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Pre-execution is a novel latency-tolerance technique where one or more helper threads run

in front of the main computation and trigger long-latency delinquent events early so that the

main thread makes forward progress without experiencing stalls. The most important issue in

pre-execution is how to construct effective helper threads that quickly get ahead and compute the

delinquent events accurately. Since the manual construction of helper threads is error-prone and

cumbersome for a programmer, automation of such an onerous task is inevitable for pre-execution

to be widely used for a variety of real-world workloads.

In this thesis, we study compiler-based pre-execution to construct prefetching helper threads

using a source-level compiler. We first introduce various compiler algorithms to optimize the helper

threads; program slicing removes noncritical code unnecessary to compute the delinquent loads,

prefetch conversion reduces blocking in the helper threads by converting delinquent loads into

nonblocking prefetches, and loop parallelization speculatively parallelizes the targeted code region

so that more memory accesses are overlapped simultaneously. In addition to these algorithms

to expedite the helper threads, we also propose several important algorithms to select the right

loops for pre-execution regions and pick up the best thread initiation scheme to invoke helper

threads. We implement all these algorithms in the Stanford University Intermediate Format (SUIF)

compiler infrastructure to automatically generate effective helper threads at the program source

level. Furthermore, we replace the external tools to perform program slicing and offline profiling in

our most aggressive compiler framework with static algorithms to reduce the complexity of compiler

implementation. We conduct thorough evaluation of the compiler-generated helper threads using a



simulator that models the research SMT processor. Our experimental results show compiler-based

pre-execution effectively eliminates the cache misses and improves the performance of a program.

In order to verify whether prefetching helper threads provide wall-clock speedup even in real

silicon, we apply compiler-based pre-execution in a real physical system with the Intel Pentium 4

processor with Hyper-Threading Technology. To generate helper threads, we use the pre-execution

optimization module in the Intel research compiler infrastructure and propose three helper thread-

ing scenarios to invoke and synchronize the helper threads. Our physical experimentation results

prove prefetching helper threads indeed improve the performance of selected benchmarks. More-

over, to achieve even more speedup in real silicon, we observe several issues need to be addressed a

priori. Unlike the research SMT processor where most processor resources are shared or replicated,

some critical hardware structures in the hyper-threaded processor are hard-partitioned in the mul-

tithreading mode. Therefore, the resource contention is more intricate, and thus helper threads

must be invoked very judiciously. In addition, the program behavior dynamically changes during

execution and the helper threads should adapt to it to maximize the benefit from pre-execution.

Hence we implement user-level library routines to monitor the dynamic program behavior with

little overhead and show the potential of having a runtime mechanism to dynamically throttle

helper threads. Furthermore, in order to activate and deactivate the helper threads at a very fine

granularity, having light-weight thread synchronization mechanisms is very crucial.

Finally, we apply compiler-based pre-execution to multiprogrammed workloads. When in-

troducing helper threads in a multiprogramming environment, multiple main threads compete

with each other to acquire enough hardware contexts to launch helper threads. In order to ad-

dress such a resource contention problem, we propose a mechanism to arbitrate the main threads.

Our simulation-based experiment shows pre-execution also helps to boost the throughput of a

multiprogrammed workload by reducing the latencies in the individual applications. Moreover,

when the helper thread occupancy of each main thread in the workload is not too high, multiple

main threads effectively share the hardware contexts for helper threads and utilize the processor

resources in the SMT processor.
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Chapter 1

Introduction

1.1 Motivation

Pre-execution is a general latency-tolerance technique, in which one or multiple number of threads,

called helper threads, run in front of the main computation thread (main thread for short) and

trigger long-latency events, such as the last-level cache misses, on the main thread’s behalf. When

helper threads are effective, the main thread runs without experiencing stalls, thereby reducing

the execution time. Data prefetching is a good example that clearly shows the usefulness of pre-

execution. Among various performance-degrading events, cache misses, especially those incurring

memory access, have been the main target of many latency-tolerance techniques due to their huge

impact on the program performance. Numerous research proposals have studied tolerating the

large memory latency by prefetching based on repetitive memory access patterns in a program.

Such prediction-based prefetching is very effective for affine-array access, which is easily found

in many scientific workloads. However, nonscientific workloads often exhibit irregular memory

access patterns that are hard to predict; such irregularities are usually found in pointer-chasing

traversal, index-array reference, or hash-table access. Rather than predict, pre-execution actually

executes certain instructions that are part of the original program to compute the cache-missing

memory references so that accurate prefetches can be generated. Thanks to execution-based nature,

irregularity in memory access patterns is not a problem in pre-execution; in fact, this is one of the

most compelling reasons why pre-execution is a promising data-prefetching technique.

In addition to its execution capability, we find pre-execution also has much potential to

uncover large amount of thread-level parallelism, especially memory-level parallelism. In pre-

execution, prefetching helper threads only execute code to compute effective addresses of long-

latency cache-missing loads, called delinquent loads, and skip the remaining code, which the main

thread must execute to ensure program correctness. Moreover, most pre-execution techniques

do not allow helper threads to perform store operations. In other words, computed results by

the helper threads are never integrated into the shared machine state so that pre-execution does
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not disrupt the main computation. Consequently, all dependences through memory are completely

eliminated in the helper threads. Unless values necessary to compute the delinquent load addresses

are communicated via memory, multiple helper threads can run in parallel without suffering from

any dependence violation. Furthermore, since helper threads never affect the correctness of the

main computation, they can be speculative and very aggressive. These unique characteristics of

helper threads allow to overlap more memory accesses simultaneously, exploiting abundant amount

of memory-level parallelism, which conventional multithreading techniques can hardly uncover.

Multithreading has been studied in the research community of computer architecture field for

decades. Many research proposals investigate multiprogramming or parallel processing paradigms

in large multiprocessor systems or recent single-chip multithreading processors. In particular, we

view multithreading as a way to exploit thread-level parallelism that resides in workloads. Multi-

programming is a well-known example of multithreading where multiple independent application

threads are executed on different hardware contexts available in a system. In multiprogramming,

the amount of thread-level parallelism is the same as the number of applications that run together.

As long as there are enough threads to be fed into the system, thread-level parallelism is easily

extracted. However, it is sometimes hard to find applications to fully utilize the available hard-

ware contexts in the system. Moreover, launching more threads may not be helpful to boost the

overall processor throughput, especially when there exists hardware resource contentions among

threads, e.g., memory bus saturation. Another limitation of multiprogramming is that it does

not improve the performance of each individual program in the multiprogrammed workload. Thus

multiprogramming is not helpful when improving single-thread performance is crucial. On the

other hand, parallel processing extracts thread-level parallelism from a single program by dividing

it into multiple threads to run in parallel. Parallel processing has been very effective for scientific

workloads that perform intensive vector computations on huge data space. For nonscientific work-

loads, however, parallel processing is often ineffective since complicated dependence structures and

control flow in those workloads prevent a program from being parallelized. Therefore, people have

searched for new ways to uncover thread-level parallelism in a workload and exploit it, thereby
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improving the processor performance.

With the recent advent of single-chip multithreading processors such as the Simultaneous

Multithreading (SMT) processor or Chip Multiprocessor (CMP), we believe a new era for mul-

tithreading has begun. Single-chip multithreading processors have opened up a great deal of

opportunities in the multithreading paradigm due to their unique characteristics distinguished

from conventional large multiprocessor systems. First, the communication delay between threads

is greatly shortened compared to that of conventional multiprocessor systems since all inter-thread

communications occur within a single die. Because of the small communication and thread syn-

chronization cost, it becomes possible to exploit new types of thread-level parallelism at a much

finer granularity, which was not feasible in large multiprocessor systems. Secondly, some critical

hardware resources in single-chip multithreading processors are often shared or partitioned. Thus

there exist intriguing tradeoffs regarding how to arbitrate those hardware resources among multiple

threads. On the other hand, hardware-resource sharing is not always problematic, but sometimes

opportunistic. For instance, sharing of a cache, e.g., the last-level cache that is located right above

main memory, makes it possible for some of spare hardware contexts in a multithreading processor

to be used for executing judiciously selected instruction sequences and bringing data cache blocks

on behalf of the main computation, thereby helping the execution of the program indirectly.

Recent architectural trend in the industry is in favor of multithreading as well. Follow-

ing Moore’s law, the number of transistors integrated on a single die has increased exponentially,

reaching almost one billion in the near future. To make use of the available transistor budget,

people have started putting multiple cores and/or multiple threads on a single die to support

multithreading. Since the first proposals of SMT and CMP processor models from academia,

there have been a great deal of studies to examine the potential of exploiting such multithread-

ing processors. After all those efforts, commercial single-chip multithreading processors like the

Intel r© Pentium r© 4 processor with Hyper-Threading Technology or IBM r© POWER5 [34] have

been recently released. Moreover, Sun Microsystems also announced their plan for productizing

single-chip multithreading processors in the near future [51]. As the transistor count on a chip
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Figure 1.1: Four approaches to automatically extract helper threads: a) compiler-based extraction, b)

linker-based extraction, c) dynamic optimizer-based extraction, and d) hardware-based extraction. Tech-

niques differ in when and how the code extraction is performed.

grows, we expect such trend toward multithreading processors to continue and there will be spare

hardware contexts available for purposes other than performing useful computations, e.g., helper

threading. We believe pre-execution can play a crucial role in exploiting multithreading processors

and thorough investigation of pre-execution is inevitable.

The most important issues in pre-execution is the construction of effective helper threads.

Manual construction of helper threads is error-prone and cumbersome for a programmer. Hence

for pre-execution techniques to be widely used for a variety of real-world workloads, this job of

constructing helper threads must be fully automated. There are various approaches to generate

helper threads automatically that can be categorized based on how and when in the program’s

lifetime helper threads are constructed.

Figure 1.1 shows four possible approaches to extract helper threads. Figure 1.1a depicts

compiler-based extraction where a source-to-source compiler analyzes a program code and generates

helper threads at the program source level [36]. Figure 1.1b illustrates linker-based extraction,

which generates helper threads using binary analysis [41, 64]. The extracted helper thread code

is in binary format and is attached to the original program binary. Figure 1.1c describes dynamic

optimizer-based extraction1, which analyzes and extracts binary-level code similar to linker-based
1To our knowledge, dynamic optimizer-based extraction has not been investigated. However, we believe it to be

a viable approach and include it here for completeness.
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extraction, but does so at runtime using dynamic optimization techniques. Finally, Figure 1.1d

shows hardware-based extraction [6, 19, 48, 73]. In this approach, helper threads are extracted from

instruction traces at runtime by analyzing retired instructions using a special hardware structure.

Extracted helper threads are cached so that they can be initiated when the corresponding code

region is encountered in the future. By its very nature, the hardware approach is automated.

Each approach in Figure 1.1 exhibits very different characteristics due to the fact that

code extraction is performed using different analysis techniques in different phases of a program’s

lifetime. This leads to several tradeoffs as described below:

Information for code extraction. Dynamic optimizer- and hardware-based extraction makes

use of runtime information to construct helper threads. However, the runtime overhead asso-

ciated with dynamic optimization prevents detailed analysis, and the scope of trace analysis

in hardware is limited to the size of the post-retirement queue that analyzes dependences be-

tween instructions. On the other hand, such runtime information is not available for compiler-

and linker-based approaches. Thus they need to rely on other sources, e.g., offline profiles or

static algorithms, to acquire necessary information for code extraction. However, compiler-

and linker-based approaches utilize high-level program information like the program or data

structure, and such high-level information is more abundant in the earlier phases.

Platform independence of extracted code. As the helper thread is extracted later in time,

it becomes more dependent on the hardware platform. Since hardware-based extraction re-

quires a special hardware structure to analyze instruction traces, it is strictly tied to the

machine implementation. Whenever a new processor design is introduced, the trace ana-

lyzer must be redesigned accordingly. Linker-based extraction is less dependent on processor

implementation than hardware-based extraction, but it still depends on the Instruction Set

Architecture (ISA) of the target processor. For processors with different ISAs, one should

have different binary analyzers to extract helper threads. Dynamic optimizer-based extrac-

tion is in the middle of hardware- and linker-based approaches; it sometimes requires special

hardware that is tied with processor implementation and depends on the ISA of the proces-
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sor. However, compiler-based extraction is completely independent of target platforms since

it generates source code that can be compiled for any machine architecture. Consequently,

this approach generates portable code.

Transparency to the user. As the extraction occurs later in time, it becomes more trans-

parent to the user. In hardware-based extraction, the trace analyzer performs analysis and

constructs helper threads at runtime, and all the necessary hardware is implemented within

the processor. Therefore, this approach is completely transparent to the user. Dynamic

optimizer-based extraction has similar characteristics. However, the other two approaches

are less transparent since they require additional compilation steps such as code analysis and

offline profiling. Between the two approaches, compiler-based extraction is less transparent

since it requires the program source code, which is sometimes unavailable as is the case for

legacy codes.

Hardware complexity. Compiler- and linker-based extraction does not affect hardware com-

plexity of a processor since helper threads are extracted by software rather than hardware.

Although the processor needs to support some features to handle multithreading such as

suspending and forking threads, these are often provided by most multithreading processors.

On the other hand, hardware-based extraction, of course, increases the hardware complexity

due to the trace analyzer and cache structure for storing the extracted helper threads. More-

over, because of the newly introduced special hardware structures, the testing and validation

cost increases in the hardware-based approach. Finally, hardware complexity of dynamic

optimizer-based extraction depends on how much special hardware it requires.

All four approaches are worth pursuing since each approach has its own advantages as

demonstrated above. In this thesis, however, we focus on compiler-based extraction due to the

following reasons. First of all, compiler-based approach requires little modification to existing

multithreading processors. Therefore, once a compiler for pre-execution is available, we can imme-

diately apply and evaluate the generated helper threads. In addition, compiler-based extraction is
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platform-independent and the constructed helper threads, in the form of program source code, are

portable. Moreover, we can utilize high-level program information to help construction of effective

helper threads, and the capability of inter-procedure analysis of a compiler is another advantage

of compiler-based approach. Finally, while other approaches, except for dynamic optimizer-based

extraction, are evaluated previously in many research proposals, compiler-based construction of

helper threads is relatively new and has not been fully investigated. Therefore, there is much room

to explore.

1.2 Contributions

This dissertation has several contributions as listed below.

1. Development of Compiler Algorithms for Pre-Execution. We develop several com-

piler algorithms to construct effective helper threads that perform data prefetching. At the

heart of our compiler algorithms are three critical optimization techniques to expedite helper

threads so that they can trigger cache misses in front of the main computation. First, pro-

gram slicing eliminates noncritical code that is unnecessary for computing delinquent load

addresses. Second, prefetch conversion removes blocking in helper threads by converting

delinquent loads into nonblocking prefetch instructions. Third, speculative loop paralleliza-

tion helps to overlap multiple memory accesses by exploiting thread-level parallelism within

the target code region. In addition to these algorithms to speedup helper threads, we also

propose algorithms to select optimal pre-execution regions that encompass the identified

delinquent loads and to decide a proper thread initiation scheme for each pre-execution re-

gion. Finally, to evaluate compiler-based pre-execution in a real physical system, where the

thread synchronization cost is significantly high, we propose three helper threading scenarios

to invoke and synchronize helper threads.

2. Implementation of Pre-Execution Compiler Frameworks using SUIF. We imple-

ment the compiler algorithms and prototype five different compiler frameworks using the

Stanford University Intermediate Format (SUIF) compiler infrastructure. We introduce one
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very aggressive-complier implementation that makes use of powerful program slicer and offline

profiles along with the SUIF. We also propose four reduced compilers, in which the design

of compiler framework is simplified by substituting the external tools for static compiler al-

gorithms. To the best of our knowledge, our compiler frameworks are the first source-level

compiler to generate helper threads fully automatically without any manual intervention.

3. Development of Helper Thread Optimization Module in the Intel Compiler. We

work with a group of people at Intel [35] to develop and improve the compiler optimization

module to generate helper threads, which is built in the Intel Research Compiler Infrastruc-

ture (Intel compiler for short). The analyses and optimizations to enable pre-execution are

performed on the Intel compiler’s intermediate representation, IL0. Thus the compiler mod-

ule is not dependent on a specific programming language, but applicable for various languages

including C, C++, and FORTRAN. While the compiler module is also able to generate bi-

naries targeting the Intel’s Itanium Processor Family, in this thesis, we only generate helper

threads for the IA-32 architecture as the target platform.

4. Evaluation of Compiler-Based Pre-Execution in a Research SMT Simulator.

We perform various experiments to evaluate our SUIF-based compiler frameworks using

a SimpleScalar-based SMT processor simulator that enables detailed timing simulations. In

addition to measuring performance impact of pre-execution, we also investigate several as-

pects of the compiler algorithms, cache-miss coverage of the helper threads, contribution of

each optimization algorithm to the program performance, comparison between the thread

initiation schemes, and tradeoffs between the aggressive and reduced compilers. Our ex-

perimental results show the compiler-generated helper threads effectively eliminate cache

misses in the main thread and significantly improve the performance of selected benchmarks

from the SPEC CPU2000 and Olden Benchmark Suites. Moreover, we also show that our

compilers make the right decision on selecting pre-execution regions and thread initiation

schemes.
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5. Evaluation of Compiler-Based Pre-Execution in a Real Physical System. We

conduct physical experimentation to evaluate prefetching helper threads on real silicon, i.e.,

the Intel Pentium 4 processor with Hyper-Threading Technology. We provide a complete

procedure to perform physical experimentation with helper threads from collecting profile

information, to generating helper threads using an optimization module in the Intel compiler,

invoking and synchronizing helper threads based on static and dynamic thread initiation

schemes, monitoring dynamic behavior of a program at runtime at a fine granularity, and

dynamically throttling helper threads to reduce ineffectiveness of pre-execution. We believe

our experimental methodology is a good reference for other kinds of physical-system-based

evaluation. Our experimental results show that prefetching helper threads indeed provide

wall-clock speedup for various benchmarks on the existing hyper-threaded processor.

6. Identification of Impediments to Speedup on Real Silicon. From our physical ex-

perimentation, we uncover impediments to speedup when applying helper threads in a real

physical system. In hyper-threaded processors, hardware resource contention between the

two logical processors possibly degrades the performance of the main thread when the helper

thread does not help. Moreover, high thread-synchronization cost in a physical system limits

frequent thread synchronization and communication at a fine granularity. To overcome these

constraints in a physical system, we evaluate two different thread-synchronization mecha-

nisms and show that having light-weight thread-synchronization mechanisms is crucial to

achieve good performance gain with helper threads. In addition, certain runtime system to

dynamically throttle helper threads by monitoring the program behavior can greatly help to

get even more speedup with helper threads on real silicon.

7. Application of Compiler-Based Pre-Execution in a Multiprogramming Environ-

ment. We also apply prefetching helper threads in a multiprogramming environment. When

performing pre-execution in such computing situation, multiple main threads compete with

each other to acquire enough hardware contexts to launch helper threads. Since the number

of hardware contexts in a multithreading processor is limited, we must intelligently allocate
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this critical hardware resources to different main threads in order to maximize the overall

processor throughput. We introduce mechanisms to arbitrate the main threads for hardware

contexts and evaluate helper threads for selected multiprogrammed workloads on the SMT

processor simulator. We observe the effectiveness of helper threads depends on the hardware

context requirement of each individual workload to perform pre-execution. In summary, our

experimental results show prefetching helper threads help to boost processor throughput in

a multiprogramming environment by reducing latencies in individual application threads.

1.3 Roadmap

The rest of the thesis is organized as follows. In Chapter 2, we provide necessary background about

helper threading, multithreading execution paradigms, and previous proposals on data prefetching

to better demonstrate how we get to focus on compiler-based pre-execution. Chapter 3 presents

an overview of critical issues on constructing effective prefetching helper threads using a com-

piler. We discuss those issues in an implementation-independent way so that anyone can build

a compiler framework to generate helper threads without being limited by the programming lan-

guage or the target platform. Then the next four chapters, Chapters 4 through 7, introduce our

compiler frameworks to construct prefetching helper threads and present the evaluation results.

Chapter 4 demonstrates compiler algorithms for our SUIF-based compiler frameworks. We present

various ways to design compilers for pre-execution and discuss tradeoffs between different imple-

mentations. In Chapter 5, we thoroughly investigate our SUIF-based compiler frameworks in a

simulation-based evaluation environment. Chapter 6 examines many aspects of the compiler op-

timization module for pre-execution in the Intel compiler, and Chapter 7 reports the results of

physical experimentation with prefetching helper threads in the Intel’s hyper-threaded processor.

We also discuss impediments to speedup with helper threads on real silicon and solutions to address

those constraints. Chapter 8 investigates the performance of pre-execution in a multiprogramming

environment and describes mechanisms to arbitrate multiple main threads for limited hardware

contexts. Chapter 9 discusses related works, and Chapter 10 concludes the thesis and discusses
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possible future directions of the research.
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Chapter 2

Background

This chapter provides the necessary background to better understand this thesis. We discuss three

issues, i.e., helper threading, multithreading, and data prefetching, and examine how pre-execution

has evolved from these already-established research areas. First, we present helper threading, also

known as subordinate threading, which works as the vehicle to realize pre-execution. While helper

threading can be used for other purposes such as exception handling or fault tolerance, in this thesis,

we focus on its use for latency tolerance, thereby improving a program performance indirectly.

Then we introduce pre-execution as one particular example of multithreading execution paradigms.

Especially, we view those multithreading paradigms, e.g., multiprogramming, parallel processing,

and pre-execution, as ways to exploit thread-level parallelism that resides in workloads. Finally,

we focus on pre-execution’s role as an effective data prefetching technique, where delinquent load

addresses are computed, not predicted. Furthermore, pre-execution is a thread-based technique,

in which the prefetching threads are decoupled from the main computation. Hence pre-execution

has more freedom to control prefetching compared to conventional software prefetching techniques,

where the instruction sequence for prefetching is integrated into the original program code and its

progress is strictly tied with that of the main thread.

2.1 Helper Threading

With the advent of single-chip multithreading processors, in which multiple hardware contexts are

closely tied while enjoying small communication delays, helper threading has been recognized as a

very promising way to make use of the spare hardware contexts available in those multithreading

processors such as the SMT or CMP [22, 14]. In helper threading, one or more helper threads run

alongside the main thread to help its execution. Helper threading has two unique characteristics

that open up many opportunities. First, in most helper threading techniques, the computed results

by the helper threads are never integrated into the shared machine state. Thus helper threads

do not contribute to boost the processor throughput, but help the execution of the main thread
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indirectly. Since helper threads never disrupt the main computation, one can apply very aggressive

optimizations when constructing helper threads as long as such optimization helps to improve the

performance of a program. Second, helper threads are asymmetric in that the execution of helper

threads are decoupled from that of the main thread, and their code does not have to be extracted

from the original program code. For instance, as to be more elaborated later in this section,

one can run exception handler code on helper threads or even implement complicated hardware

structures in software. Such unique characteristics of helper threading can greatly help the compiler

optimization research area to develop various aggressive optimization algorithms without the need

for ensuring the program correctness. Moreover, the asymmetry of helper threads also encourages

development of various helping actions to help the program execution. In this thesis, we focus

on pre-execution, which is the most popular helper threading technique to tolerate latencies in a

program’s execution. Since helper threading is a relatively new research area, we believe there

exist many interesting aspects that have not yet fully investigated. Below, we present some of

previously proposed uses of helper threading to assist the execution of a program.

Latency Tolerance. Helper threads can improve the performance of the main computation

by tolerating latencies on its behalf. In this case, helper threads are extracted from the original

program code and trigger long-latency delinquent events in front of the main thread, thereby hiding

the latencies behind useful computations. Some examples include data prefetching [19, 36, 37, 35,

41, 42, 63, 81, 84], instruction prefetching [1], branch outcome precomputation [84], and virtual

function call target prediction [61]. This type of helper thread is called run-ahead thread [7, 24, 73],

and it is crucial to expedite helper threads so that they can trigger delinquent events early enough.

In Chapters 4 and 6, we introduce various optimization algorithms to speedup helper threads.

Exception Handling. When an exception occurs, one can run the exception handler code on

a helper thread and let the main thread keep making progress by executing instructions that are

independent of the faulting instruction [86]. In this case, helper threading effectively decouples

otherwise serialized code execution and overlaps the execution of the exception handler code and
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useful computation. The performance improvement depends on the frequency of exceptions that

occur during the program execution and the amount of independent instructions, whose execution

can be overlapped with the execution of the exception handler code.

Fault Tolerance. By running the same program redundantly on a helper thread, one can detect

and recover faults that occur during a program execution. Since helper thread’s execution is totally

redundant, this type of helper threading neither contributes to processor throughput nor improves

program performance. However, it tolerates faults to preserve the correctness of a program [50, 78].

Implementation of Structures and Algorithms in Software. Using helper threading, one

can implement complicated hardware structures or algorithms in software, e.g., a value predic-

tor [85] or branch prediction algorithm [14]. This can ease the hardware complexity of a processor

and reduce the testing and validation cost associated with introducing new hardware into the

processor design. Note, the code running on helper threads has nothing to do with the original

program, but it still helps the execution of the main thread.

2.2 Multithreading

Multithreading has been studied extensively in both academia and industry [3, 39, 65]. Tradi-

tionally, people have used multithreading to boost the processor throughput or to improve single

program performance. In this thesis, we view multithreading as a way to uncover and exploit

thread-level parallelism residing in workloads, and pre-execution effectively exploits a new form

of parallelism via construction of much aggressive and speculative helper threads. Below, we ex-

amine several well-known multithreading execution paradigms and discuss how those paradigms

differ from each other in exploiting thread-level parallelism in workloads.

2.2.1 Multiprogramming

Multiprogramming has been a popular way to utilize multiprocessor systems and increase the

overall processor throughput by running multiple independent application threads simultaneously.
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Since any communication or synchronization between threads is rarely required in a multiprogram-

ming environment, one can easily extract thread-level parallelism as long as there are enough jobs

to process. Hence multiprogramming exploits totally unrelated parallelism from different applica-

tions, and the amount of thread-level parallelism is the same as the number of application threads

that run together. However, it is sometimes not possible to find multiple independent applica-

tions to fill up the available hardware contexts in the system. Moreover, in many multiprocessor

systems, critical hardware resources such as the memory bus are often shared and even saturated

with large number of actively running threads. Thus feeding more threads into the system may not

help to increase the processor throughput. On the other hand, while boosting the overall processor

throughput is very important, improving the single program performance is often the most crucial

issue under certain circumstances. However, multiprogramming does not help to improve single

program performance; even worse, it often sacrifices the performance of each individual program

for the overall throughput. In the next two subsections, we discuss ways to speedup a single

program via multithreading.

2.2.2 Parallel Processing

One way to improve the performance of a single program is to divide the program into multiple

subprograms and run them in parallel on a multiprocessor system. This is called parallel process-

ing. Below, we discuss two different parallel processing paradigms; one is conventional parallel

processing and the other is recent thread-level data speculation technique.

Conventional parallel processing in multiprocessor systems. Parallel processing has been

extensively used in conventional multiprocessor systems and particularly successful for scientific

workloads. When partitioned into multiple subprograms, each thread usually runs almost inde-

pendently, thereby exploiting thread-level parallelism in a single program. In parallel processing,

all threads are completely nonspeculative and perform useful computations that contribute to the

processor throughput. Therefore, a compiler or programmer must guarantee that no dependence

violations occur as a consequence of parallelization, and synchronization among different threads
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should be properly handled. While conventional parallel processing has been very successful in

extracting thread-level parallelism from scientific workloads, it is often not effective for nonscien-

tific codes that account for a large portion of modern workloads. This leads to the invention of

thread-level speculation technique, which is discussed below.

Thread-level speculation on chip multiprocessors. With the recent advent of the CMP

that supports much finer-grain thread synchronization than conventional multiprocessor systems,

a new form of parallel processing, called Thread-Level Speculation (TLS), has been introduced

and studied widely in the research community. In TLS, a single program is divided into multiple

threads speculatively, assuming no memory dependence between threads. By running those multi-

ple computation threads in parallel, TLS exploits thread-level parallelism in the program. In order

to guarantee the correct program execution, the computed results by each thread are committed

sequentially following the original program order. In addition, the TLS technique requires special

hardware support to detect and recover from any dependence violation between memory opera-

tions, and adopts the versioning cache to hold intermediate results until a thread commits. As

long as there is no true dependence between a store operation and later load instructions, those

partitioned threads can run simultaneously and exploit thread-level parallelism. Therefore, the

amount of parallelism in TLS depends on how frequently memory dependence violations occur,

and it also varies based on how the target program is partitioned and the granularity of each

thread. Hence it is the compiler’s or programmer’s responsibility to find the appropriate code

regions to partition such that optimal performance can be achieved. However, while TLS tries to

improve the performance of nonscientific workloads as well as scientific workloads via speculative

parallelization, complicated dependence structures in nonscientific workloads often limit successful

exploitation of thread-level parallelism.

2.2.3 Pre-Execution

Pre-execution has received much attention from the research community as a novel latency-

tolerance technique. In pre-execution, one or more helper threads run in front of the main com-
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putation and trigger long-latency delinquent events that significantly degrade the performance of

a program. In particular, we view pre-execution as a new source of extracting abundant amounts

of thread-level parallelism from a program. This is because the helper thread code contains much

less dependences than parallel processing or TLS for the following reasons. In many pre-execution

techniques, helper threads are constructed as a separate instruction sequence and they never affect

the correctness of the main computation since all the stores to global variables and heap objects

are removed to eliminate any side effects from helper threads. In turn, this effectively breaks all

dependences through memory. Since helper threads have separate code and no side effects, one

has significant freedom to perform aggressive optimizations on the helper thread code without

disrupting the main computation, which would be totally unacceptable in conventional optimizing

compilers. One important optimization technique in pre-execution is program slicing, which elim-

inates noncritical code that is unnecessary to compute delinquent events. After program slicing,

many of dependences through noncritical computations are removed from the helper threads, and

thus helper threads can trigger those targeted delinquent events accurately even though the tar-

get code region is speculatively parallelized. In this sense, pre-execution can be viewed as a new

form of asymmetric parallel processing technique that overlaps critical events executed in helper

threads and noncritical computations performed by the main thread. We observe those kernels

that compute delinquent events are easily and correctly parallelizable after program slicing and

store removal. Thus compared to TLS that carries all the dependences in a program, pre-execution

is a much more powerful technique in exploiting thread-level parallelism.

2.3 Data Prefetching

In Section 2.1, we introduce pre-execution as a general latency-tolerance technique to eliminate

stalls in a program execution. In this section, we examine the use of pre-execution for data prefetch-

ing and show how exploitation of thread-level parallelism, especially memory-level parallelism, via

pre-execution can result in higher program performance. We compare pre-execution with other

previously proposed data prefetching techniques and discuss the interesting tradeoffs. In this the-
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sis, we choose the data cache miss as the target delinquent event to be pre-executed since tolerating

memory latency is very important for several reasons. Wulf and McKee [83] report the clock fre-

quency of a processor increases by approximately 60% every year whereas the main memory access

time improves only about 7% for the same period. Therefore, the speed-gap between a processor

and memory subsystem is increasing exponentially, and the memory latency will reach thousands

of cycles in the near future. This phenomenon is also known as the Memory-wall Problem [83].

Since the memory stall time becomes a dominant factor that limits processor performance in

many workloads, there have been plethora of proposals to overcome this challenge by having cache

structures in the memory hierarchy, executing instructions out-of-order, or prefetching data cache

blocks. Because we believe both cache structures that hold frequently accessed data blocks and

out-of-order execution are straightforward and have been extensively studied already, we rather

focus on data prefetching and discuss the effectiveness of pre-execution as a novel thread-based

prefetching technique.

2.3.1 Prediction-Based Prefetching

One way to issue prefetches for future memory references is to watch the memory address stream

and detect repetitive patterns. Based on the identified patterns, one can predict the next memory

reference address and issue a prefetch accordingly. This type of prefetching is called prediction-based

prefetching. There have been many proposals that belong to this category. One example is the

stride prefetcher [16] where a special hardware structure monitors the address stream and captures

a stride between two memory references. A slightly advanced technique is to use a hardware

Markov table to hold possible future memory references or repetitive address sequences; this is also

known as Markov prefetcher [32]. Markov prefetcher does not necessarily require stride behavior

in memory access pattern, but it makes use of the correlation between load addresses. These

prediction-based hardware prefetching techniques are effective for scientific workloads that exhibit

regular memory access patterns. However, for those memory references without any repetitive

pattern, usually found in nonscientific workloads, prediction-based prefetching techniques cannot
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predict future memory references and thus they are useless.

2.3.2 Execution-Based Prefetching

To prefetch for memory references with both irregular and regular memory access patterns, one

of the most effective ways is to actually execute an instruction sequence, which generates the

cache-missing load addresses, earlier than the main computation. This type of prefetching is called

execution-based prefetching. An execution-based prefetching technique relies on program semantics

and extracts kernels that compute load addresses from the original program code. Execution-based

prefetching has a wide spectrum of examples from conventional software prefetching, to hardware-

based techniques, and recent thread-based techniques, as described below.

Software Prefetching. Software prefetching techniques exploit a loop structure’s iterative na-

ture. In other words, the prefetch instructions are inserted into the loop body, but they target load

instances in the future loop iterations [49]. Software prefetching is the most primitive form of pre-

execution, where only a handful of instructions are executed to compute future memory references.

However, since the prefetch instructions are integrated into the main program code, there are some

limitations. One is the overhead issue; the newly inserted code may delay the execution of the

main thread, which is a problem if the targeted loop does not contain much work. Moreover, the

speed of prefetching is strictly tied with the progress of the main thread, and thus the prefetches

may not be timely depending on the dynamic cache behavior. In addition, software prefetching

does not execute control flow and is often neither aggressive nor speculative. In summary, tight

coupling between the main program and prefetching makes software prefetching ineffective to han-

dle pointer-chasing traversals, and the poor execution capability in software prefetching limits its

use for complicated address computation patterns, which are often found in integer applications.

Hardware-based Prefetching. Execution-based hardware prefetching techniques [38, 60] ex-

tract the traversal information from the program code and implement a prefetch engine, which

speculatively traverses the internal representation of the target program structure and issues
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prefetches earlier than the main computation. We can view such prefetch engine as a special-

purpose hardware context, which performs a small set of operations and issues prefetch requests

for the delinquent loads. Since a prefetch engine supports only a few types of primitive operations

such as add or shift, it is also ineffective for memory references that involve control flow and

complex computations. Moreover, introducing a new special hardware for prefetching requires

significant efforts to design, test, and validate such hardware structures, and thus hardware-based

prefetching is often impractical from the processor designer’s perspective unless it provides reason-

able performance gain across a variety of workloads in general.

Thread-based Prefetching. Thread-based prefetching [6, 20, 19, 36, 37, 35, 42, 63, 84] is a

greatly advanced and generalized form of hardware-based prefetching in that it makes use of the

general-purpose hardware contexts that are available in multithreading processors, instead of in-

troducing yet another special hardware structures dedicated to prefetching only. With the full

functionality of a processor, a thread-based prefetching technique can perform any computations

including both data and control flow in order to generate memory addresses for delinquent loads.

Another powerful advantage of thread-based techniques is the progress of helper threads is not lim-

ited by that of the main thread due to decoupling of the threads. Depending on how helper threads

are constructed, we can roughly group thread-based prefetching techniques into compiler-based,

linker-based, dynamic optimizer-based, and hardware-based approaches as shown in Figure 1.1.

20



Chapter 3

Overview of Compiler Algorithms for Pre-Execution

We group some critical issues, which should be considered to construct prefetching helper threads

using a compiler, into four categories: identifying targets, improving effectiveness of pre-execution,

minimizing ineffectiveness of pre-execution, and preserving program correctness. In this chapter,

we provide a high-level overview of the compiler algorithms and necessary architectural support

to address those issues in an implementation-independent way. Later in this thesis, however, we

show how those issues are addressed in the two different compiler frameworks and provide the

implementation details; Chapter 4 describes the compiler algorithms in the SUIF-based compiler

frameworks, and Chapter 6 discusses the pre-execution optimization module in the Intel compiler.

3.1 Identifying Targets

The first step in constructing helper threads is to identify both the target delinquent loads and

surrounding code regions, for which helper threads will be constructed. In pre-execution, choosing

the right set of targets has a huge impact on the effectiveness of the technique. This section

examines several possible options to identify targets to be pre-executed and discusses the tradeoffs.

3.1.1 Identification of Delinquent Loads

What to identify? Choosing the right target is very important in pre-execution to maximize the

performance improvement with the technique. As Section 3.3 will show, pre-execution consumes

processor resources, thus incurring some runtime overhead. In other words, helper threads occupy

hardware contexts, cache ports, memory bus, execution units, and other shared or partitioned

hardware resources in the SMT processor that might have been better used by computation threads.

To minimize the detrimental effect of such resource contention problem, we must target only those

delinquent loads that will provide a performance improvement when pre-executed.

In identifying delinquent loads, interesting tradeoffs exist between the cache-miss coverage

and pre-execution effectiveness. As more loads are identified as delinquent, the cache-miss coverage
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of pre-execution increases and the helper threads possibly eliminate more memory stalls. However,

to accommodate a larger number of delinquent loads, more and larger code regions are identified as

the target pre-execution regions. In turn, this results in more frequent invocations of helper threads,

and each helper thread will execute more instructions to compute larger set of delinquent loads,

potentially incurring more runtime overhead. Furthermore, as to be more elaborated later, covering

larger code regions in helper threads reduces the effectiveness of other optimization techniques due

to the remaining dependences in the code. Therefore, it is crucial to have certain algorithms to

carefully identify delinquent loads, thereby maximizing pre-execution effectiveness.

How to identify? We introduce three methods to identify delinquent loads: two using profile

information and one relying on static compiler analysis. In the profile-based methods, we find

two pieces of information play a key role; the cache-miss profiles indicate which static loads in a

program incur most of the cache misses, and the associated cycle counts help to estimate whether

those cache misses are critical to the program performance and thus worth targeting. Below, we

present the three ways to identify the three ways to identify the delinquent loads in a program and

discuss the pros and cons of each method.

1. Offline profile-based identification. In offline profile-based identification, one collects

memory and cycle profiles using a cache simulator or specialized tools such as the Intel

VTune r© Performance Analyzer [79]. Offline profiling is widely used in the research commu-

nity to examine program’s behavior. In this method, profile information is acquired over the

entire or part of the program execution, and it does not introduce any runtime overhead to

the actual program run since the profiling is performed offline. However, this method requires

profiling tools and a separate profile acquisition phase during compilation. Another draw-

back is it may not accurately reflect dynamic cache behavior if the actual program inputs or

target platforms differ from those used to acquire the profiles.

2. Online profile-based identification. Cache-miss or cycle information can be collected

during the actual program run. Collins et. al. adopt this method to identify delinquent
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loads dynamically [19]. In online profile-based identification, one can make use of dynamic

information of a program and capture the dynamic program behavior at runtime. Moreover,

neither additional offline profiling nor static compiler analysis phase is required in compilation

steps. However, this approach introduces some overhead to the actual program run due to

the online profiling and it sometimes requires special hardware support to collect and store

profile information. In addition, due to the runtime overhead and limited hardware space to

hold profiles, the information that the online profiling collects may be not as much as that

of the offline profiling.

3. Static identification using compiler analysis. Ozawa et. al. introduce very simple

heuristics to identify delinquent loads; index-array reference or pointer dereference is likely

to incur cache misses [53]. Panait et. al. demonstrate more advanced algorithms and show

it is possible to cover a large portion of cache misses by identifying only a small number of

static loads as delinquent [57]. One advantage of such a method based on compiler analysis

is that it requires neither additional profiling phase nor any tools to collect profiles. The

static algorithms can be easily integrated into compilers as an additional optimization phase.

Moreover, like offline profiling, this method has zero impact on the execution time of the

actual program run. However, static algorithms have some limitations to identify dynamic

events such as the cache miss or clock-cycle, and thus the degree of selectivity is often

poor. For instance, in [57], their static algorithms successfully capture load instructions that

account for most of the cache misses in a program. However, significant amounts of loads

are identified as delinquent by the algorithms, but they rarely incur cache misses, producing

many falsely identified delinquent loads. Hence when the pre-execution overhead is critical,

this method may be unacceptable.

In this thesis, we evaluate all three methods. First, our SUIF-based aggressive compiler

uses offline cache-miss profiles acquired from a cache simulator as demonstrated in Section 4.1.1,

while our SUIF-based reduced compiler relies on simple heuristics to identify delinquent loads by

static compiler analysis, shown in Section 4.2.4. Section 5.3.3 compares the performance difference
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between these two methods using a simulation-based evaluation environment. On the other hand,

the Intel compiler acquires offline memory profile information using the VTune, which is described

in Section 6.2.1. Finally, Section 6.3 introduces user-level library routines that support light-weight

online profiling.

3.1.2 Identification of Target Code Regions

Candidates for target regions. Once delinquent loads are identified, we need to pick code

regions that surround those selected delinquent loads to construct helper threads. We identify a

few conditions to determine good candidates for a pre-execution region; 1) reasonable amount of

static code within the code region is sliced out so that helper threads can acquire enough speed

advantage over the main thread, 2) the code region is easily parallelizable and there rarely exists

any dependence chains within the parallelized codes, and 3) once the main thread enters the code

region, it runs for a long time until exiting the region in order to amortize the thread spawning and

synchronization overhead. Program structures that satisfy these conditions include loops, recursive

call structures, or program continuation such as function calls, after which the program code is

guaranteed to be executed. We are especially interested in loops for the following reasons. First,

delinquent loads with the greatest impact on the program performance execute a large number

of times over the lifetime of the program execution; except for hard disk accesses, we cannot

think of any event that has huge impact on performance, but occurs only infrequently. Hence

the most important delinquent loads are likely to be inside loops. Moreover, by nature, loops are

easily parallelized and provide a good source of thread-level parallelism; one can divide loops into

multiple threads. Therefore, we choose loops as the target pre-execution regions in this thesis.

Loop selection. Even for a single delinquent load, there are usually multiple loop-nests that

encompass the load, e.g., inner-most loop-nest, second-level outer loop-nest, third-level outer loop-

nest, and so on. To avoid redundancy in prefetching and reduce the pre-execution overhead at

runtime, we allow only one code region to be selected for each delinquent load. In order to choose

a single pre-execution region among multiple loop-nests, we need a decision algorithm so that
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pre-execution can provide an optimal performance gain. There exist tradeoffs between selecting

inner-loops and outer-loops. Usually, inner-loops contain fewer dependence chains across loop

iterations and thus when parallelized, the helper threads can still generate accurate addresses for

the delinquent loads. However, if the selected inner-loop iterates just a small number of times, a

portion of the prefetching gain can be lost due to the spawning cost of helper threads. Furthermore,

prefetching may be ineffective since the main thread exits the loop even before the helper threads

get ahead. Therefore, the loop-trip count information must be taken into account to decide which

loop-nest to choose for the pre-execution region. In Section 4.1.1 and 6.2.1, we demonstrate how

both our SUIF-based compiler and the Intel compiler choose the right loops to achieve the best

performance gain with pre-execution.

3.1.3 Code Cloning

Once the target pre-execution regions are identified, we construct helper threads for each selected

code region. We introduce two methods to generate helper threads; one is sharing the same code

with the main thread, and the other is creating a separate code region for the helper thread. In

Luk’s work [42], the helper threads execute the same code as the one that the main thread exe-

cutes. This kind of code sharing helps to reduce the burden on the instruction cache. However, it

also prevents performing aggressive optimization and code-transformation techniques on the helper

thread code in order to preserve the correctness of the program execution. Because of the limited

opportunities for optimization in code sharing, most pre-execution techniques adopt code cloning

and create separate code for the helper threads. In code cloning, instructions or part of the pro-

gram code necessary to compute the delinquent load addresses are extracted from the main thread

code and stored as a separate code. This method has a few advantages over the code-sharing ap-

proach. First, various optimizations can be performed on the cloned code to generate speculative

and aggressive helper threads. Usually, optimization algorithms introduced in this thesis are, by

all means, neither valid nor safe from the conventional optimizing compiler’s perspective. Nev-

ertheless, we observe our aggressive compiler optimizations rarely break correctness of the helper
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thread code, and the constructed helper threads still generate accurate addresses for most of the

delinquent loads. This is mainly because those optimization techniques are only performed on

the kernels that compute the delinquent loads, not for the whole program code within the pre-

execution region. Finally, although code cloning increases the instruction working set size, we find

no evidence that instruction cache miss is a performance bottleneck for the benchmarks used in

our experiments.

3.2 Improving Effectiveness of Pre-Execution

In pre-execution, helper threads should be able to get ahead of the main thread so that they

issue prefetches early enough and the main thread enjoys cache hits when it actually executes

the targeted loads. In this section, we discuss four important issues to speedup the execution

of the helper threads and improve the effectiveness of pre-execution. First, when constructing

helper threads for a target code region, we extract only those instructions that are necessary

to compute the delinquent loads and remove everything else. This technique is called program

slicing and it helps the helper threads get ahead by executing fewer instructions than the main

thread. Another way to expedite helper threads is to eliminate blocking by converting delinquent

loads to the nonblocking prefetch instructions. This is called prefetch conversion. By performing

prefetch conversion, we prevent helper threads from being stalled on the delinquent loads, thereby

making forward progress. On the other hand, we also parallelize the target code region and assign

each loop iteration to different helper threads, which is called loop parallelization. Although each

individual helper thread does not run faster by parallelizing loops, multiple helper threads as a

group can. These three techniques enable pre-execution to uncover a greater degree of memory-

level parallelism and allow the helper threads to overlap more memory accesses simultaneously. In

summary, program slicing cuts dependence chains through the value computations by eliminating

unnecessary instructions, prefetch conversion removes blocking loads so that each individual helper

thread can issue prefetches even faster, and loop parallelization helps multiple helper threads

as a group to issue more prefetches simultaneously. In addition to these three techniques to
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speedup helper threads, there is one more important issue to improve pre-execution effectiveness:

synchronization. Synchronization prevents run-away helper threads by forcing the main thread

and the helper threads to keep the right distance so that useful cache blocks are not evicted out

of the cache. This section discusses each of these issues to improve the pre-execution effectiveness.

3.2.1 Program Slicing

For pre-execution to be effective, helper threads should issue prefetches early enough so that when

the main thread executes targeted delinquent loads, the corresponding cache blocks are found

in the cache. Program slicing helps to speedup the helper threads by filtering out unnecessary

code that is not required to compute the delinquent load addresses. In addition to cutting out

unnecessary instructions, program slicing also plays another very important role to improve the

effectiveness of pre-execution; it breaks dependence chains along with the value computations that

have nothing to do with the address computation of delinquent loads.

One can perform program slicing in several ways. In a hardware approach or post-pass binary

analysis to construct helper threads, instructions producing register values that affect computation

of delinquent loads are extracted from a pre-execution region. On the other hand, in our compiler-

based approach, we examine three different methods to enable program slicing. Section 4.1.2

demonstrates how we perform program slicing in our SUIF-based aggressive compiler using a

publicly available slicing tool, called Unravel [45]. Section 4.3 introduces our SUIF-based reduced

compiler that does not use an external slicing tool, but relies on the backend compiler’s dead-code

elimination optimization. Finally, Section 6.2.2 describes program slicing in the Intel compiler as

a separate compiler optimization phase.

3.2.2 Prefetch Conversion

Prefetching helper threads, by design, incur a large number of cache misses. Unless we take

proper action to reduce blocking, the helper threads may not make sufficient forward progress,

resulting in ineffective prefetching. Thanks to program slicing’s instruction removal, a loaded

value of a certain delinquent load is not consumed by other instructions in the helper thread.
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Once we identify such loads, we convert them into the nonblocking prefetch instructions. The

biggest advantage of prefetch conversion comes from the fact that in many processor designs, the

nonblocking prefetch instructions can immediately leave the load-store queue, which is responsible

for the memory disambiguation and value forwarding from store to load instructions. Thus, with

prefetch conversion, the helper threads can keep continuing their execution without being stalled.

In our SUIF-based compiler frameworks, we examine two ways to enable prefetch conversion. As

demonstrated in Section 4.1.2, our aggressive compiler relies on the program slicing analysis to

identify the delinquent loads that can be converted into prefetches. In Section 4.2.2, we also

present a simple heuristics for prefetch conversion in our reduced compilers. Section 5.2.3 reports

the experimental results that show the impact of prefetch conversion on the program performance.

3.2.3 Loop Parallelization

Program slicing and prefetch conversion speedup individual helper threads by eliminating unnec-

essary code and blocking. On the other hand, loop parallelization helps multiple helper threads

to run faster by overlapping more memory accesses. While loop parallelization is an effective way

to extract thread-level parallelism from a program, not all loops need to be parallelized when

constructing helper threads. For instance, some loops contain totally serial dependence chains

across the loop iterations, and thus parallelizing such loops breaks the correctness of the resulting

code. For those loops with loop-carried dependences, we can only expect the speed advantage

of a single helper thread over the main thread by program slicing and prefetch conversion. On

the other hand, prefetch conversion sometimes eliminates all blocking within the target code re-

gion, converting every single delinquent load in the helper thread to a prefetch. Considering the

overhead associated with loop parallelization such as managing multiple threads and supporting

synchronization between threads, it is often more advantageous not to parallelize the target code

region in such a case. However, if blocking loads are still remaining even after prefetch conversion,

we parallelize the target code region.

In this thesis, we examine two parallelizing schemes, i.e., DoAll and DoAcross. When
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the loop induction variable is updated arithmetically, e.g., i++, we choose the DoAll scheme

where all helper threads are symmetric and execute different loop iterations in a round-robin

fashion. On the other hand, if the loop induction variable is updated by dereferencing a pointer,

e.g., ptr=ptr->next, we choose the DoAcross scheme to parallelize the target code region. In

this situation, even though the execution of each loop iteration is completely serialized along with

the pointer chain, we can still overlap the loop-body executions across different loop iterations. In

the DoAcross scheme, we construct a single helper thread, called backbone thread, to compute

the pointer chain, and also construct multiple helper threads, called rib threads, to execute the

loop body. Our DoAcross scheme is very similar to the Chaining scheme introduced by Collins

et. al. [19], where all helper threads execute the identical code, but each helper thread passes the

next pointer value to the next available helper thread. Section 4.1.2 discusses the details of our

loop parallelization technique, and Section 5.2.3 examines how the loop parallelization contributes

to the performance improvement. Finally, Section 5.2.4 compares the different thread initiation

schemes that are applied to the same target region and evaluates our algorithm to select a proper

scheme to initiation the helper threads.

The loop parallelization schemes employed in our compiler frameworks are neither valid nor

safe under all circumstances. In other words, our compilers parallelize loops speculatively. Hence it

is always possible for our loop parallelization to break the correctness of a code and generate helper

threads that issue inaccurate prefetches. However, since many dependences outside the cache-miss

kernels get removed by program slicing, we observe our loop parallelization generates the correct

helper threads most of the time, which is further discussed in Section 5.2.6. In summary, there

is great potential to uncover abundant memory-level parallelism in the cache-miss kernels, and

pre-execution is very effective in exploiting such parallelism.

3.2.4 Synchronization

Although synchronization does not expedite helper threads like the above three techniques, it is

still crucial to ensure effective pre-execution. To be effective, the helper threads must keep the right
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run-ahead distance, or prefetch distance, with respect to the main thread. If the helper threads

run too far ahead of the main thread, they bring cache blocks into the cache too early, allowing

prefetched cache blocks to be evicted before being accessed by the main thread. On the other

hand, if the helper threads run just barely ahead of the main thread, the prefetched cache blocks

may not arrive sufficiently early, causing the pipeline stall. Occasionally, the helper threads run

behind the main thread. In such situation, running helper threads is totally useless and it may

even degrade the performance of the main computation.

To keep the right prefetch distance, we synchronize the helper threads with the main thread

by tracking the relative distance between the threads. Using a thread synchronization mechanism,

we detect when the helper threads run too far ahead of the main thread and suspend them to

avoid the cache pollution. In our SUIF-based compiler frameworks, we examine two thread syn-

chronization mechanisms, i.e., hardware- and software-based mechanisms. Section 4.1.2 compares

the performance impact of these two synchronization mechanisms in a simulation-based evaluation

environment. We also evaluate two thread synchronization mechanisms in a real physical system.

Section 6.1.2 discusses using the OS API and a hardware mechanism to synchronize between the

main thread and the helper thread in the hyper-threaded processor, and Section 7.1.4 provides the

experimental results to show the impact of these synchronization mechanisms on performance.

3.3 Minimizing Ineffectiveness of Pre-Execution

When performing pre-execution on an SMT processor, the helper threads share the processor

resources with the main thread. Due to the contention in the hardware resources, the progress

of the main computation is often limited if the helper threads do not help. Moreover, the helper

threads become speculative after the aggressive compiler optimizations introduced in the previous

section, which means that prefetches issued by the helper threads can be inaccurate and may not

help to reduce the cache misses incurred in the main thread. In such a situation, performance

degradation of the main thread by pre-execution becomes even more severe. There are many cases

when it is more desirable not to run helper threads; a) helper threads generate inaccurate memory
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addresses that are not accessed by the main thread, b) helper threads issue correct prefetches but

they run behind or barely ahead of the main thread, and thus those issued prefetches are not useful,

c) helper threads are still active and issue prefetches even after the main thread has already left the

pre-execution region, and d) some critical hardware resources such as the instruction fetch unit,

functional units, and reorder buffer may not be optimally distributed to the main thread and the

helper threads, thereby reducing the performance gain from pre-execution. This section introduces

two mechanisms to minimize the ineffectiveness of pre-execution and reduce the runtime overhead

incurred by pre-execution.

Runtime performance monitoring and dynamic throttling. A program behavior changes

dynamically during execution. For instance, a load instruction, which severely suffers from cache

misses in general, may incur only a negligible amount of cache misses during certain time periods.

If helper threads are launched to pre-execute the load instruction for such time phases with few

cache misses, they just consume processor resources and possibly degrade the performance of the

main thread. To avoid such detrimental situations, we can monitor the dynamic behavior of the

helper threads at runtime to estimate the effectiveness of pre-execution. When we detect pre-

execution is not helpful for improving the main thread’s performance, we can simply terminate the

currently running helper threads or prevent the future invocations. To implement a runtime sys-

tem that monitors the program behavior and throttles the helper threads dynamically, we should

consider several issues. First, since the main purpose of having such runtime system is to reduce

the performance degradation with pre-execution, the system itself should not introduce an addi-

tional runtime overhead. To address this issue, Section 6.3 introduces a light-weight performance

monitoring tool, called EmonLite, and discusses the relevant issues regarding its implementation

and usage model. Second, we need to decide which performance events most accurately reflect

the effectiveness of pre-execution for a program and thus should be monitored; possible perfor-

mance events include clock cycle, cache miss, bus utilization, and retired instruction count, but

other events can serve the role as well. Third, when runtime profiles are given, we should be able

to decide whether currently running helper threads or future helper thread invocations must be
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avoided. Although we do not actually implement such mechanism to dynamically throttle helper

threads in this thesis, we estimate the potential performance improvement with dynamic throttling

by assuming a hypothetical perfect throttling mechanism in Section 7.1.5.

Terminating useless helper threads after exiting pre-execution region. Occasionally,

helper threads remain active and issue prefetches even after the main thread exits a targeted pre-

execution region. Possible scenarios for this include a) helper threads simply run behind the main

thread, b) some speculative optimization techniques result in producing inaccurate helper threads

that follow wrong control paths, and c) the target pre-execution region is parallelized without

disrupting correctness of helper threads, but only one helper thread executes the termination con-

dition correctly and the others are not aware of it, e.g., exiting with break statement in a loop. All

these scenarios describe totally useless pre-execution, and thus helper threads must be terminated

upon detection of such cases. Our solution is to suspend all active helper threads immediately

after the main thread leaves the target pre-execution region. To actually implement this, one can

rely on certain ISA support so that when the main thread executes a special instruction, all active

helper threads are suspended. On the other hand, the main thread may signal the OS at the

loop-exit point to terminate those useless helper threads. In our SUIF-based compiler frameworks,

we assume a kill instruction to do the job (see Section 4.1.3).

3.4 Preserving Program Correctness

Thus far, we discuss issues to improve the performance of a program using prefetching helper

threads. Another important issue is that the helper threads should never disrupt the correctness

of the main computation. To guarantee the correct execution of a program, we consider two issues;

helper threads cause no side effects on the main thread, and exceptions signaled from the helper

threads should be properly handled.
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3.4.1 Removing Side Effects

Helper threads can cause side effects on the main computation through the memory or hard disk.

We identify two sources of the side effects from the helper threads; one is the store operation to

global variables or heap objects, and the other is system calls. To eliminate the side effects, one can

use a hardware mechanism [42], where store operations in the helper threads are still allowed, but

the store values are written to a hardware scratch pad, not to main memory directly. By keeping

stores in the helper threads with such hardware support, we guarantee that the helper threads

generate accurate addresses for the memory references by preserving dataflow through memory.

Another approach to eliminate side effects is to rely on the compiler to remove all store operations

except for those to the helper thread’s stack, and system calls from the helper thread code. Such

compiler-based approach does not require any hardware support. However, in cases where values

necessary to compute the memory addresses are passed through memory, generated addresses can

be wrong, causing inaccurate prefetching.

3.4.2 Handling Exceptions

After speculative loop parallelization and store removal, the helper threads may follow a wrong

path and generate illegal memory addresses. In this case, an exception occurs and the whole

process that contains both the main thread and helper threads will be terminated. To avoid such

an undesirable situation, we handle exceptions signaled by the helper threads. There are two

possible solutions to support exception handling, one by hardware and the other by software. In a

hardware approach, when an exception is signaled in a hardware context used by a helper thread,

the faulting helper thread is terminated immediately without any OS involvement. This is a good

choice when the helper threads are invisible to the OS. On the other hand, in a software approach,

upon detecting an exception signaled by a helper thread, the control of the thread is handed over

to the OS to terminate the faulting helper thread and properly manage the hardware context.

Since this approach involves invoking an OS thread, it may be costly. However, if exceptions do

not occur frequently, the cost may be affordable.
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Chapter 4

SUIF-Based Compiler Frameworks for Pre-Execution

The previous chapter provides a high-level overview of the compiler algorithms and discusses

the relevant issues for pre-execution. In this chapter, we demonstrate how such algorithms are

actually implemented in our SUIF-based compiler frameworks to construct effective prefetching

helper threads. We also show how to address those related issues to perform pre-execution on a

time-accurate simulator, which models the research SMT processor. We prototype five compiler

frameworks: one aggressive and four reduced ones. Our aggressive compiler framework imple-

ments several powerful algorithms to optimize helper threads using an external program slicer,

i.e., Unravel, and offline profile information for cache behavior and loop-trip counts. While our

aggressive compiler framework provides a good performance gain, it requires many compilation

steps, thereby complicating the design of such a compiler. To simplify the compiler implementa-

tion, we propose four reduced compiler frameworks in which Unravel and the offline profiles are

selectively eliminated and replaced with static compiler algorithms to perform prefetch conversion

and target identification. This chapter is organized as follows. Section 4.1 introduces the compiler

algorithms for the aggressive compiler framework, and Section 4.2 shows the design of the reduced

compilers. After discussing our compiler optimization algorithms for pre-execution, Section 4.3

addresses the implementation issues and shows how our algorithms are integrated into the SUIF

compiler infrastructure to build compiler frameworks to generate helper threads. We also discuss

the necessary architectural support that our SUIF-based compiler frameworks assume from the

target SMT processor.

4.1 Compiler Algorithms for SUIF-Based Aggressive Framework

We first describe the compiler algorithms used in our SUIF-based aggressive compiler framework

(aggressive compiler for short). Following the classification in Chapter 3, we group algorithms into

four categories, i.e., algorithms to identify target delinquent loads and pre-execution regions, to

improve the effectiveness of pre-execution, to minimize the ineffectiveness of pre-execution, and to
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guarantee the correctness of the main computation.

4.1.1 Identifying Targets

To construct prefetching helper threads, we need to know which static loads in a program incur

most of the cache misses, accounting for a significant portion of the program’s execution time.

Once the delinquent loads are identified, we choose the surrounding code regions for which helper

threads are constructed.

Delinquent Load Identification

In our aggressive compiler, we rely on summary cache-miss profiles [2] to characterize the memory

behavior of a program. To perform such profiling, we use a cache simulator derived from the

SimpleScalar toolset’s sim-cache. Our cache simulator is a functional (not time-accurate) simulator

that issues one instruction at a time in the original program order, and it counts the number of

first- and second-level cache misses (L1 misses and L2 misses for short, respectively) for every

static load in a program. This cache-miss profiling step is performed as a separate program run,

and thus it does not affect the execution of the actual run for performance measurement. After

collecting cache-miss profiles, we sort all static loads in descending order by the L1 miss count.1

Starting from the most cache-missing load at the top of the list, we keep selecting loads until

the accumulated cache-miss count exceeds 90% of the total L1 misses. Once identified, however,

all delinquent loads are given the same priority and treated equally regardless of the cache-miss

count. As shown in Table 5.3 in Section 5.2.1, we find only a small number of static loads account

for a large portion of the total cache misses (a similar observation has been made by Abraham
1In this thesis, the SimpleScalar-based evaluation targets L1 misses whereas evaluation in a physical system

targets L2 misses. This is because eliminating L1 misses provides some performance improvements on our simulator

while targeting L1 misses does not make noticeable difference in the hyper-threaded processor and it sometimes

pre-executes too many loads in a program, thereby increasing the runtime overhead. In summary, whether to target

L1 misses or L2 misses depends on the underlying system and involves several factors to consider such as the latency

of the delinquent events, hardware resource management in the target platform, or runtime overhead of running

helper threads.
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et. al. [2]). The final list of the selected static loads is fed into the compiler framework as the

delinquent-load set so that helper threads can be constructed to cover all the loads in the list.

Pre-Execution Region Selection

Once delinquent loads are identified, we define a pre-execution region for each delinquent load.

A pre-execution region encompasses one or more delinquent loads and limits the scope of pre-

execution within the code region. As already mentioned in Section 3.1.2, we select loops as the

candidate for pre-execution regions; in particular, we only consider the inner-most and next-outer

loops in the global loop-nest graph of a program. In other words, if a delinquent load is located

outside two looping nests, it is simply discarded from the delinquent-load list and not covered by

pre-execution. Between choosing the inner-most loop and the next-outer loop, intricate tradeoffs

exist. On the one hand, the likelihood of loop-carried dependences increases as the helper threads

execute more distant codes. Hence selecting the next-outer loop for a pre-execution region tends to

increase the possibility to disrupt the correctness of the loop parallelization, which will be discussed

later in Section 4.1.2. On the other hand, if the helper threads are spawned targeting the inner-

most loop, the benefit from pre-execution can be reduced by the thread spawning cost and even

nullified if the loop does not contain enough work. To roughly estimate the amount of work in a

loop, we rely on simple heuristics using the loop-trip count information; the larger the number of

iterations a loop executes, the more work it contains. Therefore, our aggressive compiler uses the

loop-trip count profiles to help select the best pre-execution regions.

To identify all inner-most and next-outer loops in a program, we construct a global loop-nest

graph, GL. GL is a Directed Acyclic Graph (DAG) in which nodes represent loops and edges denote

the loop-nesting relationships; an upper node encompasses the one located below in the graph. The

DAG specifies nesting information between all loops in the entire program taking into consideration

nesting across procedure calls as well as within procedures.2 To choose an optimal loop nest for the

pre-execution region, our loop-selection algorithm examines the amount of work in all inner-most
2We use the program’s procedure-call graph to capture the inter-procedure loop-nesting relationships. However,

we do not account for nesting across indirect calls.
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Given: Global loop nest graph, GL
            Loop iteration count profiles
Compute:  Pre-Execution Region Set, P

  1: P = Φ;
  2: for each loop L in GL from inner-most to outer-most {
  3:    if (level(L) == INNER_MOST) {
  4:       if (iteration_count(L)     25)
  5:          P = P     {L};
  6:    } else {
  7:       if {P     nested_loops(L) == Φ)
  8:          P = P     {L};
  9:    }
10: }

11: for each inner-most loop L in GL {
12:    if (P     outer_loops(L) == Φ)
13:       P = P     {L};
14: }

Figure 4.1: Algorithm to compute the set of pre-execution regions, P . Φ denotes the empty set. To

estimate the loop work, we rely on offline profiles for loop-trip counts.

loops that contain one or more delinquent loads. Based on the loop-trip count profiles collected

offline, if the inner-most loop iterates a large enough number of times, we assume thread spawning

cost will be amortized and select the loop as a pre-execution region. Otherwise, we find the next-

outer loop and select it. However, a next-outer loop sometimes contains more than one inner-most

loop, and both the inner-most and next-outer loops can be selected for pre-execution. Since we do

not allow nested pre-execution to avoid redundant prefetching and additional runtime overhead,

we simply discard the next-outer loop from the pre-execution region set upon encountering such a

situation.

Figure 4.1 presents our algorithm to compute the set of pre-execution regions, P , given the

global loop-nest graph, GL, and loop-trip count profiles. We first start with an empty set P (line

1) and visit all loops in GL in inner-most to outer-most order (line 2). If a loop is at inner-most

level and contains delinquent loads (line 3), we check whether the loop-trip count is greater than or

equal to a certain number to see if the loop has enough work (line 4). We choose 25 loop iterations

as the threshold loop-trip count and observe this works well for most pre-execution regions we

have encountered in our study.3 If the loop-trip count exceeds the threshold value, the loop is
3However, the threshold loop-trip count should be large enough to amortize the pre-execution start-up cost, and

thus it may vary depending on the overhead of the thread synchronization mechanisms of the target platform.
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selected as a pre-execution region and added to P (line 5). Otherwise, we choose the next-outer

loop unless it nests loops that are already selected as pre-execution regions, in order to avoid

nested pre-execution (lines 7 and 8). After all inner-most and next-outer loops in the program

have been visited, it is possible that some inner-most loops that iterate fewer than 25 times are

excluded from the pre-execution region set because a sibling loop in graph GL was added to P ,

thus preventing their common next-outer loop from being selected as a pre-execution region. To

ensure all delinquent loads are pre-executed, we visit all inner-most loops again (line 11) and select

loops that contain delinquent loads and whose next-outer loop is not chosen as a pre-execution

region (lines 12 and 13). However, since all loops selected in this second phase of the algorithm

have a small loop-trip count, it is possible to degrade the program performance by targeting such

small loops. Generally, we find the increase in the cache-miss coverage outweighs the additional

overhead incurred by pre-executing these small loops.

Code Cloning

Once pre-execution regions are selected, we construct helper threads. The best way to generate

accurate prefetches for delinquent loads is to execute code that is very similar to the original

program code; hence we adopt code cloning when constructing helper threads. Once delinquent

loads and the surrounding pre-execution regions are identified, our compiler clones each target code

region and creates a separate procedure. If the target code region consists of multiple procedures,

all the procedures are cloned as well. To clone a code region, the SUIF provides a library routine,

clone(), that clones an object in a program and manages the symbol table properly. These newly

generated procedures are used as the helper thread code. As to be illustrated in Section 4.1.3,

when the main thread encounters a pre-execution region, it retrieves the function pointer of the

corresponding cloned procedure so that helper threads can indirectly jump to the procedure to

initiate pre-execution. In addition to ensuring accurate prefetching, code cloning provides another

very powerful advantage over code sharing; it allows us to perform aggressive optimizations on the

cloned code. In our compiler frameworks, all the optimization techniques such as program slicing,
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prefetch conversion, and loop parallelization would have been infeasible if the main thread and

helper threads had shared the same code as in Luk’s Software-Controlled Pre-Execution [42].

4.1.2 Improving Effectiveness of Pre-Execution

Once the target code regions are cloned, we consider ways to speedup the helper threads so that

they can trigger cache misses early enough in front of the main computation. We introduce four

algorithms used in our aggressive compiler to improve the effectiveness of pre-execution. First,

program slicing eliminates all noncritical code in the helper threads that is not required to compute

the delinquent load addresses. Then prefetch conversion, which is driven by the program slicing

analysis, removes blocking in the helper threads. Note, these two optimization techniques are to

speedup the individual helper threads. On the other hand, loop parallelization partitions the target

pre-execution region into multiple helper threads to run them in parallel. Hence multiple helper

threads as a group can run faster than the main thread. Finally, thread synchronization guarantees

the helper threads do not run too far ahead of the main thread, thereby avoiding eviction of useful

cache blocks due to excessive prefetching.

Program Slicing

We first discuss program slicing to remove noncritical code in helper threads. We present a pow-

erful program slicer, Unravel, and its analyses for extracting slices, and then demonstrate our

modifications to Unravel so that it can generate slices customized for pre-execution.

Unravel. To perform program slicing, our aggressive compiler uses Unravel, a publicly avail-

able program slicer for ANSI C language developed from the National Institute of Standards and

Technology (NIST).4 Unravel is a software evaluation tool designed to assist programmers with

debugging and testing programs. It consists of two components, an analyzer, which parses all .c

and .h source files in a program and constructs a program dependence graph (PDG) [26], and a

slicer, which traverses the PDG iteratively, performing data and control flow analyses to extract
4Source code for Unravel can be downloaded from http://www.itl.nist.gov/div897/sqg/unravel/unravel.html.
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the program slice.

Basic Analysis: Eqs. 4.1 and 4.2 present the basic program slicing algorithm performed by

Unravel’s slicer.

S<m,v> =




S<n,v> if v /∈ defs(n)

Sdef<n,v> otherwise
(4.1)

Sdef<n,v> = {n}
⋃

 ⋃
x∈refs(n)

S<n,x>


⋃

 ⋃
y∈refs(k)

⋃
k∈control(n)

S<k,y>


 (4.2)

In Eq. 4.1, S<m,v> denotes the program slice for the slice criterion <m, v>, or variable v

at statement m. The algorithm examines all statements n that are predecessors of m. If n does

not assign v, we omit n from the slice and recursively evaluate S<n,v>, the program slice for

variable v at statement n. Otherwise, if n assigns v, we follow Eq. 4.2. In this case, we add

n to the slice and recursively evaluate the program slice for all referenced variables x used to

compute v at statement n (the first two terms in Eq. 4.2). This captures those statements that

affect the dataflow to statement n. In addition, we also recursively evaluate the program slice

for all referenced variables y at all statements k, which control the execution of n, denoted by

the control(n) function (the last term in Eq. 4.2). This captures those statements that affect the

control flow to statement n.

Advanced Analysis: In addition to the basic slicing algorithm presented in Eqs. 4.1 and 4.2,

Unravel’s slicer also performs several advanced analyses to provide more accurate dependence

information, thereby detecting fewer false dependences and improving the quality of extracted

program slices. Specifically, Unravel’s advanced analyses address the following features found in

the C programming language:

Arrays and Structures. Unravel performs an index analysis on array references and resolves

different structure fields. Thus an assignment or reference to an array element or structure

field does not cause the slicer to access the entire array or structure, but only the individual
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element, thereby trimming down the resulting slice.

Pointers. Unravel performs a pointer analysis for statically allocated objects. For every assign-

ment and reference through a pointer to a static object, Unravel keeps track of the set of

objects that can possibly be reached. This analysis takes into consideration accesses through

multiple levels of indirection, treating objects at each indirection level separately. Unravel

uses this information to prune away those objects that cannot be reached at each pointer

access, thus disambiguating accesses to separate objects.

Procedures. Unravel constructs program slices across procedure boundaries. To enable inter-

procedure slices, Unravel performs inter-procedure analysis, matching actual parameters with

formal parameters and handling return values at call sites to track data dependences across

procedure calls. However, Unravel ignores indirect procedure calls, and thus program slicing

terminates at the boundary of any indirectly-called procedure, which sometimes occurs in

our benchmarks.

Slicing for Pre-Execution. We use Unravel to compute program slices for memory references

that suffer from frequent cache misses by specifying each memory reference to Unravel as a separate

slice criterion. We modify Unravel to address five issues related to our memory-driven program

slices: slice criterion specification, store removal, slice termination, slice merging, and code pinning.

This section describes our modifications to Unravel using the code example in Figure 4.2 from VPR,

an application from the SPEC CINT2000 benchmark suite.

Slice Criterion Specification. As discussed in Section 3.1, one can use either cache-miss

profiles or static compiler analysis to identify the delinquent loads in a program. Our aggressive

compiler employs offline profiling, in which delinquent loads are identified by a separate memory

profiling tool as program counters (PCs) of load instructions. We translate each of these load

PCs into a source file name, line number, and variable name using debugging information. In

Figure 4.2, four frequent cache-missing memory references in the VPR application are shown in

bold face, labeled “1” – “4.” Note, these memory references occur across three different procedures,
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int try_swap(float t, float *cost, float rlim, ...) {

  for (k=0;k<num_affected_nets;k++) {
    inet = nets_to_update[k];
    if (net_block_moved[k] == FROM_AND_TO)
      continue;
    if (net[inet].num_pins <= SMALL_NET) {
      get_non_updateable_bb (inet, &bb_coord[bb_index]);
    } else {

    }
    if (place_cost_type != NONLINEAR_CONG) {

net[inet].cost = net_cost(inet, &bb_coord[bb_index]);
       delta_c += net[inet].tempcost - net[inet].ncost;
    } else {

    }
    bb_index++;
  }

}

float net_cost(int inet, struct s_bb *bbptr) {
  float ncost, crossing;
  if (net[inet].num_pins > 50) {
    crossing = 2.79 + 0.026 * (net[inet].num_pins - 50);
  } else {
    crossing = cross_count[net[inet].num_pins-1];
  }
  ncost = (bbptr->xmax - bbptr->xmin + 1) * crossing *

chanx_place_cost_fac[bbptr->ymax][bbptr->ymin-1];
  ncost += (bbptr->ymax - bbptr->ymin + 1) * crossing *

chany_place_cost_fac[bbptr->xmax][bbptr->xmin-1];
  return(ncost);
}

...... 8

3

4

S1S2S4

2

6

......

......

......

S3

void get_non_updateable_bb(int inet, struct s_bb *bbptr) {
  int k, xmax, ymax, xmin, ymin, x, y;
  x = block[net[inet].pins[0]].x;
  y = block[net[inet].pins[0]].y;
  xmin = x;
  ymin = y;
  xmax = x;
  ymax = y;
  for (k=1;k<net[inet].num_pins;k++) {
    x = block[net[inet].pins[k]].x;
    y = block[net[inet].pins[k]].y;
    if (x < xmin) {
       xmin = x;
    } else if (x > xmax) {
       xmax = x;
    }
    if (y < ymin) {
       ymin = y;
    } else if (y > ymax ) {
       ymax = y;
    }
  }
bbptr->xmin = max(min(xmin,nx),1);
bbptr->ymin = max(min(ymin,ny),1);
bbptr->xmax = max(min(xmax,nx),1);
bbptr->ymax = max(min(ymax,ny),1);

}

7

5

1

Figure 4.2: VPR code example to demonstrate our program slicing. Labels “1” – “4” indicate the

cache-missing memory references selected for the slicing criteria. Labels “5” and “6” indicate the memory

references that will be eliminated by store removal. Labels “7” and “8” indicate loops that bound the scope

of slicing. Labels “S1,” “S2,” “S3,” and “S4” show the slice result for the selected memory references.
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try swap(), net cost(), and get non updateable bb(). We perform a single slicing run for each

memory reference by specifying it as a slice criterion to Unravel.

Store Removal. As discussed in Section 3.4, helper threads should never modify the

memory state which is visible to the main thread to ensure correct execution of the program.

Therefore, when generating helper threads, our compiler frameworks remove all stores to statically

allocated global variables and to heap variables through pointers. Such store removal enables

more aggressive program slicing. In addition to removing codes off the critical path of cache-

missing memory references, our program slicer also removes codes associated with stores that will

eventually be eliminated when helper threads are constructed. Hence before running the slicer,

we delete all DEFs to global and heap variables in the PDG produced by Unravel. When we

run the slicer, all codes associated with the removed DEFs will themselves be sliced away. In

Figure 4.2, the underlined references labeled “5” and “6” represent stores to heap and global

variables, respectively, and our slicer removes the DEFs associated with these references.

While store removal is necessary to guarantee the correctness of the main computation,

it can possibly disrupt the correctness of the generated helper threads. For instance, computa-

tions at “5” in Figure 4.2 are necessary to execute the cache-missing memory references at “2”

and “3.” Therefore, by removing stores at “5” in the helper threads, the delinquent loads in

net cost() will not be correctly pre-executed each time net cost() is entered following a call to

get non updateable bb(). Fortunately, we find the memory references “2” and “3” are excep-

tional cases, and the dataflow through the global or heap variables within a pre-execution region

rarely leads to the cache-missing memory references. Section 5.2.6 presents data that support our

observation and discusses why this observation is generally true. In exceptional cases like those

in VPR, the speculation support for pre-execution ensures that incorrect helper threads never

compromise the integrity of the main computation.

Slice Termination. After modifying the PDG to reflect store removal, we run the slicer

once for every slice criterion corresponding to a delinquent load instruction. For each slicer run,

Unravel computes a program slice across the entire program. Such a slice is too large; in fact, we
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are interested in slicing only the code that will eventually form the pre-execution region for the

delinquent load. Unfortunately, Unravel does not know the extent of pre-execution regions since

they are determined in a separate compiler pass. However, as described in Section 4.1.1, a pre-

execution region is defined by a loop containing one or more delinquent loads, and our pre-execution

region selection algorithm chooses either the inner-most loop or the next-outer loop encompassing

the delinquent loads to serve as the pre-execution region. Hence we modify Unravel to terminate

slicing once two nested looping statements above the slice criterion have been encountered (if two

nested looping statements cannot be found, we terminate slicing after one looping statement).

Figure 4.2 illustrates the slice termination for VPR. Memory reference “1” is contained

inside the loop labeled “7.” The next-outer loop, labeled “8,” is where slicing terminates for this

memory reference. Memory references “2,” “3,” and “4” are contained inside the loop labeled “8.”

The next-outer loop, which is not shown in Figure 4.2, is where slicing terminates for these three

memory references.

As illustrated in Figure 4.2, our slice termination policy permits slices to span multiple

procedures while there is no limit on procedure-call depth. From our experience, we observe the

inter-procedure analysis is very important since loops are often nested across procedure boundaries,

particularly in non-numeric applications like VPR. When slicing across procedures, however, mul-

tiple paths to reach the slice criterion occur if a procedure is called from multiple sites. Our slicer

pursues all call paths and searches for two nested looping statements along every path, possibly

identifying multiple loops where slicing terminates for a single delinquent load instruction. Smaller

slices can be constructed if the slicer only considers the most frequently-executed paths within pro-

cedures as well as across procedures; however, this requires incorporating path profile information

into our compiler frameworks, which we do not support in our current compiler implementation.

Slice Merging. After the slicing analysis completes, we have a program slice for each tar-

geted memory reference. Figure 4.2 illustrates slices computed for the four cache-missing memory

references in VPR by placing an arrow to the left of each source-code line that is contained in the

slice. The slices for memory references “1” – “4” are specified by the columns of arrows labeled
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“S1,” “S2,” “S3,” and “S4,” respectively. Note, slices “S2,” “S3,” and “S4” should continue up

to the next-outer loop, which is not shown in this figure. Unravel stores each program slice as a

bitmask with one bit per line of source code in the program.

Since invoking helper threads for each individual slice possibly incurs significant runtime

overhead, we merge multiple slices for loads that are contained within the same pre-execution

region, and invoke helper threads only once for each pre-execution region to cover all the delinquent

loads within each merged slice. Slice merging occurs at the granularity of pre-execution regions.

Once the pre-execution regions have been selected following the algorithm shown in Section 4.1.1,

we “OR” together the bitmasks of all slices whose delinquent loads reside in the same pre-execution

region. We also clear any bits that lie outside the selected pre-execution region. For example, if

the loop labeled “8” in Figure 4.2 were selected as a pre-execution region, we would merge the

bitmasks from slices “S1” – “S4” since memory references “1” – “4” are included within loop “8.”

This merged slice contains 28 out of the original 57 lines of code in Figure 4.2.

Code Pinning. Since our SUIF-based compiler frameworks generate C source code where

the helper threads are attached as separate procedures, they must eventually be translated into

the machine code by a C compiler. We use gcc (GNU C Compiler) for this purpose. Unfortunately,

pre-execution code, by its very nature, is dead code since store removal eliminates all side effects,

and thus it is likely to be removed during C compilation (we compile pre-execution code with the

“-O2” flag, which activates dead code elimination optimization in gcc). For instance, after store

removal and program slicing, the get non updateable bb() function in Figure 4.2 is reduced to

a single loop that touches the elements in the block array. Since this code performs no useful

computation, gcc would remove it anyways.

To avoid pre-execution code removal during C compilation, we insert an asm macro that

artificially consumes the loaded value from each delinquent load instruction, thus pinning the

load and all associated pre-execution code. Figure 4.3a illustrates how our compilers perform code

pinning. In Figure 4.3a, we show the pre-execution code for the get non updateable bb() function

from Figure 4.2 after program slicing is applied. An asm macro containing a null instruction, labeled
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void get_non_updateable_bb(int inet, struct s_bb *bbptr) {
  int k, x;

  for (k=1;k<net[inet].num_pins;k++) {
    x = block[net[inet].pins[k]].x;
    asm(“ “ : : “r” (block[net[inet].pins[k]].x));
  }
}

void get_non_updateable_bb(int inet, struct s_bb *bbptr) {
  int k, x;

  for (k=1;k<net[inet].num_pins;k++) {
    prefetch(&block[net[inet].pins[k]].x);
  }
}

a)

b)

1

2

Figure 4.3: Code generated by our aggressive compiler for the get non updateable bb() function from

Figure 4.2. a) Pre-execution code after program slicing in which an asm macro is added for code pinning

(labeled “1”). b) Pre-execution code after program slicing and prefetch conversion (labeled “2”). Bold-face

code denotes the cache-missing memory references.

“1,” has been added to force the data from the block array memory reference, i.e., the slice criterion

used by the program slicer, to be consumed. This creates a virtual data dependence between

the consumer null instruction and the pinned instruction, i.e., block array memory reference in

Figure 4.3a. Since gcc does not remove the asm code, inserting asm code in turn prevents the

removal of the pre-execution code.

Prefetch Conversion

As shown in the previous section, program slicing removes noncritical instructions unnecessary to

compute the delinquent memory references, thereby expediting pre-execution. To further speedup

the helper threads, we find another opportunity for optimization. In many processor designs that

support out-of-order execution, a load instruction enters the reorder buffer (ROB) which commit

instructions in order and guarantee precise interrupts. Moreover, the load instruction also enters

the load-store queue (LSQ) for memory-address disambiguation and correct value forwarding from

an earlier store instruction with the same address. Hence a normal load instruction cannot leave

both the ROB and LSQ until it is resolved, and thus it blocks the processor pipeline upon incurring

cache misses and prevents other independent instructions from leaving the ROB and LSQ. During

program slicing, however, some of the consumer instructions for delinquent loads are identified as
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a part of noncritical code and thus eliminated from the pre-execution code. For those delinquent

loads without any consumer instructions, we convert them into nonblocking prefetch instructions,

and this is called prefetch conversion.

Prefetch conversion is a relatively simple optimization when combined with program slicing

because the dependence information necessary to perform prefetch conversion is already available

from the program slicing analysis. Our aggressive compiler performs prefetch conversion in the

following way. We examine every delinquent load in the helper thread code. If the loaded value of

a delinquent load is not consumed by any other instructions within the same helper thread, i.e.,

the program slicer has removed those statements that depend on the delinquent load, the load

is converted to a prefetch instruction. Applying this simple algorithm to the VPR code example

in Figure 4.2, we see that memory references “1,” “2,” and “3” can be converted into prefetches.

Figure 4.3b illustrates the final sliced helper thread code for the get non updateable bb() function

after converting the blocking memory reference (labeled “1” in Figure 4.2) into a nonblocking

prefetch instruction (labeled “2” in Figure 4.3b). As to be discussed in Section 4.3.6, our compiler

assumes the target architecture supports a prefetch instruction, which is inlined into the helper

thread code using the prefetch macro shown in Figure 4.3b.5

Helper Thread Initiation

Helper threads can be forked and synchronized in many ways depending on characteristics of the

pre-execution region and properties of the helper thread code after applying program slicing and

prefetch conversion optimizations. In our SUIF-based compiler frameworks, we introduce three

schemes to initiate helper threads, i.e., one serial (Serial) and two parallel (DoAll, DoAcross)

schemes as illustrated in Figure 4.4. For each identified pre-execution region, we assign one thread

initiation scheme and transform the helper thread code accordingly to enable helper threads to
5Prefetch instruction is supported in many architectures, e.g., lfetch in EPIC (Explicitly Parallel Instruction

Computing) architecture for the Intel’s Itanium / Itanium 2 processors. It is often implemented as nonblocking and

nonfaulting, and usually has lower priority than a normal load, thereby being dropped when normal loads need to

be serviced immediately.
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Figure 4.4: Three helper thread initiation schemes: a) Serial, b) DoAll, and c) DoAcross. Solid lines

denote the main thread, dotted lines denote the helper threads, arrows denote the thread spawning, and

numeric labels denote the loop iteration counts.

get ahead of the main thread. Our two parallel schemes rely on loop parallelization to run multi-

ple helper threads simultaneously and thus speedup pre-execution. This section provides details

about how we parallelize the pre-execution region and construct helper threads to implement the

three different thread initiation schemes in our compiler frameworks. Later in Section 5.2.4, the

experimental results show our algorithm to select the thread initiation scheme always chooses the

best scheme for selected pre-execution regions.

1. Serial. Occasionally, prefetch conversion optimization successfully converts all delinquent

loads within the pre-execution region into prefetch instructions, thereby leaving no blocking

loads in the helper thread. Since program slicing has already removed noncritical instructions

in the pre-execution region, even a single helper thread can easily get ahead of the main thread

without being stalled on cache misses and develop an enough prefetch distance, resulting in

effective prefetching. Therefore, when prefetch conversion has eliminated all blocking loads

in the pre-execution region, we use Serial scheme to initiate a single helper thread to

perform pre-execution. In this scheme, the main thread (solid line) spawns one helper thread

(dotted line) before entering the pre-execution region as shown in Figure 4.4a. Then the

spawned helper thread executes code for the entire pre-execution region sequentially. One

advantage of the Serial scheme is that it occupies only one hardware context, which is
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very helpful especially when spare hardware contexts in a processor are limited as in the

Intel Pentium 4 processor with Hyper-Threading Technology which supports two logical

processors. Moreover, since the main thread launches only one helper thread, it does not

have to manage multiple helper threads and synchronize with them as in our parallel schemes

described later. Finally, since we do not parallelize loops speculatively, there is less chance

to generate inaccurate memory addresses. (Note, store removal can still cause generation

of inaccurate addresses.) However, in many cases, prefetch conversion cannot eliminate

all blocking loads within a pre-execution region. For instance, memory reference “4” in

Figure 4.2 is a delinquent load that cannot be converted into a prefetch instruction because

the value it loads is required by another instruction in the helper thread code. Such blocking

loads will cause the sole helper thread to stall, preventing it from getting ahead of the main

thread.

2. DoAll. When a single helper thread cannot get ahead of the main thread due to remaining

blocking loads in the helper thread, we distribute the pre-execution code using loop paral-

lelization across multiple helper threads so that we can execute the pre-execution region in

parallel. This allows to overlap more memory accesses simultaneously and helps to remove

significant memory stalls in the main thread compared to using a single helper thread. Al-

though each individual helper thread does not run fast due to blocking loads, multiple helper

threads as a group can run faster than the main thread, resulting in effective pre-execution.

In conventional optimizing compilers, loop parallelization requires the compiler to exactly an-

alyze dependences in order to guarantee that the optimization is completely safe and valid.

This is nearly impossible for those loops that we handle in our study because of complicated

control flow and frequent use of pointers. On the other hand, in our aggressive compiler for

pre-execution, program slicing has already broken many dependences in the helper threads,

and thus very few or even zero loop-carried dependences exist in our sliced codes. Moreover,

our loop parallelization is speculative and aggressive in that our compiler only analyzes the

loop induction variables and it does not perform any dependence analysis in the loop body.
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However, thanks to the speculation support that we assume from the SMT processor (see Sec-

tion 4.1.4), the correctness of the main thread is guaranteed. Hence our loop parallelization

has much potential to extract abundant amount of thread-level parallelism in a program.

We propose two parallelization schemes to initiate helper threads based on the type of the

loop induction variables. The first parallelization scheme is called DoAll scheme which

parallelizes the affine loops, i.e., the induction variable is updated arithmetically like i++.

Upon detecting an affine loop, our compiler parallelizes the loop by assuming each loop

iteration is fully independent. Figure 4.4b shows how helper threads are forked and executed

under the DoAll scheme. Before entering a pre-execution region, the main thread spawns

multiple helper threads and makes them execute different loop iterations in round-robin

fashion (denoted by loop iteration labels). In this scheme, each helper thread keeps a private

copy of the loop induction variable and updates it locally every loop iteration. In order to

guarantee all loop iterations are executed exactly once without missing any of them, each

helper thread starts from a different loop iteration and updates the loop induction variable

by the number of spawned helper threads times more than the original amount; for instance,

the helper thread updates induction variable by i=i+3 when the original code is i++ and the

main thread launches 3 helper threads. Note, however, in our loop parallelization schemes,

multiple helper threads share the same code as shown in the code example (see Figures 4.10b

and 4.11).

3. DoAcross. The second parallelization scheme is called DoAcross scheme which parallelizes

loops whose induction variable is updated by dereferencing a pointer. Such loops are called

pointer-chasing loops. Pointer-chasing loops are serialized by nature because of the sequential

update of the loop induction variables. However, we observe each loop-body execution can

be performed independently even though there exists loop-carried dependence through the

induction-variable update. As shown in Figure 4.4c, our compiler generates a single helper

thread, called backbone thread, to execute the induction variable update code sequentially.

At every loop iteration, the backbone thread gets the pointer value of the loop induction
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Given:  Pre-Execution Region Set, P
Compute: Serial Loop Set, SE
                 DoAll Loop Set, DA
                 DoAcross Loop Set, DX
                 Procedure Set, F

  2: for each loop L in P {
3: if (num_blocking_load(L) == 0)

  4:       SE = SE     {L};
  5:    else {
  6:       if (induction(L) == AFFINE)
  7:          DA = DA     {L};
  8:       else
  9:          DX = DX     {L};
10:    }
11:    F = F     called_procedures(L);
12: }

SE = DA = DX = F = Φ;  1:

Figure 4.5: Algorithm to decide the thread initiation scheme for pre-execution regions.

variable for the current iteration, and then spawns another thread, called rib thread, to

execute the loop body. Meanwhile, the backbone thread dereferences the current pointer

of the induction variable so that the loop-body execution and pointer dereference can be

overlapped. Moreover, multiple loop-body executions are often performed in parallel as

well, issuing multiple prefetches simultaneously. The DoAcross scheme requires two types

of inter-thread communication: one between the main thread and the backbone thread,

and another between the backbone thread and the rib threads. First, the backbone thread

keeps checking the relative distance, called run-ahead distance, between the main thread

and itself. Once it reaches the pre-defined prefetch distance, i.e., 25 loop iterations in our

study, the backbone thread either sleeps on a hardware semaphore or enters a busy-waiting

loop until the main thread catches up, reducing the run-ahead distance below 25 iterations.

Synchronization between the backbone thread and a rib thread occurs as a consequence of

passing the correct induction variable value and live-ins.

Figure 4.5 presents our compiler algorithm to select thread initiation schemes for pre-

execution regions. For each loop in the pre-execution region set, P , we first check whether or

not all the blocking loads have been removed by prefetch conversion and store removal (line 3)

and choose the Serial scheme if there remains no blocking load in the region (line 4). Otherwise,
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we select one of the two parallel schemes. When the loop induction variable is affine and updated

arithmetically, we pick the DoAll scheme (lines 6 and 7). For any other patterns where induction

variable update is serialized as in a pointer-chasing loop, we choose the DoAcross scheme (lines 8

and 9) so that a backbone thread can be dedicated to update the induction variable and distribute

live-ins to rib threads.

Before moving on, we find an issue regarding overhead to be worth noting. In our pre-

execution model, helper threads are spawned at the loop entrance point, and thus both the main

thread and helper threads enter the targeted pre-execution region at the same time. Consequently,

helper threads take some time to reach the prefetch distance and they provide little benefit to

the main thread for the first few loop iterations. While such a warm-up phase in pre-execution is

not desirable, it can be alleviated by choosing loops with a large loop-trip count or the next-outer

loops, which is the rationale behind our pre-execution region selection algorithm. Although it is

also possible to make helper threads skip the first few iterations and start from the middle of

the loop, we observe this does not affect the performance noticeably and deciding how many loop

iterations to skip adds more complexity to our algorithm. Moreover, for some pre-execution regions

like pointer-chasing loops, live-in variables for the future loop iterations are often unavailable at the

loop entrance point due to serialization, and thus all loop iterations must be executed to acquire

necessary values.

Synchronization

After applying the above three optimization techniques to expedite pre-execution, helper threads

may acquire too much speed advantage over the main thread, thereby running too far ahead.

Such run-away helper threads issue prefetches too early and evict useful cache blocks that will be

accessed by the main thread in the near future. To avoid such undesirable effects, we synchronize

the helper threads with the main thread so that helper threads cannot run ahead of the main

thread by more than a certain distance. In this study, we set the prefetch distance to 25 loop
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iterations, which seems reasonable for many pre-execution regions in our benchmarks.6 Since the

purpose of synchronization is to keep the run-ahead distance below the prefetch distance, we do

not add synchronization code for those loops with loop-trip count of less than 25 iterations to

reduce the runtime overhead associated with synchronization.

In our SUIF-based compiler frameworks, we evaluate two thread synchronization mecha-

nisms: hardware semaphore and software semaphore. First, when using hardware semaphore as the

synchronization mechanism, the main thread resets the value of the hardware semaphore counter,

which is a special hardware register, to the prefetch distance before entering a pre-execution region.

At the end of every loop iteration, the main thread increments the hardware semaphore register by

1. On the other hand, a helper thread decrements it by 1 after executing one loop iteration. Hence

when the helper threads run faster than the main thread, the semaphore counter value decreases

toward zero. Once the counter value reaches zero, it implies that the helper threads have executed

25 more loop iterations than the main thread since the beginning of the targeted loop. From then

on, whenever a helper thread decrements the counter resulting in a negative value, it registers

itself in the FIFO (First-In First-Out) queue and the processor suspends the corresponding helper

thread immediately. Suspended helper threads remain dormant until the main thread increments

the hardware semaphore again and wakes up one helper thread at the head of the FIFO queue.

While hardware semaphores provide low overhead, they also have a drawback; they require

new instructions to support thread synchronization and modification to the processor architecture

to implement hardware semaphore registers. Therefore, we also investigate a software-only syn-

chronization mechanism. In our software mechanism, both the main thread and the helper threads

increment their own counters that are declared as global variables. For every loop iteration, each

helper thread computes its run-ahead distance by taking the difference between its counter and the

main thread’s counter. Once a helper thread reaches the prefetch distance, it enters a busy-waiting

loop and does nothing but check the run-ahead distance. After the main thread finishes one more

loop iteration and increments its global counter, the polling helper thread detects it, exits the
6We also varied the prefetch distance and observe that the performance of most programs is not sensitive to the

prefetch distance value.
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busy-waiting loop, and starts execution of the next loop iteration from where it was suspended.

Although our software mechanism has the advantage that it does not require additional hardware

support, the busy-waiting loop injects many useless instructions into the processor’s pipeline, and

thus wastes valuable resources such as the fetch units and reorder-buffer entries that could have

been used by the main thread. Section 5.2.5 compares the performance of pre-execution with these

two different synchronization mechanisms and discusses tradeoffs.

4.1.3 Minimizing Ineffectiveness of Pre-Execution

To reduce the runtime overhead associated with pre-execution, we introduce two new methods:

terminating all active helper threads after the main thread exits a pre-execution region and recy-

cling helper threads. First, for several reasons, helper threads can still remain active even after the

main thread leaves a pre-execution region. For instance, due to the speculative loop parallelization

in Section 4.1.2 and store removal in Section 4.1.4, the constructed helper threads can be incorrect

and not finish properly following the wrong control paths. On the other hand, helper threads

occasionally run behind the main thread simply because they do not acquire enough processor

resources. Since any helper thread activity after the execution of the corresponding pre-execution

region in the main thread is useless, the main thread should ensure the termination of such wasteful

helper threads. We assume ISA support from our processor and insert a kill instruction immedi-

ately after a pre-execution region in the main thread code. However, instead of introducing a new

instruction, we can also implement this kind of thread-killing mechanism alternatively by checking

the liveness of each forked helper thread and executing the suspend instruction, which we assume

from the processor to manage threads, when it is active.

Second, we employ a software mechanism to recycle helper threads to reduce the thread

spawning cost. Thread initiation in SMT processors can be expensive due to context initialization

(our thread initiation code contains 25 instructions). To minimize the thread initiation overhead,

we recycle threads. We first create a helper thread for each idle hardware context only once during

program startup. After creation, each helper thread enters a dispatch loop and suspends itself
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immediately. To perform a “fork,” the forking context communicates a PC value through memory

and executes a resume instruction to unblock one of the suspended threads. The “forked” thread

then jumps indirect through the PC argument. If the forked thread completes normally, it returns

to the dispatch loop and suspends itself until the next fork, thus recycling the thread. However, if

the forked thread is halted by the main thread via a kill instruction, it cannot simply be resumed.

Instead, to prevent the thread from resuming its path of execution prior to the kill, we assume

the kill instruction sets the killed thread’s PC to point to the instruction immediately following

the suspend instruction in the dispatch loop. Consequently, a fork performed on a killed thread

resumes the thread as if it had returned to the dispatch loop normally.

4.1.4 Preserving Program Correctness

Prefetching helper threads are meant to affect the performance of a program only; they should

never disrupt the correctness of the main computation. This section discusses two issues, store and

system call removal and exception handling, to preserve the correctness of the main computation

while performing pre-execution.

Store and System Call Removal

To prevent pre-execution from disrupting the main computation, results computed by the helper

threads should never be integrated into the shared machine state. Disrupting the program cor-

rectness can only occur through memory and the hard disk space. As mentioned in Section 4.1.2,

we remove all store instructions and system calls in helper threads to guarantee that the helper

threads never write to the heap memory region or hard disk space. However, we still allow stores

to stack memory since the stack is allocated for each individual helper thread. This ensures our

helper threads properly handle procedure calls if the original program does so. As discussed in

Section 4.1.2, store and system call removal helps to eliminate even more instructions by program

slicing. Since store instructions and system calls within the pre-execution region are removed even-

tually in the final helper thread code anyway, our program slicer ignores them during the analysis

phase so that code affecting stores and system calls is not included in the slice. This in turn im-
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proves the correctness of our speculative loop parallelization as well since loop-carried dependences

are themselves more likely to be removed. In addition, delinquent loads often belong to the code

that is associated with the removed stores. One scenario which is easily found in normal programs

is that a program loads a value, does some computation, and stores the computed result back to

memory. Since the store will be removed from the helper threads, the delinquent load brings a

value to perform useless computation. In that case, we remove the destination operand of such

delinquent loads and convert them to prefetch instructions.

Exception Handling

Due to aggressive loop parallelization and store removal in our compiler frameworks, our con-

structed helper threads are speculative, which means they may issue inaccurate or invalid memory

addresses.7 For instance, since our compiler does not perform dependence analysis in the loop

body, a loop can be parallelized anyway even though it indeed contains loop-carried dependences.

On the other hand, load address computations occasionally involve store to memory, which our

helper threads cannot correctly perform since such stores have been already removed in the helper

thread code. When illegal memory addresses are generated by helper threads, an exception oc-

curs. To avoid the main thread termination as a consequence of exceptions signaled by helper

threads, we should handle such exceptions. Instead of involving the OS, we assume a certain hard-

ware mechanism to detect an exception raised by helper threads and terminate the faulting helper

thread. Once terminated, the helper thread remains suspended until the main thread resumes it

again before entering the next pre-execution region. Therefore, it is possible that the main thread’s

benefit from pre-execution reduces when an exception occurs. However, we observe that our helper

threads issue valid addresses most of the time and rarely incur exceptions.
7Program slicing and prefetch conversion optimizations never affect the correctness of helper threads. Our

program slicing extracts all the necessary code to compute delinquent loads, including control statements as well as

address computation code. In addition, the analysis for prefetch conversion guarantees there exist no instructions

in the slice that are dependent of the load instruction to be converted into prefetch.
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4.2 Compiler Algorithms for SUIF-Based Reduced Frameworks

Our aggressive compiler generates effective helper threads by using offline profiles for the cache-

miss behavior and loop-trip counts as well as Unravel for program slicing and prefetch conversion.

Although such offline profiles are widely used and Unravel is publicly available, it would be desirable

from the compiler’s implementation standpoint if our pre-execution compiler frameworks did not

rely on these additional compilation steps and still provided comparable performance with the

aggressive compiler. In this section, we introduce our SUIF-based reduced compiler frameworks

(reduced compilers for short) where offline profiles and program slicer are removed one at a time

and replaced with static compiler algorithms to simplify the design of the compiler frameworks for

pre-execution.

We present four reduced compilers. Our first reduced compiler eliminates program slicing

that is previously done by Unravel in the aggressive compiler. Instead, it relies on gcc’s dead

code elimination optimization to remove noncritical code in helper threads. The second reduced

compiler introduces a static compiler algorithm to enable prefetch conversion in the absence of

the program slicing analysis. The third reduced compiler eliminates offline memory profiles along

with the program slicer and uses simple heuristics to identify delinquent loads statically. Finally,

the fourth reduced compiler additionally removes loop-trip count profiles and selects pre-execution

regions without using profile information.

4.2.1 Eliminating Program Slicing

Our program slicing analysis, described in Section 4.1.2, essentially consists of 3 steps: store

removal, slicing, and code pinning. Among these 3 steps, the slicing step can be redundant under

certain circumstances. Because store and system call removal eliminates all side effects inside a pre-

execution region, the code removed by program slicing is dead code anyways and can potentially be

removed during C compilation by dead code elimination optimization. Furthermore, while program

slicing exactly identifies critical computations leading up to the delinquent-load instructions to

ensure that the relevant code still remains in the helper threads, code pinning achieves a similar

57



void get_non_updateable_bb(int inet,
                           struct s_bb *bbptr) {
  int k, xmax, ymax, xmin, ymin, x, y;

  x = block[net[inet].pins[0]].x;
  y = block[net[inet].pins[0]].y;
  xmin = x;  ymin = y;  xmax = x;  ymax = y;

  for (k=1;k<net[inet].num_pins;k++) {
    x = block[net[inet].pins[k]].x;
    asm(“ “ : : “r” (block[net[inet].pins[k]].x));
    y = block[net[inet].pins[k]].y;
    if (x < xmin) {
       xmin = x;
    } else if (x > xmax) {
       xmax = x;
    }
    if (y < ymin) {
       ymin = y;
    } else if (y > ymax ) {
       ymax = y;
    }
  }
}

1

Figure 4.6: Code generated by our compiler without program slicing for the get non updateable bb()

function from Figure 4.2. An asm macro is added for code pinning (labeled “1”).

effect by introducing artificial side effects for the delinquent loads and their associated code, thus

pinning them down and preventing their removal at compile time. Considering this redundancy

in slicing, we propose a simpler approach in which store removal and code pinning are performed

alone, getting rid of the program slicing step. This approach allows us to eliminate Unravel and its

integration with other compiler modules, thereby simplifying the implementation of the compiler

framework.

As an example, Figure 4.6 shows the helper thread code generated by our reduced compiler

for the get non updateable bb() function from Figure 4.2. The code in Figure 4.6 is identical to

the original code from Figure 4.2 except for the removal of side effects (underlined code labeled

“5” in Figure 4.2) and the insertion of an asm macro (labeled “1” in Figure 4.6). In particular,

the conditional tests in the loop body, which are unnecessary for computing the delinquent load,

still remain in the helper thread since program slicing has been omitted. However, these extra-

neous statements do not have side effects because of store removal. Hence even though the code

in Figure 4.6 appears to be less efficient than its sliced counterpart from Figure 4.3a, we have

observed the unnecessary code is eventually removed by gcc during backend compilation. As long

as dead code elimination removes the unnecessary code, the binary generated from Figure 4.6 is as
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efficient as the binary generated from Figure 4.3a. Section 5.3.1 reports the performance impact

of eliminating program slicing and also compares the ability to remove noncritical code between

Unravel and backend code optimizer.

4.2.2 Prefetch Conversion without Program Slicing

In our aggressive compiler, prefetch conversion is coupled with program slicing as described in

Section 4.1.2. Hence eliminating Unravel requires new algorithms to enable prefetch conversion.

Without program slicing analysis, prefetch conversion becomes harder since no code, except for

stores and their associated code, gets removed from the helper thread. Therefore, converting delin-

quent loads into prefetches is limited whenever noncritical code, which would have been removed

by program slicing, consumes data loaded by the delinquent loads. To ensure all candidate loads

for prefetch conversion are accurately identified in the absence of program slicing, it is necessary

to disregard the dependences that delinquent load instructions may have with the noncritical code

in anticipation of its removal during backend compilation.

We propose a static compiler algorithm for prefetch conversion, which does not require

program slicing analysis. The algorithm first computes the set of active variables that are used to

compute delinquent loads contained inside a pre-execution region. Then it visits each delinquent

load and converts loads whose destination operand is not included in the active-variable set into

prefetches. Since noncritical code that will be removed during C compilation does not produce any

active variables, their presence in the helper thread code does not limit opportunities for prefetch

conversion. Eqs. 4.3 and 4.4 show how to compute the active-variable set V<m,v> for a memory

variable v corresponding to a delinquent load instruction at statement m:

V<m,v> =




V<n,v> if v /∈ defs(n)

V def<n,v> otherwise
(4.3)

V def<n,v> =


 ⋃

x∈refs(n)

{x}

⋃

 ⋃
x∈refs(n)

V<n,x>



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⋃
 ⋃

y∈refs(k)

⋃
k∈control(n)

V<k,y>


 (4.4)

These equations are almost identical to Eqs. 4.1 and 4.2 from Section 4.1.2 that are used

for the program slicing analysis. In particular, the first two terms in Eq. 4.4 account for dataflow

within the critical code for computing variable v similar to the first two terms in Eq. 4.2, while the

last term in Eq. 4.4 accounts for control flow similar to the last term in Eq. 4.2. This similarity

is not accidental. Rather, it reflects the fact that prefetch conversion is fundamentally enabled by

the program slicing analysis. Even if we do not use external program slicers like Unravel and rely

on backend compilers to remove unnecessary code, we should still perform a slicing-like analysis to

identify candidate loads for prefetch conversion. Note, however, our standalone prefetch converter

only performs a basic data and control flow analysis, and thus it is far less complex than Unravel,

which performs several sophisticated analyses (see Section 4.1.2).

Eqs. 4.3 and 4.4 compute the active-variable set for a single memory reference v. We compute

V<m,v> for all problematic memory references in the pre-execution region and take their union to

form the set of all active variables. Using this merged active-variable set, we identify candidate

loads to be converted into prefetches as mentioned above. If the data from a delinquent load does

not assign a variable belonging to the merged active-variable set, it means the load instruction

does not contribute to the critical data or control flow within the pre-execution region; hence we

convert the load into a prefetch instruction. Otherwise, the load remains untouched and an asm

macro is inserted for code pinning. In Section 5.3.2, we examine the effectiveness of our static

compiler algorithm for prefetch conversion.

4.2.3 Eliminating Cache-Miss Profiles

Our aggressive compiler relies on offline memory profiles to identify delinquent loads in a program.

We collect summary profiles that provide the total number of L1 and L2 misses for each static load

instruction over the entire simulation region. While our memory profiles provide a very accurate

overall picture of the memory behavior for a particular run of a workload, they also have several

drawbacks. First, offline profiling is often cumbersome to perform; it requires additional profiling
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tools such as a cache simulator or the VTune, and one or more separate profiling runs. Moreover,

the profile results may not be adaptable; even for the same workload, memory profile results may

vary for different input sets or target platforms. In addition, summary profiles provide a single

value of information for the entire program execution, and thus it is hard to get the chronology of

dynamic cache behavior of a program.

For our third reduced compiler, we propose a simple compiler algorithm to statically iden-

tify delinquent loads so as to get rid of the additional compilation steps for memory profiling.8

Unfortunately, accurately predicting memory behavior at compile time using static compiler anal-

yses is nearly impossible. Our algorithm relies on simple heuristics to identify those static loads

that are likely to miss in the cache frequently. In particular, we observe the following heuristics

to be very useful for identifying delinquent loads in a loop structure: a load instruction whose

effective address is computed as a function of the loop induction variables has a high probability

to exhibit poor memory performance. This is not surprising. Since loop induction variables, by

definition, are updated every loop iteration, those load instructions dependent upon the loop in-

duction variables usually produce different effective addresses for each access and they are likely to

cause cache misses. Hence our reduced compiler performs loop-level analysis to identify all loads

that satisfy the above heuristics, which is a fairly straight-forward task, and we pick all such loads

as delinquent loads to be pre-executed. We observe this simple compiler algorithm successfully

identifies 88% of the total L1 misses that occur in 10 of our memory-bound benchmarks.9

While our static algorithm successfully identifies most of the delinquent loads in our bench-

marks, it also has a tendency to identify too many loads as delinquent. This causes pre-execution

to be performed even when it is not necessary, potentially increasing the runtime overhead. To

minimize performance degradation due to unhelpful pre-execution, we modify the pre-execution
8Our static analysis, however, does not resolve all three drawbacks of offline summary profiles that are mentioned

above. It is not aware of the input set for the workload when analyzing program code, producing the same output

regardless of the input sets or target platforms.
9This result is obtained from manual inspection of benchmarks. Unfortunately, for 3 benchmarks, the majority

of cache misses occur either in libraries, for which we do not have source code, or in too many loops, making it

infeasible to analyze by hand. However, we expect our heuristics is effective for these 3 benchmarks as well.
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region selection algorithm presented in Figure 4.1 to omit the second pass through the inner-most

loops (lines 11 – 13). This pass picks the inner-most loops with fewer than 25 iterations as the

pre-execution regions in order to guarantee all identified delinquent loads are covered by helper

threads. Without memory profiles, however, many short inner-most loops may have falsely identi-

fied delinquent loads, and thus we refrain from choosing any short inner-most loops in our reduced

compiler. The performance impact of eliminating cache-miss profiles in our compiler framework

will be discussed in Section 5.3.3.

4.2.4 Eliminating Loop Profiles

In addition to memory profiles, our aggressive compiler requires loop-trip count profiles to esti-

mate the amount of loop work and select optimal pre-execution regions following the algorithms

shown in Section 4.1.1. Similar to memory profiles, collecting loop-trip count profiles can also

be cumbersome. To perform such profiling, we construct the basic-block diagram of a program

and run the workload on a modified processor simulator to count the number of accesses to each

basic block and edge. For each loop identified from the basic-block diagram, we compute loop-trip

counts by dividing the backward-edge count by the number of visits to the landing pad.10 To avoid

such additional work, we identify pre-execution regions without using loop-trip count profiles in

our fourth reduced compiler.

Figure 4.7 presents a reduced algorithm for computing the set of pre-execution regions, P ,

in the absence of the loop-trip count profiles. This algorithm is identical to the original algorithm

from Figure 4.1 except it naively assumes all inner-most loops iterate fewer than 25 iterations,

which is the threshold value to determine whether or not a loop contains a small amount of

work.11 Therefore, on the first pass of the algorithm, none of the inner-most loops are selected

as pre-execution regions (lines 3 and 4); instead, the algorithm picks the next-outer loops as the
10Landing pad is usually the first basic block of loops, which is located right before the basic block pointed to

by the backward edge. Executed only once for each loop entrance, it initializes the loop-induction variable and

performs the loop-termination condition check with the initial value.
11We observe this simple assumption is correct for 83% of the inner-most loops in our benchmarks.
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Given: Global loop nest graph, GL
Compute:  Pre-Execution Region Set, P

  1: P = Φ;
  2: for each loop L in GL

  3:    if (level(L) == INNER_MOST)
  4:       continue;
  5:    else
  6:      if (P     nested_loops(L) == Φ)
  7:          P = P     {L};
  8: }

  9: for each inner-most loop L in GL {
10:    if (P     outer_loops(L) == Φ)
11:       P = P     {L};
12: }

from inner-most to outer-most {

Figure 4.7: Algorithm to compute the set of pre-execution regions, P , without loop-trip count profiles. Φ

denotes the empty set.

pre-execution regions as long as nesting of pre-execution regions does not occur (lines 5 – 7). Also,

notice this algorithm performs the second pass through the inner-most loops to pick any remaining

loops that are not pre-executed (lines 9 – 11) as is done in Figure 4.1, a step that was eliminated in

the algorithm from Section 4.2.3 to reduce potential pre-execution overhead. Although the second

pass can add loops containing falsely identified delinquent loads, we find it is worthwhile to ensure

none of the important inner-most loops are omitted. On the other hand, since the algorithm in

Figure 4.7 assumes all inner-most loops iterate a small number of times, several inner-most loops

that indeed iterate a large number of times may not be selected at the inner-most loop level, but

included as a part of their next-outer loops. In this case, helper threads can run away from the

main thread due to lack of synchronization in the inner-most loop body. Section 5.3.4 reports

the performance results with and without loop-trip count profiles and discusses some potential

drawbacks of the static algorithm for pre-execution region selection.

4.3 Implementation

Having presented various compiler algorithms for pre-execution, we now demonstrate how such al-

gorithms are actually implemented in the SUIF compiler infrastructure to build the compiler frame-

works for pre-execution. For our aggressive compiler, we also show how Unravel and SimpleScalar-

based simulators can be integrated into the compiler framework to provide program slicing infor-
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Table 4.1: Compilers used to generate the helper thread code for our experiments on the SMT processor

simulator. The compilers differ in how they remove the unnecessary code, select the prefetch conversion

candidates, identify the delinquent load instructions, and estimate the inner-most loop work.

Code Prefetch Problematic Loop

Removal Conversion Load Identification Work

A Program Slicing Slicing-Based Profile Profile

B Dead Code Elimination Slicing-Based Profile Profile

C Dead Code Elimination Standalone Profile Profile

D Dead Code Elimination Standalone Static Analysis Profile

E Dead Code Elimination Standalone Static Analysis Static Analysis

mation, cache-miss profiles, and loop-trip count information. Then we discuss issues on live-in

passing, and present the actual code examples generated by our aggressive compiler and compare

differences in the output code for three thread initiation schemes. Finally, we discuss ISA support

that our SUIF-based compiler frameworks assume from the SMT processor to enable pre-execution.

4.3.1 Summary of Compiler Frameworks

We propose five different compiler frameworks to construct helper threads. As presented in Sec-

tion 4.2, we modify the implementation of our aggressive compiler by substituting alternatives to

program slicing and offline profiling, thus forming four reduced compilers. Table 4.1 summarizes

our five compiler frameworks along with the algorithms each compiler uses to distinguish them.

Compiler A is the aggressive compiler from Section 4.1, and the remaining entries in Table 4.1,

lettered “B” through “E,” represent the reduced compilers from Section 4.2. First, Compiler B

eliminates program slicing pass and relies on gcc’s dead code elimination optimization to remove

noncritical code in the pre-execution region although this compiler still uses Unravel to identify

candidate loads for prefetch conversion. Compiler C implements the static compiler algorithm for

prefetch conversion described in Section 4.2.2 to extract prefetch conversion information without

program slicing analysis, thus completely eliminating the need for Unravel. Compiler D substitutes
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Figure 4.8: Design of our most aggressive prototype compiler. This compiler uses Unravel to perform

program slicing and offline profiles to drive optimizations. Arrows denote the interactions between the

compiler modules.

summary cache-miss profiles with static analysis to identify delinquent loads. Finally, Compiler

E relies on compile-time heuristics described in Section 4.2.4 to select pre-execution regions, thus

removing loop-trip count profiles and eliminating the need for any offline profiling completely.

4.3.2 Aggressive Prototype Compiler

Figure 4.8 illustrates the design of our aggressive prototype compiler. While all necessary al-

gorithms for pre-execution are implemented as a separate optimization pass in the SUIF, our

aggressive compiler also employs external tools such as the SimpleScalar-based profilers and Un-

ravel to acquire critical information to identify target delinquent loads and pre-execution regions,

and program slicing information, respectively. We modify the SimpleScalar’s cache simulator, sim-

cache [10], to collect summary cache-miss profiles.12 We also modify the SimpleScalar’s functional

simulator, sim-fast, to perform path profiling and derive loop-trip count information for every

loop in a program. For both cache-miss and loop-trip count profiles, we use the same input set

used for the actual performance run, but we collect cache-miss profiles only for the simulation

region as shown in Table 5.2 to most accurately reflect program’s memory behavior for the region

we simulate. On the other hand, to eliminate noncritical code within pre-execution regions and
12Although we use a cache simulator to acquire summary cache-miss profiles, one can also use other profiling

tools such as DCPI [5], Shade [18], or the Intel VTune performance analyzer [79]. However, we do not explore these

other approaches since profiling efficiency is not a concern in our work.
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Figure 4.9: Major components in our least aggressive prototype compiler. This compiler uses dead code

elimination to remove the unnecessary code and static analysis to identify the delinquent loads and select

the pre-execution regions. Arrows denote the interactions between the compiler modules.

drive prefetch conversion, we modify Unravel to implement the slicing algorithms presented in Sec-

tion 4.1.2 and algorithms to identify prefetch conversion candidates shown in Section 4.1.2. Then

our modified Unravel generates necessary information for program slicing and prefetch conversion

for each program source line. Those offline profiles and information from Unravel are fed into the

SUIF. Then our SUIF compiler pass identifies appropriate pre-execution regions that encompass

the targeted delinquent loads following the algorithm shown in Section 4.1.1 and also chooses an

optimal thread initiation scheme for each pre-execution region based on the algorithm in Sec-

tion 4.1.2. When selecting pre-execution regions, we discard all regions contributing less than 3%

of the application’s total L1 misses. Filtering out potentially unhelpful pre-execution regions helps

minimize the runtime overhead incurred by pre-execution. The SUIF compiler pass also clones each

identified pre-execution region, creates separate procedures for helper threads, and transforms the

code region properly. Code transformation includes parallelizing loops, removing noncritical code,

pinning delinquent loads, converting blocking loads into prefetches, removing stores and system

calls in pre-execution regions, and inserting codes for thread spawning and synchronization.

4.3.3 Reduced Prototype Compilers

Figure 4.9 illustrates the design of our most reduced prototype compiler, i.e., Compiler E from

Table 4.1. The block diagram is very similar to that of the aggressive compiler except that all

external tools are replaced with static compiler algorithms described in Section 4.2. As is done
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for the aggressive compiler algorithms, we also implement such reduced algorithms in the SUIF

compiler so that the whole helper thread construction process can be performed solely by the

SUIF. In our most reduced compiler, when program source files are given, the SUIF compiler

pass searches for all loops in the program and identifies delinquent loads statically following the

algorithm in Section 4.2.3. Then proper pre-execution regions are selected assuming all inner-most

loops iterate fewer than 25 iterations as described in Section 4.2.4. From then on, the helper thread

construction is almost identical to that of the aggressive compiler. Two differences are prefetch

conversion is done in the SUIF based on the algorithm presented in Section 4.2.2, and removing

noncritical codes relies on gcc’s dead code elimination optimization (see Section 4.2.1). While

Compiler E is implemented fully in the SUIF, other reduced compilers (Compiler B – D) described

in Section 4.3.1 are implemented easily by substituting the reduced algorithms incrementally.

4.3.4 Live-In Passing

To generate accurate prefetches for delinquent loads, helper threads must start execution with cor-

rect live-in values. To identify live-in variables for a pre-execution region, we first call a SUIF library

routine, find exposed refs(), to find all the variables used within the selected pre-execution re-

gion. Then for each identified variable, we check whether it is referenced prior to being overwritten

in the pre-execution region. This is easily done by traversing all instructions within the target code

region in the program execution order and examining whether the variable first appears in a source

operand or a destination operand of an instruction. A variable that appears in a source operand

first is a live-in variable for the pre-execution region. After all live-in variables are identified, our

compiler module inserts code to pass those variables from the main thread to the helper threads.

Since each hardware context has its own register file in our SMT processor model, communication

through registers between threads is not feasible. Therefore, we pass live-in variables through

memory using global variables that are declared solely for that purpose. To ensure the helper

threads get the correct live-in values, all live-in variables are passed before the main thread forks

the helper threads at the loop entrance.
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4.3.5 Code Generation

Our pre-execution compiler frameworks generate the final output in the form of the SUIF in-

termediate format. While the SUIF can directly generate code for a number of platforms, we

unfortunately do not have a SUIF-to-binary compiler for the SimpleScalar ISA.13 Therefore, we

run s2c, a utility provided by the SUIF, to convert the SUIF intermediate format into C source

code, and then we use gcc as the backend compiler to generate the final executable. In Figures 4.10

and 4.11, we provide actual code examples of the SUIF output in C for our three thread initiation

schemes and discuss details about the code generation of our compiler frameworks.

Figure 4.10a shows how to construct a single helper thread by applying the Serial scheme

to an inner-most loop in the AMMP benchmark. In addition, in Figure 4.10b, we apply the DoAll

scheme to a next-outer loop in the VPR benchmark. Note that a few lines in the VPR code example

have been erased to save space. Code generations for the Serial and DoAll schemes are very

similar, following five steps as indicated by the numeric labels in Figure 4.10. First, we clone the

pre-execution region containing both the loop header and loop body and place the code in a single

procedure (labeled “1”), which is created as a separate user procedure solely for pre-execution.14

Then we perform our optimization algorithms for store removal, program slicing, and prefetch

conversion on the loop body of the cloned code. We also generate code to spawn helper thread(s)

and pass the live-in variables to the helper threads (labeled “2”). For the DoAll scheme, we find

the code to update the loop-induction variable, which is already available in the internal SUIF

representation, and adjust it to distribute iterations to threads in round-robin fashion (labeled

“3”). Next, we insert a counting semaphore (labeled “4”), which is called “T,” and initialize

the value to “PD” (prefetch distance). Semaphore “T” blocks helper threads that run ahead of

the main thread by more than the prefetch distance, preventing them from getting too far away.
13The SimpleScalar ISA is called PISA (Parallel Instruction Set Architecture), and is a derivative of the MIPS

ISA.
14For the DoAll scheme, multiple helper threads share the same code, but just execute different loop iterations

by starting with different initial conditions. This is same for the DoAcross scheme; multiple rib threads share the

same rib thread code, but start execution with different loop induction variable and live-ins.
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Finally, we add a kill directive to halt any active helper threads after the main thread leaves

the pre-execution region (labeled “5”). As shown in the code example, our Serial scheme can be

viewed as a subset of the DoAll scheme where the number of launched helper threads is one.

Figure 4.11 shows a code example where we apply the DoAcross scheme to a next-outer

loop, which consists of two nested pointer-chasing loops, from the TWOLF benchmark. As de-

scribed in Section 4.1.2, our DoAcross scheme produces two types of helper threads, the backbone

and rib threads. The backbone thread performs the serialized update of the loop-induction vari-

able, whereas the rib threads perform the loop-body execution in parallel with the backbone thread

and other rib threads, thereby overlapping multiple memory accesses simultaneously. Generating

codes for the DoAcross scheme follows six steps. First, we clone the loop header and place it in

a separate backbone procedure. Likewise, we clone the loop body and put it in a rib procedure

(labeled “1”). Then for the rib thread code, we apply store removal and the same code optimiza-

tions from Figure 4.10. We also generate code to fork a single backbone thread in the main thread

(labeled “2”) and code to fork multiple rib threads in round-robin order in the backbone thread

(labeled “3”), passing live-ins as required. As in Figure 4.10, we insert counting semaphores to

synchronize threads. We insert a single semaphore, called “T0,” to keep the backbone thread

from getting more than the “PD” iterations ahead of the main thread (labeled “4”), and multiple

semaphores, one per rib thread, to synchronize each rib thread with the backbone thread during

communication of the induction variable and live-in values (labeled “5”). Finally, we insert a kill

directive (labeled “6”).

In addition to cloning the loop headers and loop bodies as shown in Figures 4.10 and 4.11,

we must clone any user procedure(s) as well, which are called from within the loop bodies (not

shown in the figures) to accurately generate memory addresses for the delinquent loads. Once

cloned, these procedures should also undergo store removal and code optimizations since they

are part of the helper thread code and should not disrupt the main computation. For example,

the net cost() and get non updateable bb() routines from Figure 4.2 should be cloned and

optimized along with the loop from try swap(). However, we cannot clone any system calls and
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library calls since the source code for those functions is not available.

4.3.6 ISA Support

Our SUIF-based compiler frameworks assume an SMT processor with following ISA support to

enable pre-execution. First, we assume a fork instruction that specifies a hardware context ID and

a PC. The fork initializes the program counter of the specified hardware context to the PC value

and activates the context. Second, we assume suspend and resume instructions. These instructions

are used to “recycle” threads for low overhead thread initiation as describe in Section 4.1.3. Both

instructions specify a hardware context ID to suspend or resume. In addition, suspend causes a

pipeline flush of all instructions belonging to the suspended context. While the processor state of a

suspended context remains in the processor, the associated thread discontinues fetching and issuing

instructions after the suspend and pipeline flush.15 Third, we assume a kill instruction that halts

all currently active helper threads as described in Section 4.1.3. Only the main thread can execute

the kill instructions. Finally, we assume a prefetch instruction, which is a nonblocking and

nonfaulting load instruction. Unlike prefetch instructions in some other platforms, our prefetch

instruction has the same priority as the normal load instructions and the prefetch requests are

never dropped.

15Note, however, those three instructions, fork, suspend, and resume, are not solely for pre-execution, but can be

used to support user-level multithreading in general. While such functions can be also performed using the OS API,

we do not consider using the OS to manage helper threads because our simulator cannot emulate the OS effect.
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sem_init(T,PD);
for (i=0; i<NTHREADS; i++)

fork(Ti,loop_44,i,nets_to_update,net_block_moved,

         bb_coord,bb_index,place_cost_type,delta_c);
for (k=0;k<num_affected_nets;k++) {

sem_v(T);

}
kill();

void loop_44(int tid, int *nets_to_update, int
      *net_block_moved, struct s_bb *bb_coord, ...) {
  for (k=tid;k<num_affected_nets;k+=NTHREADS) {

sem_p(T);

  }
}

......

......

b)

1

3

2

45

int mm_fv_update_nonbon(float lambda) {

sem_init(T,PD);
fork(T0,loop_18,imax,atomall,vector,a1);

for (i=0; i<imax; i++) {
    sem_v(T);

a2 = (*atomall)[i];
j = i*4;
(*vector)[j] = a2->px - a1->px;
(*vector)[j+1] = a2->py - a1->py;
(*vector)[j+2] = a2->pz - a1->pz;

}
  kill();
}
void loop_18(int tid, int imax ATOM **atomall[],
             double *vector[], ATOM *a1) {
  for (i=0;i<imax;i++) {

sem_p(T);
    a2 = (*atomall)[i];
    prefetch(&a1->px);
    prefetch(&a2->px);
    prefetch(&a1->py);
    prefetch(&a2->py);
    prefetch(&a1->pz);
    prefetch(&a2->pz);
  }
}

......
a)

1

2

45

Figure 4.10: Code generated by the aggressive compiler to implement a) the Serial scheme for the

AMMP benchmark and b) the DoAll scheme for the VPR benchmark. Code to initiate pre-execution

and synchronize the helper threads appears in bold face.
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void dbox_pos_2(TEBOXPTR antrmptr) {

sem_init(T0,PD);

for (i=1; i<NTHREADS; i++) sem_init(Ti,1);

fork(T0,loop_19_backbone,antrmptr);

  for(termptr = antrmptr; termptr; termptr=termptr->nextterm) {
sem_v(T0);

    net = termptr->net;
    dimptr = netarray[net];
    dimptr->old_total = dimptr->new_total;
    termptr->termptr->xpos = termptr->termptr->newx;
    missing_rows[net] = tmp_missing_rows[net];
    num_feeds[net] = tmp_num_feeds[net];
    rowsptr1 = rows[net];
    rowsptr2 = tmp_rows[net];
    for (row = 0; row <= numRows+1; row++) {

rowsptr1[row] = rowsptr2[row];
    }
  }
kill();

}

......

void loop_19_backbone(TEBOXPTR antrmptr) {
t=T1;

  for (termptr = antrmptr; termptr; termptr=termptr->nextterm) {
sem_p(T0);

   sem_p(t);
    fork(t,loop_19_rib,termptr,t);
    t=next_roundrobin_threadID(t);
  }
}

void loop_19_rib(struct termbox *termptr, thread t) {
  dimptr = netarray[termptr->net];
  prefetch(&dimptr->new_total);
  prefetch(&termptr->termptr->newx);
  prefetch(&tmp_missing_rows[net]);
  prefetch(&tmp_num_feeds[net]);
  rowsptr2 = tmp_rows[net];
  for (row = 0; row <= numRows+1; row++) {
    prefetch(&rowsptr2[row]);
  }
sem_v(t);

}

13

2

4

5

5

6

Figure 4.11: Code generated by the aggressive compiler to implement the DoAcross scheme for the

TWOLF benchmark. Code to initiate pre-execution and synchronize the helper threads appears in bold

face.
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Chapter 5

Evaluation in a Simulation-Based Environment

In this chapter, we evaluate the performance of compiler-based pre-execution by generating the

helper threads using our five SUIF-based compiler frameworks introduced in the previous chapter.

The experimental evaluation is performed on a detailed architectural simulator of an SMT proces-

sor. We first provide the experimental methodology in Section 5.1, and then report the evaluation

results for our aggressive and reduced compilers in Sections 5.2 and 5.3, respectively.

5.1 Experimental Methodology

For the experiments, we process a number of benchmarks and construct helper threads using the

compiler frameworks from Chapter 4. The construction of helper threads, including the offline

profiling and program slicing steps, is done fully automatically without any manual intervention.

The generated binaries, to which the helper thread code is integrated, are executed on a time-

accurate SimpleScalar-based SMT processor simulator. This section presents the configuration of

our simulator and introduces the benchmarks we choose for our experiments.

5.1.1 Simulator Configuration

Our simulator faithfully implements a research SMT processor model proposed by Tullsen et.

al. [76]. We improve the SMT processor simulator from Madon et. al. [46], which is originally

derived from the SimpleScalar toolset’s out-of-order processor simulator, sim-outorder [10]. Since

the SimpleScalar toolset is well known in the research community and is assumed to be sufficiently

reliable, we use the same execution units, register renaming logic, branch predictor, and cache

models that are provided by the original SimpleScalar toolset. In addition, we modify the simu-

lator so that it can support multiple hardware contexts as in an SMT processor. Therefore, we

replicate the program counter, register file, and branch predictor1 for each hardware context, and
1Providing branch predictor to each hardware context can be an expensive design choice. Although our exper-

imental results are collected using per-context branch predictor, our later experiment, which is not presented in

this thesis, shows that sharing the large second-level branch look-up table among all contexts does not affect the

73



Table 5.1: SMT processor simulator configuration.

Processor Pipeline

Issue width 8-way # hardware contexts 4

RUU size 128 entries Instruction fetch queue 32 entries

Load-store queue 64 entries Functional units 8 Int, 4 FP units

Int add/ mult/ div 1/ 3/ 20 cycles FP add/ mult/ div 2/ 4/ 12 cycles

Branch Predictor

Gshare predictor 2K entries Return of stack 8 entries

Branch target buffer 2K entries, 4-way set-associative

Memory Hierarchy

Level 1 cache Split I & D, 32KB, 2-way set-associative, 32B block, 1 cycle latency

Level 2 cache Unified, 1MB, 4-way set-associative, 64B block, 10 cycle latency

Main memory access time 122 cycles

modify the fetch logic to implement the ICOUNT fetch policy from [76]. Our simulator keeps track

of the number of instructions in the reorder buffer (also known as the Register Update Unit or

RUU in SimpleScalar) for each hardware context and assigns the fetch slots to a currently-active

hardware context with the lowest ICOUNT. The simulator fetches instructions from a maximum

of 4 hardware contexts every cycle. Except for the program counter, register file, and branch pre-

dictor, all other processor resources are shared among multiple hardware contexts. Note that our

simulator does not model a stride-based hardware prefetcher, nor does the gcc compiler insert any

software prefetch instructions into the original program code for prefetching. While some of our

benchmarks may benefit from such conventional prefetching techniques, it should be pointed out

that many of our targeted loops contain pointer dereferences or nested loop structures for which

conventional stride-based prefetching and software prefetching are not usually effective. Finally,

new instructions to support pre-execution, which are described in Section 4.3.6, are properly im-

plemented as well. Upon detecting a suspend instruction at the decode stage, the processor stops

performance of pre-execution noticeably.
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fetching from the suspended hardware context. Likewise, when a resume instruction is detected,

the processor sets a proper bit, which denotes whether a hardware context is active or not, in

order to restart fetching from the resumed hardware context. Table 5.1 reports our simulator

configuration.

5.1.2 Benchmarks

In our simulation-based study, we evaluate 13 benchmarks from various benchmark suites, i.e., the

SPEC CINT2000 and CFP2000 suites [71], and the Olden benchmark suite [59]. Unfortunately,

we could not evaluate all benchmarks in those 3 benchmark suites. 1 SPEC CINT2000 benchmark

is written in C++ and the remaining 10 benchmarks in the SPEC CFP2000 benchmark suite

are written in Fortran. Since Unravel can only process ANSI C programs, those benchmarks are

excluded from our benchmark list. 4 other benchmarks in the SPEC CINT2000 benchmark suite

are not evaluated; 2 benchmarks cannot be analyzed by Unravel, 1 benchmark is not handled by

the SUIF, and the last benchmark performs system calls that are not currently supported by the

SimpleScalar toolset. On the other hand, 8 benchmarks in the Olden benchmark suite are not

evaluated since they perform recursive binary- or quad-tree traversals, which our current compiler

frameworks cannot analyze.

Table 5.2 reports the benchmarks used in our study and 4 pieces of information for each

benchmark. The column labeled “Input” reports the input sets used to run the benchmark. For

the SPEC benchmarks, we choose the reference input set provided by SPEC [71], and for the

Olden benchmarks, we select input parameters that are normally used for these benchmarks. The

next two columns, labeled “FastFwd” and “Sim,” show the number of skipped, or fast-forwarded,

instructions before entering the detailed timing simulation region, and the number of instructions

simulated under detailed timing, respectively. Note, the instruction counts include instructions

executed outside the pre-execution regions as well as instructions within the pre-execution regions.

Finally, the column labeled “IPC” presents the committed instructions per cycle on our simulator

without performing pre-execution. As mentioned earlier, both profile and actual performance runs
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Table 5.2: Benchmark characteristics.

Suite Name Input FastFwd Sim IPC

256.bzip2 reference 186,166,461 123,005,773 1.3849

175.vpr reference 364,172,593 130,044,367 1.4039

SPEC 300.twolf reference 124,205,135 112,809,146 1.1595

CINT2000 254.gap reference 147,923,793 127,932,004 3.3558

197.parser reference 245,277,302 126,593,730 1.9844

181.mcf reference 12,149,459,578 137,280,363 0.7914

164.gzip reference 162,442,542 135,592,391 1.9840

183.equake reference 2,570,651,646 21,850,552 0.7586

SPEC 188.ammp reference 2,439,723,993 129,357,604 1.3600

CFP2000 179.art reference 12,899,865,395 113,811,999 1.0900

177.mesa reference 262,597,404 54,117,618 2.8605

Olden mst 1024 nodes 183,274,940 24,361,256 0.1153

Benchmarks em3d 20K nodes 53,331,921 108,341,604 0.5929

use the same simulation regions and input sets so that our results do not account for discrepancies

between the two runs.

5.2 Results of Aggressive Compiler

Having introduced the simulator configuration and benchmarks, we now report the experimental

results for our aggressive compiler and provide detailed analyses. Section 5.2.1 presents various

static and dynamic information of the helper threads constructed by our aggressive compiler.

Section 5.2.2 reports the performance results as well as the cache miss coverage of compiler-

based pre-execution. Section 5.2.3 breaks down the execution time to see the contribution of each

compiler algorithm for effectiveness, i.e., speculative loop parallelization, program slicing, and

prefetch conversion, to the overall performance improvement. In Section 5.2.4, we apply three

different thread initiation schemes, i.e., Serial, DoAll, and DoAcross, to the pre-execution
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Table 5.3: Static characterization of the helper thread code generated by our aggressive compiler.

Benchmark Load Lines Slice Store Pref SE DA DX Back Span

256.bzip2 28 62 0 6 9 2 1 0 - 0

175.vpr 32 318 130 14 21 1 2 0 - 1

300.twolf 55 132 23 35 25 1 0 5 0.24 0

254.gap 8 14 8 1 4 1 0 0 - 0

197.parser 5 51 0 11 0 1 0 1 8.58 2

181.mcf 26 69 0 30 10 0 0 1 41.8 1

164.gzip 3 23 0 1 0 0 0 1 57.7 0

183.equake 67 21 0 6 24 0 1 0 - 0

188.ammp 41 67 19 24 35 3 0 0 - 0

179.art 13 40 11 7 12 5 2 0 - 0

177.mesa 1 11 0 2 1 1 0 0 - 0

mst 4 34 16 1 0 0 0 1 0.00 1

em3d 13 12 2 0 7 0 1 0 - 0

TOTAL: 296 854 209 138 148 15 7 9 - 5

regions in selected benchmarks and show that our thread initiation scheme selection algorithm

always chooses the best scheme for those benchmarks. Section 5.2.5 compares the performance

results between the hardware and software mechanisms for thread synchronization and discusses

tradeoffs. Finally, in Section 5.2.6, we carefully inspect each of our 31 pre-execution regions and

show that our speculative loop parallelization and store removal rarely disrupt the accuracy of the

generated helper threads.

5.2.1 Characterization of Helper Threads

We first present some static and dynamic characteristics of the helper threads generated by our

aggressive compiler. Table 5.3 reports 10 static measurements collected from the constructed

pre-execution code, and Table 5.4 reports 4 dynamic measurements gathered at runtime for each
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benchmark with pre-execution. We believe these measurements provide useful insights to better

understand characteristics of compiler-generated prefetching helper threads.

In Table 5.3, we report 10 static measurements from the generated helper thread code.

“Load” is the number of delinquent loads identified using offline memory profiles, “Lines” is the

number of original source code lines within the pre-execution regions (it also takes into account

lines in procedure calls), “Slice” is the number of source code lines eliminated by Unravel’s program

slicing, “Store” is the number of source code lines removed as a consequence of store and system call

removal in addition to program slicing (note, measurements for “Slice” and “Store” are mutually

exclusive), and “Pref” is the number of delinquent loads converted into prefetches. Then the

following 3 measurements, “SE” for Serial, “DA” for DoAll, and “DX” for DoAcross, report

the number of pre-execution regions transformed using each thread initiation scheme, respectively.

For the pre-execution regions parallelized by the DoAcross scheme, we also present an additional

measurement, “Back,” which is the percentage of cache misses incurred in the backbone as opposed

to the loop bodies, or ribs. Finally, “Span” shows the number of pre-execution regions that contain

procedure calls and thus span multiple procedures.

From these measurements, we can see four important characteristics of our compiler-generated

helper thread code. First, by looking at the “Load” column, we see only a small number of static

loads, i.e., less than 23 loads on average, account for more than 90% of the total L1 misses in

each benchmark. Note, however, not all the identified loads are pre-executed since our compiler

does not generate helper threads for those pre-execution regions that account for less than 3% of

the total misses as mentioned in Section 4.3.2. Therefore, many delinquent loads that contribute

to only a small portion of cache misses are discarded so that our compiler can concentrate on a

small set of very important pre-execution regions that are responsible for a significant portion of

the overall memory stall time. Second, program slicing and store removal together eliminate a

large portion of static code within the pre-execution regions; across all benchmarks, 347 source

code lines are removed out of 854 original source code lines or 40% of the static code on average.

Among those removed codes, Unravel’s program slicing is responsible for 209 lines or 60% of the
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Table 5.4: Dynamic characterization of the helper thread code generated by our aggressive compiler.

Benchmark Forks Inst-Fork Inst-Pre Inst-Miss

256.bzip2 252003 488 238.6 20.7

175.vpr 275816 1103 228.7 15.0

300.twolf 591343 460 45.6 6.6

254.gap 32739 3908 940.9 110.5

197.parser 4093 27.6K 511.5 13.6

181.mcf 3997152 68.6K 25.7 4.1

164.gzip 1478363 513 53.9 30.3

183.equake 3 21.9M 4.123M 3.2

188.ammp 15951 8110 3.2K 9.5

179.art 612 243K 128.9K 8.3

177.mesa 23750 2218 33.6 26.4

mst 393471 47.6K 53.0 4.9

em3d 300 1.08M 324.2K 2.6

AVG: 16.03K 1038 10.9

removed code while store and system call removal accounts for 138 lines or 40% of the removed

code. Such massive code removal partly explains why our helper threads can quickly get ahead of

the main thread and trigger cache misses early. Third, comparing the “Pref” and “Load” columns,

we can see our compiler successfully converts about 50% of the identified delinquent loads into

prefetches. This in turn enables our aggressive compiler to select the Serial scheme for 15 out

of 31 pre-execution regions, thus using only a single helper thread to perform pre-execution for

these regions. For the remaining 16 pre-execution regions for which our compiler could not convert

all delinquent loads into prefetches, either the DoAll or DoAcross schemes is selected instead

to overlap multiple blocking memory accesses and thus speedup the main thread. Finally, the

“Span” column shows 5 out of 31 pre-execution regions span across multiple procedures, implying

the inter-procedure analyses in both Unravel and the SUIF are useful for some of our benchmarks.
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Table 5.4 reports 4 dynamic thread measurements gathered at runtime for each benchmark

on our SMT processor simulator by launching the generated helper threads. “Forks” is the number

of helper threads spawned. Note, for those pre-execution regions using the DoAll scheme, 3 helper

threads are forked each time the main thread enters the targeted region. On the other hand, for

pre-execution regions using the DoAcross scheme, 1 backbone thread is forked whenever the main

thread enters the pre-execution region, but the backbone thread invokes the rib threads multiple

times since a rib thread executes only one loop iteration and suspends itself. “Inst-Fork” is the

number of instructions executed in the main thread between two consecutive pre-execution regions.

This gives an idea about how frequently helper threads are launched in our benchmarks. “Inst-Pre”

is the number of instructions executed by each helper thread for every fork. This measurement

only includes instructions to generate memory addresses for the delinquent loads, and it does not

account for instructions due to the thread synchronization and live-in passing. Finally, “Inst-Miss”

is the number of helper thread instructions executed to trigger each cache miss in a program, which

is computed by dividing the total instructions executed in helper threads by the total number of

cache misses the helper threads trigger.

From these dynamic measurements, we can see two important characteristics of our compiler-

generated helper threads. First, by looking at the “Inst-Fork” and “Inst-Pre” columns, we notice

our helper threads are coarse-grained since the frequency of helper thread spawning is relatively low.

Once invoked, our helper threads execute thousands of instructions before being suspended; this is

a very large amount compared to other pre-execution techniques (e.g., Roth and Sohi [63] or Zilles

and Sohi [84]). In spite of adopting a thread recycling model as described in Section 4.1.3, spawning

a helper thread is still expensive in our system because dispatching helper threads and passing

live-in values are performed in software. Therefore, this type of coarse-grain thread management

is especially helpful for minimizing such software overhead associated with thread startups, and we

believe it will be even more crucial for higher thread synchronization cost. On the contrary, in many

previous proposals on pre-execution techniques where helper threads are forked in hardware [6,

19, 20, 41, 48, 63, 64, 73, 84], fine-grain thread management is affordable. Second, the “Inst-Miss”
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Figure 5.1: Normalized execution time broken down into the “Busy Time,” “Overhead,” and “Mem Stall”

components. The “Baseline” and “Pre-exec” bars show the performance without and with pre-execution,

respectively.

column shows our helper threads are very effective in triggering cache misses. To compute memory

address for a delinquent load and issue a prefetch, our helper threads execute only a few instructions

most of the time, 10.9 instructions on average across all benchmarks. This demonstrates that

Unravel’s program slicing successfully extracts minimum code necessary to compute the targeted

delinquent loads.

5.2.2 Performance Results

Now, we report the performance results of our compiler-based pre-execution. Figure 5.1 presents

the execution times for the 13 benchmarks we evaluate. The 7 applications in the top row are the

SPEC CINT2000 benchmarks, whereas the 6 applications in the bottom row are from the SPEC

CFP2000 and Olden benchmark suites. For each benchmark, we show two bars; the first bar,

labeled “Baseline,” is the execution time without pre-execution, which is normalized to 100, while

the second bar, labeled “Pre-exec,” is the execution time with pre-execution, which is normalized

to the execution time of “Baseline.” Each bar is broken down into three components. “Busy

Time” is the execution time without performing pre-execution, assuming a perfect data memory
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system where every data cache-block request is serviced in 1 cycle, i.e., L1 cache hit. Note,

however, all I-cache accesses are handled normally. “Overhead” is the incremental increase in

execution time over the “Busy Time” by performing pre-execution with a perfect data memory

system. This component reflects the time spent executing the pre-execution related instructions

in helper threads. Although the behavior of helper threads on a perfect memory system is a bit

different from that of on a real memory system, we believe this component roughly shows the

overhead associated with pre-execution. Finally, “Mem Stall” is the memory-stall time assuming

a real memory system, which is the incremental increase in execution time over “Busy Time” +

“Overhead.”

Figure 5.1 shows our aggressive compiler improves the performance of 10 out of 13 bench-

marks. For those 10 benchmarks with speedup, the execution time with pre-execution is reduced

from 1% up to 47%, providing 20.9% reduction in execution time on average. However, pre-

execution degrades the performance of 3 benchmarks, GAP, GZIP, and MESA, by 4.7% on average.

Overall, we achieve a harmonic mean of 17.6% speedup for all 13 benchmarks fully automatically

using our aggressive compiler. It is noticeable that compiler-based pre-execution provides much

larger speedup for the SPEC CFP2000 and Olden benchmarks (the bottom row in Figure 5.1) as

compared to the SPEC CINT2000 benchmarks. This is partly because these integer applications

in the SPEC CINT2000 suite spend less time on memory stalls compared to the other bench-

marks.2 In addition, pre-execution also incurs nontrivial runtime overhead; for all 13 applications,

the “Overhead” component accounts for 11.9% of the “Baseline” time on average. In particular,

EQUAKE, ART, and EM3D have a huge pre-execution overhead. This is because our software syn-

chronization mechanism injects a large amount of garbage instructions into the processor pipeline

due to busy waiting.

To better understand the effectiveness of compiler-based pre-execution as a form of prefetch-
2The 7 SPEC CINT2000 benchmarks spend 28.6%, on average, of their execution time on memory stalls and

achieve 1.7% speedup. On the other hand, applications from the SPEC CFP2000 and Olden benchmark suites in

the bottom row, except for MESA, spend an average of 72.0% of their time on memory stalls and achieve 58.2%

speedup.
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Figure 5.2: Cache-miss coverage broken down into five categories: uncovered cache misses occurring

outside the pre-execution regions (“Non Region”), fully covered cache misses by pre-execution (“Full”),

partially covered cache misses by pre-execution (“Partial”), remaining cache misses that hit in the L2

cache (“L2-Hit”), and remaining cache misses satisfied from main memory (“Mem”).

ing, we report the cache-miss coverage in Figure 5.2, classifying the L1 misses into five categories.

Again, each benchmark has two bars; the first bar, labeled “Baseline,” is for the baseline run

without pre-execution, and the second bar, labeled “Pre-exec,” is with pre-execution. The “Base-

line” bar is divided into three components: the L1 misses that occur outside the pre-execution

regions (labeled “Non-Region”), misses that miss in the L1 cache but hit in the L2 cache (labeled

“L2-Hit”), and misses that are served from main memory (labeled “Mem”). The “Pre-exec” bar

has two more categories in addition to those three components; “Full” represents the fully cov-

ered cache misses that originally missed in the L1 cache but now hit in the L1 cache thanks to

pre-execution, and “Partial” shows the partially covered cache misses that had been prefetched

by helper threads but have not arrived at the L1 cache in time, thereby providing partial benefit

to the main thread. To collect such statistics, we modify our simulator to track all the memory

references issued from the helper threads and record the cache hit/miss status for the memory

references from the main thread.

Figure 5.2 provides many insights. First, across all 13 benchmarks, 79.1% of the total L1
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misses on average that occur in the original program are contained in the selected 31 pre-execution

regions, and most of them are covered by pre-execution.3 However, PARSER and MESA have

85.5% of cache misses in the “Non-Region” component. This is because our compiler does not select

loops that account for less than 3% of the total cache misses (see Section 4.3.2), and PARSER and

MESA contain lots of loops incurring a very small number of cache misses. Second, our aggressive

compiler generates helper threads that are very effective in prefetching for many applications. For

VPR, GAP, MCF, EQUAKE, AMMP, ART, MST, and EM3D, the helper threads convert from

74.2% to 99.1% of the main thread’s cache misses, 84.9% on average across all 8 benchmarks, into

either fully or partially covered cache misses. This clearly shows our compiler-based pre-execution

satisfies all three conditions for effective prefetching: namely, timeliness, accuracy, and high cache-

miss coverage. However, the miss coverage is somewhat lower for BZIP2, TWOLF, and GZIP, only

36.5% on average. By carefully examining each benchmark, we find two reasons for the reduced

miss coverage. First, the helper threads issue memory references after the main thread has already

accessed the corresponding load instances. This situation sometimes happens especially for short

loops since it takes some time, or a few loop iterations, to initiate helper threads and allow them to

get ahead of the main thread. Such late pre-execution accounts for some uncovered cache misses

in BZIP2, VPR, and TWOLF that contains many pre-execution regions at the inner-most level

with less than 10 loop iterations. Second, as explained in Section 5.2.6, some of our compiler

optimizations can disrupt the correctness of the generated helper threads, thereby reducing the

cache-miss coverage. This factor accounts for some uncovered cache misses in BZIP2, VPR, and

MCF due to store removal, and in GZIP due to speculative loop parallelization.

5.2.3 Contributions of Algorithms

The previous section presents the performance impact and cache-miss coverage of our aggressive

compiler, which applies all 3 compiler optimization algorithms, i.e., program slicing, prefetch
3We stop identifying delinquent loads once the accumulate cache-miss percentage of the already selected loads

exceeds 90% of the total cache misses. Therefore, not all cache-missing loads within a pre-execution region are

pre-executed.
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conversion, and loop parallelization. In this section, we examine the contribution of each individual

algorithm to the performance improvement of the benchmarks. Figure 5.3 reports the experimental

results for the 10 benchmarks that provide speedup with pre-execution (see Figure 5.1). In this

experiment, we apply each optimization algorithm incrementally and measure the execution time.4

Again, the first bar, labeled “Baseline,” is the execution time without pre-execution. The second

bar, labeled “Parallel,” is the execution time where we apply speculative loop parallelization only,

without program slicing and prefetch conversion. The third bar, labeled “Slicing,” shows the

execution time with program slicing as well as speculative loop parallelization, but still without

prefetch conversion. Finally, for the fourth bar, labeled “Pre-exec,” we perform all 3 optimization

techniques including prefetch conversion and measure the execution time (this is the same as the

“Pre-exec” bars in Figure 5.1). All 3 bars are normalized to the execution time of the “Baseline”

bar. As in Figure 5.1, all bars are broken down into 3 components, “Mem Stall,” “Overhead,”

and “Busy Time.” Note, for “Parallel” and “Slicing” experiments, since prefetch conversion is

not performed, a pre-execution region always contains some blocking loads, and thus the Serial

scheme is never selected unless store removal converts all delinquent loads within the pre-execution

region into prefetches (see Section 4.1.4). Therefore, the thread initiation scheme used for the first

two experiments may be different from the one used for the “Pre-exec” experiments.

Figure 5.3 clearly shows speculative loop parallelization improves the performance of all

benchmarks except for EM3D; this means it is very important to exploit thread-level parallelism

in order to achieve speedup with pre-execution. In particular, for BZIP2, PARSER, and MCF,

the entire performance gain is achieved solely by speculative loop parallelization, and it also ac-

counts for most of the gain in TWOLF, EQUAKE, and MST. For those benchmarks, the execution

time rarely changes after “Parallel” bar, which implies program slicing and prefetch conversion do

not contribute much to the performance improvement. However, by comparing the “Parallel”

and “Slicing” bars, we can see program slicing improves only 1 benchmark, i.e., VPR. This is

not too surprising because noncritical code unnecessary to compute the delinquent loads is often
4Store removal and code pinning are always performed for all the experiments to preserve the correctness of the

main computation and to ensure the execution of delinquent loads by helper threads, respectively.
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Figure 5.3: Impact of individual algorithms on overall performance in the aggressive compiler. The

“Parallel” bars perform pre-execution with speculative loop parallelization only; the “Slicing” bars perform

pre-execution with program slicing and speculative loop parallelization, but without prefetch conversion;

and the “Pre-exec” bars perform pre-execution with all optimizations including prefetch conversion.

removed via dead-code elimination optimization in the backend compiler. Program slicing is ef-

fective for VPR because it contains a pre-execution region, which accounts for a large portion of

the total execution time and spans multiple procedures. While Unravel performs slicing across

the procedure boundaries, gcc does not perform dead-code elimination globally. Nonetheless, this

observation that program slicing improves only 1 benchmark is strong motivation for eliminating

Unravel from our compiler framework, which is further discussed in Section 4.2.1. Finally, going

from the “Slicing” to “Pre-exec” bars, the performance of 7 benchmarks is improved thanks to

prefetch conversion optimization. In fact, prefetch conversion accounts for most of the performance

gain in ART and EM3D, and half the gain in AMMP. Prefetch conversion removes blocking load

instructions that would be otherwise stalled in the reorder buffer, thereby speeding up the execu-

tion of helper threads. (More detailed discussion on the benefit of prefetch conversion is provided

in Section 4.1.2.) Having demonstrated prefetch conversion plays a crucial role in improving a

program’s performance with pre-execution, program slicing becomes important as well because

prefetch conversion is driven by the program slicing analysis in our compiler framework. In other
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words, although program slicing itself does not enhance the performance of many of our bench-

marks, it indirectly contributes to the performance gain through prefetch conversion. Therefore,

it is a still crucial component in our aggressive compiler.

5.2.4 Comparison of Thread Initiation Schemes

We examine the impact of helper thread initiation schemes on the performance and see whether

our aggressive compiler chooses the right initiation scheme for the selected pre-execution regions.

For this purpose, we choose 4 pre-execution regions from AMMP, EQUAKE, EM3D, and MST

(1 region from each benchmark). Each selected pre-execution region has different blocking load

characteristics and induction variable update patterns, as shown in Figure 5.4. First, in AMMP,

prefetch conversion has removed all the blocking loads and converted them into prefetches, thus

our compiler framework selects the Serial scheme to initiate a single helper thread for the re-

gion. On the other hand, the pre-execution regions in EQUAKE, EM3D, and MST still contain

blocking loads, and one of the parallel schemes is chosen by the compiler. Concerning the induc-

tion variable, AMMP, EQUAKE, and EM3D have affine induction variables, whereas MST has a

pointer-chasing induction variable. For each pre-execution region, we force our compiler to gen-

erate helper threads using all three thread initiation schemes, Serial, DoAll, and DoAcross,

regardless of the blocking load characteristics and induction variable type. However, for MST, since

the induction variable is updated by dereferencing a pointer value, we cannot apply the DoAll

scheme where the induction variable is updated independently and locally in each helper thread.

To show the effectiveness of our thread-initiation scheme selection algorithm, the scheme selected

by our aggressive compiler is denoted in bold face.

Figure 5.4 shows choosing the right initiation scheme makes a big difference in performance

of pre-execution. For each pre-execution region, the best scheme outperforms the worst scheme

by 25.9%, 39.8%, 51.3%, and 44.6% for AMMP, EQUAKE, EM3D, and MST, respectively. When

compared to the second-best scheme, the best scheme still provides much larger gain, i.e., 16.7%,

32.9%, 49.1%, and 44.6% for 4 benchmarks, respectively. Fortunately, our aggressive compiler
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Figure 5.4: Comparing the helper thread initiation schemes. The “Baseline” bars report the execution

time without pre-execution. The remaining bars report the execution time when the Serial, DoAll,

and DoAcross schemes are applied, respectively. The thread initiation schemes selected by our compiler

appear in bold face.

always chooses the best thread initiation scheme for all 4 pre-execution regions, demonstrating

that the scheme selection algorithm presented in Section 4.1.2 is effective. We expect our compiler

to select the right initiation scheme for other pre-execution regions as well that are not investigated

in this section.

Next, let us consider why our scheme selection algorithm is likely to choose the best scheme

most of the time. For AMMP, the Serial scheme performs best. Since prefetch conversion

removes all the blocking loads and program slicing reduces number of instructions to be executed,

even a single helper thread is easily able to get ahead of the main thread. On the other hand,

while our two parallel schemes, DoAll and DoAcross, provide similar level of speed advantage

to the helper threads, they must manage multiple helper threads and thus perform worse than

the Serial scheme. Another important factor to consider is synchronization. In the absence of

blocking loads, the helper thread in AMMP is likely to run ahead of the main thread most of the

time, thereby spending much time on synchronization. While the Serial scheme needs only 1

synchronization point between the main thread and the single helper thread, the DoAll scheme

requires 3 synchronization points between the main thread and the 3 helper threads. Moreover, this

partly explains why the DoAcross scheme performs better than the DoAll scheme in AMMP

since the DoAcross scheme has a maximum of 1 active synchronization point at any instance of

the program execution. In other words, the backbone thread either synchronizes with the main
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thread or one of the rib threads, and it does not do both at the same time. Thread synchronization

is inevitable to avoid run-away helper threads, but it also has a negative impact on the performance

since a busy-waiting thread is likely to have the lowest ICOUNT, thereby occupying a large portion

of the fetch units that could have been utilized by other threads.

For EQUAKE and EM3D, where pre-execution regions contain blocking loads and have

affine induction variables, the DoAll scheme performs the best. In this case, it is obvious that

a single helper thread cannot get ahead of the main thread due to the blocking loads, and thus

the Serial scheme is not a better choice than the two parallel schemes. Between the DoAll and

DoAcross schemes, the DoAll scheme can overlap more memory accesses than the DoAcross

scheme, in which one helper thread, i.e., the backbone thread, is solely dedicated to update the

induction variable and communicates with the rib threads to pass the next induction variable value,

which is totally unnecessary for affine loops. Finally, for MST, the DoAcross scheme outperforms

the Serial scheme due to the remaining blocking loads in the helper thread.

5.2.5 Comparison of HW/SW Synchronization Mechanisms

Thus far, we have used software mechanisms for thread synchronization where a helper thread

executes a busy-waiting loop until the main thread catches up, as described in Section 4.1.2.

Since the busy-waiting helper threads sometimes slow down the execution of the main thread,

this section also evaluates a hardware synchronization mechanism and compares the performance

between the two synchronization mechanisms. We modify our simulator to implement such special

hardware support for pre-execution.5 We create 32 hardware registers for storing values of counting

semaphores. Our counting semaphores work similarly to the hardware locking mechanism proposed

in Tullsen et. al. [77]. We also assume a new ISA support, Sem P and Sem V instructions, to

perform “P” and “V” operations on the semaphore registers, respectively. Both the Sem P and

Sem V instructions have a single operand to specify the corresponding semaphore register. When a

thread executes a Sem P instruction, the specified semaphore register value is decremented by 1 if

it is greater than zero; otherwise, the thread is blocked until the register value becomes non-zero.
5Note, however, hardware synchronization mechanism can be used for any multithreading techniques in general.
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Figure 5.5: Impact of architectural support for synchronization. The “SW Semaphore” and “HW

Semaphore” bars report the execution time with the software and hardware counting semaphores, re-

spectively. All bars are normalized to the “Baseline” bars from Figure 5.1.

Each semaphore register is accompanied by a FIFO queue so that when multiple threads sleep on

the same semaphore register, they are enqueued sequentially. When a thread is blocked on Sem P,

it causes a pipeline flush of all instructions that belong to the hardware context, as is done for the

suspend instruction described in Section 4.3.6. On the other hand, a Sem V instruction increments

the specified semaphore register value by 1. If the FIFO queue of the semaphore register is not

empty, the context at the head of the queue is resumed. To reduce the latency due to semaphore

operations, we handle both the Sem P and Sem V instructions in the execution stage, and the

resumed context can start fetching instructions the next cycle. This approach is similar to the

speculative restart mechanism proposed in [77].

In Figure 5.5, we make our aggressive compiler generate two versions of pre-execution bina-

ries, one with the software synchronization mechanism, labeled “SW Semaphore,” and the other

with the hardware synchronization mechanism, labeled “HW Semaphore,” and report the execution

time normalized to the “Baseline” time, which is not shown in the figure. Among 13 benchmarks,

we present the performance of 7 benchmarks, TWOLF, MCF, GZIP, EQUAKE, AMMP, ART,

and EM3D; the other 6 benchmarks are not shown since there is no difference in execution time

between the two synchronization mechanisms. Figure 5.5 shows hardware mechanism improves

the performance by 3.7% on average for the 7 benchmarks. Overall, hardware semaphores increase

the speedup of pre-execution from 17.6% to 20.5% across all 13 benchmarks. This performance

improvement is mainly because the hardware synchronization mechanism incurs significantly less
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overhead compared to the software mechanism, which injects a large number of useless instruc-

tions into the processor pipeline as a consequence of busy-waiting, and wastes hardware resources.

However, in two cases, i.e., GZIP and EQUAKE, the hardware mechanism actually degrades the

performance. In GZIP, the constructed helper threads are incorrect due to aggressive loop paral-

lelization as to be described in Section 5.2.6. With the hardware mechanism, the helper threads

follow the wrong path even faster, thereby limiting the execution of the main thread. On the

other hand, in EQUAKE, the helper threads also run faster with the hardware mechanism and

bring data cache blocks into the cache quickly. While cache thrashing can be a part of the reason

for performance degradation, we also observe that helper threads hold too many load-store queue

entries themselves, thereby limiting the progress of the main thread.

5.2.6 Accuracy of Helper Threads

To ensure the generated helper threads issue correct addresses for the delinquent loads, our com-

piler frameworks adopt code cloning, thereby making helper threads execute the same code that

the main thread executes. While program slicing and prefetch conversion optimizations never

affect the correctness of the constructed helper threads as already mentioned in Section 4.1.4,

two of our transformation techniques, i.e., store removal and speculative loop parallelization, can

possibly disrupt the correctness of the helper threads, resulting in useless prefetches. Store re-

moval can eliminate code that affects data flow or control flow leading to the delinquent loads.

Speculative loop parallelization may inadvertently parallelize serial loops. As described in Sec-

tion 4.1.2, when parallelizing loops, our compiler only analyzes the loop induction variables and

ignores potential loop-carried dependences through the loop body to enable aggressive loop paral-

lelization. Whenever such true dependences need to be executed to correctly compute delinquent

loads, but compiler transformations violate the dependences, then the generated helper threads

can be wrong and issue inaccurate addresses for the delinquent loads, degrading the effectiveness

of pre-execution. To quantify how often our compiler transformations compromise the correctness

of helper threads, we inspect all the constructed helper threads manually and check whether store
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removal or speculative loop parallelization has a negative impact on the helper threads.

First, we observe store removal causes a problem for 3 out of 31 total pre-execution regions

selected by our aggressive compiler from 13 benchmarks. One case is from VPR and it is already

discussed in Section 4.1.2. The other 2 cases occur in MCF and BZIP2. Fortunately, even for these

3 cases, store removal does not completely disrupt the correctness of the helper threads, but it

only affects a few load instances, generating inaccurate addresses for them. For the remaining 28

pre-execution regions, store removal does not harm the helper threads at all. Based on this data,

we conclude store removal rarely compromises the correctness of the generated helper threads. To

see why our conclusion is valid, we closely look at each pre-execution region and examine how

addresses for the delinquent loads are calculated. We find, for most of the cases, control and data

flow leading to delinquent loads usually involves the loop induction variables.6 For instance, the

address computations for memory references “1” and “4” in Figure 4.2 depend on the induction

variables from loops “7” and “8.” Since a loop induction variable is used for every loop iteration,

it is usually kept as a register value, not a global or heap variable that is stored in memory. Thus

the update of an induction variable mostly occurs via computation of the register values only, and

it rarely involves values in memory. Since the register and stack variables are not affected by our

store removal, the memory address computations are not disrupted most of the time.

While store removal causes only a small impact on the correctness of the constructed helper

threads, we find our speculative loop parallelization has an even smaller impact, generating inac-

curate helper threads for only 1 pre-execution region from GZIP out of 31 total selected regions.

To better understand the impact of speculative loop parallelization over all our benchmarks, Fig-

ure 5.6 presents the breakdown of our pre-execution regions, showing three bars categorized by

parallelizability of loops. The first bar reports the number of pre-execution regions that can be

correctly parallelized by either one of our two parallel thread initiation schemes, DoAll and

DoAcross. In other words, these pre-execution regions are fully parallel, and thus they can be
6This observation becomes the basis of our reduced algorithm to statically identify delinquent loads in a program

as demonstrated in Section 4.2.3. Our simple heuristics is that a load whose address computation involves the loop

induction variable is likely to miss in the cache.
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Figure 5.6: Breakdown of the pre-execution regions into 3 major categories: originally parallel, parallel

after program slicing and store removal, and serial. The serial category is further broken down into regions

using the Serial scheme, regions speculatively parallelized affecting control flow only, and regions that

are incorrectly parallelized.

easily parallelized even by a conventional parallelizing compiler. Only 5 out of 31 pre-execution

regions belong to this category, which emphasizes that the loops we deal with in this study contain

complex dependence chains, so it is not easy to extract thread-level parallelism from these loops

using traditional loop parallelization methods. However, as shown in the second bar of Figure 5.6,

additional 18 pre-execution regions become parallel after program slicing and store removal are ap-

plied. This shows most loop-carried dependences exist in the code that has nothing to do with the

memory address computations, and our compiler optimization techniques effectively identify those

unnecessary codes and remove them from the generated helper threads. Therefore, those cache-

missing kernels that are left after program slicing and store removal have abundant thread-level

parallelism, which cannot be uncovered by conventional parallel processing or thread-level specula-

tion techniques. Finally, the third bar in Figure 5.6 denotes the remaining 8 pre-execution regions

that are serial even after program slicing and store removal. We further break this bar down into

three categories. Out of 8 pre-execution regions, 4 employ the Serial scheme since our compiler

was able to convert all blocking loads into prefetches, and thus these loops are not parallelized,

preserving the correctness of the helper thread. On the other hand, 3 of the serial pre-execution

regions are parallelized anyways because they still contain blocking loads after prefetch conversion
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Figure 5.7: Normalized execution time broken down into the “Busy Time,” “Overhead,” and “Mem Stall”

components. Groups of bars labeled “Compiler A” to “Compiler E” report performance for the 5 compilers

from Table 4.1.

optimization. However, for these 3 cases, only the loop termination condition is broken, and the

helper threads still generate correct addresses. Hence the cache miss coverage is not reduced by

loop parallelization, and the kill instruction guarantees to terminate those over-executing helper

threads after the main thread exits the pre-execution region. Finally, the remaining 1 pre-execution

region is from GZIP, which is already explained.

5.3 Results of Reduced Compilers

Having evaluated our aggressive compiler in the previous section, we now evaluate our 4 reduced

compiler frameworks. First, Section 5.3.1 compares Compiler A, our most aggressive compiler, and

Compiler B, which removes Unravel, and discusses the impact of eliminating program slicing on

performance. Section 5.3.2 evaluates the performance of Compiler C where prefetch conversion is
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done in the SUIF in the absence of the program slicing information. Then Sections 5.3.3 and 5.3.4

evaluate Compilers D and E, respectively, and discuss the performance of pre-execution without

using offline profiles. The performance results for all these evaluations appear in Figure 5.7 across

the 13 benchmarks. (Note, we use the software synchronization mechanism for the experiments.)

5.3.1 Impact of C Compiler’s Code Removal

By comparing the execution time of Compilers A and B in Figure 5.7, we see eliminating program

slicing in our aggressive compiler degrades the performance of only 1 benchmark, i.e., VPR, and the

other 12 benchmarks are not affected at all. Compiler B provides a speedup of 17.3%, on average,

across all 13 benchmarks, which is almost the same as that of Compiler A, 17.6%. This means the

dead-code elimination in the backend code optimizer is as effective as Unravel’s program slicing

in removing noncritical code. Only for those applications like VPR where pre-execution regions

span multiple procedures, the powerful code analyses in Unravel trim down more code in helper

threads. The result here is not surprising given the experiments of Figure 5.3 (contribution of the

optimization algorithms) in Section 5.2.3. In Figure 5.3, comparing the “Parallel” and “Slicing”

bars isolates the impact of program slicing, and we can see that program slicing does not affect

the performance of pre-execution except for VPR; most of the code removed by program slicing is

also removed during the backend compilation.

While performance is probably the most important metric to determine the merit of a tech-

nique, we believe the instruction count of helper threads also provides very useful information

in that it helps to estimate the power consumption and hardware resource requirement of helper

threads. Figure 5.8 reports three bars for each benchmark: the dynamic instruction count com-

mitted in the main thread, labeled “Main Thread,” and the one in the helper threads from two

different compilers, labeled “Compiler A” and “Compiler B,” respectively. To focus on the code

to compute the delinquent loads, we only count instructions within the pre-execution regions and

do not account for other instructions outside the pre-execution regions. Note, the only difference

between Compilers A and B is that the latter does not have a separate program slicing step; every-
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Figure 5.8: Comparison of dynamic instruction counts between Compilers A and B. The “Main Thread”

bars report the dynamic instruction counts for the main thread. The “Compiler A” and “Compiler B” bars

report the dynamic instruction counts for the helper threads generated by Compilers A and B, respectively.

Each bar is broken down into the “Compute” and “Overhead” components.

thing else is exactly the same such as the identified delinquent loads, corresponding pre-execution

regions, thread initiation scheme for each pre-execution region, and live-in variables to be passed

from the main thread to the helper threads. Hence the instruction count for the main thread,

“Main Thread” bar, is same for both Compilers A and B. In Figure 5.8, each bar is broken down

into two components, “Overhead” and “Compute.” The “Overhead” component is the instruction

count associated with pre-execution, and not a part of the original program, e.g., forking helper

threads, passing live-ins, and thread synchronization. To avoid confusion, we ignore instructions

associated with busy waiting and only consider instructions to check the relative distance between

threads or availability of helper threads. The “Compute” component represents the instructions

from the original program. All bars are normalized to the instruction count of the “Baseline”.

Figure 5.8 shows both Compilers A and B effectively remove noncritical computation in-

structions from the helper threads (see the “Compute” component) except for GZIP. In GZIP,

due to incorrect loop parallelization, the helper threads follow incorrect paths, thereby executing
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instructions that should not have been executed (see Section 5.2.6). For the remaining 12 bench-

marks, Compilers A and B remove 32.9% and 30.2% of noncritical computation instructions in the

main thread, respectively. Taking into account the overhead instructions as well, helper threads

still execute much fewer instructions than the main thread for 10 benchmarks. In MCF and MST,

the helper threads execute more instructions than the main thread. This is mainly because the

backbone thread incurs high overhead to pass arguments and fork the rib threads.

Comparing the “Compiler A” and “Compiler B” bars in Figure 5.8, we see no difference

between the two compilers for 9 benchmarks. This implies the backend compiler’s dead-code elim-

ination removes the same code that is removed by Unravel. Therefore, even though the generated

output files at the source-code level by the two compiler frameworks are different, the final binaries

after the backend compilation are same.7 For VPR, TWOLF, AMMP, and MST, however, Unravel

is not redundant to dead-code elimination and the dynamic instruction count for Compiler A is

smaller than that of Compiler B; for those 4 benchmarks, Compiler A eliminates 8.1% more dy-

namic instructions than Compiler B. We identify two reasons that explain the difference between

Unravel’s program slicing and dead-code elimination. First, for many cases, the dead-code elimi-

nation analysis in gcc compiler is not as effective as that of Unravel, still leaving many instructions

in the binary that are successfully identified as dead code and removed by Unravel. This occurs es-

pecially when the code contains pointer accesses. Second, in the existence of inter-procedure calls,

Unravel performs an extraordinary job to identify the dead code compared to the backend compiler

because Unravel performs inter-procedure analysis over the entire program. When a procedure call

is encountered, Unravel separates the dependent arguments from the independent arguments, and

cuts down dependences in the callee function associated with those function parameters. On the

other hand, the scope of backend code optimizations is often limited within a procedure bound-

ary, and thus the backend compiler conservatively assumes all arguments communicated across

the procedure boundary are live. Therefore, Compiler B can miss some opportunities to remove
7This leaves some possibility that the generated binaries can be sometimes different depending on the backend

compiler. However, since dead-code elimination is one of the basic optimizations supported by most compilers, we

believe such a scenario is not likely to happen.
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dead code whenever pre-execution regions contain procedure calls. In spite of the effectiveness

of Unravel-based program slicing for certain circumstances, it is unclear whether we should keep

Unravel in our compiler frameworks. Even for the 4 cases where Unravel is not redundant, only 1

case provides performance improvement while the performance remains the same for the other 3

cases. The answer will become clearer depending on whether we can successfully perform prefetch

conversion via static compiler algorithms without using program slicing information, which we

discuss in the next section.

5.3.2 Impact of SUIF-Based Prefetch Converter

In Compiler B, although the program slicing step is eliminated, prefetch conversion is still driven

by Unravel; in other words, the same set of delinquent loads are converted into prefetches in both

Compilers A and B. To completely remove Unravel from our compiler frameworks, we implement

static compiler algorithms, described in Section 4.2.2, in Compiler C to identify the candidate

loads for prefetch conversion. Comparing the “Compiler B” bars against the “Compiler C” bars

in Figure 5.7, we see our SUIF-based algorithms provide almost the same performance as the

Unravel-driven prefetch conversion; the performance of 11 benchmarks remains the same, and

even for the two benchmarks with some differences, i.e., EQUAKE and ART, the change in the

execution time is hardly noticeable. On average, Compiler C provides 17.1% overall speedup across

all 13 benchmarks, whereas Compiler B just slightly outperforms it, providing 17.3% speedup.

This proves our simple algorithms, shown in Eqs. 4.3 and 4.4 in Section 4.2.2, are sufficient to

drive prefetch conversion and largely equivalent to Unravel’s complicated analysis for program

slicing. Thus we can safely remove Unravel from our compiler framework completely without

much degradation to the performance.

5.3.3 Impact of Eliminating Cache-Miss Profiles

In Compiler D, we remove the offline memory profiles and rely on simple compiler algorithms,

described in Section 4.2.3, to statically identify delinquent loads in a program. In Figure 5.7, com-

paring the “Compiler C” and “Compiler D” bars, we can see eliminating the cache-miss profiles
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has some negative impact on performance, reducing the overall speedup from 17.1% for Compiler

C to 15.0% for Compiler D. One reason for this performance degradation is that our static com-

piler algorithms falsely identify too many delinquent loads.8 The number of pre-execution regions

identified across the 13 benchmarks has doubled from 31 loops for Compilers A, B, and C to 62

loops for Compiler D even though we cancel the second pass in our pre-execution region selection

algorithm that picks the remaining short inner-most loops (see Section 4.2.3). Since pre-execution

inevitably incurs some runtime overhead, targeting too many pre-execution regions may be un-

desirable, especially when those selected regions do not contain many actual delinquent loads.

Moreover, in the absence of the cache-miss profiles, we cannot apply our filtering mechanism to

discard loops that account for less than 3% of the total cache misses as in Section 4.3.2. However,

despite such drawbacks of eliminating the cache-miss profiles, the performance is not degraded

significantly for most benchmarks; the only noticeable case is AMMP where the execution time is

increased by 15.3% when going from Compilers C to D. We believe this is partly because most of

our important pre-execution regions are still selected, and those regions already account for a large

portion of the execution time in each benchmark. Therefore, even though we falsely identify many

of new pre-execution regions, they often incur tiny amounts of overhead and have little impact on

the overall execution time.

While static compiler algorithms often end up identifying too many pre-execution regions,

they also identify too many delinquent loads within each pre-execution region. As is already

discussed in Section 3.1.1, identifying the right delinquent loads that indeed incur the majority

of critical cache misses is important to produce high-quality helper threads. The drawback of

identifying too many delinquent loads is twofold. First, since the helper threads cover more loads,

less code is removed by program slicing, thereby slowing down the execution of the helper threads

and in turn reducing the benefit from pre-execution. Second, since more code remains in the helper

threads, fewer loads are converted into prefetches, increasing the frequency of blocking in the helper

threads and also reducing the speed of the helper threads. In fact, several pre-execution regions
8However, we observe most of the delinquent loads identified by the cache-miss profiles are still successfully

identified by our reduced algorithms.
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that are transformed with the Serial scheme in Compilers A, B, and C are pre-executed using

either the DoAll or DoAcross schemes in Compiler D due to insufficient prefetch conversion.

With the increased runtime overhead for thread management, we lose much of the performance

gain we got previously. This phenomenon explains the performance degradation in AMMP and

ART.

Surprisingly, the performance of BZIP2 is improved, providing 4% additional gain with

Compiler D. There are two reasons for this performance improvement. First, BZIP2 contains

many small loops that account for less than 3% of the total cache misses and are discarded in

Compilers A, B, and C. Pre-executing some loops in that category helps to boost the performance.

On the other hand, there is one inner-most loop that accounts for a large portion of the cache misses

but does not get any benefit from pre-execution. Even worse, pre-executing that loop degrades the

performance of BZIP2 since the loop iterates a small number of times. In Compiler D, however,

since we do not perform the second pass of our pre-execution region selection algorithm to include

such small inner-most loops, the cumbersome loop is not selected and it slightly helps to improve

the performance.

5.3.4 Impact of Eliminating Loop Profiles

Lastly, we evaluate Compiler E, in which the loop-trip count profiles are eliminated. Comparing the

“Compiler D” and “Compiler E” bars in Figure 5.7, we see eliminating the loop profiles degrades the

performance of 9 benchmarks, reducing the overall speedup from 15.0% to 7.7%, on average, across

all 13 benchmarks. The execution time of ART is most significantly affected; when going from

Compilers D to E, the execution time is increased by 50.7%, resulting in 7% slowdown compared

to the “Baseline.” In ART, many important loops within the simulation region iterate thousands

of times and they are mostly inner-most loops. In the absence of the loop-trip count profiles, our

loop selection algorithm in Compiler E (see Section 4.2.4) always assumes the inner-most loops

iterate fewer than 25 iterations, so it looks for the next-outer loops for pre-execution regions. Since

one of the inner-most loops with huge trip count in ART is selected at the next-outer loop level in
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Compiler E, it results in generating run-away helper threads due to lack of synchronization inside

the inner-most loop body. Other than this case, our simple heuristics for estimating the amount

of loop work is correct for the majority of cases; as mentioned earlier, for 83% of the inner-most

loops in our benchmarks, our assumption about loop-trip count is correct.

To better understand the reason for performance degradation in Compiler E, we investi-

gate each benchmark by closely looking at the identified pre-execution regions. In BZIP2, VPR,

TWOLF, PARSER, AMMP, and MESA, the main reason for the performance degradation turns

out to be the increased runtime overhead due to too many falsely identified pre-execution regions.

Since Compiler E runs through the second pass in our pre-execution region selection algorithm to

ensure pre-execution of all important inner-most loops as described in Section 4.2.4, many pre-

execution regions that contain falsely identified delinquent loads are selected and partly responsible

for the reduced gains. Compiler E identifies 115 pre-execution regions across all 13 benchmarks,

which is significantly greater than that of Compiler D, 62 pre-execution regions.

5.4 Summary

In this chapter, we present various experimental results for our SUIF-based compiler frameworks.

These results provide several valuable insights into compiler-based pre-execution. First, the perfor-

mance result of our aggressive compiler demonstrates that compiler-based pre-execution is indeed

a very promising data prefetching technique, providing 17.6% speedup across 13 benchmarks that

are popularly used in the research community. We also show our helper threads successfully cover

a large portion of the cache misses for the majority of benchmarks. Second, we set up experiments

to identify the contribution of each individual compiler algorithm to the performance improve-

ment. We show speculative loop parallelization and prefetch conversion are crucial to achieve

good speedup with pre-execution. Moreover, we show our thread initiation scheme selection al-

gorithm always chooses the best scheme to initiate the helper threads, and we provide detailed

analyses on the rationales behind the accuracy of our algorithm. Third, the performance com-

parison between the hardware and software mechanisms for thread synchronization denotes the
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synchronization overhead has a negative impact on pre-execution effectiveness, and thus it should

be lowered. However, we also show there exist tradeoffs between the two mechanisms, i.e., over-

head vs. introduction of new hardware support. Fourth, we perform manual inspection to examine

how program slicing and store removal help to parallelize our pre-execution regions and show that

our compiler-based pre-execution provides a new way to extract thread-level parallelism, espe-

cially to exploit memory-level parallelism in a program. Finally, from our detailed evaluation of

the reduced compilers, we demonstrate we can sustain the performance gain from the aggressive

compiler even without Unravel by replacing program slicing with the compiler’s backend code op-

timizer and Unravel-driven prefetch conversion with simple SUIF-based compiler algorithms. We

also eliminate the cache-miss profiles and the loop-trip count profiles, but better algorithms are

required to properly identify delinquent loads and to estimate the loop work via static analyses,

thereby reducing falsely identified targets and the runtime overhead associated with pre-execution.
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Chapter 6

Pre-Execution Optimization Module in the Intel Research Compiler Infrastructure

We have demonstrated the algorithms and design of the SUIF-based compiler frameworks to con-

struct effective prefetching helper threads. Our experimental results on an SMT processor simula-

tor show that compiler-based pre-execution is indeed a promising prefetching technique to tolerate

the ever-increasing memory latency. Beyond the simulation-based evaluation of a technique, we

believe it to be very important to evaluate prefetching helper threads in a real physical system

and identify critical issues to achieve a significant wall-clock speedup on real silicon. To perform

such physical-system-based evaluation of compiler-based pre-execution, we first need a compiler to

construct helper threads. We work with a group of people at Intel and develop an optimization

module in the Intel compiler to generate helper threads, targeting the Intel Pentium 4 processor

with Hyper-Threading Technology that can support two logical processors simultaneously.

This chapter describes the pre-execution optimization module in the Intel compiler and

discusses the related issues to enable pre-execution in the physical system. While the optimiza-

tion module in the Intel compiler and our SUIF-based compiler frameworks have many similar-

ities, they are also different in some aspects due to the unique characteristics of the physical

system. Section 6.1 examines some critical issues that cause differences in designing a compiler

for pre-execution. Section 6.2 presents the compiler algorithms in the Intel compiler to enable

pre-execution and compares them with the algorithms in the SUIF-based compiler frameworks. In

Section 6.3, we introduce user-level library routines, called EmonLite, to monitor the program

behavior at runtime with low overhead. Such a light-weight performance monitoring mechanism

is necessary to enable fine-grain dynamic throttling of helper threads, thereby maximizing the

performance gain from pre-execution. Finally, Section 6.4 discusses the implementation issues to

build the compiler optimization module for pre-execution in the Intel compiler.
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Table 6.1: Hardware resource management in the Intel’s hyper-threaded processor.

Shared Trace cache, L1 D-cache, L2 cache, Execution units, Global history array

Allocator, Uop retirement logic, Microcode ROM, IA-32 instruction decode

Instruction scheduler, Instruction fetch logic, DTLB

Duplicated Per logical processor architectural state, ITLB, Instruction pointers

Rename logic, Streaming buffers, Branch history buffer, Return stack buffer

Partitioned Uop queue, Memory instruction queue, Reorder buffer, General instruction queue

6.1 Unique Aspects of a Physical System

Before presenting the compiler algorithms in the Intel compiler that are developed to enable pre-

execution, let us first examine some unique aspects of the physical system that make differences

in the design of a pre-execution compiler. We discuss three issues regarding hardware resource

management, thread synchronization mechanism, and available hardware contexts in the processor,

and see how such issues cause differences between the SUIF-based compiler frameworks and the

optimization module in the Intel compiler.

6.1.1 Hardware Resource Management

Unlike the research SMT processor proposed in [75] where most microarchitectural structures

are replicated or shared among multiple hardware contexts, the hardware resources in the Intel’s

hyper-threaded processor are managed differently. As detailed in [47], a hyper-threaded processor

dynamically operates in one of the two modes: the ST (Single Threading) mode and the MT

(Multi-Threading) mode. In the ST mode, all the on-chip resources are given to a single application

thread, whereas, in the MT mode, these resources are shared or partitioned between the two logical

processors. As shown in Table 6.1, structures like caches and execution units are shared between

the two logical processors, very much like the resource sharing on the research SMT processor. In

addition, structures like the ITLB and return stack buffer are replicated for each logical processor.

On the other hand, structures like the reorder buffer are evenly hard-partitioned to prevent one
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logical processor from taking up the whole resources.

Such differences in the hardware implementation affect the scheduling of helper threads

since the runtime overhead of pre-execution is much different for the two platforms. We assume

the hardware resource sharing in the research SMT processor is near-optimal, though not perfect,

and thus running a helper thread does not significantly affect the performance of the main thread.

However, due to the hardware partitioning of certain critical resources in the MT mode, running

a helper thread in the hyper-threaded processor often prevents the main thread from acquiring

enough hardware resources and even degrades the application performance when the helper thread

does not help. Therefore, invocation of a helper thread should be done very judiciously, and

we must perform dynamic transitions between the ST mode and the MT mode to minimize the

performance degradation due to the resource contentions. This is a strong motivation to propose

a dynamic scheme to initiate helper threads and develop certain performance monitoring tool so

that the helper threads can adapt to the dynamic program behavior.

6.1.2 Thread Synchronization Mechanism and Cost

The thread synchronization mechanism is also different between the research SMT processor and

the Intel’s hyper-threaded processor. In our SMT processor simulator, none of the structures is

hard-partitioned, and thus there is no need for an explicit mode transition when invoking or sus-

pending a thread. Therefore, we assume the processor is always running in the multithreading

mode, and the thread synchronization between the main thread and the helper threads incurs a

very low overhead; there is only a 3-cycle latency for pipeline flush when a thread is suspended,

and the resume instruction restarts fetching from the corresponding thread immediately. On the

other hand, the thread synchronization in our physical-system experimentation involves the mode

transition between the ST and MT modes so that the main thread can fully utilize the entire

processor resources when the helper thread is not running. Hence the overhead of thread synchro-

nization is much larger; it takes thousands of cycles to invoke and suspend threads in the Intel’s

hyper-threaded processor. Considering a single prefetch reduces at most a few hundred cycles by
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converting a memory access into a cache hit, we cannot afford such fine-grain thread synchroniza-

tion as our SUIF-based compilers support. Therefore, we propose a new thread initiation scheme,

called StripMining, in the Intel compiler to support rather coarse-grain synchronization between

the main thread and the helper thread.

In our experiments on the Intel’s hyper-threaded processor, we evaluate two mechanisms

to invoke and suspend the helper threads. First, we use the Win32 API, i.e., SetEvent() and

WaitForSingleObject(), provided by the Windows OS for thread management. When a thread

calls WaitForSingleObject(), the Windows scheduler waits until the CPU utilization of the corre-

sponding logical processor falls down below certain percentage. Only then does the OS deschedule

the suspended thread and trigger a mode change from the MT mode to the ST mode. The latency

between the moment when the thread calls for suspension and the occurrence of the mode tran-

sition is non-deterministic, and is a few tens of thousand CPU clock cycles.1 On the other hand,

when an active thread calls SetEvent() while another thread sleeps on WaitForSingleObject(),

the OS initiates the mode transition from the ST mode to the MT mode and wakes up the dormant

thread. We observe it takes a similar range of cycles to complete this mode transition.

To lower the thread switching and synchronization overhead, we also evaluate a hardware

mechanism that prototypes user-level thread synchronization instructions similar to the lockbox

primitives described in [77]. Note, this hardware mechanism is actually implemented in real silicon

as an experimental feature. Using the hardware synchronization mechanism, a thread issues certain

instructions to suspend itself and directly cause the MT to ST mode transition. Conversely, another

thread can execute an instruction to wake up the suspended thread and cause the ST to MT

mode transition. Using these direct hardware synchronization primitives, we measure the thread

suspension takes approximately 1,500 cycles, which achieves one order of magnitude reduction as

compared to the cost of the OS API. Moreover, this hardware mechanism is entirely transparent

to the OS, and its latency is very deterministic.
1We observe the latency varies from 10K to 30K cycles for the processor that we use, but we do not have any

statistical data regarding how much the mode transition latency fluctuates.
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6.1.3 Available Hardware Contexts

The SMT processor simulator used to evaluate the SUIF-based compiler frameworks in Chapter 4

assumes a maximum of 4 threads can run simultaneously by sharing the processor resources. To

exploit these spare hardware contexts, we developed parallel thread initiation schemes like DoAll

and DoAcross that require multiple hardware contexts to run the helper threads. Moreover, as

shown in Section 5.2.3, speculative loop parallelization plays a very important role to improve the

performance of our selected benchmarks using pre-execution, and it uncovers abundant thread-

level parallelism with the support from program slicing and store removal. However, the current

Intel Pentium 4 processor with Hyper-Threading Technology supports two logical processors, so

only 1 hardware context is available for helper threads, making it infeasible to apply parallel

schemes. Therefore, the optimization opportunities for the compiler module in the Intel compiler

is significantly reduced, and we generate a single helper thread for each pre-execution region.

6.2 Compiler Algorithms for the Intel Compiler

In this section, we describe the compiler algorithms for the pre-execution optimization module

that we built into the Intel compiler. As is done for the SUIF-based aggressive compiler in Sec-

tion 4.1, we group those algorithms into 4 categories. Section 6.2.1 describes how we identify the

target delinquent loads and proper pre-execution regions, and Section 6.2.2 presents algorithms

to improve the effectiveness of compiler-based pre-execution. Then Section 6.2.3 illustrates the

need for performance monitoring and dynamic thread throttling to reduce the runtime overhead of

pre-execution. Finally, Section 6.2.4 discusses issues regarding how to ensure pre-execution does

not disrupt the correctness of the main computation.

6.2.1 Identifying Targets

As in our SUIF-based aggressive compiler (see Section 4.1.1), we use offline memory profiles to

identify delinquent loads in a workload and loop-trip count profiles to choose pre-execution regions

at the right loop-nesting level. In addition, we clone the target code region and create a separate
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code for helper threads so that we can further optimize the code.

Delinquent Load Identification

The first step in the helper thread construction is to identify the top delinquent loads that sig-

nificantly degrade the performance of a workload. We run the workload on the Intel VTuneTM

performance analyzer [79] and collect the clock cycle and L2 miss profiles. The VTune supports

a convenient graphical user interface and provides summary profiles for each process, module,

procedure, source line, and instruction. During the profile run, the hardware Performance Mon-

itoring Counters (PMCs) are incremented whenever the specified performance events occur, and

with certain frequency, the VTune samples those performance events for each static instruction

in the workload. The VTune profiling run uses the same input set as is used for the later per-

formance measurements, but we find different input sets do not significantly change the set of

identified delinquent loads for our benchmarks, shown in Table 7.2. In addition, the application

program is compiled with the same compiler optimization options as the “baseline” binary except

that the “-Zi” flag is additionally used to insert debugging information, which does not affect the

performance or behavior of the workload at all. Furthermore, the profile information is collected

across the entire program execution.2 After reading in the VTune profiles, the compiler backend

optimizer correlates the data with the program’s intermediate representation using the source line

numbers. By analyzing the profile information, our compiler module calculates the cycle cost, or

memory stall time, associated with each static load in the program and chooses the delinquent

loads that account for a large portion of the entire execution time so that helper threads can be

constructed to pre-execute those loads.

Pre-Execution Region Selection

Once the target delinquent loads are identified, our compiler module forms a region within which

the helper thread is constructed. As in our SUIF-based compilers, we also choose loops for the pre-
2As to be explained later in Section 7.1.3, we measure the wall-clock time of the “entire” program execution to

evaluate the performance of pre-execution for our physical-system-based study.

108



execution regions. When selecting pre-execution regions, the compiler module takes into account

several issues to maximize the performance gain with pre-execution. As shown in Section 6.1.2, the

cost of thread synchronization in a physical system, which involves the mode transition between

the ST and MT modes, is in the range of thousands of cycles. Thus a key criterion in selecting a

proper loop candidate for the pre-execution region is to minimize the runtime overhead associated

with the thread management. One goal is to minimize the number of helper thread invocations,

which can be accomplished by ensuring the trip count of the outer loop that encompasses the

currently-processed loop is small. Therefore, one condition in our loop selection algorithm is that

we keep searching for the next-outer loop until the next-outer loop’s trip count is less than twice

the trip count of the currently-processed loop. However, in our SUIF-based compiler frameworks,

this issue was not considered at all since invoking a helper thread in our SMT processor simulator

occurs immediately without incurring any overhead. On the other hand, another complementary

goal is to ensure that the helper thread, once invoked, runs for an adequate amount of time in

order to amortize the thread activation cost. Hence it is desirable to choose a loop that iterates

a large number of times, or contains enough work. Therefore, the second condition in our loop

selection algorithm is to keep searching for the next-outer loop until the loop-trip count exceeds a

threshold value, currently one thousand iterations. Recall that the threshold value in the SUIF-

based compilers was only 25 iterations for inner-most loops so that the helper threads have enough

time to get ahead of the main thread. Note, the analysis starts from the inner-most loop that

contains the delinquent loads and proceeds toward the outer-most loop. When the analysis reaches

the outer-most loop within the procedure boundary, the search ends and the loop is selected. In

other words, we do not allow our pre-execution regions to span across procedure boundaries. The

loop-trip count information required for the pre-execution region selection algorithm is collected

via the VTune’s instruction count profiles. We observe this simple algorithm is effective, especially

in the presence of the aggressive function inlining performed by the Intel compiler.
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Code Cloning

As in the SUIF-based compilers, the compiler module in the Intel compiler also performs code

cloning to construct a separate code for helper threads. As is already explained in Section 3.1.3,

the separation between the main thread and helper thread codes ensures the transformation of

the helper thread code does not affect the correct execution of the main thread as long as all side

effects are removed from the helper thread. Hence it allows our compiler to optimize the helper

thread code very aggressively, which would have been impossible if the compiler had not generated

a separate code for helper threads.

We use multi-entry threading in the Intel compiler [74] to generate separate codes for helper

threads. Unlike the SUIF-based compilers that create new subroutines for the pre-execution re-

gions, the compiler module in the Intel compiler generates a threaded entry and a threaded return

for each helper thread, and keeps all newly generated codes inlined within the corresponding orig-

inal routine that contains the pre-execution region. Since the targeted-loop code and the helper

thread code are within the same procedure boundary, all local variables are visible to both codes.

Therefore, variables necessary to the helper threads, but not changed within the pre-execution

region, do not have to be passed explicitly. Moreover, this method also provides later compilation

steps with more opportunities to optimize the original code and the newly generated helper thread

code together.

6.2.2 Improving Effectiveness of Pre-Execution

To produce effective prefetching helper threads, our pre-execution optimization module in the Intel

compiler performs program slicing to remove noncritical code in the helper threads. Unlike the

SUIF-based compilers, however, we do not perform prefetch conversion to reduce blocking in the

helper threads because prefetch instructions are often dropped in case of memory system congestion

in the Pentium 4 processor. In addition, we do not support any synchronization between the main

thread and the helper thread due to high thread synchronization cost in the physical system.

Due to lack of synchronization, helper threads can easily run too far ahead of the main thread and
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cause cache thrashing. To avoid such an undesirable situation, we propose three schemes to initiate

helper threads in Section 6.2.2, which effectively work as the thread synchronization mechanisms.

Program Slicing

Our compiler module performs program slicing to identify instructions to be executed in the helper

threads. This is necessary to filter out noncritical code from the pre-execution region, and thus

provide a speed advantage to the helper thread over the main thread. Our program slicing is

similar to the backward slicing presented in [87] and it consists of three steps, i.e., building a

dependence graph, slicing, and code pinning, as explained below.

Building Dependence Graph. To enable slicing, our compiler module builds a graph that

captures both data and control dependences in the program code. The effectiveness of slicing

relies on the compiler’s ability to accurately identify true dependences and disambiguate memory

references. Thus we invoke the memory disambiguation module in the Intel compiler, which dis-

ambiguates pointers to dynamically allocated objects [28]. Note, the analysis is not limited within

the procedure boundary, but spans across multiple procedures. When building the dependence

graph, a series of array dependence tests is also performed [23] so that each element in an array is

disambiguated, reducing falsely identified dependences. Furthermore, each field in a structure is

disambiguated as well.

Slicing. To perform slicing, our compiler module chooses the identified delinquent loads as the

slice criteria [40, 82] based on the VTune memory profiles. Then the remaining slicing step is

similar to the slicing in the SUIF-based compiler frameworks as in Section 4.1.2. Within the

selected loop, the compiler module starts from each slice criterion and traverses the dependence

edges backwards. Only the statements that affect the address computation of the delinquent

loads, including the change of control flow, are selected as a slice. Slicing analysis terminates at

the boundary of the predetermined pre-execution region so that the slice, which depends on the

code outside the pre-execution region, is not included. To preserve the correctness of the main
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computation, all the stores to heap objects or global variables are removed from the slice. Once

slicing is completed for all the individual delinquent loads, the extracted slices within the same

loop boundary are merged to form a single thread, thereby reducing the thread invocations.

Code Pinning. Due to store removal during the slicing step, the extracted slice has no side

effects and thus it is dead code by definition. Since the generated helper threads are scheduled and

optimized by the remaining phases in the Intel compiler, passes such as global scalar optimiza-

tions using partial redundancy elimination will remove all codes with no side effects including the

constructed helper threads. To avoid the removal of the helper thread codes in later compilation

phases, we perform code pinning that is similar to what was shown in Section 4.1.2 for the SUIF-

based compilers. Our compiler module searches for all delinquent loads that are leaf nodes in the

dependence graph, on which no further instructions depend. Then it converts all such delinquent

loads into the volatile-assign instructions in the Intel compiler, thereby preventing the subsequent

compilation phases from removing the delinquent loads in the helper threads.

Prefetch Conversion

To further improve the performance of pre-execution, it is important to remove blocking in helper

threads. Especially, since the current Intel Pentium 4 processor with Hyper-Threading Technology

supports two logical processors, only one hardware context is available for the helper thread while

the other logical processor is used to run the main thread. Since a single helper thread should get

ahead of the main thread, the prefetch conversion optimization will be more crucial in the Intel

compiler than in our SUIF-based compilers, which assumes the target SMT processor supports

a maximum of 4 hardware contexts, thereby allowing multiple helper threads to run in parallel.

Though nonblocking and nonfaulting, the prefetch instruction currently supported in the Pentium

4 processor is dropped when the memory subsystem is congested and normal load requests need

to be serviced. Hence prefetches issued by the helper threads are often nullified; in addition

to losing chances to improve the program performance through prefetching, we even degrade the

performance due to the hardware resource contentions in the hyper-threaded processor. Therefore,
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we decide not to implement the prefetch conversion step in our current compiler module. Note,

however, prefetch conversion can be easily enabled in the Intel compiler; we can simply convert

those delinquent loads that are leaf nodes in the dependence graph into nonblocking prefetches.

Helper Thread Initiation

Unlike the research SMT processor used for the performance evaluation of our SUIF-based compil-

ers, there is only one hardware context available for running helper threads in the hyper-threaded

processor. Hence we do not implement any optimization pass to parallelize the pre-execution re-

gions such as the DoAll and DoAcross schemes shown in Section 4.1.2. Instead, we simply rely

on the Serial scheme to initiate a single helper thread for each pre-execution region. However, as

mentioned earlier, we do not support any synchronization between the main thread and the helper

thread due to the large thread synchronization overhead in the physical system. Thus the Serial

scheme may produce a run-away helper thread if the targeted loop iterates a large number of times.

To provide certain synchronization support, we introduce a derivative of the Serial scheme, called

StripMining, in which the targeted loop is partitioned into several small chunks and the helper

threads are invoked frequently. Moreover, to minimize the ineffectiveness of the StripMining

scheme, we propose yet another thread initiation scheme, called Dynamic StripMining. Below,

we illustrate some interesting tradeoffs between these three helper thread initiation schemes used

in our physical experimentation.

1. Serial. We evaluate the Serial scheme, which was also used in our SUIF-based compiler

frameworks (see Section 4.1.2). In this scheme, a helper thread is activated at the entrance

point of the targeted loop and runs through all loop iterations without any further interme-

diate synchronization between the main thread and the helper thread. In other words, the

inter-thread synchronization only occurs once for every instance of the targeted loop. Using

the Serial scheme minimizes the invocation of helper threads and thus it can be useful espe-

cially when the thread synchronization cost is high as in the Intel’s hyper-threaded processor-

based system. However, due to lack of intermediate thread synchronization throughout the
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entire loop execution, the helper thread can either run too far ahead of the main thread and

pollute the cache, or run behind the main thread and waste computation resources which

could have been used more effectively by the main thread.

2. StripMining. To avoid run-away or run-behind helper threads, it is necessary to perform

inter-thread synchronization at a granularity finer than the size of the targeted loop instance.

This motivates a new thread initiation scheme, called StripMining, in which a helper thread

is invoked once for every few iterations of the targeted loop. The number of loop iterations

between two consecutive helper thread invocations is the sampling period. In this scheme,

once a helper thread is activated, it executes either for the number of loop iterations equal

to the size of the sampling period, or until it reaches the termination of the targeted loop.

Since the StripMining scheme invokes helper threads more frequently than the Serial

scheme, the effectiveness is more sensitive to the thread synchronization cost of the tar-

get system. Furthermore, this scheme requires additional code to be instrumented in the

targeted loop to check how far the main thread or the helper thread has executed within

the sampling period iterations. In effect, this approach relies upon the sampling period as

the synchronization boundary to frequently cross-check relative progress between the main

thread and the helper thread. The size of the sampling period binds the distance by which

a helper thread can run ahead of or behind the main thread. Therefore, the effectiveness of

this approach also depends on the choice of the sampling period.

3. Dynamic StripMining. As to be illustrated later in Figures 6.2 and 6.3, a program’s

behavior varies at different chronological phases. Consequently, helper threads may not

always be beneficial, e.g., the main thread sometimes incurs very few cache misses even in a

pre-execution region, and thus running a helper thread is useless. Even when the main thread

suffers from many long-latency cache misses, the effectiveness of helper threads still depends

on a variety of resource-related issues such as the availability of execution units, occupancy of

the reorder buffer, memory bus utilization, or fill buffer (i.e., Miss Status Holding Register,

or MSHR) usage.
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To avoid activation of helper threads when they are not helpful, we evaluate a dynamic thread

initiation scheme, called Dynamic StripMining, which is a derivative of the StripMining

scheme. In this scheme, rather than invoking a helper thread for every sample instance,

the main thread dynamically decides whether or not to invoke a helper thread for a par-

ticular sample period. In fact, this is a dynamic throttling mechanism that monitors the

pre-execution effectiveness at runtime and applies judicious control on both activation and

termination of the helper thread. To evaluate the performance impact of dynamic throttling

of helper threads, we assume a hypothetical perfect throttling mechanism. In other words,

we do not actually implement any mechanism that monitors the dynamic program behavior

and throttles the activation of helper threads based on the runtime profiles. Instead, we

postprocess the cycle and L2 miss profiles collected by actually running benchmarks with

and without helper threads, and estimate the potential performance improvement with a

perfect throttling mechanism. More details will be presented in Section 7.1.5.

6.2.3 Minimizing Ineffectiveness of Pre-Execution

Due to hard-partitioning of some critical resources and the high thread synchronization cost,

overhead is a more critical issue in a physical system with the hyper-threaded processor. Combined

with those issues in the physical system, invoking helper threads for the time phases with small

cache misses may be unhelpful to the main thread and thus have a negative impact on the program’s

performance. Our Dynamic StripMining scheme is developed to avoid performance degradation

due to unhelpful helper threads. To achieve that goal, it is crucial for us to be able to monitor

the dynamic program behavior. Such a performance monitoring mechanism should be light-weight

so that it does not adversely affect performance. In addition, the performance profiles must be

easily correlated with the program semantics and in turn, with the corresponding helper threads.

To satisfy these conditions, we develop user-level library routines for light-weight performance

monitoring, called EmonLite. These library routines can be easily integrated into the program

code to collect various performance-related information at runtime for certain program regions.
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Section 6.3 provides more details about the design, implementation, and example usage of the

EmonLite.

6.2.4 Preserving Program Correctness

Like most other pre-execution techniques, the compiler module in the Intel compiler also removes

all store instructions to the heap memory region and global variables as well as system calls within

the pre-execution regions. Store and system call removal is performed during the slicing step as

shown in Section 6.2.2. Note, however, both our compiler module and the hyper-threaded proces-

sor neither assume nor implement any support for handling exceptions signaled by helper threads.3

Fortunately, the helper threads constructed for our benchmarks do not incur any exception sig-

nals. This is mainly because we do not parallelize the pre-execution regions as in the SUIF-based

compilers due to lack of available hardware contexts for helper threads in the hyper-threaded pro-

cessor, thereby preserving the data and control flow of the targeted loop in the helper threads. In

addition, within our pre-execution regions, memory address computations for the delinquent loads

do not include any store operation to the shared memory region, and thus store removal does not

disrupt the correctness of the helper threads.

6.3 EmonLite: User-Level Library Routines for Runtime Performance Monitoring

To permit helper threads to adapt to dynamic program behavior, thus reducing the runtime over-

head of pre-execution, we need a light-weight mechanism to monitor dynamic events such as cache

misses at a very fine granularity. Some existing tools such as pixie [66] instrument the program

code to use a cache simulator to simulate the dynamic behavior of a program. However, this

methodology often fails to accurately reflect the actual program behavior on a physical system

and usually slows down the program execution. To remedy these issues, we introduce EmonLite,

a library of user-level routines which performs light-weight profiling through the direct use of the
3Exception handling is not taken care of since we evaluate the compiler module for helper threading as an

experimental feature in the Intel compiler. However, for productization of such a compiler optimization module, we

need certain mechanisms for exception handling so that a faulting helper thread never disrupt the main computation.
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performance monitoring events supported in the Intel processors. Provided as a library of com-

piler intrinsics, the EmonLite allows a compiler to instrument at any location of the program

code to directly read from the hardware PMCs. Therefore, event statistics such as clock cycles

or L2 misses can be collected for a selected code region at a very fine granularity with high ac-

curacy and low overhead. Note, the Intel processors support performance monitoring of over 100

different microarchitectural events associated with the branch predictor, trace cache, memory, bus,

and instruction events. Compiler-based instrumentation via EmonLite enables collection of the

chronology of certain instruction’s dynamic events for a wide range of workloads. Such profiling

infrastructure can be leveraged to support dynamic optimizations such as dynamic throttling of

both helper thread activation and termination.

6.3.1 EmonLite vs. Intel VTune Performance Analyzer

Before providing the implementation details of the EmonLite, let us compare tradeoffs between

the Intel VTune performance analyzer and EmonLite, and discuss why we need yet another per-

formance monitoring tool. The VTune profiles various performance monitoring events over the

entire program execution or predefined time duration. It provides profile data ranging in scope

from process, to module, procedure, source line, and even assembly instruction level. However, the

VTune collects only a summary of sampling profiles, so it is difficult to extract a dynamic chrono-

logical behavior of a program from the VTune’s profiles. In contrast, the EmonLite provides

relatively fine-grain chronology of the performance monitoring events, and thus it enables analysis

of time-varying behavior of the workload at a fine granularity and allows dynamic adaptation and

optimization. In addition, the EmonLite is a library of user-level routines and can be directly

placed in the program source code to discriminately monitor the dynamic microarchitectural be-

haviors for the judiciously selected code regions. Lastly, while the VTune’s sample-based profiling

relies on the buffer overflow of the PMCs to trigger an event exception handler registered at the

OS, the EmonLite routines read the counter values directly from the PMCs by executing four as-

sembly instructions. Consequently, the EmonLite is extremely light-weight; it rarely slows down

117



the user program provided that the profiling sampling interval, i.e., how frequently the PMCs are

read, is reasonably sized.

6.3.2 Components of EmonLite

The EmonLite library provides two compiler intrinsics that can be easily inserted into a user

program code. One of the routines, called emonlite begin(), initializes and programs a set of

EMON-related internal processor registers to specify the performance monitoring events, for which

profiles are collected. This library routine is inserted at the beginning of the user program and is ex-

ecuted only once for the entire program execution. The other intrinsic, called emonlite sample(),

reads the counter values from the PMCs and is inserted in the user code of interest. Since the PMC

provides performance event information for each logical processor, in order to ensure accuracy of

profiling, the target application is pinned to a specific logical processor via the OS affinity API,

such as SetThreadAffinityMask() in the Win32 API.

6.3.3 Implementation Issues

Automatic instrumentation of the EmonLite library routines is also implemented in the Intel

pre-production compiler. For a selected code region, the following steps are taken to generate the

chronology of performance monitoring events.

Step 1. Same as the previously described compiler analysis phases, delinquent loads are identified

first, then appropriate loops surrounding the delinquent loads are selected.

Step 2. The compiler inserts the instrumentation code into the user program. It searches for

the main() function of the user program4 and inserts emonlite begin() to initialize the

EmonLite and set up corresponding PMCs.
4Our compiler module for EmonLite code instrumentation assumes programs written in C language only and

thus we can always find the main() function in the program code. Note, however, our compiler module for helper

thread optimization is not limited to a specific language since all analyses and optimizations are done on the Intel

compiler’s common intermediate representation.
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while (arcin) {
/* emonlite_sample() */
if (!(num_iter++ % PROFILE_PERIOD)) {
cur_val = readpmc(16);
L2miss[num_sample++] = cur_val - prev_val;
prev_val = cur_val;

}

tail = arcin->tail;
if (tail->time + arcin->org_cost > latest) {
arcin = (arc_t *) tail->mark;
continue;

}
...

}

Figure 6.1: Example of the EmonLite code instrumentation: price out impl() of MCF.

Step 3. For each loop identified in Step 1, the compiler inserts necessary code along with

emonlite sample() to read the PMC values for every sampling period.

Figure 6.1 shows how the instrumentation code is inserted into a heavily cache-missing

loop in price out impl() of MCF to collect L2 miss profiles. By varying the profiling interval,

PROFILE PERIOD, the granularity and sensitivity of profiling can be easily adjusted.

6.3.4 Example Usage: Chronology of L2 Miss Events

Figure 6.2 provides the chronology of the L2 miss events for the same loop in Figure 6.1. The graph

illustrates the dynamic behavior of the L2 cache at a very fine granularity, i.e., 10 loop iterations per

sample (around 2K cycles on average). In the figure, it is obvious that there exist time fragments

where the main thread incurs small or even no L2 misses. If a helper thread were launched

for such periods with few cache misses, it could potentially degrade the performance during this

time interval due to hardware resource contention. This observation has been the motivation to

develop certain mechanisms to control helper threads dynamically, which was further discussed in

Section 6.2.2.

Figure 6.3 illustrates another example of chronology at a much coarser granularity for the

same loop as Figure 6.2. The number of L2 misses is collected for every 100,000 iterations, whereas

each profiling period takes about 14M cycles on average. This figure shows the EmonLite profiles

for the entire execution of the MCF benchmark, and a phase behavior of L2 misses for the program
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to further optimize the generated helper thread code. Prior to the helper threading optimization

phase, the Intel compiler invokes interprocedural analysis phase so that many of the user-defined

procedures are inlined, providing much optimization opportunities across procedure boundaries.

The per-load basis cache-miss and cycle-count summary profiles are fed into the Intel compiler in

the form of the VTune’s tb5 files [79], and they are correlated to the IL0 statements via source

line number and function name to identify the delinquent loads to be covered by helper threads.

Finally, the IA-32 backend compiler generates binaries in which helper thread codes are attached.

6.4.2 Live-in Passing

Once a helper thread is formed, the Intel compiler identifies the live-in variables to be passed from

the main thread to the helper thread. Through analysis, the variables used in the selected loop are

divided into two groups: those that have upwards-exposed reads and those that are privatizable.

The variables in the former group are selected as live-ins and will be explicitly passed through

global variables that are declared solely for the use of helper threads. Since the helper thread

code is inlined into the same routine with the main thread code using multi-entry threading in the

Intel compiler, local variables declared for the main thread are also visible to the helper thread.

Therefore, we do not insert code to pass the read-only variables to the helper thread.

6.4.3 Code Generation

After the compiler analysis phases for pre-execution, the constructed helper threads are attached

to the application program as a separate code. In addition, the codes to create, schedule, and

invoke the helper threads are inserted as well. For each pre-execution region, we generate two

kinds of helper threads that implement the Serial scheme and the StripMining scheme shown

in Section 6.2.2. In the hyper-threaded processor-based system, it is essential to reduce the thread

switching overhead. We adopt a software-based thread recycling mechanism similar to what was

Family (IPF) backend compilers. Hence the compiler optimization module for pre-execution can be applicable for a

number of source languages and target platforms. However, we only evaluate our compiler module for benchmarks

written in C and generate binaries targeting the IA-32 architecture with Hyper-Threading Technology.
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described in Section 4.1.3 for our SUIF-based compilers. The compiler creates only one OS thread

using the OS API, CreateThread(), at the beginning of the program and recycles the thread to

target multiple pre-execution regions.

122



Chapter 7

Evaluation in a Physical System with the Intel’s Hyper-Threaded Processor

We believe it to be greatly valuable to experiment with a proposed research idea in a real physical

system in order to verify whether the idea can indeed provide wall-clock speedup, and to uncover

useful insights that cannot be learned from simulation-based evaluation. In this chapter, we present

experimental results of compiler-based pre-execution on real silicon and discuss our findings from

those experiments. The helper threads are generated using the compiler optimization module

in the Intel compiler presented in Chapter 6, and the performance of selected workloads with

and without helper threads is measured on a machine with an Intel Pentium 4 processor with

Hyper-Threading Technology. Section 7.1 presents the experimental methodology and results, and

Section 7.2 discusses the findings and insights from our experience with helper threads on real

silicon.

7.1 Experimental Evaluation

In this section, we first present the methodology to perform physical experimentation on the Intel’s

hyper-threaded processor-based system; Section 7.1.1 provides the physical system configuration

used for the experiments, Section 7.1.2 introduces the evaluated benchmarks, and Section 7.1.3

defines the baseline configuration so that we can compute the speedup with pre-execution. Then we

present the experimental results; Section 7.1.4 evaluates prefetching helper threads using two static

thread initiation schemes, i.e., Serial and StripMining, Section 7.1.5 estimates the potential of

dynamic throttling of helper threads based on the hypothetical Dynamic StripMining scheme,

and Section 7.1.6 examines dynamic program behavior for various monitoring granularities and

emphasizes the need for light-weight thread synchronization mechanisms.

7.1.1 System Configuration

Table 7.1 presents the system configuration used for our experiments. The system contains a single

2.66GHz Intel Pentium 4 processor with Hyper-Threading Technology [30, 47], which supports two
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Table 7.1: Physical system configuration.

CPU 2.66GHz Intel Pentium 4 with Hyper-Threading Technology

L1 Trace cache 12K micro-ops, 8-way set associative, 6 micro-ops per line

L1 Data cache 16KB, 4-way set associative, 64B line size, write-through, 2/4-cycle for Int/FP

L2 Unified cache 1MB, 8-way set associative, 64B line size, 7-cycle access latency

DTLB 64 entries, fully associative, map 4K page

Load buffer 48 entries

Store buffer 24 entries

Reorder buffer 128 entries

OS Windows XP Professional, Service Pack 1

logical processors simultaneously. For memory subsystem, the processor uses a 12K micro-op trace

cache and a 16KB data cache at the first level (L1), and a 1MB unified cache at the second level

(L2). In addition, the processor implements a hardware stride prefetcher and a sector prefetcher

for data prefetching. The reorder buffer has 128 entries; in the MT mode, this structure is hard-

partitioned, so each logical processor gets 64 entries. Finally, we use the Windows XP as the OS

to resemble the computing environment of usual end users. While we evaluate the OS API for

thread synchronization, our compiler module for pre-execution does not depend on a specific OS.

7.1.2 Benchmarks

To decide the benchmarks used for our experiments, we first run the entire SPEC CPU2000

benchmark suite [29] on the VTune performance analyzer and collect the clock cycle and L2 miss

profiles. Then those applications that have significant number of cycles attributed to the L2 misses

are selected; they are MCF and BZIP2 from the SPEC CINT2000 suite, and ART from the SPEC

CFP2000 suite. The reference input sets are used for both profile run and the actual performance

measurement. In addition, we also pick MST and EM3D from the Olden benchmark suite [12]

for the same reason. The remaining applications in the Olden benchmark suite are not included

since they contain structures that perform tree traversal, which our current pre-execution compiler
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Table 7.2: Benchmark characteristics.

Suite Name Input

SPEC CINT2000 MCF reference

BZIP2 reference

SPEC CFP2000 ART reference

Olden MST 3000 nodes

EM3D 40000 nodes

module cannot analyze. Table 7.2 summarizes the benchmarks that are evaluated in our study

and their input sets.

Tolerating memory latency has long been tackled by both microarchitecture techniques and

advanced compiler optimizations. As an example, the Intel Pentium 4 processor employs a hard-

ware stride prefetcher that monitors the address stream of load instructions and captures stride

access patterns. In addition, the production compiler usually performs various optimizations to

reduce the number of cache misses such as cache-conscious code or data layout and access opti-

mizations [17]. Our objective is to tackle those cache misses that remain even after these hardware

and compiler techniques are applied, and to provide additional speedup using helper threads. The

benchmarks are compiled with the best compiler options “-O3 -Qipo -QxW” (however, we do not

perform profile-guided optimization) in the most recent version of the Intel production compiler.

Then the VTune is used to identify the candidate loads for pre-execution. Figure 7.1 shows the

percentage of the L2 misses associated with the targeted delinquent loads over the total L2 misses.

It also shows the percentage of the exposed memory stall cycles due to the cache misses over the

entire execution time. For every benchmark in the figure, we observe fewer than five static loads

contribute to a large fraction of the total L2 misses, i.e., 83.5% for the top five delinquent loads

on average. The percentage of memory stall cycles indicates the upper bound on the performance

improvement that is achievable with perfect data prefetching for the targeted delinquent loads.
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Figure 7.1: VTune profiles: cycles and L2 misses associated with the identified delinquent loads

7.1.3 Baseline

Before presenting experimental results with helper threads, we need to define our baseline configu-

ration. In a hyper-threaded processor, the Windows OS periodically reschedules a user thread on

different logical processors. This involves the overhead of OS job scheduling and possibly incurs

more L1 and L2 misses if multiple physical processors are employed within a single system. On

the other hand, in the context of helper threading, a user thread and its helper thread, as two OS

threads, can potentially compete with each other to be scheduled on the same logical processor. In

addition, on a multiprocessor configuration with multiple physical processors, an application thread

and its helper thread can also be scheduled to run on different physical processors. In this case,

without a shared cache among different physical processors, the prefetches from a helper thread

will not be beneficial to the application thread. In order to avoid such undesirable situations, the

compiler adds a call to the Win32 API, SetThreadAffinityMask(), to manage thread affinity at

the beginning of the application thread to pin the main thread to a particular logical processor.

This is our baseline configuration to evaluate the performance of pre-execution. Similarly, the

helper thread, when created, is pinned to the other logical processor within the same physical

processor. The speedup of pre-execution is computed by dividing the execution time with helper

threads by that of the baseline, whereas we measure the wall-clock time for the entire program

execution for both cases.

Figure 7.2 shows the effect of thread pinning on the performance of benchmarks without

pre-execution. Each bar represents the execution time without thread pinning, which is normalized

to the execution time with thread pinning. Clearly, thread pinning slightly improves the single
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Figure 7.2: Normalized execution time without thread pinning. The execution time without helper

threads, but with thread pinning, is our baseline for the actual performance measurements.

thread performance in the hyper-threaded processor. This is because thread pinning eliminates

the overhead associated with OS job scheduling. Throughout the rest of this chapter, we use the

execution time with thread pinning as the baseline reference performance numbers.

7.1.4 Evaluation of Static Thread Initiation Schemes

Statistics for StripMining Scheme

To evaluate the StripMining scheme, the sampling period should be determined a priori. The

compiler instruments each targeted loop with the EmonLite library routines to profile the chronol-

ogy of cycles and L2 misses. The sampling period is adjusted such that each sample takes between

100K and 200K cycles on average. Recall that the Windows API-based thread synchronization

mechanisms cost between 10K and 30K cycles, whereas the prototype hardware-based synchro-

nization mechanism takes about 1,500 cycles. Consequently, with the Win32 API, the thread

synchronization overhead has a significant impact on performance. Table 7.3 lists the procedure

name that contains the targeted loop, the sampling period in loop iterations, and the number of

samples over the entire program execution for each selected loop, which in turn denotes the total

number of helper thread invocations for the pre-execution region. In each benchmark except MCF,

a loop that accounts for the largest fraction of the memory stall time is selected. In MCF, two

loops that severely suffer from cache misses are chosen.
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Table 7.3: Statistics for the StripMining scheme.

Application Procedure Name Sampling Period Number of Samples

MCF refresh potential 100 2,422,827

MCF price out impl 1,000 1,370,258

ART match 1,000 1,672,740

BZIP2 sortIt 1,000 118,201

MST BlueRule 100 44,985

EM3D all compute 200 20,000

Speedup Results

Figure 7.3 reports the speedup results of the two static schemes, i.e., the Serial and StripMining

schemes. For each scheme, we compare the performance of two thread synchronization mechanisms,

the heavy-weight Windows API and the light-weight hardware mechanism. The speedup is over

the baseline configuration, and it is for the entire program execution, not just for the targeted loop

only. For each benchmark, we show speedups in percentage for four different configurations, i.e.,

“SO,” “SH,” “MO,” and “MH.” Each configuration name consists of a two-letter acronym. The

first letter denotes the thread initiation scheme that is used to initiate the helper threads; “S”

stands for Serial, whereas “M” stands for StripMining. The second letter denotes the thread

synchronization mechanism to resume and suspend the helper threads; “O” stands for OS API

whereas “H” stands for hardware mechanism.

First, let us examine the performance impact of the thread synchronization cost by com-

paring the speedup results of the OS API and hardware mechanism in Figure 7.3. For the Serial

scheme, i.e., “SO” vs. “SH,” the light-weight hardware mechanism provides 1.8% more speedup,

on average, than using the OS API. This relatively small difference is primarily because, for the

Serial scheme, the helper threads run for the entire iterations of the targeted loops before the

next synchronization point at the loop boundary, thus the impact of thread startup cost is much

less significant, even considering the cost of the OS API. On the other hand, for the StripMining
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Figure 7.3: Speedup of the static thread initiation schemes. From the left to right bars, we label each bar as

“SO” for the Serial scheme with the OS API, “SH” for the Serial scheme with the hardware mechanism,

“MO” for the StripMining scheme with the OS API, and “MH” for the StripMining scheme with the

hardware mechanism. The speedup is computed by normalizing the execution time of each configuration

to that of the baseline.

scheme, the difference in performance impact by the two thread synchronization mechanisms is

rather pronounced. Comparing the “MO” and “MH” bars, the hardware mechanism provides an

average of 5.5% additional gain over the OS API. Since the helper threads are activated more

frequently in the StripMining scheme, the effectiveness is much more sensitive to the thread syn-

chronization cost. The heavy-weight OS API introduces significant overhead on the main thread

and potentially causes the helper threads to be activated out of phase, thus resulting in ineffectual

pre-execution, which not only runs behind but also takes away critical processor resources from the

main thread. This explains the slowdown in “MO” for most benchmarks except for MCF, which

suffers from lots of long latency cache misses, and thus running helper threads is still beneficial

even with the heavy-weight thread synchronization mechanism.

Comparing the performance of the Serial and StripMining schemes in Figure 7.3, the

Serial scheme performs slightly better than the StripMining scheme for the sampling period

shown in Table 7.3 and the given thread synchronization cost. When using the OS API for syn-

chronizing helper threads, i.e., “SO” vs. “MO,” the Serial scheme outperforms the StripMining

scheme for all benchmarks except for EM3D. In EM3D, with the Serial scheme, we observe the

helper thread runs away from the main thread due to lack of synchronization in the middle of

the loop’s execution. Consequently, the prefetched cache blocks from the run-away helper thread
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are evicted before use, and worse yet, evict useful cache blocks in the process, thus degrading the

performance of the main thread significantly. However, using the StripMining scheme effectively

prevents such cache thrashing since each sampling period effectively works as a synchronization

point, providing better performance for EM3D. For the other benchmarks, since the StripMining

scheme invokes helper threads more frequently, the heavy-weight overhead of calling the OS API

limits the performance improvement of the main thread. On the other hand, if the light-weight

hardware mechanism is employed, i.e., “SH” vs. “MH,” the performance with the StripMining

scheme is comparable to that of the Serial scheme. Figure 7.3 shows there is little difference

between the two schemes in MCF and BZIP2. In ART, however, since the targeted loop consists

of only 12 instructions, the instrumentation code to track sampling period and invoke the helper

threads accounts for a relatively large portion of the loop work, resulting in performance degra-

dation with the StripMining scheme. In MST, the StripMining scheme performs worse due to

both the thread synchronization cost and code instrumentation overhead. Although the hardware

mechanism provides an order of magnitude reduction in overhead as compared to synchronization

via the OS API, even at 1,500 cycles, the hardware synchronization still takes more than twice as

long as the latency to serve a cache miss from main memory. While the benefit of the StripMin-

ing scheme is not noticeable in the figure, we expect it to be more effective with even lower thread

synchronization cost.

A Case Study: Estimating Upper-Bound Performance with Helper Threads

The performance with pre-execution is determined by how fast a helper thread can run, not by

how fast the main thread runs. In other words, as long as the helper thread triggers cache misses

quickly and runs far ahead, the main thread simply catches up with the helper thread while enjoying

cache hits. Thus, for the two loops in MCF that are pre-executed, we measure the time to execute

the cache-miss kernel in several situations to estimate the upper-bound performance with helper

threads. We introduce a set of experiments, from E1 to E5, where we use the Serial scheme and

the hardware mechanism for thread synchronization. Note, depending on which thread initiation
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scheme is used and how helper threads are optimized, the experimental results and the estimated

upper-bound performance with helper threads may vary. The description of each experiment is

shown below; “E” stands for Experiment.

E1: We first measure how long it takes to execute the original loop code without helper threads

(just the targeted loop only, not the entire program). We place the EmonLite library

routines before and after the targeted loop and record the cycle counts for each loop instance.

At the end, we sum up all cycle counts and get the total cycles spent on the targeted loop

over the entire execution. This becomes the baseline configuration for the experiments E1

through E5.

E2: We measure how fast a helper thread executes the cache-miss kernel when all the hardware

resources are given to the helper thread. First, we perform slicing on the original loop and

remove noncritical code that does not affect the execution of the delinquent loads. The

remaining code is the cache-miss kernel and looks exactly the same as the helper thread with

the Serial scheme. Then we record the cycle counts for each loop instance and compute

the total cycle counts as is done in E1. In theory, E2’s cycle count is the best achievable

performance by a helper thread for the Serial scheme in the absence of resource contention.

Comparing the E1 and E2 bars, we can also estimate the criticality of the cache-miss kernel.

In other words, if the E1 and E2 bars are close, it means the cache-miss kernel is in the

critical path of the targeted loop. Thus, unless the helper thread is optimized in a different

way, using the Serial scheme may not provide any speedup.

E3: This experiment is the same as E2 except that we run another thread alongside the helper

thread which does nothing but execute the pause instructions. The purpose of this ex-

periment is to see the impact of hardware resource partitioning on the speed of the helper

thread.1 The total cycle count is the shortest time of the helper thread in the MT mode.
1Unfortunately, we cannot leave the hyper-threaded processor in the MT mode while one of the logical processors

is completely idle, which is exactly what we want in order to examine the impact of resource partitioning. Hence

the pausing thread is the best we can do.
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Figure 7.4: Speed of the cache-miss kernels for various situations. For these experiments, we use the

Serial scheme with the hardware thread synchronization mechanism.

If the cycle count is much increased when going from E2 to E3, this implies the cache-miss

kernel is bounded by processor resources that are hard-partitioned in the MT mode such as

the reorder buffer.

E4: If the E3 cycle count is larger than that of E1, we cannot expect any speedup with helper

threads using the Serial scheme. Therefore, we need to employ another technique to opti-

mize and transform the helper thread, thereby achieving speedup with helper threads. As an

optimization technique for E4, we examine whether the delinquent load shows stride access

patterns, and if it does, we implement stride prefetching in the helper threads. Then we

measure the total cycles of the modified cache-miss kernel still in the MT mode as in E3.

Note, for E2 through E4, to ensure the correct execution of the program, we remove all

stores in the cache-miss kernel to eliminate side effects and execute the original loop after

the EmonLite-based cycle count measurement.

E5: Lastly, we run the optimized cache-miss kernel from E4 on a helper thread while the main

thread executes the original loop code in parallel. The total cycles are the actual performance

that we achieve with helper threads. By comparing the performance of E4 and E5, we can see

the impact of interference between the main thread and the helper thread. Possible reasons

for the interference are hardware resource sharing and cache thrashing.

Figure 7.4 shows the execution time of each experiment, which is normalized to the execution

time of E1. This figure provides valuable insights into how helper threads can achieve speedup in
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the hyper-threaded processor.

The first loop, labeled “MCF-I,” is from price out impl(), which accounts for 29.2% of

the total cycles in MCF. This loop is pointer-chasing and the cache miss kernel is the linked-list

traversal. After slicing, the code to perform value computation is removed. First, comparing the

E1 and E2 bars, one can see that the linked-list traversal is the critical path of the loop, and the

execution time of the value computation is overlapped behind the linked-list traversal. Comparing

the E2 and E3 bars, the execution time is not much increased even though some of the hardware

resources are hard-partitioned. Since most instructions in this loop are serialized along the linked

list, they do not require many reorder buffer entries and the cycles are not significantly affected by

the reduced reorder buffer size in the MT mode. Comparing the E1 and E3 bars, one can notice

that helper threads may not provide significant gain if the helper thread just traverses the same

linked list as the main thread does. We observe that the delinquent load in this loop shows fixed

stride access pattern and implement a software-based stride prefetcher in the helper thread.2 The

speed of the helper thread is significantly improved as shown in the E4 bar. Comparing the E4

and E5 bars, one can see the effect of interference between the main thread and the helper thread,

and we finally achieve an 11.7% speedup for this loop.

The second loop, labeled “MCF-R,” is from refresh potential(), which accounts for

52.7% of the total cycles in MCF. This loop is also pointer-chasing and the extracted cache-miss

kernel determines the control flow of the loop. Comparing the E1 and E2 bars, the cache-miss kernel

accounts for about half the original cycles and its speed is not affected by resource partitioning

as shown in E3 for the similar reason in the “MCF-I” case. We do not apply any technique to

optimize the cache-miss kernel, so the E3 and E4 bars are the same. Finally, when we perform

pre-execution, the performance is significantly affected by interference between the two threads,

and we achieve a 7.6% speedup for this loop.
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Figure 7.5: Cache-miss coverage using the Serial scheme with the hardware thread synchronization

mechanism.

Dynamic Behavior of Helper Threads

In order to shed further insights into the impact of helper threads on program execution, we

discuss the dynamic behavior of the helper threads by examining both the cache-miss coverage

and cycle-count improvement.

Figure 7.5 illustrates the L2 miss coverage based on the VTune profiles3 for the Serial

scheme with the hardware thread synchronization mechanism (configuration “SH” from Figure 7.3).

In Figure 7.5, we show two bars for each benchmark; the bar at the left, labeled “Main thread,” is

the L2 miss count incurred by the targeted delinquent loads in the main thread, whereas the bar at

the right, labeled “Helper thread,” is the L2 miss count incurred by the helper thread to prefetch

for those delinquent loads. Note, only cache misses due to delinquent loads within the targeted pre-

execution regions are counted, and cache misses incurred outside the pre-execution regions are not

shown in the figure. Each bar is normalized to the L2 misses of the baseline configuration for the

same set of the delinquent loads. The data clearly indicate that helper threads significantly reduce

cache misses in the main thread, ranging from 25.3% in ART to 60.4% in EM3D. In EM3D, helper

threads eliminate a large portion of the L2 misses for the targeted delinquent loads. However,

they also increase the number of cache misses for the non-targeted loads, which is not shown in

Figure 7.5, thereby degrading the overall performance of EM3D (see Figure 7.3).
2We observe that this load is not perfectly prefetched by the hardware prefetcher implemented in the processor,

thus leaving some room for performance improvement with pre-execution.
3Current version of the VTune performance analyzer is enabled for Hyper-Threading Technology [79], and thus

it can collect profile information while threads are running on the two logical processors simultaneously.
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On the other hand, this figure also reveals some inefficiency of the static thread initiation

schemes. First, in all benchmarks except for BZIP2, the percentage of the cache misses covered

by the helper threads, “Helper thread” bar, is not close to 100%. This indicates helper threads

sometimes run behind the main thread and do not help to reduce neither the cache misses nor

the cycles of the main thread. Since unhelpful helper threads may degrade the performance of

the main thread due to the resource contention problem discussed in Section 6.1.1, helper threads

should not be activated for certain period. Second, in ART, BZIP2, MST, and EM3D, the sum

of the two bars exceeds 100%. This indicates that for certain time phases, helper threads run too

far ahead of the main thread and incurs cache thrashing, thereby making already prefetched cache

blocks still miss in the cache. During those time phases when the helper threads are not effective,

certain dynamic throttling mechanism can be introduced to either suspend an on-going helper

thread or prevent activation of the next helper thread instance in order to avoid the performance

degradation.

To investigate the impact of helper threads at a much finer granularity, Figure 7.6 shows

the EmonLite-based chronology of the L2 miss events and the cycle events in BZIP2. The

profiles are collected over 100 samples using the StripMining scheme with the hardware thread

synchronization mechanism. Each figure depicts two sets of data, one without pre-execution (solid

line), and the other with pre-execution (dotted line). Comparing the patterns in Figures 7.6a

and 7.6b, one can see there exists strong correlation between the L2 miss event and the cycle event,

implying that those targeted loads are likely critical. However, when helper threads are applied,

there are some sample phases when L2 miss reductions do not convert to similar reductions in

cycle counts. For instance, between sample IDs 71 and 88, even though the number of L2 misses

is reduced with helper threads, the cycle counts actually increase. It would be helpful if we could

detect those time phases when the application performance is degraded with pre-execution so that

helper threads do not get activated for such time phases. This observation leads us to consider

certain runtime mechanisms to dynamically throttle helper threads, a topic to be discussed in the

next section.
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Figure 7.6: Dynamic behavior of the performance events in BZIP2 with and without helper threads. a)

Chronology of the L2 miss events. b) Chronology of the cycle events.
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Table 7.4: Percentage SD statistics. Profiles are collected without launching helper threads.

Application % SD(cycle) % SD(L2 miss)

MCF (refresh) 44.80% 39.45%

MCF (implicit) 44.50% 50.41%

ART 17.14% 3.79%

BZIP2 61.91% 96.83%

MST 30.59% 30.86%

EM3D 46.05% 44.72%

7.1.5 Evaluation of Dynamic Throttling of Helper Threads

In this section, we explore the potential of dynamic throttling of helper threads based on the

Dynamic StripMining scheme by assuming a hypothetical perfect throttling mechanism.

Quantifying Dynamic Behavior

First, let us introduce how we quantify the dynamic behavior of a program. Using the same

sampling periods shown in Table 7.3, we collect the cycle and L2 miss profiles for each sample

of the targeted loops. Profile information is acquired using the EmonLite code instrumentation

without running helper threads. Then we compute the percentage standard deviation (SD) of the

cycles and the L2 misses among all the samples as shown in Eq. 7.1, where PMC(i) is the PMC

value for the i-th sample, A is the average PMC value per sample, and N is the total number of

samples.

SD(%) =

√∑
i(PMC(i) − A)2

N
∗ 100/A (7.1)

Table 7.4 reports the percentage SD values of cycles and L2 misses for each targeted loop.

A large SD value implies the corresponding performance event is more time variant. Again, we

can observe some correlation between the cycle event and L2 miss event standard deviations. Or

rather, if one performance monitoring event is dynamically variant, so is the other one. This is
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because the delinquent loads in our targeted loops are usually on the critical path, and thus the

cache miss behavior directly affects the cycle-count behavior.

Performance Potential with Perfect Throttling

To estimate the performance impact of dynamic throttling of helper threads, we postprocess the

cycle and L2 miss profiles acquired by actually running benchmarks with and without helper

threads. For this purpose, it is essential to gauge when a helper thread improves or degrades

the performance of the main thread. This can be done by comparing the cycle profiles with and

without helper threads for each sample. For a limit study, an ideal scenario is to activate the

helper thread only when it is beneficial and deactivate it when it degrades performance. Thus,

as the first step, we collect the EmonLite profiles using the StripMining scheme for every

sampling period with and without helper threads. To estimate the execution time with perfect

throttling of helper threads, we do the following. Using the profiles without helper threads as the

baseline configuration, we record the cycle counts with helper threads for those samples that provide

performance improvement. For the remaining samples that exhibit performance degradation, the

increased cycle counts due to detrimental effect of helper threads are discarded and the baseline

cycle counts are recorded instead. The sum of the recorded cycles projects the execution time

with perfect throttling, where a perfect throttling algorithm would activate a helper thread only

for those samples with speedup.

Figure 7.7 presents the total cycles for the targeted loops only, not the entire program,

for 4 different configurations; the StripMining scheme with the OS API (SO), the Dynamic

StripMining scheme with the OS API (DO), the StripMining scheme with the HW mechanism

(SH), and the Dynamic StripMining scheme with the HW mechanism (DH), where each bar

is normalized to the cycles of the baseline. It is apparent that perfect throttling would provide

nontrivial speedups beyond the static scheme’s performance. The figure shows, on average, 4.8%

more gain with the OS API and 1.2% more gain with the hardware mechanism can be achieved.

The larger additional gain with the OS API is partly due to the nondeterministic nature of the OS
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Figure 7.7: Performance comparison between the StripMining scheme and the Dynamic StripMining

scheme. From left to right bars, each bar is labeled to present the thread initiation scheme and the thread

synchronization mechanism: “SO” for the StripMining scheme with the OS API, “DO” for the Dynamic

StripMining scheme with the OS API, “SH” for the StripMining scheme with the hardware mechanism,

and “DH” for the Dynamic StripMining scheme with the hardware mechanism.

synchronization mechanism. Interestingly, there exists correlation between the SD values in Ta-

ble 7.4 and the impact of dynamic throttling in Figure 7.7. For instance, BZIP2 has the largest SD

value for cycle counts showing the most dynamic behavior among the benchmarks, and the amount

of execution time difference without and with dynamic throttling is also the largest. This implies

applications with more dynamic behavior can benefit more from dynamic throttling mechanisms.

With a perfect throttling algorithm and light-weight hardware synchronization mechanism, helper

threads can provide as much as 20.6% wall-clock speedup for the targeted loop in BZIP2. This

performance potential of dynamic throttling serves to motivate future efforts to better optimize

the helper threads and lower the thread synchronization cost.

7.1.6 Sensitivity of Program’s Dynamic Behavior

In our experimental settings, the granularity of the sampling period for the StripMining scheme

is limited by the cost of the thread synchronization mechanisms. Even in the worst case, the

length of a sampling period cannot be shorter than the time required for resuming and suspending

the helper threads. Otherwise, helper threads will be out of phase and cannot improve the main

thread’s performance. Consequently, the dynamic behavior of a program is exploited at a rather

coarse granularity with the current thread synchronization cost. Note, even the 1,500 cycle latency

of the hardware synchronization mechanism is more than twice the L2 miss latency. In this section,
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Figure 7.8: Percentage SD of L2 misses for various sampling periods.

we demonstrate the dynamic program behavior for various sampling periods, from very coarse

granularity to extremely fine granularity.4 From this experiment, we show that the time variance

in the dynamic cache miss behavior becomes more pronounced as the resolution of sampling of the

program execution increases, which indicates there exists much more room for exploring dynamic

throttling at a finer granularity, potentially providing larger performance improvement. In turn,

this motivates further hardware optimizations to reduce the thread synchronization cost.

In Figure 7.8, we vary the sampling period from 10000, to 1000, 100, 50, and 10 loop

iterations for the targeted loop in price out impl() of MCF, and profile the L2 misses for each

sample using the EmonLite code instrumentation. The figure presents the percentage SD for the

different sampling periods. The SD values show a steady increase from 10000, to 1000, 100, and 50

iterations. Once the sampling period reaches 10 loop iterations, where each sample takes around

2K cycles on average, the cache miss behavior is highly dynamic, implying there is significant

variation in L2 miss counts between different samples. Figure 7.8 shows that such dynamic cache

behavior can only be captured at a very high sampling resolution.

7.2 Key Observations

This section summarizes the key insights we learned from our experiments with prefetching helper

threads on real silicon. We first discuss several impediments to achieve speedup in a physical

system, then present some essential mechanisms to overcome the constraints and further increase
4Note, we can still monitor the performance events at such fine granularity thanks to the light-weight profiling

overhead of the EmonLite.
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the performance gain.

7.2.1 Impediments to Speedup

From our experiments, we observe several issues that are unique to a physical system limit the

performance improvement with prefetching helper threads. To achieve significant speedup on a

real machine, it is crucial to address those impediments to speedup that are correlated with each

other.

First, hardware resource contention in the hyper-threaded processor imposes intricate trade-

offs regarding when to launch a helper thread, for how long to execute the helper thread, and how

frequently to reactivate the helper thread. To perform effective pre-execution in a physical sys-

tem based on hyper-threaded processors, judicious invocation of helper threads must be ensured to

avoid potential performance degradation of the target workload due to resource contention between

the main thread and the helper thread.

Second, program execution often exhibits dynamically varying behavior of microarchitec-

tural events such as cache misses and hardware resource distribution between the main thread and

the helper thread. As illustrated in Figure 7.6, there exist certain time phases when helper threads

may not be helpful due to various reasons such as lack of cache misses to tolerate or contentions for

MSHRs, cache ports, and bus bandwidth. We observe static scheduling of helper threads, solely

based on compile-time analyses, has some limitations due to such dynamic events at runtime.

Therefore, it is very important for the helper threads to adapt to the dynamic program behavior

and computing environment at runtime and throttle the invocation of helper threads to enable

more effective prefetching.

Third, to achieve even more speedup with helper threads, monitoring and adapting to the

dynamic behaviors of program execution at a very fine granularity are crucial. This requires

frequent communication and synchronization between the main thread and the helper thread. To

support such fine-grain handshaking effectively, having very light-weight thread synchronization

and switching mechanisms is critical.
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7.2.2 Essential Mechanisms

To overcome those impediments presented in Section 7.2.1, certain software and hardware mech-

anisms are required. We need to develop better compiler algorithms to construct more efficient

helper threads and schedule them judiciously to ensure timely activation and deactivation. In

addition, the compiler must further optimize the helper threads to reduce resource contentions,

e.g., by exploiting occasional stride-prefetch pattern, as a form of strength reduction in order to

accelerate helper thread execution and thus potentially minimize resource occupancy by the helper

threads. Furthermore, it is crucial to employ runtime mechanisms to capture the dynamic program

behavior and throttle the helper threads, thereby filtering out helper thread activations which lead

to wasteful resource contention and unnecessary prefetches. Since the dynamic throttling mech-

anisms would be more effective with very fine-grain thread synchronization, light-weight thread

synchronization support in hardware is also essential. If provided with such compile-time and

runtime support, pre-execution can be a highly effective technique to deal with the ever-increasing

memory latency problem in those workloads that have large working sets and thus suffer from sig-

nificant cache misses, especially those misses that defy conventional prediction-based prefetching

techniques or software prefetches integrated into the main thread code.
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Chapter 8

Evaluation of Compiler-Based Pre-Execution in a Multiprogramming Environment

Thus far, we evaluate compiler-based pre-execution for single-threaded programs only. However,

modern computing environments typically include multiprogrammed or multithreaded workloads.

For instance, multiple different applications that are independent of each other, or multiple queries

for a database executing as different processes can run simultaneously in an SMT processor. Fur-

thermore, in parallel processing, a single workload is parallelized and runs as a multithreaded

workload. Performing pre-execution in such multithreading environments exposes some intriguing

tradeoffs regarding how to distribute the available hardware resources to computation threads,

formerly called the main thread in the single-threaded workload case, and helper threads. When

the main threads and the helper threads effectively share the hardware resources in the SMT

processor, performing pre-execution can help to boost the overall processor throughput. On the

other hand, running helper threads possibly prevents the main threads from acquiring enough

hardware resources, perhaps degrading the throughput of the system. In this chapter, we evaluate

compiler-based pre-execution in the context of multiprogramming in order to better understand

the combination of resource management via thread scheduling and compiler-based pre-execution

in SMT processors.

8.1 Multiprogramming Simulation Methodology

For this experiment, we generate helper thread code using our most aggressive SUIF-based compiler

framework, known as “Compiler A” in Table 4.1. In addition, we slightly change the configura-

tion of our SMT processor simulator so that it can support a maximum of 5 hardware contexts

simultaneously; in our experiment, we assume a hypothetical computing situation in which 2 in-

dependent application threads, i.e., main threads, are running and each application can invoke up

to 3 helper threads for prefetching. To accommodate the requests for helper threads from the 2

main threads, a total of 8 hardware contexts would be necessary (2 for the main threads and 6

for the helper threads). However, rather than providing enough contexts to support the maximum
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requirement, we assume the contexts for helper threads are dynamically shared between the 2

main threads. We believe such a design point is realistic since it reduces the design complexity of

the SMT processor, and it helps to better utilize its available hardware contexts. Except for the

number of hardware contexts, the same processor configuration from Table 5.1 is used throughout

all multiprogramming experiments.

Since only a limited number of contexts are available for pre-execution, the main threads

must arbitrate for the hardware contexts before initiating pre-execution. To support arbitration,

we implement a software queue to keep track of the idle hardware contexts available for helper

threads. Before entering a pre-execution region, each main thread must acquire a lock to gain

exclusive access to the idle context queue, and reserve the necessary number of hardware contexts

depending on the thread initiation scheme. Recall that the Serial scheme attempts to reserve 1

context, while the DoAll and DoAcross schemes attempt to reserve 3 contexts. Due to lack

of sufficient hardware contexts for helper threads, reservation requests may fail to acquire the

requisite number of contexts. To handle such cases, we modify the helper thread code generated

by our compiler to enable the parallel thread initiation schemes, which require multiple contexts,

to accommodate a variable number of helper threads. To avoid the situation where a main thread

keeps injecting useless instructions into the processor pipeline waiting for the release of the idle

context queue lock, we use a hardware semaphore for the idle context queue lock while the helper

threads still use software semaphores for communication and synchronization.

The degree of contention for hardware contexts, an important determiner of multiprogram-

ming performance, depends on how actively individual programs employ helper threads during

execution. To quantify the helper thread’s activity, we introduce a new metric, called the Thread-

ing Duty Factor (TDF). An application’s TDF is defined as the percentage of time the helper

threads remain active when the application runs on a dedicated 4-context SMT machine in which

1 context is used to run the main thread and the other 3 contexts are used for the helper threads.

A TDF value indicates the occupancy across all 3 contexts for the helper threads. For example, if a

single helper thread employing the Serial scheme is always active throughout the entire execution
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Table 8.1: Benchmarks for the multiprogramming experiments. The TDF values for each benchmark are

listed in the third row, and the helper thread initiation schemes employed in each benchmark are listed

in the last row. Benchmark groupings are indicated in the first row: Group 1 benchmarks have high-TDF

values, Group 2 benchmarks have medium-TDF values, and Group 3 benchmarks have low-TDF values.

Group 1 Group 2 Group 3

em3d mst 181.mcf 179.art 175.vpr 256.bzip2 188.ammp

99.98% 99.64% 86.18% 63.14% 23.12% 22.22% 18.14%

DA DX DX DA & SE DA & SE DA & SE SE

of a program, the TDF value is 33.33%, since 2 hardware contexts are still available for helper

threads. Eq. 8.1 shows how to compute the TDF value for a program:

TDF (%) =
∑3

i=1 Execution time of helper thread i

T otal simulation time
∗ 1

3
∗ 100 (8.1)

Table 8.1 reports the TDF values and thread initiation schemes for 7 benchmarks used

in our experiments. We divide them into three groups according to their TDF values: Group 1

benchmarks have high-TDF values (EM3D, MST, MCF), Group 2 benchmarks have medium-TDF

values (ART), and Group 3 benchmarks have low-TDF values (VPR, BZIP2, AMMP).

8.2 Evaluation Results

Figure 8.1 reports the multiprogramming results. We study 10 multiprogrammed workloads, each

consisting of two applications selected from Table 8.1. For each workload, we perform three

experiments. All experiments run for a fixed number of cycles, called the scheduling interval,

which is set to 100M cycles in this study. The first two experiments, labeled “Baseline Simul”

and “Pre-exec Simul,” run the two applications in a multiprogrammed workload simultaneously

without and with pre-execution, respectively. In these experiments, both applications are active

during the entire scheduling interval. For the experiment labeled “Pre-exec Time,” we run the two

applications with pre-execution in a time-sliced manner, thus each application is active for exactly
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Figure 8.1: Weighted speedup of the multiprogrammed workloads. “Baseline Simul” denotes simultane-

ous execution without pre-execution. “Pre-exec Simul” and “Pre-exec Time” denote pre-execution with

simultaneous execution and time sharing, respectively. The TDF group that each application belongs to

and the baseline IPC for the application are shown in parentheses.

half the scheduling interval. Note, for “Pre-exec Simul,” the 2 main threads compete with each

other to acquire hardware contexts for running helper threads, whereas “Pre-exec Time” does not

encounter the same problem since only one main thread runs at any given time, utilizing whatever

processor resources it needs to perform pre-execution. Figure 8.1 shows the weighted speedup [67]

achieved across the entire scheduling interval for each experiment and workload, computed as

follows:

Weighted Speedup =
1
2

[
IPCApp1

IPCBaseApp1
+

IPCApp2

IPCBaseApp2

]
(8.2)

where IPCBaseApp1 and IPCBaseApp2 are the IPCs achieved by each application in the “Baseline

Simul” experiment. Individual bars are broken down into two components to show each applica-

tion’s contribution to the overall weighted speedup.

Figure 8.1 provides several valuable insights. First, comparing the “Pre-exec Simul” bars

against the “Baseline Simul” bars, we see pre-execution improves the weighted speedup for all 10

multiprogrammed workloads. On average, the workloads receive a 45.0% boost in the weighted

speedup with pre-execution compared to the baseline. This demonstrates pre-execution has a pos-

itive impact on the performance of multiple simultaneously executing applications, even when ap-
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plications must share a limited number of hardware contexts for helper threads and those launched

helper threads steal some hardware resources from the computation threads.

Although performing pre-execution performs better than no pre-execution, we also want to

study whether combining pre-execution with simultaneous execution is the best choice. Simultane-

ous execution in an SMT processor tends to boost throughput by allowing multiple applications to

more effectively exploit processor resources. However, it also tends to reduce the pre-execution ef-

fectiveness because simultaneously executing applications must compete for the hardware contexts,

so the application that could not acquire enough hardware contexts for helper threads often loses

opportunities to benefit from helper threads’ prefetching. We quantify this tradeoff by comparing

the “Pre-exec Simul” and “Pre-exec Time” bars in Figure 8.1. Workloads in the “Pre-exec Simul”

experiments exploit pipeline sharing via simultaneous execution of the applications, while work-

loads in the “Pre-exec Time” experiments exploit contentionless access to the hardware contexts

for helper threads since the applications execute one at a time.

Figure 8.1 shows the tradeoff between pre-execution and simultaneous execution depends

on the workload and to which TDF group its applications belong. When both applications in a

workload have either medium- or low-TDF values, as in the ART-ART, AMMP-ART, and AMMP-

BZIP2 workloads, then “Pre-exec Simul” always performs better than “Pre-exec Time.” For these

workloads, contention for the hardware contexts is low in the “Pre-exec Simul” experiments due

to the modest-TDF values of individual applications. Consequently, applications exploit pipeline

sharing while running simultaneously without paying a performance penalty for context contention,

resulting in higher throughput compared to time slicing. In contrast, when one of the applications

in the workload has a high-TDF value, pre-execution and simultaneous execution do not always

combine symbiotically. High-TDF applications tend to monopolize the hardware contexts, limiting

the other application’s ability to perform pre-execution. Time-slicing can relieve this contention,

but at the expense of sacrificing simultaneous execution. If boosting the pre-execution perfor-

mance of the lower-TDF application outweighs the benefit of pipeline sharing, then “Pre-exec

Time” outperforms “Pre-exec Simul.” This happens in the EM3D-MCF, ART-MST, and VPR-
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EM3D workloads. However, if the benefit of pipeline sharing outweighs boosting the pre-execution

performance of the lower-TDF application, “Pre-exec Simul” outperforms “Pre-exec Time.” This

happens in the MST-MCF, VPR-MST, BZIP2-EM3D, and BZIP2-MST workloads.

Across all 10 multiprogrammed workloads, “Pre-exec Simul” outperforms “Pre-exec Time”

by 9.9% on average. Hence for our workload mixes, simultaneous execution is generally more

profitable than time slicing. We also observe “Pre-exec Time” outperforms “Baseline Simul” in

all workloads except one, providing a boost in the weighted speedup of 29.7% on average. This

reinforces our earlier claim that pre-execution is better than no pre-execution for the workloads in

Figure 8.1, even when computation threads do not exploit simultaneous execution.
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Chapter 9

Related Work

Now, we discuss some of the related works and show how our research can be placed among these

previous proposals. This chapter consists of the following three topics, which have been the basis for

the advent of pre-execution. First, pre-execution is a novel form of multithreading technique that

utilizes idle hardware contexts in single-chip multithreading processors, and thus Section 9.1 covers

several multithreading-related proposals. Second, we use pre-execution, which is a general latency-

tolerance technique, for data prefetching to eliminate memory stalls in a program’s execution.

Hence Section 9.2 examines some previous works on data prefetching by categorizing them into

the prediction-based and execution-based techniques, and show how prefetching has evolved to the

thread-based technique like pre-execution. Finally, Section 9.3 introduces different kinds of pre-

execution techniques that are grouped based on how to construct helper threads, and it compares

compiler-based pre-execution with other pre-execution techniques.

9.1 Multithreading

Multithreading has been studied for decades in both the academic research community and indus-

try. There have been a plethora of proposals on large multiprocessor systems to enable conventional

multithreading techniques such as multiprogramming and parallel processing [3, 39, 65]. In this

thesis, however, we focus on multithreading techniques that make use of single-chip multithreading

processors, and we examine some of the recent proposals on multithreading. In this section, we

discuss speculative multithreading, which is a new type of parallel processing with speculation

hardware support, and helper threading that helps the execution of the main thread indirectly by

exploiting spare hardware contexts. Both multithreading techniques try to improve single program

performance. Then we introduce two popular single-chip multithreading architectures, i.e., SMT

and CMP, and examine recent industry trends toward such processors.
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9.1.1 Speculative Multithreading

Speculative multithreading, also known as Thread-Level Speculation (TLS), is one popular way

to use processors that have a multithreading capability. In contrast to pre-execution where com-

puted results are usually not integrated into the processor’s shared state, all threads in TLS try

to perform useful computations to contribute to the overall processor throughput. Many specula-

tive multithreading techniques are performed on a CMP model, which is modified to handle the

memory speculation effectively. This section introduces two important speculative multithreading

techniques.

Thread-Level Data Speculation (TLDS) [72] introduces the hardware and compiler support

for constructing and managing multiple speculative threads extracted from a single program. Al-

though the CMP or SMT processors have capability of running multiple threads on a single chip,

conventional compilers have not been so successful to parallelize nonscientific codes because it

should be guaranteed that no dependence violations occur by parallelization. TLDS proposes the

hardware mechanisms to detect a dependence violation between store and load instructions, and

to roll back the faulting thread so that it can be restarted. In TLDS, dependence violations do

not disrupt the execution of a program due to such speculation hardware support. As long as the

dependence violations occur only infrequently, TLDS improves the performance of a program by

running multiple threads in parallel.

The idea of Multiscalar Processors [68] is one of the early proposals regarding speculative

multithreading. In the multiscalar paradigm, a compiler constructs the Control Flow Graph (CFG)

and partitions the CFG into blocks of instructions, called tasks. These tasks are assigned to the

multiple processing units in the multiscalar processor, arranged in a circular queue. The head of

the queue is nonspeculative and executes the earliest task in the queue, and the following processing

units execute tasks in a sequential program order. In a multiscalar processor, a special hardware

structure, called the Address Resolution Buffer (ARB) [27], is used to hold the speculative memory

operations, detect dependence violations of the memory references, and handle the recovery process

if necessary.
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9.1.2 Helper Threading

Helper threading, also known as assisted execution [22], is another type of multithreading where

one or more helper threads run alongside the useful computation threads and indirectly help their

executions. We roughly group various helper threading techniques into four categories, i.e., la-

tency tolerance, exception handling, fault tolerance, and implementation of hardware structures

in software, and discuss them below.

Latency tolerance. One of the most popular applications of helper threading is tolerating latency

in a program. This kind of helper thread is called the runahead thread [7, 24, 73] since the helper

thread runs in front of the main computation and resolves the long-latency delinquent events early,

thereby hiding the latency behind useful computations. Runahead threads can be used for many

purposes such as data prefetching [19, 36, 35, 37, 41, 42, 63, 81, 84], instruction prefetching [1],

branch outcome precomputation [14, 15, 25, 63, 84], I/O prefetching [13], and virtual function-call

target prediction [61]. In runahead threading, a very crucial issue is how to expedite the helper

threads so that they always run in front of the main computation. This thesis contributes to the

development of such optimization algorithms to produce more effective helper threads, especially

for optimization and transformation of helper thread codes at compile time.

Exception handling. Common hardware exceptions, when implemented by trapping, unneces-

sarily serialize the execution of a program. Observing the performance degradation due to such

serialization, Zilles et. al. [86] propose to run the exception handler code on a separate thread, i.e.,

helper thread, and allow the main thread to keep fetching instructions that are control and data

independent of the faulting instruction. In addition to eliminating serialization and overlapping

two kinds of threads, the branches in the post exception code are resolved earlier and the memory

latency is also tolerated by triggering potential cache misses early. The performance improvement

depends on the frequency of exceptions during a program execution, and the amount of indepen-

dent instructions whose execution can be overlapped with the execution of the exception handler

code. This idea is unique in that it decouples the computation code and exception handling code,
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which is not part of the original program code, and improves the main thread’s performance via

running a helper thread simultaneously.

Fault tolerance. As transistors scale to deep submicron level, transient faults occur more fre-

quently. Reinhardt and Mukherjee [58] demonstrate the Simultaneous and Redundantly Threaded

(SRT) processor where an identical copy of the same program runs simultaneously as an indepen-

dent thread on a derivative of an SMT processor, but it runs behind the original program to check

any occurrence of faults. Since the SMT nature of SRT processor enables dynamic scheduling of

the hardware resources, the SRT provides a higher efficiency compared to previous commercial

fault-tolerant computers, in which hardware components are fully replicated. On the other hand,

the Simultaneously and Redundantly Threaded processors with Recovery (SRTR) [78] enhances

the SRT processor by adding the recovery capability beyond the detection of the transient faults.

While the SRT allows an instruction in the leading thread to commit even before the fault checking

occurs, relying on the trailing thread to trigger the detection, in the SRTR, any leading instruc-

tions cannot commit before the check for fault occurs since a faulting instruction cannot be undone

once the instruction commits. In [78], the authors propose mechanisms to compare the leading

and trailing values as soon as the trailing instruction completes, thereby exploiting the time be-

tween the completion and commit of leading instructions. This type of helper threading neither

contributes to the processor throughput nor improves the program performance, but ensures the

correct execution of a program via running the program redundantly on a helper thread.

Implementation of hardware structures in software. One can implement complicated hard-

ware structures in software and execute proper codes on helper threads to manage such software

structures. In Simultaneous Subordinate Microthreading (SSMT) [14], subordinate threads, i.e.,

helper threads, that are written in microcode are executed alongside the primary thread, i.e.,

main thread, and improve the accuracy of branch prediction. In this work, a branch predictor

is implemented in software and runs on microthreads. Solihin et. al. introduce the idea of us-

ing a User-Level Memory Thread (ULMT) [69, 70], in which a user thread runs on the memory
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processor and executes the correlation table, built as a software data structure, to perform corre-

lation prefetching. This technique has some advantages such as it is applicable for wide range of

address patterns even for those in irregular applications, and it is flexible in that the prefetching

algorithm can be customized depending on the workloads. In addition, Master/Slave Speculative

Parallelization (MSSP) [85] proposes pre-executing data values as a replacement for a hardware

value predictor. In MSSP, one master thread, which is distilled from the original program code

to compute critical code only, speculatively runs ahead of the multiple slave threads and provides

necessary live-in values a priori. The slave threads are executed and managed as in TLS, but they

run faster due to the help from the master thread. Thus, MSSP can be viewed as a combination

of TLS and helper threading.

9.1.3 Single-Chip Multithreading Processors

Having presented several techniques that exploit recent single-chip multithreading processors, we

now examine two of the most popular research-processor models that support multiple threads

on a single chip. Those processors enable both speculative multithreading and helper threading

that require light-weight communication between threads. Then we introduce some commercial

processors that implement those research processors.

First, Tullsen et. al. propose a novel processor microarchitecture, called the Simultaneous

Multithreading (SMT) processor [75], in which instructions can be fetched from multiple threads by

sharing the hardware resources available in the processor. The SMT processor can be implemented

on an existing single-threaded superscalar processor with some modifications. It uses the same

pipeline and functional units as the superscalar processor, but some of the hardware structures

such as the program counter and register file are replicated to support multiple hardware contexts.

The SMT idea starts from the observation that a single program does not fully utilize the available

hardware resources in a superscalar processor. Consequently, the most important characteristics of

the SMT is to boost the overall processor throughput by making multiple threads effectively share

the processor resources. Originally, the SMT processor is designed to execute multiple independent
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application threads that perform useful computations. However, many research works use the SMT

processor to improve a single program performance, and pre-execution is one of the most popular

applications in such efforts.

Chip Multiprocessor (CMP) [52] is another processor model that contains multiple process-

ing units on a single chip. As integrated circuit technology becomes more advanced, billions of

transistors will be integrated into a single die in the near future. There are several directions to

make use of these enormous transistor budgets. One way is to implement much wider and deeply

pipelined superscalar processors. However, such a superscalar processor requires very complicated

control logic, like renaming registers and forwarding data values, to manage out-of-order execu-

tion. Consequently, it takes a much longer time to design and validate such complicated processors,

limiting continued boost of the processor clock frequency. Moreover, the power consumption is

another critical issue in such complex processor designs. Even though we have the ability to build

very complex superscalar processors, many workloads lack enough Instruction-Level Parallelism

(ILP) [80] that can fully utilize a superscalar processor’s out-of-order execution capability. Thus a

wider and deeper superscalar processor may not be able to provide significant additional gain. Hav-

ing observed these problems, Olukotun et. al. propose another way to use billions of transistors,

which is the CMP [52]. In the CMP, multiple processors exist on a single chip where each proces-

sor is a narrower but faster superscalar processor. Using the CMP, sequential workloads enjoy the

benefit of a high-clock rate processor, whose performance is comparable to much more complicated

but slower superscalar processors, whereas parallel workloads exploit low communication delays

between multiple processing elements on a single die.

Recently, these research processor models started emerging as commercial products. Intel

announced the first implementation of Hyper-Threading Technology on the Intel Xeon Processor

family [47], which supports two logical processors simultaneously. On the other hand, Barroso

et. al. introduce the design of the Piranha processor [8]. Piranha is a CMP that consists of 8

Alpha processor cores where each processor core issues instructions in order. In addition, IBM

announced the SMT implementation in IBM POWER5 [34], which contains dual processor cores
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and each core supports two virtual processors. With the emergence of such commercial processors

that support multithreading, we expect even more proposals in the future to investigate ways

to exploit these processors. We believe our compiler-based pre-execution is one good starting

point since it requires little modification to the existing processor hardware, and thus can be

easily applied to and evaluated on real silicon. Our work in [35] is the first to experiment with

helper threads in a real physical system, and more discussions on physical experimentation will be

provided in Section 9.3.4.

9.2 Data Prefetching

As in Section 2.3, we divide data prefetching techniques into two groups: prediction-based prefetch-

ing and execution-based prefetching. Execution-based prefetching techniques are further classified

into software prefetching, hardware-based prefetching, and thread-based prefetching techniques.

This section examines some of the previous proposals on the prefetching techniques and discusses

how they are related to pre-execution.

9.2.1 Prediction-Based Prefetching

Chen and Baer [16] propose a hardware-based data prefetching technique which keeps track of the

memory-access patterns in a Reference Prediction Table (RPT). The RPT entry consists of 4 fields:

tag holds the PC of the load/store instructions, prev addr records the last effective address of the

entry, stride is the difference between two consecutive addresses, and state indicates how further

prefetch should be generated. They also propose three prefetching schemes to issue a prefetch one

iteration ahead (basic), one memory latency time ahead (lookahead), and by considering different

loop levels (correlated). For 10 applications from the SPEC92 benchmark suite, their hardware

technique successfully reduces the memory stall time. However, in those benchmarks, only an

average of 14.3% data references show irregular access patterns and the remaining 85.7% of data

references have either zero or constant stride.

Jouppi [33] introduces stream buffers as a method to improve direct-mapped cache perfor-
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mance. Compared to the stride prefetchers, stream buffers are designed to prefetch sequential

streams of cache lines, independent of the program context. However, Jouppi’s design of stream

buffers is unable to detect streams that contain non-unit strides. Thus Palacharla and Kessler [56]

extend the stream buffer mechanism so that it can also detect non-unit strides without having

direct access to the program context.

Joseph and Grunwald [32] propose the design of the Markov prefetcher, which is a hardware-

based prefetcher performing correlation-based prefetching. The Markov prefetcher is distinguished

from Chen and Baer’s hardware stride prefetcher [16] by prefetching multiple reference predictions

from the memory subsystem. Using the Markov model, they monitor the miss-address reference

stream and correlate currently missed reference address with future reference addresses. They

report an average 54% reduction in memory stall time for various commercial benchmarks.

While prediction-based hardware prefetchers perform well for benchmarks that exhibit reg-

ular memory-access patterns, they are not effective for irregular references that are hard to predict.

Thus people have investigated various execution-based prefetching techniques to handle irregular

memory behavior that are discussed below.

9.2.2 Execution-Based Prefetching

To overcome prediction-based prefetching techniques’ inability to handle irregular memory-access

patterns, there have been many execution-based prefetching techniques where selected instruction

sequence is actually executed to generate accurate prefetches for the delinquent loads. We discuss

some important proposals on software prefetching and hardware-based prefetching techniques.

Thread-based prefetching techniques are thoroughly covered in Section 9.3 where we discuss various

pre-execution techniques.

Software Prefetching

Callahan et. al [11] present a compiler algorithm for inserting nonblocking prefetch instructions

into the program source code. The initial algorithm prefetches all array references in inner loops

one iteration ahead. However, they recognize this scheme issues too many prefetches and introduce
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a more intelligent scheme based on dependence vectors and overflow iterations. Since they perform

simulation at a fairly abstract level and the prefetch overhead is estimated rather than presented,

it is hard to evaluate the actual performance impact of their scheme. Their sophisticated scheme

is not automated by a compiler and the overflow iterations are calculated by hand. Mowry et.

al. [49] propose a compiler algorithm to insert prefetch instructions into the code that operates

on dense matrices, and they implement the algorithm in the SUIF compiler infrastructure. Their

algorithm identifies the memory references that are likely to miss in the cache by locality analysis

and covers only those loads to reduce the overhead with software prefetching. For a collection of

scientific applications, they show significant speedup with their prefetching technique.

While the above two works target array accesses in scientific workloads, Luk and Mowry [43]

propose compiler algorithms to prefetch for recursive data structures found in pointer-based ap-

plications. Luk and Mowry introduce three compiler algorithms, i.e., greedy prefetching, history-

pointer prefetching (also known as jump-pointer prefetching), and data-linearization prefetching

to remap heap objects, and automate the greedy prefetching algorithm in SUIF. As pointed out

earlier, in software prefetching, the integration of the prefetch instructions into the main program

code forces prefetching to be strictly tied to the progress of the main thread. Also, poor com-

putation capability of software prefetching limits its use for more complicated address calculation

patterns that also include control flow.

Hardware-Based Prefetching

Among many execution-based hardware prefetching techniques, we examine two proposals here.

Roth et. al. [60] introduce a dynamic scheme that captures the access patterns of the linked data

structures to generate future memory reference addresses. Their technique exploits the dependence

relationships between the loads that produce addresses and loads that consume these addresses

in the pointer-chasing traversals. Once the producer-consumer pairs are identified, they generate

an internal representation for the associated structure and its traversal pattern. The constructed

representation code is executed on a prefetch engine to generate prefetches for load instructions in
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the linked data structures. Their technique achieves speedups of up to 25% for applications in the

Olden benchmark suite [12], which consists of various pointer-intensive programs.

Another example that uses a hardware prefetch engine to generate prefetches for future

memory references is Multi-Chain Prefetching by Kohout et. al [38]. In this work, they perform

offline analyses to extract traversal information for the various program structures such as loops

or tree traversal. Then the extracted descriptor information is fed into the prefetch engine and

the necessary code is instrumented in the original program code to pass appropriate values to the

prefetch engine at runtime and initiate prefetching. Their prefetch engine can prefetch multiple

independent pointer chains simultaneously, thereby exploiting inter-chain memory parallelism in

workloads.

While both techniques are effective to handle pointer-chasing traversal patterns that are

usually found in the memory references of the linked data structures, they introduce a new hardware

structure, i.e., prefetch engine, which can be viewed as a small memory coprocessor to solely

perform data prefetching. With the advent of single-chip multiprocessors where multiple hardware

contexts are tightly coupled together, many people propose thread-based prefetching techniques

that utilize the general-purpose hardware contexts to run prefetching threads. Those thread-based

prefetching techniques are discussed in more detail in the next section.

9.3 Pre-Execution

In this section, we examine some important related works on pre-execution. As shown in Figure 1.1,

we classify previous works on pre-execution into three groups based on when and how helper

threads are constructed.1 Section 9.3.1 discusses four prior works on compiler-based pre-execution

that analyzes either the program source code or the intermediate representation of a program

to construct helper threads. Section 9.3.2 examines four linker-based pre-execution techniques

where helper threads are constructed at link time by analyzing program binaries using post-pass

binary analysis tools. Section 9.3.3 covers some hardware-based pre-execution techniques where
1We exclude dynamic optimizer-based approach since we could not find any previous works in this category.
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special hardware structures analyze instruction traces to extract helper threads at runtime. Finally,

Section 9.3.4 introduces two prior works that experiment with prefetching helper threads in a real

physical system.

9.3.1 Compiler-Based Pre-Execution

In our prior work [36], we propose various compiler algorithms to optimize helper threads and

show the design of a compiler framework to construct effective helper threads in the form of C

source code. Our compiler framework is implemented in the SUIF compiler infrastructure with

the help from an offline memory profiler and a program slicer. To the best of our knowledge, this

is the first work to fully automate a source-to-source compiler that generates prefetching helper

threads. To build the compiler framework, we adopt some of the conventional compiler algorithms,

e.g., program slicing [9, 44] and loop parallelization [21, 54, 55], but use them in a different way,

i.e., to optimize prefetching helper threads. While the helper threads in [36] only perform data

prefetching, we believe the compiler algorithms and compiler framework can be also applied to

other latency-tolerating purposes such as early resolution of branch outcomes.

Our follow-up work [37] extends the work in [36] and introduces the design of a few reduced

compiler frameworks for pre-execution. We replace the external tools and profiling steps in our

aggressive compiler, presented in [36], with static compiler analyses in order to reduce the com-

plexity of the compiler design. In addition to demonstrating the compiler algorithms and design,

we also conduct various experiments on a SimpleScalar-based SMT processor simulator and report

interesting results that prove compiler-based pre-execution effectively eliminates the cache misses

for a variety of workloads and significantly improves the processor performance. In this thesis,

Chapters 4 and 5 are based on these two prior works of ours, i.e., [36, 37].

While the above two works on compiler-based pre-execution make use of the SUIF compiler

infrastructure to generate helper threads, our recent prior work [35] introduces the design and

algorithms of a pre-execution optimization module in the Intel compiler. In this work, helper

threads are optimized and generated in the form of the Intel compiler’s intermediate representation
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and the backend compiler directly produces binaries targeting the Intel’s IA-32 architecture. The

constructed helper threads are attached to the binary and launched at runtime when the main

thread encounters the selected pre-execution regions. Chapter 6 provides more details about this

pre-execution compiler module in the Intel compiler.

We introduce yet another previous work by Luk [42], which is the first to construct helper

threads and perform pre-execution at the program’s source-code level. Compared to the above

three compiler-based pre-execution works [35, 36, 37], Luk’s work is different in the following three

aspects. First, while helper threads in [35, 36, 37] are generated using fully automatic compiler

frameworks, the helper thread construction in [42] is done by manual analysis of a program.

Moreover, all optimization algorithms are applied on the intermediate representation of a program

in [35, 36, 37] while Luk’s work directly analyzes the program C source code. Finally, all our

prior works perform code cloning to generate a separate code for helper threads; [36, 37] create

separate subroutines for helper threads and [35] uses multi-entry threading in the Intel compiler.

On the other hand, in Luk’s work, the main thread and the helper threads execute the same code.

Although it is guaranteed that helper threads compute the delinquent load addresses accurately,

such code sharing between the main thread and the helper threads does not allow the programmer

or compiler to optimize the code aggressively as is done in our compiler frameworks [35, 36, 37].

Consequently, helper threads may not acquire enough speed advantage over the main thread.

9.3.2 Linker-Based Pre-Execution

While compiler-based pre-execution analyzes the program in the form of source code or intermedi-

ate representation at compile time, Liao et. al. [41] introduce the design of a post-pass binary tool,

which analyzes a program binary and constructs helper threads at the binary level. The generated

helper threads are attached to the original program binary. Their work is the first to automate the

entire process of constructing helper threads at the binary level. In this paper, they implement

algorithms to generate the basic triggers and the chaining triggers introduced in the Speculative

Precomputation paper [20] and perform various experiments using the research Itanium processor
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model.

Execution-Based Prediction (EBP) [84] is another pre-execution technique where helper

threads are extracted from the binary. In this work, speculative slices, or so-called backward

slices [87], are extracted using binary analysis. While most other pre-execution works focus on the

use of helper threads for data prefetching, EBP targets both cache-missing loads and frequently

mispredicted branch instances. They first identify the Performance Degrading Events (PDEs)

and construct speculative slices manually. Like ours, their slices are speculative, and thus this

technique requires speculation hardware support to preserve the program correctness. In addition

to slice construction and execution, this work also shows a way to correlate the precomputed branch

outcome to the corresponding branch instance.

Roth and Sohi’s Data-Driven Multithreading (DDMT) [63] prioritizes the critical instruc-

tions in a program and executes them on speculative threads, called Data-Driven Threads (DDTs).

DDTs are data driven, and thus the dynamic instructions are not necessarily contiguous as in the

original program. The DDT is extracted from program traces using an offline binary analysis

tool. All the instructions executed in DDTs are used for triggering the critical events such as

cache misses and branches. Therefore, the basic idea behind DDMT is very similar to that of

backward slicing [87]. There is a unique contribution in this work; while the results computed in

helper threads are usually discarded in most pre-execution techniques, they integrate the results

of speculatively executed instructions into the main computation using a technique called regis-

ter integration [62] so that helper threads actually perform useful computations other than data

prefetching or branch outcome resolution.

Collins et. al. propose the idea of Speculative Precomputation (SP) [20]. Although the

same authors publish the follow-up paper, Dynamic Speculative Precomputation (DSP) [19], im-

mediately after the SP work, these two papers are quite different in two aspects: identification

of delinquent loads and construction of precomputation slices. First, to identify the delinquent

loads, SP performs offline memory profiling. For construction of speculative threads, SP also uses

offline trace analysis and the constructed helper threads are appended to the program binary. On
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the other hand, in DSP, every step of pre-execution is fully automated using special hardware

structures, and both delinquent load identification and helper thread construction are done at

runtime.

9.3.3 Hardware-Based Pre-Execution

Dynamic Speculative Precomputation (DSP) [19] is one of the most advanced hardware-based

pre-execution techniques. In DSP, the necessary steps for pre-execution, i.e., identification of the

delinquent loads, construction of the precomputation slices (p-slices), and initiation of the helper

threads, are all implemented in hardware. To perform pre-execution, the important cache-missing

loads are identified at runtime using the Delinquent Load Identification Table. Then a p-slice is

constructed using a hardware structure called the Retired Instruction Buffer (RIB). They use an

RIB size of 512 entries, and thus the scope of their analysis is inherently limited to at most 512

post-retirement instructions. The constructed p-slice is stored in the Slice Cache (SC) and the

corresponding trigger instruction for each p-slice is marked. Later in the program execution when

a trigger instruction is detected, the speculative threads fetch their instructions from the SC. This

paper also introduces several techniques to effectively run p-slices such as the Chaining scheme.

Sundaramoorthy et. al. propose the Slipstream Processor [73]. In this processor model,

two types of threads exist: advanced stream (A-stream) and redundant stream (R-stream). The

A-stream is a speculative and shortened version of the original program, thus running ahead of

the full program and providing control and dataflow outcomes. It also performs data prefetching

for the R-stream so that the R-stream can speedup. In A-stream, dynamic instances of ineffectual

instructions are bypassed if such bypassing does not hurt the correct progress of the A-stream. On

the other hand, the R-stream, a trailing program, validates the execution of the A-stream to ensure

the correct execution of the program. The A-stream is constructed using the Instruction-Removal

predictor (IR-predictor), which is based on a conventional trace predictor. One potential drawback

is the complete processor model requires nontrivial hardware support.

In addition, there are more works that make use of special hardware structures to construct

162



helper threads and control pre-execution. Annavaram et. al. introduce a novel data prefetching

technique, called Dependence Graph Precomputation (DGP) [6]. In DGP, the Dependence Graph

Generator analyzes instructions in the instruction fetch queue to construct the dependence graph.

Runahead Processing is proposed by Dundas and Mudge [24], which is one of the early works in

pre-execution research. In this proposal, a helper thread is not constructed explicitly. Instead,

upon detection of an L1 miss, the processor pre-executes subsequent instructions while the cache

miss is serviced so that the memory access and useful computation can be overlapped. Akkary

and Driscoll propose a Dynamic Multithreading Processor [4]. In this processor model, helper

threads are automatically constructed using hardware at procedure or loop boundaries, and ex-

ecuted speculatively on a simultaneous multithreading pipeline. While all such hardware-based

pre-execution techniques rely on special hardware support to construct and run helper threads,

our work is fully controlled by compiler-generated helper threads with little modifications to the

existing SMT processors.

9.3.4 Physical Experimentation with Prefetching Helper Threads

Many research ideas are evaluated in a simulation-based environment to prove the proposed tech-

nique is promising. In addition, by probing different processor components that are modeled in

the simulator, simulation-based experiments often provide various information about the behavior

of benchmarks while the technique is applied. Although simulation-based evaluation is valuable,

an eventual goal of any proposed research idea is to be applied to a real machine and possibly, be

productized. Thus it is very important to evaluate a research idea in a real physical system and

uncover insights into the technique that are hard to learn from simulation-based evaluation.

To our knowledge, only two prior works evaluate prefetching helper threads in a real machine.

The first work on such physical-system-based evaluation of helper threads is our work in [35]. We

build a compiler optimization module in the Intel compiler to construct prefetching helper threads

and conduct experiments in the Intel Pentium 4 processor with Hyper-Threading Technology. Our

experimental results show that prefetching helper threads indeed provide wall-clock speedup on real
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silicon for a number of real-world benchmarks. In addition, we observe some of the impediments

in a physical system need to be addressed, in order to achieve even more speedup with helper

threads. In this thesis, Chapter 7 is based on the physical experiments in [35].

While helper threads in [35] target the Intel’s IA-32 architecture, Wang et. al. evaluate

prefetching helper threads on an experimental Itanium 2 machine [81]. In this work, they introduce

Virtual Multithreading (VMT), which is a novel form of switch-on-event user-level multithreading

and is capable of fly-weight multiplexing of event-driven thread executions on a single processor

without any OS intervention. The concept of VMT is prototyped on an Itanium 2 processor using

the existing Processor Abstraction Layer firmware mechanism without any extra hardware support.

On a 4-way MP physical system equipped with the VMT-enabled Itanium 2 processors, they show

that helper threading via the VMT mechanism can achieve significant performance gains for a

diverse set of real-world workloads ranging from single-threaded workstation benchmarks to heavily

multithreaded large scale decision support systems using the IBM DB2 Universal Database [31].
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Chapter 10

Conclusion

10.1 Summary of Contributions and Implications of the Research

We believe this dissertation has several valuable contributions in the areas of optimizing compila-

tion techniques as well as experiments in both the simulation-based evaluation environment and

real physical system. Those contributions are summarized below.

First, we propose several compiler optimization algorithms to construct effective helper

threads. To be effective, it is very important for helper threads to run in front of the main

computation and trigger cache misses early. In order to expedite the execution of the helper

threads, we develop various optimization techniques such as program slicing to remove noncritical

code in the helper threads, prefetch conversion to eliminate blocking in the helper threads, and

speculative loop parallelization to overlap even more memory accesses simultaneously. Those

compiler algorithms are implemented to build compiler frameworks that automatically produce

prefetching helper threads. In this thesis, we introduce the design of compiler frameworks that

include the offline profiling tools to collect target information, compiler optimization modules, and

code generators. Those compiler optimization algorithms are implemented in the SUIF compiler

infrastructure to generate C source code to which helper threads are attached. In addition, we also

propose alternative ways to design much simpler compiler frameworks by replacing some critical

components in our aggressive compiler with static compiler algorithms.

Second, having developed compiler frameworks to construct helper threads, we evaluate

the effectiveness of our compilers for pre-execution. We conduct various experiments to evaluate

the helper threads generated by our SUIF-based compiler frameworks on a SimpleScalar-based

SMT processor simulator. We show that compiler-based pre-execution is indeed a very promising

latency-tolerance technique and significantly improves the single-thread performance for various

benchmarks. Our experimental results clearly show all three optimization algorithms, i.e., program

slicing, prefetch conversion, and loop parallelization, contribute to the performance improvement,

and choosing the right thread initiation scheme is important as well. We also observe that specu-
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lative loop parallelization rarely disrupts the correct execution of the cache-miss kernels, and thus

exploits memory-level parallelism that resides in a workload.

Third, while simulation-based evaluation of a research idea is a good first step, applying

such idea to a real physical system is very important in that we can verify whether the performance

on a simulator is achievable and also we can uncover valuable insights that are hardly learned by

simulation-based experiments. To enable such physical-system evaluation, we help a group of peo-

ple at Intel to develop the compiler optimization module in the Intel compiler to generate effective

helper threads. We also provide the experimental methodology to evaluate the prefetching helper

threads on an Intel Pentium 4 processor with Hyper-Threading Technology. Our experiments not

only include the real processor, but the production-quality compiler infrastructure, real OS, and

real-world benchmarks as well.

Fourth, from our experience with helper threads, we identify several impediments to speedup

in real silicon. First, some critical hardware structures in hyper-threaded processors are hard-

partitioned in the MT mode so that invoking a helper thread possibly degrades the performance

of the useful computation thread when the helper thread does not help. Moreover, the thread

synchronization in a physical system costs thousands of cycles, which limits the fine-grain thread

management. To overcome those impediments, we observe having certain runtime mechanisms

is crucial so that we can monitor the program behavior using various hardware PMCs and the

helper threads can adapt to the dynamic behavior. Such dynamic throttling of helper threads can

effectively eliminate the helper thread invocations that are not helpful to improve the performance

of the main computation, thereby providing even more speedup on real silicon.

Finally, we apply compiler-based pre-execution in a multiprogramming environment and

examine how helper threads can boost the overall throughput of selected multiprogrammed work-

loads. By using our aggressive SUIF-based compiler to construct helper threads, we introduce a

hardware mechanism to arbitrate multiple main threads for limited number of hardware contexts

for helper threads. Our experimental results show, when performing pre-execution, sharing of

processor resources via simultaneous multithreading provides more throughput than running mul-
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tiprogrammed workloads in time-sliced manner. Moreover, we observe the performance boost with

helper threads depends on how long and how many hardware contexts each useful computation

thread needs at runtime. To further investigate the behavior of helper threads in a multiprogram-

ming environment, more work needs to be done and it is discussed in the next section.

10.2 Future Direction

We believe our work has opened up several directions for many interesting research ideas. We

introduce two potential future works that are not only limited to compiler-based helper thread

optimization and construction, but also include various kinds of hardware and system-level support,

in order to further improve single-thread performance or boost the overall system throughput in a

multiprogramming environment.

From our experiments with helper threads in a physical system, we learned in order to over-

come the hardware resource contention problem and achieve further speedup, the helper threads

must adapt to the dynamic behavior of a program by throttling their activation and deactivation

at a very fine granularity. In addition, certain important information is unknown at compile time,

for instance, the target platform on which the generated binary will run, and the input set, which

is used to run the workload. Depending on the configuration of the target platform, e.g., cache

size or clock frequency, or the input parameters for a program run, the set of delinquent loads

and selected pre-execution regions may vary. To take into account all these dynamic and unknown

factors associated with program execution, we can consider a new form of dynamic helper thread-

ing where different versions of helper threads that target the same code region are constructed

at compile time and the most optimal helper threads are selected at runtime with support from

performance monitoring and helper thread selection algorithms. We believe this idea opens up two

big research issues. The first one is how to construct several versions of helper threads that are

differently optimized based on the various factors mentioned above. This requires more systematic

identification of the dynamic factors that affect the performance of pre-execution, categorization

of different situations and corresponding optimization methods, and development of the compiler
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optimization algorithms. Secondly, we need to build certain runtime mechanisms that monitor the

dynamic behavior of the workload and profile necessary hardware performance monitoring coun-

ters with very low overhead, correlate the profile results with the helper thread performance, and

make intelligent decisions to choose the optimal helper thread. Since the program behavior can

constantly vary across the entire execution, different helper threads can be selected for different

time phases.

In Chapter 8, we evaluate compiler-based pre-execution in a multiprogramming environment

and show that arbitration of hardware resources for multiple main threads is crucial to achieve

a good performance improvement with helper threads. However, we view it as only an initial

step and feel that more work needs to be done to better understand the behavior and usefulness

of helper threads in a multiprogramming environment. For the experiments in Chapter 8, we

assumed certain number of hardware contexts are dedicated to run only main threads or helper

threads, thereby emulating some sort of hard-partitioning of available hardware contexts. Rather

than limiting the usage of a context to either main thread or helper thread, we believe it to be

more realistic and interesting to assume competition between the main threads and helper threads

for the spare hardware contexts. The realization of such a computing environment requires various

support. Having lighter-weight thread synchronization mechanisms is especially crucial and certain

runtime mechanism in either hardware or the OS is necessary to monitor the throughput of the

whole workloads and the effect of launching helper threads instead of running useful computation

threads. In addition to performance monitoring, some sort of algorithms regarding how to arbitrate

the main threads and the helper threads for the available hardware contexts in a system also need

to be developed.
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