Last, the accuracy and scalability of

our approach will be evaluated throughout extensive experiments.

6.1 Introduction

We investigate a scalable and decentralized method to answer the following

question:

Given two constraints, a cluster size k and a minimum bandwidth b, find

a cluster X of nodes such that |X| = k and ∀u, v ∈ X, BW (u, v) ≥ b.

Data-intensive distributed applications can benefit from a cluster search algorithm

as nodes in a cluster can send or receive large-scale data to or from one another at a

high rate. Unfortunately, there has not been an effective method to find bandwidth-

constrained clusters in a decentralized fashion. There are two important reasons for

the lack of a solution for cluster search. First, the clustering problem is difficult to
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solve, in that it is equivalent to the k-clique problem in a general graph, which is NP-

complete. Second, there has been no effective framework for bandwidth prediction

that can reduce the costs of performing bandwidth measurements. Accordingly,

most previous studies only focused on designing heuristics for latency-constrained

clustering [49, 63]. Those systems also require a centralized structure [49] or a

fixed set of landmark nodes that every node has to perform measurements with [63].

There are theoretical studies [12, 30] that have presented polynomial-time algorithms

to find clusters in 2-d Euclidean spaces. We can search for clusters by applying

those clustering algorithms to network distances produced by network coordinate

systems [26]. However, those algorithms only work with network latency rather

than bandwidth, as a Euclidean space is not a good model to embed bandwidth we

showed in Section 4.4.

Fortunately, it is now possible to overcome those difficulties as a consequence

of our recent research efforts. The decentralized framework for bandwidth predic-

tion described in Chapter 4 accurately embeds bandwidth measurements into a tree

metric space. Also, while the clustering problem is NP-complete in a general graph,

we could design a polynomial-time algorithm to find clusters by assuming that band-

width can be represented in a tree metric space. So our approach for decentralized

cluster search is to find a cluster using accurate bandwidth prediction data that are

produced on a tree metric space by the algorithm described in Chapter 4. Then we

can reduce the measurement delays for clustering. The goal is to design a cluster

search algorithm that satisfies the following requirements for a system with n nodes:
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• Decentralization: There exists no central component.

• Scalable Message Complexity: A cluster can be found in less than O(n) net-

work hops.

• Scalable Space Complexity: Each node maintains information of size less than

O(n).

• High Accuracy: Nodes in a result cluster should satisfy the input constraints.

• Self-Organization: The algorithms handle dynamic network conditions.

This work makes several contributions. We first show that the clustering

problem can be solved in polynomial time in a tree metric space, by presenting a

centralized algorithm and proving its correctness. Then we describe a decentralized

polynomial time algorithm that satisfies all the requirements. The key idea is to

have each node maintain a routing table on an overlay network so that a query can

be routed towards where the desired cluster exists. Finally, we present extensive

simulation results validating the high accuracy and scalability, also measuring the

cost of the decentralized algorithm.

6.2 Design

This section describes details of our approach for clustering. We first de-

velop a centralized algorithm, and then discuss how to decentralize it with several

techniques. To search for a bandwidth-constrained cluster, we define and solve the

corresponding distance problem in a tree metric space. Using the rational transform
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Algorithm 5: centralizedFindCluster(V,d,k, l): A centralized algorithm

to find in a tree metric space (V, d) a set X ⊆ V such that |X| = k and

diam(X) ≤ l

X ← {}1

foreach node pair p, q ∈ V such that d(p, q) ≤ l do2

S∗
pq ← {x ∈ V : d(x, p) ≤ d(p, q) ∧ d(x, q) ≤ d(p, q)}3

if |S∗
pq| ≥ k then4

X ← a set of any k nodes in S∗
pq5

break6

return X7

function described in Section 4.3, we can convert the bandwidth function BW to a

distance function d and the bandwidth constraint b to a distance constraint l = C
b
.

We can also define the diameter of a node set X as diam(X) = max∀u,v∈X{d(u, v)}.

As a result, we can define this distance-constrained clustering problem:

Given a tree metric space (V, d) and constraints k and l, find a set X ⊆ V

such that |X| = k and diam(X) ≤ l.

6.2.1 Centralized Clustering in a Tree Metric Space

Algorithm 6 describes a simple centralized algorithm to find a cluster in a

tree metric space (V, d). To explain the underlying intuition of the algorithm, we

first present a brute-force approach for the cluster search problem. For two nodes
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p, q ∈ V , let Spq denote a cluster of nodes such that Spq ⊆ V , p, q ∈ Spq, and

diam(Spq) = d(p, q), and let Gpq be a set containing all Spq’s. Then the union of Gpq

for all p, q ∈ V should be equal to a set of all possible non-empty clusters that can

be created in (V, d) regardless of constraints k and l. So, we can find a cluster by

iterating through all sets Spq in Gpq for all p, q ∈ V and checking if each set satisfies

the constraints k and l. This brute-force algorithm requires exponential time to

iterate through all sets in Gpq.

We can reduce the exponential time of the brute-force approach by checking

just the one maximum-sized cluster S∗
pq for each Gpq. Since all clusters in Gpq have

the same diameter determined by the same node pair (p, q), we do not have to iterate

over all Spq’s in each Gpq to find a cluster with a desired size. Instead, we can just

compute the maximum-sized set S∗
pq and return any k nodes from S∗

pq.

With this intuition, for each node pair p, q ∈ V such that d(p, q) ≤ l, Algo-

rithm 6 determines S∗
pq by collecting all nodes x ∈ V such that d(x, p) ≤ d(p, q) and

d(x, q) ≤ d(p, q). From the proof of Theorem 6.1, we will show that Algorithm 6

correctly creates S∗
pq. If |S∗

pq| ≥ k, then the algorithm stops iterating over node pairs

and returns any k nodes in S∗
pq. If such S∗

pq is not found, we can be sure that a

cluster does not exist because all the maximum size clusters S∗
pq in each group Gpq

of clusters with the same diameter are examined.

Theorem 6.1. (Correctness of Algorithm 6) Given a tree metric space (V, d) and

constraint values k and l, if Algorithm 6 creates S∗
pq for a pair of nodes p, q ∈ V ,

then i) diam(S∗
pq) = d(p, q) and ii) there exists no Spq ⊆ V such that p, q ∈ Spq,
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diam(Spq) = d(p, q), and |Spq| > |S
∗
pq|.

Proof. To prove diam(S∗
pq) = d(p, q), we will show d(r, s) ≤ d(p, q) ∀r, s ∈ S∗

pq. If

r ∈ {p, q} or s ∈ {p, q}, it is clear that d(r, s) ≤ d(p, q) by definition of S∗
pq in

Algorithm 6. Otherwise, three cases are considered by the order of three distance

sums among the four nodes p, q, r, and s: d(p, q) + d(r, s), d(p, r) + d(q, s), and

d(p, s) + d(q, r). Note that, by the definition of the four-point condition, two large

sums out of those three sums must be equal to each other.

• Case 1: d(p, q) + d(r, s) ≤ d(p, r) + d(q, s) = d(p, s) + d(q, r)

By the assumption of Case 1, d(r, s) ≤ d(p, r) + d(q, s) − d(p, q) holds. So,

it is true that d(r, s)− d(p, q) ≤ (d(p, r)− d(p, q)) + (d(q, s)− d(p, q)). Since

d(p, r) ≤ d(p, q) and d(q, s) ≤ d(p, q) is satisfied by the definition of S∗
pq,

d(r, s)− d(p, q) ≤ 0.

• Case 2: d(p, r) + d(q, s) ≤ d(p, s) + d(q, r) = d(p, q) + d(r, s)

By the assumption of Case 2, d(r, s) = d(p, s) + d(q, r) − d(p, q) holds. So,

it is true that d(r, s) − d(p, q) = (d(p, s)− d(p, q)) + (d(q, r)− d(p, q)). Since

d(p, s) ≤ d(p, q) and d(q, r) ≤ d(p, q) is satisfied by the definition of S∗
pq,

d(r, s)− d(p, q) ≤ 0.

• Case 3: d(p, s) + d(q, r) ≤ d(p, r) + d(q, s) = d(p, q) + d(r, s)

Similarly to Case 2, d(r, s)− d(p, q) ≤ 0.

In all three cases, d(r, s) ≤ d(p, q) ∀r, s ∈ S∗
pq holds. Thus, diam(S∗

pq) = d(p, q).

Now let’s assume that there exists Spq ⊆ V such that p, q ∈ Spq, diam(Spq) =
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d(p, q), and |Spq| > |S
∗
pq|. Then there must exist a node x ∈ V such that x ∈ Spq

and x /∈ S∗
pq. For such a node x, d(x, p) ≤ d(p, q) ∧ d(x, q) ≤ d(p, q) holds because

diam(Spq) = d(p, q). However, by the definition of S∗
pq, x /∈ S∗

pq implies d(x, p) >

d(p, q) ∨ d(x, q) > d(p, q), which causes a contradiction. Thus, S∗
pq ⊆ V is the

maximum set such that p, q ∈ Spq and diam(Spq) = d(p, q).

When |V | = n, the algorithm takes O(n3) time because it takes O(n) to create

S∗
pq and O(n2) to iterate over every pair. We do not claim Algorithm 6 is the fastest

algorithm to find a cluster in a tree metric space. The point is that there actually

exists an effective algorithm to solve the clustering problem in a tree metric space.

While the clustering problem is NP-complete in a general graph as described in

Chapter 3, Algorithm 6 can find a cluster in polynomial time by determining S∗
pq

under the assumptions of a tree metric space. Since bandwidth can be embedded

accurately into a tree metric space as described in Chapter 2 and 4, Algorithm 6

can be applied to find a bandwidth-constrained cluster.

6.2.2 Decentralization

Our basic strategy for decentralized cluster search is to use graph distances

produced by the algorithms described in Section 4.2, so that we can avoid any

measurement delays. We construct an overlay network for the prediction framework

and have each node maintain two additional types of information. A clustering

space (CS) of a node is a set of nodes that are close to the node in a prediction

tree, and a cluster routing table (CRT) is a table that stores (1) the maximum
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size of clusters that can be formed on clustering spaces of other nodes, and (2) the

direction of the maximum-sized clusters in an overlay network. Then nodes are able

to process a cluster search query by routing a query towards a direction where a

desired cluster exists on an overlay network.

The rest of this section describes how a clustering space and a cluster routing

table are created and maintained, and how they are used to process a cluster search

query.

6.2.2.1 Clustering Space and Cluster Routing Table

A clustering space of a node x is a set of close nodes to x in a prediction tree.

Recall Figure 5.1 used in Chapter 5 that shows a prediction tree from the perspective

of a node x. p refers to the anchor parent of x. Given a user-defined parameter ncut,

let Sp, SL, SR, and SC refer to the ncut closest leaf nodes to tx in a sub-tree Tp, TL,

TR, and TC , respectively. And let S ′
C refer to the ncut closest leaf nodes to x in a

sub-tree TC . Then the clustering space x.CS is defined as {x, p}∪Sp∪SL∪SR∪S ′
C .

A cluster routing table of a node x stores the maximum size of clusters that can

be formed on clustering spaces of other nodes in each direction of neighbors of x in a

skip anchor tree. Each row of the cluster routing table x.CRT of a node x represents

each neighbor m of x from {P, C, L[0], L[1], · · · , L[ht − 1], R[0], R[1], · · · , R[ht − 1]},

and each column represents a diameter constraint l in a predetermined discrete set

of diameter constraints. Let Um denote a set of nodes that x can only reach via m on

the skip anchor tree. Then x.CRT[m][l] means the maximum cluster size that nodes
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in Um can form for a diameter constraint l in their clustering space. For example, UC

is equal to a set of leaf nodes in TC in Figure 5.1, and x.CRT[C][l] is the maximum

size of clusters with diameter ≤ l that can be formed in clustering spaces of leaf

nodes in TC . Note that there is also a row for x to represent the maximum cluster

size that can be formed in the clustering space of x. Table 6.1 shows an example of a

cluster routing table of a node x. Each column represents a diameter constraint l in

a set {10000, 1000, 100, 10} and the corresponding bandwidth constraint b assuming

constant C = 10000 is used for l = C
b

conversion. Each row represents the neighbors

of x in a skip anchor tree. x is the head of a skip list in the example, so left neighbors

do not exist. x.CRT[P ][1000] is equal to 18, which means there exists a set of 18

nodes, in the direction of the anchor parent neighbor P in a skip anchor tree, such

that every distance between nodes is less than or equal to 1000.

As the size of each of the four node sets Sp, SL, SR, and S ′
C is bounded by

ncut, our decentralized approach limits the size of the clustering space up to 4ncut+2

nodes. This limitation potentially allows each node to create a cluster with only a

small number of nodes. Accordingly, our decentralized algorithm might not be so

responsive as the centralized one for difficult queries with large k. However, it is

presumably rare that a user wants to find a cluster of very large size. As long as

k is small, our decentralized approach becomes as responsive as the centralized one

whatever a diameter constraint l is. This is because the quality of the clustering

space is good in that the clustering space is formed with the closest nodes in each

neighbor direction.

Having a predetermined diameter set limits the freedom of choosing a band-
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Table 6.1: An example of cluster routing table of a node x

Constraint l ≤ 10000 ≤ 1000 ≤ 100 ≤ 10

Constraint b ≥ 1Mbps ≥ 10Mbps ≥ 100Mbps ≥ 1000Mbps

x 20 15 8 5

P 25 18 10 2

C 32 26 15 3

L[0] N/A N/A N/A N/A

L[1] N/A N/A N/A N/A

L[2] N/A N/A N/A N/A

L[3] N/A N/A N/A N/A

R[0] 40 28 13 8

R[1] 29 22 8 4

R[2] 22 21 7 4

R[3] 15 12 5 2

width constraint in a cluster search query, which is another cost of our decentralized

approach. However, we believe that users will be satisfied with coarse-grained spec-

ification of bandwidth constraints as long as they can find clusters in a scalable and

decentralized way.
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6.2.2.2 Dynamic Aggregation

To form x.CS, a node x maintains distance labels for p and nodes in six sets

Sp, SL, SR, SC , S ′
C , and S ′

R. S ′
R refers to the ncut closest leaf nodes to p in a sub-

tree TR in Figure 5.1. This information is maintained by a periodic aggregation

mechanism in the skip anchor tree. x receives p, Sp, and SL from x.P or x.L[0], SC

and S ′
C from x.C, and SR from x.R[0]. For example, after aggregating SC and SR,

x will send to x.L[0] the ncut closest nodes to tx in the set {x} ∪ SC ∪ SR. Then

x.L[0] will update x.L[0].SR with the received information. Note that SC and S ′
R

are not directly used to form a clustering space, but SC is used to update Sp, SL,

and SR, and S ′
R is used to update S ′

C . By utilizing high-level links in a skip list, we

can propagate the information to all the nodes in a skip list within O(log n) hops

with high probability. Thus, it takes O(log2 n) hops for all the nodes in a system to

receive the information.

x periodically fills in the row x.CRT[x] by running Algorithm 6 in x.CS for

each l in the diameter set. And x receives the information for a row x.CRT[m] from

each neighbor m ∈ {P, C, L[0], L[1], · · · , L[ht − 1], R[0], R[1], · · · , R[ht − 1]}. For ex-

ample, after aggregating x.CRT[R[0]] and x.CRT[C], x will send to x.L[0] the entry

x.L[0].CRT[x][l] for each l in a diameter set. The entry is equal to max{x.CRT[x][l],

x.CRT[R[0]][l], x.CRT[C][l]}. For fast aggregation, x utilizes high-level links in a

skip list. Like the aggregation for clustering spaces, it takes O(log2 n) hops for all

the nodes in a system to update cluster routing tables.
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6.2.2.3 Query Processing

A user can initiate a distributed cluster search by sending a query (k, l) to any

node. Then the query routes towards a direction in a skip anchor tree where there

exists a node that can form a desired cluster in its clustering space. Algorithm 6

shows how a node x processes a query (k, l) that is forwarded from a node xprev. If

x.CRT [x][l] ≥ k holds, then x runs the centralized cluster search algorithm (Algo-

rithm 6) in x.CS and return the result. Otherwise, x collects candidate neighbors m

such that x.CRT [m][l] ≥ k holds, and forwards the query to a random node among

the candidates. If x knows that there does not exist any cluster in any direction,

the algorithm returns an empty set. We can avoid any possibility of routing in an

infinite cycle with the following strategies. First, a query should not be forwarded

back to the previous node. Also, a query should move in one-way direction in each

skip list, so if a node receives a query from a left (or right) neighbor, the query

should not be forwarded back to any left (or right) neighbors. The query routing

algorithm utilizes high-level links in skip lists for fast search. Among neighbors in

a skip list, the highest-level neighbor m such that x.CRT [m][l] ≥ k holds is only

considered as a candidate node to be forwarded the query to. For example, if a node

x has a CRT as shown in Table 6.1 and receives a query (k = 20, l = 1000), then

x forwards the query to either C or R[2]. Although x.CRT[R[1]][1000] ≥ 20 and

x.CRT[R[0]][1000] ≥ 20, the query routing algorithm only chooses the highest-level

neighbor R[2] as a possible forwarding direction.

The query routing takes O(log n) hops in each skip list with high probability,
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and a query should traverses O(log n) skip lists in a skip anchor tree, so O(log2 n)

hops are needed to find clusters if one exists.
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Algorithm 6: x.findCluster(k, l, xprev): Node x’s procedure to process a

query (k, l) forwarded from node xprev

if k ≤ x.CRT[x][l] then1

dCS ← the distance function on the clustering space x.CS2

X ← centralizedFindCluster(x.CS, dCS, k, l)3

else4

Snext ← {}5

Add the anchor parent neighbor P to Snext if k ≤ x.CRT[P ][l]6

Add the anchor child neighbor C to Snext if k ≤ x.CRT[C][l]7

Add the highest-level left neighbor L[i] to Snext s.t. k ≤ x.CRT[L[i]][l]8

Add the highest-level right neighbor R[i] to Snext s.t. k ≤ x.CRT[R[i]][l]9

Snext ← Snext \ {xprev}10

if Snext = {} then11

X = {}12

else13

xnext ← a random node from Snext14

X = xnext.findCluster(k, l, x)15

return X16
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6.3 Evaluation

This section evaluates our approach by examining i) the accuracy of our clus-

tering approach, ii) scalability of the query routing, and iii) the cost of decentraliza-

tion. The two data sets described in Section 4.4 to evaluate the prediction algorithms

are also used to evaluate the cluster search algorithm.

6.3.1 Accuracy

Since there are no extant systems to find bandwidth-constrained clusters in

the literature, we designed a comparison model by combining two algorithms: Vi-

valdi [26] and the 2-d clustering algorithm [12]. We first embed bandwidth mea-

surements into 2-d Euclidean coordinate space using Vivaldi network coordinates,

along with the rational transform function described, as VIV in Section 4.4. To

find a cluster in 2-d Euclidean coordinate space, we use a centralized 2-d clustering

algorithm that is described in the literature [12]. Since the 2-d clustering algorithm

was originally designed to find a set of k nodes that has minimum diameter, we

slightly changed it to apply to our problem by adding a diameter constraint l. As

the correctness of the 2-d clustering algorithm is known, clustering error in this

comparison model only comes from imperfect bandwidth embedding in Euclidean

space. This is analogous to our centralized clustering approach, where error comes

only from imperfect bandwidth embedding into the tree metric space. We used the

C++ Vivaldi simulator [9], and implemented the 2-d clustering algorithm in Python.

We show the results of three different approaches: VIV, SEQ, and NEW.
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VIV is the result of the comparison model described above. It uses the 2-d clus-

tering algorithm running with the bandwidth data predicted by Vivaldi in a 2-d

Euclidean space. SEQ refers to the result of our centralized cluster search algorithm

applied to the prediction data produced by the Sequoia system. NEW indicates the

result of our decentralized clustering algorithm running on our decentralized band-

width prediction framework. Note that both NEW and SEQ show the result of our

contributions for finding bandwidth-constrained clusters in a tree metric space.

We first constructed a clustering system for each approach with the HP-

PlanetLab data set. Then we sent 200 easily satisfied queries with small cluster

size constraint k such that all three approaches could always find clusters. With

these easy queries, we could fairly compare the three approaches with respect to

clustering accuracy. In each query, k is set at 10 nodes, which is 5% of the total

number of nodes in the data set. Since k is already small, we choose bandwidth

constraint b in a large range. b is set at 15 − 75 Mbps that is between the 20-th

percentile and 80-th percentile of real bandwidth in the data set. We evaluated 100

distinct clustering systems with different random seeds, so the result is a total of

20000 queries examined for each of the three approaches.

We define the wrong pair rate (WPR) metric to compare the three approaches.

For a cluster search problem with a bandwidth constraint b, a wrong pair is a pair

of nodes in a result cluster with interconnection bandwidth less than b. WPR is the

ratio of the number of wrong pairs to the number of all pairs in all the returned

clusters. Figure 6.1(a) shows WPR with increasing b for all three approaches. There

are more choices of wrong pairs for queries with large b, which results in a high WPR.
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Note that the inaccuracy of the result clusters only comes from the inaccuracy of

the underlying prediction framework for all three approaches. So it is natural that

NEW shows lower WPR than SEQ and VIV because NEW has higher prediction

accuracy than the other two approaches, as shown in Section 4.4. SEQ shows

higher accuracy in cluster search while VIV is slightly more accurate than SEQ for

bandwidth prediction. This is because VIV can overestimate prediction bandwidth

value, as described in Section 5.3.

We executed the same simulations for UMD-PlanetLab except that we used

different queries such that k = 16 nodes and b = 30− 110 Mbps. Such k and b are

chosen using the same criteria as in the simulations for HP-PlanetLab. As shown

in Figure 6.1(b), the results for UMD-PlanetLab show the same trends as those for

HP-PlanetLab.

6.3.2 Scalable Query Cost

For each round of system construction, we submitted 200 search queries for

several different system sizes n. Then we measured the query cost as the number

of network hops that each query needed to find a cluster. Figures 6.2(a) and 6.2(b)

show the average, 95-th percentile, and maximum of the cluster search costs across

20000 queries. Note that VIV and SEQ are not compared here as neither of those

is a distributed approach. As the system size increases, the cluster search cost

increases in a scalable way. This is because the cost is bounded by O(log2 n) with

high probability, as described in Section 6.2. Thus, we confirm that our algorithm
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finds clusters accurately with scalable query cost.

6.3.3 Cost of Decentralization

One of the costs of decentralizing the clustering algorithm is the need to limit

the size of clustering spaces. Each node only aggregates up to ncut number of

nodes from each neighbor direction. Accordingly, the decentralized algorithm might

not be as responsive as the centralized one for difficult queries with large k. This

limitation lets us tune the messaging workload to any desired degree. However, it

potentially allows each node to create a cluster with only a small number of nodes.

Accordingly, the decentralized algorithm might not be as responsive, or accurate, as

the centralized one for difficult queries with large k.

Figure 6.3(a) shows this cost for the HP-PlanetLab data set. We constructed

clustering systems with different ncut values of 10, 15, 20, and 1000, and sent 200

queries, each of which is a pair (k, b) chosen from k = 5− 45 nodes and b = 15− 75

Mbps. When k ≤ ncut, our decentralized cluster search algorithm is as responsive

as the centralized algorithm. And if k > 4ncut + 2, our decentralized algorithm

cannot find any cluster with k nodes. To see the whole change in responsiveness

of our decentralized algorithm for ncut = 10, we chose k between 0.5ncut = 5 and

4.5ncut = 45. Also, we wanted to choose b in a large range, so we set b between

the 20-th percentile (15 Mbps) and 80-th percentile (75 Mbps) of real bandwidth

in the data set. In Figure 6.3(a), NEW-X refers to the system with ncut = X. As

each node in NEW-1000 maintains a clustering space containing all the nodes in the
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system, the result of NEW-1000 represents a centralized clustering approach.

We define the return rate (RR) as the ratio of the number of found clusters

to the number of submitted queries. As shown in Figure 6.3(a), RR increases as

ncut increases because a large value of ncut means that each node can have a large

clustering space. Also, as a query gets more difficult with larger k, RR gets smaller

for all approaches. RR becomes zero when k is large (> 4ncut + 2) because each

node can have a clustering space of size at most 4ncut +2. However, when k is small,

near ncut, RR is close to centralized clustering (NEW-1000) regardless of b. This is

because each node creates a clustering space by aggregating the highest-bandwidth

nodes. Thus, we can conclude that our decentralized approach shows a high respon-

siveness compared to our centralized approach for queries with a reasonably small

constraint k relative to the parameter ncut.

We executed the same simulations for UMD-PlanetLab except that we used

different ncut values and queries such that k = 8 − 72 nodes and b = 30 − 110

Mbps. Such k and b are chosen using the same criteria as in the simulations for

HP-PlanetLab. The result in Figure 6.3(b) shows a similar trend to what we found

with HP-PlanetLab.

6.4 Summary

This chapter has presented a decentralized algorithm to find a cluster of Inter-

net hosts that are connected via high-bandwidth interconnections. We presented a

polynomial-time solution for solving the cluster problem when mapped onto a tree
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metric space, along with the proof of correctness. We also described a decentralized

solution that routes queries along a distributed prediction framework. The decen-

tralized algorithm by dynamically aggregating and propagating local information

along the prediction framework, limiting overhead by constraining the amount of

information so communicated. Simulation results show that the accuracy of the

decentralized approach nonetheless closely approximates that of the centralized ap-

proach when the desired cluster sizes are not a large fraction of total system size.

We also show that the decentralized algorithm is highly scalable: the query routing

only takes O(log2 n) network hops with high probability.
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Figure 6.1: Cluster search error
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Figure 6.2: Query cost of cluster search
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Figure 6.3: Cost of decentralization
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Chapter 7

Future Work

This chapter describes possible extensions to the work presented in this dis-

sertation.

7.1 Empirical Study for Dynamic Environments

Network bandwidth can dynamically change over time. We described the

mechanisms to support such dynamic network environments. However, we still need

to conduct experiments to investigate the behaviors of our algorithms in practice.

We can collect bandwidth data sets at different time frames for a long period of time.

Then we can see how our algorithms organize themselves and produce prediction

data. After that, we can also implement a real system and run it over wide-area

Internet hosts.

7.2 Prediction of Asymmetric Bandwidth

In this dissertation, we considered bandwidth in a metric space where the sym-

metric property of metric should be satisfied. Accordingly, we focused on predicting

and utilizing the average bandwidth of the forward and reverse directions. However,

the forward routing path between two nodes in the Internet can be different from

the reverse path. The forward capacity of a physical link can also be different from
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the reverse capacity. Because of those asymmetries, there should exist some degree

of asymmetry in forward and reverse bandwidth between two network nodes.

To quantify the asymmetry of bandwidth, we can compute the asymmetry

factors [45] for bandwidth data sets. The asymmetry factor α ∈ [0, 1] of a pair of

nodes is defined as |BWFWD−BWREV|
max{BWFWD,BWREV} , where BWFWD means the forward bandwidth

value of the node pair, and BWREV means the reverse bandwidth value. So α =

0 indicates BWFWD = BWREV (i.e., complete symmetry). Figure 7.1 shows the

cumulative distribution function of the α values for the two bandwidth data sets

used in Sections 4.4, 5.3, and 6.3. HP-PlanetLab shows high symmetry of bandwidth

in that around 80% of node pairs have α ≤ 0.5. On the other hand, only 50% of

node pairs have α ≤ 0.5 for UMD-PlanetLab. We can find the reason for this

difference from different data collection times of the two data sets. HP-PlanetLab
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was collected four years earlier than UMD-PlanetLab. So, the network conditions of

PlanetLab such as link capacity and participating hosts had surely changed before

UMD-PlanetLab was collected.

For some applications, it may be important to utilize bandwidth values in both

directions of a network path. Our metric-based approach for bandwidth prediction

will be useful if such an application runs in a network condition, where bandwidth is

quite symmetric like in HP-PlanetLab. However, we need to support prediction of

asymmetric bandwidth in case applications want to utilize both forward and reverse

bandwidth values in asymmetric network environments like UMD-PlanetLab. So, we

leave it as a future work to extend our approach and predict asymmetric bandwidth

information.

7.3 Latency Prediction

Because of the inherent nature of network topology, an edge-weighted tree

is also a good data structure to embed network latency information [58]. So we

should be able to apply the approach for bandwidth prediction to latency prediction.

Then no transform function is required, and round-trip time can be directly used

as a distance in a tree metric space. We can compare the accuracy and sampling

measurement costs with network coordinate approaches such as Vivaldi [26] and

GNP [53]. As existing coordinate systems already have high accuracy, we do not

expect our approach to seriously outperform those systems in terms of prediction

accuracy. Nonetheless, it is meaningful to apply our approach to latency prediction
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Figure 7.2: The overview of MapReduce workflow execution

because we support decentralized search algorithms for centroids and clusters unlike

network coordinate systems.

7.4 Wide-Area MapReduce

In addition to designing the prediction and node search algorithms as discussed

in the previous chapters, it is also important to study how the algorithms can be

actually used in practice. We are planning to develop a new type of MapReduce

system that exploits wide-area computing resources. In this section, we provide the

preliminary design of a decentralized job scheduling algorithm that optimizes data

locality among wide-area hosts by utilizing the algorithms described in the previous

chapters. The following sections describe motivation for this work, details of the

design of the job scheduling algorithm, and open questions for this work.
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7.4.1 Introduction

MapReduce [27] is a programming model that enables automatic paralleliza-

tion and distribution of large-scale data-intensive computations. It allows users to

execute a workflow that contains data-intensive tasks. Figure 7.2 shows an overview

of MapReduce workflow execution. Computation in MapReduce is divided into two

major phases, which execute map tasks and reduce tasks, respectively. Input data

are first divided into several splits to be assigned to map tasks. A map task “maps”

each input split to a list of key-value pairs. The intermediate outputs are then

shuffled, so key-value pairs with the same key are grouped together and passed to

a single reduce task. Finally, a reduce task “reduces” each group of key-value pairs

into a final output value.

Many different data-intensive problems can be solved efficiently with this two-

phase computation. So MapReduce is successfully being used as a computation

framework in institutions of science and other data-intensive applications. MapRe-

duce solves various data-intensive problems, for example, for data analysis related to

astronomical image analysis [70], bioinformatics [61], and high energy physics data

analysis [29], also for industrial applications such as web indexing, data mining, and

spam detection.

However, current implementations of MapReduce, including Hadoop [2], are

targeted to the execution of jobs in a local-area network within one data center.

This is the biggest motivation for developing a wide-area MapReduce system. By

exploiting wide-area computing resources, we can have two advantages over current

102



local-area systems.

• Scalability: A huge amount of computing resources all over the world will be

able to participate in a single instance.

• Cost-efficiency: We can create a wide-area cluster with volunteer resources

that are available for free or at very low cost. Federating small local-area

clusters without maintaining a large data center is also possible.

Developing a wide-area MapReduce algorithms implementation is not an easy

problem in that directly applying the architecture for the local-area clusters [27,

35] will cause two serious problems. The problem is the overhead of a central

server for resource allocation. Maintaining a huge amount of information for wide-

area resources in a single server will cause problems for scalability and reliability.

The second problem is long data transmission time through low-bandwidth network

connections. Data locality must be considered when scheduling tasks among wide-

area resources. Since resources are widely dispersed, we cannot use the locality-

aware scheme of the traditional MapReduce system such that a task is assigned

to a node in a local rack where the input data exists. There have been several

studies [67, 52, 22] about developing a wide-area MapReduce system with a similar

motivation to ours. However, none of them could effectively overcome the challenges

above.

In this dissertation, we provide our preliminary design of a job scheduling

algorithm that resolves the two challenges of decentralized resource allocation and

data locality optimization. Our approach is to utilize the decentralized algorithms
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for bandwidth prediction and node search described in the previous chapters. The

design of a job scheduling algorithm satisfies the following requirements:

• Exploiting Wide-Area Resources: The system can be constructed with a large

number of geographically dispersed computing resources.

• Decentralized Resource Allocation: There must exist no single centralized

server to maintain information about the entire set of available resources to

allocate resources for jobs.

• Locality-Awareness: A task should be assigned to a node that has a high-

bandwidth interconnection with data storage node for the input data for the

task.

• Load balancing: The number of executed tasks should be evenly distributed

across all the nodes in the system.

• Robustness: Node failures should not impact the overall functionality of the

services deployed on the system.

7.4.2 Preliminary Design

This section describes a job scheduling algorithm that can be used in a wide-

area MapReduce system. We first present an overview of the scheduling procedure,

then describe two different approaches for optimizing data locality among data-

intensive tasks.
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Figure 7.3: The overview of job scheduling in a wide-area MapReduce

7.4.2.1 Overview

All the hosts that will be utilized in a MapReduce computation first construct

a bandwidth prediction framework as described in Chapter 4. Then our scheduling

algorithm can optimize data locality in terms of bandwidth by using the node search

algorithms discussed in Chapters 5 and 6.

Figure 7.3 shows the overall procedure of job execution in a wide-area MapRe-

duce system. First, a client submits a MapReduce job to any node, called an

injection node in the system. Each job should specify i) the locations of the input

data, ii) the map function that each map task executes, iii) the partition function

that determines which intermediate outputs are grouped together and assigned to

the same reduce task, and iv) the reduce function that each reduce task executes.

Second, the job is routed to a random node which is designated as a master node of
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the job. Third, the master node schedules map and reduce tasks as specified for the

job on several worker nodes. Fourth, each worker node executes an assigned task

by retrieving input data from other nodes. Finally, the output data are stored in

several nodes, and the master node maintains the locations of output data until the

client retrieves it.

While all the submitted jobs are managed by a single master node in local-

area MapReduce implementations [2], our design can have multiple master nodes

to handle different jobs. So the workload for managing job execution in large-scale

networks can be distributed over multiple master nodes. With the following strategy,

we can choose a node uniformly at random and give every node an equal chance to

be a master node for each job. Each node first aggregates the number of nodes that

exist in the skip anchor tree (described in Chapter 4) in each direction of the anchor

parent neighbor P , the anchor child neighbor C, the level-0 left neighbor L[0], and

the level-0 right neighbor R[0]. An injection node starts a random walk process,

and each node chooses a direction with the probability of the ratio of (the number

of nodes in the direction) to (the total number of nodes in the system except in the

direction of the previously visited node during the random walk process). Like the

dynamic information aggregation mechanisms described in the previous chapters,

each node utilizes high-level links in a skip list, and takes only O(log2 n) hops with

high probability to propagate the information across all nodes in the system.

A master node watches the status of worker nodes to ensure reliable compu-

tations. If a failure happens to a worker node that has been executing a task, the

master node assigns the failed task to another worker node. We should also consider
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the failure of a worker node after it finishes executing a reduce task and before a

client retrieves output data from the failed worker node. Then we can possibly lose

the output data and need to execute the entire job all over again. To avoid the

possible loss of output data, we replicate the output data of each reduce task to an-

other random node, and the master node keeps track of the location of the replica.

We can choose a uniformly random replica node in the same way an injection node

chooses a master node.

In case of the failure of the master node, we designate a secondary master

node that maintains a copy of the information in the master node. So the secondary

master node takes over the control of job execution when it detects the failure of

the primary master node. A client should know which node is designated as the

secondary master nodes, so that it can retrieve output data if the master node fails.

7.4.2.2 Task Scheduling with Data Locality

We now describe how each master node chooses worker nodes to schedule

tasks on. The key issue for task scheduling in a wide-area MapReduce system

is data locality optimization among data-intensive tasks. It is also important to

choose worker nodes in a decentralized fashion and distribute the workloads of task

execution over computing resources. We provide two task scheduling approaches

that resolve the issues of data locality optimization and decentralization by utilizing

the node search algorithms described in the previous chapters.

As shown in Figure 7.4, the first approach uses the centroid search algorithm
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Figure 7.4: Task scheduling with centroid search

designed in Chapter 5. A master node schedules each map task to the node that

contains the input split, so that we can optimize data locality by avoiding unneces-

sary data transfers. For scheduling a reduce task, a master node first finds a centroid

of worker nodes that have executed the corresponding map tasks and contain the

intermediate output data of the map tasks. The centroid node is designated as a

worker node to execute the reduce task. Then the worker node that is assigned the

reduce task will be able to retrieve the intermediate output data from other worker

nodes at a high rate through high-bandwidth connections.

Although we can optimize data locality using the centroid search algorithm,

there exist two possibilities of load imbalance. First, if a small number of nodes are

connected to most other nodes in a network via high-bandwidth links, the small set of

nodes can be always chosen as worker nodes. To reduce the load imbalance problem,

we limit the number of currently running tasks in each node to stay under a user-

defined threshold value. We can exclude overloaded nodes from running additional

tasks by slightly modifying the centroid search algorithm. Nodes overloaded by
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Figure 7.5: Task scheduling with cluster search

too many running tasks are not allowed to participate in the dynamic aggregation

mechanism for centroid search described in Section 5.2.1, so that information about

the overloaded nodes is not propagated to other nodes. Then the centroid search

algorithm will be able to find nodes with fewer running tasks than the threshold

value. The second possibility of load imbalance comes from the cases such that

many map tasks have input splits contained in the same node, or many reduce

tasks are associated with the same set of map tasks. Then every time a task is

scheduled, the centroid search algorithm will find the same centroid, and the single

centroid will suffer from running many tasks. To resolve this problem, a master

node finds multiple centroid nodes and assigns a task to the best centroid node that

is not occupied by another task in the same job. We can have the centroid search

algorithm return multiple centroid nodes in the same way that the algorithm returns

k candidates for the probing heuristic described in Section 5.2.3.

Figure 7.5 shows the second approach for task scheduling, where a master

node finds a set of worker nodes by running the cluster search algorithm designed in
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Chapter 6. The cluster size constraint k is set to be the number of map tasks. The

bandwidth constraint b starts at the maximum value in the bandwidth constraint

set and is adjusted down until any cluster is found. If no cluster exists with k

nodes, we keep dividing k by two until finding a cluster. Then each worker node

in the found cluster will be able to retrieve intermediate output data quickly from

other worker nodes at a high rate through high-bandwidth connections. So we can

achieve higher data locality among reduce tasks than a naive scheduling method

that chooses random worker nodes without considering network bandwidth. We can

also increase data locality for map tasks with the following strategy. The master

node finds clusters multiple times and picks one that maximizes the minimum of

bandwidth (max-min) between nodes containing input data and nodes in the cluster.

In this way, worker nodes to execute map tasks can quickly retrieve input data splits.

Once a cluster of worker nodes is determined, the master node receives heartbeats

from the worker nodes in the cluster, and schedules tasks to worker nodes in a FIFO

fashion.

Like the centroid search approach, this cluster search approach potentially has

a load imbalance problem. Let’s say that there exists a small set of nodes that are

interconnected via higher bandwidth than the bandwidth between any other node

pairs in a network. Then the nodes with high-bandwidth interconnections will be

frequently chosen as worker nodes. To eliminate the load imbalance problem, we

limit the number of different clusters that each node participates in at the same time,

below a user-defined threshold value. Similarly to the solution to the load imbalance

problem in the centroid search approach, we can modify the cluster search algorithm.
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If a node is participating in too many clusters, the information for the node is not

propagated in the overlay network, so that the node cannot be used in the clustering

spaces of other nodes and the node does not appear in cluster routing tables. Then

the cluster search algorithm will be able to find nodes that are not overloaded with

many running tasks.

There exists a trade-off between these two approaches. The cluster approach

has less overhead for node search than the centroid approach. The cluster approach

executes the cluster search algorithm only a few times to determine a set of worker

nodes before executing tasks, while the centroid approach requires searching for a

centroid each time a task is scheduled on a worker node. However, the centroid

search can possibly optimize data locality better than the cluster approach. The

clustering approach relies on the high-bandwidth interconnections among worker

nodes while the centroid approach finds a good worker node for every task.

7.4.3 Other MapReduce Job Scheduling Approaches

Hadoop [2] is the most popular implementation of MapReduce, and is being

used as a computation framework for a public cloud computing [16] service [1].

Hadoop employs the speculative execution technique, where multiple copies of a

MapReduce task are executed at different nodes in case a task is scheduled on a slow

node called a straggler. LATE scheduler [75] improves the speculative execution by

executing multiple copies of tasks with the longest approximate time to end. Delay

scheduling [74] considers both fairness and data locality. For a given idle node
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and a task queue, if the task at the queue head does not have input data in the

idle node, the scheduling of the task is delayed. Dryad [35] is an infrastructure

similar to MapReduce and is used to run data-parallel programs in a computer

cluster. Quincy [36] schedules Dryad tasks by periodically solving a min-cost flow

problem. Like delay scheduling [74], Quincy also considers both fairness and data

locality. Moon [47] is a combination of MapReduce and volunteer computing, and

executes MapReduce tasks on opportunistic environments. Moon employs a hybrid

architecture of reliable and non-reliable nodes, so that important data can be stored

in reliable nodes. MapReduce, Dryad, and Moon are all targeted to run in a high-

bandwidth local-area network. Accordingly, all the task scheduling techniques used

in those systems optimize data locality with a simple strategy: if possible, a task is

scheduled on a node that contains the input data for the task. On the other hand,

we consider network bandwidth to optimize data locality to schedule MapReduce

tasks on nodes dispersed in a wide-area network.

There are several approaches [67, 52, 22] to execute MapReduce tasks in a

wide-area network. However, unlike our approach, they do not consider network

bandwidth and just employ the simple scheduling approach that is used in local-

area MapReduce systems.

7.4.4 Open Questions

Although the job scheduling algorithms described in the previous section can

be an important building block, there is still much work to do to design a wide-area
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MapReduce system. First, the job scheduler should support fairness among users so

that at a given moment computing resources should be distributed well among users.

Second, we should employ a wide-area distributed file system to store input and

output data. The current MapReduce implementations use distributed file systems

such as HDFS [5] and GFS [31]. Since those file systems are also targeted to run in a

high-bandwidth network, there will likely be data locality problems when we directly

use those systems in a wide-area network. Last, we should work on empirical studies

about job scheduling. We can first conduct simulations to evaluate the performance

of the job scheduling algorithm. MapReduce workloads [6] such as word-count and

sort will be used along with network bandwidth data sets. Then we can implement

a real system and run it over wide-area Internet hosts.
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Chapter 8

Conclusion

In this chapter, we conclude this dissertation by reviewing the thesis and our

contributions.

My thesis is that a decentralized approach can be employed to predict end-to-

end network bandwidth and search for nodes under network bandwidth constraints

in an accurate and scalable way. We made contributions in resolving three research

problems that are important in supporting data-intensive widely distributed appli-

cations.

First, we designed a highly scalable, decentralized, and accurate algorithm

for end-to-end network bandwidth prediction. The algorithm is decentralized, so

that data structures are distributed, and no landmark node is required for sampling

measurements. We proved that the algorithm can accurately predict bandwidth

information with only O(log2 n) sampling measurements for each node. We also

have confirmed high accuracy and scalability through extensive simulations.

Second, we designed a decentralized algorithm to find centroids. A centroid

is a node connected via high-bandwidth connections to a given set of nodes. By

running on top of the bandwidth prediction framework, the algorithm can avoid any

measurement delays. Through theoretical analyses and extensive simulations, we

showed that the algorithm finds a centroid accurately within only O(log n) network
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hops.

Last, we investigated the cluster search problem. We found a polynomial time

algorithm to find clusters in a tree metric space. Then we designed a decentralized

algorithm that can find clusters accurately with O(log2 n) network hops, and pro-

vided proofs of correctness. Simulation results are also provided to show the high

accuracy and scalability of our approach.
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