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allow a limit to be produced from the data.
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1 Introduction to Dark Matter

Over the past three-four decades, mounting evidence has suggested that ordinary

baryonic matter contributes only a small fraction of the total composition of the

universe. Gravitational lensing measurements, x-ray observations, and galactic ro-

tation curves lead to the conclusion that our galaxy is immersed in a dark matter

halo which exceeds the mass of ordinary matter by an order of magnitude. This

theory, known as the Lambda Cold Dark Matter model, is supported by Planck’s

recent measurements of the Cosmic Microwave Background, which constrain the

composition of the universe to be roughly 5% baryonic matter, 27% cold dark

matter (CDM), and 68% dark energy [5]. While we know much about ordinary

matter, we know very little about the larger components. In particular, while we

understand certain characteristics of the cold dark matter component, there is no

consensus on its composition. Before examining the experiments which seek to an-

swer this question, we will first discuss what is currently known about nonbaryonic

dark matter.

1.1 Evidence for Dark Matter

1.1.1 Mass Measurements from Galactic Rotation Curves

In the early 1930’s Fritz Zwicky was the first to use the Virial theorem to deter-

mine the total mass of the Coma cluster of galaxies. In his examination, Zwicky

found that the velocities at large radii were too high to be consistent with the

Newtonian prediction arising from the visible matter alone [19]. This discrepancy

was reinforced in the 1970’s, when further data on the rotational velocity of spi-

ral galaxies began to be collected. Instead of the rotational velocity falling off as
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∝ 1/
√
r beyond the radius of visible matter as one would expect, the rotational

velocity rises for small radii, then asymptotes to a constant v ' 100− 300 km/s

for large radii in most galaxies [20, 21, 22]. The most widely accepted explanation

of this phenomenon is that the disk galaxies are immersed in a dark matter (DM)

halo such that M(r)/r, where M(r) is the total mass within a radius r, remains

constant at large radii. Such a halo could form from an isotropic sphere of an ideal

gas at a uniform temperature.

Figure 1: Rotation curve of galaxy NGC 6503. The dotted line indicates the
contribution of baryonic gas, the dashed line indicates the contribution of visible
matter in the disk, and the dash-dotted line indicates the contribution of dark
matter. In the absence of dark matter the total velocity curve would fall off in a
manner similar to the dashed line [1].

Following Zwicky’s footsteps, we can use the Virial theorem to calculate the

2



luminous matter’s contribution to the total mass of the Coma Cluster. The theo-

rem states that for a system of N particles the time averaged total kinetic energy

can be related to the time averaged total potential energy by

1

2

N∑
i=1

〈miv
2
i 〉 = −1

2

N∑
i=1

〈ri · Fi〉 (1)

where mi,vi, and ri are the mass, velocity, and position of the ith particle with

respect to the center of mass in a system of particles, and Fi is the force acting on

the same particle. Since the total force on a particle is the sum of all of the forces

acting on it

Fi =
N∑
j=1

Fji (2)

where Fji is the force that particle j applies on particle i. Noting that a particle

does not apply force to itself, and that Newton’s third law of motion states that

Fji = −Fij we can rewrite the right hand side of the Virial theorem to be

N∑
i=1

Fi · ri =
N∑
i=1

∑
j<i

Fji · ri +
N∑
i=1

∑
j>i

Fji · ri =
N∑
i=1

∑
j<i

Fji · (ri − rj). (3)

Using the law of gravitation to apply equation 3 to a cluster of galaxies, the Virial

theorem becomes
N∑
i=1

〈miv
2
i 〉 =

N∑
i

∑
j<i

〈
Gmimj

rij

〉
(4)

where G is the gravitational constant. The left hand side of this equation is the

total mass, M , of the cluster of galaxies multiplied by the time and mass averaged

squared velocity. The right hand side is approximately equal to GM2

R
, where R is

the radius of the galaxy cluster. Rearranging equation 4, we arrive at an equation
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which relates the total mass of the galaxy cluster to the mean square velocity

M ≈ 〈v
2〉R
G

(5)

The mean square velocity of a galaxy cluster can be estimated by calculating

the one dimensional line of sight velocity via redshift. Under the assumption of

spherical symmetry

〈v2〉 = 3〈(vr − c〈z〉)2〉 (6)

where 〈z〉 is the average redshift of the galaxy cluster, vr is the line of sight velocity,

and c is the speed of light. For the Coma cluster 〈z〉 = 0.0232, which produces

an estimate of 〈v2〉 ≈ 6× 1012 m2/s2 [23]. Using the measured half-light radius of

the Coma cluster (R ≈ 5× 1022 m) the total mass of the system in terms of solar

mass (M�) is found to be

Mtotal ≈ 2× 1015M�. (7)

It is is also possible to measure the mass of a galaxy cluster from luminous

matter alone. The luminosity density of the universe around 445 nm has been

observed to be

j = 1.0× 108e±0.26hL�Mpc−3, (8)

where h = H0/100 is in the dimensionless units of 100 km/s/Mpc, H0 is Hubble’s

constant, and L� is the luminosity of the Sun in the B band. The critical mass

density of the universe is given by

ρc =
3H2

0

8πG
= 1.88× 10−29h2g cm2, (9)
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where G is the gravitational constant. The ratio of these two quantities defines

the mass-to-light ratio,

Γ = 2800e±0.3h
M�
L�

(10)

which can be used to convert the luminosity of a galaxy cluster to an estimate of

the mass contributed by luminous matter alone [24].

Comparing the mass calculated from the virial theorem to the mass measured

from luminosity observations of the Coma cluster we see that the luminous com-

ponents contribute only a small fraction of the total mass of the system [23].

Mlum

Mtotal

≈ 2.3× 1014M�
2× 1015M�

= 0.11 (11)

1.1.2 Mass Measurements from x-ray Gases

Measuring the density profile of x-ray gases provides another technique to measure

the total mass of a galaxy cluster. The total mass of a dynamically relaxed galaxy

cluster can be measured from the hydrostatic equilibrium equation, which can be

derived from the Tolman-Oppenheimer-Volkoff equation for stellar structure by

taking the nonrelativistic limit of c→∞, such that

dP

dr
= −GM(r)

r2
ρ (12)

where P is the pressure of the gas in a cluster, G is the gravitational constant,

M(r) is the mass of the galaxy cluster within a particular radius, and ρ is the

density of the gas in the cluster [25]. From the ideal gas law we know that

P =

(
ρ

µmH

)
kT (13)
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where µ is the mean molecular weight (∼0.6 as a fraction of the mass of a hydrogen

atom for an ionized plasma [26]), mH is the mass of the hydrogen atom, and k is

Boltzmann’s constant. Plugging this into equation 12 yields

k

µmH

(
T
dρ

dr
+ ρ

dT

dr

)
= −GM(r)

r2
ρ (14)

Solving equation 14 for M(r) produces a measurement of the cluster’s mass from

x-ray gas density and temperatures

M(r) = − kT

µmHG

(
d ln(ρ)

d ln(r)
+
d ln(T )

d ln(r)

)
r (15)

where the logarithms were introduced using the fact that

r

T

dT

dr
=

dT
T
dr
r

=
d lnT
d lnr

. (16)

This mass measurement technique is complicated by the fact that the gas den-

sity and temperature of a galaxy cluster has spatial variation, as well as the fact

that x-ray emission measurements are a two-dimensional projection of a three-

dimensional object, which produces complications when integrating x-ray spectra

along lines of sight through the cluster. One method for simplifying the mass mea-

surement, called the beta model, is to assume the cluster is made of isothermal,

spherically symmetric gas. In this case the density of the gas traces the density of

the gravitational mass, such that

ρgas(r) = ρ0

(
1 +

r

rc

)−3β/2

(17)
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where rc is the core radius, ρ0 is the central density, and β is a slope parameter [27].

The core radius rc is defined using the intensity of x-ray observations such that

I(rc) = 1
2
I(0), or more generally to be the radius at which d2 ln(I)

d ln(r)2
is maximized.

In this model the mass measurement reduces to a derivation of the spatial density

profile by determining the best fit parameters of rc and β to the x-ray observations.

When this mass measurement technique is compared to mass measurements from

luminous matter alone more evidence for dark matter arises. For example, using

this technique the Virgo Cluster has been measured to have a total mass (within

r < 1.8Mpc) between 1.5× 1014M� and 5.5× 1014M� [28]. Comparing this to the

mass measured from x-ray luminosity yields a ratio of

Mlum

Mtotal

≈ 4.75× 1013M�
3.5× 1014M�

= 0.14. (18)

1.1.3 Gravitational Lensing

Gravitational lensing provides an independent method for measuring the mass

of galaxy clusters and other astronomical objects. Gravitational lensing can be

divided into two categories – strong lensing and weak lensing. Strong lensing, in

which a background light source is distorted into arcs around a massive foreground

object, is a rare phenomenon which requires a light source and a very massive lens

to be nearly in line with the observer. When such a situation occurs the mass

of the lens can be inferred from the angular width of the arc of light which is

produced. We turn to general relativity to derive the equation which produces

this mass measurement.

The geodesic equation, which describes the path that a free particle travels, is
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given by
d

dτ

(
gaj

dxj

dτ

)
− 1

2

∂gij
∂xa

dxi

dτ

dxj

dτ
= 0 (19)

where gαj is a metric, τ is the proper time, and xi is the four dimensional coordinate

vector. For a spacetime in a vacuum outside of a spherically symmetric mass the

appropriate metric to use is the Schwarzschild metric. With units of c = 1 it is

given by

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2sin2θdφ2. (20)

From the t component of the geodesic equation we know that

d

dτ

(
gtj
dxj

dτ

)
− 1

2

∂gij
∂t

dxi

dτ

dxj

dτ
= 0. (21)

The Schwarzschild metric does not depend on time, and is diagonal, therefore

d

dτ

(
gtj
dxj

dτ

)
=

d

dτ

(
gtt
dt

dτ

)
= − d

dτ

((
1− 2GM

r

)
dt

dτ

)
= 0. (22)

Equation 22 is true if the quantity inside of the derivative is constant, leading us

to the first constant of motion

E =

(
1− 2GM

r

)
dt

dτ
. (23)

We now turn to the φ component of the geodesic equation

d

dτ

(
gφj

dxj

dτ

)
=

d

dτ

(
gφφ

dφ

dτ

)
= − d

dτ

(
r2sin2θ

dφ

dτ

)
= 0 (24)
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where we have once again used the fact that the metric does not depend on time

and is diagonal to simplify the equation. From this we arrive at the second constant

of motion

l = r2sin2θ
dφ

dτ
(25)

Returning to the Schwarzschild metric, for a photon ds2=0, and if we assume

motion in the equatorial plane θ = π/2 and dθ = 0, such that

−
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dφ2 = 0. (26)

From the two constants of motion we know that

dφ2 =
l2

r4sin4θ
dτ 2 (27)

and

dt2 = E2

(
1− 2GM

r

)−2

dτ 2 (28)

Plugging equations 27 and 28 into equation 26 and simplifying yields

dr2 =

[
E2 −

(
1− 2GM

r

)
l2

r2

]
dτ 2 (29)

Finally, by dividing equation 29 by equation 27 we arrive at the equation of motion

for light traveling in a Schwarzschild spacetime in polar coordinates

(
1

r2

dr

dφ

)2

=

(
E

l

)2

−
(

1− 2GM

r

)
1

r2
≡
(

1

b

)2

−
(

1− 2GM

r

)
1

r2
(30)

The quantity b ≡ l/E is known as the impact parameter, which represents the

9



perpendicular distance between the center of attraction and the particle’s initial

trajectory. To determine the change in the direction of light due to a gravitational

field we must integrate dφ
dr
dr from the minimum distance the light travels by the

massive object, denoted as R, and then multiply by a factor of 2 to account for the

symmetrical motion of the particle during its approach to the object. Note that

at a distance R the light is moving tangentially, such that dr
dt

= 0 and equation 30

becomes
1

b2
=

(
1− 2GM

R

)
1

R2
. (31)

Therefore, we can rewrite equation 30 for any value of r as

(
1

r2

dr

dφ

)2

=

(
1− 2GM

R

)
1

R2
−
(

1− 2GM

r

)
1

r2
. (32)

Making the convenient substitution of u ≡ R/r, where 0 ≤ u ≤ 1 in equation 32

yields (
du

dφ

)2

= 1− u2 − 2GM

r
(1− u3). (33)

From this we can find an equation for the infinitesimal variation dφ in terms of du

dφ =
(1− u2)−1/2du[

1− 2GM
R

(1− u3)(1− u2)−1
]−1/2

. (34)

A further substitution of u ≡ cos(α), where 0 ≤ α ≤ π/2, leads (after some

simplification) to the equation

dφ =

[
1− 2GM

R

(
cos(α) +

1

1 + cos(α)

)]−1/2

dα. (35)

10



In most cases, the quantity M/R << 1, so we can use the approximation

(1 + x)n ≈ 1 + nx for small x in equation 35 such that

dφ =

[
1 +

GM

R

(
cos(α) +

1

1 + cos(α)

)]
dα. (36)

This is known as the "weak field" limit. Integrating this expression from 0 ≤ α ≤

π/2 and multiplying by 2 to account for the two symmetrical legs of the light’s

trajectory provides an expression for the total azimuthal angle of the light.

φ = 2

∫ π/2

0

[
1 +

GM

R

(
cos(α) +

1

1 + cos(α)

)]
dα = π +

4GM

R
. (37)

Noting that the first term, π, is the azimuthal angle of the light if no mass were

present, we arrive at an equation that relates the angle of deflection of light to the

total mass of the gravitational object.

∆φ = φ− π =
4GM

R
. (38)

In practice, we must go one step further to turn astronomical observations of

gravitational lensing into a mass measurement. Any observation of a lensed light

source involves an observer viewing an image of the object after it passes by a

gravitational lens. This situation is depicted in Figure 2. To measure the mass of

a lens we seek to relate the source position to the image position. Using the small

angle approximation for θ and β we can arrive at

DSθ = DSβ +DLS∆φ (39)

11



where Ds = DL+DLS is the distance from the source plane to the observer. Using

equation 38, and the fact that R ≈ θDL this becomes

θ = β +
4GMDLS

θDLDS

. (40)

This is a quadratic equation with roots

θ =
β ±

√
β2 + 4θ2

E

2
(41)

where θE =
(

4GM DLS
DSDL

)1/2

is the angular size of the "Einstein ring" that forms

when the source and lens are perfectly aligned. If the quantitiesDLS, DL, and β are

known, equation 41 can be used to measure the mass of the lens by measuring the

angle of deflection θ [2]. In the handful of cases in which this mass measurement has

been carried out, it has been found to be consistent with dark matter models [29].
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Figure 2: A source emits light at position S. The light is deflected by a massive
lens at L, and causes the image seen by the observer to appear at an angle θ. DLS,
DL, θ, and β are, respectively, the distance from the lens plane to the source plane,
the distance from the lens plane to the observer, the angle of the image relative to
the observer, and the angle of the source relative to the observer [2].

Although there are only a few cases in which strong gravitational lensing can

be observed, there are numerous cases of weak gravitational lensing. Weak lensing

occurs when the lensing mass isn’t large enough for strong lensing, or if the source

of light is not directly aligned with the lensing mass, resulting in a shear distortion

of the image. Measuring the mass of a weak lens is complicated by the fact

that each light source has a unique, intrinsic ellipticity which typically dwarfs

the magnitude of the image distortion. This intrinsic ellipticity is known as “shape

noise” in weak gravitational lensing studies. In cases where many sources are lensed

by the same object, the distortion from the lens can be measured by averaging over

the many source images, taking advantage of their random intrinsic orientation.

In these cases, the measured shear distortion results from light being deflected by

mass fluctuations along the line of sight. In this case, the two dimensional lens

equation (analogous to equation 40) in vector format is

β = θ − DLS

DS

∆φ(ξ) (42)

where ξ = DSθ is the impact parameter. The deflection angle can be calculated

by integrating the 3D gravitational potential, Φ(r), along the line of sight such

that

∆φ(ξ) = 2

∫
∇⊥Φ(r)dz = ∇⊥

(
2

∫
Φ(r)dz

)
≡ ∇⊥V. (43)

Assuming the angle between the image and the observer, θ, is small equation 42
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can be approximated with a first order Taylor series as

βi = Aijθj (44)

where i corresponds to the ith component of the lens plane, j corresponds to the

jth component of the source plane, and

Aij =
∂βi
∂θj

= δij −
∂∆φi(θ)

∂θj
= δij −

∂2V (θ)

∂θi∂θj
(45)

are the elements of a Jacobian distortion matrix, A, which describes the isotropic

dilation and anisotropic distortion due to convergence and shear effects. The

distortion matrix can be written in terms of the convergence, κ, which increases

the size of the image while conserving brightness, and the shear, γ, which distorts

the image tangentially around the lens.

Aij = (1− κ)

1 0

0 1

− γ
cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

 (46)

Equations 45 and 46 offer a relationship between the observable quantities κ and

γ, and the gravitational potential V .

γ1 ≡ γcos2φ =
1

2

[
∂2V (θ)

∂θ2
1

− ∂2V (θ)

∂θ2
2

]
(47)

γ2 ≡ γ sin(2φ) =
∂2V (θ)

∂θ1∂θ2

(48)

κ =
1

2
∇2V (θ) (49)

14



where equation 47 comes from A11 − A22, equation 48 comes from A12 − A21,

and equation 49 comes from tr(A). Since κ is equal to half the Laplacian of the

projected gravitational potential, V , it is directly proportional to the mass density

of the lens. The shear component γ1 corresponds to elongation and compression

along the x and y directions, and the component γ2 describes elongation and

compression along the diagonal x = y and x = −y directions. In the case of weak

lensing, the mass measurement then reduces to a measurement of the shear and

convergence produced by the lens [30]. As with strong gravitational lensing, weak

gravitational lensing mass measurements have been found to be consistent with

dark matter models [29].

Figure 3: An illustration of how positive and negative γ1 and γ2 distort an object
with initial ellipticity of zero [3].

One of the most famous instances of weak lensing evidence for dark matter is a

collision of two galaxies clusters known as the Bullet Cluster. The baryonic matter

in each galaxy cluster is predominantly in the form of hot gas. Electromagnetic

interaction causes the gas to to slow down and concentrate in the center of the

collision. In the absence of dark matter, gravitational lensing measurements should
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be correlated with the hot gas, since it is the dominant luminous mass in the

system. However, if dark matter was a dominant mass component in the Bullet

Cluster it would not be slowed by electromagnetic interactions and would pass

through the collision without significant perturbation. Indeed, weak gravitational

lensing observations show that the majority of the mass in the Bullet Cluster passed

through the collision rather than concentrating at the center like the luminous

matter, suggesting that dark matter is present in abundance over the baryonic

matter of the two galaxy clusters [4].

Figure 4: X-ray image of the baryonic mass in the Bullet cluster, overlayed with
mass contours derived from weak lensing measurements. The one, two, and three
sigma confidence intervals for the center of the mass distributions are indicated
by the white countours, and the white bar indicates a distance of 200 kpc. The
separation of the dominant mass component from the baryonic matter indicates
the presence of dark matter [4].
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1.1.4 Cosmological Evidence

The early universe was filled with a hot, dense plasma of electrons and baryons.

At this time photons scattered off of the free electrons, restricting their movement

across the universe. As the universe cooled below the binding energy of hydro-

gen (13.6 eV) protons and electrons began to combine, forming neutral hydrogen

atoms. At this point, approximately 400,000 years after the big bang, photons

and electrons decoupled and the photons began traveling with a mean free path

the size of the universe. These photons produced the Cosmic Microwave Back-

ground (CMB) that we see today (Figure 5). The radiation is extremely isotropic

and exhibits a black-body spectrum at a red shifted temperature of 2.72 K. The

frequency spectrum, temperature fluctuations, and polarization of the CMB all

contain a vast amount of information about the formation of the universe. Here,

we focus on just one of these properties.

Figure 5: The latest measurement of the CMB temperature anistropies from
Planck data [5], after contrast enhancement, and removing the dipole moment
caused by the movement of the milky way.

In 1991 the COBE satellite observed small (1 part in 10,000) fluctuations in the

average temperature of the CMB [31]. Since then, the result has been confirmed by
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numerous ground based telescopes, as well as the WMAP and Planck satellites [5].

We see these temperature fluctuations projected on a 2D spherical surface, so it is

typical to expand them in terms of spherical harmonics defined by

Ylm =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (50)

where l = 0, ...,∞, −l ≤ m ≤ l, and Pm
l are associated Legendre polynomials.

The temperature fluctuations can then be written as

f(θ, φ) ≡ δT (θ, φ)

T0

=
l=∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ) (51)

where T0 is the average temperature of the CMB and alm are the coefficients of

expansion. Since the spherical harmonics are orthonormal

alm =

∫ π

θ=−π

∫ 2π

φ=0

f(θ, φ)Y ∗lm(θ, φ)dΩ. (52)

The alm coefficients represent a deviation from the average temperature T0, so

their ensemble average is zero

〈alm〉 = 0 (53)

and their variance, 〈|alm|2〉, gives a measure of the typical size of alm. The tem-

perature fluctuations are isotropic and therefore independent of m, so

〈
|alm|2

〉
=

1

2l + 1

∑
m

〈
|a2
lm|
〉
≡ Cl (54)

where the function Cl is referred to as the angular power spectrum of the temper-
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ature fluctuations. The angular power spectrum is related to contribution of the

multipole l to the temperature variance by

〈(
δT (θ, φ)

T0

)2
〉

=

〈∑
lm

almYlm(θ, φ)
∑
l′m′

a∗l′m′Y
∗
l′m′(θ, φ)

〉

=
∑
ll′

∑
mm′

Ylm(θ, φ)Y ∗l′m′(θ, φ) 〈alma∗l′m′〉 (55)

=
∑
l

Cl
∑
m

|Ylm(θ, φ)|2 =
∑
l

2l + 1

4π
Cl

where we have used the the closure relation

∑
m

|Ylm(θ, φ)|2 =
2l + 1

4π
(56)

and the fact that

〈alma∗l′m′〉 = δll′δmm
′ 〈|alm|2〉 (57)

since the alm coefficients are independent random variables [32].

Cosmological models predict the variance of the alm expansion coefficients,

and therefore predict the angular power spectrum and the contribution of each

multipole to the temperature variance. By measuring the angular power spectrum

of the CMB and comparing to the Cl values predicted by each model we can learn

about the composition of the universe. The temperature fluctuations of the CMB

are typically plotted in terms of Dl ≡ l(l+ 1)Cl/(2π) with units of µK2 versus the

multipoles l as shown in Figure 6.
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Figure 6: The power spectrum of temperature fluctuations from the CMB based
on data from Planck [5]. The error bars at high multipole moments are smaller
than the size of the data points.

To understand the wealth of information present in Figure 6 we must first un-

derstand the origin of the temperature fluctuations in the early universe. Prior to

recombination the primordial plasma consisted of anisotropic regions of varying

density. Over-dense regions of matter would gravitationally attract more matter.

As this happened, heat from photons scattering off of free electrons would produce

an increase in pressure, counteracting the force of gravity and pushing baryonic

matter away from the high density regions. As these two processes competed they

produced oscillations in the distribution of baryonic matter, which we refer to

as Baryon acoustic oscillations (BAO). After recombination, the photons diffused

through the baryonic matter, removing the source of pressure, ending the oscillat-

ing process, and leaving a shell of over-dense baryonic matter at the origin of the

anisotropy and at a fixed radius called the sound horizon.

The first peak in Figure 6 details the curvature of the universe. If the universe
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had positive curvature the light from the CMB would be magnified, shifting the

first peak to lower multipole in Figure 6. Likewise, in a negatively curved universe

the scale of the temperature fluctuations in the CMB would appear diminished,

shifting the first peak to higher multipole. The observed location of the first peak,

close to l ∼200, turns out to be consistent with a flat universe.

The second peak in Figure 6 details the amount of baryonic matter in the

universe. Baryons add mass to the system during the oscillating process described

above. This additional inertia forces the primordial plasma to travel farther before

recoiling back to the center of the anisotropy, much like adding a mass to the end

of a spring. The odd numbered peaks in Figure 6 are associated with how far the

plasma compresses during BAO and are enhanced by the presence of additional

baryons, as shown in Figure 7. The even numbered peaks are associated with

how far the plasma rebounds during BAO and are unaffected by the presence of

additional baryons. Therefore, the presence of baryons enhances the size of the odd

peaks over the even peaks such that a smaller second peak in Figure 6 corresponds

to a larger amount of baryonic matter in the universe. The latest results from

Planck indicate that baryonic matter makes up 4.82± 0.05% of the universe [5].
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Figure 7: A depiction of the effect of baryons on the oscillating plasma during
BAO. The mass of the baryons loads down the plasma, producing an asymmetry
in the oscillations in which the plasma compresses further toward the minimum of
the potential well. Since the CMB power spectrum does not care about the sign
of the fluctuation, we see that the odd numbered peaks become enhanced over the
even numbered peaks [6].

The third peak in Figure 6 details the amount of dark matter in the universe.

Since the very early universe was dominated by photon-baryon interactions, the

outward pressure caused the gravitational potential of the BAO system to decay

in such a way that it drove the amplitude of oscillations higher. With higher

dark matter density this driving effect is diminished (since dark matter does not

rebound) and the overall magnitude of the peaks becomes smaller. Although this

effects all of the peaks in Figure 6 it is only distinguishable in the third peak.

Furthermore, as with ordinary matter, dark matter was gravitationally attracted

to areas with higher density. Since dark matter does not interact through the

electromagnetic force it was unaffected by the increasing photon pressure which

produced acoustic oscillations in baryons. As a result, a higher density of dark

matter corresponded to a larger gravitational potential well for baryons to fall into

during their oscillations, increasing the amplification of BAO on the odd numbered

peaks. Therefore, the height of the third peak tells us the amount of dark matter

that is present in the universe [6]. The Planck observations indicates that dark

matter makes up 25.8 ± 0.4% of the universe. The remaining 69.4 ± 1.0% of the

universe is made up of dark energy [5].
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1.2 Dark Matter Candidates

1.2.1 The ΛCDM Model

To further examine the properties of dark matter it is useful to introduce a quan-

titative measure for the composition of the universe. Friedmann’s equation, which

describes the expansion of space in a homogeneous and isotropic universe, is given

by
ȧ2 + kc2

a2
=

8πGρ+ Λc2

3
(58)

where a is the scale factor of the universe, k is the spatial curvature of the universe

(equivalent to one sixth of the Ricci Scalar), c is the speed of light, G is the

gravitational constant, ρ is the density of the universe, and Λ is the cosmological

constant. Einstein’s field equations,

Gµν =
8πG

c4
Tµν (59)

provide an expression for the cosmological constant, Λ. We can split the stress

energy tensor into two terms, one describing matter and the other describing the

vacuum, such that Tµν = Tmatterµν + T vacµν . Since the stress energy tensor is given by

Tµν = (ρ+ p)UµUν + pgµν (60)

and to maintain Lorentz invariance pvac = −ρvac, we can write the vacuum com-

ponent of the stress energy tensor as

T vacµν = −ρvacgµν . (61)
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If we identify the vacuum energy density as

ρvac =
Λc2

8πG
(62)

then Einstein’s field equation takes on the familiar form

Gµν + gµνΛ =
8πG

c4
Tmatterµν (63)

where Gµν is the Einstein tensor, gµν is the metric tensor, G is the gravitational

constant, and Λ is the cosmological constant. Setting the normalized spatial cur-

vature k = 0 in Friedmann’s equation(representing a flat universe), one can find

the critical density for which the universe is spatially flat to be

ρc =
3

8πG

ȧ2

a2
(64)

where ρc = ρvac + ρ. Recognizing Hubble’s constant to be H0 = ȧ
a
, we can rewrite

this as

ρc =
3H2

0

8πG
(65)

where H0 is the present value of the Hubble constant [33]. The current experi-

mental value for H0 in the dimensionless units 100 km/s/Mpc is h ∼ 0.7 with an

uncertainty of ∼ 5% [34]. We can then define the density parameter as

Ω =
ρ

ρc
=

8πGρ

3H2
0

. (66)

If Ω is larger than unity the universe is spatially closed, and if Ω is less than

unity the universe is spatially open. This density parameter can be split into
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components, such that for a particular component x

Ωx =
ρx
ρc
. (67)

Detailed cosmological studies have concluded that all the luminous matter in

the universe has a density parameter of Ωlum . 0.01. This information, combined

with the fact that analysis of galactic rotational velocities implies >90% of the

mass in galaxies is dark leads to the conclusion that ΩDM ≥ 0.09. This is only

a lower limit on the dark matter density parameter, since most rotation curves

remain flat out to the largest radii at which they can be measured and it can be

assumed that the DM halos extend even farther out.

It is possible that baryonic DM alone could be responsible for the dark mat-

ter halos. However, other analyses eliminate this possibility. Direct searches for

massive compact halo objects (MACHOs) utilizing microlensing have determined

that <25% of the dark halos could be due to baryonic dark matter within the

mass range of 2 × 10−7M� < M < 1M� at a 95% confidence limit [35, 36]. Fur-

thermore, data from the Hubble Deep Field Space Telescope suggests dark matter

halos consist of ≤5% white dwarfs [37].

With baryonic dark matter being ruled out as the sole component of dark mat-

ter halos we now investigate the other density parameter components. Big Bang

nucleosynthesis models constrain the amount of baryonic matter in the universe

to Ωb ≈ 0.045 (where b stands for baryons) [38]. Additionally, analysis of velocity

flows, x-ray emissions temperatures, and gravitational lensing in large clusters and

super-clusters of galaxies suggests that the total matter component of the uni-

verse has density parameter Ωm ≈ 0.2 − 0.3. One can combine this information,
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assuming h = 0.7 to find density parameters that are consistent with the Planck

observation of

Ωb = 4.82± 0.05%

Ωnbm = 25.8± 0.4%

ΩΛ = 69.4± 1.0%

where Ωb is the baryonic density of the universe, Ωnbm is the nonbaryonic density

parameter of the universe, and ΩΛ is the dark energy density parameter of the

universe [5, 39]. This is known as the Λ-CDM model.

1.2.2 Nonbaryonic Dark Matter

With Ωnbm = 25.8± 0.4% it is intriguing to look at the particles which have been

proposed to explain this contribution to the total density parameter. One such

particle is the standard model neutrino. The neutrino is an electrically neutral,

weakly interacting particle with a nearly zero mass. Neutrinos exist in three dis-

tinct flavors – the electron neutrino (νe), the muon neutrino (νµ), and the tau

neutrino (ντ ). It is known that neutrinos oscillate between these three flavors,

with each flavor state being a superposition of three neutrino states of definite

mass (ν1, ν2, and ν3). Experiments studying solar neutrino oscillations have de-

termined the squared mass difference between what is known as the solar neutrino

doublet (ν1 and ν2) to be δm2 = (7.66±0.35)×10−5 eV2, while experiments study-

ing atmospheric neutrino oscillations have determined the remaining squared mass

difference between the solar neutrino doublet and ν3 to be ±(2.38±0.27)×10−3 eV2

up to an unknown sign [40]. This sign ambiguity leads to two possible hierarchies
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for the neutrino mass states (Figure 8). In either case, we can set a lower limit on

the most massive neutrino state to be mν3 & 0.05 eV.

Figure 8: The two hierarchies of neutrino mass states. Black, teal, and red indi-
cated the three flavors of neutrinos, while one, two, and three indicated the three
mass states [7].

The density parameter of neutrinos is given by

Ων =
ρν
ρc

=
1

h2

3∑
i=1

gimi

90 eV

where gi = 1 for Majorana neutrinos (own antiparticle) and gi = 2 for Dirac

neutrinos (distinct antiparticles) [41]. Using the lower mass limit of the neutrino

and assuming Majorana neutrinos, this suggests a lower limit on the neutrino

density parameter of Ων & 0.00122. Thus, neutrinos do provide some contribution

to the nonbaryonic dark matter density parameter.

To find an upper limit on the neutrino contribution to the nonbaryonic dark

matter density parameter is is necessary to distinguish hot dark matter from cold

dark matter. Hot dark matter is composed of particles that have zero or nearly-zero
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mass. Special relativity requires that the massless particles move at the speed of

light, and that the nearly-massless particles move close to the speed of light if they

have any substantial momentum. As a result hot dark matter forms very hot gases.

Cold dark matter is composed of particles that at sub-relativistic velocities. With

their low masses neutrinos fall under the hot dark matter category. A combination

of galaxy clustering measurements, CMB observations, and Lyman-α observations

give an upper limit on the hot dark matter contribution of Ων . 0.0155, thus

neutrinos and other hot dark matter particles cannot be the primary contribution

to the nonbaryonic dark matter density parameter [39].

1.2.3 WIMPs and SUSY

If we assume cold dark matter (CDM) particles were in thermal equilibrium with

the other standard model particles during the early stages (<1 ns) of the universe,

it is possible to calculate the CDM density parameter. As the temperature, T , of

the universe cools, the particles with masses m > T will diminish exponentially.

Once the temperature of the universe cooled below the CDM mass scale the cre-

ation of these particles would have ceased. At this time the CDM particles which

still existed would have continued annihilating with one another. As time went on,

CDM annihilation became less and less likely due to their dwindling abundance.

Once the expansion rate of the universe, given by Hubble’s constant, exceeded the

CDM annihilation rate, the CDM particles dropped out of thermal equilibrium

and the CDM density became fixed.

The density parameter for CDM is approximately given by

ΩCDMh
2 ' T 3

0

MPl〈σAν〉
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where σA is the total annihilation cross section of CDM particles, ν is the relative

velocity of CDM particles, T0 is the equilibrium temperature at freeze out, MPl

is the Planck mass, c is the speed of light, and 〈...〉 represents an average over

the thermal distribution of CDM particle velocities [42, 43]. Remarkably, for the

total density parameter of the universe to equal unity, as required by cosmological

observations, an annihilation cross section on the order of particles interacting on

the electroweak scale (∼ 10−9 GeV−2) is required for CDM particles. This result

is the main motivation behind suspecting weakly interacting massive particles

(WIMPs) as the dominant contribution to the nonbaryonic dark matter density

parameter.

Supersymmetry (SUSY) is a symmetry of space-time which has been proposed

in an effort to unify the electroweak, strong, and gravitational forces. This the-

ory offers some insight into the nature of WIMPs. SUSY requires that a super-

symmetric partner particle exists for each particle in the standard model. These

partners go by the names of sleptons (partners of leptons), squarks (partners of

quarks), gauginos (partners of gauge bosons), and higgsinos (partners of Higgs

bosons). Sleptons and squarks have spin zero, while gauginos and higgsinos have

spin one-half. Since none of these super-symmetric particles have been discovered

it is thought they are far more massive than their standard model counterparts,

and thus that super-symmetry is not an explicit symmetry of nature.

Goldberg [44] and Ellis [45] have suggested that neutral gauginos and neutral

higgsinos can mix together in a superposition known as the neutralino, χ. In

most SUSY models, the neutralino is the lightest super-symmetric particle (LSP).

In models which conserve R-parity (a new quantum number distinguishing SUSY

particles from standard model particles) the LSP is stable, making it a prime
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candidate particle for dark matter. The expected cross section of neutralinos

interacting via inelastic collisions with nucleons is dependent on the allowed regions

of parameter space in the SUSY model being used.

The neutralino is one of many candidate particles suggested for WIMPs, and

as previously mentioned, WIMPs are not the only candidate for dark matter. In

the following sections we will briefly discuss some of the other candidates before

returning to the discussion of WIMPs in Chapter 2.

1.2.4 Axions and Axinos

Quantum chromodynamics (QCD) is a theory describing the strong interaction

between quarks and gluons, which make up hadrons. In particle physics there

exists a proposed symmetry of nature referred to as charge conjugation parity

symmetry (CP-Symmetry). CP-Symmetry postulates that particles should behave

the same if they are replace by their own antiparticle (C symmetry), and then have

their parity reversed (P symmetry). Within QCD there is no theoretical reason

to assume CP-symmetry exists. However, when a CP-violation term is included

in the QCD lagrangian its coefficient has been experimentally determined to be

less than 10−10 [46]. This unexpected result is known as the strong CP problem

in quantum chromodynamics. To reconcile this, a new symmetry known as the

Peccei-Quinn theory has been proposed. This theory postulates the existence of a

new pseudoscalar particle called the axion. According to the Peccei-Quinn theory,

axions would be electrically neutral, stable, low mass ( 1µ eV - 1 eV) particles that

have very low interaction cross sections for the strong and weak forces. Therefore,

axions satisfy all of the requirements to be a dark matter candidate.

If axions exists, they would be observable through an a → γγ interaction.
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Figure 9 shows limits that various axion detection experiments have placed on the

effective coupling of this process. Dark matter axions would lie somewhere between

the lines labeled as "KSVZ" and "DFSZ". (KSVZ and DFSZ are acronyms for two

"invisible axion" theories which describe the axion as a dark matter candidate)

At the top of Figure 9, axions would be observable through seismic signatures in

the Sun, as well as through scattering processes in germanium crystals. These

processes have not been observed, so they are used to exclude possible values of

the coupling constant. In the upper right, the optical photons from axion decay

in the halos around astrophysical object would be observable in telescopes. Axion

emission from astrophysical objects would affect the evolution of those objects,

placing an upper limit on the coupling constant at∼ 10−10 GeV−1. Axion emissions

in supernovae would shorten the duration of neutrino bursts detected on Earth seen

from SN 1987a. These observations place the strongest upper limit on the coupling

constant at ∼ 10−13 GeV−1. (Not depicted in the figure) These limits produce a

small window between 1-100 µeV in which axion dark-matter can exist, which the

Axion Dark Matter Experiment (ADMX) experiment is currently searching [8].
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Figure 9: Historical limits placed on axion masses and photon coupling constants.
If dark matter axions exist, they would lie between the lines labeled KSVZ and
DFSZ [8].

1.2.5 Gravitons and Gravitinos

In quantum field theory, the graviton is a hypothetical elementary particle which

mediates the gravitational force. As with axions and axinos, when SUSY is in-

troduced to quantum field theory a super-symmetric partner to the graviton is

predicted to exist, known as the gravitino. In some models, gravitinos are the LSP

in SUSY and are thus a candidate particle for dark matter.

1.2.6 WIMPzillas

WIMPzillas are supermassive dark matter particles which arise when one considers

the possibility that dark matter might be composed of nonthermal supermassive

states. These particles would have a mass many orders of magnitude higher than
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the weak scale [47]. Studies have shown that for stable particles with masses close

to 1013 GeV WIMPzillas would be produced in sufficient abundance to give Ω ≈ 1

for the total density parameter of the universe.

It should be noted that the discussion of this section does not encompass all

of the alternatives to WIMPs. Although these other dark matter candidates offer

intriguing explanations to the dark matter problem, the next chapter will focus on

the experimental detection of WIMPs.

1.3 Outline of the Thesis

In this chapter, we discussed the evidence for the existence of dark matter, and

the popular WIMP conjecture. In the next chapter, we will provide an overview of

many experiments searching for WIMPs, before describing one such experiment,

the LUX detector, in Chapter 3. The remaining chapters will be used to discuss

original work related to LUX.

In Chapter 4 we describe a novel tritiated methane calibration source that was

used to measure LUX’s electron recoil response with unprecedented precision. A

detailed description of the R&D efforts that led to the successful deployment of the

source is included, and the results from the first calibration data set are discussed.

In Chapter 5, we discuss the position dependent signal corrections used in

LUX’s Run3 data analysis. These corrections depend on a 83mKr calibration

source, and remove any position dependence in the detector’s gain factors. Al-

ternative methods for producing signal corrections are also presented.

In Chapter 6, we discuss a number of energy scale calibrations that were used

in the LUX detector. These methods use multiple mono-energetic sources and
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the tritiated methane beta spectrum to determine the (now position independent)

gain factors for the detector’s signals.

In Chapter 7, we discuss the position dependent signal corrections used in

LUX’s Run4 data analysis. LUX’s Run4 data was complicated by a non-uniform

drift field, and a number of novel techniques were developed to recover the quality

of data that was collected in Run3. These techniques draw from the calibration

sources and analysis methods that are discussed in each of the previous chapters.
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2 Searching for WIMPs

The search for WIMPs can be separated in three categories: indirect detection,

WIMP creation, and direction detection experiments. In this chapter, we will

provide a brief overview of the ongoing efforts in each of these fields. Indirect

detection experiments search for remnants of WIMP annihilation such as gamma-

rays, positrons, and neutrinos using both space based and ground based detectors.

These experiments will be discussed in section 2.1. In section 2.2, we will discuss

high energy particle colliders such as the LHC, which are used to search for WIMPs

in the form of missing energy signals during their particle collisions. Direct de-

tection experiments, which search for the scattering of dark matter particles on

atomic nuclei, will be discussed in section 2.3 and will be the topic of this thesis

from Chapter 3 onward.

2.1 Indirect Detection Experiments

In section 1.2.3 we discussed the annihilation of CDM particles such as WIMPs

during the early universe. The WIMP annihilation cross section must be close

to σν ∼ 3 × 10−26 cm3/s to account for the observed abundance of dark matter,

which provides a well defined target for indirect detection experiments [48]. WIMP

annihilation may produce any standard model particle that is not kinematically

forbidden. Numerous indirect detection experiments search for the gamma-ray,

neutrino, and positron annihilation remnants in gravitational wells where the dark

matter density is expected to be high, such a the center of the Sun, the center of

the Milky Way, or the center of neighboring galaxies. In the following sections, we

will discuss efforts to detect each of these annihilation products separately.
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2.1.1 Gamma-Ray Experiments

If a WIMP (χ) annihilates directly into a photon (γ) and another particle (X),

the photon is mono-energetic with an energy given by

Eγ = mχ

(
1− m2

X

4m2
χ

)
(68)

where mχ is the mass of the WIMP and mX is the mass of the remnant parti-

cle [?]. At the GeV energy scale photons interact with matter via electron-positron

pair production, leading to an interaction length much shorter than the thickness

of Earth’s atmosphere. As a result, any experiment seeking to directly detect

gamma-ray radiation from WIMP annihilation must be based in space. Satellites

such as the Fermi-LAT detect the electron-positron pairs produced by gamma-ray

interaction in a detector made of a dense material (in the case of Fermi-LAT, tung-

sten is used). These space-based detectors are hindered by the numerous sources

of background radiation present in astrophysical data, and are therefore unable

to make significant claim of detection without observing a monoenergetic signal

across multiple sources. Typically, gamma-ray detection experiments measure sig-

nals originating from dwarf galaxies, as they have relatively little backgrounds and

are therefore ideal for searching for dark matter annihilation signals. As of 2012,

the Fermi-LAT has observed no such line features or significant gamma-ray flux in

its data [49].

When gamma-rays interact with the atmosphere they produce a cascade of

secondary particles. These seconday particles produce Cerenkov radiation as they

pass through the atmosphere, allowing ground-based telescopes to search for the

gamma-ray product of WIMP annihilation indirectly. Cosmic ray radiation can
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also induce Cerenkov radiation in the atmosphere, making it difficult to distinguish

gamma-ray sources from the cosmic ray background. Ground-based experiments

employ numerical simulations of atmospheric showers and require an excess of

directional gamma-rays above the isotropic background induced by cosmic rays

to overcome this challenge [50]. As with space-based experiments, ground-based

experiments have yet to observe a gamma-ray flux above background in their

data [51].

2.1.2 Neutrino Experiments

Neutrinos from WIMP annihilation can interact with ordinary matter via a charge

current interaction or a neutral current interaction. In a charged current interac-

tion, a high energy neutrino transforms into its lepton partner via a process such

as inverse beta decay

ν̄e + p→ n+ e+. (69)

These neutrino interactions are ideal to work with, since the leptons are easy to

detect and allow the neutrino to be flavor-tagged. However, if a neutrino has less

energy than the mass of its lepton partner it can not interact via a charge current

interaction. In a neutral current interaction the neutrino remains as a neutrino

but deposits energy and momentum onto a target particle. If the target is light,

such as in the electron interaction

ν̄e + e− → ν̄e + e− (70)

it can be accelerated above the speed of light in the medium and produce Cerenkov

radiation.
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Ground-based detectors, such as ANTARES and IceCube, search for the neu-

trinos produced during dark matter annihilation in the Sun, where WIMPs would

accumulate due to scattering on protons. The high energy neutrino signals would

present as Cerenkov radiation produced by muon tracks in charged current inter-

actions at the GeV-TeV energy scale, which would in turn be observed by large

photo-multiplier arrays buried deep in a transparent medium, such as the antarc-

tic ice. Such a signal would be a strong indication of dark matter, since no other

processes are expected to produce it.

Unlike direct detection experiments, where the spin-dependent scattering cross

section is a function of the expectation values of the proton and neutron spin op-

erators in the target nucleus, neutrino observation experiments can place strong

limits on the spin dependent cross since they are directly measuring annihilation

remnants. Such limits are strongly dependent on assumptions for the dark matter

annihilation process, and are therefore more model-dependent than direct detec-

tion experiments. So far, neutrino observation experiments have not observed any

dark matter annihilation signal from dark matter particles at the center of the Sun

or in nearby galaxy clusters, but have set the world’s best spin-dependent cross

section limits for WIMPs in the process [52, 53].

2.1.3 Positron Experiments

Positrons can be produced with a varying spectrum via direct annihilation of dark

matter to positron-electron pairs or by annihilations to ZZ or W+W− [54, 55].

These positrons do not travel in straight lines from their source due to galactic

magnetic fields. Due to their low mass, electrons and positrons lose energy via

inverse Compton scattering and synchrotron radiation as they travel from source
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to observer. The energy loss increases with the square of the electron energy, such

that the power law energy spectrum is steepened at the location of the observer,

resulting in an expectation of ∼ E−3 [56].

The inelastic collision of cosmic-ray protons and α-particles produce charged

pions, which in turn produce secondary positrons and electrons in roughly equal

amounts via the π−µ−e decay chain [57]. For secondary electrons and positrons,

the source spectrum would therefore follow the energy spectrum of ambient pro-

tons, which is approximately ∼ E−3.7 after radiative loss during transit. If the

only source of positrons was from secondary production, and astrophysical sources

produced electrons, we would then expect the positron fraction e+/(e+ + e−) to

decrease smoothly with energy [56]. Therefore, experiments which seek to measure

a positron signal from dark matter annihilation observe the positron fraction as

a function of energy from the entire galactic halo and compare their results to

astrophysical models of positron production.

Experiments such as FERMI-LAT, PAMELA, and AMS-02 have confirmed a

rise in the positron fraction at high energy [58, 59, 60]. However, a very high cross

section and leptophilic models are required for these observations to be attributed

to dark matter annihilation. Alternative explanations such as local pulsar sources

and acceleration of secondary positrons have also been proposed [61].

2.2 WIMP creation in Colliders

Experiments such as ATLAS and CMS are using the Large Hadron Collider (LHC)

beneath France and Switzerland to search for the production of WIMPs in high

energy particle collisions. The LHC is a proton-proton collider which should have
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a large production cross section for colored super symmetric particles. The WIMP

pair production interaction pp(pp̄) → χχ̄ is of no use in these experiments, since

it leaves no observable signal in the detector. Instead, these experiments try to

observe the higher order pp → χχ̄ + jets interaction, with the jets serving as a

trigger that an event took place. The dominant background when looking for such

an event comes from the electroweak processes where the Z decays into a pair

of neutrinos pp(pp̄) → νν̄ + jets or the W± decays into a neutrino and a lepton

pp(pp̄)→ l−ν̄ + jets or pp(pp̄)→ l+ν + jets. In a WIMP + jets event the WIMP

will exit the detector unseen, producing a signature with missing transverse mo-

mentum. The magnitude of this missing momentum is typically denoted as Emiss
T .

A model-independent approach shows that Emiss
T should be detectable at the LHC

under the assumption that all new particles mediating the interaction of WIMPs

and standard model particles are too heavy to be produced directly [62]. However,

no excess of events beyond the standard model processes has been observed at the

LHC as of yet [63].

2.3 Direct Detection Experiments

If dark matter interacts through the weak force then it should be possible to

observe WIMPs via nuclear recoils in direct detection experiments. During these

events a WIMP will scatter off of a target nucleus in the detector, producing a

nuclear recoil signal in the range of 1-100 keV [64]. Direct detection experiments

typically observe ionization, scintillation, or low temperature phonons produced

during the event (or a combination of the three), although some experiments have

developed a method of detection based on producing bubbles in a superheated
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fluid at the site of a recoil. These signals are susceptible to both nuclear recoil

and electron recoil backgrounds so detailed in situ calibrations are required to

characterize the detector’s response to each type of event. In this section, we will

review the canonical galactic halo model and derive an expression for the WIMP

recoil spectrum before discussing different types of direct detection experiments in

detail. The following chapter we will be devoted to one particular direct detection

experiment, the LUX detector.

2.3.1 The Canonical Halo Model

The canonical halo model treats dark matter as an isothermal spherical distribution

that behaves as a non-interacting ideal gas. The spherical shape of the distribution

implies no rotational movement in the bulk of the distribution, otherwise it would

flatten into a disk. The velocity of a WIMP relative to the galactic center, v0, can

be approximated by the orbital velocity at a given radius from the galactic center.

At the location of the sun, r ≈ 8.5 kpc, and v0 ≈ 220 km/s [65].

The local number density of WIMPs is given by

nχ =
ρχ
Mχ

(71)

where ρχ is the density of WIMPs in the local vicinity, and Mχ is the mass of

a WIMP particle. The local density of the dark matter halo is estimated to be

0.3 < ρχ < 0.7 GeV/cm3 [66]. Assuming the value of ρχ = 0.4 GeV/cm3 from

reference [64] we see that nχ = 0.004 per cm3 for a WIMP mass of 100 GeV.

With an average WIMP velocity of v0 = 220 km/s, this is equivalent to a flux of

φχ ≈ 107Mχ s−1cm−2, or roughly half a billion WIMPs of Mχ = 100 GeV passing
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through your hand every second.

2.3.2 The WIMP Recoil Spectrum

Lewin and Smith provide a standard derivation of the expected WIMP recoil

spectrum in reference [64]. Their derivation begins with the differential particle

density given by

dn =
n0

k
f(v,vE)d3v (72)

where n0 is the mean dark matter particle density, v is the velocity of the WIMP

relative to the target, vE is the velocity of the earth relative to the WIMP, f(v,vE)

is the WIMP velocity distribution function. The normalization constant k is given

by

k =

∫ 2π

0

∫ 1

−1

∫ vesc

0

f(v,vE)v2d(cosθ)dv (73)

where vesc is the local escape velocity, so that

∫ vesc

0

dn ≡ n0. (74)

Note that an annual modulation is induced in the velocity of the earth relative

to the dark matter particles, and subsequently induced in the event rate of WIMPs

in terrestrial detectors as well, due to the velocity of earth around the sun. This

modulation is given by

vE = v0 + 15 cos

(
2π
T − 152.5

365.25

)
(75)

where T is measured in days from June 2nd, and v0 ≈ 220 km/s is the velocity of
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the sun around the galactic center. The DAMA/Libra collaboration has claimed a

detection a dark matter signal with annual modulation with 9.3 σ significance [67].

However, many dark matter experiments have since ruled this result out, so it is

likely due some other unidentified modulating phenomenon in the data.

We treat the dark matter as a non-interacting ideal gas so that we can assume

a Maxwellian dark matter velocity distribution given by

f(v,vE) = e(−v+vE)2/v20 . (76)

Then for vesc =∞ we define

k0 ≡ (πv2
0)3/2 (77)

and for finite escape velocity vesc = |v + vE|,

k = k0

[
erf(

vesc
v0

)− 2√
π

vesc
v0

e−v
2
esc/v

2
0

]
. (78)

The event rate per unit mass on a target of atomic mass A (AMU), with cross

section per nucleus σ, is given by

dR =
N0

A
σvdn (79)

where N0 is Avogadro’s number (6.02 × 1023 mol−1). For constant cross section

σ = σ0, the event rate per unit mass is then

R =
N0

A
σ0

∫
vdn ≡ N0

A
σ0n0 〈v〉 . (80)

Substituting n0 = ρχ/Mχ (where ρχ and Mχ are the WIMP density and mass,
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respectively) we define the event rate per unit mass for vE = 0 and vesc =∞ as

R0 =
2N0ρχ√
πAMχ

σ0v0 =
2ρχ√
πMχMT

σ0v0 (81)

where Mχ is the mass of the WIMP and MT is the mass of the target, such that

R = R0

√
π 〈v〉
2v0

= R0
k0

2πv4
0k

∫
vf(v,vE)d3v. (82)

In differential form equation 82 becomes

dR = R0
k0

2πv4
0k
vf(v,vE)d3v. (83)

The recoil energy (as measured in the lab frame) of a nucleus struck by a WIMP

of kinetic energy E = 1
2
Mχv

2 and scattered at an angle θ in a center-of-mass frame

is given by

ER =
1

2
Mχv

2 2MχMT

(Mχ +MT )2
(1− cos θ). (84)

For isotropic scattering recoils are uniformly distributed over a range of 0 ≤ ER ≤
1
2
Mχv

2 4MχMT

(Mχ+MT )2
so

dR

dER
=

∫ Emax

Emin

(Mχ +MT )2

4MχMTE
dR(E) (85)

where Emax = 1
2
Mχv

2 4MχMT

(Mχ+MT )2
and Emin is the smallest WIMP energy which can

produce a recoil of energy ER. Since E = 1
2
Mχv

2 and E0 = 1
2
Mχv

2
0, E = E0

v2

v20
and

equation 85 becomes

dR

dER
=

(Mχ +MT )2

4MχMTE0

∫ vmax

vmin

v2
0

v2
dR(v) (86)
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where vmin and vmax is the WIMP velocities corresponding to Emin and Emax.

Therefore, using equations 77, 81, and 83 the expected energy recoil spectrum of

WIMPs scattering off of a target nucleus is given by

dR

dER
=

(Mχ +MT )2

4MχMT

k0R0

2πE0kv2
0

∫ vmax

vmin

f(v,vE)

v
d3v

=
(Mχ +MT )2

2M2
χM

2
T

ρχ
Mχ

σ0

k

∫ vmax

vmin

f(v,vE)

v
d3v (87)

It is conventional to express σ0 as the product of σ0 at the coherent scattering limit

in which the WIMP interacts with the entire nucleus (with momentum transfer

q = 0) and a nuclear form factor F which accounts for the loss of coherence with

higher momentum transfer. Therefore, using the WIMP-nucleus reduced mass

given by µ ≡ MχMT

Mχ+MT
equation 87 becomes

dR

dER
=

σ0ρχ
2µ2Mχk

F 2(q)

∫ vmax

vmin

f(v,vE)

v
d3v, (88)

where, as a reminder, ρχ is the local WIMP density, f(v,vE) is the velocity dis-

tribution of WIMPs in the halo, vmin is the minimum WIMP velocity able to

generate a recoil of energy ER, vesc is the escape velocity for WIMPs in the halo,

σ0 is the WIMP-nucleus interaction cross section, and F (q) is the nuclear form

factor describing the scattering amplitude for momentum transfer q.

The WIMP-nucleus cross section can have both spin-independent (SI) and

spin-dependent (SD) components [68]. The SI interaction cross section is given by

σSI0 =
4

π
µ2 [Zfp + (A− Z)fn]2 ,
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where Z is the atomic number of the target nucleus (the number of protons), A

is the atomic mass number of the target nucleus (A − Z is therefore the number

of neutrons in the nucleus), and fp and fn are the effective scalar couplings of

WIMPs to protons and neutrons, respectively. In this process we must sum over

the interactions in each nucleon prior to squaring, since the de Broglie wavelength

associated with the momentum transfer is comparable to, or larger than, the size of

the target nuclei, giving rise to a coherence effect across the nucleons. If the scalar

couplings of WIMPs with neutrons and protons are approximately equal (which is

the case with the LSP of SUSY), then the SI cross section can be simplified to

σSI0 '
4

π
µ2A2|fp|2.

The cross section for SD interactions is given by

σSD0 =
32

π
G2
Fµ

2J + 1

J
[〈Sp〉ap + 〈Sn〉an]2 ,

where GF is the Fermi constant, J is the total spin of the target nucleus, 〈S(p,n)〉

are the expectation values of the proton and neutron group spins, and a(p,n) are

the effective SD WIMP couplings on protons and neutrons. In SD WIMP-nucleus

interactions it is assumed that only unpaired nucleons contribute significantly to

the total cross section, since the spins of the nucleons in a nucleus are anti-aligned.

In most cases, the spin independent, coherent term dominates the total WIMP-

nucleus cross section due to its A2 dependence on the atomic mass number of the

target nucleus.

A calculation of both the differential and integrated WIMP event rates in single
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isotope targets of 131Xe, 73Ge, and 40Ar using a WIMP mass of 100 GeV is included

in Figure 10.

Figure 10: Calculated differential spectrum in evts/keV/kg/d (solid lines) and
the integrated event rate in evts/kg/d (dashed lines) for 131Xe, 73Ge, and 40Ar
assuming a 100 GeV WIMP with spin-independent cross section for a WIMP-
nucleon of σ = 9× 10−46 cm2 [9].

Lighter target nuclei will produce lower event rates in a WIMP detector due to

their lower cross sections (resulting from lower A2 contribution in the coherent SI

term) and less effective transfer of energy during nuclear recoil events from heavy

WIMPs. While heavier target nuclei produce stronger interaction cross sections,

they also result in reduced event rates at high energies due to a loss of coherence

from form factor suppression. This loss of coherence is not enough to make light
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target nuclei more ideal than heavy target nuclei at high energies, but the event

rate is not enhanced by as much as a naive A2 scaling would suggest. To maximize

efficiency a xenon detector with a low analysis threshold is ideal.

2.3.3 Backgrounds in Direct Detection Experiments

Direct detection experiments search for an extremely rare nuclear recoil signal

between 1-100 keV. These detectors have a number of internal and external back-

grounds which could obscure the WIMP signal. Therefore, limiting the sources of

background is critical to maintaining a high discovery potential.

Internal backgrounds can be introduced by radioactive materials present in

individual detector components. Naturally occurring radioisotopes such as 232Th,

238U, and 40K can produce high energy gamma rays which penetrate deep into a

detector. In the case of 232Th, the decay chain produces high energy gamma rays

from radioactive daughters such as 228Ac, 212Pb, 212Bi, and 208Tl before reaching

stable 208Pb. Likewise, the 238U decay chain produce high energy gamma rays

from 234Th, 234Pa, 214Pb, 214Bi before reaching stable 206Pb. In the case of 40K, a

1460.85 keV gamma ray is produced via electron capture decay to 40Ar.

In addition to the naturally occurring radioisotopes, cosmogenically activated

radioisotopes can also be present inside detector components. Neutron activation

of copper can produce 60Co, which produces 1.173 MeV and 1.33 MeV gamma rays

when it beta decays into 60Ni with a half life of 5.2714 years. Neutron activation

of titanium produces 46Sc, which emits 889 keV and 1.12 MeV gamma rays when

it beta decays into 46Ti via electron emission with a half life of 84 days.

Radon in the detector introduces the 222Rn and 220Rn decay chains as additional

backgrounds. While most of the daughters in the radon decay chains produce easily
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vetoed alpha particles, the 222Rn decay chain includes beta and gamma emitters

such as 214Pb and 214Bi. 214Pb decays into 214Bi with a half life of 26.8 minutes via

beta emission at 1024 keV, and the subsequent 214Bi decays in 214Po with a half

life of 19.9 minutes via beta emission at 3272 keV. The 220Rn decay chain includes

212Pb, which decays into 212Bi with a half life of 10.64 hours via beta emission at

573.8 keV. The 212Bi then decays via alpha decay into 208Tl, which can subsequently

decay via beta emission. These beta decays either produce no gamma ray particles

(referred to as "naked" beta decays) or high energy gamma rays that can leave the

detector without scattering (refered to as "semi-naked" beta decays), resulting in

a background which can not be reduced via detection of a high energy gamma-ray

component. Internal backgrounds from detector components are mitigated with

careful screening of the materials which go into a detector, with simulations being

used to predict background events arising from materials which make it through

the screening process [69].

Long-lived intrinsic radioisotopes can be present in the detection medium as

well. Cosmogenically activated 127Xe beta decays via electron capture to 127I with

a half life of 36.358 days. The captured electron has an 85% chance of coming

from the K shell with an x-ray of 33 keV, a 12% chance of coming from the L

shell with an x-ray of 5.2 keV, and a 3% chance of coming from higher shells

with x-rays of <1.2 keV. The subsequent 127I daughter can decay to ground state

via high energy gamma emission, with the gamma frequently leaving the detector

without scattering. The 127Xe activity decays away quickly, so this background

can be mitigated by moving the detector underground prior to data collection.

39Ar is generated by cosmic ray interactions with 40Ar in a (n,2n) process in the

atmosphere and can find its way into a detector’s medium. The 565 keV electron
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emission decay has a half life of 269 years, placing strong constraints on the amount

of 39Ar that can be present in a detector’s medium when data is collected. 85Kr

is produced by man-made processes, such as nuclear fuel re-processing. As with

39Ar, the 85Kr can make its way into a detector’s medium where it will beta decay

to 85Rb with a half life of 10.756 years at 687 keV. These long lived radioisotopes

which originate from the atmosphere must be purified from the detector medium

prior to data collection to reduce background levels in the detector [69].

Neutrons are particularly dangerous source of background which can mimic

the single scatter nuclear recoil present in a WIMP signal. While neutrons can be

stopped by a few tens-of-meter water-equivalent shielding, cosmic ray muons can

penetrate many kilometers of shielding. Muon interactions in the laboratory can

produce "cosmogenic" neutrons at the GeV scale with mean free path much longer

than most detectors. These neutrons can be attenuated by rock or shielding and

produce keV scale recoils in WIMP detectors. Such events are mitigated by tagging

the initial muon with a muon veto system, placing external shielding around the

detector, and by placing the detector deep underground to limit the muon flux.

Neutrons can also be generated internally via (α,n) interactions in construction

materials, such as the (α + 19F→ 22Na + n) reaction in fluorine present in PTFE,

and from spontaneous fission of 238U and 232Th.

The background mitigation techniques discussed in this section can not com-

pletely remove backgrounds from a detector. To separate any remaining back-

grounds from a WIMP signal, detectors use a technique called nuclear recoil dis-

crimination. Nuclear recoil discrimination does not reduce the total number of

background events, but instead seeks to distinguish electron recoil interactions

from nuclear recoil interactions and reject the former population. In the next sec-
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tion we discuss a variety of WIMP detection methods, with each of these methods

having its own form of nuclear recoil discrimination.

2.3.4 Direct Detection Methods

Ionizing radiation deposits energy in a detector in the form of scintillation light,

ionization, and heat. A variety of WIMP detectors have been constructed that each

detect one or two of these channels. Scintillation detectors use scintillating crystals

or liquid scintillators as a target medium. For instance, the DAMA/LIBRA ex-

periment at the Gran Sasso Laboratory in Italy uses room temperature, thallium

doped sodium iodide (NaI(Tl)) scintillating crystals as a target medium. Each

crystal is paired with two photomultiplier tubes (PMT) which collect scintillation

light from within each crystal. Annual modulation of the WIMP signal due to the

motion of the earth around the sun is used to discriminated background events

from WIMP events. The XMASS detector uses liquid xenon as a target medium.

The scintillation produced in the xenon by recoil events is collected by PMT arrays.

Background events from gamma ray sources are attenuated by the liquid xenon’s

large atomic number (Z=54) and high density, leading to a low background fiducial

volume. This discrimination technique is referred to as "self shielding."

Single phase liquid argon experiments, such as DEAP and CLEAN, can not

take advantage of self shield techniques due to the intrinsic background from 39Ar.

Instead, these experiments use a technique called pulse shape discrimination to

differentiate signal events from background. Scintillation in liquid noble gases is

produced by the decay of singlet or triplet excimers. The triplet state emits light

over a longer period of time, and the light can be suppressed by destructive in-

teractions such as Penning ionization and electron-triplet spin exchange. Nuclear
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recoils produce higher excitation densities, and therefore more destructive interac-

tions with the triplet excimers, leading to a difference in the pulse shape of nuclear

recoil and electron recoil events.

Single phase ionization detectors have also been used in the search for dark

matter. The CoGeNT detector in the Soudan Underground Laboratory in Min-

nesota uses a low input capacitance p-type point contact (PPC) germanium crystal

to detect ionization from WIMP interactions. The detector has energy thresholds

as low as 500 eV, allowing the collaboration to search for low mass (∼5 GeV/c2)

WIMP particles. Electron recoil background events scatter at multiple events

sites in the germanium crystal, while WIMPs scatter at most once. This leads to

a longer rise time in pulses from background events which can be used as another

form of pulse shape discrimination.

Phonon detectors are the final type of single signal detectors. These type

of detectors, such as the Cryogenic Underground Observatory for Rare Events

(CUORE) in the Gran Sasso National Laboratory, use low heat capacity crystals

as a target medium. In the case of CUORE, tellurium dioxide crystals (TeO2) are

held at 10 mK to reduce thermal noise. The low heat capacity of the crystals allows

particle interactions to raise the temperature of the crystals, which in turn changes

the resistance of neutron transmutation doped germanium thermistors which are

glued to the top of each crystal. A constant current is applied to the thermistors,

and the voltage across each thermistor is used as a detection method. These types

of detectors do not have any means of event discrimination, so they rely heavily

on the use of radiopure construction materials and background modeling.

In addition to the single signal detectors, many detectors collect data from

two of the three energy deposition channels. The Cryogenic Dark Matter Search
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(CDMS) in the Soudan mine records signals from both phonons and ionization.

The detector uses Ge and Si detectors cooled to ∼40 mK as a target medium. The

low temperature is required to reduce thermal noise in the detector and to reduce

the heat capacity of the target so that the temperature signal is large. Ionized

electrons are drifted to the top of the crystals by an electric field where they

are read out using field effect transistors, and the corresponding phonon signal

is collected by superconducting transition edge sensors coupled with SQUIDs on

the opposite face of each crystal. The ionization yield of a nuclear recoil is lower

than an electron recoil, so the ratio of the two signals is used for nuclear recoil

discrimination.

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST)

is a phonon and scintillation detector in the Gran Sasso National Laboratory.

CRESST uses calcium tungstate (CaWO4) crystals, which are cooled to 10 mK

to lower thermal noise, as a target medium. As with CDMS, transition edge

sensors are used to detect phonons originating from particle interactions in the

crystals. Scintillation light in the crystals is absorbed by a silicon light absorber

that converts the scintillation photons to heat, which are then detected by sec-

ondary thermometers. A nuclear recoil produces 10-40 times less scintillation light

in the CaWO4 crystals than an electron recoil does, so the ratio of the phonon and

scintillation signal can be used for nuclear recoil discrimination.

The final class of detectors records the scintillation and ionization signals from

particle interactions. These detectors, which are known as dual phase time projec-

tion chambers, use liquid noble scintillators (typically xenon or argon) as a target

medium. Primary scintillation light is collected by PMT arrays at the top and

bottom of the detector. An electric field is used to drift charge from ionized par-
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ticles to the top of the detector, where the charge produces a secondary source

of scintillation light as it accelerates through the gaseous xenon above the liquid.

The ratio of the primary and secondary scintillation light can be used for nuclear

recoil discrimination. Currently, the most sensitive dark matter detector in the

world is a dual phase TPC placed in the Sanford Underground Research Facility

in South Dakota. This detector, known as the Large Underground Xenon detector

(LUX), will be discussed in depth in Chapter 3.
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3 The LUX Detector

The Large Underground Xenon detector (LUX) is a dual phase time projection

chamber located at the Sanford Underground Research Facility in South Dakota.

The detector is a cylindrical structure that uses 370 kg of liquid xenon as a target

medium. The commercially bought xenon was distilled to ∼1 ppm (g/g) of air by

the manufacturer before undergoing a krypton removal campaign to lower residual

krypton levels to less than 5 parts per trillion (g/g).

Particle interactions in the liquid xenon produce ionized and excited xenon

atoms. The excited xenon atoms form exciton molecules with ground state atoms,

subsequently producing scintillation light at 178 nm when the molecules disasso-

ciate. This scintillation light is referred to as the S1 signal. Some of the electrons

released in the ionization process recombine with the xenon ions, forming addi-

tional xenon excitons and S1 light, while the rest drift to the liquid surface by

an applied electric field. Electrons which penetrate the liquid surface are acceler-

ated through the gas above the liquid xenon by a stronger electric field, producing

electroluminescent light which is referred to as the S2 signal. This process will be

discussed in depth in section 6.1 .

Two arrays of 61 PMTs each are used to measure both the S1 and S2 light in the

detector. The light response of each PMT in the top array is used to reconstruct

the XY position of recoil events based on the spatial pattern of the S2 signal, and

the time difference between the S1 and S2 signal is used to reconstruct the depth

of the recoil events via the known drift velocity of electrons in liquid xenon. In this

way, the LUX detector has three dimensional position reconstruction which can

be used to define a low-background fiducial volume in the center of the detector.
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Figure 11: A depiction of a particle event in LUX. The response of the top PMT
array to the S2 light is used for XY position reconstruction, while the timing
between the S1 and S2 signals is used for the depth measurement.
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Figure 12: Simulated gamma ray backgrounds in the LUX detector after removing
multi-scatter events. The black dashed lines indicate the fiducial volume used in
the first LUX WIMP search results.

The center of the LUX detector is an extremely low background environment

due to the strong self shielding properties of liquid xenon and the lack of naturally

occurring xenon radioisotopes. Low energy external backgrounds (<50 keV) can

only travel a few millimeters into the liquid xenon volume, while higher energy

gamma rays (∼MeV range) will produce easily identifiable multi-scatter events

due to their mean free path of a few centimeters. Residual background events

which appear in the fiducial volume are reduced by over 99% by using the ratio

of the S1 and S2 signal as a form of nuclear recoil discrimination. Discrimination

techniques in the LUX detector will be discussed more in section 4.4. In this

section, we will discuss the detector internals, external support system, and the

DAQ electronics used to read out the PMT signal.
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3.1 Detector Internals

3.1.1 Cryostat

A cross section of the LUX cryostat and detector internals is shown in figure 13.

An outer titanium cryostat is used to maintain a thermally insulating vacuum

around the detector. An inner cryostat which houses the liquid xenon and detec-

tor internals is attached to the roof of the outer cryostat via three plastic hangers.

Instrumentation cables and gas circulation plumbing are fed through flexible con-

duits at the top of the detector.
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Figure 13: Cross section of the LUX cryostats and internal detector compo-
nents [10].
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3.1.2 PMT Arrays, PTFE Structure, and Field Cage

Figure 14 depicts the inside of the inner cryostat, where a 5 cm thick copper block

with a diameter of 55 cm is mounted directly on to the flange. This copper serves

as a radiation shield and a temperature controller during detector operations. A

similar copper structure is attached to the bottom of the inner cryostat and is used

to displace xenon from the inactive volume in addition to performing the functions

of the top radiation shield.

Two PMT arrays collect light from the S1 and S2 signals in the detector.

Each array contains 61 Hamamatsu R8778 PMTs which observe the active vol-

ume. These PMTs were designed for operation in liquid xenon, with a typical

quantum efficiency of 33% at the 178 nm wavelength of liquid xenon scintillation.

The top PMT array is housed in a copper structure which is hung 15 cm below

the upper radiation shield by six titanium straps. Reflective polytetrafluoroethy-

lene (PTFE) trifoils cover the inner face of the copper housing to increase light

collection efficiency in the detector. A similar structure is placed at the bottom of

the detector to house the bottom PMT array.

Twelve PTFE panels hang from the top PMT support and are attached to the

bottom PMT support. These panels increase the light collection efficiency of the

detector, and serve as the support structure for the field cage in the detector. The

electric field is defined by five wire grids. Each grid is made of stainless steel wires

and are 88-99% transparent at a normal angle of incidence. Stainless steel is known

to be 57% reflective at the xenon scintillation wavelength, further minimizing the

optical footprint of the wire grids.

The top grid is located 2 cm below the top PMT array. A stainless steel ring
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is used to string 50 micron diameter stainless steel wires spaced with a pitch of

1 cm. The voltage on the top grid allows the electric field at the photocathodes

of the top PMTs to be zeroed. The anode is placed 4 cm below the top grid. It is

similar in design to the top grid, but uses 30 micron wires with 0.5 mm spacing.

The gate grid, which uses 50 micron stainless steel wires with a pitch of 5 mm, is

placed 1 cm below the anode grid. The position of the gate grid places it about

5 mm below the liquid xenon surface. These two grids work in tandem to produce

a strong extraction field (5-6 kV/cm) that pulls charge out of the liquid xenon and

into the gas, producing the S2 signal. The cathode grid is placed about 49.5 cm

below the liquid surface. This grid uses 260 micron diameter stainless steel wires

with a pitch of 5 mm, and works in tandem with the anode grid to produce an

electric field which drifts charge from a particle interaction to the liquid surface.

The bottom grid is the last of the five wire grids. It is located 4 cm below the

cathode grid and 2 cm above the bottom PMT support, and uses 206 micron

diameter stainless steel wires with a pitch of 1 cm. The bottom grid serves the

similar purpose as the top grid – it is used to zero the field at the photocathodes

of the bottom PMT arrays.

Forty-eight copper field rings are spaced 1 cm apart inside of the PTFE panels

to shape the drift field. These rings have thickness of 3.2 mm and a width of

12.7 mm. The spacing and thickness of the rings were chosen to shield the active

region from the electric field produced by the cathode high voltage cable. The

voltage of the field rings is set by a resistor chain that runs between the gate and

the cathode grids. A pair of 0.875 GΩ resistors connect the top field ring to the

gate grid, while a pair of 1.25 GΩ resistors connect the bottom field ring to the

cathode grid. A pair of 1 GΩ resistors is used to connect each adjacent field ring.
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Figure 14: Depiction of the LUX PMT supports, PTFE panels, and field cage [10].

3.1.3 Cryogenics

A thermosyphon system is used to cool the detector internals to liquid xenon

temperatures (∼175K) during operation. A thermosyphon is a sealed tube filled

with a variable amount of gaseous nitrogen (N2). A condenser which is immersed

in a bath of liquid nitrogen is placed at the top of the thermosyphon. As the

nitrogen in the thermosyphon tube condenses, gravity causes it to trickle down

stainless steel plumbing to copper heat exchangers that are attached to various

points in the inner cryostat. The condensed nitrogen evaporates when it hits the

copper heat exchanger, removing heat from the detector. The evaporated nitrogen

rises back up the stainless steel plumbing where it is once again condensed by
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the liquid nitrogen bath. In this way, the thermosyphons act in a continuous loop,

transferring heat from the detector to the liquid nitrogen bath which the condenser

is immersed in.

Two thermosyphons are attached to the copper radiation shields at the top

and bottom of the inner cryostat and are used as the driving force to cool the

detector from room temperature to 175K. Two more thermosyphons are attached

to copper shielding around the inner cryostat and are used to prevent any thermal

gradients from building in the detector. Each copper evaporator is fitted with

a 50 W heater and a thermometer for fine temperature control. Larger 750 W

heaters are attached to the two primary thermosyphons to aid in detector warm

up during liquid xenon recovery.

3.1.4 Instrumentation

The LUX detector is fitted with numerous instruments that help monitor and sta-

bilize the conditions within the cryostat. Forty 100 Ω thin film platinum resistance

temperature detectors (RTDs) are used to monitor the temperature inside the in-

ner cryostat. These instruments help prevent the formation of thermal gradients

which could warp the detector internals. An additional 23 RTDs monitor the tem-

perature inside the outer vacuum space, providing a means to detect leaks from

the inner cryostat or outer atmosphere to the insulating vacuum space. Calibra-

tion of the RTD readouts was performed prior to installation, as well as in situ at

room temperature, with an accuracy of 170mK for each RTD. Advantech Adam

6015 modules feed the output voltage of the RTDs to a slow-control database,

where multiple users can monitor the values and set automated alarms to notify

operators of any temperature fluctuations in the detector.
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A variety of pressure sensors are used throughout the detector. Sensor models

include Ashcroft AST4900 sensors, InstruTech Hornet ion and convection gauge,

Swagelok PGU-50-PC100-L4FSF manual pressure gauges, and a Setra model 759

capacitance manometer. These instruments monitor the stability of the inner

cryostat, the quality of the outer vacuum, and the pressure in various locations of

the gas circulation system. As with the RTDs mentioned above, all of the digital

pressure gauges are read out to the slow control database where alarms can be

set to notify users of potential leaks in the circulation system or out of control

warming and cooling effects in the detector.

Six parallel wire sensors monitor the liquid level in the inner cryostat, the

weir, dual-phase heat exchanger, and the liquid return line. The latter detector

components mentioned here will be discussed in section 3.2.1. The capacitance

of each wire pair depends on the length of wire submerged in the liquid, allowing

the overall height of the liquid to be determined. Additionally, three parallel plate

sensors are placed 120 degrees apart between the gate and anode grids. These

sensors ensure the liquid surface is uniform and without any tilt.

3.2 External Support Systems

3.2.1 Gas Circulation and Purification System

The xenon used in the LUX detector must be largely free of electronegative and

molecular impurities that could attenuate charge and light from particle interac-

tions. To achieve this goal, LUX circulates the detector’s xenon through a gas

system which includes a heated zirconium getter made by SAES. The getter re-

moves nearly all non-noble gas impurities with an efficiency of 99.9%, but requires
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the xenon to be in gaseous form when operating.

The process of evaporating the liquid xenon, flowing the gaseous xenon to

the SAES getter, and recondensing the xenon before to returning it to the inner

cryostat is handled by the LUX gas system. Within the inner cryostat excess liquid

spills over the lip of a weir into a reservoir, where it enters the evaporator side of

a two phase heat exchanger. In this side of the heat exchanger, xenon is pumped

on by the external circulation system until it evaporates. The cooling effect of the

evaporation is used to recondense xenon which is returning to the detector on the

other side of the heat exchanger, reducing the heat load of the process by 96% [70].

The gaseous xenon leaving the evaporator side of the heat exchanger passes

through a concentric-tube heat exchanger which warms it to room temperature

before circulating to the SAES getter. After passing through the SAES getter,

the purified xenon continues on to a second concentric-tube heat exchanger where

it is cooled before entering the condenser side of the two phase heat exchanger.

After condensing in the two phase heat exchanger the, now liquid, xenon enters

the inner cryostat through the bottom radiation shield to ensure its temperature

is consistent with the detector internals.

A diaphragm pump which is capable of 50 SLPM (420 kg/day) is used to

maintain a constant flow of xenon through the circulation system. In practice, the

flow is limited to ∼27 SLPM (227 kg/day) by the output pressure of the circulation

pumps.

3.2.2 Gas Sampling System

Five xenon sampling ports are including in the gas circulation system. These

ports allow xenon from the two phase heat exchanger, getter input, getter output,
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conduit purge lines, or circulation pump inlet to be diverted to a xenon assay

system. The assay system makes use of a cryogenic cold trap to separate impurities

from the xenon. During use, a xenon sample flows through the cold trap, where it

is frozen through contact with a liquid nitrogen bath. The frozen xenon sets the

vapor pressure of the system at 1.8 mTorr. Most impurities have a vapor pressure

higher than 1.8 mTorr, allowing them to pass through the cold trap and separate

from the bulk of the xenon. The remaining impurities flow at high leak rates to

a commercial Residual Gas Analyzer (RGA) made by SRS, where the absolute

level of impurities in the bulk xenon is deduced by comparing to a calibration data

set. After sampling, xenon can be discarded with the use of vacuum pumps in

the sampling system, or recovered to high pressure cryogenic storage and recovery

vessel (SRV) for potential reuse later. While we are most concerned with the

krypton concentration due to the background producing radioisotope 85Kr, it is

important to assay the other impurities as well. Argon can produce radioactive

backgrounds in the detector, helium can diffuse through PMT faces and damage

the vacuum behind them, and nitrogen and oxygen can serve as an indicator for air

leaks. This assaying technique results in sensitivity to krypton below 1 ppt (1e-12)

g/g, a factor of 10,000 better than measurements performed without a cold trap.
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Figure 15: Depiction of the LUX sampling system. Xenon enters the sampling sys-
tem through various sampling ports in the main circulation path. These sampling
ports are shown in the top left of the diagram. The xenon then passes through
one of three leak valves (indicated by red triangles) into a U-shaped cold trap,
where it is analyzed by an RGA on the output of the cold trap. A secondary set
of vacuum pumps is included so that the system can be evacuated independently
of the RGA space.

3.2.3 Water Tank and Muon Veto System

The LUX cryostat is enclosed in a 7.6 meter diameter, 5.1 meter high water tank.

The water tank holds 8 tons of water that is continuously circulated through

an industrial purifying system to reduce detector backgrounds originating from

the water tank itself. The concentration of uranium, thorium, and potassium

are held more than six orders of magnitude lower than the rock surrounding the

laboratory (2 ppt, 3 ppt, and 4 ppb respectively). The water tank provides 2.75 m

of shielding to the top of the detector, and 3.5 m of shielding to the sides, that
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reduces backgrounds originating in the laboratory environment. The tank is also

outfitted with 20 Hamamatsu R7081 PMTs which can be used as an active veto

for events which coincide with muons passing through the detector.

Figure 16: Cross section of the LUX water tank which surrounds the cryostat.

3.2.4 Calibration Systems

LUX utilizes multiple internal and external calibration sources to measure the de-

tector’s S1 and S2 response to recoil events. Six source tubes surround the cryostat

in the water tank. A system of pulleys allows radioactive sources to be deployed

and retracted in each tube. A collimator is used for directional control of the par-

ticle interactions from the external sources. AmBe and 252Cf neutron sources are

placed in the source tubes to calibrate the detectors nuclear recoil response. High

energy 137Cs gamma ray sources are placed in the tubes to calibrate the detector’s

electron recoil response, and to illuminate the detector walls for position recon-

struction and background modeling studies. Other gamma ray sources, such as
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22Na and 208Tl are available for electron recoil response calibration as well. High

energy gamma rays from external sources only penetrate the outermost centime-

ters of the liquid xenon volume due the same self shielding properties that reduce

unwanted external backgrounds, making it difficult to calibrate the entire fiducial

volume with external sources.

Figure 17: Rendering of the six external source tubes which surround the LUX
cryostat.

In addition to the source tubes mentioned above, a 377 cm long horizontal

nitrogen filled conduit can be raised in the water tank by a pulley system. This

conduit serves to displace water from the tank, opening a collimation path for an

external neutron beam. The neutron generator is operated at a 5% duty cycle using

100 µs neutron pulses to produce mono-energetic 2.45 MeV neutrons at a rate of

500 Hz. The resulting neutrons scatter multiple times in the fiducial volume, and

are used to calibrate the detector’s nuclear recoil response from 0.7 to 24.2 keVnr.

LUX also employs two internal calibrations sources which are injected directly

69



into the gas circulation system. 83Rb soaked charcoal is used to inject 83mKr

directly into the circulation system on a weekly basis. 83Rb decays into 83mKr

with an 86.2 day half life. The resulting 83mKr daughter decays via two sequential

internal conversion electrons at 9.4 keV and 32.1 keV with a half life of 1.86 hours.

Once injected into the gas system, the 83mKr quickly makes its way into the fiducial

volume, where it uniformly disperses throughout the entire detector. The spatial

uniformity and intrinsic nature of this source makes it extremely useful when

measuring the spatial dependence of the detector’s S1 and S2 signals, which we

will discuss in depth in Chapter 5. After a calibration has finished, the 83mKr is

removed from the detector in a short amount of time due to its 1.86 hour half life.

Tritiated methane (CH3T) is the second internal calibration source used in

LUX. CH3T is a beta source with a peak at 2.5 keV and a mean energy of 5.6 keV.

The wide, low energy spectrum of CH3T is used to calibrate the detector’s electron

recoil response across the entire energy range of interest for WIMP events. CH3T

has a half life of 12.3 years, so unlike the 83mKr it must be actively removed from the

detector by the SAES getter in the circulation system. The unprecedented CH3T

source was designed specifically for LUX, and is discussed in detail in Chapter 4.

3.3 Detector Electronics

The photons collected by the two PMT arrays are amplified by the PMT dynode

chains to mV scale voltage signals. The rise time for an S1 pulse is limited to ∼6

ns by the response of the PMTs, and the 29 ns effective time constant of the xenon

excimer relaxation defines the S1 pulses’ decay constant. The pulse width of an S2

event varies with depth due to diffusion of the electron cloud as it drifts through
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the detector.

The LUX data acquisition (DAQ) system is designed to distinguish >95% of

single photoelectron pulses at 5 sigma above baseline noise fluctuations, and to

prevent saturation of events with energies <100 keVee at any stage in the electron-

ics. To achieve this, the analog chain must put the peak of single photoelectron

distribution at 30 ADC counts. In the analog chain, the mV scale signals from the

PMTs are sent to a x5 amplitude preamplifier before passing to a post amplifier

in the DAQ electronics rack. The multichannel post amplifier produces a gain of

1.5x that is sent to sixteen 8-channel ADC modules, and a gain of 2.8x to a DDC-8

trigger system.

The ADC modules digitize the signals at 100 MHz (10 ns/sample) with a reso-

lution of 14 bits. Each ADC board is connected to a VME bus that is subsequently

connected to the DAQ computer by fiber optic cables. Data is downloaded to the

DAQ computer with speeds of up to 80 MB/s. Each ADC board is controlled

by four field programmable gate arrays (FPGAs) that operate in a space saving

"pulse only digitization" (POD) mode. In POD mode, PMT channels are paired

and data is only saved to the DAQ computer if either member of the PMT pair-

ing rises above threshold. A valid pulse trigger gate (VPTG) mechanism further

reduces memory space demands. The VPTG is implemented using CAEN V814

discriminators which require two-fold coincidence between PMT channels. Valid

pulses are expected to occur in more than one channel, so the VPTG reduces

unwanted triggers from various sources of noise.

The DAQ trigger system uses two 8 channel digital signal processors (DDC-

8DSP). Top and bottom PMTs are summed into 16 groups (8 groups per array),

and the analog sum of each group is produced with a Lecroy 628 Linear Fan-
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In/Fan-Out module. A trigger builder is connected to the DDC-8’s and takes <1

µs to generate a final trigger signal to send to the DAQ. The trigger builder is

capable of distinguishing S1 and S2 pulses, and can therefore operate in S1-only,

S2-only, or S1 and S2 trigger mode. The DAQ can operate with a maximum trigger

rate of 1.5 kHz before incurring deadtime.

3.4 Science Results

Between September 11, 2014 and May 2, 2016 LUX collected 332 live days of

data, resulting in a 3.35 × 104 kg-day exposure. Within this data, single scatter

events were selected following a number of conditions. Each selected event had a

single S1 signal followed by a single S2 signal, was observed by at least 2 PMTs in

coincidence, and had the majority of the pulses’ areas within the S1 and S2 trigger

windows (to remove triggers from single electrons following large S2 events). A

minimum S2 size of 200 photons detected (phd) was also required to remove events

with poor XY position reconstruction. A fiducial volume was defined between 40

and 300 µs, and 3.0 cm radially inward from the measured PTFE surface position

at any given time. This resulted in an average fiducial volume of 102.5 kg.

A series of CH3T calibrations were used to measure the detector’s response to

electron recoil events over 16 space and time bins. These calibrations are detailed

in Chapters 4 and 6, and were used to tune the electric field magnitude and

the recombination fluctuation parameters used in a Noble Element Simulation

Technique (NEST) model. Similarly, a Deuterium-Deuterium (DD) source was

used to calibrate the detector’s response to nuclear recoil events. The selected

WIMP search events are shown in conjunction with the measured ER and NR
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bands in Figure 18.

The 16 ER and 16 NR models were used to model signal and background

events for a profile likelihood ratio (PLR) analysis. The background model for

the PLR consisted of three classes of events: events with typical light and charge

yields, events in close proximity to the PTFE walls, and accidental coincidences

of isolated S1 and S2 pulses. Events with typical light and charge yields were

modeled by assaying the compton scattering of γ rays, as well as the rate of β

decays in detector materials. Nuclear recoil backgrounds, including those from

detector components, cosmic muons, and coherent scattering of 8B neutrinos were

estimated through radioactivity screening data, simulations, and tests for multiple

scatter neutron events.

Events within 1 mm of the PTFE walls can exhibit a loss of charge to the

PTFE. While the majority of these events are excluded by the fiducial volume,

uncertainty in the S2 position reconstruction causes inward leakage from these wall

events. This population appears with low log10(S2) in Figure 18.

Isolated S1 and S2 pulses appear rarely in the data, but can occur close enough

in time to resemble a single-scatter energy deposition in the LXe. The rate of

accidental coincidences was measured from WIMP-search data, and the results

were included in the PLR model.

The WIMP signal model was produced using a standard Maxwellian velocity

distribution, with a local WIMP density of 0.3 GeV/cm3, an escape velocity of 544

km/s, an average WIMP velocity of 220 km/s, and the earth’s seasonal velocity

being 245 km/s with respect to the galactic center. The result from the PLR

analysis show no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV

c−2 , spin-independent WIMP-nucleon cross sections above 2.2 × 10−46 cm2 are
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Figure 18: Selected events in LUX’s Run4 data collection. The mean of the
ER and NR bands are indicated in blue and red, respectively. The 10% and
90% contours of those bands are indicated with dashed lines. The scale of the
variation between the 16 ER and NR models is shown by indicating the extrema
boundaries with thinner dashed lines. Green curves indicate the energy contours,
with extrema models also present as dashed lines. Events within 1 cm of the radial
fiducial volume are indicated as unfilled circles to convey their low WIMP signal
probability relative to the background model [11].
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Figure 19: Upper limits on the spin-independent WIMP-nucleon cross section at
the 90% confidence level. The 332 day Run4 result is show in a grey line, and
the combined Run3 and Run4 result is shown in a black line. The one and two σ
ranges of background-only trials for the combined result are shown in green and
yellow, respectively. Historical limits are also included and labeled on the plot.

excluded at the 90% confidence level (Figure 19). This result improves the the

limits set by the Run3 analysis by a factor of four [16, 11].
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4 Tritium as a Calibration Source

In this chapter, we’ll discuss the use of tritium as an internal calibration source in

the LUX detector. The material presented here will focus on the R&D efforts to

produce such a source prior to LUX’s Run 3 data taking campaign, as well as the

first results from the calibration source during the Run 3 campaign. Tritium is an

ideal calibration source for measuring the detector’s electron recoil response, since

the the beta decay spans the entire WIMP search energy range. Note that the

source is not a replacement for the mono-energetic 83mKr source which is used to

produce signal corrections in Chapter 5, since the wide spectral shape is less suited

for tracking position and time dependence of the S1 and S2 signals. The tritium

calibration source was also a critical component in dealing with the non-uniform

drift field in LUX’s Run 4 data, which will be discussed in Chapter 7.

4.1 Motivation for a Tritium Calibration Source

In two phase (liquid and gas) xenon detectors ionizing events will produce a scin-

tillation signal (referred to as S1) and ionization. The electrons produced by the

ionization process can be drifted to an anode located in the gas phase of the detec-

tor. Once the electrons are accelerating toward the anode in the xenon gas they

will create a secondary scintillation signal (referred to as S2). Nuclear recoil events

have higher ionization density, leading to a higher probability that electron will

recombine at the site of the initial recoil event, resulting in a higher S1 yield and

lower S2 yield than electron recoil events of the same energy. Therefore, the ratio

of the S1 and S2 signals can be used to distinguish electron recoil backgrounds

from WIMP-like nuclear recoil events. This background discrimination technique
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is referred to as nuclear recoil discrimination.

The number of photons and electrons produced during a nuclear recoil or elec-

tron recoil events of a given energy must be well understood to take advantage of

nuclear recoil discrimination. Typically, an external beta emitter such as 137Cs is

used to calibrate the detector’s electron recoil response. However, the xenon in

LUX has a strong self-shielding characteristic at ∼MeV wavelengths. While this

is convenient for eliminating background radiation from external sources, it makes

calibrating the innermost regions of the detector difficult with external gamma

sources.

To overcome this problem, the LUX collaboration makes use of internal calibra-

tion sources. An ideal internal calibration source for measuring the electron recoil

yields would be a single beta emitter in the energy range of interest (< 15 keV)

which can be dissolved into the liquid xenon in the detector. Furthermore, the

source must be made of a material with low electronegativity so that it will not

diminish the drift length of charge in the detector. Similarly the source cannot

attenuate the UV scintillation light produced by events in the detector. To achieve

a reliable calibration in all regions of the detector the source should have a long

enough lifetime to mix uniformly throughout the entire detector (an hour or more).

Finally, there must be a method for removing the source once the calibration has

finished. This could simply mean waiting for the source to decay, if its half-life is

short, or actively purifying the source out of the detector if its half-life is long

Tritium meets several of these requirements. It is a beta emitter with a Q-value

of 18.6 keV, a mean energy of 5.6 keV, and a mode of 3 keV that produces a broad

spectrum over the entire energy range of interest. Its 12.3 year half-life means

that the source will have plenty of time to mix uniformly throughout the detector.
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However, this long half life is potentially dangerous, since one can not simply wait

for it to decay away. It must be actively removed from the detector when the

calibration is completed. To complicate this matter, bare tritium sticks to most

surfaces, including materials like teflon, polyethylene, and steel which make up

the majority of most xenon detectors. To make tritium removal more feasible we

have made use of tritiated methane(CH3T). Methane is highly inert due to its fully

saturated carbon-hydrogen bonds. It has a diffusion constant in polyethylene that

is 10 times smaller than hydrogen, and it does not capture electrons that will be

drifting through the detector [71]. By replacing one of the hydrogen atoms in a

methane molecule with tritium we combine the strength of both of these materials,

resulting in the ideal internal electron recoil calibration source.

4.2 Tritiated Methane Removal

The CH4 removal efficiency of zirconium getters was measured through xenon

assaying in 2010 [72]. To ensure the CH3T removal efficiency of zirconium getters

was similar, we built two separate systems to inject tritiated methane into a gaseous

xenon and a liquid xenon environment. Both of these systems used zirconium

getters to remove CH3T. In this section, we describe the resulting measurements

and calculations that ensured the successful injection of CH3T into LUX in 2013.

4.2.1 Gas Phase Experiments

The gaseous xenon system consists of three sections. The first section, the xenon

space, contains a hot zirconium getter to remove CH3T from the system, two

xenon storage bottles, and a proportional tube to detect activity within the xenon
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space. The two storage bottles are used to move xenon through the system via

cryopumping. The second section is a small transfer system which is used to inject

consistent amounts of CH3T into the xenon space with each injection. The final

section consists of a CH3T storage bottle and a SAES MC1-905F methane purifier

to remove unwanted non-methane contaminates prior to entering the xenon space.

The primary goals of this experiment were to determine the purification effi-

ciency of the zirconium getter and to study residual contamination. As shown in

Figures 21 and 22, we found that the flow rate through the getter and the amount

of time between injections had the largest impact of purification efficiency. High

flow rates through the purifier can cool the zirconium inside, while inadequate rest

time between subsequent purifications can lead to build up of methane on the sur-

face of the zirconium pellets. Both of these situations lead to a modest decrease in

purifier efficiency. The first black data point in Figure 21 is our worst purification

efficiency, (96% ± 1%) corresponding to our highest flow rate. (8 SLPM compared

to the typical 0.3 SLPM) While we were unable to control the flow rate as much

as we desired, we are at least able to conclude that exceeding the maximum flow

rate suggested for the purifier does have a measurable effect on the purification

efficiency. We also found that allowing ample rest time between subsequent purifi-

cations significantly increases purification efficiency. Our best purifications were

the first data points in each cluster in Figure 22. We were able to obtain efficiencies

of 99.99% when the purifier was resting for three weeks or longer, and obtained

efficiencies ranging from 99.00% to 99.90% when the purifier was used on a daily

basis. Because of the constant recirculation in LUX, any purification efficiency

above 90% is acceptable.

After dozens of sequential injections, we observed a modest increase in the
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Figure 20: Diagram of the gaseous xenon system at UMD. The three sections
of the system are distinguished by green lines. Circles labeled PG and MG are
pressure gauges, and the hourglass shaped symbols represent hand valves.
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Figure 21: Single pass inefficiency of the purifier when removing CH3T. Red and
blue points indicate data taken by different students, while the black points indi-
cate data for which procedures were intentionally altered.

background activity observed by the proportional tube. The source of the residual

activity was likely contaminates from the CH3T source bottle, such as tritiated

water. To remove these contaminates, a methane purifier was added to the flow

path. After including the methane purifier, the background rate of the proportional

tube remained constant.
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Figure 22: Time-separated clusters of purification have an upward trend in purifi-
cation inefficiency.
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4.2.2 Liquid Phase Experiments

While the gas phase experiments described above showed promising results for the

efficient removal of CH3T, they did not account for complexities that appear in

LUX, such as the solubility of CH3T in liquid xenon, and the diffusion of CH3T

into plastics. To probe these issues, we also tested tritium removal from a liquid

xenon. Our liquid xenon system consists of three main sections: the CH3T injection

system, the xenon circulation system, and the liquid xenon cryostat. We will first

discuss the set up of the tritium injection system, pictured in Figure 23. The

injection system begins at the CH3T storage bottle. This bottle is double valved to

prevent tritium leakage. As with the gaseous experiments, we have a SAES MC1-

905F methane purifier in series with the storage bottle. Following the methane

purifier there is a series of injection volumes branching out to the left. These

volumes allow us to select how much CH3T to inject into the xenon system. The

last component of the injection system is located above the injection volumes.

This plumbing is used to collect all of the CH3T from the injection volume via

cyropumping. After the plumbing has warmed, the xenon circulating outside of

the injection system is rerouted through the cryopump plumbing to sweep all of

the CH3T into the xenon circulation system.

In the xenon circulation system, a small diaphragm pump circulates gaseous

xenon in a closed circuit. A zirconium getter (SAES PS4-MT3-R-1) is positioned

in between the CH3T injection system and the liquid xenon cryostat. A bypass

around the zirconium getter is present to allow control of when CH3T removal

occurs.

The final section of our system, the liquid xenon cryostat, is pictured in Fig-
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Figure 23: The tritium injection system for the liquid phase experiments at UMD.
The red box indicates the CH3T storage bottle and methane purifier area, the green
box indicated the expansion volumes, and the box indicates the cryopumping and
xenon flow through area.
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ure 24. In the liquid xenon system, a pulse tube refrigerator cools a xenon gas

condenser consisting of a helical coil of copper tubing. The condensed xenon drips

into a liquid xenon storage vessel. Two PMTs are placed inside of the storage ves-

sel to observe scintillation light produce by CH3T decays in the liquid xenon. A

coincidence is required between the two PMTs to reduce singlet backgrounds in the

detector. Once the vessel is filled both of these PMTs are submerged in the liquid

xenon. Note that this means the system at UMD is a single phase detector, rather

than a dual phase detector like LUX. Residual contamination from outgassing

plastics was a primary concern for LUX, so 15.75"x2.25"x0.125" polyethylene and

teflon curtains were installed in the inner cryostat to surround the PMTs during

some of our data sets. These curtains of plastic were used to study outgassing

effects in our detector.

During our liquid phase experiments, our experimental procedure consisted of

taking an adequate amount of background data, injecting CH3T into the liquid

xenon, waiting for the CH3T event rate to plateau, and then purifying the CH3T

out of the xenon. During the data sets in which teflon or polyethylene curtains

were installed around our PMTs, we bypassed our purifier after initially purifying

away the CH3T so that outgassing effects could be studied. Injection activities for

our liquid phase experiment ranged from 1487 ± 35 Bq to 12164 ± 1030 Bq. A

detailed list of our purification efficiency measurements in liquid xenon is shown

in Table 1.

Using the lessons learned from the gaseous xenon experiments we were able

to achieve an average purification efficiency of 99.999% in our liquid experiments,

where we define our purification efficiency to be
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Figure 24: The liquid xenon system at UMD. (A) The xenon condenser consists
of a helical coil cooled by a pulse tube refrigerator. (B) The liquid xenon storage
vessel houses two PMTs to observe tritium decay [12].
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Figure 25: Left: Overlay of CH3T spectra seen by PMTs in the liquid xenon
detector. The blue spectrum is prior to injecting tritium, the red spectrum is after
injecting tritium, and the green spectrum is after purifying the xenon. Right: The
difference between the before injection and after purification spectra.

Purification Efficiency = 1− A−B
I −B

, (89)

where A is the background event rate after injecting CH3T, B is the background

event rate before to injecting CH3T, and I is the injected CH3T activity as observed

by out PMTs. We find that the addition of plastic curtains around our PMTs does

not impair our ability to remove CH3T at > 99.998% levels. To illustrate the

effectiveness of CH3T removal, an overlay of injected and purified CH3T spectra

is included in Figure 25. Cumulatively, we have injected over 68,000 observed Hz

of CH3T into our liquid xenon. Although systematic errors lead to a fluctuation

of our residual background rates, we see no upward trend in our data set as the

cumulative observed injection activity rises.(Figure 26)
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Figure 26: Residual background rates over time in the UMD detector after purify-
ing the CH3T out of the xenon. Blue data points are data sets in which no plastic
curtains were used inside of the detector, red data points are data sets in which
teflon curtains were used inside of the detector, and green data points are data
sets in which polyethylene curtains were used inside of the detector.

4.2.3 Outgassing Experiements

To more accurately model the LUX detector we surrounded our PMTs with polyethy-

lene or teflon panels during some of our data sets. The experimental procedure for

these data sets was to collect an adequate amount of background data, inject CH3T

into the liquid xenon, wait for the CH3T event rate to plateau, purify the CH3T

away until we reached the initial background event rate, then bypass the purifier

on our system to study outgassing effects. Once the purifier had been bypassed

we discovered two sources of residual CH3T contamination. We see a gradual rise

in CH3T activity after bypassing our purifier due to outgassing of CH3T from the

plastic panels. This outgassing effect will be discussed in detail in Section 4.2.4.

In addition to this steady rise, we see large steps in CH3T activity at random

intervals. (Figure 27) These step features occur every 3 days on average. The

longest period of time without a step occurring was 5.08 days. To examine these

step features more closely, we analyzed the spectra from one of these events. We
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Figure 27: A time histogram of the CH3T rate in our system. The digital event
rate was severally limited by dead time in the DAQ, so an analog counter was used
to measure the true event rate during the peak of the injection. The third red line
indicates when our purifier was bypassed. The subsequent rise in the data is due
to outgassing of plastics in the detector, while the steps in the data are believed
to come from spurts of CH3T entering the cryostat.

found that the integral of the spectra rose from 8833 ± 93.98 to 17190 ± 131.11

during the event, an increase of 194.6%. (Figure 28)

Such an increase in CH3T activity can be produced through two mechanisms:

a drift in PMT gain which would shift the CH3T spectrum horizontally, or an

increase in CH3T activity shifting the CH3T spectrum vertically. To determine if

our PMT gain was shifting during our CH3T data sets we used an external 137Cs

source. Over eight days the 137Cs event rate remained flat, with an initial event

rate of 120255 ± 350 observed Hz and a final event rate of 115469 ± 339.8 observed

Hz. A linear fit to the 137Cs data results in a nearly zero slope of 0.0026 Hz per

day. (Figure 29) We conclude that the rise in tritium rate during the step events

can not be due to our PMT gain drifting, and must therefore be a result of an
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Figure 28: An overlay of three spectra from a step in CH3T after bypassing our pu-
rifier. The blue spectrum was collected prior to a step occurring, the red spectrum
was collected while a step was occurring, and the green spectrum was collected
after the step had reached a plateau.

increase in the amount of CH3T in the fiducial region of our detector. We suspect

this increase in CH3T is due to pockets of stagnant gas slowly moving into the

detector’s fiducial region. To avoid such a source of residual CH3T contamination,

a detector wishing to use tritiated methane as an internal calibration source must

be designed such that no areas of stagnant gas exist within its system.
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Figure 29: The event rate of a 137Cs source placed outside the xenon storage
vessel. The flatness of the rate over time indicates that the PMT gains are mostly
constant.

4.2.4 Simulating Outgassing in LUX

The outgassing effects seen in UMD’s small scale liquid xenon experiment places

an upper limit on the CH3T activity that can be injected into low background

detectors such as LUX. In the LUX collaboration we chose to define the tolerable

CH3T activity after a calibration to be 5% of the nominal background rate in

LUX, setting a limit on the residual CH3T activity of 0.33 µBq. This upper limit

is extremely conservative, and guarantees that any electron recoil backgrounds

introduced by a CH3T calibration will be negligible.

With the above constraints in mind, we can determine an upper limit on the

amount of CH3T that can be injected for internal calibrations of the LUX detector.

The diffusion process is governed by two different equations known as Fick’s laws.

Fick’s first law describes the flux of a material through a surface. Its general form

is given by

J = −Ddφ(r, t)

dr
. (90)
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Combining Fick’s first law with the continuity equation given by

δφ

δt
+∇ · J = 0, (91)

which states that a change in density in any part of the system is due to inflow

and outflow of material results in Fick’s second law,

δφ

δt
= D∇2φ, (92)

which describes the transport of material by diffusion.

To implement these diffusion laws into our model we must determine the diffu-

sion coefficient of CH3T in the plastics of LUX. At room temperature, the diffusion

coefficient of methane in teflon is measured to be 2.3 × 10−7 cm2/sec [73]. The

temperature dependence of this diffusion constant is modeled by the Arrhenius

equation,

D = Ae
−Ea
RT (93)

where Ea is the activation energy, R is the gas constant, and T is the temperature.

Assuming an activation energy of 41.3 kJ/mol (from [71]), this suggests that an

adjustment factor to the diffusion constant of 106 at liquid xenon temperature.

This adjustment factor is equivalent to increasing the thickness of the plastic in

our model by a factor of 1,000. For this reason we are motivated to use half-infinite

line boundary conditions in our diffusion model.

The analytic solution to Fick’s second law using half-finite line boundary con-
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ditions is

φ(x, t) = KCout −
∫ t

0

erf

(
x√

4D(t− τ))

)
K ˙Cout(τ)dτ −KCout(0)erf

(
x√
4Dt

)
(94)

where K is the solubility of the material and Cout is the outside concentration of

the material. For the outgassing process we are only interest in the flux of the

material out of the plastic. This is given by Fick’s first law evaluated at x = 0,

Jout(t) = −K
√
D

π

(∫ t

0

˙Cout(τ)√
t− τ

dτ +
Cout(t)√

t

)
, (95)

where the sign has been flipped since the flux of material is outward. We see that

it is not possible to measure K and D separately. To simplify our notation, we

define a new constant

G = K

√
D

π
. (96)

We can fit the integral of our equation for the flux out of the plastic over time to

the outgassing data collected in the liquid xenon system to extract a value for the

constant G. Since the outgassing data includes step features from stagnant pockets

of unpurified CH3T, we can set an upper limit on G by assuming the step features

are a result of outgassing itself, and a lower limit on G by removing the steps from

our data, treating them as if they have no connection to outgassing at all. With

this method we loosely constrain 0.0001 cm√
day ≤ G ≤ 0.0075 cm√

day (Figure 30). The

value of G was further constrained to G ≤ 0.0002 cm√
day by injecting natural methane

into LUX and observing the effects of outgassing with the sampling system.

With a constraint on G taken from the analytic solution to Fick’s second law,

we turn to numerical simulation to answer the question of how much initial CH3T
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Figure 30: Fits of the integral of the flux of CH3T out of plastic over time to the
outgassing data collected in Maryland’s liquid xenon system assuming that the
step features are due to diffusion. The model does not perfectly describe the data,
so a range of G values is shown. These fits are used to set an upper limit on G.
Bottom: Fits of the integral of the flux of CH3T out of plastic over time to the
same data, assuming that the step features are not due to diffusion. These fits are
used to set a lower limit on G.
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activity can be injected into LUX without violating our background rule. Several

assumptions are made to simplify the numerical model. First, we approximate the

diffusion into plastic as being a one dimensional process. In cylindrical coordinates,

Fick’s laws become

J = −D
(
δφ

δr
r̂ +

1

r

δφ

δθ
θ̂ +

δφ

δz
ẑ

)
(97)

δφ

δt
= D

(
δ2φ

δr2
+

1

r

δφ

δr
+

1

r2

δ2φ

δθ2
+
δ2φ

δz2

)
. (98)

Since the plastic in our detector at Maryland and in LUX can be approximated

by a cylindrical shell, there is no dependence on the azimuthal or z coordinates.

Since r is large compared to the thickness of the plastic shell, δ2φ
δr2
� 1

r
δφ
δr
, so we

can make the approximations

J = −Dδφ
δr

r̂ (99)

δφ

δt
= D

δ2φ

δr2
(100)

We assume the concentration of CH3T in LUX is uniform throughout its vol-

ume. This assumption is justified, since the design of LUX creates currents which

stirs the liquid xenon. With perfect mixing the effect of the purifier can be mod-

eled by adding an exponential time dependence to the concentration in the liquid

xenon. We expect the time constant of this decay is equal to the time it takes

xenon to recirculate through the LUX detector. We use a simple implementation

of the first order Euler method for our numerical simulations. The finite difference

approximations of Fick’s two laws in one dimension are

Ji,j = −Dφi+1,j − φi, j
∆x

(101)
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φi,j+1 = φi,j + ∆t

(
φi+1,j − 2φi,j + φi−1,j

∆x2

)
(102)

where i is the spacial index and j is the time index. To avoid divergent solutions

we need

D
∆t

∆x2
≤ 1

2
. (103)

For effects to be propagated across N spatial bins, N time steps are required.

Therefore, the effective time resolution is

∆teffective = ∆t×Nx. (104)

The diffusion is simulated by setting the concentration at the boundary of the

piece equal to KCout, where Cout is the concentration of CH3T in the liquid xenon.

This concentration is dependent on time according to

δCout
δt

= Jout
Aplastic

Vxenon
− Cout

τ
(105)

where Aplastic is the surface area of the LUX plastic, Vxenon is the total volume of

xenon in the fiducial region, and τ is the time it takes for one full purification

cycle.

It was originally assumed that τ would equal the turn over time of the xenon

circulation system in LUX (∼ 1.3 days), but was later found that τ was much

shorter than expected (∼ 6 hours). While the exact reason for this is not under-

stood, it is likely due to the complex circulation path of the LUX xenon through

the PMT purge lines, or due to an over abundance of CH3T in the gas phase.

The first term on the right of this equation models outgassing of CH3T from

97



Figure 31: The results of simulating the CH3T activity in LUX after a 10 Bq
injection. In the first week the amount of residual CH3T is dominated by the pu-
rification time constant, while the outgassing time constant determines the amount
of activity later times.

the plastic cylinder, while the second term models removal of CH3T through pu-

rification. Using the first order Euler method, we arrive at an expression for Cout

given by

Cj+1 = Cj + ∆t

[
(J1,j − JNx,j)

Aplastic

Vxenon
− Cj

τ

]
. (106)

The initial concentration is defined by dividing the desired injection activity

by the volume of the fiducial region. We choose D = 2.3× 10−9 cm2

sec such that the

half-infinite boundary conditions in our diffusion model is valid, and combine this

with our allowed range of values for G to extract a value for K. We find that an

initial injection activity of 10 Bq results in the background rate returning to < 5%

of its initial value in one month [74]. (Figure 31)
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4.3 Injection of Tritiated methane into LUX

The hardware of our tritiated methane calibration technique can be separated

into three parts: the injection system, the tritiated methane source bottle, the

zirconium getter.

The tritiated methane source bottle was prepared in three steps. First, we

prepared a xenon bottle that had similar pressure and purity to the LUX system.

We filled a 2250 cc stainless steel bottle with 1590 torr of xenon from the same

dekryptonation and purity program from which the LUX xenon came. This xenon

was to serve as a carrier gas for the tritiated methane.

The next step was to prepare a small amount of tritiated methane to mix

with this dekryptonated xenon. A reservoir of tritiated methane with an activity

of 204 Bq/torr-cc was purchased from Moravek Biochemical. The reservoir was

frozen with liquid nitrogen, resulting in a vapor pressure of 10.4 ± 0.05 torr.

We then opened the frozen tritiated methane reservoir to a number of expansion

volumes so that a small amount of activity could be extracted. The first expansion

volume was a 1/4" VCR cross which was sealed with swagelok valves on each side,

and had a total volume of 5.2 ± 0.9 cc. Next, we isolated the VCR cross from

the tritiated methane reservoir and then opened it to a 501 ± 0.2 cc expansion

volume. We isolated the VCR cross a second time and then opened it up to a 53.2

± 3.4 cc expansion volume. The VCR cross was then isolated for a third time

before opening it to a 10.5 ± 0.5 cc expansion volume. After this final expansion

the VCR cross was isolated and the remaining 0.016 ± 0.006 torr-cc of tritiated

methane left within was mixed with the dekryptonated xenon inside the 2250 cc

bottle via cryopumping. The final result was a tritiated methane source which
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had an activity of 9.1e-7 ± 3.4e-7 Bq/torr-cc (∼3.3 torr total). After the success

of the initial CH3T calibrations in LUX, a similar procedure was used to produce

a 300 Bq source bottle for higher statistics calibrations.

The injection system for our tritiated methane calibration technique consists of

a series of expansion volumes which are used to fine tune the amount of CH3T that

is injected (Figure 32). Once the CH3T source bottle is opened the xenon gas and

CH3T flows through a methane purifier (SAES MC1-905F) to remove any sources

of potential contamination, such as bare tritium. The CH3T then flows into the

expansions volumes set by the user. We use expansion volumes of 9.8 ± 0.4 cc,

13.3 ± 0.4 cc, 26.0 ± 0.5 cc, 82.7 ± 0.5 cc, 12.0 ± 0.6 cc, and 132.7 ± 0.6 cc, which

provide over an order of magnitude control in the strength of an injection. Note

that each injection will lower the remaining activity in the CH3T source bottle

via volume sharing, resulting in a smaller, yet calculable, injection activity with

subsequent injections. Once the expansion volumes have filled, the flow of xenon

in the gas system is diverted through the expansion volumes to sweep the CH3T

into the detector. We continue to flow through the expansion volumes for one hour

at 1 standard liter per minute (SLPM), which is equivalent to flushing out the full

384.5 cc of the expansion volumes roughly 75 times. Two pump out ports allow

various parts of the injection system to be evacuated in preparation for each use.

A pressure gauge (PT-T1) is included above the tritiated methane source bottle so

that this drop in activity can be measured. The final component of the injection

system is a particle filter (Mott Corp. GSP3752FF11) which prevents particles

contaminants from entering the LUX detector.

Once the CH3T has been injected in the LUX gas system it flows into the

liquid xenon inside of the LUX cryostat, where it mixes uniformly throughout
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Figure 32: Plumbing diagram of the LUX tritium injection system. Blue labels
indicate valves, red labels indicate equipment, and green labels indicate the size
of individual expansion volumes when all valves are closed.

the fiducial volume. Since the xenon gas in LUX is constantly circulating, the

remaining CH3T is swept out of inner cryostat with the circulating xenon. The

LUX gas system uses a hot zirconium getter (SAES PS4-MT15-R-1) downstream

of the cryostat to remove CH3T and other impurities from the xenon. Extensive

R&D was conducted using a smaller zirconium getter (SAES PS4-MT3-R-1) at

the University of Maryland to learn about the CH3T removal efficiency of these

purifiers. Details of these studies are discussed in section 4.2.
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4.4 ER Band Calibration of the LUX Detector

The LUX collaboration took many precautions to ensure a safe and successful

tritium injection. Prior to injecting any tritiated methane into the detector, a nat-

ural methane injection was performed to measure the purification time constant in

LUX and constrain the value of G further. Twenty milligrams of natural methane

were injected into LUX using the CH3T injection system. The sampling system

was used to measure the concentration of methane in the detector over the next

few days, and a purification time constant of 5.90 ± 0.07 hours was measured.

The first natural methane injection was not large enough to observe outgassing

from the detector, but a larger natural methane injection of 0.375 grams was able

to constrain G ≤ 0.0002 cm√
day at a later date.

After the natural methane campaign a small amount of tritium was injected

into LUX to confirm the purification time constant from above, and to confirm the

mixing of the source throughout the detector. A fiducial volume containing 125 kg

of xenon between drift times of 30 to 320 µsec, with radius <17.5 cm was defined

for the analysis. The first 23 hours of data show that the initial injection activity

in the fiducial volume was 24.2 ± 0.3 mHz, while the initial injection activity in

the entire detector was 44.9 ± 0.5 mHz. The ratio of the fiducial volume activity

to the total volume activity is 0.539 ± 0.009, which is close to the expected ratio

of 0.5 for a perfectly uniform distribution of CH3T events. The CH3T activity fell

with a purification time constant of 6.9 ± 0.4 hours within the fiducial volume,

confirming the ∼ 6 hour time constant measurement.

After confirming the purification time constant, the LUX committee approved

the use of CH3T as an internal calibration source. The initial CH3T calibration was
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Figure 33: Sampling system results from the 0.375 gram natural methane injec-
tion performed in April 2015. The various symbols represent different sampling
locations throughout the detector. The results were used to constraint the value
of G [13].

limited to 0.3 Hz due to the uncertainty in the value of the the diffusion constant

G, but injections ranging from 2-10 Hz have been done every 3-4 months after the

value of G was constrained further. The location of events from the first CH3T

calibration is shown in Figure 35. As expected, the CH3T source mixes uniformly

throughout the detector.

The combined energy spectrum for a high statistics CH3T calibration is shown

in Figure 36. A model of the expected tritium beta spectrum which includes detec-

tor resolution effects is shown in red. The data agrees very well with expectations

above the detector’s energy threshold, with a p-value of 0.70 from 3 to 18 keV.

The consistency of the energy spectrum across a wide range of energies provides
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Figure 34: Rate of CH3T events after the first small injection into LUX. The
6.9 hour time constant is consistent with expectations from the natural methane
sampling campaign prior to this injection.
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Figure 35: The location of events during the August 2013 LUX CH3T injection.
The solid black like indicates the fiducial volume used for the first LUX Run3
results paper [14].
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strong support for the combined energy model presented in Section 6. The ratio

of the CH3T data to expectations was used to determine the energy threshold of

the LUX detector. An error function fit determines a 50% energy threshold of

1.24 ± 0.026 keV for electron recoil events.
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Figure 36: Top: The combined energy spectrum from a high statistics CH3T
calibration in LUX taken in December 2013. Data is shown in black, and a model
of the expected tritium beta spectrum is shown in red. Bottom: The residual
differences between the data and model for each bin, in units of σ [14].
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Figure 37: The ratio of the tritium data to expectations. An error function fit
used to determine the energy threshold is shown in blue [14].
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The main purpose of the CH3T calibration source is to measure the detec-

tor’s electron recoil response. This calibration is crucial when determining the

"leakage fraction" of electron recoil backgrounds that fall below the nuclear recoil

band mean. Alternatively, a "discrimination" factor can be defined as the frac-

tion of electron recoil backgrounds that do not fall below the nuclear recoil band

mean. The electron recoil band from a high statistics CH3T calibration is shown

in Figure 38. The nuclear recoil band calibration from LUX’s neutron generator

calibration source is also included in Figure 38. These two results have allowed the

LUX collaboration to measure the detector’s discrimination with unprecedented

accuracy. An average discrimination (1-f) for the LUX Run3 result was found to

be 99.81% ± 0.02%.

In addition to the calibration results mentioned in this section, the CH3T cali-

bration source has allowed the LUX collaboration to measure fundamental proper-

ties of liquid xenon to high accuracy. These results are discussed in reference [14].

The calibration source is also an integral part of producing signal corrections in a

detector with a nonuniform electric field, a topic which is discussed in chapter 7.
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Figure 38: The electron recoil calibration of LUX resulting from 170,000 CH3T
events at 180 V/cm. The Gaussian means of each S1 bin, as well as power law
fits to those means and the 10% and 90% contours of the ER band are shown in
black. The power law fits to the mean, 10%, and 90% contours of the NR band
are shown in red [14].
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Figure 39: The leakage fraction and discrimination versus S1 in the LUX detector
at 180 V/cm [14].
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5 Signal Corrections in the LUX Detector

In this chapter, we discuss the need for position dependent corrections to the S1

and S2 signals in LUX. Position dependence in the S1 signal can be introduced by

a number of effects. As photons travel from an interaction site to the PMT arrays

they are reflected by teflon panels surrounding the active volume. The amount of

reflected light varies based on the proximity of the event to the teflon walls, the

angle of incidence of the light, and the surface properties of the teflon. Photons are

also reflected and refracted at the liquid xenon surface, causing about two thirds

of the S1 signal to be collected in the bottom PMT array. Events which are closer

to the bottom have more solid angle covered by the bottom PMT array, leading

to a larger S1 collection. A z-dependence of the light collection efficiency can also

be introduced by light quenching impurities present in the liquid xenon, although

this effect is negligible at the liquid xenon purity levels found in LUX.

As electrons travel from the interaction site to the liquid surface they are

absorbed by electronegative impurities in the liquid xenon. This attenuation of

charge leads to a smaller S2 signals from events originating deeper in the detector.

Since the purity of the liquid xenon changes on a weekly basis, there is a significant

time dependence in the strength of this effect, particular following a circulation

outage. Small changes in the X-Y plane of the extraction field or the liquid surface

level can lead to a position dependence in both the efficiency at which electrons

are extracted from the liquid xenon, and the number of photoelectrons which are

produced per extracted electrons. Both of these effects are reflected in the size

of the S2 signal. Furthermore, while the individual PMTs are gain matched with

LED calibrations, the variation in quantum efficiency between PMTs can lead to
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an X-Y position dependence in both the S1 and S2 signals.

In the final data analysis, we wish to know the average number of photons and

electrons produced by recoil interactions of both types, as well as the fluctuations

around those averages. It is possible to define position dependent gain factors

which convert the S1 signals and S2 signals to number of photons and number

of electrons, respectively, but it is more convenient to normalize the S1 and S2

signals to one location in the detector. Likewise, one could define position and

time dependent ER and NR bands to track discrimination over time, but it is

more convenient to normalize the data such that the ER band and NR bands

are constant at all times and all locations in the detector. In LUX we choose to

normalize the S1 signal to the center of the detector, and the S2 signal to the

top of the detector. The choice to normalize the S1 signal to the center of the

detector is arbitrary since the position dependence of the S1 signal has little time

dependence, while the choice to normalize the S2 signal to the top of the detector

is convenient for circumventing the time dependence inherent at deeper locations

in the detector due to varying amount of electron absorbing impurities in the

liquid xenon. Once the S1 and S2 signals are uniform throughout the detector we

can define one position independent gain factor for each of the detector signals.

Removing the position dependence of the S1 and S2 signals also results in increased

energy resolution of the S1 and S2 spectra, as well as a narrowing of the ER and

NR band widths.

Note that a non-uniform drift field can also introduce position dependence to

the S1 and S2 signals. However, this effect changes the actual number of photons

and electrons produced during a recoil interaction, rather than the detector’s ef-

ficiency of collecting those photons and electrons. In this chapter we will assume
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a uniform drift field is present in the detector, as was generally the case in LUX

Run3 when the field varied by less than 8%. We will discuss signal corrections for

a detector with a nonuniform electric field in Chapter 7.

5.1 Use of 83mKr in Signal Corrections

The LUX detector’s 83mKr calibration source is a powerful tool to measure correc-

tions for the S1 and S2 signals. A 83Rb soaked charcoal source is used to inject

its 83mKr daughter directly into the LUX circulation system. In the active volume

the 83mKr decays via internal conversion at 32.1 keV and 9.4 keV with a half life of

1.86 hours (Figure 40). The half life of the 9.4 keV decay is only 154 ns, causing

the two decays to merge into one 41.55 keV pulse in the LUX detector. Note that

it is possible to modify the LUX pulse finder to separate the two S1 signals when

desired, but it is nearly impossible to separate the two S2 signals due to diffusion

of the electron clouds as they drift to the liquid surface, and the relatively long

width of the S2 pulse as the electrons transit the gas phase.

Once injected, the 83mKr mixes uniformly throughout the active volume in a

matter of minutes (Figure 41). The mono-energetic peak of the 83mKr events can

be measured at any point in the detector to determine the position dependence of

the S1 and S2 signals.

The short half life causes the calibration source to be removed from the LUX

detector in a matter of hours, allowing for calibration of the S1 and S2 signals on a

weekly basis. This is a crucial property of the calibration source, since the purity

of the liquid xenon, and therefore the z-dependence of the S2 signal, changes

on a weekly basis and we therefore wish to inject the source frequently. It is
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Figure 40: The energy level diagram of the 83Rb and 83mKr decays.

also important that the 83mKr is an inert noble gas, a property which prevents

temporary attenuation of the S1 and S2 signals during injection of the calibration

source.
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Figure 41: (Left) Density of 83mKr events in the X-Y plane 10-30 minutes after a
83mKr injection. (Right) Density of 83mKr events in the R2-Z plane 10-30 minutes
after a 83mKr injection. Data from lux10_20130510T1250.

5.2 S1 Corrections

We first measure the Z dependence of the 83mKr S1 pulse areas by slicing the

detector into drift time bins with widths defined such that each bin has roughly

300 events, resulting in roughly 1 µsecond drift time bins. A Gaussian distribution

is fit to the S1 spectra of each bin to determine the location of the spectra means.

A second order polynomial is used to determine the S1 Z dependence between and

outside of each drift time bin (Figure 93). A detector inefficiency correction for

the Z direction is defined by taking the ratio of the S1 pulse area at the center of

the detector (defined as zc) to the S1 pulse area as a function of Z as described in

the equation

S1z-efficiency-correction =
S1(zc)

S1(z)
. (107)

The XY dependence of the S1 signal is found by dividing the z-corrected

(S1×S1z-efficiency-correction) data into two dimensional XY bins with dimensions

defined such that each bin has roughly 300 events, typically resulting in ∼1.5 cm

steps in each dimension. A Gaussian distribution is fit to the data of each bin.
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Figure 42: (Left) Gaussian distribution fits to 83mKr S1 data that are used to de-
termine the drift time dependence of the S1 pulse area. (Right) The z dependence
of the S1 pulse area. Black points indicate the maximum of Gaussian distribution
fits for each drift time bin, and red points indicate the polynomial fit to that data.
Data from lux10_20130510T1250.

The mean of the Gaussian distribution from each bin is used to construct S1 XY

response maps, with a spline interpolation and extrapolation being used to deter-

mine the XY dependence between and outside of the bins. (Figure 43) A detector

inefficiency correction for the XY direction is defined by taking the ratio of the

z-corrected S1 pulse area at the center of the detector to the z-corrected S1 pulse

area as a function of XY in cm, as shown below

S1xy-efficiency-correction =
S1z-efficiency-correction × S1(xc, yc, z)

S1z-efficiency-correction × S1(xyz)
. (108)

where xc and yc are the x and y center of the detector in uncorrected position

coordinates. The corrected S1 pulse areas are produced by multiplying the raw,
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Figure 43: (Left) Two dimensional map of the XY dependence in 83mKr S1 data
determined by fitting a Gaussian distribution to XY bins of the data and plotting
the mean of each fit.(Right) Two dimensional map of the XY correction factor
which is applied to z-corrected S1 data. Data from lux10_20130510T1250.

uncorrected S1 pulse areas by the XY and Z correction factors

S1corrected = S1raw
(
S1z-efficiency-correction

)(
S1xy-efficiency-correction

)
.

(109)

When over 300,000 events are present in a 83mKr calibration data set, a three

dimensional S1 corrections map is favored over the two step (Z, then XY) correc-

tions described above. In this case, the uncorrected S1 data is divided into three

dimensional XYZ voxels with volumes defined such that each bin has roughly 300

events. A Gaussian distribution is fit to the data of each voxel, and the mean of

the Gaussian distribution is used to construct three dimensional S1 dependence

maps, with a spline interpolation and extrapolation being used to determine the

XYZ dependence between and outside of the voxels. A three dimensional detector

inefficiency correction is then defined by taking the ratio of the uncorrected S1

pulse area at the center of the detector to uncorrected S1 pulse area as a function
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of X,Y, and drift time, as shown below

S1xyz-efficiency-correction =
S1(xc, yc, zc)

S1(xyz)
. (110)

In this case, the corrected S1 pulse areas are produced by multiplying the raw,

uncorrected S1 pulse areas by the XYZ correction factor.

S1corrected = S1raw
(
S1xyz-efficiency-correction

)
. (111)

The detector inefficiency effects in the S1 signal are due to the unchanging internal

geometry of the detector, as well as the slowly changing PMT quantum efficiencies

of the PMTs, which remain constant for many months. Therefore, the S1 correc-

tion maps vary by only a few percent over time and a single high statistics three

dimensional correction map can be applied to data over a long period of time. In

the case of LUX Run3, the three dimensional S1 corrections map was only updated

once, and each version was used for a span of roughly two months.

Figure 44 shows the 83mKr S1 spectrum from one particular data set before and

after pulse area corrections are applied. In this data set the corrections improve the

S1 resolution resolution by 35%, and shifts the mean by 2%. Similar improvements

in resolution are seen in all 83mKr data sets. The corrected S1 pulse areas are also

found to be extremely uniform over time, with the corrected 83mKr S1 varying by

less than 0.6% over the course of the LUX detector’s Run3 data taking campaign

(Figure 45).
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Figure 44: The 83mKr S1 spectrum with no corrections applied (blue), z depen-
dent corrections applied (red), and three dimensional XYZ dependent corrections
applied (green). Data from lux10_20130510T1250.

Figure 45: The corrected 83mKr S1 mean over the duration of LUX’s Run3 data
taking campaign. The dashed blue line indicates the mean of the corrected 83mKr
S1 spectrum over time, and the grey band indicates one standard deviation around
the mean.

5.3 S2 Corrections

As with the S1 signal, we measure the Z dependence of the 83mKr S2 pulse areas

by slicing the detector into drift time bins with widths defined such that each bin
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Figure 46: (Left) Gaussian distribution fits to 83mKr S2 data that are used to de-
termine the drift time dependence of the S2 pulse area. (Right) The z dependence
of the S2 pulse area. Black points indicate the maximum of Gaussian distribution
fits for each drift time bin, and red points indicate the exponential fit to that data.
Data from lux10_20130510T1250.

has roughly 300 events. Since the main source of drift time dependence in the S2

signal is the attenuation of charge due to electronegative impurities in the liquid

xenon, an exponential decay is fit to the drift time dependence of the mean of

each 83mKr S2 distribution (Figure 92). A detector inefficiency correction for the

Z direction is defined by taking the ratio of the S2 pulse area just below the liquid

surface to the S2 pulse area as a function of Z as described in the equation

S2z-efficiency-correction =
S2(z = 0)

S2(z)
. (112)

The process of measuring the XY dependence of the S2 signal is identical to

the process of measuring the XY dependence of the S1 signal. The z-corrected

(S2 × S2z-efficiency-correction) S2 data is divided into two dimensional XY bins

with areas defined such that each bin has roughly 300 events, and a Gaussian

distribution is fit to the data of each bin. The mean of the Gaussian distribution
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Figure 47: (Left) Two dimensional map of the XY dependence in 83mKr S2 data
determined by fitting a Gaussian distribution to XY bins of the data and tracking
the mean of each fit.(Right) Two dimensional map of the XY correction factor
which is applied to z-corrected S2 data. Data from lux10_20130510T1250.

from each bin is used to construct S2 XY dependence maps, with a spline inter-

polation and extrapolation being used to determine the XY dependence between

and outside of the bins. (Figure 47) A detector inefficiency correction for the XY

direction is defined by taking the ratio of the z-corrected S2 pulse area at the

center of the detector to the z-corrected S2 pulse area as a function of XY in cm,

as shown below

S2xy-efficiency-correction =
S2z-efficiency-correction × S2(xc, yc, z)

S2z-efficiency-correction × S2(xyz)
. (113)

where xc and yc are the x and y center of the detector in uncorrected position

coordinates. The corrected S2 pulse areas are produced by multiplying the raw,

uncorrected S2 pulse areas by the XY and Z correction factors

S2corrected = S2raw
(
S2z-efficiency-correction

)(
S2xy-efficiency-correction

)
.

(114)
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The z-dependence of the S2 signal is a function of the liquid xenon purity, which

is in turn a function of the detector’s purification efficiency, the detector’s flow

rate, and the emanation rate of impurities from detector components. Note that

circulation outages have an immediate impact on the purity of the liquid xenon,

since the zirconium getter is unable to counteract the emanation of impurities

and since the sudden shock to the detector can release impurities from otherwise

harmless locations such as the weir reservoir. As a result, the S2 correction maps

vary significantly over time and must be remeasured on a weekly basis.
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Figure 48 shows the 83mKr S2 spectrum from one particular data set before and

after pulse area corrections are applied. In this data set the corrections improve

the S2 resolution by 22%, and shifts the mean by 21%. The large shift in the

83mKr S2 mean is a result of the corrections "adding in" the electrons which were

absorbed by impurities in the liquid xenon as they traveled to the surface. Note

that the resolution improvement and the shift of the mean are larger in data sets

which have worse xenon purity. As with the corrected S1 signal, the corrected

S2 pulse areas are found to be extremely uniform over time, with the corrected

83mKr S2 varying by less than 2% over the course of the LUX detector’s Run3 data

taking campaign (Figure 49). Note that this reflects the fundamental stability of

the anode and gas gain. Only the liquid xenon purity seems to vary.

Figure 48: The 83mKr S2 spectrum with no corrections applied (blue), z dependent
corrections applied (red), and XYZ dependent corrections applied (green). Data
from lux10_20130510T1250.
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Figure 49: The corrected 83mKr S2 mean over the duration of LUX’s Run3 data
taking campaign. The dashed blue line indicates the mean of the corrected 83mKr
S2 spectrum over time, and the grey band indicates one standard deviation around
the mean.

5.4 Future use of 83mKr-Based Signal Corrections

The previous sections described the primary techniques used during the LUX Run3

data analysis. The mono-energetic peak of the 83mKr calibration source provides a

powerful tool to track signal variations throughout the detector, and the short half

life allows for frequent calibration. In the next generation of dark matter detectors,

it’s possible that 83mKr’s short half life will become a hindrance, since the source

may not have time to mix uniformly throughout the larger detector volumes. In

this case, a longer lived calibration source, such as 131mXe, may be used in a

similar manner. These more persistent sources must decay at a high energy to

avoid contributing to the WIMP search backgrounds, leading to complications

involving PMT saturation which are not present in the standard 83mKr source.

In the following sections, we will describe a number of alternative signal cor-

rection techniques. Although most of these additional methods were not used in

the final Run3 analysis, they can improve the quality of future LUX analyses, and
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serve as a proof of concept for the next generation of dark matter detectors.

5.5 Radon as a measure of Electron Lifetime

The method of extracting electron lifetimes described in Section 5.3 requires high

statistics 83mKr data sets for calibration. While this method is reliable, data be-

tween an electron lifetime changing event, such as a circulation stop, and a 83mKr

calibration data set is unusable due to the lack of an electron lifetime measure-

ment. In this section we will discuss using 222Rn events to recover electron lifetime

measurements from individual WIMP search data sets so that signals corrections

can be applied even if a 83mKr calibration is not available.

A few hundred Radon-222 appear in every LUX data set, with an observed rate

of 17.9 ± 1.32 mHz in the active volume [70]. While it is an unwanted background

in the data, the Radon-222 alpha peak is useful for continuous monitoring of our

electron lifetime. Radon events are selected using a box cut on the raw S1 pulse

areas. An upper limit of 240 µs is placed on the drift time of selected events, since

capacitor depletion causes the PMTs to saturate above this point (Figure 50).

More precisely, when the observed signal exceeds 2.5 × 104 phe in an individual

PMT, saturation becomes apparent, and the radon data becomes indistinguishable

from the other alpha bands [75]. The S1 pulse areas do not have a time dependence

in Run3, so the same box cut is applicable to data at any point in time. To ensure

we are using clean radon data we only use the S2 signal from the bottoms PMT

array to avoid PMT saturation. After selection cuts are applied there are not

enough radon events in a single data set to slice the detector into drift time bins

as we did during 83mKr calibrations. Instead, we turn to a maximum likelihood
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approach to extract the electron lifetime from the limited amount of radon data.

Figure 50: Selection of radon events from a week of WIMP search data. Black
points include data from all alpha sources, and the blue lines indicate the box cut
that is used to select 222Rn data (shown in red). At high drift times the S1 signals
begin to saturate, leading to the turn over of events above 250 µs.

In the maximum likelihood analysis, a probability distribution function is used

to determine the probability that an S2 of a given size and drift time will be

measured, assuming some value for the electron lifetime. There are two possi-

ble probability distribution functions which we can use. The first PDF fits an

attenuated Gaussian model to the attenuated S2 data, and is given by

F(xi, zi|µ, σ, λ) =
1√
2πσ

e
(−xi−µe

−zi
λ )2

(2σ)2 , (115)

where σ and µ are the Gaussian sigma and mean of the corrected radon peak based

on the most recent krypton calibration data set, xi and zi are the uncorrected S2

and depth of the ith event in the data set, and λ represents the unknown electron
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absorption length for the data set. The second PDF fits a true Gaussian to the

corrected S2 data, xie
zi
λ , and is given by

F(xi, zi|µ, σ, λ) =
1√
2πσ

e
(−xie

zi
λ −µ)2

(2σ)2 . (116)

In either case, the PDF is evaluated for each event. The likelihood of observing

all of the events in a data set, for some value of µ, σ, and λ is then given by the

likelihood function

L(µ, σ, λ;xi, zi) =
n∏
i=1

F (xi, zi|µ, σ, λ) (117)

We wish to determine the electron lifetime value which has the highest likelihood

of producing the observed data. For convenience, we choose to minimize the

negative of the log of the likelihood function with respect to λ, since it is less

computationally expensive to minimize a summation than it is to maximize a

product.

After running the maximum likelihood method on all of the LUX detector’s

Run3 data sets we see that the attenuated Gaussian PDF is in better agreement

with the z-slice method from Section 5.3. (Figure 51) In either case, the results of

the maximum likelihood fit from Radon data fall within one sigma of the results

from 83mKr calibrations.

The radon lifetime measurements described here are most useful following a

circulation outage, since 83mKr calibration data may not be available to measure

any sudden drops in xenon purity. Only two circulation stops occurred during

LUX’s Run3 data taking campaign, so the radon lifetime measurements only re-
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Figure 51: A comparison of the calculated electron lifetimes in 2013, based on
the maximum likelihood method with an attenuated Gaussian PDF (in blue) and
corrected Gaussian PDF (in red). The electron lifetime measured from 83mKr
calibrations is shown in black.

covered a few days of livetime for the final Run3 analysis [15]. Circulation outages

were far more common in LUX’s Run4 data analysis, but complications from the

non-uniform drift field at the time made the radon source a poor predictor of the

detector’s electron lifetime. In particular, since most electrons recombine during

an alpha interaction, small variations in the detector’s electric field (and subse-

quently the electron’s recombination rate) result in large variations in radon S2

signal.

LUX’s successor, LZ, plans to use a persistent 131mXe calibration source to

produce signal corrections. With an ever-present calibration source, it is unlikely

that 222Rn would be used as more than a cross check of the standard electron
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lifetime measurements. The stringent LZ backgrounds limits (less than 0.67 mHz

of 222Rn activity) also make the techniques presented in this section less useful,

since over 25 times the amount of data shown here would be needed to produce

similar precision.

5.6 A PMT-by-PMT approach to S1 Corrections

The S1 correction method presented in Section 5.2 improves the detector’s resolu-

tion by normalizing the summed S1 signal to the center of the detector. While this

method is used in the final LUX Run3 analysis, it is possible to improve the detec-

tor’s S1 resolution further by defining a light collection map on a PMT-by-PMT

basis [16]. For each S1 event we define the position corrected S1 signal using the

weighted arithmetic mean of each PMT’s spatially normalized S1 measurement,

given by

S1corrected =

∑j=122
j=1 S1′jWj∑j=122
j=1 Wj

, (118)

where S1′j is the spatially normalized S1 signal of the jth PMT and Wj is the

weight given to jth PMT’s measurement.

Since we want the corrected S1 signal to be spatially uniform, the spatially

normalized S1 signal for each PMT is given by

S1′j = S1sc
S1j
〈S1〉j

(119)

where S1sc is the summed 83mKr S1 signal at the center of the detector, S1j is the

S1 signal of the jth PMT, and 〈S1〉j is the average 83mKr S1 signal recorded in

the vicinity of the S1 event by the jth PMT. It is useful to think of the S1j
〈S1〉j term
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as measuring the strength of the S1j signal as a fraction of the average 83mKr S1j

signal, and the S1sc term as a normalization constant which scales the fractional

signal to the equivalent S1 size at the center of the detector.

The weights of the arithmetic mean are given by relative variance of each PMT’s

measurement,

Wj =
〈S1〉j2

σ2
j

, (120)

where σ2
j is the variance of the S1 signal in jth PMT in the vicinity of the event.

It is important to use the relative variance of each PMT for the weights, since the

absolute variance grows larger with the size of the S1 signal and would therefore

give lower weight to PMTs which observe a stronger S1 signal. Equation 118 then

becomes

S1corrected = S1sc

∑j=122
j=1

S1j
〈S1〉j

〈S1〉2j
σ2
j∑j=122

j=1
〈S1〉j2

σ2
j

. (121)

It is difficult to measure the relative variance of the jth PMT at all points in

the detector, since doing so involves interpolating small values from two different

three dimensional maps of σ2
j and 〈S1〉j. Instead, we can achieve the same result by

normalizing the S1j signal to the value of S1sc prior to calculating the arithmetic

mean. In this case, the normalized S1N,j signal is calculated by scaling the raw

S1j signal by a normalization factor

S1N,j =
S1sc
〈S1〉j

S1j. (122)

Consequently, the standard deviation and mean of the S1j signal are scaled by the
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same factor, such that

σN,j =
S1sc
〈S1〉j

σj (123)

〈S1〉N,j =
S1sc
〈S1〉j

〈S1〉j = S1sc. (124)

Using the normalized S1N,j signal, Equation 121 becomes

S1corrected = S1sc

∑j=122
j=1

S1N,j
〈S1N,j〉

1
σ2
N,j∑j=122

j=1
1

σ2
N,j

(125)

In practice, Equation 125 is easier to implement and more accurate than Equa-

tion 121, since it requires fewer interpolations of the mean and variance maps from

the 83mKr data.

It is worth noting that if the S1j distributions are Poissonian, Equation 121

(and Equation 125) reduces to the S1 correction method described in Section 5.2.

In this case

σ2
j = 〈S1〉j (126)

so Equation 121 becomes

S1corrected = S1sc

∑j=122
j=1 S1j∑j=122
j=1 〈S1〉j

= S1sc
S1

〈S1〉
(127)

Where S1 is the sum of all of the PMT signals for the event and 〈S1〉 is the average

of the sum of the PMT signals for 83mKr events. Therefore, this PMT-by-PMT

method is only beneficial if significant non-Poissonian noise is present in the PMT

signals.

Figure 52 shows the result of applying the PMT-by-PMT method to the
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lux10_20130510T1250 83mKr data set. Within the fiducial volume the resolu-

tion of the S1 signal improves by 13% over the standard correction method from

section 5.2. Outside of the fiducial volume, the interpolations of the variance

and mean maps become extrapolations. This leads to significant inaccuracies in

the weighted mean measurement, causing non-Gaussian tails to appear in the S1

distribution. Therefore, for events within the fiducial volume the PMT-by-PMT

method is an improvement over the standard correction method, but for events

outside of the fiducial volume the less complex standard correction method is ideal.

Figure 52: The 83mKr corrected S1 spectrum after applying the PMT-by-PMT
method (in red) and after applying the standard correction method from Sec-
tion 5.2 (in black). The events within the fiducial volume are shown on the left,
and all of the events are shown on the right.

The techniques presented in this section were never used in published LUX

results. Although the results show moderate improvement in the detector’s reso-

lution, they do not produce an equally impactful improvement in the final WIMP

search limits. (This is because the detector’s background models have a larger

impact than the detector’s energy resolution in the profile likelihood analysis.)

Therefore, since these methods require significant computing power to implement,

there was little motivation to include them in the final corrections module. Future
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LUX analyses, such as a search for sterile neutrinos, may benefit more from an

improved detector resolution, at which point it may be worthwhile to implement

the techniques described here.

5.7 Signal Corrections Summary

In this chapter, we discussed the standard techniques that were used to produce

signal corrections in LUX’s Run3 data. The most impactful methods centered

around 83mKr data, due to the usefulness of the source’s short lived mono-energetic

signal. We also discussed two alternative correction methods, which did not have

a significant impact on the current LUX analysis, but may be useful in future. In

Chapter 7, we’ll find that the non-uniform Run4 drift field introduces significant

complications to the 83mKr data, which must be accounted for before the methods

of this chapter can be applied to that data.
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6 Energy Scale Calibrations

The correction methods discussed in Chapter 5 allow us to use two spatially inde-

pendent gain factors to convert the S1 and S2 signals into the number of photons

and the number of electrons produced by an event anywhere in the detector. In

this chapter, we will present a combined energy model which uses the number of

photons and electrons produced to determine the energy deposited during an event

before discussing methods to measure the individual gain factors. The results pre-

sented here were used in LUX’s Run3 reanalysis, with similar methods used in the

Run4 analysis [16].

6.1 Combined Energy Model

Energy from a particle interaction produces excited xenon atoms (Xe∗), ionized

xenon atoms (Xe+), and heat. The heat released in the interaction is not observed

in LUX. For electron recoil events this lost energy is negligible, but for nuclear

recoil it is not.

The excited xenon atoms combine with ground state xenon atoms to form

xenon dimers (Xe∗2). These xenon dimers relax to two ground state xenon atoms,

producing a 178 nm very-ultraviolet (VUV) photon. This scintillation light is the

first component of the S1 signal observed in the LUX detector. The ionization of

xenon atoms releases free electrons. These free electrons have a chance to recom-

bine with the positively charged xenon ions, producing additional excitons which

contribute to the S1 signal. Therefore, with the probability of an ion recombining

represented as R, the number of photons produced in an interaction is given by
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Figure 53: Depiction of particle interaction and the production of xenon excitons,
ionized xenon, electron, photons, and heat [15].

the initial number of excitons produced plus the number of ions which recombine,

Nγ = Nex +RNi = Ni(α +R). (128)

where Nγ is the number of photons, Nex is the number of excitons, Ni is the

number of ions, and α ≡ Nex
Ni

is the initial exciton to ion ratio.

Free electrons which do not recombine drift under the applied electric field to

the liquid surface where the accelerate through the extraction field and produce

the S2 signal. The number of electrons produced in an interaction is given by the

fraction of ions which do not recombine,

Ne = Ni(1−R). (129)

Nuclear recoils are more densely ionizing than electron recoils, leading to more
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recombination, and therefore more S1 and less S2 signal. This distinction enables

the discrimination method discussed in Section 4.4. Note that in addition to the

dependence on the type of recoil, the probability of recombination depends on the

electric field and the energy of an interaction, a property which is significant for

the work in Chapter 7.

The total energy deposited by an interaction is given by

E = L−1W (Nex +Ni) (130)

where where E is energy in keV, L is the Lindhard factor which compensates for

heat loss, andW and is work function for the creation of excitons and ions in liquid

xenon. The work function has been measured to be W=13.7± 0.2 eV/quanta [76].

In terms of the atomic mass (A), the atomic number (Z), and energy of the

nuclear recoil (Enr), the Lindhard factor is given by

L =
kg(ε)

1 + kg(ε)
(131)

where

k = 0.133× Z2/3 × A1/2 (132)

g(ε) = 3ε0.15 + 0.7ε0.6 + ε (133)

ε = 11.5× Enr × Z−7/3. (134)

For ER events, L equals one, and for NR events L ranges between 0.1 and 0.2.

From Equation 130 we see that the same number of electron and photons can

produce different energy reconstruction depending on the type of recoil interaction.
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To avoid ambiguity, the energy of an event is typically referred to in units of kilo

electron-volts electron recoil equivalent (keVee) or kilo electron-volts nuclear recoil

equivalent. All of the data presented in this thesis is a product of electron recoil

calibration sources, so it should be assumed that we are using units of electron-volts

electron recoil equivalent unless otherwise stated.

To make use of our combined energy model, we need to convert the S1 and S2

observables from units of photons detected (phd) to the number of photons and

electrons produced by the interaction. We do so by defining two gain factors. The

gain factor for the S1 signal is referred to as g1, and is given by the ratio of the

average numbers of photons produced by an interaction to the observed S1 signal,

〈Nγ〉 =
〈S1〉
g1

. (135)

Note that the g1 gain factor allows the S1 signal to be written in terms of the

number of photons produced

S1 = g1Nγ = g1(Nex +RNi) = g1(α +R)Ni (136)

The size of g1 is dependent on the light collection efficiency in the detector, and

can be thought of as the probability of a photon from an interaction striking a

PMT and producing a photo electron.

The gain factor for the S2 signal is referred to as g2, and is given by the ratio

of the average numbers of electrons produced by an interaction to the observed S2

signal.

〈Ne〉 =
〈S2〉
g2

(137)
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As with the S1 signal, g2 allows us to write the S2 signal in terms of the number

of electrons produced by an interaction,

S2 = g2Ne = g2(1−R)Ni (138)

The size of g2 is dependent on the efficiency at which electrons are extracted from

the liquid xenon at the surface (the extraction efficiency), and the number of photo

electrons detected per extracted electron (the single electron size), such that

g2 = SE × EE (139)

where SE is the single electron size, and EE is the electron extraction efficiency.

6.2 Doke Plot Analysis of g1 and g2

The gain factors g1 and g2 can be measured in data by requiring that the combined

energy model reproduce the true energy of two or more electron recoil sources that

produce different light and charge yields. In electron recoil events, the light yield

and charge yield is a dependent on both the energy of an event, and the strength

of the electric field in which the event occurred. Therefore the same electron recoil

source taken at two different drift field settings can be used to determine the value

of g1 and g2 alone. Table 2 lists the eight sources which were selected to measure

g1 and g2 in LUX’s Run3 campaign.
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Source Energy [keV] Decay Type Data

127Xe 5.3 L shell x-ray Run3 Data

83mKr 41.55 IC Run3 Calibrations

131mXe 163.9 IC Early Run3 Data

127Xe 208.3 (203 γ and 5.3 x-ray) γ-emission Run3 Data

129mXe 236.1 IC Early Run3 Data

127Xe 409 (375 γ + 33.8 x-ray) γ-emission Run3 Data

214Bi 609 γ-emission Detector Background

137Cs 661.6 γ-emission Run3 Calibrations

Table 2: Table of sources used in the Doke plot analysis.

We use a Doke plot technique to ensure the combined energy model reproduces

the true energy of all eight sources [77, 78]. Solving Equation 130 for 〈S1〉
E

, we find

〈S1〉
E

=
g1

W
− S2

E

g1

g2

(140)

which is the equation of a line with

y =
〈S1〉
E

, x =
〈S2〉
E

(141a)

b =
g1

W
(141b)

m =
g1

g2

=
b×W
g2

(141c)

This motivates the creation of a "Doke Plot" in which we plot the mean light yield,
〈S1〉
E

, versus the mean charge yield, 〈S2〉
E

, for each line source to find the best fit for
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g1 = b×W (142a)

g2 =
b×W
m

(142b)

In Run3, diagonal cuts chosen by eye were used for initial event selection of the

sources in Table 2. Next, we fit a rotated two dimensional Gaussian distribution to

the corrected S1 and S2 spectra of each source to determine the mean and sigma

of the S1 and S2 populations. Once the standard deviation of each population

is determined, we refit the data using only events within ±2σ of the S1 and S2

Gaussian means to become tolerant to tails caused by backgrounds. A linear fit of
〈S1〉
E

= m 〈S2〉
E

+ b is performed using the refit Gaussian means.

Once an initial best fit for g1 and g2 is found, we can produce a combined

energy scale using Equation 130. This combined energy spectrum has significantly

better resolution than the individual S1 and S2 spectra, and allows us to improve

our initial event selection by placing a ±2σ cut around the energy peaks. We then

refit S1 and S2 spectra once more with the improved event selection, and find new

values for the best fit of g1 and g2. This process of producing an energy spectrum

to improve event selection is iterated five times, but quickly converges after the

second iteration.
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Figure 54: S1 versus S2 density plot for all data that was used in Run3 Doke plot
analysis.

6.2.1 Doke Plot Systematic Errors

There are a number of systematic errors on the S1 and S2 signals that must

be considered when constructing the Doke plot. One such error comes from the

variation in single electron size over time, shown in Figure 55. These variations can

be introduced by changing detector conditions, such as variations in the detector’s

liquid level, or changes in the detector’s pressure. The Doke plot uses data from

many sources taken at different points in time, and therefore each point on the plot

has a different single electron size. Since we seek one value of g2 which describes

the all of the data, and since g2 is equal to the extraction efficiency times the single

electron size, the variation in single electron size must be included in the S2 error

bars.
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Figure 55: Single electron sizes for all 83mKr data sets over the course of LUX’s
Run3 data taking campaign. The single electron size for each data set is found by
fitting a skew Gaussian to the single electron spectrum.

Another source of error is introduced by variations in the position dependent

pulse area corrections. Systematic variations in the correction maps lead to vari-

ation in the corrected S1 and S2 signals over time. This adds a 0.8% systematic

error to all of our S1 data, and a 2.4% systematic error to all of our S2 data in

the Doke plot, which was measured using the standard deviation of the corrected

83mKr S1 and S2 peaks over time. We assume that the size of this systematic error

scales linearly with S1 and S2 size for the non-83mKr data points.
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Figure 56: Corrected S1 peaks for all Run3 83mKr data sets at 170 V/cm field
strength. The step near data set 20 is due to an update of the S1 XYZ corrections
map. This effect is accounted for in our systematic errors

Figure 57: Corrected S2 peaks for all Run3 83mKr data sets at 170 V/cm field
strength.

Additionally, there is a small difference in the measurement of Ne = S2
SE

for

each Doke plot point when using both PMT arrays or using the bottom PMT array

only. The number of electrons produced by a particle interaction is independent

of how many PMTs observe the interaction, so this discrepancy can only be due

to systematic errors which are likely produced by the PMT arrays saturating at
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high energies. The size of this discrepancy is also included in the systematic error

of each point, and is tabulated in Table 3.

Source Percent difference between both and
bottom array Measurement

83mKr 4.2
131mXe 2.4
127Xe 4.8

129mXe 3.3
127Xe 2.1
214Bi 5.3
137Cs 5.5

Table 3: Percent discrepancies between Ne for each Doke plot source, as measured
by both PMT arrays, or the bottom PMT array only.

6.2.2 Doke Plot Results

The Doke plot produced by the analysis described in the preceding sections is

shown in Figure 58. The best fit parameters for the Doke plot are high correlated.

To account for this the errors on the fit are calculated using a Markov chain Monte

Carlo. We get a best fit of g1 = 0.117 ± 0.003 and g2 = 12.1 ± 0.8. This value of

g2 corresponds to an extraction efficiency of EE = 0.491± 0.032.

In Figure 60 we use the best fit parameters from the Doke plot to produce

energy spectra for each line source used in this analysis. Sources that are below

the line on the Doke plot have energy peaks that are lower than expected, and

sources that are higher than the line on the Doke plot have energy peaks that are

higher than expected.
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Figure 58: The Doke plot from LUX’s Run3 reanalysis [16]. The red faded red
lines indicate the result of each MCMC trial, while the dark red line indicates the
best fit result. The energy of each source is indicated by the point’s color.

Figure 59: A triangle plot showing the correlation between the fit parameters
during the MCMC process. A projection of the fit results onto each axis is shown
above and next to the triangle plot.
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Figure 60: The energy spectrum of LUX’s Run3 data after using the g1 and g2

values from the Doke plot analysis
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Figure 61: Close ups of individual Doke plot peaks. Data is shown in blue, fits are
shown in black, and the expected energy shown in red. Each histogram contains
a label to indicating the energy spectrum being shown.
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6.2.3 Recombination Fluctuations from Doke Plot Data

Using the methods from [78] and the data from this Doke plot analysis we can de-

termine recombination fluctuations (σR) as well as fluctuations in counting photons

(σnγDet) and electrons (σneDet) due to detector resolution. The relevant equations

are

σ2
R =

1

2
(σ2

nγDet
+ σ2

neDet
− σ2

E

W 2
) =

1

2
(
σ2
S1

g2
1

+
σ2
S2

g2
2

− σ2
E

W 2
− 2σ2

R)

σ2
nγDet

=
σ2
S1

g2
1

− σ2
R

σ2
neDet

=
σ2
S2

g2
2

− σ2
R

where σ2
S1

g21
, σ

2
S2

g22
, and σ2

E

W 2 can be measured with Gaussian fits to the S1, S2, and

energy spectra for each point on the Doke plot. The results of this analysis are

shown in Table 4. The results included here are the outcome after setting the

fitting window by eye in a way which eliminates the most background events while

maintaining the majority of each spectrum’s peak. A more in depth version of this

analysis which includes improved event selection is detailed in reference [79].
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Source Energy [keV] σR σnγDet σneDet
83mKr 41.55 (50 V/cm) 66.59 ± 2.1 151.0 ± 0.3 84.95 ± 0.4
83mKr 41.55 (100 V/cm) 80.51 ± 1.6 148.7 ± 0.3 82.12 ± 0.5
83mKr 41.55 (170 V/cm) 104.9 ± 1.1 142.9 ± 0.3 90.71 ± 0.5
131Xe 163.9 355.5 ± 43 260.1 ± 31 354.2 ± 30
127Xe 208.3 662.5 ± 63 489.1 ± 91 167.3 ± 120
129Xe 236.1 540.9 ± 45 416.1 ± 45 477.0 ± 35
127Xe 409 1250 ± 82 894.8 ± 67 1183 ± 53
214Bi 609 1667 ± 304 2147 ± 100 3353 ± 120
137Cs 661.6 1979 ± 158 1248 ± 82 2314 ± 84

Table 4: Extracted fluctuations from the Run3 Doke plot data in units of quanta,
as measured by both PMT arrays at 180 V/cm.

Figure 62: Measured values of σR, σnγDet , and σneDet versus energy in Run3 at 180
V/cm.
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Figure 63: Measured values of σR, σnγDet , and σneDet versus photons, electrons,
and ions, respectively. Data collected in Run3 at 180 V/cm.

This study was repeated using the bottom PMT array only, while keeping both

the cuts and fitting windows exactly the same. The results are shown in Table 5.

As expected, the variance from recombination fluctuations appears independent

of which PMTs are used in the analysis. However, the slope of σnγDet and σneDet

versus number of quanta is much more shallow when using the bottom PMT array

only. This could represent a systematic error, but it may also suggest that the top

array of PMTs is contributing a significant amount of noise, or that the overall

variance due to detector resolution is proportional to the number of PMTs which

are used.
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Source Energy [keV] σR σnγDet σneDet
83mKr 41.55 (50 V/cm) 63.32 ± 1.2 152.6 ± 0.2 79.2 ± 0.4
83mKr 41.55 (100 V/cm) 82.16 ± 1.6 153.0 ± 0.3 84.5 ± 0.5
83mKr 41.55 (170 V/cm) 103.4 ± 1.1 149.7 ± 0.3 78.0 ± 0.5
131Xe 163.9 372.0 ± 27.8 249.7 ± 32 313.7 ± 33
127Xe 208.3 696.9 ± 61 400.5 ± 110 306.7 ± 90
129Xe 236.1 595.8 ± 34 348.0 ± 51 412.8 ± 42
127Xe 409 1328 ± 56 790.9 ± 77 874.5 ± 60
214Bi 609 1811 ± 312 2101 ± 100 3253 ± 180
137Cs 661.6 2235 ± 74.9 773.1 ± 136.5 1657 ± 94

Table 5: Extracted fluctuations from Run3 Doke plot data in units of quanta when
using the bottom array only at 180 V/cm.

6.2.4 Light Yield from Doke Plot Data

The light yield in terms of S1
keV

and photons
keV

for each line source is easily obtainable

from the Gaussian fits used in the Doke plot analysis and is included in 6. In

the case of 83mKr two S1s (32.1 keV and 9.5 keV) are typically merged into one

41.55 keV S1 pulse by the data processing module. The second of the two decays

will occur with varying amounts of recombination depending on the amount of

time between the first and second decay. This recombination variation makes the

combined 41.55 keV S1 pulse undesirable for measuring light yield. Instead, we

search for events where the two S1s occur far enough apart in time that data

processing separates them into two S1 pulses. A Gaussian fit is then used to

determine the light yield from the 32.1 keV 83mKr S1, resulting in 5.69 ± 0.03 S1
keV

and 46.3 ± 1.16 photons
keV

. Note that the 127Xe 208.3 keV line in Table 6 is still a

result of two decays that are combined in our data processing, and this may affect

the LY measurement for that point.
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Source Energy[keV] S1
keV

photons
keV

83mKr 32.1 (170 V/cm) 5.69±0.03(5.62±0.36) 46.3±1.16(45.7±3.13)
131Xe 163.9 5.08±0.05 41.3±1.1
127Xe 208.3(203+5.3) 5.00± 0.07 40.7± 1.2
129Xe 236.1 5.04± 0.04 41.0± 1.1
127Xe 409 4.97± 0.04 40.4± 1.0
214Bi 609 4.21± 0.03 34.2± 0.9
137Cs 661.6 4.07± 0.03 33.1± 0.9

Table 6: Light yield measurements from Run3 Doke plot data at 180 V/cm.

6.3 Tritium χ2 Analysis of g1 and g2

LUX’s CH3T calibration source produces a wide beta spectrum which continuously

spans energies from the detector’s threshold up to 18.6 keV. We can take advantage

of the wide energy spectrum to measure the g1 and g2 gain factors by varying g1

and g2 in a two dimensional χ2 fit until data matches the expected tritium beta

spectrum. References [80, 81, 82] derive an expression for the density of energy

states accessible to the electron in a beta decay. In terms of the kinetic energy of

the electron, T , it is given by

dN(T, Z)

dT
= C(T 2 + 2Tme)

1/2(T +me)(Q− T )2F (T, Z) (143)

where QT = 18.6keV is the maximum kinetic energy of the electron, me = 511keV

is the mass of the electron, C is a normalization constant, Z = 2 is the nuclear
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charge for the helium-3 daughter ion, and

F (T, Z) = 2π
α(

γ2−1
γ2

)1/2
(144)

is the Coulomb correction due to nuclear charge with using α = 1/137 as the fine

structure constant, and

γ =
T +me

me

(145)

as the energy to rest mass ratio.

Before using Equation 143 to produce the expected tritium beta spectrum

in the LUX detector, we need to smear the distribution to model effects from the

detector’s resolution and recombination variation. This is accomplished by drawing

the true energy of events from the distribution described by 143 and feeding them

into the NEST simulation package. NEST produces simulated S1 and S2 signals

for the corresponding energy deposition, which in turn provide a simulated tritium

energy spectrum for the LUX detector using Equation 130.

Once we have a simulated model for the tritium energy spectrum in LUX we

can minimize a two dimensional χ2 fit between the data and simulation to find the

optimal values of g1 and g2. The optimized CH3T energy spectrum for the largest

CH3T calibration in LUX’s Run3 data taking campaign is shown in Figure 36. The

result of g1=0.115 ± 0.005 phd/photon, g2= 12.1 ± 0.9 phd/electron, and EE =

50.9% ± 3.8% is in close agreement with the Doke plot results from Section 58.
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7 Calibration of the LUX Detector in a nonuni-

form Field

In Chapter 5 we used the uncorrected S1 and S2 signals from 83mKr data to produce

position dependent corrections for our detector inefficiencies. These inefficiencies

arise from a number of sources. In the S2 signal, a Z dependence is introduced to

the data due to impurities absorbing charge as it drifts through the liquid xenon in

the detector. An XY variation is also introduced via nonuniform extraction field

and liquid level changing the single electron (SE) size in the XY dimensions. The

S1 signal can also have a Z dependence introduced to the data at purity levels

below 200 µs electron lifetime. A more significant XYZ dependence is introduced

to the S1 signal via light collection inefficiencies arising from teflon reflectivity,

total internal reflection at the liquid xenon surface, and the solid angle covered by

each PMT during an event. These sources of spatial dependence in the pulse area

will be referred to as "detector inefficiencies" throughout this chapter.

LUX Run4 data is complicated by a nonuniform electric field in the detector.

Although the origin of the radial component of the field is unknown, we suspect

it was introduced during our grid conditioning campaign. In this model, UV

light produced during grid conditioning broke the bonds of teflon molecules in the

detector walls, and the resulting charged particles were separated by the electric

field produced by the grids. This accumulation of charge on the detector walls

is believed to be the source of the radial field in the detector. This theory is

supported by the sudden appearance of the radial field component shortly after

the grid conditioning campaign, as well studies of the effect of UV light on teflon in

other fields, such as the space industry. [83, 84] To complicate the matter further,
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the electric field has been observed to be varying in time as well.

This chapter will begin by describing the radial component of the electric field

and the complications that arise from it. We will then define our goal for pulse area

corrections in the presence of such a field before detailing our efforts to measure

and separate the field effects in 83mKr Data. The module which produces these

signal corrections will be referred to as KrypCal throughout this chapter. We will

conclude this note with an evaluation of the current method and a look at what

complications remain in the Run04 data.

7.1 Description of the Nonuniform Electric Field

7.1.1 Measuring the Run04 Electric Field

A great deal of effort has been made to measure the electric field at different times

in the LUX Run4 data. In a preliminary method, the detector is sliced into drift

time bins of 25 µs width. An axisymmetric wall radius is defined for each drift

time bin based on the XY distribution of events within the bin. A field model

including the detector’s wire grids and a charge density distribution on the walls is

then modified using a "chi-by-eye" fit until a simulated data distribution visually

reproduces the RvZ event distribution in data. (Figure 64) [17]

A more advanced field model takes a similar approach to the preliminary work.

In this method, 43 basis vectors in COMSOL Multiphysics are used to define an

electric field model. One basis vector describes the Run04 grid voltages, and the

other 42 basis vectors are used to describe the charge density of 42 tiles placed

around the detector’s teflon walls. A Metropolis-Hastings algorithm is used to

match the three dimensional distribution of events in simulation to Run4 data by
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varying the charge density on each of the 42 tiles. [85]

We have also tracked the evolution of the electric field in time using 137Cs

and 83mKr data. Cesium is useful for this purpose since it does not penetrate the

entire fiducial volume and serves to highlight the wall regions around the external

source. The results of this analysis have shown significant variation in the electric

field over time, with the rate of change of this variation slowing over time. [86]

Figure 64: The results of the preliminary field mapping technique for September
2014.[17]

7.1.2 Complications Arising from the Run4 Electric Field

The nonuniform electric field in Run4 introduces a number of complications to the

data. The most obvious of these complications is a radial squeezing in position
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reconstruction. As charge from an event drifts upward it is pushed toward smaller

radii due to the radial component of the electric field. As a result, the XY position

of the S2 signal is significantly separated from the XY position of the event itself.

Due to their longer drift time, this effect is more pronounced in events from the

bottom of the detector (Figure 65). We use our field models to reconstruct the

position of the events more accurately, but since signal corrections are produced

using the uncorrected coordinates of the S2 signals, a discussion of this technique

is outside of the scope of this chapter [87].

The variation of the electric field complicates the Z position reconstruction

of events as well. As the field evolves over time the drift velocity throughout

the detector changes. As a result, the mapping of drift time in µs to physical

position in mm is no longer constant in time or space. Note that in particular this

introduces complications when defining the electron lifetime in Run4, since the

drift time to mm mapping is no longer one-to-one and the electron capture cross

section is dependent on the drift-velocity. We can use our field models to map

the uncorrected drift time position to the physical position of events, but since

the corrections are produced in the drift time coordinate system, details of this

process are again out of the scope of this chapter 7.1.1.

A more subtle complication introduced by the nonuniform electric field lies

in the recombination physics that occurs during a recoil event. During a recoil,

ionizing radiation produces both ionization and excitation of the xenon atoms.

The xenon excimers (Xe∗2) produce scintillation light as they return to the ground

state, which we observe as our S1 signal. Some of the electrons produced during

ionization escape the location of the event, drift to the top of our detector, and

produce our S2 signal. The electrons that do not escape the event recombine with
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the ionized xenon atoms in a process called recombination, producing additional

xenon excimers that contribute to the S1 signal. Recoil events which occur in a

low field region of the detector have a higher chance to recombine, and therefore

produce more S1 signal and less S2 signal than an equivalent event in a high field

region. Complicating this matter further, the strength of this effect is dependent

on the energy of the event and whether the event is an electron recoil (ER) or a

nuclear recoil (NR) (Figure 66). This source of pulse area variation in space and

time will be referred to as "field effects" throughout this chapter. This means that

any pulse area corrections which are based solely on the spatial dependence of

83mKr data, as was done in Run3, are no longer valid for ER or NR events in the

WIMP search energy range. In a uniform field, such as the Run3 data, detector

response corrections can be derived by demanding that 83mKr data be independent

of position and time. In a non-uniform field, this is not a valid strategy, because

the field effects reflect a genuine variation in light and charge yields, rather than

an artifact of detector response.
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Figure 65: The reconstructed distribution of events resulting from the field map
in Figure 64. Each point in the figure was placed on a uniform grid and allowed
to drift to the liquid surface, where the final radius is measured. The color of
each point indicates the strength of the electric field in this "uncorrected" XY
coordinate system. This simulation reproduces the distribution of events seen in
data from September 2014. [17]
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Figure 66: Predictions from NEST for the light yield (top row) and charge yield
(bottom row) of electron recoil event from gamma ray interaction (left column) and
beta particle interaction (right column). Field values are indicated by the colored
lines. Light yield and charge yield have less dependence on the field strength for
lower energy events. [18]
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7.1.3 The Goal of KrypCal in Run4

In Run4 the pulse area corrections must account for field effects as a function of

time, space, energy, and recoil type. Since the recoil type of an event in WIMP

search data is unknown with exact certainty, and the energy of an event in WIMP

search data is unknown prior to pulse area corrections being applied, it is not

possible to remove the spatial and time dependence induced by the field effect in

our data. Instead, we seek to separate the field effect from the detector inefficiency

effects at the known energy and recoil type of 83mKr, so that we can extract detector

efficiency corrections that are applicable to all events. This separation must be

performed at all points in time due to the time dependence of the electric field.

To accomplish this we will relate the strength of the field effects in the S1 and S2

pulse areas of 83mKr calibration data to the ratio of the two S1 pulses (referred to

as S1a and S1b) generated during the 83mKr decay. This ratio should be strongly

correlated to the strength of the electric field effect, since the two 83mKr decays

have different energies (32.1 keV for S1a and 9.4 keV for S1b) and are therefore

effected by the electric field by different amounts. Note that corrections which

perfectly separate field effects from detector inefficiency effects in this manner,

and only correct for the latter, will have a spatial and time dependence left in the

S1 and S2 signals, but not in the energy spectra from any source, regardless of

energy or recoil type.
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7.2 Measuring Electric Field Effects in 83mKr Data

7.2.1 General Strategy for Measuring the Field Effect

Before providing detailed descriptions of the Run4 corrections process, we will

first discuss the general strategy for measuring and separating the electric field

effect in 83mKr calibrations. First, we measure the electric field in the detector

at a particular point in time, using the methods described in section 7.1.1. Due

to their high statistics, we choose data sets in September 2015 for this purpose.

We would like to use this field map in conjunction with NEST to remove the field

effects in the 83mKr data directly before measuring detector inefficiency effects.

Unfortunately, due to the complicated nature of the 83mKr decay (detailed in

Section 5.1) NEST does not accurately simulate 83mKr data. Instead we turn to

CH3T data, which NEST has been tuned to simulate extremely well.

After using NEST to determine and remove the strength of the field effects in

CH3T data, we measure the residual pulse area variation in the S2 signal and pro-

duce corrections for these effects, which, since the field effects have been removed,

are due to detector inefficiencies alone. The same process can not be repeated

for the S1 signal, since the maximum of the CH3T S1 spectrum falls below the

detector threshold. These S2 corrections are equivalent to the Run3 S2 corrections

which were obtained directly from 83mKr data when there was no significant field

variation. Next, we apply the detector inefficiency corrections to contemporaneous

83mKr data. At this point, any residual pulse area variation in the 83mKr S2 signal

is due to field effects alone. We measure the strength of the field effects by fitting

Gaussian distributions to the inefficiency corrected 83mKr S2 signal over a three

dimensional map, choosing the ratio S2(XYZ)/S2(Center) as the figure of merit for
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the strength of the field effect. At the same time we measure a three dimensional

map of the 83mKr S1a/S1b ratio. Relating these two maps allows us to determine

the strength of the field effect on 83mKr S2 data taken at any time or location by

simply measuring the 83mKr S1a/S1b ratio.

Three approaches have been taken to measure the relationship of the field effect

in inefficiency corrected 83mKr S1 data, as measured by S1(XYZ)/S1(Center), to

the 83mKr S1a/S1b ratio. The first approach, in section 7.2.6, converts the S2

field effect relationship to an S1 field effect relationship using the physics behind

recombination. In section 7.2.7 we use the expected light yield of the 83mKr 31.2

keV decay as a function of electric field to measure detector inefficiency effects and

separate them from the field effect we want to measure. The final approach, in

section 7.2.9, takes advantage of the fact that the total combined energy of any

event should remain insensitive to any recombination variation that arises from a

non-uniform electric field. In this method, we float the 83mKr S1(XYZ)/S1(Center)

to S1a/S1b relationship in a χ2 fit. Within the fit we remove the field effect in

both the S1 and S2 83mKr data (using the floated relationship for the S1 field

effect), produce inefficiency-only corrections from the data, and then evaluate the

corrected 83mKr and CH3T energy spectra. The S1(XYZ)/S1(Center) to S1a/S1b

relationship which produces the minimum χ2 between the observed and expected

energy spectra is chosen as the correct relationship.

Once the field induced S2(XYZ)/S2(Center) to S1a/S1b relationship and the

field induced S1(XYZ)/S1(Center) to S1a/S1b relationship have been determined,

they can be used in 83mKr data sets from any time to remove the field effects in

the 83mKr data via mapping the S1a/S1b ratio. Once the field effects are removed

the residual S1 and S2 variation in the 83mKr can be used to calculate pulse area
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corrections based on detector inefficiencies alone. In the following sections we will

describe each step of the process outlined above in detail.

7.2.2 Measuring Detector Inefficiency Corrections with CH3T

Before measuring detector inefficiency corrections in CH3T we must first remove

the field effects from the data. We use data from the September 2015 CH3T

calibration due to its high statistics. A simple box cut of (630 ≤ uncorrected S2

≤ 14000) and (uncorrected S1 ≤ 125) is used to select CH3T events from the data

set, as shown in Figure 67. The electric field at the location of each CH3T event

is estimated by interpolating the RvZ field map (described in section 7.1.1) from

September 2015. A cubic interpolation is used for events which fall within the

bounds of the field map, and a nearest neighbor extrapolation is used for events

which fall outside of the bounds. Note that we choose to use preliminary 2D

field maps from Figure 65 for this work because interpolating and extrapolating

is simplified in a two dimensional map, because the preliminary field maps varies

more smoothly in space due to the smooth charge density distribution in the

simplified field model, and because the final field models were not finalized at the

time of this work.

Once the field strength at the location of a particular event is determined it is

converted to a measurement of the recombination for each event using the following
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Figure 67: Density plot of uncorrected S1 versus uncorrected S2 from the Septem-
ber 2015 CH3T calibration. The red lines indicate the box cut used to select CH3T
events. The dense population to the right of the box cut is 83mKr which is present
in the data set and excluded from the box cut.

equation from NEST. (Figure 68)

Nq =
E

0.0137
(146)

Nion =
Nq

1 + α
(147)

R = 1− ln

(
1 + (TI∗Nion

4
)

(TI∗Nion
4

)

)
(148)

where E is the energy of the event in keV, Nq is the number of quanta, Nion

is the number of ions, α is the exciton to ion ratio (assumed to be 0.11), TI is

the Thomas-Imel Box parameter, and R is the recombination probability. Since

we do not know the energy of the event ahead of time (since we do not have
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working corrections at this point) we assume the most probably energy from the

CH3T energy spectrum, which is 2.5 keV. We are mainly interested in fitting the

maximum of the spectrum when measuring detector inefficiency corrections, so the

fact that this recombination estimate for higher energy CH3T events may be off

by up to a factor of 2.5 is not concerning.

Figure 68: Two dimensional map of the recombination probability for a 2.5 keV
ER based on the September 2015 RvZ electric field map and NEST. Radius is
uncorrected, as observed at the anode.

A normalization factor Nphoton−center/Nphoton for the S1 signal is determined by

calculating the number of photons produced in events at the center of the detector,

and the number of photons produced in a particular event by using

Nphoton = Nq
α

1 + α
+NionR (149)

Since we assumed a value of 2.5 keV for all events, R only has a dependence on

the estimated field strength, and therefore the normalization constant only has
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a dependence on the estimated field strength at each location in the detector as

well. Similarly, we determine a normalization factor Nelec−center/Nelec for the S2

signal by calculating the number of electrons at the center of the detector and the

number of electrons for a particular event by using the equation

Nelec = Nq −Nphoton (150)

which again is only dependent on the estimated field strength at each location in

the detector. We simply multiply the raw S1 and S2 signals by these normalization

factors to remove the field effects from the CH3T. For clarity, we define the field

effect removed S1 and S2 signals as S1F and S2F , respectively, where the subscript

F stands for "field corrected".

S2F = S2

(
Nelec−center

Nelec

)
(151)

S1F = S1

(
Nphoton−center

Nphoton

)
(152)

Likewise, we define the detector inefficiency corrected S1 and S2 signals (with field

effects still present) as S1E and S2E, where the subscript E stands for "efficiency

corrected", and the detector inefficiency corrected and field effect removed S1 and

S2 signals as S1EF and S2EF , where the subscript EF stand for "efficiency and

field corrected" .

After removing the field effects from the CH3T data we are ready to mea-

sure the residual spatial pulse area variation due to detector inefficiencies alone.

We first measure the Z dependence of the S2F pulse area by slicing the detector

into drift time bins of 10 µs width. This is intended to correct for the effects of
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charge attenuation in the LXe. A Landau distribution is fit to the S2F spectrum

of each bin to determine the location of the spectra maximums. (Figure 69) Poly-

nomial and skew Gaussian fits have also been used to determine the maximums

with consistent results between all three methods. A cubic interpolation is used

to determine the S2F Z dependence between each drift time bin, and a linear ex-

trapolation based on the first and last 20% of Landau distribution data points is

used to determine the S2F Z dependence above and below the span of the drift

time bins (10 to 330 µs). A detector inefficiency correction for the Z direction is

defined by taking the ratio of the S2F pulse area at a height of 4 µs (just below

the liquid surface) to the S2F pulse area as described in the equation

S2z-efficiency-correction =
S2F (z = 4)

S2F (z)
. (153)

Figure 69: (Left) Landau distribution fits to the S2F data that are used to deter-
mine the drift time dependence of the S2F pulse area. For illustrative purposes, a
drift time bin width of 60 µs was chosen for this plot. (Right) The Z dependence
of the S2F pulse area after field effects are removed. Black points indicate the
maximum of Landau distribution fits for each drift time bin, and the red line in-
dicate the spline interpolation and linear extrapolation of that data. Data shown
is from the September 2015 CH3T calibration.
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The XY dependence of the field removed S2F signal is found by dividing the Z

inefficiency corrected (S2F × S2z-efficiency-correction) data into two dimensional

XY bins with lengths of 3 cm on each side, and then fitting Landau distributions

to the data of each bin. The maximum of the Landau distribution from each bin

is used to construct an S2F XY dependence map, with a spline interpolation and

extrapolation being used to determine the XY dependence between and outside

of the bins. (Figure 70) A detector inefficiency correction for the XY direction is

defined by taking the ratio of the z inefficiency corrected S2F pulse area at the

center of the detector to the z inefficiency corrected S2F pulse area as a function

of XY in cm, as shown below

S2xy-efficiency-correction =
S2z-efficiency-correction × S2F (xc, yc, z)

S2z-efficiency-correction × S2F (xyz)
. (154)

where xc and yc are the x and y center of the detector in uncorrected coordinates

determined by taking the average position of the CH3T events in each direction.

Multiplying the raw S2 signal by both the Z and the XY correction factors

results in an inefficiency corrected S2E signal (with field effects still present), and

multiplying the field removed S2F signal by the correction factors results in a

inefficiency and field corrected S2EF signal.

S2E = S2× S2xy-efficiency-correction × S2z-efficiency-correction (155)

S2EF = S2F × S2xy-efficiency-correction × S2z-efficiency-correction (156)

Unfortunately, we are unable to directly measure the detector inefficiency cor-

rections for the S1 signal from CH3T data, since the maximum of the S1 spectrum
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Figure 70: Two dimensional map of the XY dependence in CH3T S2F data de-
termine by fitting a Landau distribution to XY bins of the data and tracking the
maximum of each fit. Data is from the September 2015 CH3T injection.

falls below the detector threshold and there are no discernible features to fit to

(Figure 71). Instead, we will continue working with the S2 signal of our data and

return to the issue of S1 corrections in sections 7.2.6 and 7.2.9.
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Figure 71: A histogram of uncorrected S1 data from the CH3T calibration in
September 2015. The maximum of the distribution falls below threshold and can
not be used for detector inefficiency corrections.

7.2.3 Measuring Field Effects in 83mKr Data

After measuring the S2 detector inefficiency corrections in CH3T data (equa-

tions 153 and 154) we have all the tools we need to measure the field effects

in the S2 pulse area of 83mKr data. We begin by applying the S2 detector ineffi-

ciency corrections to the raw, uncorrected 83mKr data (taken at the same time as

the CH3T data) by using equation 155. The removal of the detector inefficiency

effects from the raw S2 data leave us with an S2E signal which has spatial pulse

area variation from field effects alone.

The process for measuring the field effects in the inefficiency corrected 83mKr

S2E data is similar to the process of measuring the detector inefficiency effects in

the field effect corrected CH3T S2F data. First, we measure the field induced Z

dependence of the 83mKr S2E pulse area by slicing the detector into drift time bins
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of 10 µs width. A Gaussian distribution is fit to the S2E spectrum of each bin to

determine the mean S2E pulse area versus Z. (Figure 73) A cubic interpolation is

used to determine the S2E Z dependence between each drift time bin, and a linear

extrapolation based on the first and last 20% of Gaussian fit data points is used

to determine the S2E Z dependence above and below the span of the drift time

bins (10-330 µs). We define the strength of the field effect in the z direction as

the ratio of the S2E pulse area as a function of Z to the S2E pulse area at the

center of the detector zc (defined by taking the mean drift time value of all 83mKr

events above 4 µs drift time), S2E(z)/S2E(center). The strength of the field effect

in September 2015 is consistent between a measurement with both PMT arrays

and a measurement with the bottom-only PMT array. (Figure 72) A field effect

correction for the Z direction is defined by taking the inverse of the strength of the

field effect, as described in the equation

S2z-field-correction =
S2E(z = zc)

S2E(z)
. (157)

The XY dependence of the detector inefficiency corrected 83mKr S2E signal is

found by dividing the z field corrected (S2E × S2z-field-correction) data into two

dimensional XY bins with lengths of 2 cm on each side, and then fitting Gaussian

distributions to the data of each bin. The mean of the Gaussian distribution from

each bin is used to construct an S2E XY dependence map, with a spline interpola-

tion and extrapolation being used to determine the XY dependence between and

outside of the bins. (Figure 74) A field effect correction for the XY direction is

defined by taking the ratio of the z inefficiency corrected S2E pulse area at the

center of the detector to the z inefficiency corrected S2E pulse area as a function
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Figure 72: The S2 field effect versus drift time relationship in 83mKr data from
September 2015. The relationship was measured using both PMT arrays, and the
bottom-only PMT array, and found to agree with both methods.

Figure 73: (Left) Gaussian distribution fits to the 83mKr S2E data that are used
to determine the drift time dependence of the S2E pulse area. For illustrative
purposes, a drift time bin width of 60 µs was chosen for this plot. (Right) The
Z dependence of the 83mKr S2E pulse area after detector inefficiency effects are
removed. Black points indicate the mean of Gaussian distribution fits for each
drift time bin, and red line indicates the interpolation and extrapolation of that
data.
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of XY in cm, as shown below

S2xy-field-correction =
S2z-field-correction × S2E(xc, yc, z)

S2z-field-correction × S2E(xyz)
. (158)

where xc and yc are the x and y center of the detector in uncorrected coordinates

determined by taking the average position of the 83mKr events in each direction.

Figure 74: Two dimensional map of the XY dependence in 83mKr S2E data deter-
mine by fitting a Gaussian distribution to XY bins of the data and tracking the
mean of each fit.

We also take a separate, three dimensional approach to mapping the field ef-

fect in the 83mKr S2E data. In this approach the detector is divided into three

dimensional voxels, with X and Y width of 3.5 cm and Z width of 30 µs. As in

the one dimensional (Z) plus two dimensional (XY) case, a three dimensional map

of the field induced S2E pulse area variation is produced by fitting a Gaussian

distribution to the 83mKr S2E data in each voxel. A spline interpolation is used to

determine the S2E(xyz)/S2E(center) ratio between the three dimensional voxels,

and the S2E(xyz)/S2E(center) Z dependence map is used to extrapolate outside of
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the range of the voxels. The three dimensional map is used in the final analysis,

with the 1D plus 2D approach used for extrapolation purposes only.

7.2.4 Measuring the S1a and S1b Pulse Areas in 83mKr data

Now that we have measured the field effect in 83mKr S2 data from the 83mKr S2E

data at one point in time, we need to develop a method to track the field effect

in 83mKr S2 data at all points in time. To accomplish this we use the uncorrected

S1 pules area from the 32.1 keV and 9.4 keV decays within 83mKr events, referred

to as S1a and S1b respectively. As discussed in section 7.1.2, as the electric field

increases the amount of recombination decreases, leading to a smaller S1 signal.

The S1a decay is more sensitive to this effect due to its higher energy, leading to

a stronger field effect in the S1a data than in the S1b data. Therefore, an inverse

relationship exists between the strength of the field and the S1a/S1b ratio.

A MATLAB module is used to measure the size and location of the S1a and

S1b krypton decays [88]. It selects 83mKr event with an S2 pulse area pulse area

between 2000 to 60000 phe as measured by the bottom PMT array. The module

identifies S1 candidates that have pulse area above 10 phe (as measured by both

PMT arrays), such that each 83mKr event is defined to have exactly one candidate

S2 and at least one candidate S1. After the event selection is complete, a region of

interest (ROI) beginning at the first candidate S1 and ending at the start of the S2

(or after 150 samples) is defined. The ROI is then used to select sumpod (phd per

sample) data from the evt files within the ROI. This data is then fit to a double

exponential function which returns the pulse area and maximum fractional area of

the S1a and S1b peaks, as well as the time separation between them. (Figure 75)

The MATLAB module does not produce reasonable fit values for events in which
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the S1a and S1b decays are separated by less than 13 samples, so a cut requiring

the timing to be greater than this is used to clean up the output of the module.

(Figure 76)

Note that the correlation seen in Figure 76 is a result of both detector inef-

ficiencies and field effects. Detector inefficiencies induce a one-to-one correlation

between S1a and S1b. On the other hand, field effects cause S1a and S1b to vary

by differing amounts, introduce less of a correlation.

Figure 75: Sumpod versus time for a 83mKr in which a distinct S1a and S1b peak
have been observed. In this case, the fit finds an S1a area of 174 phe, an S1b area
of 64.5 phe, and a separation in time of 35 samples.
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Figure 76: (Top) The output of the S1a/S1b fitting module as a function of time
separation between the two decays. The red line indicates the 13 sample minimum
separation between the S1a and S1b events required by our cut in this analysis.
(Bottom) A scatter plot of all S1a and S1b pulse areas measured by the fitting
module (black) compared to the S1a and S1b pulse areas that are left after our
selection cut. (red) Data from lux10_20150929T1905_cp17540.
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7.2.5 Relating the S1a/S1b Ratio to S2 Field Effects

To relate the S1a/S1b ratio to the S2 field effects measured in section 7.2.3 we

begin by measuring the spatial dependence of the S1a/S1b ratio. We first divide

the detector into drift time bins of 3 µs width. A Gaussian distribution is fit to

the S1a and S1b spectrum of each bin to determine the mean pulse areas versus

Z. (Figure 77) A second order polynomial is fit to the ratio of the Gaussian means

versus Z and is used to determine the S1a/S1b ratio at any drift time in the

detector.

Figure 77: (Left) Gaussian distribution fits to the 83mKr S1a data that are used
to determine the drift time dependence of the S1a/S1b ratio. For illustrative
purposes, a drift time bin width of 60 µs was chosen for this plot. Similar fits
are performed on the S1b pulse area data. (Right) The Z dependence of the
83mKr S1a/S1b ratio. Black points indicate the S1a/S1b ratio as measured by the
Gaussian distribution fits for each drift time bin, and the red line indicates the
polynomial fit to this data. Data from lux10_20150929T1905_cp17540.

The XY dependence 83mKr S1a/S1b signal is found in a similar manner. We

first remove the z dependence of the S1a/S1b data by normalizing the polynomial

fit found above to the detector center (defined by taking the mean drift time

value of all 83mKr events above 4 µs drift time). We then divide the detector into

two dimensional XY bins with lengths of 3 cm on each side and fit a Gaussian
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distribution to the S1a and S1b data of each bin. The mean of the Gaussian

distribution from each bin is used to construct an S1a/S1b XY dependence map,

with a spline interpolation and extrapolation being used to determine the XY

dependence between and outside of the bins. (Figure 78) Both the one dimensional

(Z) and three dimensional methods will be used latter in the analysis, with close

agreement between either method.

We also take a separate, three dimensional approach to mapping the 83mKr

S1a/S1b ratio throughout the detector. In this approach the detector is divided

into three dimensional voxels, with X and Y width of 3.5 cm and Z width of 30 µs.

A three dimensional map of S1a/S1b is produced by fitting a Gaussian distribution

to the S1a and S1b pulse area spectrum in each voxel. A spline interpolation and

extrapolation is used to determine the S1a/S1b ratio between and outside of the

three dimensional voxels.

Finally, we relate the Z dependence, XY dependence, and three dimensional

dependence maps of the S1a/S1b ratio to the Z dependence, XY dependence, and

three dimensional dependence maps of the S2 field effect measured in section 7.2.3.

We choose to discard the XY dependence maps since no significant relationship is

found between them. (Figure 79) This lack of correlation is attributed to the Z de-

pendence of the electric field being much more dominant than the XY dependence

of the electric field.

A second order polynomial is fit to the spatial dependence of the 83mKr S2E

(induced by the field effect) to S1a/S1b relationship, with best fit parameters

of a = −0.499 ± 0.117,b = 1.48 ± 0.615, and c = 0.667 ± 0.946 for the second

order, first order, and zeroth order terms, respectively. This polynomial will be

used in KrypCal to determine the strength of the field effect in 83mKr S2 data at
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Figure 78: The XY dependence of the 83mKr S1a/S1b ratio determined by fitting
a Gaussian distribution to XY bins of the S1a and S1b data and tracking the mean
of each fit. The map does not extend to r=25 cm due to the squeezing effect of
the nonuniform electric field. Data from lux10_20150929T1905_cp17540.

all points in time. We find that the Z dependence and three dimensional maps

agree closely within the range of measured S1a/S1b ratios, but begin to diverge

in the extrapolated regions. (Figure 80) Because the electric field varies more in

September 2015 than at earlier times in Run4, and because the time variation of

the electric field has significantly slowed at times later than September 2015, we

expect the measured range of S1a/S1b ratios in this work will cover the majority

of S1a/S1b ratios that will ever be measured in Run4. Therefore, the discrepancy

in the extrapolation of each map is not concerning.
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Figure 79: The XY relationship of the 83mKr S1a/S1b ratio to the 83mKr S2E field
effect in lux10_20150929T1905_cp17540. A low correlation coefficient of 0.26 is
found in this data.
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Figure 80: The Z (dark red) and three dimensional (light red) relationship of the
83mKr S1a/S1b ratio to the 83mKr S2E field effect.
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7.2.6 Measuring the S1a/S1b Ratio to S1 Field Effect Relationship

with Recombination Physics

We have successfully measured the strength of the field effect in 83mKr S2 data at

one point in time, and have related it to the 83mKr S1a/S1b ratio such that we

can determine the strength of the field effect at any point in time. We are now left

with the challenge of measuring the strength of the field effect in 83mKr S1 data.

Our first approach will turn to the recombination physics that governs particle

interaction during a recoil event.

The strength of the field effect (normalized to the detector center) in 83mKr S2

data is given by the ratio of the inefficiency corrected S2E at a given position to

the inefficiency corrected S2E at the center of the detector, which was measured

in 7.2.3. This ratio can be written in terms of the recombination during a 83mKr

event (RKr) as follows

S2E,Kr(xyz)

S2E,Kr(center)
=

1−RKr(xyz)

1−RKr(center)
(159)

Note that this can be rewritten as an expression for the recombination during a

83mKr as a function of position,

RKr(xyz) = 1− S2E,Kr(xyz)

S2E,Kr(center)
(1−RKr(center)). (160)

Next, we write the strength of the field effect in 83mKr S1 data (normalized to

the detector center) as the ratio of the inefficiency corrected S1E signal at a given

position to the inefficiency corrected S1E signal at the center of the detector, which

we are unable to measure directly. In terms of the exciton to ion ratio (α) and the
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recombination during a 83mKr event (RKr) this is given by

S1E,Kr(xyz)

S1E,Kr(center)
=

α +RKr(xyz)

α +RKr(center)
=
α + 1− S2E,Kr(xyz)

S2E,Kr(center)
(1−RKr(center))

α +RKr(center)

(161)

where we have used equation 160 in the last step. Therefore, all we need to

measure the strength of the field effect on 83mKr S1 data is the recombination

during a 83mKr event at the center of the detector, given by RKr(center). As

mentioned in section 7.2.1, NEST does not simulate the physics of 83mKr events

well, but it has been tuned to simulate the physics of CH3T events. As such, we

once again turn to the CH3T data to determine the value of RKr(center). First,

we write the ratio of the efficiency corrected 83mKr S2E pulse area at the center

of the detector to the efficiency corrected CH3T S2E pulse are at the center of

the detector in terms of the S2 gain factor (g2), recombination during a 83mKr

event (RKr), recombination during a CH3T event (RH3), number of ions produced

during a 83mKr event (Nion−Kr), and number of ions produced during a CH3T

event (Nion−H3), given by

S2E,Kr(center)

S2E,H3(center)
=
g2(1−RKr(center))Nion−Kr

g2(1−RH3(center))Nion−H3

. (162)

This can be rewritten as an expression for the recombination of 83mKr at the center

of the detector given by

RKr(center) = 1− S2E,Kr(center)

S2E,H3(center)

Nion−H3

NionKr

(1−RH3(center)) (163)

where the gain factor g2 does not depend on energy, and therefore can be removed
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from the equation. The number of ions for both 83mKr events and CH3T events

is given by equations 146 and 147, with the assumption E = 41.55 keV for 83mKr

and E = 2.5 keV for CH3T, and the recombination at the center of the detector of

CH3T events (RH3) can be determined from NEST.

Using equations 161 and 163 we can convert the field effect measured in the

83mKr S2E data to an inferred field effect in 83mKr S1 data. The result of this

is shown in Figure 81. A χ2 fit to the expected CH3T and 83mKr energy spectra

returns an average reduced χ2 of 1.31, with a reduced χ2 of 248/124=2.00 for

CH3T alone (Figure 82), and a reduced χ2 of 16.2/26=0.622 for 83mKr alone using

the best fit parameters of g1 = 0.1 and EE = 0.89. (Figure 83) It is likely that

the complicated nature of the 83mKr decay introduces intricacies which are not

account for in equations 161 and 163. In the next section we will seek to improve

this result with a direct measurement of the S1a/S1b to S1 field effect relationship

before turning to a χ2 minimization method in section 7.2.9 to determine the

optimal field effect to S1a/S1b relationships.
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Figure 81: The Z (black) and three dimensional (grey) relationship of the 83mKr
S1a/S1b ratio to the 83mKr S1 field effect. The black and grey data points are not
measured, but instead inferred from the Z (dark red) and three dimensional (light
red) relationship of the 83mKr S1a/S1b ratio to the 83mKr S2E field effect.

Figure 82: The energy spectrum of the efficiency corrected CH3T data (red) after
utilizing the S1 field effect measurements from this section in September 2015 (left)
and February 2016 (right). The expected energy spectrum is shown in black.
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Figure 83: (Left) The energy spectrum of efficiency corrected 83mKr data in
September 2015 (red) and February 2016(blue) after utilizing the S1 field effect
measurements from this section in KrypCal. (Right) The Z dependence of the
83mKr energy peaks in September 2015 (red) and February 2016 (black) and the
expected energy (blue).

184



7.2.7 Measuring the S1a/S1b Ratio to S1 Field Effect Relationship

with the S1a Signal

The relative light yield of the 83mKr 32.1 keV decay, 83mKr 9.4 keV decay, and 57Co

122 keV decay has been measured as a function of the light yield at an applied

electric field divided by the light yield at zero electric field by Manalaysay, et al.

in reference [89]. (Figure 84) We can combine NEST predictions for the light yield

of the 122 keV 57Co line with the ratio of the light yield of the 32.1 keV 83mKr

line to the 122 keV 57Co line from reference [89] to convert the relative light yield

measurements to absolute light yield measurements. This results in an empirical

formula for the absolute light yield of the 83mKr 32.1 keV decay as a function of

electric field given by

γ

E
= 55.2[1− 0.0004895× F × ln (1 + 1/(8.9e−4× F ))] (164)

where γ is the number of photons, E is the energy of the decay in keV, and F is

the applied electric field in units of V/cm.

Using equation 164 we can directly measure the strength of the field effect in

the 83mKr S1 data and relate it to the S1a/S1b ratio. We begin by using the

electric field to S1a/S1b relationships shown in Figure 99, as well as the RvZ and

three dimensional electric field maps to estimate the electric field in the detector

in September 2015. The average of the three electric field maps is taken as the

measurement of the electric field, and the difference in each of the three electric

field maps is taken as a systematic error. The electric field map is converted to

a map of the expected light yield at 32.1 keV using equation 164, assuming no

detector inefficiency effects are present. The three dimensional spatial dependence
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of the light yield provides a direct measurement of the strength of the field effect in

the S1a data, given by γ(xyz)/γ(center). Note that the strength of the field effect

in the S1a data can help us derive the strength of the field effect in the combined

S1 data, but the two are not equivalent. Normalizing the field effect in the S1a

data to the center of the detector, as shown in equation 165, produces S1aF data

which has spatial variation due to detector inefficiency effects only.

S1aF = S1a
γ(center)

γ(xyz)
(165)

We measure the detector inefficiency effects in the S1aF data by dividing the

detector into three dimensional voxels with X and Y width of 7 cm and Z width of

47 µs. A Gaussian distribution is fit to the S1aF spectrum in each voxel, and the

Gaussian mean is used to determine the spatial dependence of the S1aF data due

to detector inefficiency effects alone. Since the detector inefficiency effects are not

dependent on the energy of an event, the spatial variation measured in the S1aF

data is equivalent to the spatial variation in the combined S1 data due to detector

inefficiency effects alone. Therefore, we can use the spatial variation measured in

the S1aF data to produce detector inefficiency corrected combined S1E data as

shown in the equation

S1E = S1
S1aF (center)

S1aF (xyz)
. (166)

Any residual spatial variation in the detector inefficiency corrected combined S1E

data is due to field effects in the combined 83mKr S1 data alone. We measure the

strength of these field effects by again dividing the detector into three dimensional

voxels with X and Y width of 7 cm and Z width of 47 µs. A Gaussian distribution is

fit to the S1E spectrum in each voxel, and the Gaussian mean is used to determine
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the spatial dependence of the S1aE data due to field effects alone. At the same

time, we use separate Gaussian distribution fits to the S1a and S1b data in each

voxel to measure the spatial dependence of the S1a/S1b ratio. Finally, we relate

the S1aE Gaussian mean to the S1a/S1b ratio of each voxel and fit a second order

polynomial which describes the strength of the field effect in the 83mKr combined

S1 signal to the data. (Figure 85)

Figure 84: Relative light yield of the 83mKr and 57Co decays defined as the light
yield at an applied field divided by the light yield at zero field. Historical data for
the 57Co relative light yield is shown by the grey diamond points. Dashed lines
correspond to fit parameters to the data.

We can use the direct measurement of the S1a/S1b ratio to S1 field effect

relationship measured in this section with the direct measurement of the S1a/S1b

ratio to S2 field effect relationship measured in section 7.2.5 to remove the field

effects in 83mKr data and produce detector inefficiency corrections via the methods

in section 7.3. The result of this is shown in Figure 86 and Figure 87. A χ2

fit to the expected CH3T and 83mKr energy spectra returns an average reduced
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Figure 85: The strength of the S1 field effect measured in this section (grey)
compared to the strength of the S1 field effect measured in section 7.2.9 (blue).
The large error bars on the data are due to systematic uncertainties in the field
maps detector inefficiency corrections.

χ2 of 2.22, with a reduced χ2 of 196/124=1.58 for CH3T alone, and a reduced

χ2 of 74.2/26=2.85 for 83mKr alone using the best fit parameters of g1 = 0.100

and EE = 0.76. The large systematic errors in the S1a/S1b ratio to field effect

relationships, introduced by uncertainties in the field maps and systematic errors

in the detector inefficiency corrections, lead to unoptimized energy spectra when

the two direct measurement results are combined. Therefore, we turn to a χ2

minimization method in section 7.2.9 to determine the optimal S1 field effect to

S1a/S1b relationship and S2 field effect to S1a/S1b relationship.
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Figure 86: The energy spectrum of the efficiency corrected CH3T data (red) after
utilizing the S1 field effect measurements from this section and the S2 field ef-
fect measurements from section 7.2.5 in September 2015 (left) and February 2016
(right). The expected energy spectrum is shown in black.

Figure 87: (Left) The energy spectrum of efficiency corrected 83mKr data in Febru-
ary 2016 (red) and September 2015(blue) after utilizing the S1 field effect mea-
surements from this section and the S2 field effect measurements from section 7.2.5
in KrypCal. (Right) The Z dependence of the 83mKr energy peaks in September
2015 (red) and February 2016 (black).

7.2.8 Expectation for G1

The process described in section 7.2.7 also yields an expectation for the value of g1

in Run4. First, we measure the mean of the S1a distribution at the center. This
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is equivalent to measuring the inefficiency corrected S1aE data given by

S1aE = S1a
S1aF (center)

S1aF (xyz)
(167)

since we normalize the detector inefficiency effects to the center of the detector.

Combining this measurement with equation 164, which predicts the number of

photons produced by a 32.1 keV decay at the center of the detector, provides a

prediction for the gain factor g1 given by

g1 =
S1a(center)

γ(center)
. (168)

The result of this prediction is g1=0.108 ± 0.010, where systematic errors from the

field map measurement and the parameters in equation 164 have been included in

the result. Note that this prediction is only one sigma below the optimal value of g1

found in the following section, showing consistency between the two measurements.

7.2.9 Measuring the S1a/S1b Ratio to S1 Field Effect Relationship

with χ2 Fitting Methods

Although field induced variation in the recombination of a 83mKr event can in-

troduce a spatial and time dependence in the 83mKr S1 and S2 signals, the total

energy signal given (with gain factors g1 and g2, and a W value of 1/73) by

E =

(
1

73

)(
S1E
g1

+
S2E
g2

)
(169)

should be insensitive to field variations. We can take advantage of this fact to

determine the optimal S1a/S1b to S1 field effect relationship corresponding to the
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directly measured S1a/S1b to S2 field effect relationship measured in section 7.2.5.

Since we desire an independent measurement of the S1 field effect, we do not want

to rely on the S1 field effect measurement from section 7.2.7 here. Instead, we

assume we do not have knowledge of the strength of the field effect in the 83mKr

S1 signal, so we can not remove the field effect from the data to produce the

efficiency-only corrected S1E signal. Likewise, without efficiency corrected data

we can not measure the gain factors g1 and g2 to produce a combined energy

spectrum. The only tools that we have at our disposal are a measurement of the

strength of the field effect in the 83mKr S2 signal and its relationship to S1a/S1b,

as well as the ability to produce efficiency only corrected 83mKr S2E data based on

to the spatial variation of field effect corrected 83mKr S2F data. In this section we

turn to a χ2 minimization approach which will float the S1 field effect to S1a/S1b

relationship, produce inefficiency corrections based on the field removed S1F and

S2F signals, and then float the gain factors g1 and g2 to produce an optimized

combined energy spectrum.

We begin by eliminating one of the three parameters associated with the second

order polynomial which describes the S1 field effect to S1a/S1b relationship. We

choose to normalize the spatial variation induced by the nonuniform electric field

to the center of the detector, so the strength of the field effect as measured by
S1E,Kr(xyz)

S1E,Kr(center)
must equal one at the center of the detector. Therefore, we can relate

one of the coefficients (a,b, and c) in the second order polynomial

S1E,Kr(xyz)

S1E,Kr(center)
= a

(
S1a

S1b

)2

+ b

(
S1a

S1b

)
+ c (170)
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to the other two, such that

c = 1− a
(
S1ac
S1bc

)2

− b
(
S1ac
S1bc

)
(171)

where S1ac and S1bc represent the values of S1a and S1b at the center of the

detector. Next, we scan over a range of a and b values and produce the S1E,Kr(xyz)

S1E,Kr(center)

to S1a
S1b

relationship for each pair of a and b values. We follow the procedure

described in section 7.3 and use the S1 field effect to S1a/S1b relationship from each

pair of a and b values, in conjunction with the S2 field effect S1a/S1b relationship

measured in 7.2.3, to produce efficiency-only corrections for CH3T data and 83mKr

data from September 2015 and February 2016. These corrections are used to

produce S2E and S1E data for all four data sets. We then scan over a range of g1

and extraction efficiency (EE) values and use the S2E and S1E data to produce a

combined energy spectrum (for each source) for each combination of a,b,g1, and

EE based on equation 169. Note that g2 = SE × EE, where SE is the single

electron size at the time of each data set.

To evaluate the performance of each a,b,g1, and EE combination we must de-

velop models for the expected energy spectra of CH3T and 83mKr data in Septem-

ber 2015 and February 2016. The 83mKr events consist of a mono-energetic 32.1

keV decay and a mono-energetic 9.4 keV decay. The expected energy spectrum

is a Gaussian distribution centered around the sum of these two mono-energetic

decays at 41.55 keV. The width of the Gaussian distribution depends on a number

of factors, including the detector’s efficiency for collecting S1 and S2 light, as well

as the spatial dependence of the recombination of 83mKr events induced by the

nonuniform electric field. While we can measure most of these parameters, we
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would have to feed them into NEST to determine the final width of the Gaussian

distribution. Since NEST does not simulate 83mKr events well, we can only use

the mean of the Gaussian distribution as a figure of merit for the 83mKr energy

spectrum.

Tritium beta decays with an energy spectrum that has a broad peak at 2.5 keV

and a smoothly falling distribution out to 18 keV. As with 83mKr, this spectrum

is smeared based on a number of parameters. Unlike 83mKr, the smearing in

CH3T data can be accurately determined by NEST so we can compare the energy

spectrum from data to simulations on a bin by bin basis.

For each a,b,g1, and EE combination a reduced χ2 for the CH3T and 83mKr

data is measured using the difference between the expected energy spectra and

measured energy spectra. During the 83mKr χ2 calculation, the energy spectrum is

from each point in time is divided into drift time bins so that the spatial dependence

of the energy spectrum is included in the χ2 measurement. The 83mKr data has

very high statistics, and only the mean of a Gaussian fit to the data is of interest,

so the variance used in the χ2 measurement is dominated by systematic error. We

use the standard deviation of the 83mKr energy spectrum over the duration of Run3

to evaluate the size of this systematic error, and find σ = 0.2395 keV. During the

CH3T χ2 calculation, the energy spectrum is divided into energy bins so that the

entire beta spectrum (above 3.5 keV to avoid the detector threshold) is included in

the χ2 measurement. The variance of the CH3T data is based on statistics alone,

due to finer binning and lower statistics of the data. We choose to define a total

reduced χ2 (to be minimized in the χ2 fit) as the average of the reduced χ2 for the

83mKr and CH3T data, so that each source carries the same amount of weight in the

fit. A minimum average reduced χ2 of 0.8413 is found for the best fit parameters of
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a = 0.065±0.0117,b = 0.020±0.060,g1 = 0.0980±0.001, and EE = 0.808±0.029.

The corresponding value of the zeroth order coefficient is c = 0.461 ± 0.186. The

reduced χ2 of the 83mKr and CH3T energy spectra separately are 12.17/26=0.4682

(p=0.99) and 150.6/124=1.2143 (p=0.05), respectively. Note that (as we will see

in section 7.4) the extraction efficiency needed to produce these results is consistent

with our expectations, and the results produce 83mKr energy peaks (unbinned in

drift time) that are within one sigma of the expected 41.55 keV in both September

2015 and February 2016.

Figure 88: (Left) The energy spectrum of 83mKr data in February 2016 (red) and
September 2015(blue) after determining the S1 field effect to S1a/S1b relationship
from the reduced χ2 method. The energy spectrum is expected to be a Gaussian
distribution centered around the black line. (Right) The Z dependence of the
83mKr energy peaks in September 2015 (red) and February 2016 (black).
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Figure 89: (Left) The energy spectrum of CH3T data in September 2015 (left) and
February 2016 (right) after determining the S1 field effect to S1a/S1b relationship
from the reduced χ2 method. The expected CH3T energy spectrum for each data
set is shown in black.

7.2.10 Summary of S1a/S1b Ratio to Field Effect Measurements

We have directly measured the strength of the field effect in 83mKr S2 data by re-

moving detector inefficiency effects from the data with the help of CH3T data. We

have also directly measured the strength of the field effect in 83mKr S1 data using

the expected light yield of the 83mKr S1 data 32.1 keV decay. Combining these

two direct measurement techniques does not produce satisfactory energy spectra.

Instead, we turn to χ2 optimization methods to find the optimal S1 field effect to

S1a/S1b relationship to pair with the direct S2 field effect measurement. We find

that the optimal S1 field effect found by a χ2 optimization agrees very closely with

our expectations from recombination physics. This promising result is bolstered

by the improvements in the corrected data discussed in section 7.4. We choose

to use the S2 field relationship measured in section 7.2.5 and the corresponding

optimal S1 field effect relationship measured in section 7.2.9 for our KrypCal work.
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The polynomials that describe these relationships are:

S2E,Kr(xyz)

S2E,Kr(center)
= −0.499

(
S1a

S1b

)2

+ 1.48

(
S1a

S1b

)
+ 0.667 (172)

S1E,Kr(xyz)

S1E,Kr(center)
= 0.065

(
S1a

S1b

)2

+ 0.020

(
S1a

S1b

)
+ 0.461 (173)

Figure 90: The S1a/S1b to field effect relationships measured in this work. The
method to measure each line is indicated by the color in the legend. Red shades
indicate measurements of the strength of the field effect in 83mKr S1 data, and
blue shades indicate the strength of the field effect in 83mKr S2 data. Solid lines
represent measurements that are used in KrypCal, and dashed lines represent
measurements that are supplementary cross checks.
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7.3 Producing Detector Inefficiency Corrections in KrypCal

Now that we have related the strength of the field effect in both 83mKr S2 and 83mKr

S1 data to the S1a/S1b ratio we can make use of these relationships to produce

detector inefficiency-only corrections during every 83mKr calibration. This process

is very similar to (and in some ways, the reverse of) the process to measure the

field effect in 83mKr S2 data. Nevertheless, we will describe the process here for

completeness and clarity.

7.3.1 Mapping S1a/S1b

For a 83mKr calibration at any point in time, we begin by measuring the Z and

XY dependence of the S1a/S1b ratio using the methods of section 7.2.4 and 7.2.5.

We first divide the detector into drift times bins with a width chosen such that

each bin has roughly 300 events. A Gaussian distribution is fit to the S1a and

S1b spectrum of each bin to determine the mean pulse areas versus Z. A second

order polynomial is fit to the ratio of the Gaussian means versus Z and is used to

determine the S1a/S1b at any drift time in the detector. The XY dependence of

the S1a/S1b signal is found in a similar manner.

We first remove the Z dependence of the S1a/S1b data by normalizing the

polynomial fit found above to the detector center (defined by taking the mean

drift time value of all 83mKr events above 4 µs drift time). We then divide the

detector into square, two dimensional XY bins with lengths defined such that each

bin has roughly 300 events, and fit a Gaussian distribution to the S1a and S1b

data of each bin. The mean of the Gaussian distribution from each bin is used

to construct an S1a/S1b XY dependence map, with a spline interpolation and
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extrapolation being used to determine the XY dependence between and outside of

the bins.

If the 83mKr data set has enough statistics (more than 100,000 S1a/S1b events

after cuts) a three dimensional S1a/S1b map is also constructed, and used in favor

of the Z and XY maps. The detector is divided into three dimensional voxels

with dimensions chosen such that each voxel has roughly 200 events. A three

dimensional map of S1a/S1b ratio is produced by fitting a Gaussian distribution

to the S1a and S1b pulse area spectrum in each voxel. A spline interpolation is

used to determine the S1a/S1b ratio between the three dimensional voxels, and

the S1a/S1b Z dependence map is used to extrapolate outside of the range of the

voxels.

7.3.2 Removing the field effect from 83mKr Data

We use the 83mKr S2 field effect to S1a/S1b relationship and S1 field effect to

S1a/S1b relationship measured in sections 7.2.3 and 7.2.9 to convert the Z, XY,

and three dimensional maps of S1a/S1b into field effect maps for both S1 and S2

data. The strength of the field effect is measured by S1E(xyz)
S1E(center)

and S2E(xyz)
S2E(center)

, so

that dividing by the strength of the field effect normalizes the raw 83mKr S1 and

S2 signals to the center of the detector and produces the field effect-only corrected

S1F and S2F signals, as shown in equations 174 and 175. (Figure 91)

S1F = S1× S1E(center)

S1E(xyz)
(174)

S2F = S2× S2E(center)

S2E(xyz)
(175)
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Figure 91: The three dimensional field effect in 83mKr S2 (black) and S1(red)
data versus drift time. The wide regions are areas in which the three dimensional
S1a/S1b maps are interpolated with a spline function, and the narrow regions are
areas in which the three dimensional S1a/S1b maps are extrapolated based on the
S1a/S1b Z dependence map.

7.3.3 Measuring Detector Inefficiencies

After removing the field effects from the 83mKr data we are ready to measure

the residual spatial pulse area variation due to detector inefficiencies alone. We

first measure the Z dependence of the S2F and S1F pulse areas by slicing the

detector into drift time bins with widths defined such that each bin has roughly

300 events. A Gaussian distribution is fit to the S2F and S1F spectra of each bin

to determine the location of the spectra maxima. (Figure 92 and Figure 93) In

the case of the S2F signal, a cubic interpolation is used to determine the S2F Z

dependence between each drift time bin, and a linear extrapolation based on the

first and last 20% of Gaussian distribution data points is used to determine the

S2F Z dependence above and below the span of the drift time bins.

A detector inefficiency correction for the Z direction is defined by taking the
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ratio of the S2F pulse area at a height of 4 µs (just below the liquid surface) to

the S2F pulse area as a function of Z as described in the equation

S2z-efficiency-correction =
S2F (z = 4)

S2F (z)
. (176)

In the case of the S1F signal, a second order polynomial is used to determine

the S1F Z dependence between and outside of each drift time bin. A detector

inefficiency correction for the Z direction is defined by taking the ratio of the S1F

pulse area at the center of the detector (zc as defined by the average drift time of

83mKr) to the S1F pulse area as a function of Z as described in the equation

S1z-efficiency-correction =
S1F (zc)

S1F (z)
. (177)

Figure 92: (Left) Gaussian distribution fits to the field corrected S2F data that are
used to determine the drift time dependence of the S2F pulse area. For illustrative
purposes, a drift time bin width of 60 µs was chosen for this plot. (Right) The
Z dependence of the S2F pulse area after field effects are removed. Black points
indicate the maximum of Gaussian distribution fits for each drift time bin, and
the red line indicate the interpolation and extrapolation of that data.

The XY dependence of the field removed S2F and S1F signals are found by
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Figure 93: (Left) Gaussian distribution fits to the field corrected S1F data that are
used to determine the drift time dependence of the S1F pulse area. For illustrative
purposes, a drift time bin width of 60 µs was chosen for this plot. (Right) The
Z dependence of the S1F pulse area after field effects are removed. Black points
indicate the maximum of Gaussian distribution fits for each drift time bin, and
red line indicates the second order polynomial fit to that data.

dividing the z inefficiency corrected (S2F × S2z-efficiency-correction and S1F ×

S1z-efficiency-correction) data into two dimensional XY bins with lengths defined

such that each bin has roughly 300 events, and then fitting Gaussian distributions

to the data of each bin. The mean of the Gaussian distribution from each bin is

used to construct S2F and S1F XY dependence maps, with a spline interpolation

and extrapolation being used to determine the XY dependence between and outside

of the bins. (Figure 94) A detector inefficiency correction for the XY direction is

defined by taking the ratio of the z inefficiency corrected S2F (or S1F ) pulse area

at the center of the detector to the z inefficiency corrected S2F (or S1F ) pulse area

as a function of XY in cm, as shown below

S2xy-efficiency-correction =
S2z-efficiency-correction × S2F (xc, yc, z)

S2z-efficiency-correction × S2F (xyz)
(178)

S1xy-efficiency-correction =
S1z-efficiency-correction × S1F (xc, yc, z)

S1z-efficiency-correction × S1F (xyz)
. (179)
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where xc and yc are the x and y center of the detector in uncorrected coordinates

determined by taking the average position of the 83mKr events in each direction.

Figure 94: (Left) Two dimensional map of the XY dependence in 83mKr S2F data
determine by fitting a Gaussian distribution to XY bins of the data and tracking
the mean of each fit.(Right) Two dimensional map of the XY dependence in 83mKr
S1F data determine by fitting a Gaussian distribution to XY bins of the data and
tracking the mean of each fit.

To apply these S1 and S2 efficiency corrections to data at any time, we must

interpolate between the corrections in time. The S2E XY, S1E Z, and S1E XY

efficiency corrections are not expected to change rapidly in time, so a simple nearest

neighbor interpolation is used to apply these efficiency corrections to data sets

at any point in time. However, the S2E Z dependence is expected to change

rapidly in time due to the sudden changes in xenon purity introduced by detector

operations. To account for this, we find the 83mKr calibration taken immediately

before and after a particular data set which the detector efficiency corrections are

being applied to. A weighted average of the 83mKr S2E Z dependence splines, with

weights based on the time between each 83mKr calibration data set and the data set

being corrected, is used to defined a time interpolate S2E Z dependence correction.

Multiplying the raw S2 and S1 signals of any data set by the time-interpolated Z
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and the XY correction factors results in inefficiency corrected S2E and S1E signals

(with field effects still present).

S2E = S2× S2xy-efficiency-correction × S2z-efficiency-correction (180)

S1E = S1× S1xy-efficiency-correction × S1z-efficiency-correction (181)

7.3.4 Additional Output from the Corrections Module: Electron Life-

time

The S2F Z dependence is not expected to be exponential in a nonuniform drift

field due to the drift velocity dependent absorption cross section. Nonetheless,

it is still useful to define an approximate electron lifetime to track the purity of

the detector’s xenon over time. Two approaches have been taken in this regard.

The first approach is to treat the S2F Z dependence as approximately exponential

anyway and quote the exponential decay constant as the lifetime, regardless of the

quality of the fit. Due to the increasing strength of the field this approximation

worsens over time. (Figure 95) The second approach to measuring the electron

lifetime is to define a pseudo-lifetime from the S2F Z dependence by fitting an

exponential to the S2F mean just below the liquid surface (at 4 µs) and just above

the cathode (at 320 µs). While this approach avoids any issues with poor fits, it

also neglects the S2F Z dependence in the bulk of the detector. Note that the

actual corrections use a spline fit to the S2F Z dependence, and therefore avoid

any issues in defining an exponential lifetime.
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Figure 95: (Left) A reasonable exponential fit to the S2F Z dependence in Septem-
ber 2014 (Right) A poor exponential fit to the S2F Z dependence in January 2016.
The higher field variation leads to a worse fit due to the drift velocity dependence
of the absorption cross section.

Figure 96: The electron lifetime over Run4 found by fitting an exponential to the
S2F Z dependence. Red areas indicate circulation outages. At high lifetimes the
S2F Z dependence is less exponential, and the small fraction of electrons that are
lost is harder to measure, leading to larger errors on the measurement.
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7.3.5 Additional Output from the Corrections Module: Single Elec-

tron Size

Changes in the detector pressure, temperature, and liquid levels can cause the

single electron size in the detector to vary over time. These variations introduce

variations in the size of g2, so it is necessary to track the single electron size in each

83mKr calibration data set. In particular, we are interested in the single electron

size at the center of the detector, since the field effects do not impact the result

and the detector inefficiency effects are normalized to the center.

We select a population of clean events by requiring 100 samples between the

first S1 of a 83mKr event and the single electron associated with it. We then take

two approaches to measure the single electron size at the center of the detector. In

the first approach, we measure the single electron size by fitting a skew Gaussian

distribution to the single electron pulse area spectrum within the radius at which

the single electron size begins to decay at the edges of the detector. (Figure 97) In

Run4, this radial limit is r<17 cm. In the second approach, we slice the detector

into XY bins with widths determined such that each bin has roughly 100 single

electron events. A skew Gaussian distribution is fit to the single electron spectrum

of each bin, and a XY map of the single electron size is constructed. The value

of the single electron size at the center of the detector is found with a spline

interpolation of the XY dependence map. (Figure 98) These two methods agree

within 1%.
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Figure 97: The result of our first approach for measuring the single electron size
at the center of the detector. We perform this measurement for every 83mKr data
set. In this particular example from September 03, 2014 the single electron size is
found to be 27.23 ± 0.044.

Figure 98: The XY dependence of the single electron size used in our second
approach for measuring the single electron size at the center of the detector. We
perform this measurement for every 83mKr data set. In this particular example
from September 03, 2014 the single electron size is found to be 27.40 ± 0.31.
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7.3.6 Additional Output from the Corrections Module: Electric Field

Maps

Due to the time variation of the electric field in Run4 it is clearly important to

measure the electric field in each 83mKr calibration data set. To accomplish this,

we relate the RvZ field maps in September 2014 and September 2015 to the RvZ

dependence of the S1a/S1b ratio during the same points in time (Figure 99). In

September 2014, the best fit polynomial for this relation is

Field (V/cm) = (711±100)

(
S1a

S1b

)2

+(−4788±530)

(
S1a

S1b

)
+(7948±704) (182)

In September 2015, the best fit polynomial for this relation is

Field (V/cm) = (1169± 120)

(
S1a

S1b

)2

+ (−7128± 631)

(
S1a

S1b

)
+ (10900± 824)

(183)

Although the measured S1a/S1b to electric field relationship is similar between the

two datasets, the estimate of the field differs depending on which relationship is

used. We choose to use the average result of the two relationships for the reported

field strength, and take the difference between them as a systematic error. (Figure

100
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Figure 99: The S1a/S1b to field strength relationship measured in September 2014
(red) and September 2015 (black).

Figure 100: (Left) R2vZ map of the electric field on September 03, 2014 as mea-
sured by KrypCal (Right) R2vZ map of the systematic error in the electric field
measurement on September 03, 2014.

208



7.4 Results of the KrypCal Corrections

In this section we will cover a number of metrics which have been used to determine

how well the KrypCal corrections are working in Run4. A version of KrypCal

which does not acknowledge the spatial and time dependent field in Run4 (similar

to what we did in Run3) has been produced for comparison of each metric.

7.4.1 Energy Spectra

The χ2 method presented in section 7.2.9 finds an average total reduced χ2 of

0.8413 for the CH3T and 83mKr energy spectra, with a reduced χ2 of 150.6/124=1.2143

(p=0.05) for CH3T alone and a reduced χ2 of 12.17/26=0.4682 (p=0.99) for 83mKr

alone. The resulting 83mKr energy spectra (unbinned in drift time) from Septem-

ber 2015 and February 2016 are shown in figure 101. The Gaussian means differ

from the expected 41.55 keV by less than one sigma, and the reduced χ2 based on

the Z dependence of the Energy spectra returns a p-value of 0.99.

Figure 101: (Left) The energy spectrum of 83mKr data in September 2014 (red) and
September 2015(blue) after determining the S1 field effect to S1a/S1b relationship
from the reduced χ2 method. The energy spectrum is expected to be a Gaussian
distribution centered around the black line. (Right) The Z dependence of the
83mKr energy peaks in September 2014 (red) and September 2015 (black).
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The CH3T energy spectra from calibrations in September 2014, November 2014,

February 2015, September 2015, and February 2016 are shown in figure 102. The

fractional difference between the expected CH3T spectrum and the CH3T is shown

below each energy spectrum. Fractional residuals of up to 3 σ are comparable to

our CH3T results from Run3.

A version of 83mKr which does not acknowledge the spatial and time dependent

field in Run4 produces the 83mKr energy spectra shown in Figure 103 and the CH3T

energy spectra shown in Figure 104. This version of KrypCal produces corrections

that normalize the 83mKr S1 and S2 signals everywhere in the detector, regardless of

whether the variation is induced by field effects or detector inefficiency. An optimal

value of g1 = 0.100± 0.001 and extraction efficiency of EE= 1.08± 0.030 is found

by an energy spectrum χ2 fit. This optimal value of the extraction efficiency is

40%-80% higher than our expectations based on Guschin data and our extraction

field strength, and exceeds 100%. Even with the unreasonably high extraction

efficiency, the 83mKr and CH3T energy spectra produce a worse average reduced

χ2 of 1.12 for the 83mKr and CH3T energy spectra when compared to the expected

energy spectra, with a reduced χ2 of 10.06/26=0.3869 for 83mKr alone, and a

reduced χ2 of 230.2/124=1.8562 for CH3T alone.
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Figure 102: The September 2014, November 2014, February 2015, September 2015,
and February 2016 CH3T energy spectra resulting from KrypCal corrections. The
bottom panels show the fractional residuals.
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Figure 103: (Left) The energy spectrum of 83mKr data in February 2016 (red) and
September 2015(blue) using a version of KrypCal that does not properly account
for field effects. The energy spectrum is expected to be a Gaussian distribution
centered around the black line. (Right) The Z dependence of the 83mKr energy
peaks in September 2015 (red) and February 2016 (black) using the same version
of KrypCal.

Figure 104: (Left) The energy spectrum of CH3T data in September 2015 (left) and
February 2016 (right) using a version of KrypCal that does not properly account
for field effects. The expected CH3T energy spectrum for each data set is shown
in black.

7.4.2 Energy Threshold

The Run4 energy threshold calculated by comparing the expected CH3T energy

spectrum to the measured CH3T energy spectrum in September 2014, November

2014, February 2015, September 2015, and February 2016 is shown in Figure 105.
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The 50% efficiency measurements are shown in Table 7. The average detector

threshold of 1.19 ± 0.64 keV is consistent with libNEST expectation of 1.29 ±

0.17 keV, which was measured by comparison of the tritium beta spectrum input

to the libNEST energy output.

Date 50% Threshold (keV)

September 2014 1.11 ± 1.07

November 2014 1.17 ± 0.38

February 2015 1.25 ± 0.23

September 2015 1.22 ± 0.22

February 2016 1.21 ± 0.52

Table 7: The energy threshold calculated from the CH3T spectrum on different
dates.
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Figure 105: The September 2014, November 2014, February 2015, and September
2015 energy thresholds resulting from KrypCal corrections.
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7.4.3 G1 and EE

The χ2 method presented in section 7.2.9 finds best fit values of g1 = 0.098±0.001

and EE = 0.808±0.029. This is consistent with our expectations of an extraction

efficiency between 0.6 and 0.8, based on our extraction field models and the Run4

liquid level, and is much better than the g1 = 0.100±0.001 and EE = 1.08±0.030

result found in section 7.4.1. (Figure 106) Likewise, the best fit value of g1 is

within one sigma of our expectation of g1=0.108 ± 0.010 found in section 7.2.8.

Figure 106: The expected extraction efficiency based on Scott’s RvZ field map.
The expectation is derived from a Guschin curve, and is dependent on the height
of the liquid above the gate. The exact liquid level in Run4 is currently unknown,
so a range of possible values is depicted.
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7.4.4 Lifetime Estimates

The nonuniform field in the LUX detector produces higher recombination of 83mKr

events in the bottom of the detector. This results in an attenuation of the 83mKr S2

signal that is directly proportional to drift time. This effect mimics the attenuation

of the 83mKr S2 signal produced by impurities capturing charge as it drift to the

top of the detector. As a result, when field effects are not properly accounted for

in a 83mKr calibration the electron lifetime is drastically underestimated, resulting

in an over correction of all S2 signals in the detector. This problem is rectified

in the Run4 version of KrypCal, which measures higher values of electron lifetime

after the field effects have been properly separated from the detector inefficiency

effects. The higher values of electron lifetimes have been confirmed by a separate,

low energy 37Ar injection performed at the end of LUX.

Figure 107: (Left) The electron lifetime measurement for a particular data set
when field effects are not properly accounted for. (Right) The electron lifetime
measurement for the same data set when field effects are properly separated from
detector inefficiency effects.
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7.4.5 Energy Resolution

The energy spectra of xenon activation peaks found in neutron generator calibra-

tion data sets is shown in Figure 108. Using KrypCal corrections, we find an

energy peak at each of the expected xenon activation lines. An unreasonably high

extraction efficiency of 108% is required for the xenon activation peaks to appear

at their correct energies, and the resolution of the peaks is worsened. For refer-

ence, the energy resolution of each of the xenon activation peaks, as well as for the

83mKr peaks are included in Table 8 (version which does not account for field ef-

fects properly) and Table 9 (version which does account for field effects properly).

Together, these energy spectra results confirm improved energy reconstruction and

energy resolution ranging from 1.36 keV to 275 keV.

Figure 108: (Left) The xenon activation energy spectra from October 2015 result-
ing from corrections which do not properly account for field effects. (Right) The
xenon activation energy spectra from the same data sets resulting from corrections
which do properly account for field effects.

Source Mean (keV) Sigma (keV) Energy Resolution

129Xe (40 keV) 40.8 ± 0.55 4.33 ± 0.55 0.106 ± 0.014

131Xe (80 keV) 87.3 ± 4.49 12.1 ± 5.51 0.139 ± 0.064
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131Xe (164 keV) 160.6 ± 0.52 9.56 ± 0.55 0.060 ± 0.003

129Xe (236 keV) 230.5 ± 1.17 11.7 ± 1.35 0.051 ± 0.006

125Xe (275 keV) 273.6 ± 2.05 6.93 ± 2.68 0.025 ± 0.010

Sep2014 83mKr (41.55 keV) 41.42 ± 0.024 2.64 ± 0.024 0.0638 ± 0.0006

Sep2015 83mKr (41.55 keV) 41.46 ± 0.023 2.63 ± 0.023 0.0635 ± 0.0006

Table 8: The mean, width, and energy resolution of Gaussian fits to the the DD
and 83mKr energy peaks based on a version of KrypCal which does not account for
field effects properly.

Source Mean (keV) Sigma (keV) Energy Resolution

129Xe (40 keV) 40.9 ± 0.54 4.25 ± 0.53 0.104 ± 0.013

131Xe (80 keV) 86.4 ± 1.24 8.65 ± 1.45 0.100 ± 0.017

131Xe (164 keV) 161.2 ± 0.43 7.78 ± 0.44 0.048 ± 0.003

129Xe (236 keV) 230.3 ± 0.83 10.3 ± 0.90 0.045 ± 0.004

125Xe (275 keV) 273.6 ± 1.58 7.24 ± 2.14 0.027 ± 0.008

Sep2014 83mKr (41.55 keV) 41.40 ± 0.022 2.62 ± 0.022 0.0630 ± 0.0005

Sep2015 83mKr (41.55 keV) 41.60 ± 0.021 2.62 ± 0.021 0.0632 ± 0.0005

Table 9: The mean, width, and energy resolution of Gaussian fits to the the DD
and 83mKr energy peaks based on a version of KrypCal which does account for
field effects properly.

7.4.6 Nuclear Recoil Band

Nuclear recoils are much less sensitive to field variation effects in the detector,

so if we were to see a significant spatial dependence in the NR band it would
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indicate a flaw in the corrections. As expected, the results of the KrypCal NR

band calibration in October 2014 show very little spatial dependence in the NR

band. (Figure 109) The result of the same calibration using a version of KrypCal

which does not properly account for field effects is also shown in Figure 109. The

underestimate of the electron lifetime and subsequent over correction of the S2

data produces a non-physical z dependence in the NR band.

Figure 109: (Left) The Z dependence of the NR band mean using a version of
KrypCal which does not properly account for field effects. (Right) The Z depen-
dence of the NR band mean from the same datasets using a version of KrypCal
which does properly account for field effects.

7.4.7 Electron Recoil Band

The electron recoil band that results from KrypCal corrections should have signif-

icant spatial and time dependence due to the recombination variation induced by

the nonuniform electric field remaining in the data.

The corrected ER band calibration data from September 2015 was divided into

three dimensional voxels with a Z height of 86 µs and an X and Y width of 16 cm.

We see a 16% spatial variation of the ER band in September 2015 (at S1=20 phd),

which is close to the libNEST prediction of a 13% spatial variation (at S1=20 phd).
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We also observe a ∼1% variation in time for the total ER band over the duration

of Run4. (Figure 110) The relative size of the spatial and time dependence of

the ER band is consistent with expectations, since the spatial dependence of the

electric field is stronger than the time dependence of the electric field.

Figure 110: (Left) The spatial variation of the KrypCal corrected ER band from
September 2015. The black band represents the total, unbinned ER band and the
grey bands represent the ER band from each voxel. (Right) The time dependence
of the total, unbinned ER band as measured by the KrypCal corrected data at
four points in time.

The variation in the ER band, although expected, is not ideal for detector

calibrations since we would like to know what the ER band is at all points in

time. To achieve this goal, we have related the ER band power law parameters

to the S1a/S1b ratio in voxels from September 2015. We observe the polynomial

relationships shown in Figure 111. We then use these measured relationships to

reconstruct the ER band from the February 2015, September 2015, and February

2016 ER band calibrations from measurements of S1a/S1b alone. Each of the

inferred bands are at most 3% different than the ER band measured in data, and

all of the inferred bands have χ2 results that return p=1. Although the spatial

dependence of the Monte Carlo bands is not shown, the spatial dependence of each
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ER band calibration is reproduced within 2% with p-values close to 1.

Figure 111: (Left) The measured relationship between S1a/S1b and the ER band
power law exponent. (Right) The measured relationship between S1a/S1b and the
ER band power law coefficient. The light blue region indicates one σ uncertainties
on each fit.

Figure 112: Monte Carlo data for the February 2015 ER band generated from
S1a/S1b using the relationship found in Figure 111. A fit to the Monte Carlo data
is shown in blue, and a fit to the actual calibration data (not shown) is shown in
red.
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Figure 113: Monte Carlo data for the September 2015 ER band generated from
S1a/S1b using the relationship found in Figure 111. A fit to the Monte Carlo data
is shown in blue, and a fit to the actual calibration data (not shown) is shown in
red.

Figure 114: Monte Carlo data for the February 2016 ER band generated from
S1a/S1b using the relationship found in Figure 111. A fit to the Monte Carlo data
is shown in blue, and a fit to the actual calibration data (not shown) is shown in
red.
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7.5 Conclusions

LUX Run4 data is complicated by a nonuniform electric field in the detector. The

variation of the electric field in space and time produces variation in the recombi-

nation of S1 and S2 events as a function of energy, time, space, and recoil type. If

this recombination variation is not properly separated from detector inefficiency ef-

fects in 83mKr data, the KrypCal corrections produce data which has poor energy

reconstruction with unreasonably high extraction efficiency estimates, worsened

energy resolution, and widened ER bands. We have developed multiple methods

to relate the strength of the field effect in S1 and S2 data to the 83mKr S1a/S1b ra-

tio. These two relationships can be used to separate the field effects from detector

inefficiency effects prior to producing KrypCal corrections from 83mKr calibrations

taken at any point in time. This process results in better energy reconstruction

with g1 and extraction efficiency values close to our expectations, improved energy

resolution, and improved ER band width. However, since the field effects remain

in the corrected data, a spatial and time dependence remain in the corrected S1

and S2 signal, leading to complications in calibrating the corrected ER band over

time.
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8 Beyond LUX

8.1 Future LUX Analyses

The LUX experiment finished collecting WIMP search data in May 2016. The

results of the spin-independent dark matter search will be submitted to Physical

Review Letters, opening new directions for data analysis and science results [11].

In particular, the existing data can be used to search for exotic dark matter inter-

actions, such as the inelastic scattering of dark matter on atomic nuclei.

The initial LUX analysis was optimized to search for the elastic scattering of

dark matter with nuclear recoil energies less than 30 keV. This low energy cut-off

hinders the search for most exotic dark matter interactions, and much of the future

analysis will require a measurement of the high energy nuclear and electron recoil

yields in liquid xenon. A 14C methane calibration source, which was designed

based on the work in Chapter 4, has been injected in an end-of-LUX calibration

campaign and can provide the latter half of these yield measurements.

8.2 Signal Corrections in the LZ Detector

To continue the search for dark matter, a new direct detection experiment known

as LZ is under construction. The detector is designed for a WIMP-nucleon cross

section sensitivity of ∼ 2 × 10−48 cm2, improving the world leading limits set by

LUX by two orders of magnitude. The LZ design has been embraced by the dark

matter community and the US funding agencies, and is scheduled to collect data

in 2020.

The 83mKr calibration source used to produce signal corrections in Chapter 5
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has a short 1.86 hour half life that may prevent uniform mixing throughout LZ’s

fiducial volume. To circumvent this issue, the LZ collaboration is developing a

131mXe calibration source. The 164 keV mono-energetic decay of 131mXe, as well as

its longer 11.9 day half life, allow the methods of Chapter 5 to be applied, resulting

in pulse area corrections for the entire LZ fiducial volume. However, the higher

energy of the decay will begin to saturate the LZ PMT arrays, and introduce

additional systematic uncertainties if the LZ drift field is non-uniform.

Although a lack of natural mixing would make 83mKr undesirable as a weekly

calibration source, a thermal gradient could be applied with the detector’s heaters

to induce convection in a one time 83mKr calibration campaign. This would allow

measurement of the saturation effects in 131mXe data via comparison to contempo-

raneous 83mKr data, and provide direct measurement of the drift field throughout

the detector via the techniques discussed in Chapter 7.

8.3 Calibrations of the LZ Detector

The CH3T calibration source described in Chapter 4 will be used to measure the

electron recoil response of LZ. Similarly, the energy scale calibrations discussed in

Chapter 6 are directly applicable to LZ. The mono-energetic peaks from activation

lines, as well as the 83mKr and 131mXe calibration sources, can produce an LZ Doke

plot, and the tritiated methane and 14C methane sources can confirm the gain

measurements.
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