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The objective of this work is to advance the field of lightweight and soft ultra-

high molecular weight polyethylene (UHMWPE) inserts used in ballistic resistant-

body armor, through the evaluation of chemical and physical degradation, and provide 

critical insight into the mechanisms involved. These inserts are comprised of non-

woven UHMWPE fibers, foil-matrix low density polyethylene (LDPE), and a binder 

resin. Degradation of these components can be initiated by mechanical stress induced 

by routine use of the armor, thermal exposure due to storage and wear, and exposure to 

humidity and oxygen. Degradation of this system may include C-C and C-H bond 

ruptures resulting in C-centered radicals, thermo-oxidative reactions, as well as 

changes in the degree of crystallinity and the crystalline morphology of the UHMWPE 



  

fibers. This is the first comprehensive study on degraded UHMWPE-fibers extracted 

from body armor that have been subjected to accelerated aging. Previous studies have 

only focused on oxygen uptake and changes in the tensile strength of virgin UHMWPE 

fibers as markers of degradation.  

This work extends beyond oxygen uptake, to examine changes in the 

topography, the degree of crystallinity, and the crystal phases of UHMWPE fibers. 

Mechanical stress was found to be the main cause of kink band formation in UHMWPE 

fibers. Additionally, oxidation products and molecular oxygen were found to be at 

higher concentrations in the kink bands compared to other parts of the fiber. This 

suggests a synergistic effect between mechanical stress induced kink bands and 

oxidative degradation. The degree of crystallinity of the fibers did not change 

significantly, however morphological changes of the crystalline phases and changes in 

the orientation of the crystals were observed. Finally, this study investigates, for the 

first time, the degradation of the binder material that retains the fibers together in the 

laminates. The binder resin used in the laminates was identified to be a copolymer of 

polystyrene and polyisoprene, which undergoes oxidative degradation accompanied by 

a decrease in the weight-average molecular weight. 
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Chapter 1: Introduction to UHMWPE Soft Ballistic Protective Inserts 

1.1 Chapter Overview 

In this chapter, the use of high strength polymer fibers in body armor applications and 

especially ultrahigh molecular weight polyethylene (UHMWPE) fibers, is introduced. The 

components of UHMWPE body armor are identified and their synthesis, structure, morphology, 

and properties are discussed.  

1.2 History of Polymers as Ballistic Inserts 

High strength polymeric fibers produce light weight and flexible body armor. Historically, 

little emphasis was placed on the long-term performance of armor materials. However, there was 

a renewed effort to understand the body armor failure mechanisms based on an incident on June 

23, 2003, where the armor of a police officer was penetrated by .40 caliber rounds that the vest 

was rated to stop [1]. After this incident, the law enforcement community focused immediately on 

the materials used to make that specific type of armor. The armor was made from poly(p-

phenylene-2,6-benzobisoxazole), also known as PBO. After several years of research, it was 

determined by the law enforcement and research community that the use of PBO fibers in ballistic 

resistant body armor faced some major challenges. These challenges were due to the susceptibility 

of the material to degradation from environmental and wear conditions. Specifically, it has been 

shown that oxazole ring opening is a major indicator of hydrolysis and chain scission of PBO. As 

a result, deterioration of mechanical properties and a reduction in ballistic performance occurs [2-

5]. Therefore, it is of major importance to study the effects of elevated temperature, mechanical 

stress, and oxygen solubility and diffusion into other commonly used materials comprising soft 
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ballistic inserts, and work towards better understanding the potential degradation mechanisms 

involved [1, 6, 7].       

1.3 UHMWPE Soft Ballistic Inserts 

Modern body armor is commonly designed using flexible, ballistic-resistant fabrics made 

from UHMWPE due to its ability to be processed into fibers with high tensile strength to weight 

ratios.  [8, 9]. These soft ballistic inserts are comprised of UHMWPE fibers, foil-matrix low 

density polyethylene (LDPE), and resin material (e.g., polyisoprene), which serves as a binder [10, 

11]. In this work we evaluate the long term stability of the UHMWPE fibers and the binder 

extracted from body armor subjected to accelerated aging. 

1.3.1 Polyethylene Background 

Polyethylene is produced from chain polymerization of the monomer ethylene (C2H4) that 

consists of only carbon and hydrogen atoms. Ethylene is a gas having a molecular weight of 28 

g/mol and can be polymerized using different conditions of temperature and pressure, as well as 

in the presence or absence of catalysts (Figure 1) and produce a wide variety of polyethylenes 

(C2H4)n (where n is the degree of polymerization) with different properties [12]. 
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Figure 1. Free radical polymerization of ethylene in the presence of Ziegler-Natta catalysts results 

in linear polyethylene. 

The molecular weight of the polyethylene polymer affects its mechanical properties. 

However, there are cases where a series of polyethylene samples of the same molecular weight 

have significant differences in their properties. This is attributed to their degree of crystallinity 

[12]. In some cases, such as in free radical polymerization of ethylene, the percent crystallinity of 

the polymer produced is low. During free radical polymerization, the monomers can form long 

side chains, known as branches, producing low-density polyethylene (LDPE) with a crystallinity 

between 40 and 60% and density between 0.91 and 0.93 g/cm3 [13]. Increasing the crystallinity of 

the polymer can significantly increase the melting point, the density of the polymer, and enhance 

its mechanical properties [12]. Therefore, alternative methods of polymerization allowing for the 

production of polymers with higher crystallinity were developed. The addition of coordination 

catalysts, also known as Ziegler-Natta catalysts, prevents the branching that occurs in free radical 

polymerization of ethylene. This results in linear polyethylene with a crystallinity ranging from 70 

to 90% depending on the molecular weight of the polymer and post treatment methods used [14]. 

Also, the density has a much smaller range compared to LDPE, between 0.94 and 0.97 g/cm3. 



4 

 

Ultimately, polyethylene produced with coordination catalysts has higher molecular weight 

compared to LDPE [13, 15, 16].       

The addition of coordination catalysts, mainly comprising of a transition metal compound 

(Ti, Cr etc.) and a metal alkyl (usually Al) are used to produce an organometallic complex that 

serves as the active site for polymerization. Polymerization using these catalysts results in the 

absence of termination reactions leading to a "living" polymerization (Figure 2). Living 

polymerization means the polymerization continues until the ethylene monomer in the reaction is 

entirely depleted. This type of polymerization produces linear polyethylene which could be high 

density (HDPE), when the average molecular weight of the polymer chains is between 20,000 and 

200,000 g/mol, or ultrahigh molecular weight (UHMWPE) when the average molecular weight is 

above 2 million g/mol, depending on the amount of ethylene available. 

 

Figure 2. Reaction scheme for the transition metal catalyzed living polymerization of ethylene. 

During the second step of the reaction the Ti d-orbitals interact with the π electron cloud of 

ethylene. The chain propagation continues until the ethylene monomer is consumed. 
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 The difference between HDPE and UHMWPE processes mainly rely on optimizing the 

usage of properly tailored catalysts and the polymerization conditions. The catalyst used in the 

process is of paramount importance. The most recent catalysts used for the production of 

UHMWPE are metallocenes catalysts based upon metal complexes of cyclopentadienyl, such as 

titanocene dichloride (C5H5)2TiCl2, followed by activation with aluminum alkyls, such as Al(CH3)3 

[17]. The activation begins with alkylation of the titanium center, followed by coordination of the 

remaining chloride to the aluminum [18]. The final ratio of Al/Ti and the percentage of each 

oxidation state of Ti (Ti4+, Ti3+, and Ti2+) will affect the molecular weight of the resulted polymer. 

The precise ratio of Al/Ti varies according to the pressure conditions and the present of trivalent 

titanium in the catalyst system [19, 20]. Additionally, in 1980, Kaminsky reported that upon adding 

water to the catalyst system the ethylene polymerization was dramatically increased [21, 22]. The 

water was determined to react with trimethyl aluminum to produce methylamunioxane (MAO), 

that worked as a cocatalyst to increase the activity of ethylene polymerization. Briefly, the methyl 

groups of the MAO displace two of the chlorine atoms from the metal complex, then one of the 

methyl groups is eliminated and the active polymerization catalyst forms a π-complex into witch 

the ethylene monomer is inserted, as shown in Figure 3 [23]. 

    

Figure 3. Mechanism of MAO activation [24].  
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The most recent processes for the production of UHMWPE involve the addition of 

hydrogen into the reaction along with the monomer that will lead to chain transfer reactions and 

help control the polymerization reaction and increase the conversion of ethylene to polyethylene, 

leading to a higher molecular weight product [19]. Also, inert solvents are used in the process to 

dissipate heat (as this is a highly exothermic reaction) and control the solubility of hydrogen and 

ethylene. Solvents that increase the solubility of ethylene will increase the rate of the 

polymerization reaction, by increasing the concentration of the monomer in solution, leading to 

higher molecular weight products [20]. Another important parameter is the temperature. As the 

temperature increases, the rate of the polymerization reaction increases. However, if the 

temperature is too high, spontaneous chain transfer can occur and abstract the catalyst from the 

polymer chain, prematurely terminating the polymerization. Therefore, it is important to finely 

tune the temperature of the reaction to increase the molecular weight of the polymer.  

HDPE and UHMWPE can have the same density, but the molecular weight of UHMWPE 

is much higher. In general, high crystallinity in polyethylene can be achieved by a slow cooling 

rate of the polymer melt and post processing methods, such as drawing. In addition, branching will 

adversely affect the degree of crystallinity [15, 16, 25]. The typical crystal structure of UHMWPE 

is shown in Figure 4. The crystals in polyethylene orient in structures known as crystalline folded 

lamella with a typical thickness of 10 – 50 nm and length of 10 – 50 μm [26]. The lamellae are 

separated by amorphous regions that are approximately 50 nm in length [27].  
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Figure 4. Schematic representation of the semi-crystalline structure of UHMWPE. A polymer 

chain can tie in the small crystalline lamellae and transverse the amorphous regions into the next 

crystallite [28]. 

It is important to note that one UHMWPE chain can exist in the amorphous phase as well 

as orient in many crystalline lamellae separated by tie molecules, all of which are part of the same 

polymer chain, as shown in Figure 5 [25]. Tie molecules are segments of the polymer chain which 

initiate in one crystalline domain, cross the amorphous region and connect to adjacent crystalline 

domain providing strength to the semi-crystalline structure. They are responsible for polyethylene 

properties such as high elongation, toughness, and environmental stress cracking.   
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Figure 5. The different morphological structures that one UHMWPE polymer chain can exist [25]. 

The properties of polyethylene can be described by the average molecular weight, 

crystallinity, branching, density and oxidation products formed during post-processing. Properties 

of polyethylene that concern only slight movements of portion of the samples relative to each 

other, such as the melting point, softening point under low load, Young’s modulus in tension, 

bending modulus, yield point (tension to cause cold-drawing), and surface hardness are all strongly 

dependent on crystallinity and very little on average molecular weight [12]. The degree of 

crystallinity affects the extent of the intermolecular secondary bonding (van der Waals 

interactions). In the crystalline regions of a semi-crystalline polymer in which molecular chains 

are tightly packed, extensive secondary bonding exists between adjacent chain segments. This 

secondary bonding is much less present in the amorphous areas. Thus, properties such as hardness, 

Young’s modulus, and bending modulus increase significantly with degree of crystallinity [29]. 

Conversely, properties that involve more extensive movement, and rupture of the samples, such as 
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tensile strength, tear resistance, and low temperature brittle point can be mainly attributed to the 

average molecular weight of the polymer and to a lesser extent on crystallinity [12]. The effects of 

percent crystallinity and molecular weight on the physical properties of polyethylene are 

summarized in Figure 6. 

   

Figure 6. The influence of degree of crystallinity and molecular weight on the physical properties 

of polyethylene [12].   

1.3.2 Manufacture of UHMWPE Fibers 

UHMWPE has been commonly used to produce high strength fibers with superior fatigue, 

corrosion, and chemical resistance as compared to other materials [30-33]. UHMWPE fibers are 

commercially manufactured by two companies, DSM and Honeywell, who market their fibers as 

Dyneema and Spectra, respectively. The technique used to produce these fibers is known as gel 
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spinning (Figure 7), in which UHMWPE resin is dissolved in a solvent at low concentration and 

elevated temperature, and is then extruded through a spinneret into a water bath, for coagulation 

[34, 35].  

 

Figure 7. Schematic of the gel spinning and drawing process. Figure taken and modified from Yao 

et al. [36].  

The resulting fibers are transported to an oven to remove any residual solvent and then 

treated with dilute solution to disentangle the polymer chains and prepare them for orientation 

through a process known as "super-drawing". This process involves extending the filaments 50 to 

100 times their original length to produce highly-oriented fibers with a crystallinity of 

approximately 85% [37, 38]. According to a model proposed by Peterlin et al., during the drawing 

process, blocks of folded chains are extracted from the crystalline lamellae and extended to be 
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incorporated in the growing fibril, as shown in Figure 8 [39, 40]. A large portion of the lamellar 

structure of UHMWPE converts to extended orthorhombic, monoclinic, and hexagonal crystals 

during this process, the ratio of which varies according to the specific conditions (drawing ratio, 

and temperature) used during the drawing process [41, 42]. In general, as the drawing ratio 

increases, the amorphous region of the polymer decreases, the lamellar crystals decrease and the 

percentage of extended orthorhombic crystals increase, while an increase in the temperature during 

the drawing process leads to the formation of a hexagonal crystal phase [43].     

     

Figure 8. Schematic of the drawing process of UHMWPE fibers according to Peterlin et al. [39].  

1.3.3 Structure of UHMWPE Fibers 

There are several different theories as to the structure of highly oriented UHMWPE fibers. 

Generally, each UHMWPE fiber is around 10 to 12 μm in diameter and is considered to consist of 

about 150 macrofibrils. The diameter of these macrofibrils ranges from 0.5 to 2 μm [44]. Three 

models can be found in the literature to describe the microstructure of a macrofibril. In the first 

model, a macrofibril is believed to consist of highly extended and oriented chains forming 

crystalline microfibrils. According to this model, one macrofibril consists of about 2,500 

microfibrils, each with a diameter of ~20 nm, as shown in Figure 9 [44].  
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Figure 9. Macroscopic and microscopic structure of UHMWPE fibers [44]. 

The second model, also known as the continuous crystalline model, suggests that 

macrofibrils are comprised of a mostly continuous crystalline phase with rare, dispersed defects 

(amorphous areas) [44]. These two structural models transfer the intensity of lateral stress 

differently, since microfibrils behave as structural entities only in the case where lateral 

interactions are smaller than the intra-microfibrillar cohesion [44]. A third model combines aspects 

of the two previous models and it is known as the crystalline bridge model [44]. According to this 

model, macrofibrils consist of highly oriented crystalline regions, interfibrilar zones, and non-

crystalline regions that contain more or less taut tie-molecules. A schematic representation of this 

model is shown in Figure 10.a [44]. This model allows for stronger lateral interactions across a 

microfibrillar interface through crystalline regions, and a much weaker interactions with the non-

crystalline regions [44]. A similar, but more detailed model is proposed by Hu, et. al. in 2000, as 
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shown in Figure 10.b. According to Hu, in every microfibril the crystalline phase is continuous 

but each individual polymer chain is not in a continuous crystal. The amorphous phase is dispersed 

in the crystalline phase and most of the chains are alternately crystalline and amorphous. There are 

voids between the fibrils and the segments of the polymer chains on these surfaces are highly 

mobile [45]. Five morphological components were identified in the study: 83% crystal core, of 

which 80% is orthorhombic and 3% monoclinic, with a thickness of ~100nm;  5% disordered all-

trans interfacial and/or tie molecules; 11% amorphous regions with diameters around 10 nm; and 

1% highly mobile segments, probably at void surfaces or traversing voids [45]. 

 

Figure 10. (a) The crystalline bridge model, depicting the crystalline regions (A and B), the 

interfibrilar zones (marked i), and the tie-molecules (C) [44]. (b) The fibril structure model by   Hu 

et al., show the continuous crystalline phase with polymer chains alternately traversing crystalline 

and amorphous regions, voids between the fibrils, and highly mobile segments on the surface of 

the voids or traversing them [45]. 



14 

 

Highly oriented UHMWPE fibers are generally believed to contain four morphological 

phases: a rigid orthorhombic phase, a monoclinic phase, an amorphous phase, and an intermediate 

phase also known as oriented crystal-amorphous transition area with low molecular mobility [46, 

47]. Within the amorphous phase two areas with slightly different properties can be further 

identified, including a very small oriented amorphous phase with intermediate mobility, and an 

amorphous phase with high mobility due to chain ends, defects, and nano-voids [47]. 

Orthorhombic crystals (Figure 11) can exist in two conformations, folded lamellae (kebab) and 

extended chains (shish) [46].  

 

Figure 11. Unit cell of orthorhombic crystals in polyethylene [48].  
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Processing of UHMWPE fibers at high draw ratios leads to fibers with an increased overall 

orientation of their chains [47], primarily comprised of orthorhombic crystals in the extended-

chain conformation [46, 49]. Higher draw ratios produce fibers with better mechanical properties 

mainly due to an increased extended chain orthorhombic phase, as this phase is responsible for the 

axial high-strength due to the C-C backbone being aligned in the fiber direction [46]. Also, higher 

draw ratios lead to a smaller fraction of monoclinic crystallites [46]. Finally, when heated at higher 

temperatures, close to the melting temperature, under constraint, UHMWPE fibers can form a 

hexagonal crystalline phase [43]. The differences between the unit cells of orthorhombic, 

monoclinic, and hexagonal crystals are shown in Figure 12. Finally, the behavior of the UHMWPE 

fibers during different drawing ration and temperatures is shown in Figure 13.a and 13.b 

respectively [43, 49]. 
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Figure 12. Unit cells of orthorhombic, monoclinic, and hexagonal crystal phases in UHMWPE.  
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Figure 13. (a) Increase of the orthorhombic crystal phase and the appearance of the monoclinic 

crystal phase as the drawing ratio of the fibers increases [49]. (b) Formation of  hexagonal crystal 

phase as temperature increases during the drawing process [43].   

1.3.4 Structure of UHMWPE Body Armor 

Many light-weight ballistic protective armor systems are currently constructed using high 

modulus and high strength polymeric fibers such as oriented polyethylene fibers (e.g. Spectra®, 

Dyneema®, etc.), which provide outstanding ballistic resistance [50, 51]. These fibers are used in 

combination with an elastic resin material, that can penetrate to the filament level, and holds them 

together to form a non-woven unidirectional tape. Two, or sometimes four layers of the 

unidirectional tape are laminated together in a crisscross pattern, where each layer is placed at a 

90o angle from the layer above and below to form a panel, as shown in Figure 14. A thin film of 
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low density polyethylene is added on both sides of each laminate, with a thickness of 0.35 mm, to 

prevent adjacent laminates from sticking together when they are layered on top of each other in 

the soft body armor [8, 52]. The fibers should at least occupy the 80% of the total weight of the 

armor in order to maintain its structural integrity. If the percentage of resin, and low density 

polyethylene exceeds 20%, the anti-ballistic properties of the laminate structure begin to degrade. 

Therefore, a representative UHMWPE-based material used in body armor usually consists of 80% 

UHMWPE fibers, 13% resin, and 7% LDPE [52, 53].  

 

Figure 14. Two unidirectional UHMWPE tapes, a binder material, and two LDPE films are used 

to produce one armor panel. 

The number of panels within the armor varies depending on the application. Usually, for 

protection against hand gun rounds, the armor contains anywhere between 10 and 60 panels, 

whereas in the case of high velocity rifle round protection the number of panels should be at least 

40 and could be increased up to 150 [53]. 
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1.3.5 Structure and Properties of Binder Resin  

The binder is a very important component of the armor, since it keeps the UHMWPE fibers 

properly oriented and tightly packed inside the laminates [52]. It is preferably an elastomer based 

material with a very low tensile modulus. Materials commonly used as binders in body armor  

applications have a tensile modulus between 2,500 and 6,000psi, measured at about 23 °C [54]. 

Their glass transition temperature should be less than 0 °C and preferably below -50 °C [54]. These 

materials usually have an elongation to break at around 50% and elastomers used with superior 

performance are reported to have an elongation to break as high as 300% [54]. Furthermore, the 

binder material used in body armor applications should demonstrate good adhesive properties in 

order to keep the fibers together and give some elastic properties to the overall system. Upon 

degradation of these elastomer materials delamination may occur [54]. Thus, the degradation of 

the binder material is equally important to the degradation of the fibers and needs to be carefully 

studied, since upon degradation of the binder, UHMWPE fibers in the laminates can lose their 

original configuration, which is designed to protect against projectiles.    
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Chapter 2: Degradation Mechanisms 

2.1 Chapter Overview 

 In this chapter, the mechanisms of degradation of UHMWPE are discussed. In body armor 

applications the long term stability of the materials, especially of the UHMWPE fibers that provide 

the antiballistic properties, is of major importance. The degradation of these materials under 

normal wear and daily use conditions needs to be fully understood prior to conducting any 

experiments. The effect of mechanical strain, elevated temperatures (up to 65 °C), and oxygen 

along with the potential mechanisms of mechanical, thermal, and oxidative degradation of 

UHMWPE is discussed in detail in this chapter.   

2.2 Mechanical Degradation of UHMWPE 

Mechanical energy transferred to a polymer molecule can be relieved by non-destructive 

processes, without inducing chemical changes, or destructive processes, such as chemical bond 

scission [55]. These two processes through which polymers can dissipate strain energy are in 

competition with each other. The probability for bond scissions increases as the relaxation 

processes are impeded [55]. In linear crystalline polymers, such as UHMWPE, that consists of 

glassy, rubbery, and crystalline states (with the crystalline state being the most abundant one) more 

bonds should be ruptured since the rigidity of the material is high [55].  

To better understand bond scission in macromolecules, one must first understand how non-

destructive relaxation processes occur, since the two compete to relieve the strain energy in 

polymers. The non-chemical relaxation processes can occur through slippage of the chains relative 
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to the surrounding molecules (enthalpic relaxation) and through changes of chain conformation 

(entropic relaxation) [55]. The first, enthalpic portion, originates from the intermolecular forces 

between segments of the same polymer chain and its surrounding molecules, which through 

rotational motion of the C-C bonds in the backbone of the polymer results in chain slippage. During 

this process, known as c/2 translation of the polymer chain, a 180° twist of the chain is performed 

resulting from a smooth twist that propagates from one side of the crystal to the other, as showing 

in Figure 15 [14]. Usually the criteria for enthalpic relaxation to occur are as follows: small or no 

pendant side groups, short repeating units, and weak intermolecular forces [14]. In the case of 

UHMWPE, which is comprised of -(C2H4)- monomers, these interactions are mainly weak Van 

der Waals forces.  

 

Figure 15. 180° rotation of C-C bonds and a c/2 translation of the polymer chain along its own axis 

to keep the chain in register with surrounding chains [14]. 

The second, entropic portion of this process, is a result of the enthalpic portion due to the 

resultant change in conformational freedom of the polymer chain after the chain slippage occurs, 

as shown in Figure 16 [14, 55]. Constrained chains have low entropy and high energy, whereas 

chains with higher freedom of motion and more physical arrangements available have a higher 

entropy and lower energy [14, 55].  
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Figure 16. Mechanical relaxation process and chain slippage in polyethylene [14].                                                                   

    At this point it must be noted that the critical conditions for bond rupture depend on two 

major parameters. The first one is the amount of elastic energy stored in a polymer chain, and the 

second one is the time the chain remains in the strained state. The non-destructive relaxation 

processes frequently occur rapidly and appear to be the controlling factor with respect to bond 

rupture [55]. That means, if the time for bond scission is kept constant, an increase in the relaxation 

time will result to a higher yield for bond rupture and vice versa. One should note that the amount 

of energy stored should be equal or greater than the bond dissociation energy, where in the case of 

PE consisting of C-C and C-H bonds, is estimated to be around 260-400 kJ/mol for a C-C bond 

and 320-420kj/mol for a C-H bond, at room temperature (25 °C) [55]. As previously mentioned, 

UHMWPE fibers used in body armor applications are typically very highly drawn. The drawing 

of the fibers results in straight tightly packed UHMWPE chains that are aligned closely to each 

other, thus limiting their conformational freedom. When strain is imposed on these fibers, the 

limited mobility of the polymer chains will increase the relaxation time and prevent the slippage 

mechanism from being able to relief the strain energy. Therefore, the mechanical energy absorbed 

will be dissipated through the bond scission mechanism [14, 55].      
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Furthermore, under the influence of shear stress, individual linear polymer chains are 

extended in the direction of the stress, according to various theoretical approaches on how bond 

ruptures occur in linear crystalline polymers, such as UHMWPE [55-57]. Therefore, it is expected 

that the bonds in the middle of the chains are strained the most, while the remainder of the polymer 

chains are less affected. This means that there is a higher probability of bond scissions to occur in 

the middle portion of the polymer chains rather than the areas closer to the chain ends. Also, it is 

assumed that the rate of bond rupture increases significantly as the molecular weight of the 

polymer increases [55]. According to these theoretical approaches, UHMWPE fibers with chain 

molecular weight anywhere between 3 and 5 million Daltons are expected to have a high 

probability of bond scission under a strained state.   

Lastly, if tensile stress is applied to polymers consisting of amorphous and crystalline 

regions (semi-crystalline), such as UHMWPE, and the mechanical energy transferred to the system 

is sufficient, initially main-chain bonds will be ruptured almost exclusively in the amorphous phase 

of the polymer (Figure 17). This is a result of elastic deformation of semi-crystalline polymers, 

which usually occurs at low stress levels [29]. The polymer chains in the amorphous regions 

elongate in the direction of the applied tensile stress These amorphous areas of the polymer connect 

the crystalline regions through “tie molecules” [55].        
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Figure 17. Bond rupture in the “tie molecules” in the amorphous regions of semi-crystalline 

polymers. 

When bond rupture occurs, the molecular weight of the polymer decreases and carbon 

centered free radicals form in the polymer [55]. In polyethylene it was experimentally proven that 

the concentration of  free radicals increases drastically which increases strain, but no radicals were 

detected when the amorphous areas of the polymer were eliminated via pretreatment with HNO3 

[55]. This result validates the idea that in UHMWPE bond scission mainly occurs in the amorphous 

areas of the polymer. However, at very high strain rates free radicals can also form in the crystalline 

regions, but to a lesser extent [55].  
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2.3 Thermal Degradation of UHMWPE 

Temperature plays an important role in the stability of organic macromolecules such as 

polyethylene. Organic molecules are stable only below certain temperatures usually ranging from 

100 °C to 200 °C. If the temperature is increased to 1,000 °C or higher, bond scissions take place 

and these molecules decompose into small fragments. This process is known as 

"depolymerization" [55]. However, at ambient temperatures, thermal energies correspond to 

values around kT ≈ 2.4 kJ/mol, which compared to the C-C and C-H bond dissociation energies 

discussed in the previous section is insufficient to cause bond rupture [55]. UHMWPE fibers used 

in body armor applications are not exposed to these extreme temperatures, and are typically 

exposed to their most extreme temperatures during wear and storage conditions, with maximum 

temperatures of approximately 67 °C [58], where bond scission is not feasible. However, in 

condensed systems vibrational energy is rapidly dissipated among all molecules and bonds, which 

can lead to highly excited vibrational state of bonds in some molecules. The population of these 

highly vibrational excited bonds increases with increasing temperature, and could potentially lead 

to a repulsive energy level and bond breakage even at lower temperatures [55].  

Although temperature alone should not result into bond scission in the case of UHMWPE 

fibers used in body armor applications, it has a synergistic effect with mechanical stress. When 

strain is applied and temperature increases close to the range of α-relaxation temperature (80 °C) 

[59], polymer chains will attempt to increase their entropy by folding back on themselves [14]. 

Rotational motion of the C-C bonds in the backbone of the UHMWPE chains can occur more 

easily, thus increasing the free volume of the chains and making them more mobile [14]. As a 

result, there is a higher probability for chain slippage to occur instead of rupture of chemical bonds 
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when strain is applied [55]. Therefore, at low strain, a small increase in temperature could be 

beneficial for the material and prevent bond scissions. Conversely, at high strain rates and low 

temperatures the mechanism of chain scission is expected to dominate. Finally, as temperature 

increases (up to 150 °C), various chemical reactions, such as oxidation reactions, can be further 

promoted and induce bond rupture decreasing even more the molecular weight of UHMWPE 

fibers, though mechanisms that will be discussed in the following section [55, 60].   

2.4 Oxidative Degradation of UHMWPE 

As discussed in the previous sections of this chapter, mechanical stress and elevated 

temperatures can induce scission of  C-C bonds along the backbone of an UHMWPE chain, almost 

entirely in the amorphous regions that connect the crystalline regions [55]. The rupture of these 

bonds results in the formation of C-centered free radicals. These free radicals can undergo various 

reactions which in general, depend on the presence of oxygen in the amorphous areas of the 

UHMWPE, the concentration of oxygen present, the temperature, the water content, the presence 

of antioxidants in the material, and the degree of crystallinity [55, 61, 62].      

2.4.1 Formation of Free Radicals and Consequent Reactions  

The chemical composition of UHMWPE is simple and consists of singe carbon-carbon, 

and carbon-hydrogen bonds. The energy of a single carbon-carbon bond (C−C) is known to be 346 

kJ/mol and that of a carbon-hydrogen bond (C−H) is 411 kJ/mol [63]. When energy, greater than 

the mean energy of these bonds, is transferred to the UHMWPE polymer, scission of C−C and 

C−H bonds can occur [55, 64]. This bond scission will result to the formation of hydrogen atoms 



27 

 

(H), primary carbon centered free radicals (C), and secondary carbon centered free radicals (C) 

as shown in the following reactions (where R represents the polymer chain) [55, 64, 65]. 

 (1) 

PE−PEꞌ → PE + PEꞌ (2) 

Reaction (1) represents the breaking of a C−H bond to produce hydrogen atoms, and secondary 

alkyl free radicals, whereas reaction (2) refers to chain scission on the backbone of the polymer 

through a breaking of a carbon-carbon bond producing two primary alkyl free radicals. In the case 

of reaction (1) the secondary alkyl radicals forming can involve in very fast intermolecular 

reactions, which are thermodynamically favored with a ΔH = -288 kJ/mol, to produce vinylene 

double bonds and molecular oxygen (H2) [64, 66, 67]. Also, secondary alkyl radicals can migrate 

along the polymer chain via H transfer and form allyl and polyenyl radicals (Figure 18), which are 

more stable due to the formation of conjugated bonds and can survive even for a few years in the 

polymer’s backbone, at room temperature [68]. This process can occur at a high rate even at room 

temperature, since it has a very low activation energy of only ΔH = 40 kJ/mol [27]. 

 

Figure 18. Chemical structure of the different types of free radicals in polyethylene.  

Another reaction that secondary alkyl radicals can undergo is β-scissions where the 

secondary free radical breaks two carbons away producing an ethylene and a primary alkyl free 

radical (Figure 19) [27]. These reactions are endothermic reactions (ΔH = 88 kJ/mol) and are 

PEH                 PE + H 
k

1
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extremely unlikely to occur at room temperature [27]. However, in the absence of oxygen β-

scission can happen when the temperature is close to 200 - 250 °C [27]. 

 

Figure 19. β-scission reaction of secondary alkyl free radicals. 

The hydrogen atoms formed during reaction (1) are very small in size (diameter of 0.1 nm) 

and can diffuse easily in the polymer mass, even in the crystalline phase of polyethylene, where 

the distances between two carbon atoms are around 0.4 nm [27]. These hydrogen atoms have a 

very high probability to extract other hydrogen atoms intramolecularly, producing new secondary 

alkyl free radicals and molecular hydrogen [69]. This reaction is exothermal (ΔH = -30 kJ/mol) 

and it is favorable to occur even at room temperature [69].  

Finally, the primary alkyl free radicals formed in reaction (2), have been shown to exist 

only for short period of times, in the order of 24 h. It is assumed that this type of free radical can 

undergo termination reactions, such as recombination reactions, in both amorphous and crystalline 

phase, giving back a C−C bond, as shown in reaction (3). The recombination reactions are 

exothermal and the energy produced is dissipated in the polymer mass [27]. 

 (3) 

In addition, secondary alkyl free radicals can undergo termination reactions, such as 

crosslinking  (Figure 20), or disproportionation reactions where one free radical molecule will act 

as an acceptor while the other will act as a donor  [55, 70]. During a disproportionation reaction, a 

hydrogen atom is abstracted by the acceptor and the donor undergoes an elimination reaction to 

from a double bond (Figure 21) [55]. 

PE + PEꞌ                 PE − PEꞌ  
k

2
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Figure 20. Formation of crosslinks in UHMWPE by the recombination of C-centered radicals 

located on adjacent chains. 

 

Figure 21. Termination thorough disproportionation reaction and formation of double bond. 

In some cases, primary alky free radicals in the crystalline phase of the polymer can rapidly 

retract from each other due to axial chain stresses, preventing them from recombining. These 

radicals then can convert to secondary free radicals through transfer of a hydrogen atom [70]. The 

hydrogen transfer process can occur along the same polymer chain (radical migration along the 

polymer chain) (Figure 22), or a hydrogen atom can be abstracted from a neighboring chain 

(hydrogen hopping across chains) (Figure 23) resulting in a transfer of the radicals to a mid-chain 

position [71, 72]. 

 

Figure 22. Hydrogen transfer mechanism along the same polymer chain. 
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Figure 23. Hydrogen hopping mechanism across adjacent polymer chains.  

These reactions produce secondary alkyl radicals and new chain-end groups (CH3) leading 

to a reduction of the molecular weight of the polymer and the decrease of the mechanical properties 

of the UHMWPE [55, 72]. Also, through these hydrogen transfer mechanisms C-center free 

radicals can migrate from the crystalline regions of the polymer to the amorphous regions where 

oxygen is present and undergo oxidation reactions [55].    

2.4.2 Oxidation Reactions 

In the presence of oxygen solubilized in the amorphous phase of UHMWPE, alkyl free 

radicals will involve in a series of reactions that can further decrease the molecular weight of the 

polymer and result in products such as ketones, carboxylic acids, alcohols and esters  [55, 73, 74]. 

These products will give the polymer hydrophilic properties, to a certain extent, making it 

susceptible to water, which can in turn penetrate into the polymer and induce more oxidation over 

time [55].  
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Oxygen can be both initially present in the material as well as diffuse into the polymer over 

time [61]. During industrial processing of the material, oxygen can become entrapped in the 

structure and it is practically impossible to obtain a totally oxygen-free polymer, even in the 

presence of an inert gas [75, 76]. Furthermore, the solubility and the diffusion of oxygen into the 

surface of the material and towards its interior adds more complexity to the kinetics of the 

oxidation reactions. The oxygen solubility and diffusivity are functions of temperature [77]. In 

general, the solubility decreases slightly, whereas the diffusivity increases with temperature [77]. 

In the case of highly oriented UHMWPE fibers, oxygen transport takes place almost exclusively 

through the amorphous regions of the polymer and the crystalline regions provide barriers to 

impede oxygen flow [78]. The extent of these barriers and their influence on the diffusion of 

oxygen through the amorphous regions of the polymer depend on the molecular orientation of the 

polymer chains and their packing density in the highly drawn fibers [78]. As a result, at higher 

drawing ratios, oxygen permeability and diffusion into the UHMWPE fibers through the sparse 

amorphous regions is more restricted [79]. More recent results have shown that there is a linear 

correlation between the solubility of oxygen and the amorphous volume fraction of the polymer, 

which provides the carrier for the diffusion process, while the permeability and diffusion 

coefficient demonstrate a more complex behavior which relates to the detailed morphology of the 

crystalline and amorphous regions, such as their distribution and size [80]. Also, the permeability 

and diffusion coefficient depend on the size of the diffusant molecule, which in this case is oxygen 

molecules with a diameter of about 0.35 nm [80]. Therefore, the calculation of these two 

parameters is relative and needs to be calculated case by case. An estimated value of oxygen’s 

diffusion coefficient in UHMWPE was calculated by Daly et al. to be around 1.14x10-7 cm2/s [81]. 

On the other hand, the specific solubility of oxygen in the amorphous phase of highly oriented 
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UHMWPE does not vary significantly and was estimated to be around 0.00970 cm3 (STP)/cm3 

atm (cubic centimeters of gas at STP per cubic centimeters of solid at a pressure of 1 atm) [80]. 

This value is very close to the one Daly et al. calculated for UHMWPE as a whole and not 

specifically for the amorphous regions of the polymer, which was 0.00881 mL (STP)/mL atm [81]. 

These values of oxygen specific solubility can be useful to approximate the concentration of 

oxygen in UHMPE fibers, assuming we have a pressure of 1 atm, thorough the following equation: 

[𝑂2] =
𝑆 ×  𝑃𝑂2 ×  𝜌𝑈𝐻𝑀𝑊𝑃𝐸

𝑀𝑊𝑂2

 

Where, S is the specific solubility of oxygen, P is the pressure, ρ is the density of UHMWPE (0.930 

g/mL), and MW is the molecular weight of oxygen (32.0g/mol).  

The various alkyl macroradicals R mainly present in the amorphous regions of the 

UHMWPE will rapidly react though a thermodynamically favored reaction with the oxygen 

molecules present in these amorphous regions to form peroxy radicals (PEOO), as shown in 

reaction (4) [55, 76, 82].  

 (4) 

The peroxy radicals formed are relatively stable in highly oriented UHMWPE, in spite of the 

readily available hydrogen atoms in the polymer. This is confirmed by studies showing that peroxy 

radicals in polyethylene are still present after many weeks of storage at room temperature in air 

[76]. Also, this is further supported by the high activation energy needed for hydrogen extraction 

from a nearby UHMWPE molecule by peroxy radicals, which at room temperature was calculated 

at 108 kJ/mol [76]. However, an increase of only 10 °C can almost double the rate of the hydrogen 

extraction reaction and this results in the formation of hydroperoxides and newly formed alkyl 

macroradicals, as shown in reaction (5) [55, 70, 82, 83].  

PE + O
2
                    PEOO 

k
3
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 (5) 

In addition, peroxy radicals can participate in termination reactions either by reacting with alkyl 

macroradicals present to produce peroxides, reaction (6), or combining with each other to produce 

peroxides and molecular oxygen, reaction (7) [61, 82]. This last reaction is known as the Russell 

reaction between two peroxy radicals. This biomolecular termination reaction is strongly 

disfavored at room temperature due to the relative immobility of the highly crystalline UHMWPE 

and the relative stability of the peroxy radicals, as mentioned above [71]. On the other hand, 

reaction (6) is more thermodynamic feasible and it is not kinetically inhibited, since the alkyl 

macroradicals can migrate along the polymer chain  and can find the peroxy radicals to react with 

and produce peroxides [71]. Finally, peroxy radicals can undergo oxygen elimination reactions to 

produce super oxide ions (O2
 −). These super oxide ions can then react with hydronium ions (H3O

+) 

and produce water and hydroperoxyl radicals (HO2
 ). 

 

 (6) 

 (7) 

Furthermore, the hydroperoxides formed by reaction (5) are thermally unstable [76]. When 

temperature increases from room temperature to 70 °C and above, hydroperoxides undergo 

decomposition reactions [76, 82]. UHMWPE fibers used in personal body armor applications can 

be exposed to temperatures of approximately 67 °C or higher during normal wear and storage 

conditions, as previously mentioned [58]. This results in thermal oxidation decomposition 

reactions that can further induce the degradation of the fibers, since hydroperoxides will 

decompose to produce very reactive OH and RO radicals, or ketones (R2CO) and H2O 

molecules, as shown in reactions (8) and (9) respectively [61, 76, 82].  

PEOO + PEꞌH                   PEOOH + PEꞌ  
kꞌ

4
 

PEOO + PEꞌOO                   PEOOPEꞌ + O
2
 

k
6
 

PEOO + PEꞌ                   PEOOPEꞌ 
k

5
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PEOOH → PEO + OH (8) 

PEOOH → PECOPE + H2O (9) 

Reaction (8) is a very important propagation reaction of thermal oxidation, since it produces new 

highly reactive species, the alkoxy radicals (RO), which can give β-scission to produce new 

primary alkyl radicals and carbon monoxide (CO) through reaction (10), as shown in Figure 24 

[61, 76, 82]. The activation energy for this reaction is relatively low, around 50 kJ/mol and can 

occur even at room temperature [76].  

   

Figure 24. β-scission of alkoxy radical (reaction 10).  

In addition to the β-scission reaction, alkoxy radicals can abstract hydrogen molecules from the 

polyethylene chain to produce alcohols and new alkyl macroradicals, reaction (11) [55, 61, 76, 

82].  

PEO + PEꞌH → PEOH + PEꞌ (11) 

The hydroxyl radicals (OH) formed previously from reaction (8) during the thermal 

decomposition of hydroperoxides are highly reactive species, as well, and can easily abstract 

hydrogen molecules from the polymer chain to produce new alkyl macroradicals and H2O 

molecules, as shown in reaction (12) [61, 76, 82]. 
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PEH + OH → PE + H2O (12) 

Finally, during oxidative degradation of polyethylene, besides the formation of ketone and alcohol 

groups, ester groups can also be produced mainly through the decomposition of primary peroxides. 

However, the precise mechanism of ester group formation is not yet completely understood [84].  

An approximation of the kinetics of these oxidation reactions, utilizing the initiation 

reaction (1), the propagation reactions (4) and (5), and the biomolecular termination reactions (3), 

(6), and (7), described above, has been applied to the oxidation of polymers [65]. For this oxidation 

model a steady-state analysis was used along with the assumption that a high number of 

propagation cycles occur before the termination reactions take place, and that k5
2 = 4k2k6 for the 

reaction rates of the bimolecular termination reactions [65]. It has been estimated that, in the 

presence of oxygen, one free radical generates, on average, 12 carbonyl and 5 hydroxyl groups 

before decaying [55, 65]. Therefore, the oxygen consumption rate was obtained from standard 

kinetic analysis to be as follows [65, 85]:  

𝑑𝑂2

𝑑𝑡
 =  

𝐶1𝑏 × [𝑂2]

1 +  𝐶2𝑏 × [𝑂2]
 

where the constants 𝐶1𝑏 =  
𝑘3×𝑘1

0.5

(2𝑘2)0.5   and 𝐶2𝑏 =  
𝑘6×𝑘3

0.5

𝑘2
0.5×𝑘4

 and 𝑘4 = 𝑘4
′ × [𝑃𝐸′𝐻] 

The aforementioned oxidation reactions in UHMWPE are summarized in Figure 25. The 

ultimate result of these reactions is a material with reduced molecular weight, which directly 

affects its mechanical properties, as well as the formation of groups such as esters, ketones, and 

alcohols that increase the hydrophilicity of the UHMWPE fibers making them more susceptible to 

water and oxygen penetration, further inducing the deterioration of the material.   
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Figure 25. Oxidation reactions of UHMWPE free radicals in the amorphous regions. 

2.4.3 Antioxidants 

 Commercial polyethylene usually contains phenolic antioxidants such as Vitamin-E when 

used in bio applications, or Irganox [86-90]. Also, special stable oxygen centered free radicals, 

such as nitroxides (TEMPOL and TEMPO) are commonly used in polyethylene materials [91, 92]. 

These reagents are used as scavengers for free radicals and induce the termination reactions of C-
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centered free radicals in PE. As previously discussed, C-centered free radicals will react with 

available oxygen to produce peroxy radicals. However, in the presence of phenolic antioxidants 

the following reactions are in competition: 

a) Vitamin-E as antioxidant: 

RO2• + α-TOH → ROOH + α-TO• 

b) Irganox as antioxidant, reactions shown in Figure 26 [93]: 

 

Figure 26. Reactions of Irganox 1010 with C-centered, peroxy, and alcoxy free radicals [93]. 

 Nitroxides, can also work as C-centered radical scavengers via the following reactions: 

 R• + >NO• → >NOR 

 RO2• + >NO• ↔ intermediate → >N+=O + RO2
- 
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The kinetics of the oxidation reactions described in the previous section will change in the presence 

of antioxidants, since C-centered free radicals can not only react with oxygen, but also with these 

scavenger reagents. In this case, the oxidation reactions including their reaction rate constants are 

as follows: 

R• + R• → R-R (reaction rate constant, k1) 

R• + O2 → RO2• (reaction rate constant, k2) 

R• + Ant-OH → RH + Ant-O• (reaction rate constant, k3) 

According to the above reactions we can calculate the consumption rate of C-centered free radicals 

from the equation below: 

 -d[R•]/dt = k1[R•] +k2[R•][O2] + k3[R•][Ant-OH] 

In addition to these reactions, the peroxy radicals formed can be terminated by the antioxidant, as 

shown in the reactions below:   

RO2• + Ant-OH → RO2H + Ant-O• (reaction rate constant, k4) 

RO2• + RO2• → ROOR + O2 (reaction rate constant, k5) 

RO2• + R-H → RO2H + R• (reaction rate constant, k6) 

The consumption rate of peroxy radicals can be calculated using the following equation: 

 D[RO2•]/dt = k2[R•][O2] – k4[RO2•][Ant-OH] – k5[RO2•]
2 – k6[RO2•][R•] 

Finally, in the presence of oxygen and antioxidants, the probability of C-centered radicals 

reacting with oxygen will be lower than that in the absence of antioxidants, as can be seen from 

the equation below: 

 Probability = 
𝑘2[𝑅•][𝑂2]

𝑘1[𝑅•]2+ 𝑘2[𝑅•][𝑂2]+ 𝑘3[𝑅•][Ant−OH]
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In this study, the presence of Irganox-type hindered phenol antioxidants is suspected due to results 

from previous work conducted on the same generation of virgin UHMWPE fibers manufactured 

by the same company [93]. However, the results of this study did not show evidence of the 

existence of such scavenger molecules.    
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Chapter 3: Materials and Methods 

3.1 Chapter Overview 

To assess the long term stability of UHMWPE-soft ballistic inserts, a number of analytical 

methods were utilized. The description of these methods is located here for easy reference, since 

they are used in the subsequent chapters. A discussion of the materials used in this study, and the 

instrumentation used to investigate the changes in the chemical and physical structure of 

UHMWPE fibers and the binder resin can be found below.  

3.2 Materials 

 The UHMWPE-soft ballistic resistant armor panels used in this study were provided from 

DSM company and the fibers utilized in these vest inserts are characterized by the company as 

Dyneema SK76 UHMWPE fibers. No description of the LDPE film or the binder resin used was 

provided by the company. The body armors were stored in dark ambient conditions prior to or 

after having been subjected to accelerated aging conditions. In this work, the ballistic vests were 

aged according to the protocol described in NIJ Standard 0101.06 [58, 94]. Briefly, the vests were 

placed into specially designed chambers at 65 °C, 80% relative humidity, and 5 rpm tumbling for 

a two-week period of time. A series of temperature/relative humidity data loggers were used to 

monitor the consistency of the chamber conditions during the exposure time. In addition to this 

protocol, a folding protocol was developed and used in this study to allow for the evaluation of the 

isolated effect of mechanical stress on the UHMWPE fibers when part of the laminated structure. 

Briefly, laminates from a new body armor were folded and constrained in half (180° fold), and 

then placed in into an oven at 80 °C, under ambient pressure and humidity conditions for a period 
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of two weeks. A thermocouple was used to monitor the consistency of the oven temperature during 

the exposure time. Solvents, including chloroform (HPLC grade, ≥99.9%), deuterated chloroform 

(99.8 atom % D), and tetrahydrofuran (HPLC grade, ≥99.9%) were purchased from Sigma-Aldrich 

(St. Louis, MO).  

3.3 Extraction Protocol of UHMWPE and Binder Resin 

 The materials used in this study were all initially incorporated into ballistic vests. In order 

to be able to study each individual component of the vest, an extraction protocol had to be 

developed and used. The goal was to effectively break down the laminated structure of the vest 

and isolate the UHMWPE fibers as well as the binder resin without affecting their chemical 

composition and physical structure, or inducing any type of degradation to the materials during 

this process. To achieve this, sections of the material removed from the laminates were completely 

immersed in beakers containing chloroform. Mild agitation by hand was performed periodically, 

until the laminates were visually observed to separate. Then, the samples were left overnight into 

the chloroform solution to allow for the binder resin to fully dissolve in the chloroform. The 

UHMWPE fibers and the LDPE film do not dissolve in chloroform and will precipitate in the 

bottom of the beaker. Filtration was performed to separate the UHMWPE fibers and LDPE film 

from the chloroform solution containing the binder resin. Next, to eliminate any residual traces of 

resin from the surface of UHMWPE fibers, the fibers were transferred back to the beaker and more 

chloroform was added and left overnight. This process was repeated two more times for a total of 

4 days. This protocol successfully separated the body armor materials from each other. At the end 

of the fourth day, all the chloroform solutions containing the binder resin were combined and let 

under the hood overnight to allow for the solvent to evaporate. The resin was then collected from 



42 

 

the bottom of the beaker and stored in air tight vials. The UHMWPE fibers were also air dried and 

stored in zip-lock containers inside a desiccator.  Materials were extracted from the center part as 

well as the edge of laminates from various parts of the body armor.         

3.4 Characterization of Surface Morphology of UHMWPE Fibers 

 The shape and the surface morphology of the UHMWPE were characterized by scanning 

electron microscopy (SEM) using Hitachi S-2400 variable pressure SEM equipped with an X-ray 

detector that allows for elemental analysis through energy dispersive spectroscopy (EDS). The 

fibers were evenly spread over slabs and left under vacuum overnight to eliminate any traces of 

humidity and oxygen bound to the surface of the fibers prior to analysis. The analysis was 

conducted using variable pressure mode at 15 keV. 

3.5 Oxidation Measurement   

 Oxidation of UHMWPE fiber samples and binder resin material was measured using 

Fourier Transform Infrared Spectroscopy (FTIR). A Thermo Nicolet NEXUS 670 FTIR equipped 

with an attenuated total reflectance (ATR) accessory was used to measure the oxidation of the 

materials. The final spectrum of each sample represent the average of 128 individual scans with a 

resolution of 2 cm-1 between 650 cm-1 and 4000 cm-1 wavenumbers. A background was collected 

and subtracted prior to each sample run. Three replicated were prepared for each sample. Spectra 

analysis, including baseline correction and normalization, was carried out using the instrument 

software package provided (Omnic ESP). The spectra were baseline corrected and normalized 

using the peak at 1472 cm-1, which was attributed to the CH2 bending. Typical standard 

uncertainties for spectral measurement are 2 cm-1 in wavenumber and 5% in peak intensity. To 
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evaluate the degree of oxidation, the overlapping peaks between 1712 cm-1 and 1735 cm-1 assigned 

to the oxidation products (ester and ketone groups) were deconvoluted using Origin Pro software.  

3.6 Crystallinity Determination  

 Differential scanning calorimetry was carried out using a TA Q2000 differential scanning 

calorimeter (DSC) (TA Instruments). UHMWPE fibers extracted from new and treated vests were 

coiled around a wire and placed at the bottom of aluminum hermetic pans. The typical weight of 

the samples was kept between 3 and 5 mg to increase resolution. Samples were held at 25 °C for 

5 min and then heated to 180 °C at a rate of 10 °C/min. The measurements were conducted under 

flowing nitrogen at a flow rate of 25 mL/min. The melting curves of the crystals were deconvoluted 

into 4 peaks, using the Origin Pro software, which were assigned to the melting of different crystal 

phases. The melting points were characterized by the temperature of the peak maximum, and the 

area under each peak was intergraded to assess the crystal composition of the material. Also, the 

heat of fusion was determined by integrating the entire area under the melting curve to calculate 

the total percent crystallinity of each sample. Each sample was tested in triplicate.    

3.7 Characterization of Morphological Changes in UHMWPE Fibers 

 Wide angle X-ray scattering (WAXS) measurements were conducted using a Xenocs 

Xeuss SAXS/WAXS small angle X-ray Scattering System. The instrument was equipped with a 

300K Dectris Pilatus detector for SAXS analysis with a minimum Q=0.0045 Å-1, an100K Dectris 

Pilatus detector for WAXS analysis (up to about 45° 2θ) and a Linham stage controlling 

temperature from about -100 °C to 250 °C. The incident beam, diffracted beam and sample 

chamber were kept under vacuum. The fibers were mounted across a small groove formed by a 
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copper block used along with the heating stage to acquire data at various temperatures, as shown 

in Figure 27. The bundle of fibers was mounted horizontally, perpendicular to the direction of the 

X-ray beam. In these experiments silver behenate was used as a control and each sample and 

condition was tested in duplicate. Briefly, the purpose of this experiment was to identify the 

various crystal phases of the fibers and the morphological changes of the crystals occurring at 

elevated temperatures. This data will supplement the DSC data obtained and give better insight 

into the morphological changes of each crystal phase as a function of temperature.  

 

Figure 27. Bundle of UHMWPE fibers mounted on the heating stage for WAXS diffraction.   
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3.8 Molecular Weight Determination    

 To determine the extent of chemical degradation of the binder resin material, the molecular 

weight (Mw) of the resin extracted from new (control) and aged vests was measured through gel 

permeation chromatography (GPC). The samples were dissolved in tetrahydrofuran (THF), 

resulting in solutions of 3 mg/mL. Then the solutions were processed using positive filtration 

through a Whatman 0.2 μm pore-size filter ((polytetrafluoroethylene membrane; PTFE) from 

Thermo Fisher Scientific (Waltham, MA). The number average and weight average molecular 

weight, as well as the polydispersity index of the samples was determined using polystyrene 

standards and the instrument software package provided.  

3.9 Determination of the Binder Resin Material Used  

 To identify the material used as a binder in these body armors the resin was dissolved in 

deuterated chloroform (CDCl3) and the 13C and 1H two-dimensional nuclear magnetic resonance 

(NMR) spectra (HSQC and HMBC) were acquired on a Bruker AVIII-600MHz spectrometer. The 

13C NMR spectra of the samples in CDCl3 were acquired using proton decoupling. A total of 

44,023 data points were acquired at a spectral width of 31 kHz, corresponding to an acquisition 

time of 1.4 sec, and 4,348 scans were averaged. The 1H NMR spectra were acquired with homo-

nuclear decoupling during the acquisition time. Sixteen scans were acquired, each with 24,576 

data points at a spectral width of 8 kHz, corresponding to an acquisition time of 3.1 sec. A pulse 

delay of 1 sec was used in both cases.   
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Chapter 4: UHMWPE Fibers Extracted from Body Armor 

4.1 Chapter Overview 

 In this chapter, the long term stability of the UHMWPE fibers extracted from body armor 

is evaluated. The effect of mechanical stress on the surface morphology of the fibers and the 

oxidative degradation is studied. Additionally, changes in the crystallinity and the morphology of 

the crystalline phase is evaluated.   

4.2 Surface Morphology of UHMWPE Fibers and Elemental Analysis 

 Fibers extracted from body armor, after being artificially aged through the NIJ protocol 

and the folding protocol described in the previous chapter, were subjected to surface analysis via 

scanning electron microscopy. Imaging revealed that fibers removed from aged body armor exhibit 

some morphological deformations, also known as kink bands. These defects on polymeric fibers 

were previously observed and characterized by Takahashi et al. [95]. Kink bands appear as a series 

of successive bands at an angle of 50-60° to the fiber axis, as shown in Figure 28 [95].  

 

Figure 28. Kink bands on PPTA fibers characterized by Takahashi et al. [95].  
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These bands form a narrow triangular, or wedged-shaped area on the fiber where the 

orientation of the polymer chains suddenly changes. A model for the kink band formation has been 

proposed by Edmunds et al. and is shown in Figure 29 [96]. In this model kink bands are assumed 

to be made from straight limbs and sharp corners, based on a previous work by Hunt et al. [97]. 

According to this model, the orientation of kink band deformation (angle β) remains constant and 

the kink band angle α is the one changing. All of the fiber layers are compressed transversely and 

have the same thickness. When angles α and β are equal, the thickness of the layers within the kink 

band increases to the original uncompressed thickness. Then, when α = 2β all the layers whether 

they are internal or external to the kink band have the same thickness. Finally, as α increases, the 

internal layer thickness in the kink band decreases more than the thickness of the external layers.  

All in all, bending or compression forces are required for a kink band to form. As 

compressive forces increase, deformation increases and begins to propagate from the surface to 

the fiber axis, and simultaneously new kinks begin to form along the fiber axis. With further 

increased compression bands intersect with each other and the outer region of the fiber, opposite 

to the compressed kink banded region, the fiber will fracture under tension to form a kink band 

break [95, 98, 99].  The process of a kink band break, also known as knuckle formation, is not 

reversible and voids are formed within the kink band as a result of lateral splitting between the 

polymer chains [100]. 
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Figure 29. Model for kink band formation on PPTA fibers due to compressive forces [96].  

 Kink band formation on high strength polymer fibers used in body armor applications has 

been previously reported and characterized in other high strength fibers [95, 98-100]. However, 

the formation of kink bands in UHMWPE fibers used for ballistic protection has not been fully 

characterized yet. The imaging of the fibers in this study indicates that the kink bands formed in 
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UHMWPE fibers have similar morphological characteristics to those fibers made of PBO or PPTA 

(Figure 28). Our results, as can be concluded by the images shown in Figure 30, suggest that 

mechanical stress transferred to the fibers during bending of the body armor is translated to 

compressive and tensile stress onto the fibers leading to the formation of kink bands. UHMWPE 

fibers extracted from new body armor did not reveal any kink bands (Figure 30.a) and that was 

also the case for the fibers extracted from vest that were aged using the folding protocol, at areas 

away from the bending site (Figure 30.d). However, as can be seen in Figure 30.b, fibers extracted 

from aged (NIJ protocol) vests revealed the presence of kink bands, which were uniformly spread 

across the fibers of all the samples tested in this study. In addition, fibers extracted from laminates 

of the armor that were folded at an 180° angle (folding protocol) revealed severe kink band and 

knuckle formation at the bending point, as shown in Figure 30.c. These results clearly demonstrate 

that mechanical stress is the primary mechanism of kink band formation in UHMWPE fibers.   
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Figure 30. Scanning electron microscopy (SEM) images of UHMWPE fibers extracted from new 

(a), NIJ conditioned (b), and body armor aged via the folding protocol, 180° bending point (c) and 

non-bended areas (d) respectively.  

In addition to these observations, energy dispersive spectroscopy (EDS) was used 

simultaneously to the imaging of the fibers to evaluate their chemical composition at various areas 
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including the kink bands. Fibers extracted from new body armor, conditioned with the NIJ 

protocol, as well as the folding protocol were tested in this set of experiments. The areas on these 

fibers that were analyzed via EDS to evaluate the oxygen concentration were the following: a) 

random areas on fibers extracted from new vests, referred as “New”, b) areas without kink bands 

and the kink band areas of fibers conditioned via the NIJ protocol, referred as “Normal-NIJ” and 

“Kink Band-NIJ” respectively, c) areas without and with kink bands on fibers conditioned via the 

folding protocol, referred as “Normal-Folding” and “Kink Band-Folding”. The results are 

summarized in Figure 31 below.  
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Figure 31.  EDS analysis on UHMWPE fibers extracted from new, and conditioned body armor 

through the NIJ and Folding protocol. For each fiber sample the normalized wt.% of oxygen is 

reported. *p≤0.05, compares each fiber area to the new fibers, by Student’s t-test. #p≤0.05 and !p 

≤0.05 compares the “Kink Band-NIJ” and “Kink Band-Folding” data with the “No-Kink Band -

NIJ” and “No-Kink Band -Folding” data respectively, by Student’s t-test. Data are mean± S.E.M. 

(n≥50).  

 As can be seen from the Figure 31 above, there is a statistically significant increase in the 

oxygen concentration at the kink band areas of the UHMWPE fibers. This increase can be 

attributed to the formation of oxidation products, such as esters and ketones, or an increase of the 
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molecular oxygen concentration produced during the thermo-oxidative degradation of UHMWPE 

from reactions, such as the recombination reaction of peroxy radicals, as discussed in Chapter 2. 

Another important conclusion from this study is that areas on the aged fibers without kink bands 

show similar oxygen concentration to the new, non-treated, fibers. This result demonstrates that 

oxidation of the UHMWPE fibers is mainly occurring at the kink band areas. As previously 

mentioned, compression forces that produce kink bands in combination with tension forces 

generated on the opposite side of the fibers can potentially lead to bond scissions in the polymer 

chains and the formation of C-centered free radicals. These free radicals can consequently react 

with oxygen and result in oxidation reactions. Also, micro voids created by the kink bands could 

potentially induce the diffusion and solubility of oxygen into these areas of the fiber. All the above 

suggest that mechanical stress and the formation of kink bands in the material may have a major 

role in the initiation and propagation of the oxidative degradation of UHMWPE fibers. 

4.3 Oxidation Analysis of UHMWPE Fibers 

To further support the results of the previous section, and the conclusion that oxidation 

reactions in UHMWPE fibers initiate from the kink band areas, Infrared Spectroscopy (IR) 

experiments were conducted. First, the FTIR spectrum of UHMWPE fibers extracted from the 

center part of the 14th laminate of a new body armor (armor is comprised of 27 laminates) was 

acquired and used as a control in this study (Figure 32). The characteristic peaks at 2916 cm-1 and 

2848 cm-1 are identified as sp3 C-H symmetric and asymmetric stretching, at 1471 and 1461 cm-1 

are assigned to C-H bending, and those at 731 and 717 cm-1 are in-phase and out-of-phase C-H 

rocking, respectively [101]. When oxidation takes place in UHMWPE, a new peak is formed at 

around 1700 cm-1. This peak can be usually resolved into two individual peaks, one with a 
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maximum at 1735 cm-1, which is assigned to an ester; and another one with a maximum at 1713 

cm-1, which is assigned to a ketone [58].  

 

Figure 32. FTIR spectrum of control UHMWPE fibers, extracted from an unaged vest. The fibers 

used for the collection of this spectrum were isolated from the center part of the middle laminate 

of the body armor. The units of absorbance are arbitrary. The characteristic peaks of the spectrum 

are represented by arrows. The data are the mean values of 3 different fiber samples, each tested 

in triplicate.   
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 In this study the degree of oxidation of the UHMWPE fibers tested was quantified by 

introducing the oxidation index (OI), as used in other artificial aging applications for UHMWPE 

materials [58, 84, 102]. For the purpose of this study, the peak at 1471 cm-1 was used as the 

reference peak. The OI was calculated by dividing the peak area at 1713 cm-1 by the peak area of 

the reference peak at 1471 cm-1. In this study, OriginPro software was used to integrate the FTIR 

spectra collected. The following equation was used for the calculation of OI. 

𝑂𝐼 =
𝐴1713𝑐𝑚−1

𝐴1471𝑐𝑚−1
 

In Figure 33, a representative FTIR spectrum of the oxidation peak at around 1700 cm-1 is 

shown for UHMWPE fibers extracted from the center part of the 14th laminate of a new body 

armor (Control Fibers), fibers extracted from the edge of the 1st laminate of a NIJ conditioned body 

armor (NIJ Conditioned Fibers), and fibers from the non-folded area (Folding Protocol – Non-

Folded Area Fibers) and the folded area (Folding Protocol – Folded Area Fibers) of laminates 

conditioned using the Folding protocol. For each condition, more than three different fiber samples 

were tested and the spectrum of each sample was collected twice. After the integration of each 

peak, the mean values were used to calculate the oxidation index for each condition. As shown in 

Figure 33, the “NIJ Conditioned Fibers” demonstrate the most severe oxidation, since the area 

under the peak at 1713 cm-1 was the largest of the four. Also, the OI calculated for these fiber 

samples was 0.0719±0.0059, while the “Control Fibers” have an oxidation index of 

0.0127±0.0016. This is a statistically significant 446% increase in the oxidation index between 

fibers extracted from new and NIJ conditioned body armor (p≤0.05, by Student’s t-test). 

Furthermore, the area under the peak at 1713 cm-1 for the “Folding Protocol – Non-Folded Area 

Fibers” was slightly larger than that of the “Control Fibers” and their OI was calculated to be 
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0.0224±0.0063. These results are in accordance with the results acquired from the EDS analysis 

in the previous section, where the UHMWPE fibers from a non-folded area of the laminates 

conditioned with the Folding protocol have not shown a significant increase over the fibers 

extracted from a new vest. Finally, the area under the oxidation peak of the “Folding Protocol – 

Folded Area Fibers” was larger than that of the “Control Fibers” and the “Folding Protocol – Non-

Folded Area Fibers” but lower that the “NIJ Conditioned Fibers”. The calculated OI for these fibers 

was 0.0497±0.00582, which was statistically significant lower than 0.0719±0.0059 for the “NIJ 

Conditioned Fibers”, but greater than the other two fiber samples in this set of experiments 

(p≤0.05, by Student’s t-test).     
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Figure 33. FTIR spectra of the oxidation peak at 1713 cm-1 wavenumber for different UHMWPE 

fiber samples. These peaks were integrated between 1690 and 1755 cm-1 and the areas calculated 

were used to calculate the OI of the samples.      

All in all, the results of this set of FTIR experiments demonstrate that UHMWPE fibers 

without kink bands have low OI and show limited oxidation. This supports the idea that the thermal 

treatment of these fibers at 65 °C and the presence of oxygen in the surrounding environment do 

not have a major effect in the oxidation of UHMWPE fibers. However, when they are combined 

with mechanical stress and the formation of kink bands can drastically enhance the oxidative 

degradation of the material. The differences observed in the FTIR data and the OI of the fibers 



58 

 

extracted from the NIJ conditioned vests and the folded areas of the laminates conditioned with 

the Folding protocol may be attributed to the number of kink bands in the samples. Kink bands are 

abundant in the case of the NIJ conditioned fiber samples, whereas in the case of fibers from the 

Folding protocol they are isolated only at the bended area. Therefore, it can be concluded that 

fibers with a higher content of kink bands will oxidize more severely after a given period of time. 

These results further support the conclusions from the SEM-EDS analysis and the hypothesis that 

oxidation in UHMWPE fibers, when used in soft-ballistic inserts, is initiated and mainly occurring 

at the kink band areas and from there can potentially propagate easier along the fiber axis. 

   As previously mentioned, the body armor used in this study were comprised of 27 

laminates. To evaluate the oxygen diffusion and the extend of oxidation among the different 

number of laminates in the body armor, including those in the outer most and the inner part of the 

armor, the following experiment was designed. UHMWPE fibers were extracted from the center 

and edge part of the following laminates of a vest conditioned via the NIJ protocol: laminate 

number 1, 7, and 14. This resulted in 6 different fiber samples, which are described below: 

“OV_Fiber_P1_Edge”, which refers to fibers extracted from the edge part of the 1st laminate of a 

NIJ conditioned vest; “OV_Fiber_P1_Center”, which refers to fibers extracted from the center part 

of the 1st laminate of a NIJ conditioned vest; “OV_Fiber_P7_Edge”, which refers to fibers 

extracted from the edge of the 7th laminate of a NIJ conditioned vest; “OV_Fiber_P7_Center”, 

which refers to fibers extracted from the center of the 7th laminate of a NIJ conditioned vest; 

“OV_Fiber_P14_Edge”, which refers to fibers extracted from the edge of the 14th laminate of a 

NIJ conditioned vest; and “OV_Fiber_P7_Center”, which refers to fibers extracted from the center 

of the 14th laminate of a NIJ conditioned vest. The control used in this experiment were fibers 

extracted from the center part of the 14th laminate of a new body armor “NV_Fibers_P14_Center”, 
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as in the previous set of FTIR experiments. Figure 34 shows the OI calculated for each one of the 

aforementioned samples.  

 

Figure 34. Changes in oxidation index (OI) for UHMWPE fibers extracted from various areas of 

NIJ conditioned body armor. The FTIR spectra of each sample were collected and the area under 

1713 cm-1 was integrated and used to calculate the OI. *p≤0.05, compares each sample with the 

control; #p≤0.05, compares edge with center samples, by Student’s t-test. Data are mean ± S.E.M. 

(n ≥ 3). 

 The results presented in Figure 34 show that all of the UHMWPE fibers extracted from the 

NIJ conditioned vest are significantly more oxidized than the control fibers, which were extracted 

from a new vest. The most severe oxidation occurs on those fibers along the edge of the first 

laminate of the body armor. Conversely, the fibers residing in the center part of the fourteenth 

laminate appear to be the least oxidized ones. The oxidation of the fibers is shown to decrease 

when moving towards the inner part of the body armor. Also, the fibers extracted from the same 
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laminates showed a statistically significant decrease in the OI when moving from the edges to the 

center part of each laminate. These results clearly demonstrate the strong dependence of the 

oxidation reactions to the diffusion of oxygen into the material, as expected. Additionally, it should 

be noted that the edges of the laminates are more prone to bending during daily use of the body 

armor. This will result in a higher concentration of kink bands on fibers around the edge of the 

body armor, which can also contribute to the statistically significant higher degree of oxidation in 

these areas compared to the fibers reside in the center part of the laminates, as previously discussed.  

4.4 Thermal Analysis and Crystallinity Determination    

 Thermal analysis of UHMWPE fibers was conducted using differential scanning 

calorimetry (DSC) to evaluate the effects of aging in the crystallinity of the material and investigate 

changes in the different crystalline phases. Representative DSC thermograms of UHMWPE fibers 

extracted from new and NIJ conditioned body armor are presented in Figure 35 and Figure 36, 

respectively. In both cases, the thermograms of UHMWPE fiber samples revealed broad melting 

peaks with a maximum at ~147 °C. All melting peaks were treated as Gaussian functions and 

fitted by OriginPro software to predefine four different melting peaks as shown in Figure 37. The 

calculation of the total percent crystallinity of each sample was performed using the ASTM 

standard value for the theoretical heat of fusion of 100% crystalline polyethylene (289.3 J/g) [103]. 

However, for these UHMWPE fiber samples, the overall percent crystallinity as calculated by this 

method was nearly unchanged. Fibers extracted from a new vest revealed a total % crystallinity of 

90±1.0 and those extracted from a NIJ conditioned vest have a slightly smaller value of 87.8±1.1. 

These numbers represent mean values with their standard error calculated by more than 6 

thermograms per condition, produced from different fiber samples.   
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Figure 35. DSC thermogram of UHMWPE fibers extracted from a new body armor. Note the broad 

melting curve which can be resolved into four individual peaks with different maximum 

temperatures and different intensities. The more intense peak of the endotherm is at 147.3 °C. 

Standard uncertainties associated with the use of DSC in the measurement of these thermal 

properties are 5%. 
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Figure 36. DSC thermogram of UHMWPE fibers extracted from a body armor conditioned with 

the NIJ protocol. Note broad melting curve which can be resolved into four individual peaks with 

different maximum temperatures and different intensities. The more intense peak of the endotherm 

is at 146.9 °C. Standard uncertainties associated with the use of DSC in the measurement of these 

thermal properties are 5%. 
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Figure 37. Resolved DSC thermogram of UHMWPE fibers extracted from a body armor treated 

with the NIJ protocol, scale enlarged to better show the deconvolution of the endotherm and the 

four peaks acquired through this process. Fitting was done using OriginPro software. The four 

peaks fitted in this endotherm had maxima at 136 °C, 147 °C, 151 °C, and 158 °C. Standard 

uncertainties associated with the use of DSC in the measurement of these thermal properties are 

5%. 

As can be seen from the figures above, the endotherm of the UHMWPE fibers used in this 

study was broad with overlapping regions between 136 °C and 162 °C. After the deconvolution of 

the endotherm into four peaks, as shown in Figure 37, these peaks were integrated to give four 

different areas, and the percentage of the area of the total melting endotherm was attributed to the 

area of each individual peak. Each one of the deconvoluted peaks corresponds to four different 
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melting points, the results are summarized in Figure 38. The lowest melting peak in the region of 

136 °C is assigned as Tm1, and is relatively broad. This peak did not change significantly between 

new and aged vest fibers and is attributed to the melting of the monoclinic phase [10, 42, 104, 

105]. The second melting peak Tm2, around the region of 147 °C is the strongest signal and is 

attributed to melting of the extended orthorhombic crystals to form pseudo-hexagonal crystals [10, 

31, 42, 104, 106, 107]. This peak did not shift between fibers extracted from new and NIJ 

conditioned body armor. However, the percentage of peak area for the heat of melting decreased 

from 76.7% to 70.4% with aging (Figure 39). The third melting peak, Tm3, is located at around 154 

°C and is hypothesized to be the melting of a pseudo-hexagonal mesophase [10, 31, 42, 104, 106, 

107]. Finally, a fourth melting peak, Tm4, was observed at around 160 °C, which is identified to be 

the melting of the hexagonal crystal phase [10, 42, 104-106].  

 

Figure 38. Summary of melting points, heat of fusion, and crystallinity for UHMWPE fibers 

extracted from new and NIJ conditioned body armor. Note that the melting peaks and the total % 

crystallinity do not change significantly. Changes in the percentages of each crystal phase are 

observed with aging.   

 Overall, no major changes in the total % crystallinity, or the location of the melting peaks 

of the endotherms were observed between UHMWPE fibers extracted from new and NIJ 
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conditioned vests. Additionally, our results show that the percentages of the monoclinic and the 

hexagonal crystal phases do not change upon aging, as shown in Figure 39. According to the 

literature, the monoclinic crystals can form only at high drawing rations, whereas hexagonal 

crystals will only form when polymer chains in UHMWPE fibers are constrained when heated at  

elevated temperatures, such as in the case of fiber drawing at high temperatures [43, 49]. Therefore, 

the presence of these two crystal phases in our fibers further validates that the fibers been used in 

these body armors are highly drawn fibers with very highly oriented polymer chains. Also, 

conditioning of the body armor at 65 °C is not a high enough temperature to melt the monoclinic 

crystal phase, as shown by our DSC results. Thus, the percentage of this phase did not change in 

upon aging, as expected. 

 

Figure 39. Summary of the crystal phase percentages for UHMWPE fibers extracted from new and 

NIJ conditioned body armor. Calculations were done by fitting and integrating the DSC 

endotherms using OriginPro software. Changes in the percentages of each crystal phase are 

observed with aging.   
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 The most significant changes observed from the thermal analysis of these samples is the 

decrease of the orthorhombic crystal phase and the increase of what we hypothesize to be the 

pseudo-hexagonal mesophase after aging (Figure 39). Without any significant changes to the other 

two crystal phases identified (monoclinic and hexagonal), these results may suggest that during 

aging, some polymer chains originally in the orthorhombic crystal phase are losing their initial 

conformation. This allows these polymer chains to re-orient and convert easier into pseudo-

hexagonal crystal phase, which is a mesophase between the transition of the polymer chains from 

the orthorhombic to the hexagonal crystals. This hypothesis could be explained if one takes into 

consideration the parameters of the formation of the hexagonal phase. Hexagonal crystal phase 

will form upon heating the polymer chains at high temperatures (e.g. 65 °, 80 °C, or higher) while 

constraining them at the same time [43]. Considering now that the highly drawn fibers in this study 

result in miniscule free volume between the polymer chains in the extended orthorhombic phase, 

upon heating of the fibers during the DSC analysis, the chains in the orthorhombic phase might 

not be able to fold back on each other, since they are constrained by the adjacent chains, and may 

form pseudo-hexagonal and hexagonal crystals, as shown by the DSC endotherms. However, as 

temperature increases in the DSC pan, the freedom of motion and free volume of the self-

constrained polymer chains will increase. Therefore, the conditions are not optimum for the 

complete transformation of the orthorhombic to a hexagonal phase, and a new mesophase, which 

could have some orthorhombic and some hexagonal phase properties, can potentially form. 

Finally, to better support this hypothesis we need to conduct more experiments that are described 

in the future work and will help us to better understand the existence of this peak at 153 °C.  
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4.5 Crystal Morphology of UHMWPE Fibers  

 The UHMWPE fibers used in this study were shown to be very highly crystalline with 

about 90% total crystallinity. This results in very tightly packed and highly oriented crystallites 

within the fibers. To better understand the morphological changes that the crystals undergo in the 

material we need first to fully characterize the crystal morphology of these fibers. In this set of 

experiments WAXS analysis was performed on UHMWPE fibers extracted from new body armor 

to assess the different type of crystals initially present in these fibers, and complement the data 

obtained from the DSC analysis. WAXS data of the new fibers were collected at 25, 140 °C and 

the diffraction patterns are shown in Figure 40, and the diffractograms of intensity vs. 2θ° are 

shown in Figure 41 and Figure 42.  
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Figure 40. 2D WAXS patterns for UHMWPE fibers extracted from new vests at 25 and 140 °C. 

The scattering patterns were measured on a bundle of fibers placed horizontally, with their axis 

perpendicularly to the X-ray beam. Each condition was measured twice using different samples on 

different days.  
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Figure 41. WAXS diffractograms of UHMWPE fibers extracted from new body armors. The 

diffraction was measured on a bundle of fibers placed horizontally, with their axis perpendicularly 

to the X-ray beam, at 25°C. The intensity peaks for the orthorhombic and monoclinic crystal phases 

are shown. 
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Figure 42. WAXS diffractograms of UHMWPE fibers extracted from new body armors. The 

diffraction was measured on a bundle of fibers placed horizontally, with their axis perpendicularly 

to the X-ray beam, at 140°C. The intensity peaks for the orthorhombic and monoclinic crystal 

phases are shown. 

 As can be seen from the figures above, two monoclinic peaks and two orthorhombic peaks 

are identified for the fibers extracted from new vests at 25 °C [47, 49, 105, 108]. As the temperature 

increase to 140 °C the monoclinic (001) diffraction peak can be barely detected, while the area 

under the (20-1) monoclinic peak decreases from 1.79%, in the 25 °C diffractogram, to 1.44%. 

Overall, the percentage of the monoclinic phase decreases from 2.22% to 1.44% as temperature 
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increases from 25 °C to 140 °C. This result indicated that at a temperature between this range 

something occurs to the monoclinic phase and it starts decreasing. These data support the DSC 

results where the melting peak for the monoclinic phase was found to be at 136 °C. Also at room 

temperature the amount of the monoclinic phase calculated by the deconvolution of the DSC 

endotherm was found to be ~2%, which is in agreement with the value of 2.22% calculated by the 

integration of the WAXS diffraction patterns of (001)m and (20-1)m at 25 °C. Finally, no hexagonal 

phase was observed in the WAXS diffractograms of the fibers, since the appearance of the WAXS 

diffraction peak of the hexagonal phase has been shown to occur at very high temperatures above 

277 °C, when fibers are constrained [104]. It should be also noted, that the equatorial diffraction 

peak of the hexagonal phase is right at 2θ = 20.5 [105]. Since the diffraction peak of the (110) 

lattice plane of the orthorhombic crystals is at 2θ = 21.5, it might be very difficult to observe the 

diffraction peak of such a small percentage (only ~1%) of hexagonal phase due to overlapping of 

the two peaks. However, if WAXS analysis is conducted on constrained fibers at very high 

temperatures (above 160 °C), the diffraction peak of the hexagonal phase at 2θ = 20.5 will be 

strong and easily identified [104]. Additionally, the meridional diffraction pattern of the crystals 

when fibers are placed perpendicular to the X-ray beam, which could potentially reveal the 

existence of the pseudo-hexagonal phase, was not collected in this study due to lack of the 

appropriate mounting stage.          

4.6 Summary 

In this chapter the degradation of UHMWPE fibers extracted from body armor is 

characterized and discussed. The EDS results demonstrate that the oxygen concentration of the 

fibers is higher in the kink bands. These kink bands where shown to be produced by mechanical 
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stress. Also, the FTIR analysis of the fibers showed that the kink banded areas are significantly 

more oxidized than the rest of the areas along the fibers. The above results lead to the conclusion 

that there is a synergy between the mechanical induced degradation and the oxidation in these 

UHMWPE fibers.  

Additionally, the crystallinity characterization of the material revealed that the total percent 

crystallinity did not change upon aging. This supports the idea that oxidation occurs in the 

amorphous regions of the polymer. DSC data demonstrate that the drawing process of these fibers 

was conducted at high drawing ratios, due the presence of a monoclinic melting peak identified on 

the endotherm, also supported by the monoclinic diffraction peaks (001)m and (20-1)m of the 

WAXS analysis. The percentage of this peak remains constant upon aging, however the percent of 

the orthorhombic crystalline phase decreases significantly from 62.1% to 45.8%. A melting peak 

was observed at 155 °C which is attributed to a pseudo-hexagonal mesophase. We hypothesize 

that right above the melting temperature of the orthorhombic crystals, the highly oriented self-

constrained polymer chains of the extended orthorhombic phase will absorb enough energy, 

through heat, to transition to the hexagonal phase. However, the high heating rate (10 °C/min) 

during the DSC analysis will not allow these polymer chains to fully reconfigure into hexagonal 

crystals and they will form a transition mesophase, which will melt at around 155 °C, before the 

melting of hexagonal phase (160 °).  

Finally, the WAXS results supplemented the DSC data results showing that the most 

abundant crystal phase in the fibers is the orthorhombic. Furthermore, the scattering from the 

monoclinic crystals at 25 °C prove that the percentage of this phase in the fibers is constant at 

~2%. Also, combining the DSC with the WAXS data at 140 °C it can be clearly stated that the 

monoclinic phase is melting around 136 °C. No hexagonal phase was observed from the WAXS 
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analysis, since its formation requires constraining the polymer chains at higher temperatures than 

140 °C. Finally, the pseudo-hexagonal phase was not observed in the WAXS diffractogram. This 

result suggests that the orientation of the pseudo-hexagonal crystals in the fibers that could result 

in a diffraction peak during WAXS analysis, is different than that of the monoclinic, orthorhombic, 

and hexagonal phases. Since the fibers were placed perpendicular to the X-ray beam, this result 

suggests that WAXS analysis should also be performed with the fiber axis placed parallel to the 

X-ray beam.  
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Chapter 5: Binder Resin Extracted from Body Armor 

5.1 Chapter Overview 

In this chapter the effects of accelerated aging in the degradation of the binder material 

used in the body armor is studied. The chemistry of the material extracted from the body armor is 

first identified and the molecular weight and oxidation were characterized as marker of 

degradation.   

5.2 Identification of Binder Resin Material Used in Body Armor 

 The binder resin was initially extracted from new body armor and dissolved in deuterated 

chloroform for analysis through liquid NMR spectroscopy acquiring the 13C and 1H spectra. These 

non-aged samples were used as a control to help in the identification process of the material 

incorporated in the laminates. The 1H NMR spectrum of the binder, as can been seen in Figure 43 

(red spectrum), revealed the existence of a  peak attributed to the phenyl groups (C6H5), which is 

a characteristic signal of polystyrene [109]. However, more signals were present in the spectrum 

that were attributed to polyisoprene, including the =CH-, -CH2-, and -CH3 as shown in Figure 43 

(red spectrum) [110]. To support these findings polystyrene and polyisoprene samples were 

purchased and tested via NMR using the same parameters. The spectra collected are shown in 

Figure 43, blue and purple spectrum, respectively and the results obtained are in accordance with 

the literature [109, 110]. These results suggest that the binder used in the body armor could be a 

co-polymer of polystyrene and polyisoprene. Also, since the intensity of the peaks corresponding 

to polyisoprene have a higher intensity in the binder sample, than those found in the polystyrene 

spectrum we strongly believed that the copolymer used should have a higher polyisoprene 
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percentage. One of the commercially available 18% styrene-isoprene co-polymer is manufactured 

by Kraton Polymers. This elastomer was purchased and studied using NMR. Its proton NMR 

spectrum is almost identical to the binder spectrum, as shown in Figure 43 (green spectrum).  

     

Figure 43. 1H NMR spectra (in CDCl3) of polyisoprene (purple spectrum), polystyrene (blue 

spectrum), 18% styrene-isoprene co-polymer (green spectrum), and binder resin (red spectrum).  
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To further validate these findings, the 13C NMR spectra of the binder resin, polystyrene, 

polyisoprene, and 18% styrene-isoprene Kraton elastomer were obtained and represented in Figure 

44. As can be seen from the spectra of the binder resin and the Kraton elastomer, the peaks 

produced for both materials are almost identical.  

  

Figure 44. 13C NMR spectra (in CDCl3) of polyisoprene (purple spectrum), polystyrene (blue 

spectrum), 18% styrene-isoprene co-polymer (green spectrum), and binder resin (red spectrum). 

Note that the high intensity peak at around 77 ppm is produced by the CDCl3.  
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5.3 Characterization of Oxidation 

A representative FTIR spectra of the binder elastomer extracted from a new body armor is 

shown in Figure 45. The characteristic peaks at 2958, 2917, and 2850 cm-1 are identified as C-H 

stretching. the peak at 1631 cm-1 is assigned to C=C stretching, and the peaks at 1445 and 1375 

cm-1 are identified as CH2 and CH3 stretching, respectively [111]. 

 

Figure 45. FTIR spectrum of control binder resin, extracted from an unaged vest. The elastomer 

used to collection this spectrum was isolated from the center part of the middle laminate (number 

14) of the body armor. The units of absorbance are arbitrary. The characteristic peaks of the 

spectrum are represented by arrows.  
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 Previous studies on polystyrene and polyisoprene elastomers have shown that elevated 

temperatures will induce C-C bond scissions in the backbone of the polymer chains and produce 

C-centered free radicals through a mechanism similar to that of UHMWPE described in Chapter 

2 [111, 112]. These C-center free radicals, in the presence of oxygen, will induce oxidation 

reactions and ultimately will form carbonyl groups in the polymer, which are easily detected in the 

IR spectrum at around 1700 cm-1 [111-113]. Similar to the FTIR study of UHMWPE discussed in 

a previous chapter, the spectra of binder samples extracted from different areas of new and NIJ 

conditioned body armor were collected and the area under the carbonyl peat at 1700 cm-1 was 

calculated by taking the integral of the peak. The percent changes in the area of this peak between 

the different samples was calculated and the data are shown in Figure 46 and Figure 47. In this set 

of experiments, the control used was the area under the peak at 1700 cm-1 of binder extracted from 

the center part of the 14th laminate of a new body armor.   
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Figure 46. Percent increase in the area under the carbonyl peak at 1700 cm-1 of binder extracted 

from NIJ conditioned vests over the control. Samples from different laminates are compared. For 

each sample, 3 FTIR spectra were obtained and integrated. *≤0.05, compares each sample with 

“Panel 1_Edge” by Student’s t-test. Data are mean ± S.E.M. (n=3). 

 The results from Figure 46 demonstrate a significant increase in the carbonyl peak of the 

binder material of 81.5%±2.2, between the new and the aged vests. Furthermore, moving towards 

the middle portion of the body armor, oxidation is limited by oxygen diffusion, which significantly 

decreases the percent increase in the carbonyl peak of the binder samples over the control. Also, 

samples extracted from the center part and the edges of these laminates were tested. The results 

are summarized in Figure 47.  
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Figure 47. Percent increase in the area under the carbonyl peak at 1700 cm-1 of binder extracted 

from NIJ conditioned vests over the control. Samples from different laminates are compared. For 

each sample, 3 FTIR spectra were obtained and integrated. *≤0.05, compares each sample with 

“Panel 1_Edge” by Student’s t-test. Data are mean ± S.E.M. (n=3). 

 Ultimately, a statistically significant decrease in the number of carbonyl groups detected 

within binder samples from the edges and the center of the laminates was observed. These 

oxidation results clearly demonstrate that the binder is adversely affected by the accelerating aging 

conditions used to age the body armor. However, binder material that resides in the inner part of 

the laminates and the body armor is affected to a lesser extent.    



81 

 

5.4 Characterization of Molecular Weight 

 When oxidation takes place in polymeric materials, it is accompanied by bond scission 

reactions that will shorten the length of the polymer chain and result in a decrease of the molecular 

weight. In this study binder samples were extracted from different laminates as well as different 

areas on the laminates, and their molecular weight was characterized via GPC analysis. Binder 

extracted from the center part of the 14th laminate was used as a control.  The results showing the 

average number molecular weight of the material are summarized in Figure 48. 

  

Figure 48. Changes in the number average molecular weight of the binder material after 

accelerated aging of the body armor via the NIJ protocol. Binder was extracted from the center 

part and edges of different laminates. The control was binder extracted from the center part of the 

1st laminate of a new body armor. *p≤0.05, compares everything to the control; #p≤0.05, compares 

edge versus center samples, by Student’s t-test. Data are means ± S.E.M. (n=3). 
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 These results show that there is a statistically significant decrease in the molecular weight 

of the binder material compared to the control across the entire mass of the body armor. Also, the 

is a statistically significant decrease in the molecular weight of the binder material extracted when 

comparing edge vs. center parts of the laminate, and that is true for all the different laminates 

tested. Finally, one should note that the oxidation data collected from different areas of different 

laminates follow the same pattern as the molecular weight results. This leads to the conclusion that 

the decrease in the molecular weight is a result of the oxidation reactions happening in the polymer.     

5.5 Summary 

In this chapter the degradation of the binder material extracted from UHMWPE body armor 

was evaluated. The results demonstrate that the elastomer material used in the body armor 

characterized in this study is an 18% polystyrene-polyisoprene copolymer. This elastomer material 

undergoes degradation in a similar way to UHMWPE. Elevated temperatures will induce bond 

scissions in the backbone of the elastomer. This leads to the formation of C-centered free radicals. 

These free radicals will react with oxygen to produce peroxy radicals, such as in the case of the 

polyethylene. The FTIR results prove that carbonyl groups are forming in the binder material due 

to the oxidative reactions occurring. Additionally, the oxidation was shown to be significantly 

affected by the diffusion of oxygen into the material. Finally, the GPC results revealed that the 

molecular weight of the elastomer decreases significantly upon aging. These results are in 

accordance with the oxidation results, showing that degradation of the binder material is more 

profound in the outer most regions of the body armor.        
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Chapter 6: Conclusions and Future Work 

6.1 Contribution to Science 

6.1.1 UHMWPE as a Model Compound for Certain Biological Compounds 

The proposed C-centered free radical degradation mechanisms of the UHMWPE can be 

used as a model for other biological molecules such as DNA, proteins, fatty acids, and cellulose. 

Despite their enormous differences in the chemical structures with PE, these molecules undergo 

degradation through C-centered radicals (R-C•), as in the case of the UHMWPE. In all cases, the 

C-centered radicals are produced from the rupture of C-C bonds in the backbone of the molecules. 

Also, because of the reductive nature of these C-centered radicals, they react very rapidly with 

available molecular oxygen to produce the corresponding peroxy radicals (R-CO2•) and initiate 

the first step of the oxidation process: 

R-C• + O2  R-CO2• 

This work has also shown that these peroxy radicals undergo a series of reactions, which 

further induce bond scissions in the backbone of the polymeric molecules, and produce oxidation 

products, such as ketones, esters, and CO. This can apply to a certain extent to biological 

molecules. Among the reactions of R-CO2•, is the recombination reaction leading to the 

production of the unstable tetraoxide (ROOOOR). The decomposition of ROOOOR into ketone 

has been found as an oxidative product in UHMWPE, proteins, and fatty acids.  
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6.1.2 Kink Band Formation in UHMWPE Fibers 

 This work, for the first time, fully characterized kink bands formed in UHMWPE fibers 

extracted from body armor. These defects have been previously studied in other high strength 

fibers, such as PPTA and PBO fibers [114, 115]. However, this study shows that compressive 

forces in UHMWPE, originating from bending of the fibers, result in the formation of kink bands 

and knuckles. Additionally, kink bands in UHMWPE fibers were characterized by X-ray elemental 

and IR analysis, and the results showed higher levels of oxidation in the kink bands as compared 

to other areas of the fibers.    

6.1.3 The Synergetic Effects of Mechanical and Oxidative Degradation 

This work shows for the first time that the concentration of oxygen is higher in the 

mechanically-induced kink bands and knuckles compared to other parts of the fibers. This can be 

explained by the fact that molecular oxygen can diffuse into these areas more easily than other 

regions, due to the formation of micro-voids in the structure of the fibers. It should also be 

mentioned that some oxidative intermediates such as tetraoxide decompose to stable and other 

unstable oxidative products and produce O2. 

 RCOOOCR  RC=O + RCOH + O2 

 2ROO  RCOOCR + O2  

This is specifically important for the areas in the polymer where O2 from the surrounding 

environment is difficult to diffuse. 
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6.1.4 Oxidation Takes Place Mainly in the Amorphous Regions 

The DSC results clearly demonstrate that there is no decrease in the total degree of 

crystallinity in UHMWPE fibers. This may suggest that the oxidation mainly takes place in the 

amorphous regions and at the interfaces between the crystalline and the amorphous regions. Based 

on this conclusion, total crystallinity should be closely monitored and maximized during the 

production of UHMWPE fibers.  

6.1.5 The Absence of Unsaturation due to the Presence of Oxygen 

It is very common that C-centered radicals in PE undergo disproportionation reaction 

leading to the formation of the unsaturation according to the following reaction: 

 

However, no FTIR absorption at around 980 cm-1 was detected. This can be explained by the fact 

that a state of competition reactions has been established between the reaction of C-centered 

radicals with oxygen, and the disproportionation reaction. It is concluded that the reaction with 

oxygen is the predominant one, which makes the fiber more prone to oxidation. 
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6.1.6 Crystal Phase Formation during Manufacturing 

The DSC results on the new vest (not aged) fibers show the presence of the monoclinic 

(136 °C), and the orthorhombic (147 °C) phases. This was further supported by the WAXS results 

that revealed the preens of monoclinic and orthorhombic diffraction peaks.  

6.1.7 Importance of Crystal Morphology of Fibers in Body Armor Applications 

 The DSC and WAXS data obtained in this study demonstrate that the fibers used in the 

body armor have different types of crystal structures, including monoclinic and orthorhombic. This 

leads to the conclusion that the manufacturer used high drawing ratios at various high temperatures 

to produce these fibers [104]. Drawing ratios and temperature control significantly affects the 

crystal morphology of fibers. In body armor applications it is of major importance to produce not 

only highly crystalline fibers, but also fibers with uniform crystal structures. Therefore, the results 

from this study suggest that a standard protocol should be developed to produce highly crystalline 

fibers with consistently uniform crystals during manufacturing.   
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6.2 Future Work 

While the work described herein resulted in some very important conclusions about the 

degradation mechanisms in UHMWPE fibers extracted from body armors and the effects of 

accelerated aging in the binder material of the armor, there remain many additional areas for future 

work. First, to better understand the crystal structure of the UHMWPE fibers used in this 

application we need to conduct more DSC measurments, testing fibers that are not drawn, less 

drawn, or more drawn that those studied in this work. This will provide some useful information 

about the melting peak at ~153 °C observed in this study, and whether this peak is associated with 

the hexagonal phase or not. We expect that un-drawn fibers will not develop a hexagonal melting 

point during the DSC testing and if also there is no peak formed at ~153 °C for these fibers, this 

will support our hypothesis that this peak is somehow associated to the hexagonal phase of the 

material.     

Additionally, the molecular weight of the UHMWPE fibers can be characterized before 

and after aging to support the oxidation data shown in this study. GPC analysis was attempted, but 

high temperatures are required to retain the polymer in the solution, which make it difficult to 

measure even with a high temperature GPC. Therefore, viscometry can be used as an alternative. 

A solvent, such as decahydranapthalene, can be used to solubilize the fibers and then molecular 

weight will be determined by measuring the flow time from a certain start point to an end point in 

a viscometer, submerged in an oil bath kept at 135 °C. However, viscometry does not yield the 

absolute molecular weight value. Instead, it only provides us with a relative measure of the 

polymer’s molecular weight. In order to dissolve UHMWPE fibers in decahydranapthalene a 

reflux apparatus needs to be assembled. The solution needs to be warmed to 150 °C. Pentaerythritol 
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tetrakis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) should be added, as an antioxidant. The 

viscometer will be first calibrated with pure decahydranapthalene solution at 135 °C. Calculations 

of molecular weight will be performed in accordance with ASTM D 1601 standard. Lastly, static 

light scattering measurements coupled to a size separation method can be used as an alternative to 

evaluate the molecular weight distribution of UHMWPE.  

To evaluate the degradation of the UHMWPE fibers due to bond scission, either the 

molecular weight distribution or oxidation byproducts can be monitored. Fragmentation reactions 

occurring during the thermal-oxidation can lead to the formation of carbon dioxide, as shown 

below: 

 

To measure the concentration of CO2, a gas chromatographer coupled to a mass spectrometer can 

be connected directly to the conditioning chambers. As oxidation reactions take place, changes in 

the concentration of CO2 in the chamber can be measured in situ.  

The formation of free radicals in UHMWPE fibers is of major importance according to the 

oxidation mechanism proposed in this work. Carbon-centered free radicals will be produced 

mainly in the amorphous areas of the polymer through bond scissions induced by mechanical stress 

and elevated temperatures. Identifying the species and the concentration of these free radicals is 

crucial to further support the evidence from the oxidation products in this study, and shed light to 

the present of anti-oxidants in the fibers. Electron paramagnetic resonance spectroscopy (EPR) can 

be used to determine the following free radicals: alkyl, allyl, polyenyle, peroxy, and alcoxy free 

radicals. To this end, fibers should be extracted from NIJ accelerated aged body armor and from 

laminates conditioned with the folding protocol. The results can be compared to the spectra of free 

radicals identified by  O’Neill et al. [116].  
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Next, much work still remains to examine in which way oxidative degradation and how 

the changes in the crystalline morphology of UHMWPE fibers discussed in this work translate to 

changes in the mechanical properties of the fibers. To measure the mechanical properties of the 

material an Instron Model 5582 test frame equipped with a 1 kN load cell and pneumatic yarn and 

cord grips (Instron model 2714-006) will be used to measure the breaking strength of new, aged, 

and folded UHMWPE fibers. SEM can be performed on the samples before and after, and effort 

will be put to identify if the break occurred at a kink band or at a random area on the fiber. Also, 

ultimate tensile strength (UTS) and Young’s modulus (E) of single UHMWPE fibers extracted 

from body armor can be measured.  

 Peel adhesion tests should be developed and performed to relate the degradation of the 

binder material characterized in this work to the adhesive properties of the binder and the physical 

changes at the binder-fiber interface. ASTM standard F88 can be used, which was developed for 

seal strength testing of flexible barrier materials. The tests will be conducted at an angle of 180°. 

Laminates need to be cut to an appropriate size, according to the grip dimensions. Grips can be 

mechanical or pneumatic. The edges of the laminates under examination should be separated and 

the LDPE films can be clamped in a tensile testing machine. The adhesive properties of the binder 

can be tested at various rates of grip separation between 200 and 300mm/min. For each 

measurement the maximum force as the specimen is stressed to separate will be reported. The 

same protocol can be used to perform fiber pull out tests to evaluate the adhesion of a fiber onto 

the laminate matrix. In this case the panel should be separated in half first. Then, fibers will be 

pulled individually from the matrix.   

 Finally, there is a great amount of heat generated upon the impact of a projectile with the 

body armor. The local increase in temperature is created by the friction upon impact and its heat 
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dissipation through the materials, especially the fibers. The heat transfer through the UHMWPE 

ballistic inserts and the temperature gradient created is not yet measured or modeled.  
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