User's Guide for FSQP Version 2.0
A Fortran Code for Solving Optimization
Problems, Possibly Minimax, with General
Inequality Constraints and Linear Equality
Constraints, Generating Feasible Iterates

by J. Zhou and A.L. Tits

TECHNICAL
RESEARCH
REPORT

SYSTEMS

C ENTE R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-60r1

User’s Guide for FSQP Version 2.0
A Fortran Code for Solving Optimization Problems,

Possibly Minimax, with General Inequality Constraints and
Linear Equality Constraints, Generating Feasible Iterates!

Jian Zhou and André L. Tits

Electrical Engineering Department
and
Systems Research Center

University of Maryland, College Park, MD 20742
Abstract

FSQP 2.0 is a set of Fortran subroutines for the minimization of the maximum of a set
of smooth objective functions (possibly a single one) subject to nonlinear smooth inequality
constraints, linear inequality and linear equality constraints, and simple bounds on the vari-
ables. If the initial guess provided by the user is infeasible, FSQP first generates a feasible
point; subsequently the successive iterates generated by FSQP all satisfy the constraints.
The user has the option of requiring that the maximum value among the objective functions
decrease at each iteration after feasibility has been reached (monotone line search). He/She
must provide subroutines that define the objective functions and constraint functions and
may either provide subroutines to compute the gradients of these functions or require that
FSQP estimate them by forward finite differences.

FSQP 2.0 implements two algorithms based on Sequential Quadratic Program-
ming (SQP), modified so as to generate feasible iterates. In the first one (monotone line
search), a certain Armijo type arc search is used with the property that the step of one
is eventually accepted, a requirement for superlinear convergence. In the second one the
same effect 1s achieved by means of a (nonmonotone) search along a straight line. The merit
function used in both searches is the maximum of the objective functions.

1This research was supported in part by NSF’s Engineering Rescarch Centers Program No. NSFD-CDR-
88-03012, by NSF grant No. DMC-88-15996 and by a grant from the Westinghouse Corporation.

Conditions for External Use

1. The FSQP routines may not be distributed to third parties. Interested parties should
contact the authors directly.

™o

If modifications are performed on the routines, these modifications will be commu-

nicated to the authors. The modified routines will remain the sole property of the
authors.

3. Due acknowledgment must be made of the use of the FSQP routines in research reports

or publications. A copy of such reports or publications should be forwarded to the
authors.

4. The FSQP routines may not be used for commercial applications, unless this has been
agreed upon with the authors in writing.

Fnquiries should be directed to

Prof. André L. Tits
Electrical Engineering Dept.
and Systems Research Center
University of Maryland
College Park, Md 20742

U. S, A.

Phone : 301-405-3669
Fax : 301-405-6707

E-mail: andre@cacse.src.umd.edu

Contents

1

2

3

Introduction

Description of the Algorithms

Specification of Subroutine FSQPD 2.0
Description of the Output

User-Supplied Subroutines

Organization of FSQPD and Main Subroutines
Examples

Results for Test Problems

Acknowledgment

Refereces

12

14

17

18

25

26

29

User’s Guide for FSQP 1

1 Introduction

FSQP (Feasible Sequential Quadratic Programming) 2.0 is a set of Fortran subroutines for
the minimization of the maximum of a set of smooth objective functions (possibly a single
one) subject to nonlinear inequality constraints, linear inequality and equality constraints,
and simple bounds on the variables. Specifically, FSQP tackles optimization problenms of the
form

(P) min max {fi(z)} st. z€X

1=1,...,nf

where X is the set of point z € R" satisfying

bl <z <bu
gi(x) <0, j=1,....n
gi(x)={cjinx) —dj_n, <0, J=mn;+1,....4

(aj,z)y =b; j=1,....1

with ol € R*; bu € R*; a; € R*, b; € R, j =1,...,0; fi: " — R, 1 =1,...,n; smooth;
gi R — R, 7 =1,...,n; nonlinear and smooth; ¢; € R*, d; € R, j =1,...,{, —n,.

If the initial guess provided by the user is infeasible, FSQP first generates a feasible point.
Subsequently the successive iterates generated by FSQP all satisfy the constraints. The user
has the option of requiring that the maximum value of the objective functions decrease
at each iteration after feasibility has been reached. He/She must provide subroutines that
define the objective functions and constraint functions and may either provide subroutines
to compute the gradients of these functions or require that F'SQP estimate them by forward
finite differences.

FSQP 2.0 implements two algorithms that are described and analyzed in [1] and [2], with
some additional refinements. These algorithms are based on a Sequential Quadratic Pro-
gramming (SQP) iteration, modified so as to generate feasible iterates. The SQP direction
is first “tilted” to yield a feasible direction, then possibly “bent” to ensure that close to a
solution the step of one is accepted, a requirement for superlinear convergence. The merit
function used in this arc search is the maximum of the objective functions. An Armijo-type
line search is always selected to generate an initial feasible point when required. After ob-
taining feasibility, either (2) an Armijo-type line search may be used, yielding a monotone
decrcase of the maximum of the objective functions at each iteration[l]; or (#!) a nonmono-
tone line search (inspired from [3] and analyzed in [2] in this context) may be selected, forcing
a decrease of the maximum value of the objective functions within at most four iterations.
The latter achieves superlinear convergence with no bending of the search direction, thus
avoiding function evaluations at auxiliary points and subsequent solution of an additional
quadratic program.

User's Guide for FSQP

o

FSQP 2.0 invokes the quadratic programming routine QPSOL [4] which the user must
provide.

2 Description of the Algorithms

The algorithms described and analyzed in [1] and [2] are as follows. In both algorithms,
given a feasible iterate 2, the basic SQP direction d° is first computed by solving a standard
quadratic program using a positive definite estimate / of the Hessian of the Lagrangian. "
is a direction of descent for the objective function and is almost feasible in the sense that it
18 at worst tangent to the feasible set.

In [1], an essentially arbitrary feasible descent direction d* = d'(z) is then computed.
Then for a certain scalar p = p(z) € [0, 1], a feasible descent direction d = (1 — p)d® + pd'
is obtained, asymptotically close to d°. Finally a second order correction d = d(z, H) is
computed, involving auxiliary function evaluations at = + d, and an Armijo type scarch is
performed along the arc & + td + t2d. The purpose of d is to allow a full step of one to be
taken close to a solution, thus allowing superlinear convergence to take place. Conditions are
given in [1] on d*(-), p(-) and J(, -) that result in a globally convergent, locally superlinear
convergent algorithm.

The algorithm in [2] is somewhat more sophisticated. An essential difference is that
while feasibility is still required, the requirement of decrease of the max objective value
is replaced by the weaker requirement that the max objective value at the new point be
lower than its maximum over the last four iterates. The main payoff is that the auxiliary
function evaluations can be dispensed with, except possibly at the first few iterations. First
a direction d! = d'(x) is computed, which is feasible even at Karush-Kuhn-Tucker points.
Then for a certain scalar p* = p*(x) € [0,1], a “local” feasible direction d* = (1 — p*)d° + p*d"
is obtained, and at = + d* the objective functions are tested and feasibility is checked. If the
requirements pointed out above are satisfied, r + d* is accepted as next iterate. This will
always be the case close to a solution. Whenever z + d° is not accepted, a “global” [easible
descent direction d? = (1 — p?)d° + p?d* is obtained with p? = p9(x) € [0, p*]. A second order
correction d = d(z, H) is computed the same way as in [1], and a “nonmonotone” search
is performed along the arc x + td? + t2d. Here the purpose of d is to suitably initialize the
sequence for the “four iterate” rule. Conditions are given in [2] on d'(-), p*(:), p?(-), and
d(-,-) that result in a globally convergent, locally superlinear convergent algorithm.

The FSQP implementation corresponds to a specific choice of these functions, with some
modifications as follows. If the first algorithm is used, d' is computed as a function not
only of = but also of d° (thus of H), as it appears beneficial to keep d' relatively close
to d°. In the case of the second algorithm, the construction of d* is modified so that the
function evaluations at different auxiliary points can be avoided during early iteration when

User's Guide for FSQP 3

p® # p'. The details are given below. The analysis in [1] and [2] can be casily extended to
these modified algorithms. Also obvious simplifications are introduced concerning the linear
inequality constraints, and linear equality constraints are allowed as well: the iterates are
allowed (resp. forced) to stay on the boundary of these constraints and these constraints are
not checked in the line search. Finally, FSQP automatically switches to a “phase 1”7 mode
if the initial guess provided by the user is not in the feasible set.

Below we call FSQP-AL the algorithm with the Armijo line search, and FSQP-NL the
algorithm with nonmonotone line search. We make use of the notations

f(z) = max {fi(x)}

and

fla+d e d) = _max {file +d) + (Y fi(x), d)} — f(x + d).

aeey

Algorithm FSQP-AL.

Parameters, n = 0.1, v =001, a=1.0x10"7, 3=05, k=21, 1, =1 =2.5.

Data. zg € R*, ¢ > 0.

Step 0: Initialization. Set k = 0 and Hy = I, the identity matrix. If zy is infeasible,
substitute a feasible point, obtained as discussed below.

Step 1: Computation of a search arc.
i. Compute dj by solving the strictly convex quadratic program

min L B + o @)

s.t. bl < zp + d° < bu
gj(:rk)+(ng(:1A),d0) SO, j:l,‘..,ti
<aj,il?k+d0>:bj, jg=1,...,1

Compute the Kuhn-Tucker vector

n

‘ ‘, I
S+ Y A Vai(ur) + D g
=1

J=1 J=1

nf
VL(2 ks Chy Eks My i) = Y CosV (i) +
J=1

where the ¢y ;’s with Z;Zl Cej = 1, & j’s, Axj’s, and gy ;’s are the multipliers, for the
various objective functions, simple bounds (only n possible active bounds at each iter-
ation), inequality, and equality constraints respectively, associated with this quadratic
program.

User's Guide for FSQP

IV L@y, Ceu &y Ak)] < €, stop. If n; = 0 and ny=1,set dp = d? and dp = 0 and
go to Step 2. If n; =0 and ny > 1, set dy = df and go to Step 1 iv

Compute d}, by solving the strictly convex quadratic program
- 0 1 0 1
dlelgzlr}geR Ld) —d' d) —d*) +~
s.t. bl <z +d <bu
flae,d') <4
gi(ze) + (Vg;(xy), d*

Y <y, =1,
<C],J’k+d> d],]:1,...,&'—7’“
(aj,ep +dY)y =b;, j=1,...,1
i, Set di = (1= pi)2+ pudh with pe = 1%/ (101 *+es). where v, = max(0.5, 2.

iv. Compute dj by solving the strictly convex quadratic program

E%n H(de + d), Hy(dy + d)) + f'(2k, dy, d)
st < apd+di +d < bu

9i(x + di) + (Vgj(ar),d) < —min(v|de, [|dil|™),
(cjrae +di +d) < dj, j:1 i —n,
<aja$k‘+‘dk+d>:bj, g=1,....1

7=1,...,n;

where f’(ak,(lk,d) =[x, dy + d) if ny =1, and f(rk,(/k (/

Flan + divaind) it
ns > 1. If the quadratic program has no solution or if ||| > H(lk

. set dj, = 0.

Step 2. Arc search. Compute t;, the first number ¢ in the sequence {1, 3, 3%,...} satisfying

flay + td + £2d,) < f(xi) + at f'(zy, dy)
g;(zg + tdy + t2(Zk) <0, j=1,...,n;
The line search is actually performed in such a way that those functions with nonzero multi-

pliers in the QP yielding dj will be evaluated first: only if all of them satisfy the line search
rule will the rest of the functions be tested.

Step 3. Updates.

Compute a new approximation Hyy to the Hessian of the Lagrangian using the BFGS
formula with Powell’s modification[5].

- Set Tpyq = xp + tydy + ti(zk.

User’s Guide for I'SQP

Ut

- Increase &k by 1.

- Go back to Step 1.

Algorithm FSQP-NL.

Parameters. n = 3.0, v =001, a =10x10"7, 8=05 =02, p =05 y=25,
¢ =0.01, d=5.0.

Data. xg € R*, ¢ > 0.

Step 0: Initialization. Set k = 0, Hy = I, the identity matrix, and Co = C.

[zg is infeasible,
substitute a feasible point, obtained as discussed below. Set z_3 = x_3 1

I
Ty = Iyp.

Step 1: Computation of a new iterate.
i. Compute d by solving the strictly convex quadratic program

dlgéi[rgln %(dO,de‘)) + f(xp, d%)

s.t. bl < zp + d° < bu
gi(zr) + (Vgi(zy),d°) <0, j=1,....1
(aj,;L‘k—l-dO):Z)J‘, J=1,...,1

Compute the Kuhn-Tucker vector

nf n t, le
Y L(Ty Cor & A i) = 3 Cei VI5(a0) + D &g + 2 Ak Vgilar) + D ks
=1 =1

j=1 =1

where the (4 ;’s with Z;Zl Cij = 1, &j's, Axy's, and gy ;’s are the multipliers, for the
various functions, simple bounds (only n possible active bounds at each iteration), in-
equality, and equality constraints respectively, associated with this quadratic program.
IE ||V L(2ky Crys Eky Ay pir)|| < €, stop. If ny = 0 and ny =1, set di, = dY and dy = 0 and
go to Step 1 wiii. If n; = 0 and ny > 1, set pi = pl = 0 and go to Step I v.

. Compute d}. by solving the strictly convex quadratic program

: 271012
dlerlr?l’},r}/GR sl + ¢
s.t. bl < zp +d' < bu

g;(zk) + (ng(l'k),(ll) <& g=10000ny
<Cj,17/C +d1> < (lj, Jg=1, 0t =y
(aj,:ck—i—dl>:bj, g=1,...,1

User’s Guide for FSQP 6

iit. Set v, = min{Cy||d| |d2]|}. Define values py; for j =1,... . n; by px; equal to zero

if
gi(@r) + (Vgi(zk),dy) < —v

or equal to the maximum p in [0, 1] such that

gi(zx) + (Vg(ar), (L= p)dy + pdi) > —vs
otherwise. Let pf, = max;=1, . {pr;}-

. Define p{ as the largest number p in [0, p{] such that

F(ar, (1= p)dy, + pdi) < 0f'(xy, d3).
If (k>1 &ty < 1) or (ph > p), set ph = min{p, pi}.

p. Construct a “local” direction

di = (1= pi)dy + pid.

If

and
gj(k +dy) <0, j=1,...,n;,

set ty, = 1, x4y = 2 + di and go to Step 2.

vi. Construct a “global” direction
dl = (1= p{)di + pld.
vii. Compute dj, by solving the strictly convex quadratic program
min §{(d + d), Hi(df +d)) + ['(ze,df d)
s.t. blgxk—i—di—{—cngu
gi(ze + di) + (Vgj(ar),d) < —min(v|ldill, 117, 7 =1,....n
<C],;Ek—f—di+d>§dj, 7=1,...,t; = n;
<aj,‘13k+di+d>:bj, j:l,...,le

where f/(xg,d?,d) = f'(xg,dl +d) if ny = 1, and f'(zx,dd,d) = f'(xp + ¢, 2p,d) if

ns > 1. If the quadratic program has no solution or if ||dg|| > ||d4]l, set dj = 0.

User’s Guide for I'SQP

1

vitt. Compute #x, the first number ¢ in the sequence {1, 3, 3%, ...} satisfying
Flak + tdd + t3de) < ZE%ELXS{f(Ik_l)} + at f'(rg. d})

gilze +td +12d,) <0, j=1.....n;
and set Thp1 = Ty + tkdi + ticzk.
The line search is actually performed in such a way that those functions with nonzero

multipliers in the QP yielding d? will be evaluated first; only if all of them satisfy the
line search rule will the rest of the functions be tested.

Step 2. Updates.

- Comipute a new approximation Hy,; to the Hessian of the Lagrangian using the BFGS
formula with Powell's modification[5].

IR > d, set Cryy = max{0.5Cy, C}. Otherwise, if g;(zp +d5) <0, 7 =1,...,n,
set Cip1 = Cy. Otherwise, set Crpq = 100,

- Increase k& by 1.
~ - Go back to Step 1.
O

If the initial guess x¢ provided by the user is not [easible, FSQP first solves a strictly
convex quadratic program
g vv)
s.it. bl <zog+v<bu
(cj,:c0+v>§dj, g=1,...,t; —ny
((lj,l?o—i-l)):bj, J=1,...,1

Then, starting from the point = g + v, it will iterate, using algorithm IFSQP-AL, on the
problem

min max {g;(2)}
s.t. bl <z < bu
<Cj.£l7>_<_dj, j:l,...,tl"—ni

<aj,:c):b]-, jzl,...,le

very

the original problem.

0]

User's Guide for 'SQP

3 Specification of Subroutine FSQPD 2.0

Only a double precision version of FSQP, FSQPD is currently available. The specification
of FSQPD is as follows:

subroutine FSQPD(nparam,nf,Linfty,nnl,nineq,neq,mode,iprint,
* miter,inform,bigbnd,eps,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,obj,constr,gradob,gradcn)
implicit double precision (a-h,o0-2z)
dimension bl(nparam),bu(nparam),x(nparam),f(nf),
* g(nineq+neq) ,iw(iwsize) ,w(nwsize)
external obj,constr,gradob,gradcn
logical Linfty

Important: all real variables and arrays must be declared as double precision in the routine
that calls FSQPD. The following are specifications of parameters and workspace.

nparam (Input) (integer) Number of free variables, i.e., the dimension of x.

nf (Input) (integer) Number of objective functions (n; in the algorithm descrip-
tion).

Linfty (Input) Logical variable with Linfty=.false. if (P) is to be solved, and
Linfty=.true. if (PL.) is to be solved. (PL.) is defined as follows

(PL) min _max [fi(2)] st ze X
=L, nf
where X is the same as for (P). It is handled in this code by splitting | fi(x)|
as fi(x) and — fi(z) for each ¢. The user is required to provide only fi(x) for
? = 1, S

nnl (Input) (integer) Number (possibly zero) of nonlinear (inequality) constraints
(n; in the algorithm description).

nineq (Input) (integer) Total number (possibly equal to nnl) of inequality constraints
(t; in the algorithm description).

neq (Input) (integer) Number (possibly zero) of linear equality constraints (/. in
the algorithm description).

User’s Guide for FSQP 9

mode (Input) Integer variable:

mode = 0 : Algorithm FSQP-AL is selected, resulting in a decrease
of the maximum value of the objective functions at each

iteration.
mode = 1 : Algorithm FSQP-NL is selected, resulting in a decrease
’ of the maximum value of the objective functions within

at most four iterations.
iprint (Input) Integer variable indicating the desired output (see Section 4 for details):

iprint = 0 : No information except for user-input errors is dis-
plaved.

iprint = 1 : At the end of execution, status (inform), iterate,
objective value, constraint values, number of evalu-
ations of objective and nonlinear constraints, norm
of the Kuhn-Tucker vector, and sum of feasibility
violation are displayed.

o

iprint = At the end of each iteration, the same information

as with iprint =1 is displayed.

iprint = 3 : At each iteration, the same information as with
iprint = 2, including detailed information on the
search direction computation, on the line search,
and on the update is displayed.

miter (Input) (integer) Maximum number of iterations allowed by the user before
termination of execution.

inform (Output) Integer indicating the results of FSQPD.

inform = 0 : Normal termination of execution in the sense
that the norm of the final Kuhn-Tucker vector
VIL(z,(,& A p) is no greater than eps.

inform=1: The user-provided initial guess is infeasible and
FSQPD is unable to generate a point satistfying
all linear constraints.

inform = 2 : The user-provided initial guess is infeasible and
FSQPD is unable to generate a point satisfying
all constraints.

User's Guide for FSQP 10

bigbnd

eps

udelta

bl

bu

iw

inform =3 : The maximum number miter of iterations has
been reached before a solution is obtained.

inform = 4 : The line search fails to find a new itcrate (trial
step size being smaller than the machine precision
epsmac computed by FSQPD).

inform = 5 : Failure in attempting to construct °.

inform = 6 : Failure in attempting to construct d'.
7

inform = Input data are not consistent (with printout indi-

cating the error).

(Input) (double precision; see also bl and bu below) It plays the role of Infinite
Bound.

(Input) (double precision) Final norm requirement for the Kuhn-Tucker vector

(¢ in the algorithm description). It must be bigger than the machine precision

epsmac (computed by FSQPD).

(Input) (double precision) The perturbation size the user suggests to use in
approximating gradients by finite difference. The perturbation size actually used
is defined by sign(z') x max{udelta, rtepsx max(1, |z!|)} for each component
rt of 2 (rteps is the square root of epsmac). udelta should be set to zero if
the user has no idea how to choose it.

(Input) (double precision) Array of dimension nparam containing lower bounds
for the components of x. To specify a non-existent lower bound (i.e., b1(y) =
—oo for some j), the value used must satisfy b1(j) < —bigbnd.

(Input) (double precision) Array of dimension nparam containing upper bounds
for the components of x. To specify a non-existent upper bound (i.e., bu(j) = oo
for some j), the value used must satisfy bu(j) > bigbnd.

(Input) (double precision) Initial guess.
(Output) Final solution if FSQP terminates with inform=0.

(double precision) Array of dimension nf.
(Output) Value of functions f;,i = 1....,n; at x at the end of execution.

(double precision) Array of dimension nineq + negq.
(Output) Values of constraints at x at the end of execution.

Integer workspace vector of dimension iwsize.

User’s Guide for FSQP Il

1wsize

W

nwsize

obj

constr

gradob

gradcn

(Input) Integer workspace length for iw. It must be at least as big as 3 x
nparam+ 3 x max(l, nineq + neq + nfunc) + nnl + nf + 6. Here nfunc = nf
if Linfty = .false. and nfunc = 2xnf if Linfty = .true.. The smallest
suitable value will be displayed if the user-supplied value is too small.

Double precision workspace of dimension nwsize.

(Input) Workspace length for w. It must be at least as big as 4 x nparam® +
2 X nparam x max(l,nineq 4+ neq) + nparam x nf + nparam x nfunc + 20 x
nparam + 10 X max(l,nineq 4+ neq + nfunc) + mm + 22. IHere nfunc = nf if
Linfty = .false. and nfunc = 2xnf if Linfty = .true.; and mm = M if
mode = | and mm = 0 otherwise. The smallest suitable value will be displayed if
the user-supplied value is too small.

(Input) Name of the user-defined function that computes the value of the ob-
jective functions fi(z), Vi = 1,...,ns. This name must be declared as external
in the calling routine and passed as an argument to FSQPD. The detailed spec-
ification is given in Section 5.1 below.

(Input) Name of the user-defined function that computes the value of the
constraints. This name must be declared as external in the calling routine and
passed as an argument to FSQPD. The detailed specification is given in Section
5.2 below.

(Input) Name of the subroutine that computes the gradients of the objective
functions fi(z), Vi = 1,....n,. This name must be declared as external in
the calling routine and passed as an argument to FSQPD. The user must pass
the subroutine name grobfd (and declare it as external), if he/she wishes that
FSQPD evaluate these gradients automatically, by forward finite differences.
The detailed specification is given in Section 5.3 below.

(Input) Name of the subroutine that computes the gradients of the constraints.
This name must be declared as external in the calling routine and passed as
an argument to FSQPD. The user must pass the subroutine name grenfd (and
declare it as external), if he/she wishes that FSQPD evaluate these gradients
automatically, by forward finite differences. The detailed specification is given
in Section 5.4 below.

User's Guide for FSQP ‘ 12

4 Description of the Output

No output will be displayed before a feasible starting point is obtained. The following
information is displayed at the end of execution when iprint = 1 or at each iteration when
iprint = 2:

iteration Total number of iterations (iprint = 1) or iteration number (iprint = 2).
inform See Section 3. It is displayed only at the end of execution.

x Iterate.

objectives Value of objective functions fi(z), Ve=1,...,n at x.

objmax (displayed only if nf> 1) The maximum value of the set of objective functions
(i.e., max f;(«) or max|fi(z)], Vi=1,..., ny) at x.

objective max4 (displayed only if mode= 1) Largest value of the maximum of the ob-
jective functions over the last 4 iterations (including the current one).

constraints Values of the constraints at x.

ncallf Number of evaluations (so far) of individual (scalar) objective function f;(z) for
1 <1 <ny.

ncallg Number of evaluations (so far) of individual (scalar) nonlinear constraints.

ktnorm Norm of the Kuhn-Tucker vector at the current iteration. If execution termi-
nates normally (inform = 0), then ktnorm < eps.

SCV Sum of feasibility violation of linear constraints (since QPSOL does not ac-
cept zero tolerance of feasibility violation, there may be very small feasibility
violation).

For iprint = 3, in addition to the same information as the one for iprint = 2, the following

is printed at every iteration.
Details in the computation of a search direction:
dOnorm Norm of the quasi-Newton direction df.
dinorm Norm of the first order direction dj.

d (mode=0) Search direction dy = (1 — pg)dy + prd}.

User's Guide for FSQP 13

dnorm (mode=0) Norm of dj.

rho (mode=0) Cocflicient py in di. = (1 — pp)dY + prd}.
dlnorm (mode=1) Norm of d.

rhol (mode=1) Coefficient pf in df = (1 — pL)d? + pld}.
dgnorm (mode=1) Norm of df.

rhog (mode=1) Coefficient pf in df = (1 — p)d} + pld;.
dtilde Correction dj.

dtnorm Norm of the correction direction d.

Details in the line search:

trial step The trial steplength ¢ in the search direction.
trial point Trial iterate along the search arc with trial step.

trial objectives This gives the indices¢’s and the corresponding values of the functions
filz) for 1 <@ < ny up to the one which fails in line search at the trial point.

The indices i's are not necessarily in the natural order (see remark at the end

of Step 2 in FSQP-AL and of the end of Step I viii in FSQP-NL).

trial constraints This gives the indices i’s and the corresponding values of nonlinear
constraints for 1 < i < n; up to the one which is not feasible at the trial

point. The indices i’s are not necessarily in the natural order (see remark at
the end of Step 2in FSQP-AL and of the end of Step I viivin FSQP-NL).

Details in the updates:

delta Perturbation size for each variable in f{inite difference gradients computation.
gradf Gradients of functions fi(x), V2 = 1,....n;, at the new iterate.

gradg Gradients of constraints at the new iterate.

m..tipliers Multiplier estimates ordered as £'s, A's, p's, and (’s (from quadratic pro-
gram computing d3). \; >0 Vi=1,....t;and p; >0 Vi=1,.... 0. & >0
indicates that x; reaches its upper bound and £, < 0 indicates that x; reaches its
lower bound. When Linfty = .false., (; > 0. When Linfty = .true, (, > 0
refers to + f;() and (; < 0 to — fi(x).

User's Guide for FSQP 11

hess New estimate of the Hessian matrix of the Lagrangian.

Ck The value C} as defined in Algorithm FSQP-NL.

5 User-Supplied Subroutines

At least two of the following four Fortran 77 subroutines, namely obj and constr, must be
provided by the user in order to define the problem. The name of all four routines can be

changed at the user’s will, as they are passed as arguments to FSQPD.

5.1 Function obj

The function obj, to be provided by the user, computes the value of the objective functions.
The specification of obj for FSQPD is

function obj(nparam,j,x)
implicit double precision (a-h,o-z)
dimension x(nparam)

c
c for given j, assign to obj the value of the jth objective
c evaluated at x
C
return
end
Arguments:

nparam (Input) Dimension of x.
j (Input) Number of the objective to be computed.

X (Input) Current iterate.

5.2 Function constr

The function constr, to be provided by the user, computes the value of the constraints.
[f there are no constraints, a (dummy) subroutine must be provided anyway due to {77
compiling requirement. The specification of constr for FSQPD is as follows

function constr(nparam,j,x)
implicit double precision (a-h,o0-2z)

dimension x(nparam)

User's Guide for FSQP 15

c
c for given j, assign to constr the value of the jth constraint
c evaluated at x
c
return
end
Arguments:

nparam (Input) Dimension of x.
j (Input) Number of the constraint to be computed.

x (Input) Current iterate.

The order of the constraints must be as follows. [First the nnl (possibly zero) nonlinear
inequality constraints. Then the nineq-nnl (possibly zero) linear incquality constraints.
Finally, the neq (possibly zero) linear equality constraints.

5.3 Subroutine gradob

The subroutine gradob computes the gradients of the objective functions. The user may
omnit to provide this routine and require that forward finite difference approximation be used
by FSQPD via calling grobfd instead (see argument gradob of 'SQPD). The specification
of gradob for FSQPD is as follows

subroutine gradob(io,iprint,pd,nparam,j,rteps,udelta,x,fj,
* gradfj,dummy)

implicit double precision (a-h,o0-z)

dimension x(nparam),gradfj(nparam)

logical pd

assign to gradfj the gradient of the jth objective function
evaluated at x

o 0 o 0

return
end

Arguments:

io (Input) Output unit number.

User’s Guide for FSQP 16

iprint (Input) Print level (see Section 3).

pd (Input) Logical number.

nparam (Input) Dimension of x.

j (Input) Number of objective for which gradient is to be computed.

rteps (Input) (used by grobfd) The square root of the machine precision epsmac
(computed in FSQPD).

udelta (Input) (used by grobfd) The mesh size the user wishes to use in computing
the gradient of the objective function by finite difference.

X (Input) Current iterate.
£ (Input) (used by grobfd) Value of the objective at x.
dummy (Input) Used by grobfd.

gradfj (Output) Gradient of the jth objective function at x.

Note that io, iprint, pd, rteps, udelta, £j, and dummy are passed as arguments to gradob
to allow for forward finite difference computation of the gradient.

5.4 Subroutine gradcn

The subroutine graden computes the gradients of the constraints. The user may omit to
provide this routine and require that forward finite difference approximation be used by
FSQPD via calling grenfd instead (see argument graden of FSQPD). The specification of
graden for FSQPD is as follows

subroutine gradcn (io,iprint,pd,nparam,j,rteps,udelta,x,gj,
* gradgj ,dummy)

implicit double precision (a-h,o-z)

dimension x(nparam),gradgj(nparam)

external constr

logical pd

assign to gradgj the gradient of the jth constraint
evaluated at x

o o 0 0

return
end

User's Guide for I'SQP 17

Arguments:

lc
iprint
pd
nparam
J

rteps

udelta

gJ
dummy

gradgj

(Input) Output unit number.

(Input) Print level (see Section 3).

(Input) Logical number.

(Input) Dimension of x.

(Input) Number of constraint for which gradient is to be computed.

(Input) (used by grenfd) The square root of the machine precision epsmac
(computed by FSQPD).

(Input) (used by grcnfd) The mesh size the user wishes to use in computing
the gradients of the constraints by finite difference.

(Input) Current iterate.
(Input) (used by grenfd) Value of the jth constraint at x.
(Input) Used by grenfd.

(Output) Gradient of the jthe constraint evaluated at x.

Note that io, iprint, pd, rteps, gj, and dummy are passed as arguments to gradcn to allow

for forward finite difference computation of the gradients.

6 Organization of FSQPD and Main Subroutines

6.1 Main Subroutines

FSQPD first checks for inconsistencies using the subroutine check. It then checks if the

starting point given by the user satisfies the linear constraints and if not, generates a point

satisfying these constraints using subroutine initpt. It then calls FSQPDI for generating

a point satisfying linear and nonlinear constraints. Finally, it attempts to find a point

satisfying the optimality condition using again FSQPDI.

check

Check that all upper bounds on variables arc no smaller than lower bounds;
check that all input integers are nonnegative and appropriate (nineq > nnl,
etc.); and check that eps is at least as large as the machine precision epsmac

(computed by FSQPD).

User's Guide for FSQP I8

initpt

FSQPD1

Attempt to generate a feasible point satisfying simple bounds and all lincar

constraints.

Main subroutine used twice by FSQPD, first for generating a feasible iterate as
explained at the end of Section 2 and second for generating an optimal iterate
from that feasible iterate.

FSQPD1 uses the following subroutines:

dir

step

hesian
out

grobfd

grenfd

Compute search direction dj and dy..

Compute a step size along a certain search direction. It is also called to check

if xp + di is acceptable in Step 1 v of Algorithm FSQP-NL.
Perform the Hessian matrix updating.
Print the output for iprint = 1 or iprint = 2.

(optional) Compute the gradient of the objective function by forward fi-
nite differences with mesh size equal to sign(x') x max{udelta, rteps X
max(1, |z])} for each component 2 of = (rteps is the square root of epsmac,
the machine precision computed by FSQPD).

(optional) Compute the gradient of a constraint by forward finite differcnces
with mesh size equal to sign(2') x max{udelta, rtepsx max(1, |z‘])} for each
component z* of z (rteps is the square root of epsmac, the machine precision

computed by FSQPD).

6.2 Other Subroutines

In addition to QPSOL and subroutines associated with it, the following subroutines are used:

diagnl dil dqp error fuscmp 1indexs matrcp

matrvc nullvc gphess scaprd slope small subout

7 Examples

The first problem is borrowed from [6] (Problem 32). It involves a single objective func-

tion, simple bounds on the variables, nonlinear inequality constraints, and linear equality

constraints. The objective function f is defined for v € R® by

flx) = (2 + 32 + 23)% + 427 — 22)°

User’s Guide for FSQP 19

The constraints are

0<an i=10.3
=6y —drs+3<0 l—w —2—25=0

The feasible initial guess is: zg = (0.1, 0.7, 0.2)7 with corresponding value of the objective
function f(xg) = 7.2. The final solution is: 2* = (0, 0,)T with f(z*) =1. A

suitable main program is as follows.

problem description

implicit double precision (a-h,o-z)

parameter (iwsize=35)

parameter (nwsize=275)

dimension b1(3),bu(3),x(3),f(1),g(2),iw(iwsize) ,w(nwsize)
external obj32,cntr32,grob32,grcn32

logical Linfty

nparam=3

nf=1
Linfty=.false.
nnl=1

nineq=1

neq=1

mode=0
iprint=1
miter=500
bigbnd=1.d+10
eps=1.d4-08
udelta=0.d0

b1(1)=0.
b1(2)=0.
bl1(3)=0.
bu(1)=bigbnd
bu(2)=bigbnd
bu(3)=bigbnd

User's Guide for FSQP 20

*

*

give the initial value of x

x(1)=0.1
x(2)=0.7
x(3)=0.2

call FSQPD(nparam,nf,Linfty,nnl,nineq,neq,mode,iprint,
miter,inform,bigbnd,eps,udelta,bl,bu,x,f,g,
iw,iwsize,w,nwsize,obj32,cntr32,grob32,grcn32)

stop

end

Following are the subroutines defining the objective and constraints and their gradients.

10

20

*

function obj32(nparam,j,x)
implicit double precision (a-h,o-z)
dimension x(nparam)

0bj32=(x(1)+3.d0*x(2)+x(3)) **2+4.d0* (x (1) ~-x(2)) **2
return
end

function cntr32(nparam,j,x)
implicit double precision (a-h,o0-2z)
dimension x(nparam)

go to (10,20),]
cntr32=x(1)**3-6.40*x(2)-4.d40*x(3)+3.d0
return

cntr32=1.d0-x(1)-x(2)-x(3)

return

end

subroutine grob32(io,iprint,pd,nparam,j,rteps,udelta,x,
fj,gradfj,dumny)

implicit double precision (a-h,o0-z)

dimension x(nparam),gradfj(nparam)

logical pd

User's Guide for FSQP 21

fa=2.d0.*(x(1)+3.d0*x(2)+x(3))
fb=8.40*(x(1)-x(2))
gradfj(1)=fa+fb
gradfj(2)=3.40*fa-fb
gradfj(3)=fa

return

end

subroutine grcn32(io,iprint,pd,nparam,j,rteps,udelta,x,
* gj,gradgj ,dummy)

implicit double precision (a-h,o-z)

dimension x(nparam),gradgj(nparam)

logical pd

go to (10,20), j

10 gradgj(1)=3.d0o*x(1)*x*2
gradgj(2)=-6.40
gradgj(3)=-4.40
return

20 gradgj(1)=-1.40
gradgj(2)=-1.40
gradgj(3)=-1.40
return
end

After running the algorithm on a Sun 4/SPARCstation 1, the following output is obtained:

---------- FSQPD VERSION 2.0 : OUTPUT ------

The given initial point is feasible:
0.10000000000000e+00
0.70000000000000e+00
0.20000000000000e+00

iteration 3
inform 0
X 0.00000000000000e+00

0.00000000000000e+00
0.10000000000000e+01
objectives 0.10000000000000e+01

[0
o

User’s Guide for FSQP

constraints -0.10000000000000e+01

0.00000000000000e+00
SCV 0.00000000000000e+00
ktnorm 0.31401849173676e~15
ncallf 3
ncallg 6

Normal termination: You have obtained a solution !!

Our second example is taken from example 6 in [7]. The problem is as follows.

min éﬁﬁﬁﬁ@ﬂ

s.t. —x(1) ~ +s<0
(1) — x(2) +s5<0
2(2) — 2(3) +s5<0
z(3) — x(4) +s<0
z(4) — z(5) +s<0
2(5)~2(6) +s<0
2(6) — 3.5+ s < 0.
where
fi(z) ::fg<+-f%(}:?zlcos(Qﬂlysin0i)%—cos(Twsin@i)%
0; = 5(8.5+0.52), 1 =1,....,163,
s = 0.425

The feasible initial guess is: zg = (0.5, 1, 1.5,2,2,5.3)T with _max |fi(20)] = 0.22051991555531.

1=1,...,

A suitable main program is as follows.

problem description

implicit double precision (a-h,o-z)

parameter (iwsize=706)

parameter (nwsize=9116)

double precision x(6),b1(6),bu(6),iw(iwsize) ,w(nwsize),
* £(163),g(7)

external objmad,cnmad,grobfd,grcnfd

logical Linfty

mode=1

User's Guide for FSQP 23

iprint=1
miter=500
bigbnd=1.d+10
eps=1.0d4-10
udelta=0.d0

nparam=6
nf=163
Linfty=.true.
nnl=0
nineq=7
neq=0

do 10 1=1,6
b1(i)=-bigbnd
bu(i)=bigbnd
10 continue

give the initial value of x

x(1)=0.
x(2)=1.
x(3)=1.
x(4)=2.
x(5)=2.
x(6)=3.

O 01O o N

call F3QPD(nparam,nf,Linfty,nnl,nineq,neq,mode,iprint,

* miter,inform,bigbnd,eps,udelta,bl,bu,x,f,g,

* iw,iwsize,w,nwsize,objmad,cnmad,grobfd,grcnfd)
end

stop

We choose to compute the gradients of functions by means of finite difference approximation.
Thus only subroutines that define the objectives and constraints are needed as follows.

function objmad(nparam,j,x)
integer nparam,j,i
double precision x(nparam),objmad,theta

User's Guide for FSQP 24

theta=3.14159d0*(8.5d0+j*0.5d40)/180.40
objmad=0.4d0
do 10 1i=1,86
10 objmad=objmad+dcos(2.d0%3.14159%x (i) *dsin(theta))
objmad=2.d0* (objmad+cos(2.d0*3.14159%3.5*dsin(theta)))/15.d0+1.d0/15.40
return
end

function cnmad(nparam,j,x)
integer nparam, j
double precision x(nparam),cnmad,ss

ss=0.425
if(j.eq.1) then
cnmad=ss-x{1)
return
endif
if(j.gt.1.and.j.1t.7) cnmad=ss+x(j-1)-x(j)
if(j.eq.7) cnmad=ss+x(6)-3.5
return
end

After running the algorithm on a Sund/SPARCstation 1, the following output is obtained
(the results for the set of objectives have been deleted to save space)

————————— FSQPD VERSION 2.0 : QUTPUT -------
The given initial point is feasible:
0.50000000000000E+00
.10000000000000E+01
.15000000000000E+01
.20000000000000E+01
.25000000000000E+01
.30000000000000E+01

O O O O O

iteration 8
X 0.42500000000000E+00
0.85000000000000E+00
0.12750000000000E+01

User's Guide for I'SQP

[N
(W1

.17000000000000E+01
.21840758252977E+01
.28732752473301E+01
.11421845223065E+00
.11310472703986E+00
.00000000000000E+00
.00000000000000E+00
.00000000000000E+00
.00000000000000E+00

-0.59076825297727E-01

-0.26419942203233E+00

-0.20172475266995E+00
SCvV 0.00000000000000E+00
ktnorm 0.93448637498563E~15
ncallf 1304
ncallg 0

objective max4
objmax

constraints

O O O O O O O O O

Normal termination: You have obtained a solution !!

8 Results for Test Problems

These results are provided to allow the user to compare FSQP with his/her favorite code
(see also [2]). Table 1 contains results obtained for some (non-minimax) test problems from
[6] (the same initial points as in [6] were selected). prob indicates the problem number
as in [6], nnl the number of nonlinear constraints, ncallf the total number of evaluations
of the objective function, ncallg the total number of evaluations of the (scalar) nonlinear
constraint functions, iter the total number of iterations, objective the final value of the
objective, ktnorm the norm of Kuhn-Tucker vector at the final iterate, eps the user-provided
Kuhn-Tucker norm requirement, SCV the sum of feasibility violation of linear constraints (sce
section 4). On each test problem, eps was selected so as to achieve the same field precision
as in [6]. The value of parameter mode (0 for FSQP-AL, 1 for FSQP-NL) is indicated in
column “mode”. All these results were obtained on a Sun 4/SPARCstation 1.

Results obtained on selected (possibly constrained) minimax problems are summarized
in Table 2. Problems bard, davd2, f&r, hettich, and wats are from [8]; cb2, cb3, r-s,
wong and colv are from [9; Examples 5.1-5] (the latest test results on problems bard down
to wong can be found in [10]); kiwl and kiw4 are from [11] (results for kiw2 and kiw3 are
not reported due to data disparity); madl to mad8 are from [7, Examples 1-8]; polkl to

polk4 are from [12]. Some of these test problems allow one to freely select the number of

User's Guide for FSQP 26

variables; problems wats-6 and wats-20 correspond to 6 and 20 variables respectively, and
mad8-10, mad8-30 and mad8-50 to 10, 30 and 50 variables respectively. All of the above are
either unconstrained or linearly constrained minimax problems. Unable to find nonlinearly
constrained minimax test problems in the literature, we constructed problems p43m through
p117m from problems 43, 84, 113 and 117 in [6] by removing certain constraints and including
instead additional objectives of the form

filz) = flo) + aug;(a)

where the «;’s are positive scalars and g;(z) < 0. Specifically, p43m is constructed from
problem 43 by taking out the first two constraints and including two corresponding ob jectives
with a; = 15 for both; p84m similarly corresponds to problem 84 without constraints 5 and 6
but with two corresponding additional objectives, with a; = 20 for both; for p113m, the first
three linear constraints from problem 113 were turned into objectives, with a; = 10 for all;
for p117m, the first two nonlinear constraints were turned into objectives, again with a; = 10
for both. The gradients of all the functions were computed by finite difference approximation
except for polkl through polk4 for which gradients were computed analytically.

In Table 2, the meaning of columns mode, nnl, ncallf, ncallg, iter, ktnormand SCV is
as in Table 1 (but ncallf is the total number of evaluations of scalar objective function). nf
is the number of objective functions in the max, objmax is the final value of the max of the
objective functions. Finally, as in Table 1, eps is the stopping rule parameter. Here however
its specific meaning varies from problem to problem as we attempted to best approximate the
stopping rule used in the reference. Specifically, for problems bard through wong, execution
was terminated when ||d}|| is smaller than the corresponding value of ¢ in the column of
eps (this was also done for problems p43m through p117m); for problems kiwl and kiw4,
execution was terminated when the 14 significant digits carried out by the output of our
codes did not change and the values in the column of eps are ||d}]| at the stopping point;

for problems mad1 down to mad8, execution was terminated when [[d}]| is smaller than ||.z]

times the corresponding value of ¢ in the column eps; for problems polkl through polk4,
execution was terminated when log, ||zx — z*|| is smaller than the corresponding value of ¢
in the column of eps.

Acknowledgment

The authors are indebted to Dr. E.R. Panier for a great many invaluable comments and
suggestions.

User’s Guide for FSQP 27
prob mode nnl ncallf ncallg iter objective ktnorm eps SCv
pl12 0 1 7 15 7 —.300000000E+402 .72E-06 .10E-05 .0

1 7 13 7 -.300000000E+02 .79E-06 .10E-05 .0
p29 0 1 12 23 11 —.226274170E+02 .13E-07 .10E-05 .0
1 13 1 13 —.226274170E+02 .19E-06 .10E-05 .0
p30 0 1 16 31 16 .100000000E4+01 .54E-08 .10E-07 .0
1 15 15 15 .100000000E+01 .97E-08 .10E-07 .0
p31 0 1 9 21 8 .600000000E+01 .23E-05 .10E-04 .0
1 10 19 10 .600000000E+01 .46E-06 .10E-04 .0
p32 0 1 3 6 3 .100000000E+01 .31E-15 .10E-07 .0
1 3 4 3 .100000000E4+01 .31E-15 .10E-07 .0
p33 0 2 4 14 4 —~.400000000E+01 .13E-11 .10E-07 .0
1 5 10 5 —.400000000E401 .47E-11 .10E-07 .0
p34 0 2 7 28 7 —.834032443E+00 .19E-08 .10E-07 .0
1 9 24 9 —.834032445E400 .38E-09 .10E-07 .0
p43 0 3 11 62 9 —.440000000E+402 .12E-05 .10E-04 .0
1 13 55 13 —.440000000E+02 .86E-06 .10E-04 .0
p51 0 0 8 0 6 .505655658E—-15 .46E-06 .10E-05 .22E-15
1 9 8 .505655658E—-15 .34E-08 .10E-05 .22E-15
p57 0 1 7 9 3 .306463061E-01 .29E-05 .10E-04 .0
1 7 8 3 .306463061E-01 .28E-05 .10E-04 .0
p66 0 2 8 30 8 .518163274E4+00 .50E-09 .10E-07 .0
1 9 24 9 .518163274E4+00 .63E-11 .10E-07 .0
p76 0 0 6 0 6 —.468181818E+01 .34E-04 .10E-03 .0
1 6 6 —.468181818E+01 .34E-04 .10E-03 .0
pd4 0 6 4 42 4 —.528033513E+07 .68E-12 .10E-08 .0
1 4 30 4 -.528033513E407 .66E-09 .10E-08 .0
p86é 0 0 14 0 9 -.323486790E+02 .17E-13 .10E-07 .0
1 8 7 —.323486790E+02 .17E-13 .10E-07 .0
p93 0 2 15 61 12 .135075968E+03 .37E-03 .10E-02 .0
1 15 38 15 .135075964E4-03 41E-04 .10E-02 .0
p100 0 4 23 168 16 .680630057E4+03 .62E-06 .10E-03 .0
1 20 128 17 .680630057E+03 .26E-04 .10E-03 .0
plio 0 0 10 0 9 —.457784697E402 .86E-10 .10E-07 .0
1 10 9 —.457784697E+02 .86E-10 .10E-07 .0
pli3 0 5 12 122 12 .243063768E+02 .81E-03 .10E-02 .0
1 12 106 12 .243064357E4+02 .85E-03 .10E-02 .35E-14
p117 0 5 20 219 19 .323486790E+02 .58E-04 .10E-03 .0
1 18 94 17 .323486790E+02 .34E-04 .10E-03 .0
plis8 0 0 19 0 19 .664820450E+03 .13E-14 .10E-07 .0
1 19 19 .664820450E+4+03 .13E-14 .10E-07 .0

Table 1: Results for General Problems

User's Guide for FSQP

[
[o5]

prob mode nnl nf ncallf ncallg iter objmax ktnorm eps Scv
bard 0 0 15 225 0 8 .508163265E-01 .11E-12 .50E-05 .0
1 105 7 .508168686E—-01 .22E-06 .50E-05 .0

cb?2 0 0 3 33 0 6 195222453E4-01 37E-06 .50E-05 .0

1 18 6 .195222453E4+01 .30E-05 .50E-05 .0

cb3 0 0 3 15 0 3 .200000000E+01 .40E-05 .50E-05 .0
1 15 3 .200000000E+01 47E-08 .50E-05 .0

colv 0 0 6 181 0 15 .274053332E+02 .72E-04 .50E-05 .0
1 84 14 .274053332E+02 45E-05 50E-05 .0

davd?2 0 0 20 380 0 10 . 115706440E+03 .12E-05 50E-05° .0
1 220 10 .115706440E+4+03 .11E-05 .50E-05 .0

f&r 0 0 2 34 0 9 494895210E+0T . I7E-06 .50E-05 .0
1 20 10 .494895210E401 .14E-06 .50E-05 .0

hettich 0 0) 96 0 10 ~.245935695E-02 .68E-07 .O0E-05 0
1 55 10 .245939485E~02 .63E-07 .50E-05 .0

r-s 0 0 4 75 0 9 —.440000000E+02 .10E-04 .50E-05 .0
1 53 10 —.440000000E+02 .81E-05 .50E-05 .0

wats-6 0 0 31 713 0 12 127170954E-01 .36E-07 .50E-05 .0
1 434 13 127170913E-01 .10E-09 .50E-05 .0

wats-20 0 0 31 2757 0 42 .138908355E—07 .14E-06 .50E-05 .0
1 1395 43 .141191856E~07 .12E-06 .50E-05 .0

wong 0 0 5 232 0 20 .680630057E+03 .24E-04 .50E-05 .0
1 191 26 .680630057E+03 .14E-03 .50E-05 .0

kiwl 0 0 10 213 0 10 .226001621E+02 .10E-04 .11E-05 .0
1 140 13 .226001621E+02 .54E-05 .60E-06 .0

kiwg 0 0 2 38 0 8 .222004460E~15 42E-07 42E-07 0
1 28 10 .222004460E—15 21E-07 .15E-07 .0

madl 0 0 3 27 0 3 —.389659516E+00 .25E-15 .10E-11 0
1 18 - 6 -.389659516E4+00 48E-10 .10E-11 0

mad? 0 0 3 63 0 11 —.330357143E+00 .75E-09 .10E-11 0
1 58 18 —.330357143E4+00 .23E-08 .10E-11 .0

mad4 0 0 3 33 0 6 —.448910786E+00 44E-15 .10E-11 .0
1 24 8 —.448910786E+00 .44E-15 .10E-11 0

mad5s 0 0 3 39 0 T —.100000000E+01 .16E-15 .I0E-11 .0
1 24 8 —.100000000E4+01 .79E-14 .10E-11 .0

mad6 0 0 163 1793 0 6 .113104635E+00 .81E-11 .i0E-11 0
1 1304 8 .113104727E400 .93E-15 .I10E-11 .0

mad8-10 0 0 18 342 0 10 381173963E+00 .41E-12 .10E-11 .0
1 252 14 .381173963E4+00 .46E-15 .10E-11 0

mad8-30 0 0 58 1740 0 15 H47620496E4+00 .70E-15 .10E-1I .0
1 1160 18 .547620496E4-00 .48E-15 .10E-11 .0

mad8-50 0 0 98 3822 0 20 579276202E4+00 .98E-15 .10E-11 0
1 2058 21 579276202E400 .82E-13 .10E-11 .0

polki 0 0 2 42 0 10 .271828183E+01 .50E-04 —10.00 .0
1 22 10 271828183E+01 .62E-04 —-10.00 .0

polk2 0 0 2 187 0 36 .545981500E4+02 .52E-03 - 9.00 .0
1 143 ! 53 .545981500E4+02 .75E-06 — 9.00 .0

polk3 0 0 10 253 0 12 .370348302E+01 .23E-02 - 550 .0
1 141 12 .370348451E+01 .26E-02 - 550 .0

polk4 0 0 3 45 0 7 233517650E—-12 .84E-05 -10.00 .0
1 24 7 .364606056E+00 .26E-04 ~10.00 .0

p43m 0 1 3 81 36 14 —.440000000E+02 .30E-06 .50E-05 .0
1 60 25 16 —-.440000000E4-02 .39E-05 .50E-05 .0

p84m 0 4 3 21 28 4 —.528033513E+07 .0 BHOE-05 .0
1 9 12 3 —.528033513E+07 .37E-03 .50E-05 .0

pii3m 0 0 4 100 142 13 .243062091E4+02 .31E-05 .50E-05 .0
1 84 115 15 .243062091E402 .31E-05 .50E-05 .0

pii7m 0 3 3 144 124 21 323486790E4+02 .46E-05 .50E-05 .0
1 58 54 17 .323486790E+02 .26E-04 .50E-05 .0

Table 2: Results for Minimax Problems

User’s Guide for FSQP 29

References

(1]

2]

E.R. Panier & A.L. Tits, “On Feasibility, Descent and Superlinear Convergence in In-
equality Constrained Optimization,” Systems Research Center, University of Maryland,

Technical Report SRC-TR-89-27, College Park, MD 20742, 1989.

J.F. Bonnans, E.R. Panier, A.L. Tits & J. Zhou, “Avoiding the Maratos Effect by Means
of a Nonmonotone Line Search. II. Inequality Constrained Problems — Feasible Iterates,”
Systems Research Center, University of Maryland, Technical Report SRC-TR-89-42r1,
College Park, MD 20742, 1989.

L. Grippo, F. Lampariello & S. Lucidi, “A Nonmonotone Line Search Technique for
Newton’s Method,” SIAM J. Numer. Anal. 23 (1986), 707-716.

P.E. Gill, W. Murray, M.A. Saunders & M.H. Wright, “User’s Guide for SOL/QPSOL:
A FORTRAN Package for Quadratic Programming,” Stanford Univ., Technical Report
SOL 83-7, 1983.

M.J.D. Powell, “A Fast Algorithm for Nonlinearly Constrained Optimization Calcula-
tions,” in Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630, G.A.
Watson, ed., Springer-Verlag, 1978, 144-157.

W. Hock & K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems (187), Springer Verlag, 1981.

K. Madsen & H. Schjeer-Jacobsen, “Linearly Constrained Minimax Optimization,” Math-
ematical Programming 14 (1978), 208-223.

G.A. Watson, “The Minimax Solution of an Overdetermined System of Non-linear Equa-

tions,” J. Inst. Math. Appl. 23 (1979), 167-180.

C. Charalambous & A.R. Conn, “An Efficient Method to Solve the Minimax Problem
Directly,” SIAM J. Numer. Anal. 15(1978), 162-187.

A.R.Conn & Y. Li, “An Efficient Algorithm for Nonlinear Minimax Problems,” University
of Waterloo, Research Report CS-88-41, Waterloo, Ontario, N2L 3G1 Canada, November,
1989 .

K.C. Kiwiel, Methods of Descent in Nondifferentiable Optimization, Lecture Notes in
Mathematics #1133, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 1985.

E. Polak, D.QQ. Mayne & J.E. Higgins, “A Superlinearly Convergent Algorithm for Min-
max Problems,” Proceedings of the 28th IEEE Conference on Decision and Control (De-
cember 1989).

