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In higher Eukaryotes, upon transcription of a gene, a complex set of reactions take place

to remove fragments of a sequence (introns) from transcribed RNA. A large

macro-molecular machine (the spliceosome) recognizes the ends of introns, brings ends

into close proximity and catalyzes the splicing reaction. The selection of the location of

the ends of introns (splice sites) determines the final message produced at the end of the

process. In some cases, an alternative set of splice sites are chosen, and as a consequence

different message is produced. This phenomenon is known as alternative splicing. It is

now realized that nearly every Human gene undergoes alternative splicing, producing

large variability in types and number of transcripts produced. In this thesis, we examine

the functional and structural consequences of alternative splicing on proteins, we look

into the mechanism of formation of complex splicing patterns, and examine the role of

noise in the process.
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Chapter 1

Chapter 1. Introduction

In higher eukaryotes, such as human and mouse, messages transcribed from ge-

nomic DNA (pre-messenger RNA) contain large non-coding regions that must be re-

moved before final messenger RNA (mRNA) transcript can leave the cell [1]. An av-

erage Human cell contains as many as 800,000 [2] processed mRNAs, nearly every one

of which has gone through this intron removal process.

The splicing out of introns occurs cotranscriptionally. That is, as the RNA Poly-

merase slides along DNA producing new pre-RNA transcript, the introns are recognized

and targeted for removal [3]. The removal of introns is catalyzed by a spliceosome, a large

macromolecular complex of over 300 different proteins assembled around five small nu-

clear RNAs (snRNAs). The spliceosome assembles itself at ends of introns, brings the

ends into close proximity to each other, and catalyzes two reactions which remove the 5’

and then the 3’ ends of an intron (for a comprehensive review see Jurica et al. [4]).

It is clear that the choice of the spliceosome assembly sites control selection of

exons that will be included in the final mRNA product, but the details and regulation of

this mechanism are not well understood. The sequence motifs around the intron-exon

boundaries (splice sites) do not in themselves contain enough information to determine

transcript structure. A number of algorithms have been developed to predict the location

of exons, but these algorithms tend to perform poorly without inclusion of experimental

transcript data [5]. One reason for inaccuracy is that the choice of splice sites is influenced

by splicing factors, proteins that bind to pre-mRNA in proximity to splice junctions.
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These splicing factors typically contain one or more RNA binding domains and

interact directly with short regulatory sequence elements located in both exons and in-

trons [6]. Some of these factors prevent spliceosomes from recognizing splice sites, oth-

ers enhance recognition. One large class of splicing factors is SR proteins, (serine- and

arginine-rich proteins). These proteins can play both positive and negative roles in se-

lection of splicing, depending on the location of their binding [7]. Another large class

of splicing factors is heterogeneous nuclear ribonucleoproteins (hnRNP) proteins. These

proteins typically bind to regulatory regions within introns and act to inhibit recognition

of splice sites [8]. In the end, it is the balance of concentration and activity level of

enhancers and silencers that determines how often specific splice sites will be chosen [9].

There are three possible outcomes of alternative splice site selection. First, a dif-

ferent 5’ end of an intron might be chosen; second, a different 3’ end of an intron might

be chosen, and lastly, an intron may not be recognized at all - causing an intron retention

event. Changes to introns result in changes to exon structure such as: exon indels, or

exon 5’ or 3’ end modification. Differences in final mRNA sequences may be classified

into three categories: changes before the translation initiation site (5’ UTR), changes after

the translation termination site (3’ UTR), and changes inside protein coding regions. The

majority (∼ 70%) of alternative splicing events affect protein coding regions[10]. Thus a

large number of alternative protein products can potentially be generated.

One well known example of generating of protein diversity through alternative

splicing is the Drosophila Dscam gene [11], which has a primary function in axon guid-

ance. It is estimated that 38,016 different protein molecules could be generated from this

gene and evidence suggests that many are expressed and are functionally important [12].

Similarly, another group of brain expressed genes, Neurexins, which function as recep-

tors of neuropeptides, are estimated to generate on the order of 1000 different isoforms

[13]. Another cell surface receptor protein, CD44, with diverse functions such as cell-cell
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recognition and cell signaling, can potentially produced 1024 different combinations, of

which 69 have been detected [14].

Alternative splicing need not directly express a large diversity of proteins to be

functionally important. A famous example of the effect of alternative splicing on pheno-

type is the Sex-lethal (Sxl) gene in Drosophila. This gene is a splicing factor, that acts as

a master switch to activate production of a functional protein product of transformer (tra)

gene, which in turn activates a pathway resulting in female differentiation [15]. Another

set of splicing factors, Nova1 and Nova2 (mouse), are tissue specific factors that regulate

a large network of brain specific targets essential for neuron viability [16, 17].

Until fairly recently, the extent of alternative splicing in higher eukareotes has been

under-appreciated. The availability of a Human genome draft sequence and rapid growth

in the number of expressed sequence tag (EST) libraries has led to the discovery that

alternative splicing affects 35 to 40% of all Human genes [18, 19, 20]. More recent

estimates based on microarray experiments put the value at a minimum of 74% [21].

The true extent of alternative splicing remains unknown, as only a small fraction of all

transcripts have been sampled by EST experiments, and only a limited set of exon-exon

junctions are present in microarray platforms.

It has been suggested that one explanation for the existence of a large number of al-

ternative isoforms is that alternative splicing provides complex organisms such as Human

with a mechanism for generating functional diversity from a relatively small set of genes

[22, 23]. Indeed, compared to yeast, which has only a few alternatively spliced genes,

the frequency of splicing in higher eukaryotes is significantly higher [24]. It would seem

that alternative splicing could potentially be responsible for an increase in complexity, but

before accepting this hypothesis, it must be shown that alternative splicing provides novel

functions.
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Many bioinformatics studies have looked at various aspects of alternative isoforms.

Although designs and datasets vary, the general conclusions are similar: At least 2/3 of

all Human genes are alternatively spliced. A small fraction (10-20%) of all alternative

splicing events are conserved across multiple species [25, 26, 27]. Approximately 20-

40% of alternative splicing events show tissue specificity [28, 29]. Approximately 70%

of changes affect protein coding regions [10]. Conserved alternative splicing events have

different characteristics from species specific splicing events, such as: they are expressed

in greater abundance, have a tendency to preserve coding frames, and have lower synony-

mous substitution rates[30, 31, 32]. A large number (at least 35%) of alternative isoforms

result in truncated proteins and are thus subject to degradation by nonsense mediated

decay (NMD) [33].

Microarray based analyses of alternative splicing are largely in agreement with

cDNA/EST analysis. Johnson et al. using exon-junction arrays showed that at mini-

mum 74% of genes are alternatively spliced [21]. Pan et al. [34] looked at tissue specific

expression in mouse of alternative exons and found that most (> 70%) splicing events

are not tissue specific and expressed at low abundance. In contrast to EST/cDNA based

predictions, analysis of NMD events via microarray experiments showed that there are

steady levels of alternative transcript with premature stop codons and few seemed to be

regulated by NMD [35].

Although there seems to be a consensus in the field that conserved alternative splic-

ing events are probably functional, there is no agreement on functionality of species spe-

cific isoforms. It has been suggested that minor isoforms need not provide functional

components, but may act to regulate abundance levels of major isoforms [36]. It has

also been suggested that the functional role of alternative splicing can not be understood

on a per gene basis, changing concentration of various splicing factors results in global

splicing changes, and the functional implications at the system level effect remain hidden
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[37]. Of course, without a complete picture of all interactions in the cell it is impossible

to evaluate the truth of this hypothesis.

An alternative explanation for the large number of alternative isoforms is that they

are produced as consequence of noise in the splicing machinery. [23, 38, 39]. Assum-

ing that splicing machinery is not perfect and makes occasional mistakes in selection of

splice sites, a large number of isoforms could be generated by the accumulation of errors.

Most of these isoforms will not be functional, but as long as they are not toxic and ade-

quate levels of normal gene product are produced, there will be little selection pressure

to remove them. In chapter 3 of this thesis we show that the observed isoform diversity

can be reproduced with a simple error model. We find that there is pressure to reduce the

frequency of errors in highly expressed genes and in genes with many introns. In Chapter

4, we examine the impact of alternative splicing on protein structure. In agreement with

the noise hypothesis, we find that species specific isoforms usually result in unstable fold

conformations. In a slight deviation from the above topics, in Chapter 2, we also examine

the role of interaction between the splicing and transcription machinery in the formation

of alternative splicing patterns.
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Chapter 2

Chapter 2. Alternative Splicing Patterns

2.1 Abstract

The process of formation of a final mRNA transcript involves a set of complex inter-

actions between spliceosomal and transcriptional components. The types and frequency

of alternative splicing and alternative transcriptional events are determined by these inter-

actions, but as yet they are poorly understood. Furthermore, many transcripts are the out-

come of a combination of multiple alternative events, and it is unclear if these events are

coordinated, or if so, how. To help address these questions, we have developed a symbolic

language for describing differences between transcripts. We have analyzed splicing pat-

terns in Human genes and identified statistically significant correlated splicing and tran-

scription events. The primary findings are as follows: (1) Most splicing patterns can be

explained by independent selection of splice sites within a single spliceosome; (2) There

is little coordination between adjacent spliceosomal complexes in formation of splicing

patterns; (3) Alternative transcription events are the dominant source of transcript diver-

sity; (4) There is strong linkage between alternative transcription and alternative splicing

events.

2.2 Introduction

In Eukaryotes, there are three major mechanisms that contribute to the diversity of

transcripts: alternative splicing, alternative transcription initiation, and alternative tran-
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scription termination [40, 41]. Alternative splicing is a consequence of a spliceosome

operating on an alternative set of splice junctions during the process of intron removal

[6]. Alternative 5’ end formation is a result of alternative promoter selection by the RNA

polymerase complex [42]. Alternative 3’ end formation is a result of selection of alterna-

tive poly(A) sites by spliceosomal and termination/cleavage machinery [43].

The traditional view was that both 3’ end formation and splicing are post transcrip-

tional events, but it is now clear that these processes occur co-transcriptionally [44, 45,

46, 3]. The final mRNA transcript is thus the outcome of interaction between a number of

concurrent processes that involve a multitude of components from the transcription and

splicing regulatory pathways. Interactions between components can be complex, with

alternative promoters causing changes in splicing [47], polymerase processivity causing

alternative splicing [48], splicing factors enhancing polyadenylation [49, 50] and the pres-

ence of proximal 5’ splice sites enhancing transcriptional initiation [51]. (Illustrated in

Figure 2.1)

The mechanism of action of a single spliceosome has been worked out in great de-

tail [6]. However, formation of large splicing patterns that involve many introns remains

poorly understood. In particular, it is unknown whether there is significant communica-

tion between multiple spliceosome assemblies in the formation of splicing patterns in-

volving multiple introns. Furthermore, very little is currently known about the strength

and frequency of interaction between transcription and splicing machinery. How strong

are these interactions and how frequently do the properties of one influence the behavior

of the other?

To address these questions, we have developed a symbolic representation of differ-

ences between isoforms. The formalism is an extension of that typically used to describe

alternative splicing events, introducing more detailed categories and adding a symbolism

for alternative transcription events. We have compiled statistics on splicing patterns in
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A. Interaction between transcription
intiation and the 5’ end of the first intron.

B. Interaction between transcription
elongation and the 3’ end of  an intron.

C. Interaction between downstream 
spliceosomal and upstream spliceosomal
 complexes   

D. Interaction between  transcription 
termination and the 3’ end of the last intron

TRANSCRIPTON INITIATION COMPLEX

U1 sRNP U2 sRNP

TRANSCRIPTION TERMINATION COMPLEX

RNA POLYMERASE COMPLEX

Figure 2.1: Examples of possible interactions between splicing and transcription machin-
ery. (A) Interaction between transcription initiation and a spliceosome. (B) Location of 3’
intron end determined by location of RNA Polymerase. (C) Exon definition mechanism:
U1 and U2 snRNP communicate across exon. (D) Interaction between a spliceosome and
3’ end formation.
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Human transcripts and developed a model that simulates the formation of random exon

patterns. The random model allows us to derive accurate statistics on expected frequen-

cies and correlations between various transcription and splicing events.

Our analysis indicates that most splicing patterns are formed by independent se-

lection of splice sites within a single spliceosomal assembly. We do not find evidence

for coordination between adjacent spliceosomal assemblies. However, correlated patterns

formed by transcription initiation/termination and spliceosomes are highly enriched.

2.3 Results

2.3.1 Generation of Splicing Patterns

We describe differences between isoforms using a symbolic character representa-

tion of exon structure. Our aim is to produce a formal language description of alternative

splicing events similar in form to the amino acid code. For example, if two isoforms

contain five identical exons, we write down a string of length five: ’IIIII’, where each ’I’

character represents an identical exon. If a minor isoform of this gene skips an internal

third exon, the corresponding pattern is ’IIAII’, where ’A’ represents an exon deletion

relative to the major isoform.

In all, we define an alphabet of fourteen different symbols. Six upper case symbols

(’I’,’A’,’B’,’5’,’3’,’X’) represent differences that are exclusively due to changes in exon

structure introduced by alternative splicing. Six lower case symbols (’a’,’b’,’o’,’e’,’y’,’z’)

represent differences due to a combination of alternative transcription initiation/termination

and alternative splicing events. In addition to symbols used to indicate differences be-

tween exons, we include two symbols ’S’ and ’*’ to mark the beginning and ends of

patterns. The alphabet is illustrated in the Figure 2.2.
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I  I     I I     A     I I B      I

I     5  I I 3  I I     X     I

Identical  Exons

Alt 5’ Splice Site

Exon Deletion

Alt 3’ Splice Site

Exon Insertion

Complex 

Alternative Splicing Alphabet

o I  I I     I    e
Alternative Transcription Start  Alternative Transcription Stop 

Alternative Transcription and Splicing  Alphabet

a  a   I I  a b  I   I b  b

Exon deletion due to alternative 
transcription start or stop  

Exons insertion due to alternative 
transcription start or stop 

y  I   I I     I    z

 AlternativeTranscription Start  
and Alternative 5’ Splice Site

Alternative Transcription Stop
and Alternative 3’ Splice Site

Figure 2.2: The alphabet used to describe differences between major and minor isoforms.
The symbols are broken down into two groups: differences that are due to selection of an
alternative splice site by splicing machinery (symbols ’A’, ’B’, ’5’,’3’, ’X’), and differ-
ences that are due to splicing machinery and/or transcription machinery (symbols ’a’, ’b’,
’o’, ’e’, ’y’, ’z’ ). In each case, the top row shows a major isoform exon/intron structure,
and the bottom row shows the structure of a related minor isoform.
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The algorithm for symbol assignment is described below. We identify equivalent

pairs of exons between the major isoform of each gene and each minor isoform, using

the genomic coordinates of the exons. Specifically, two exons are considered equivalent

if their alignments to the genome sequence overlap. All exons within an alignment are

classified into two categories: exons that differ solely as a result of change of splice

site choice by spliceosomes (internal exons), and exons that differ as a result of changes

introduced by transcription initiation/termination machinery or due to a combination of

splicing and transcription initiation/termination machinery (external exons). Illustrative

examples are shown in Figure 2.3.

Internal exons (those with genomic co-ordinates at least partly overlapping with the

equivalent exon) are labeled with upper case symbols. External exons are labeled with

lower case symbols. Symbols are assigned as follows:

1. Both exons have identical genomic coordinates ’I’

2. One of the exons is missing in the major or the minor isoform

(a) Missing in the minor isoform - exon skip

i. Missing internal exon - upper case ’A’
ii. Missing external exon - lower case ’a’

(a) Missing in the major isoform - exon insertion

i. Inserted internal exon - upper case ’B’
ii. Inserted external exon - lower case ’b’

3. Difference in 5’ boundary between equivalent exons

(a) Internal exon, alternative 5’ splice site - symbol ’5’

(b) Alternative transcription start site - ’o’

4. Difference in 3’ boundary between equivalent exons

(a) Internal exon - alternative 3’ splice site - symbol ’3’

(b) Alternative transcription termination - ’e’

5. Difference at both the 3’ and 5’ ends of equivalent exons

11



a  b     I     I  I   a       b  

a  b    3     I      I  a     b  

a      o     I   I  a      b  

a      o          I I   e  

a      o      I I   z  

      I     B   A    I       I Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Figure 2.3: Illustrative examples of symbol assignment. In each case, the top row shows
the exon structure of a major isoform, and the bottom row the exon structure of a minor
isoform of the same gene. Exons are divided into two categories, internal exons (high-
lighted yellow) and external exons. All exons to the left of the first overlapping exon pair
and all exons to the right of the last overlapping pair are considered external. Differences
within internal exons are largely due to alternative spliceosomal events, while differences
in external exons are due to interaction between spliceosomal and transcription machin-
ery. Example 1 shows an internal exon swap, encoded as the string ’IBAII’, generated
by spliceosomal machinery, while the two exon swaps in the second example ’abIIIab’
are generated by both transcription and splicing machinery. Selection of an alternative 3’
splice site by a spliceosome generates the ’ab3’ pattern in Example 3, while alternative
transcription initiation of the same exon generates the ’ao’ pattern (Example 4). Examples
5 and 6 illustrate similar modifications of internal exons due to alternative termination.
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(a) Internal exon - symbol ’X’

(b) Alternative transcription start and 3’ alternative splicing - ’y’

(c) Alternative transcription termination and 5’ alternative splicing - ’z’

There are three points to be noted. First, although we only use full length cDNA se-

quences, the ends of transcripts might still be poorly defined. To avoid small differences

at the ends of transcripts inflating the ’o’ and ’e’ counts, we require a difference of at least

20 nucleotides for these symbols to be assigned. Second, the alphabet describes all pos-

sible differences in exon structure, with the exception of intron retention events (events

where an exon-intron-exon in one isoform becomes a single continuous exon in another).

Although some intron retention events might be biologically significant, we cannot dis-

tinguish them from experimental artifacts such as incomplete processing of pre-mRNA.

Third, the symbols ’5’ and ’3’ refer to the ends of introns, rather than the ends of exons

(a possible alternative choice), reflecting the units the machinery operates on.

Examples of splicing patterns in the caspase family are shown in Figure 2.4.
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CASP4
NM_001225

NM_033306 abIIIIIIII
NM_033307 II3IIIIII

CASP7
NM_001227

NM_033338 oBIIIIII
NM_033339 IBIIIIII
NM_033340 baIII5BII

CASP3
NM_004346

BX647609 aoBIIIIAe
NM_032991 IAIIIIII

CASP10
NM_032977

AJ487678 oIIIIIAAIea
NM_032974 IIIIIIIIIaab

CASP1
NM_033292

NM_001223 IIAIIIIIII
NM_033293 I5AIIIIIII
NM_033294 I5AIIIAIII

CASP8
NM_033355

NM_033356 abIIIAIIII
NM_033357 IIIIII5II

Figure 2.4: Examples of strings describing alternative isoforms in Human Caspases. The
second isoform of CASP4 contains a novel exon generated by an alternative transcription
initiation event, resulting in the formation of an exon swap pattern (’ab’) at the beginning
of the gene. The exon swap pattern due to alternative promoters also occurs in CASP7
(’ba’) and in CASP8 (’ab’). Alternative termination events in CASP10 result in two exons
being replaced by a single one, forming an ’aab’ pattern. There are also many examples of
internal exon insertions and exon deletions in the caspases, forming patterns with ’B’ and
’A’ symbols. For example, the second isoform of CASP10 is missing two internal exons
relative to the major isoform, generating an ’AA’ pattern. Exon insertions and deletions
are frequently associated with 5’ splice modification, forming ’5A’ and ’5B’ patterns, as
seen in CASP1 and CASP7. The alternative transcription initiation event in the second
isoform of CASP3 produces an ’ao’ pattern, while an alternative transcription termination
event in the second exon from the end in CASP10 produces an ’ea’ pattern.
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2.3.2 Overview of Splicing Patterns

A reliable non-redundant set of isoforms was generated, starting from an initial set

of 22,000 genes and 136,000 cDNA transcripts. Some genes were removed because they

had only a single cDNA transcript or because all transcripts contained errors. For the

remaining genes, one of the transcripts was selected as the major isoform. After filtering

out duplicate transcripts and partial transcripts, we were left with 29,543 potential minor

isoforms. For the analysis, we require a set of unique splicing events, rather than unique

full transcripts, and the set of unique minor isoforms of a gene may contain multiple

instances of the same event. For example, there may be two isoforms with different 5’

ends, both containing the same exon skip in the middle of the transcripts. To ensure each

event is only counted once, we randomly selected only a single minor isoform for every

gene, resulting in a final set of 10,305 patterns. These patterns were used to compute the

frequency of each symbol (Table 2.1) and of pairs of symbols (Table 2.2).

Some care is necessary in interpreting the observed fractions of each symbol type.

Symbols ’S’ and ’*’ are included to indicate start and stop of patterns, and do not rep-

resent changes to the exon structure of a gene, but do contribute to the total number of

observed symbols. It is also important to point out that observed fractions do not repre-

sent actual probabilities of various exon types, because we are only looking at splicing

events within our dataset of 10,305 minor isoforms and not in the whole transcript space.

If all transcripts from all isoforms were considered, the number of exons that are different

between transcripts would shrink, while the frequency of identical exons would increase

to approximately 95% of all exons. In the context of this application, we compare exon

frequencies to each other, and thus it is relative frequencies of the symbols that are im-

portant, not their absolute values.
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Symbol Count Frequency Description
X 3 0.002% Complex (both sides of internal exon differ)
z 56 0.04% Complex (both sides of the last exon differ)
y 160 0.13% Complex (both sides of first exon differ)
5 472 0.37% Alternative 5’ splice site
B 831 0.65% Alternative 3’ splice site
3 860 0.67% Exon insertion (internal exon)
b 1494 1.17% Exon insertion (external exon)
A 1977 1.55% Exon deletion (internal exon)
e 3924 3.08% Alternative transcription termination
a 5384 4.22% Exon deletion (external exon)
o 6412 5.03% Alternative transcription initiation
? 10305 8.08% End of pattern indicator
S 10305 8.08% Start of the pattern indicator
I 85285 66.91% Exon identical in both isoforms

127468 100%

Table 2.1: Exon change (single symbol) frequency. Frequency is defined as the ratio of
symbol to total symbol count. Note symbol ’S’ and ’*’ indicate pattern start and end - not
exon differences.

As can be seen in Table 2.1, only 4% of all changes to exon structure are solely due

to spliceosomal events (’A’,’B’,’5’,’3’,’X’). Excluding, ’S’, ’*’ and ’I’ symbols, all other

differences are due to alternative transcription or a combination of alternative transcrip-

tion and splicing. These combined events (’a’,’b’,’o’,’e’,’z’,’y’) represent 20% of all exon

changes. It is important to point out that our estimates of the number of exons modified

due to alternative transcription initiation and termination are conservative. To avoid con-

tamination of the dataset by partial cDNA sequences, we have removed transcripts that

are missing more than 30% of the exon structure relative to the major isoform. Since

some genuine shorter isoforms were affected by the filter, we underestimate counts for

’a’ and ’b’ symbols.

Alternative transcription termination events resulting in changes at the 3’ end of the

last exon (’e*’) or 3’ terminal exon swaps (’ab*’, ’ba*’ ’abb*’ etc.) occur in 40% of all

patterns (4228 out of 10,305 patterns). This finding is similar to finding by Tian et al.[43]

who found 50% of all human cDNAs have alternative 3’ ends. Modification of an exon
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by an alternative promoter is more common than by alternative transcription termination.

Alternative transcription initiation events (’So’, ’Sa’, ’Sb’, and ’Sy’) are found in 77% of

all patterns (7968 out of 10,305 patterns). This estimate is somewhat larger than the 56%

value obtained in cap analysis of Human cDNA (CAGE) experiments [52].

Among spliceosomal induced changes (’A’,’B’,’5’,’3’,’X’), the most common is

exon deletion ’A’. Deletions are observed twice as often as insertions (’B’). One sided

modification of an exon through an alternative 5’ splice site or an alternative 3’ splice site

are the next most common events. Exons modified on both 5’ and 3’ ends (’X’) were

observed only 3 times.
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cDNA
Transcripts

Genomic
 Sequence

Align Transcripts to Genome

Select Major isoform

Generate Patterns

SIIIAAIII*
SIIIABIIe*
SI53IIIIe*
SaIIIebb*

Random Pattern Generator 

SIIAIAIIa*
SII5IBIIe*
SIAIIII3e*
SbIIIIeb*

Enumerate substringsEnumerate substrings Enumerate substrings

III 6   
AA 1
AB 1
53 1
eb 1
*

S 4
*  4
A 3
B 1 
b 2

III  4
AI  3
AB 0
3e 1
eb 1

S 4
* 4
A 3
B 1 
b 2

Enumerate substrings   Compare Frequency of substrings

Figure 2.5: Overview of steps used to compute and compare real and random patterns.
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2.3.3 Spliceosomal Patterns

We next compare the observed frequency of multi-symbol patterns with that ex-

pected by chance. There are a number of position and sequence restrictions on possible

patterns that affect the expected random frequency of symbol pairs. For example, exter-

nal exon deletions (symbol ’a’ ) can only occur at a subset of positions on the ends of

transcripts, and such an external deletion can never be followed by an internal deletion

symbol ’A’. To reliably calculate the random frequencies we use a procedure that sim-

ulates random patterns, taking into account positional biases. The algorithm generates

random patterns of the same length and composition as the observed patterns. Random

patterns are checked against a set of rules and only the subset of patterns that pass are kept.

We then compile statistics on the frequency of random substrings and compare them to

observed frequency of substrings in real patterns. (Procedure illustrated in Figure 2.5)

The comparison between observed and random substring frequencies is show in Ta-

ble 2.2. Double exon skips (AA) and insertions (BB) tend to occur together much more

frequently than expected by chance ( 11-fold and 9-fold enrichment respectively). Longer

runs of insertion are less common than longer runs of deletion (Table 2.3), with only 6%

of all insertions occurring in multiple ’BB’ patterns, compared to 18% of all deletions

occurring in multiple ’AA’ patterns. Of course, the distinction between insertions and

deletions is slightly subjective, depending on the choice of major isoform. As shown in

Figure 2.6, both these patterns arise as a consequence of a single spliceosome operating a

one different splice site. Exon insertion or deletion events are often coupled to modifica-

tion of 5’ and 3’ boundaries of adjacent exons. For example, ’5A’ , ’A3’, ’5B’ and ’B3’

patterns all occur at a frequency higher than expected by chance. As illustrated by Figure

2.6, in all cases, strong association between deletion and exon modification only requires

a single spliceosome to operate on one different single splice site.
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Pattern Observed Expected Enrichment Description
AA 463 41+/-6 11.13 Internal double exon skip
BB 67 7+/-2 9.05 Internal double exon insertion
ab 572 71+/-9 8.04 Exon swap at the ends
ba 438 69+/-6 6.33 Exon swap at the ends
S5 120 21+/-3 5.64 Alternative 5’ splice site (ss) of the first

intron
53 22 4+/-3 4.75 Intron modified at both 5’ss and 3’ss
5A 43 10+/-3 3.94 Alternative 5’ss and deletion
YA 13 3+/-1 3.79 Alternative promoter and deletion
oe 136 35+/-7 3.78 Two exon transcript: Alternative start

followed by alternative stop
5B 15 4+/-1 3.17 Alternative 5’ss and insertion
A3 55 20+/-5 2.70 Deletion and 3’ss
aa 2459 1122+/-17 2.19 External double exon skip

B3 19 8+/-2 2.13 Insertions and alternative 3’ss
bb 235 116+/-9 2.02 External double insertion
3* 120 61+/-6 1.94 Alternative 3’ss in the last intron
bI 524 275+/-11 1.90 Exon insertion at 5’end of transcript

AB 33 18+/-4 1.79 Spliceosomal Exon Swap
BA 26 15+/-4 1.71 Spliceosomal Exon Swap
oB 107 64+/-7 1.65 Alternative initiation and insertion of

an exon.
SY 146 90+/-11 1.62 Alternative initiation and alternative

5’ss in the first intron

Table 2.2: Comparison between the observed and expected frequencies for patterns of
length two.10,306 complete and randomly generated patterns were broken down into
overlapping fragments of length two, and fragments were counted. For example, the
full length pattern ’I5AAAI’ is broken down into fragments ’I5’, ’5A’, ’AA’, ’AA’, ’AI’.
Expected frequencies were computed as an average over 100 simulations. Only patterns
observed at least 10 times are included.
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Deletions Observed Insertions Observed
A 1232 B 713

AA 202 BB 43
AAA 42 BBB 3

AAAA 22 BBBB 2
AAAAA 4 BBBBB 3

AAAAAA 2 BBBBBB 0
AAAAAAA 1 BBBBBBB 0

AAAAAAAA+ 1 BBBBBBBB+ 0
TOTAL 1514 TOTAL 764

Table 2.3: Frequency of multiple deletions and insertions in the observed data. Longer
runs of deletion (more than two consecutive ’A’s) are more common than longer runs of
insertion (more than two consecutive ’B’s). Approximately 18% of all ’A’s occur in mul-
tiple runs, in contrast to 6% of all ’B’s, suggesting that insertions are more independent
events.

One of the most interesting enriched patterns is alternative splicing that modifies

both sides of an intron producing a ’53’ pattern, a longer ones such as ’5A3’, ’5B3’ and

’5AA3’. Although these events are rare, they tend to occur at frequencies higher than

expected by chance (enrichment > 5). How these patterns arise is not clear. The recog-

nition of the 5’ and 3’ ends of introns are two independent events [6], and interaction

between the U1 and U2 snRNPs takes place only after the splice sites have been recog-

nized. However, enrichment of these patterns indicates that a change in a 5’ splice site is

sometimes coordinated with a change in the neighboring 3’ splice site. It is possible that

’53’ patterns are generated through two intron removal reactions. For example, where

two introns overlap, with one intron inside another, as illustrated in Figure 2.8. The limi-

tation of the intron inside intron model is that it can only explain introns that are nested,

however approximately 40% of all ’53’ patterns in our dataset were found in a staggered

configuration.

It is also possible that ’53’ patterns are generated by U12 spliceosomes. The U12

spliceosome is capable of recognizing ’AG-GT’ type introns and has been shown to bind
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A  A

A  3

5          A

5          A        3

B

X

5  5

3  3A  B

5  3

Figure 2.6: Patterns generated by spliceosome machinery. Splice site changes are indi-
cated by circles. The most frequently observed patterns, such as ’AA’, ’A3’ and ’5A’,
can all be generated by change in a single splice site choice by a single spliceosome, and
occur at frequencies higher than expected by chance. The ’53’ and ’5A3’ patterns are
generated by a single spliceosome complex, but modify both the 5’ and 3’ splice sites
of an intron. The ’53’ pattern is rare, but occurs at a frequency higher than expected by
chance. The patterns ’55’ and ’33’ involve two adjacent spliceosomes. They are rare and
occur at expected random frequencies. The exon swaps ’AB’ and ’BA’ are complex pat-
terns that involve both deletion and insertion of exons, and therefore require coordination
of four splice sites. These exon swaps are rare, but happen at frequencies higher than ex-
pected by chance. Exon insertion ’B’ requires definition of two splice sites from adjacent
spliceosomes.
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Figure 2.7: Motifs around ’53’ introns and U12 ’AG-GT’ introns. U12 introns were
obtained from the U12DB database [54]. Sequence logo pictures were constructed using
Weblogo program [55, 56].

to both 5’ splice site and branch point cooperatively [53]. Figure 2.7 shows the sequence

logo comparisons between sequence motifs around ’53’ introns and U12 ’AG-GT’ in-

trons, obtained from the U12DB database [54]. It is clear that sequence motifs around

’53’ are significantly different from U12 sequence motifs, indicating that U12 is not the

cause for enrichment of the ’53’ pattern.

The ’X’ pattern arises when both 5’ and 3’ side of the same exon are modified by

adjacent spliceosomes. ’X’ exons are extremely rare, with only 3 examples in the whole

dataset of 106,855 exons. The random expectation for ’X’ patterns is the product of

alternative 5’ splice probability and alternative 3’ splice probability, which is in fact also

3 events in 106,855. It is hard to reconcile this low frequency with the exon definition

model [57], where the 5’ and 3’ ends of an exon are defined by communication between

two spliceosome assemblies on either side of the exon. If there is such communication,

we would expect to find more ’X’ patterns. In addition to ’X’, patterns ’33’, ’55’ are also

produced by alternative splicing events in two adjacent spliceosomal assemblies. Both

of these events are extremely rare and observed at the frequency expected by chance: 9

examples for ’33’, and 3 examples of ’55’.

Generation of exon swaps (’AB’ and ’BA’ patterns) requires coordination between
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Removal of external intron C-D

Removal of internal intron A-B

pre-MRNA

B

C D

A

BAC D
5‘ 5‘ 3‘ 3‘

Transcript 1

Transcript 2

Figure 2.8: Possible mechanism for formation of the ’53’ pattern. Two overlapping
introns ’A-B’ and ’C-D’ are removed in two splicing reactions. The first splicing reaction,
removes intron A-B, forming the first product (transcript 1). Transcript 1 is used as a
substrate for a second splicing reaction, which removes the second intron C-D. If both
products are detected and compared to genomic sequence, the change in both 5’ and 3’
splice will be observed.
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four splice sites, two of which must be activated in the alternative, and two that must

be suppressed. These events are rare (59 examples total), but are observed at higher

than expected frequency, by a factor of 1.7. This enrichment indicates that coordinated

removal of adjacent introns is possible, although infrequent.

2.3.4 Transcription Machinery Patterns

Multiple deletions (’aa’) and multiple insertions (’bb’) of exons due to alternative

transcription initiation or termination are the most frequently observed types of double

modification to exon structure (Table 2.2). Deletions occur more frequently than inser-

tions. Although we see mild (2 fold) enrichment in these patterns, this is simply a re-

flection of the fact that many exons can be changed with a single change in location of

transcription start or end. Long runs of multiple exon deletions and insertions occur at the

5’ end much more frequently than at the 3’ end (Table 2.4). It is not immediately obvious

why transcription initiation tends to delete/insert more exons.

Transcription Initiation Observed Transcription Termination Observed
a 929 a 204

aa 285 aa 55
aaa+ 352 aaa+ 96

b 151 b 52
bbb 29 bb 9

bbb+ 19 bbb+ 1
ab or ba 716 ab or ba 105

a+b+ or a+b+ 34 a+b+ or a+b+ 80

Table 2.4: Comparison between exon deletions and insertions introduced by alternative
transcription or termination. (’+’ indicates a string length equal or longer)

A mix of insertions and deletions at the ends of a transcript produces exon swap ’ab’

and ’ba’ type patterns. These events occur at a frequency much greater than expected by

chance (Table 2.5). The mechanism by which swaps are generated at 5’ ends is different

from that at 3’ ends. At the 5’ end of transcripts, selection of alternative exons must be
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a  a         o

a   b       I

   e       a          a

    I a     b

S5 3*

Figure 2.9: Examples of transcription initiation and termination patterns. Patterns of type
’aa’ and ’bb’ are frequently generated by change in the location of transcription initiation
or termination. Highly enriched exon swap patterns ’ab’ and ’ba’ are generated through
coordination of spliceosomes and transcription initiation/termination machinery. Enrich-
ment of the ’S5’ pattern indicates linkage between transcription initiation and location of
the 5’ splice site of the first intron. Enrichment of the ’3*’ pattern indicates that there
is linkage between transcription termination and location of the 3’ splice site of the last
intron.
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done by transcription initiation machinery first, and splicing occurs later, and it is not

clear how much of a role spliceosomes play in the process. On the other hand, at the 3’

end, selection of alternative exons requires coordination of spliceosomes and transcription

termination machinery.

Swap Observed Expected Enrichment
3’ swap abI 70 10+/-3 7
3’ swap baI 98 9+/-2 10
5’ swap Iab 436 45+/-6 9
5’ swap Iba 280 47+/-6 6

Table 2.5: Frequency of swaps at the 5’ and 3’ ends of the transcripts. For simplicity
swaps with only 2 exons are show. Swaps at a 5’ end are more common that swaps at a
3’ end.

The most direct observation of coordination between transcription initiation ma-

chinery and the first spliceosomal complex can be seen in the ’S5’ pattern, which arises

when the first intron has an alternative 5’ splice site (Figure 2.9). With an enrichment

factor of 5.6 and 120 observations, it is the fifth highest ranked pattern of size two. The

implication of this observation is that there exists a mechanism for coordinating location

of the 5’ splice site in the first intron with the location of the transcription initiation site.

Similarly, coordination between the last spliceosomal complex and transcription termina-

tion can also be seen in the ∼2 fold enrichment of the ’3*’ pattern.

2.4 Discussion

There are three major mechanisms that can increase transcript diversity: alterna-

tive transcription initiation, alternative splicing, and alternative transcription termination.

In theory, alternative splicing can generate an enormous number of exon combinations,

while alternative transcription initiation and termination events can only modify exons on

the edges of a gene. Our study is in agreement with other large scale analyses of cDNA
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data [40, 58, 43], showing that the role of alternative transcription events in generating

diversity has been largely under-appreciated. We find that exons modified by alternative

splicing (A,B,5,3,and X) constitute less than 4% (4143 out of 106,858) of all exons, while

exons that are changed through alternative transcription initiation/termination, some times

in combination with splicing, (a,b,e,o,y,z), make up 20% ( 21,573 out of 106,858) of all

exons.

The majority of internal splicing patterns are formed by a single spliceosome,

choosing a single different splice site. This is the case for the formation of multiple

exon skip ’AA’ patterns, ’5A’ patterns, and ’A3’ patterns. The only pattern that does not

seem to fit this model is the ’53’ pattern. This pattern is produced when both 5’ and 3’

splice sites of an intron are changed by a single spliceosome, suggesting that the change

in location of splice sites is coordinated. This observation is contrary to the established

model of intron removal, where 5’ and 3’ splice sites are recognized independently by U1

and U2 snRNPs, and these molecules do not form a complex until later ATP driven steps

in the spliceosomal assembly pathway [6]. So why do we see enrichment in the ’53’ pat-

tern? One possible explanation, outlined in Figure 2.8, is that ’53’ patterns are formed by

two splicing reactions of overlapping introns. However, this could only explain approxi-

mately 60% of the contributions. A second possibility, is that these are U12 splice sites.

However, analysis of motif pattern around ’53’ introns rules out this possibility. Thus, the

mechanism of formation of ’53’ pattern remains a mystery.

Apart from a small enrichment in exon swaps, there seems to be no evidence for

interaction between multiple spliceosomal assemblies. In particular, we do not find evi-

dence for strong linkage between adjacent spliceosomes across an exon, as suggested by

the exon definition model of splicing [57]. If adjacent spliceosome complexes commu-

nicate across exons, why do we observe only three examples of exons where both ends

(pattern ’X’) have been modified? Furthermore, other patterns that are formed by adja-
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cent spliceosomal assemblies such as ’55’ and ’33’ are also infrequent and have the same

probability as one would expect by chance (Figure 2.6).

Several enriched patterns imply interaction between splicing and transcription ma-

chinery. Interaction between transcription initiation and the first spliceosomal complex

frequently result in changes in the 5’ end of the first intron (’S5’ pattern). Interactions be-

tween the transcription termination complex and the last intron’s spliceosomal assembly

frequently result in a changed 3’ splice site for the last intron (’3*’ pattern). Exon swaps

on both ends of transcripts occur at frequencies much higher than expected by chance

(’ab’ and ’ba’ patterns).

In summary, pattern analysis shows that most changes to the exon structure of tran-

scripts are products of alternative transcription initiation and termination, that the major-

ity of alternative splicing patterns are produced by a single spliceosome working indepen-

dently of other spliceosomes, and that interaction between spliceosomes and transcription

machinery is responsible for generation of many highly enriched splicing patterns.

2.5 Methods

2.5.1 Sources, Quality Control, and Selection of Major Isoform

In this study we limited our analysis to full length cDNA sequences collected from

the Unigene, Refseq, and H-inv databases. cDNA sequences were aligned to contigs in

the Human Genome, and checked for errors. Major isoforms were selected on the basis

of most commonly observed isoforms in EST libraries. See Common Method Appendix

for a full description of data sources, quality control checks, and ranking criteria used to

select major isoform.
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2.5.2 Selection of Minor Isoforms

The exon structure of the major isoform and potential minor isoform were aligned

using genomic coordinates, and alignments were filtered using the follow criteria: 1. To

eliminate partial cDNA sequences, we removed all transcripts that are missing more than

30% of exons when compared to the major isoform. 2. We removed all transcripts that

have identical exon structure with the major isoform. 3. We removed all transcripts that do

not have any overlapping exon with the major isoform, and all single exon transcripts. 4.

We removed all transcripts that had intron retention events relative to the major isoform.

2.5.3 Random Pattern Generator

The overall process is shown in Figure 2.5. The random pattern generation algo-

rithm consists of three major steps; partitioning of symbols into three groups (5’ end

symbols, internal symbols, and 3’ end symbols), shuffling of symbols within each group,

merging of groups, followed by validation of the resulting pattern (see methods). We

generated 10,445 random patterns, one for each of the real patterns, and calculated the

frequency of all pairs of symbols. The process was repeated 100 times, to obtain the

mean and standard deviation for each substring count.

1. For each real pattern we generate a random pattern of the same length. Symbols

for the random patterns are drawn from the three buckets. The first bucket con-

sists of symbols describing transcript differences arising from process involving

transcription initiation (a,b,o,y), the internal bucket consists of symbols describing

differences arising from processes involving only alternative splicing (I,A,B,5,3,X),

and the last bucket contains symbols describing differences involving transcription

termination (a,b,e,z). The number of symbols selected from each bucket is the same

30



as in the corresponding pattern for that group. For example, if the real pattern reads

’SaaoIIIIbbb*’, we would draw 3 random symbols from first bucket, 4 random

symbols from internal bucket, and 3 random symbols from last bucket.

2. Symbols from the three groups are merged into a single pattern.

3. The new pattern is checked to see if it is valid, using the following rules. a. There

are can only be one transcription start symbol (’o’ or ’y’) and only one transcription

end symbol (’e’ or ’z’) per pattern.

b. Mixtures of ’a’ and ’b’ before symbols ’o’ or ’y’ are not allowed.

c. Mixtures of ’a’ and ’b’ after symbols ’e’ or ’z’ are not allowed.

d. Combinations ’aA’, ’aB’, ’bA’, ’bB’, ’SA’, ’SB’, ’A*’, ’B*’ ’S3’ and ’5*’ are

not allowed.

4. If a pattern fails, reshuffle within groups and validate again.

a. If a pattern fails more than 100 times, try swapping ’a’ and ’b’ symbols between

the start and end groups.

b. If a pattern fails more than 200 times, abandon the pattern and go back to step 1.
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Chapter 3

Chapter 3. Noisy Splicing

3.1 Abstract

For some time, the number of known alternative Human isoforms has been increas-

ing steadily with the amount of available transcription data. To date, over 100,000 iso-

forms have been detected in EST libraries, and nearly 90% of Human genes have at least

one alternative isoform. In this chapter, we propose that most alternative splicing events

are the result of noise in the splicing process. We show that the number of isoforms and

their abundance can be predicted by a simple error model that takes into account two fac-

tors: the number of introns in a gene and the expression level of a gene. Furthermore,

we show that there is substantial selection pressure to reduce the frequency of alternative

splicing in highly expressed genes and genes with many introns. We argue that these ob-

servations are consistent with error rates tuned to reduce the toxic effect of accumulation

of misfolding proteins in the cell and to ensure that an adequate level of functional prod-

uct is produced. Based on simulation of sampling of virtual cDNA libraries, we estimate

that the average Human cell, with 800,000 transcripts, may contain as many as 100,000

alternative isoforms due to splicing noise.

3.2 Introduction

The number of Human genes with alternative splicing is presently not well estab-

lished. Early estimates based on EST data suggested that around 35-40% of all genes
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have at least one alternative isoform [18, 59]). Current estimates based on a larger collec-

tion of EST libraries and microarray experiments show numbers as high as 90% (Figure

3.1, [21]). It is now clear that nearly every gene with potential for splicing produces al-

ternative isoforms. These observations raise an important question: are these isoforms

functional or are they in some sense the product of stochastic noise in the operation of the

splicing machinery?

In response to specific environmental and cellular conditions, transcription and

splicing machinery might generate a wide diversity of unusual transcripts, and in any

particular case it is difficult, if not impossible, to determine the importance of each tran-

script without appropriate experiments. Nevertheless, the question of the overall impact

of alternative splicing on function can be addressed using statistical methods.

Numerous bioinformatics studies have analyzed tissue specificity, species conser-

vation, domain architecture, sequence properties, and structural properties of isoforms

[59, 60, 39, 61, 10]. Most studies relate the probability of an alternative splice isoform

having function to tissue specificity, abundance, or conservation across species. It is esti-

mated that approximately 10-20% of all of alternative splicing events are conserved across

two or more species [27, 25, 62, 64, 63]. Conserved alternative splicing events are found

to be enriched in characteristics consistent with generation of novel molecular function,

such as increased coding frame preservation, increase in abundance, and preference for

changes in the functional regions. While some of these likely have function, it is by no

means clear that all do. Additionally, the functional properties of the much larger set of

low abundance species specific isoforms is left open.

There are essentially three hypotheses that can explain the presence of these iso-

forms. 1. Alternative isoforms produce novel protein sequence and thus generate new

functionality [22, 23, 65, 60] 2. Alternative isoforms that do not code for functional pro-

teins may regulate total abundance of functional isoform(s) by nonsense mediate decay

33



(NMD) or protein degradation pathways [21, 66]. 3. Alternative isoforms are the result

of stochastic noise in the splicing process [23]. They are unlikely to code for functional

protein products, but as long as they do not negatively impact the normal function of a

gene there is little selection pressure to limit their production. It has been proposed that

alternative isoforms might serve as a testing ground for molecular evolution [67, 32, 68].

Obviously, potential long-term evolutionary benefits of alternative splicing are not

the cause of the observed diversity of isoforms. In the short term, the critical aspect of the

system that determines isoform diversity is the error rate of splicing machinery. In turn,

the error rates are determined by selection pressure from such factors as the energetic

and toxic consequences of errors, as well as the requirement of producing the minimum

quantity of active transcripts required for biological activity.

In this chapter, we explore the consequences of the idea that errors in splicing

largely determine the number of alternative isoforms and their transcript abundance. The

key observations supporting the noisy splicing hypothesis are that the number of isoforms

increases as a function of the expression level of a gene and the number of introns in a

gene. The greater the number of splicing reactions - the greater the number of opportu-

nities for a mistake - the greater the number of isoforms produced. We find that there is

large variability in error rates and that genes with many splicing reactions have reduced

error rates. Based on these observations we propose that there is selection pressure on

highly expressed genes and genes with a large number of introns to maintain low levels

of alternative splicing.

As a test of the hypothesis, we have developed three models of error rate per splic-

ing reaction: 1. A constant error rate; 2. Error rates varying with the number of introns in

a gene; 3. Error rates varying with the number of introns and transcripts of a gene. Each

model was tested by simulating the production and experimental sampling of transcripts

from virtual cDNA libraries. The observed data are most consistent with the error model

34



that takes into account the number of introns and the relative abundance of a gene. Fur-

thermore, we find that the density of predicted Exon Splicing Enhancers increases with

the number of splicing reaction, implying better determined splice sites in genes under-

going many splicing reactions. The success of the model in reproducing observed trends

in the experimental data strongly supports the view that a large fraction of minor isoforms

is indeed non-functional.

3.3 Results

3.3.1 Overview

Before describing the results, it is useful to clarify some basic definitions used in

this study. First, we define the major isoform of a gene as the isoform that is most com-

monly observed in EST libraries. Using the major isoform as a reference, we define an

alternative intron as an intron that differs at the 5’ and/or 3’ splice site from correspond-

ing intron in the major isoform. If a transcript of a gene contains one or more alternative

introns, we call it an alternative transcript. An alternative isoform is defined as a unique

splicing pattern that is different from the splicing pattern in major isoform. By definition,

a single such isoform can be represented by multiple transcripts.

Figure 3.1 shows the distribution of number of alternative isoforms per gene derived

from the Complete Set of 8674 EST libraries (see Datasets). Nearly 90% of all genes

have alternative splicing, and the majority of genes have three to six alternative isoforms.

Of course, given that present EST libraries sample only a small fraction of transcript

space, only a fraction of all isoforms have so far been observed. Some of these detected

isoforms have been produced through regulated selection of splice sites, while others may

be the product of stochastic noise [23]. More precisely, assuming that splicing machinery
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does not select splice sites with perfect accuracy, one would expect that some fraction of

alternative isoforms have been produced in error.

If mistakes occur, then they should happen at low frequency and in turn this implies

that the fractional abundance of alternatives should be low. To get an approximation to

the fractional abundance of alternative transcripts, for each gene we calculate the fraction

of all EST sequences that had alternative introns. The histogram of fractional abundance

is shown in Figure 3.2. Indeed we find that the large majority (80%) of all alternative

introns are present at less than 12% fractional abundance (mean 8% , median 4%).

The observation of a large number low abundance isoforms suggests that errors

do contribute very significantly to isoform production. A key question is then what is

the relationship between error rates and observations? A basic expectation of any error

model is that the number of mistakes is a function of the total number of opportunities to

make mistakes. For spliceosomes, the number of opportunities is equal to the number of

splicing reactions - the total number of introns removed from all transcripts per unit time.

Thus, one would expect that number of observed unique isoforms would increase with

increasing expression level and with the number of introns in a gene.

The increase in the number of unique isoforms as a function of the number of in-

trons and the number of sampled ESTs is shown in Figure 3.3. Consistent with the noise

hypothesis, it can be seen that both quantities contribute to an increase in the number of

isoforms. However, it is possible that this increase is not due to noise. First, it could be

that greater functional diversity is produced by genes with more introns, and that is what

is being observed here. Second, greater EST sampling should result in increase discov-

ery of alternative isoforms, regardless of the mechanism by which these isoforms were

generated, be it noise or regulated selection of splice sites.

Furthermore, although one would expect that the number of ESTs per gene is re-
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Figure 3.1: Isoform distribution. Distribution of number of alternative isoforms per gene
derived from all 8674 Human Unigene EST libraries (15,342 genes ∼ 5,313,000 EST
sequences). The first bar contains the 2013 genes (13%) with no alternative isoforms.
The median number of isoforms per gene is 4.
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Figure 3.2: Fractional abundance of alternative transcripts. For each gene in the Com-
plete set (15,342 genes), EST sequences of a gene were compared to the major isoform
to identify alternative splicing events (see methods). We then calculate the fractional
abundance of alternative transcripts as the total number of ESTs with alternative introns
divided by the total number of ESTs. The large majority (80%) of alternatives are ob-
served at less than 12% fractional abundance. Median fractional abundance of alternative
transcripts is ≈ 4.1%.
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Figure 3.3: Increase in number of isoforms as a function of number of introns and EST
observations. Genes from the Complete Set were divided into a 10 by 10 matrix according
to number of introns in the major isoform and the number of observed ESTs per gene
(each group contains ≈ 150 genes). The mean number of isoforms was calculated for
each matrix element. As can be seen in the plot, the number of isoforms increases as a
function of both the number of introns per gene and the number of sampled ESTs per
gene.
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flective of the actual number of transcripts per gene in the cDNA pool, this need not be

the case. EST libraries are frequently enriched for rare transcripts through normalization

and subtraction procedures, and so the number of observed transcripts are not reflective of

actual abundances [69]. There are also possible problems with EST libraries constructed

from pathogenic tissues, which might contain many abnormal splicing events. Before

error rates can be estimated, these issues need to be resolved.

The problem of limited sampling of ESTs can be addressed by the use of simula-

tions, as described later. The problem of normalized, subtracted, and pathogenic tissue

libraries can easily be addressed by removal of all such libraries from the analysis. Thus,

in addition to Complete Set of all 8674 EST UNIGENE libraries [70], we created three

EST library subsets: the CGAP Subset of 325 non-normalized libraries derived from nor-

mal tissue samples [71], the CGAP Lung Subset of 16 libraries derived from a normal

lung tissue, and the single UNIGENE EST library derived from normal pancreatic islet

cells (HS Lib8840 [72]). In all four sets, we find that trends predicted by noisy splicing.

3.3.2 Estimation of Error Rates from Observed Data.

It is possible to calculate an implied splicing error rate per splicing reaction for a

set of genes directly from observed data, using the assumption that most alternative in-

trons are the result of mistakes in selection of splice sites. If errors occur at a constant

frequency then the number of alternative introns produced should grow linearly with in-

crease in the total number of removed introns. Figure 3.4A shows the average number of

detected alternative splicing reactions (that is, the number of observed alternative introns)

as a function of the total of observed splicing reactions (the number of detected introns in

all EST sequences of a gene). As expected, the number of detected alternative reactions

increases with increasing reactions, but, surprisingly, the increase is nonlinear. Figure
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3.4B shows implied error rate per reaction, defined as the average ratio of number of de-

tected alternatives reactions over the total number of splicing reactions, also as a function

of the number of splicing reactions. We find that genes that undergo more splicing reac-

tions make relatively fewer mistakes, that is they have lower error rates. This is by far the

most surprising observation in our analysis. The decline is not due to sampling biases,

since the number of detected alternative introns and the total number of detected introns

are subject to exactly the same biases.

Based on these observations we propose that selection pressures influence error

rates in two primary ways. Genes with many introns must reduce error rates if adequate

quantities of normal protein products are produced, since it is otherwise unlikely that all

introns could be removed without producing at least one mistake. For example, with a 2%

error rate, nearly all transcripts of a gene with 100 introns will contain at least one error

(0.98100 ≈ 13%). Conceptually, it is also easy to see why genes with large abundance

must reduce error or risk toxic effects on the cell. Production of large quantities of mis-

folded protein products may overwhelm chaperones, and cause toxic protein aggregation

[73, 74].

Thus, we propose that there are two key components that influence error rate: the

number of introns per gene and the expression level of a gene. However, the impact of

each component on error rates cannot be determined directly from EST data. First, only

a fraction of all introns is sequenced by ESTs. Second, only a small fraction of all tran-

scripts is sampled by ESTs. In the next sections, we address these issues by simulations

that take into account these biases.
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Figure 3.4: Estimates of error rates per splicing reaction from EST sequences. The
number of detected splicing reactions is a count of number of all introns that have been
observed in all EST sequences of a gene. The number of alternative splicing reaction is a
count of introns that differ in 5’ and/or 3’ splice site from corresponding intron in the ma-
jor isoform. Genes in CGAP subset were divided into ≈ 100 equal size groups based on
number of splicing reactions. Within each group, the mean number of splicing reactions
and the mean number of alternative splicing reactions were calculated. As can be seen, the
increase in number of alternative introns is nonlinear. Panel B: approximate error rate es-
timated as fraction of all splicing reactions that are alternative. Genes with many splicing
reactions make fewer mistakes producing a decreasing fraction of alternative introns.
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3.3.3 Overview of Error rate and Sampling Simulations

We developed three models of error rate per splicing reaction. The first model

assumes that the error rate is the same for all genes. The second model assumes that

the error rate is a function of the number of introns in a gene. The third assumes that

the error rate is a function of the number of transcripts and the number of introns for

a given gene. The error models are used as input to a virtual transcript simulator, which

generates the transcript contents of a cDNA library, consistent with the error assumptions.

We then simulate experimental EST sampling from this cDNA library, to create a virtual

EST library, which can be compared directly to real EST libraries.

Experimental cDNA libraries contain transcripts from millions of cells, and each

cell contains approximately 800,000 transcripts. No two cells are identical in their tran-

script content and most (40-48%) transcripts are present at abundance levels of less than 1

copy per cell [2]. To generate a virtual cDNA library we require three inputs: the number

of introns in each gene, the absolute message abundance (transcripts per cell) for each

gene, and a detailed error model. We assume that the major isoform of a gene is produced

most frequently, and take the intron count directly from the Refseq full-length cDNA.

To get an approximate number of transcripts per cell, we convert microarray values into

copies per cell, after calibration with ESTs per gene (see Methods). Based on approxi-

mate copies per cell, intron count, and the choice of one of the three error models, we

simulate the transcript content for 10000 cells using the virtual transcript simulator. Al-

though memory limitations do not allow us to simulate a larger number of cells, we can

show that increasing the number of cells does not significantly affect the outcome.

Each virtual transcript is represented as an intron binary pattern, where ’0’ indi-

cates that both boundaries of an intron are as in the major isoform, and ’1’ represents

an alternative splicing event where one or both boundaries are different. For each gen-
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erated transcript, at each exon/intron junction, the simulator either maintains the major

isoform boundary (a ’0’), or a splicing error causing a boundary change is introduced (a

’1’), with a probability determined by the characteristics of the particular model. Once

all transcripts in the set of cells have been generated, we mimic the cloning step and then

the sequencing steps in the EST experiments. For this purpose, we randomly pick the

same number of virtual ESTs from the generated cDNA library for a gene as were ob-

served in real EST experiments, and truncate them to include the same number of introns

as observed in real EST sequences (See Figure 3.11 and Methods for further details).

We used the CGAP Library subset and the Lib8440 library as sources of real EST

data. Our findings for the CGAP Library subset are summarized below. The findings

for Lib8440 are in qualitative agreement with the CGAP sample and are included as

supplementary data.

3.3.4 Model 1: Constant Error Rate

The simplest model of noise assumes that splicing machinery makes mistakes at

a constant error rate ’p’ per splicing reaction. In this model, all introns are equivalent

- that is, the error rate is the same for all introns regardless of gene, number of introns,

transcript abundance, intron length, splice site strength, or any other factors. Ten values

of p were tested starting at 1% and ending at 10%. As expected from Figure 3.4, none

of the p values produced good fit to observed data. The result with p=3% per splicing

reaction is shown in Figure 3.5.

As dictated by the fixed error rate, the model produces an approximately constant

fraction of alternative splicing reactions as a function of total number of splicing reactions

(Panel A), whereas the observed data falls steadily. Not surprisingly, the model predicts

a raise in number of alternative isoforms with increase in number of splicing reactions

44



(Panel C). The model correctly predicts distribution of the number of alternative isoforms

per gene (Panel B). However, none of the simulations accurately reproduces the slopes of

the experimental curves. The simulation shows an increase in the fractional abundance

of alternative transcripts with an increase in the number of splicing reactions (Panel D),

while the observed data is approximately flat. It is quite evident that this model is a poor

fit to observed data.

3.3.5 Model 2: Error rate Dependent on the Number of Introns

Consider two genes, both transcribed at the same level of 100 transcripts, where the

first gene has 10 introns and the second gene has 100 introns. Assuming a 1% splicing

error rate for both genes, the first gene would nearly always (90% of the time) produce

the major isoform, while the second gene would produce the major isoform only 37% of

the time.

In Model 2, we assume that selection will act to reduce this large effect. In this

model, genes with many introns will have a lower error rate per splicing event compared

to genes with few introns, with the error rate tuned such that on average, a fixed fraction

α of all transcripts of each gene are alternative. Given α , the error rate per splicing

reactions ’p’ for a gene with N introns is obtained from Equation 1.

p = 1− (1− α)
1
N (3.1)

Figure 3.6 shows the result of simulations with a best-fit parameter α=0.2. Inclusion

of intron counts in the error rate calculation results in a small improvement compared to

constant error rates. As can be seen in Panel A, at a low number of splicing reactions,

there is an initial decrease in error rate as a function of number of splicing reactions,
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Figure 3.5: Model 1. Simulation of sampling in a virtual cDNA library with 10000
cells. Transcripts generated with a constant error rate. Red points - simulation result
with error rate of 3%. Black points - observed data in the CGAP Library Subset. A:
Error rate simulated by model compared to observed implied error rate. B: Number of
Detected isoforms per gene distribution. C: Increase in number of detected isoforms as a
function of number of detected splicing reactions. D: Fractional abundance of alternative
transcripts. With the exception of number of isoforms per gene (panel B), this model is a
poor fit to observed data.
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consistent with the observed data. However, at high values (>100) the simulated error

rate rises, while the observed values continue to decline. This model is also a better fit to

the number of detected isoforms at a low number of splicing reactions (Panel C) and the

fractional abundance of alternative transcripts (Panel D), but fails thereafter.

3.3.6 Model 3: Error Rate Determined by the Number of Introns and

Transcript Abundance.

In Model 3, we propose that the error rate per splice junction is a function of both

the number of introns and the number of transcripts. The assumption here is that selec-

tion pressure tends to limit the total number of noise transcripts produced by all genes,

since these will produce non-folding protein products that will saturate the chaperone

machinery and/or aggregate, and so be toxic [75, 74].

The error rate per splicing reaction function assumes the same form as in equation

1, with the additional contribution from the total number of non-major isoforms produced:

p = 1− (1− α

1 + β ∗ T
)

1
N (3.2)

where T is the number of transcripts per cell, N is number of introns, and α and β are

two constants which determine the influence of the number of introns and the number of

transcripts on the error level. When β = 0, the model becomes equivalent to model 2,

where the error rate varies only with the number of introns. The higher the value of β,

the more influence from the toxic effect of many noise transcripts. We used a grid search

of α between 0 and 0.5 and β between 0 and 0.3 to find the combination of parameters

which produced the best fit to the observed data.

We find that α ranging from 0.35 to 0.45 and β ranging from 0.01 to 0.02 produces
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Figure 3.6: Model 2. Simulation of sampling in a virtual cDNA library with 10000
cells. Transcripts are generated with an error rate implied by Equation 1 and α = 0.2. Red
points- predicted data. Black points - observed data in the CGAP Library Subset. A: Error
rate simulated by model compared to observed implied error rate. B: Number of Detected
isoforms per gene distribution. C: Increase in number of detected isoforms as a function of
number of detected splicing reactions. D: Fractional abundance of alternative transcripts.
Model 2 produces better fit to observed data at low number of splicing reactions, but fails
for high (>100) numbers of splicing reactions.
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a good fit. Figure 3.7 shows the results of simulations with α = 0.4 and β = 0.015.

Figure 3.7A shows that inclusion of abundance corrects the problem with model 2, repro-

ducing the observed decline in estimated error rate throughout the entire range of splicing

reactions. Figure 3.7D shows that model 3 also correctly reproduces the nearly constant

fractional abundance of alternative transcripts, although the predicted fraction of alterna-

tives is a few percentage points lower than observed in real EST libraries. We also observe

that model 3 over-predicts number of isoforms for genes with many (> 100) splicing re-

actions. We could further refine the parameters but it is not clear if this is useful, given

the other approximations in the model. The goodness of fit between observed data and all

three models is shown in Table 3.1.
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Figure 3.7: Model 3. Simulation of sampling in a virtual cDNA library with 10000
cells. Transcripts generated with error rate implied by Equation 2 with parameter values
α = 0.4 and β = 0.015. Simulation in red, observed data in black (CGAP Subset). A:
Error rate as simulated by model compared to observed implied error rate. B: Number
of Detected isoforms per gene distribution. Panel C: Increase in number of detected
isoforms as number of detected splicing reactions. D: Fractional abundance of alternative
transcripts. Model 3 correctly reproduces the decrease in error rates, number isoforms per
gene, and fractional abundance of alternative transcripts. It over-predicts the increase in
number of isoforms for genes with high (>100) numbers of splicing reactions.
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3.4 Discussion

It is now clear that nearly every Human gene has multiple isoforms, and more iso-

forms are discovered with every new EST library. Is it the case that we are discovering

new biological activity or could it simply be that we are observing accumulation of occa-

sional mistakes in the selection of splice sites by splicing machinery - splicing noise?

There is no doubt that some fraction of all isoforms are functional. It is estimated

that the fraction of all alternative splicing events that are conserved between two or more

species is approximately 10-20% [27, 25, 62, 63, 64]. Numerous bioinformatics and mi-

croarray based studies have found that isoforms conserved across species tend to preserve

coding frames [31, 39], are less frequently subject to nonsense mediated decay [39, 35],

and are expressed at higher abundance. It should be noted that our knowledge of con-

served splicing events is biased toward genes that are expressed at high abundance, be-

cause those are more likely to get sampled by EST transcripts [26]. We do not actually

know what fraction of undetected alternative events will be conserved. Nevertheless, as-

suming that function and conservation are correlated quantities, what is the explanation

for the much larger set of species specific isoforms?

The hypothesis advanced in this chapter is that the majority of isoforms are products

of noisy splicing. Our argument is based on the observation that the number of alternative

isoforms increases as a function of two quantities: total expression of a gene and number

of introns in a gene. Simply put, the more frequently introns are removed and the greater

the number of isoforms produced, the more chances there are of making mistakes. Of

course this argument on its own is not sufficient proof of this hypothesis.

There are other lines of evidence that support the hypothesis. First, as noted pre-

viously, only a small fraction of alternative isoforms are found in two or more species

and most isoforms (more than 70%) do not show clear tissue specificity [28, 29]. Sec-
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ond, a large fraction (34%) are expected to be subject to nonsense mediated decay [33].

Third, although there will be exceptions, one would expect that in most cases the level of

expression required to perform an alternative function would be similar to that required

for the major isoform. Yet, the level of expression of most alternative isoforms is very

low (median 4%) compared to the corresponding major one (as can be seen in Figure

3.2). Fourth, examination of the implied protein sequences and structures of alternative

isoforms shows that in most cases the structures are non-viable (Chapter 4).

The idea of splicing noise is not novel, and has been suggested by several re-

searchers [23, 20, 38, 76]. It has been assumed that error rates of splicing machinery

are very low, and that if spliceosomes make mistakes, these mistakes would represent

only a small fraction of all observed isoforms [23]. For example, Kan et al. estimated

error rates to be less than 0.01 per splice junction [38]. However, development of error

rate models was not a major focus of that study. More recently, Neverov et al. [76] pro-

posed a constant error rate model with a frequency of 0.012 per splice junction. Similarly

to this study, the model was used to simulate isoform production, but not with the explicit

purpose of estimating error rates.

Assuming that splicing machinery does make mistakes, what factors are expected to

most influence the error rate? Genes with many introns can not tolerate high error levels

because this would result in significant loses of major product. The cell cannot tolerate

highly expressed genes having a high error rate because the resulting large number of non-

folding protein products would be toxic, either by over-whelming the chaperone system

or by forming aggregates. Based on these assumptions, we would expect that genes with

many introns and high abundance would be tuned to reduce error rates.

There are a number of possible mechanisms by which error rates may be tuned, such

as ’stronger’ splice site motifs, an increase in the number of exon/intron splicing enhancer

motifs, and an increase in the number of exon/intron silencer motifs. As a simple check of
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the hypothesis, we divided genes into 10 groups based on the number of splicing reactions,

and computed the average splice site consensus score and the average number of predicted

exon splicing enhancer (ESE) motifs in each group. We found that genes with many

splicing reactions contain more ESEs compared to genes with few splicing reactions. We

did not find the same trends in splice site scores - the scores remained nearly constant for

all gene groups. The contribution of each factor to the increase in splicing fidelity will

clearly require a more detailed investigation. Nevertheless, the correlation of error rates

with ESE density provides strong support for the tuned error rates model.

We argue that reduced frequency of alternative splicing in highly expressed genes is

consistent with the hypothesis that error rates are tuned such that an adequate amount of

functional product is produced and the overall impact on cells is nontoxic. The latter point

is analogous to the arguments by Drummond et al. [77] to explain increased selection

pressure against mutations in highly expressed genes. They assert that the explanation for

this phenomenon is that there has been significant selection against the accumulation of

miscoded proteins, because of their potential toxic effects.

To address problems with sampling biases in EST libraries, and test various as-

sumptions about error rates, we ran a number of computer simulations of EST sampling

from virtual cDNA libraries. We tested a constant error rate (model 1), an error rate sub-

ject to intron count (model 2), and an error rate subject to intron count and transcript

abundance (model 3). We show that the model that takes into account both introns and

abundance has a best fit to the observed data. The error per splicing reactions as predicted

by model 3 over a wide range: between 0.1 to 9% for genes with 5-20 introns and 1-1000

transcripts per cell(Figure 3.8).

Although this model fits the data, that is not a final proof of correctness. There are

several limitations in our simulations. First, we treat all alternative splicing events as er-

rors, and that is clearly not the case. Eliminating the approximately 10-20% of conserved
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Figure 3.8: Variation in average error rate per splice junction as a function of transcript
abundance, for genes with different numbers of introns. Data produced by model 3, with
α = 0.4 and β = 0.015. At low abundance levels, genes with few introns are predicted to
have high average error rates (∼ 9%), while genes with many introns have low values (∼
2%), reflecting the greater number of splicing reactions per transcript. At high abundance
levels, all error rates are predicted to be low (less than 1%) because of selection against
producing a large number of nonfunctional transcripts.
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splicing events from datasets would result in slightly smaller error rate estimates. Sec-

ond, our models do not include information about the strength of splice sites, distances

between intron ends, enhancer and silencer motifs, and other factors that influence se-

lection of splice sites. All these factors can be incorporated into simulations, but at cost

of increased complexity of interpretation. In spite of the limitations, we are not aware of

other possible explanations for the surprising decrease in the fraction of alternative introns

with increasing number of introns in a gene and with expression rate.

3.5 Methods

3.5.1 Sources, Quality Control, and Selection of Major Isoform

In this study both DNA and EST sequences collected from the Unigene, Refseq,

and H-invDB databases were used. Sequences were aligned to contigs of the Human

Genome, and checked for errors. Major isoforms were selected on the basis of the most

commonly observed isoform in all EST libraries. See Common Methods Appendix for a

full description of this process.

3.5.2 Datasets

Complete Set: EST sequences from all Unigene EST libraries (8674 libraries total)

that have a unique mapping to a Refseq gene entry. The Refseq gene must a have map-

ping to a unique genomic locus. The dataset contains 15,342 genes with 5,313,618 EST

sequences that have passed quality control checks.

CGAP Set: Subset of 325 libraries from the Complete Set. Only non-normalized

libraries derived from normal tissue samples are included. (14,397 genes, 530,618 EST
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sequences).

CGAP Lung Set: Subset of 16 libraries from the Complete Set. Only non-normalized

libraries derived from a normal lung tissue are included.

Lib8840: Single largest UNIGENE EST library, from normal pancreatic islet cells

(4447 genes, 40,083 EST sequences) [72].

3.5.3 Identification of Alternative Splicing Events

For each gene, we compare the intron structure of the major isoform with the intron

structure of each EST sequence. If an EST sequence contains at least one intron that

differs from the corresponding major isoform intron at the 5’ or 3’ splice site, that EST is

counted as an alternative transcript. The total number of alternative transcripts is defined

as the total number of ESTs containing alternative splicing. The fraction of alternative

transcripts is defined as the number of ESTs with alternative splicing divided by the total

number of ESTs for a gene. The number of isoforms for a gene is defined as the number

of unique intron patterns discovered in the EST libraries. We also defined the number of

detected splicing reactions as the total number of introns observed in all EST sequences

of a gene (Illustrated in Figure 3.9 ).

3.5.4 Microarray Based Abundance Measure

We have used microarray data from the NCBI GEO Series 2719 [78] for our study.

These data cover a wide range of normal and pathogenic tissues, across many different

tissue types. For this analysis only normal tissue samples were included. The comparison

between microarray signal values and ESTs counts per gene in the CGAP Subset is shown

in Figure 3.10. For each gene we compute average signal values across 15 normal tissue
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Major Isoform

EST1
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EST3

EST4

EST5
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EST7

Figure 3.9: Example analysis of real EST sequences. In this hypothetical example, the
major isoform of a gene has 6 introns and 7 EST have been observed in a library. Three
of the EST sequences (EST3, EST4, EST5) contain alternative introns - introns that differ
at the 3’ and/or 5’ end from corresponding intron in the major isoform. The fractional
abundance of alternative transcripts is 42% (3 out of 7). The number of isoforms for this
gene is 3 (major isoform, EST3 isoform, and EST5 isoforms). EST4 is not counted as
an isoform because it has the same pattern as EST3. There are a total of 13 detected
splicing reactions (count of all introns from all ESTs) and 3 of these splicing reactions are
classified as alternative. The implied error rate for this gene is 0.23 (3 out of 13 splicing
reactions).
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samples from the microarray series. The genes were grouped into 100 equal size bins,

based on the average signal values, and within each group the mean number of observed

ESTs and the mean microarray signal were calculated. The signal value is a measure of

probe intensity and has been shown [2] that log(probe intensity) is linearly proportional

to log(transcripts per cell). We find a strong correlation between number of ESTs per

gene and microarray signal values (correlation 0.93) on a log-log scale. Based on the fit

between microarray signal and ESTs per gene, we use the following formula to estimate

the number of transcripts of each gene in a cell

N(transcripts) = C ∗ α ∗Xk

Where X is the microarray signal value, α=0.55 and k=0.64 are values obtained

from the fit of EST counts to microarray signal (Figure 3.10), and C=2 is a scaling con-

stant to make the total number of generated transcripts equal to 800,000, approximately

the content of a single Human cell [2].

3.5.5 Binary Transcript Representation

Using the intron counts, error rate, and numbers of transcripts per cell, we simulate

the intron structure of a set of transcripts for each gene, as many transcripts as in a single

cell. Figure 3.11 gives an illustrative example, for a gene with 6 introns and 10 transcripts.

The intron structure of a given transcript is encoded as a binary string of length equal to

the number of introns in the major isoform. The alternative introns - introns that differ

from the major isoform in location of the 5’ or 3’ splice site, are represented by the symbol

”1”, while introns with same genomic coordinates as the major isoform are represented by

the symbol ”0”. In this schema, transcripts 1, 3, 6 and 10 encode the major isoform of the

gene, producing the string ”000000”. Transcripts 2, 4, and 6 contain exon skips that are
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Figure 3.10: The fit between microarray signal values and number of observed ESTs.
Genes from the CGAP subset were binned into 100 groups based on number of ESTs per
gene. Within each bin, the mean number of ESTs and the mean microarray signal were
calculated. The power law fit is shown as a red line.
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different from the major isoform for two introns, thus producing ”011000” , ”000011”,

and ”000011” strings. Transcripts 7, 8, and 9 contain alternative 5’ and 3’ splicing events,

that modify only one intron, thus producing ”000001”, ”000001”, and 001000” strings

respectively. In generating the strings, exon deletions ”11” are chosen 80% of the time,

and alternative 5’ and 3’ end formation the remaining 20%, in accordance with the overall

ratio found in cDNA data (see Chapter 2).

3.5.6 Simulation of Sampling

For each gene, we note the number of observed ESTs in the EST libraries, and the

number of introns that are included in each EST. For each observed EST sequence for

that gene, we then randomly pick one of the simulated transcripts, mimicking the clone

selection step in an experimental EST protocol. Each selected transcript is then truncated,

to include only those introns in the EST, simulating the partial coverage of a message

typically obtained with an EST.

The sampling procedure is also illustrated in Figure 3.11. The hypothetical gene in

the illustration is estimated to have 10 messages per cell, and the experimental EST li-

braries contain seven ESTs. Thus we randomly pick seven out of 10 simulated transcripts

and truncate each intron pattern to correspond to the number of introns covered in the

experimental EST sequences (highlighted in blue). The truncated patterns containing at

least one ’1’ symbol represent detected alternatively spliced transcripts. For example, the

full intron pattern of transcript 2 is ”011000”, but since only the 2 introns are covered

in the corresponding EST sequence the pattern is truncated to ”00”, thus resulting in an

undetected alternatively spliced isoform.

We obtain the number of alternative splicing transcripts for a gene by counting the

number of transcripts with at least one detected alternative splicing event. We calculate
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Figure 3.11: Simulation and sampling of the isoform composition of a gene with 10
messages per cell and six introns. Exons are shown as rectangles. Alternative splicing
events are indicated by red intron bridges. The binary intron representation is shown
above each bridge, with the symbol ”1” indicating an alternative splicing event, and the
symbol ”0” representing a major splicing event. In the set of 10 there are total of six
alternative transcripts (those with at least one ’1’: 2,4,5,7, 8 and 9) with four unique
alternative isoforms (two patterns occur twice: 4 and 5, and 7 and 8). In this example, we
assume that EST sampling extracted seven of the 10 (those with some blue exons), and
that the partial message sequencing only included the colored exons. With this particular
sampling, three alternative transcripts are selected (4, 5 and 6), containing two of the four
unique alternative isoforms (represented by the patterns 011, and 001). Although a third
alternative isoform (2) was selected, the EST sequence does not extend far enough into
the message for the difference to be detected.
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the number of alternative isoforms by counting number of unique splicing patterns. For

example, the hypothetical gene in figure 3.11, there are a total of three detected alternative

transcripts (transcripts 4, 5 and 7). The number of detected alternative isoforms for this

gene is two, since transcripts 4 and 5 encode the same pattern, 011. The fraction of

alternative transcripts is defined as the number of sampled alternative transcripts divided

by the total number of sampled transcripts, in this case 3 out 7.
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3.6 Supplementary Data
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Figure 3.12: Strength of splice site motifs as computed by GeneSplicer HMM [79].
Genes from the Complete Set were divided into 10 equal size groups based on the number
of detected splicing reactions per gene, and the distribution of splice site scores for the
donor splice sites within each group was calculated. The scores were computed using
GeneSplicer HMM program. Only scores for the splice sites present in the major isoform
of a gene were used in the calculations. If splice site was not detected it was assigned a
score of zero. By this measure, splice sites strength signals do not show the dependence
on number of splicing reactions predicted by model 3. Similar results were obtained for
acceptor splice sites (data not shown).
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Figure 3.13: Predicted Exon Splicing Enhancers (ESE) Motifs vs. Number of Splicing
Reactions. Genes from the Complete Set were divided into 10 equal size groups based on
number of detected splicing reactions per gene. For each gene we calculated the number
of ESE motifs present in the mRNA sequence of the major isoform, normalized by length
of mRNA sequence (red bars). To make sure that signal is not due to compositional biases,
we also calculate the number of ESE motifs in shuffled mRNA sequences (grey bars). As
a source of ESE data, we used 238 nucleotide motifs from the RESCUE-ESE program
[80]. The number of motifs rises steadily with increase in number of splicing reactions,
as predicted by model 3.
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Figure 3.14: Simulation of sampling using EST data from Lib8840. Sampling in a virtual
cDNA library with 10000 cells. Transcripts generated with error rate implied by Equation
2 and α = 0.4 and β = 0.015. Simulation in red, observed data in black (Lib8440 Library,
40,083 ESTs). Panel A: Error rate as simulated by the model compared to observed
implied error rate. Panel B: Number of Detected isoforms per gene distribution. Panel C:
Increase in number of detected isoforms as a function of the number of detected splicing
reactions. D. Fractional abundance of alternative transcripts. The results of simulation in
the single EST library (Lib8840) show the same trends as simulation results in the CGAP
library pool, clearly indicating that observed trends are not due to EST library pooling.
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MODEL PLOT k=N(param) N(obs) RSS AIC
Model 1 Plot A 1 50 0.00034 -396
Model 1 Plot B 1 10 22212 102
Model 1 Plot C 1 50 1.69 28
Model 1 Plot D 1 50 0.00031 -400
Model 2 Plot A 1 50 0.00038 -391
Model 2 Plot B 1 10 13050 96
Model 2 Plot C 1 50 1.39 18
Model 2 Plot D 1 50 0.00035 -394
Model 3 Plot A 2 50 0.00026 -407
Model 3 Plot B 2 10 5324 89
Model 3 Plot C 2 50 0.385 -43
Model 3 Plot D 2 50 0.00002 -411

Table 3.1: The Akaike information criterion (AIC). AIC measures a goodness of fit of
the models to the observed data with a penalty for increase in the number of parameters
[81] AIC = N ∗ log(RSS) + 2 ∗ k. The preferred model has a lowest AIC measure.
RSS is the sum squared residuals (difference between observed data and predicted data)
normalized by the number of observations. For completed description of models, plots,
and parameters see Figures 3.5, 3.6, 3.7. As can be seen in the table, the lowest AIC
scores are obtained by model 3.
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Chapter 4

Chapter 4. Protein Stability of Alternatively Spliced Proteins

4.1 Abstract

It is frequently argued that alternative splicing is one of the principal mechanisms

for generating functional diversity in higher Eukaryotes. Even though nearly every Hu-

man gene has at least one alternative splice form, very little is so far known about the

structure and function of resulting protein products. In this study, we investigate the im-

plied impact of alternative splicing on protein sequence and structure. For most proteins,

structural stability is necessary for biological activity, providing a means of assessing the

functional viability of the products of alternative splicing. We examine effects of alterna-

tive splicing on protein sequence and structure in three sets of alternative splicing events:

alternative splicing events conserved across multiple species, alternative splicing events

in genes that are strongly linked to disease, and all observed alternative splicing events.

We find that alternative splicing events conserved across species tend to maintain protein

structural integrity to a greater extent than is found in the full splicing set. However,

these events represent only a small fraction of the total. We predict that the majority

of alternative isoforms result in unstable protein conformations. Alternative splicing in

disease-associated genes produces unstable structures just as frequently as all other genes,

clearly indicating that selection to reduce the effects of alternative splicing on this set is

not especially pronounced. We find that overall, the properties of alternative spliced pro-

teins are consistent with the outcome of random errors made by splicing machinery.
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4.2 Introduction

Bioinformatic analysis of EST sequences as well as microarray experiments shows

that at least 78% all genes in Human undergo alternative splicing, producing an average of

four isoforms for every gene [18, 38, 20, 21]. Three broad hypotheses have been proposed

to explain the prevalence of alternative splicing in higher Eukaryotes. The first hypothesis

is that alternative splicing generates functional diversity by producing alternative protein

products [6, 82, 24]. The second is that alternative splicing acts as a regulation mecha-

nism to control the level of useful gene products, by means of changing the fraction of

functional and non-functional transcripts [33, 36, 66]. The third hypothesis is that alter-

native transcripts are noise, that is, the result of occasional mistakes made by the splicing

machinery (Chapter 3)

Although there are some well known examples of alternative splicing generating

protein functional diversity such as in Dscam [83], NOVA [17], Neurexin [84], and CD44

[14], the vast majority of alternative transcripts have no known function at the protein

level. Alternative splicing may also be functional at the message level, acting as a mech-

anism for switching off or down regulating the expression of a protein [36]. Although

there are some well established examples such as Drosophila sex-lethal (Sxl) [15], mdm2

[85], ABCC4 [86], MID1 [87], hUPF2 [88], here too, in nearly all cases, no such function

is known. A recent microarray-based survey of NMD effects by Pan et al. has found that

transcripts with premature stop codons (PTC) are present at a uniform level in Human

tissues and only a small fraction of PTC transcripts are substantially regulated by non-

sense mediated decay (NMD) [35]. Nevertheless, functional alternatives and regulation

hypotheses are generally regarded as the most plausible explanation for the large number

of alternative isoforms [89].

The noise hypothesis is diametrically opposed to the functional point of view, and
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argues that most of alternative transcripts are generated as a product of spliceosomal mis-

takes in selection of splice sites. We have shown in Chapter 3 that this hypothesis is

consistent with a number of non-trivial properties of the distributions of isoform abun-

dance and diversity.

In this study, we investigate the impact of alternative splicing on protein sequence

and structure. Using random exon deletions as a control, we examine the effect of ob-

served deletions on structural properties such as exposed hydrophobic area, loss of con-

tacts, and length of the gap created in the polypeptide chain. We also contrast the prop-

erties of alternative splicing events found only in Human with those conserved across

multiple species and so expected to be more likely to be functional [31, 39, 90] . Splicing

in monogenic disease genes is also investigated, since these are likely to be under the

strongest selection pressure to maintain function.

We find that on average, alternative splicing events have a markedly deleterious

effect on protein structure, similar to that found for random exon deletions, and so are

unlikely to encode for alternative protein function. Splice forms conserved across mul-

tiple species on average have a less severe impact on structure, although in many cases

are still very disruptive. We find that disease associated genes do not show special sensi-

tivity to alternative splicing, clearly indicating that there is no strong selection to remove

deleterious changes introduced by alternative splicing. Overall, our prediction is that the

majority of alternative proteins are structurally unstable and if expressed will be without

function, consistent with the noisy splicing hypothesis.
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4.3 Results

4.3.1 Difference in Protein Sequences of Isoforms

We first examine the effect of alternative splicing at the protein sequence level. We

compiled an initial set of 85,136 isoforms from 19,743 genes using sequence data ob-

tained from the Refseq [91], Unigene [92], and Hinv [58] databases. All isoforms in this

set were subjected to quality control checks to ensure that every splice junction is valid.

An additional 18,995 isoforms were removed because of uncertainty in the alignment at

the 5’ or 3’ ends. Transcripts from genes with no observed alternative isoforms were also

eliminated, leaving 10,972 genes with two or more isoforms each. There are a total of

55,217 isoforms, of which 40% (20,998) were derived from cDNA sequence, and the re-

maining 60% (34,219) were derived from EST sequences. Partial isoforms derived from

ESTs were completed by copying missing exon structure from the corresponding major

isoform (see Methods).

All validated isoforms were translated to provide the corresponding protein se-

quences, allowing for possible errors in N terminal position (see Methods). For each

gene, one of the cDNA derived isoforms was selected as the major isoform. To obtain

an overall measure of protein sequence length differences between minor and major iso-

forms, we subtracted the length of a major isoform from that of each minor isoform of the

same gene and plotted the histogram of length differences (Figure 4.1). Approximately

20% of all minor isoforms had the same protein sequence length as the major isoform,

mostly due to alternative splicing outside the coding regions (not shown in the plot). Most

minor isoforms are significantly shorter than major isoforms (∼70%) and only 9% of all

minor isoform are longer than major isoform. The signal is dominated by protein length

differences of more than 100 amino acids (∼43%).
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Figure 4.1: Distribution of differences in amino acid sequence length between proteins
coded for by major and minor isoforms. Most minor isoforms are substantially shorter
than the major isoform.
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We repeated this analysis on the subset of isoforms derived only from full length

cDNA sequences to make sure that these observations are not due to incorrect reconstruc-

tion of messages from partial EST sequences We found that both datasets have approxi-

mately the same distribution of length diff erences. The cDNA dataset has an increased

fraction of longer isoforms (∼17% rather than ∼9%) and a correspondingly smaller frac-

tion of same length isoforms, but the fraction of shorter major isoforms remains the same

in both sets. 10,160 isoforms are predicted to be subject to the NMD degradation pathway

(prediction based on 50 nucleotide rule) [33]. Removal of these results in a reduction in

the fraction of isoforms more than 100 amino acids shorter than the major one (43% to

36%). The same effect is observed in the cDNA only subset.

In order to analyze the differences between isoforms further, we aligned the implied

protein translation of each minor isoform to that of the corresponding major isoform. The

alignment is preformed in two steps, first we align the major and minor isoforms’ exons

to a common genome reference frame. We then use the cDNA alignment to create aligned

protein translations. Figure 4.2 illustrates the procedure.

We term each continuous stretch of difference within an alignment between two

isoforms a protein splicing fragment (PSF). In cases where alternative splicing lies out-

side the coding region, the protein alignment will be identical and thus no PSF will be

produced. On the other hand, if there are multiple alternative splicing events within a

coding region, multiple PSFs will be generated from a single major/minor comparison.

For example, in the TPM2 (tropomyosin 2) gene (Figure 4.3), there are two alternative

splicing differences between the major and minor isoforms, generating two PSFs.

The protein splicing fragments were classified into three broad categories: deletion,

insertion, and substitution. Substitutions were further classified into three classes: perfect

replacement - a fragment is replaced with another fragment of the same size; truncation

- a fragment is replaced with a smaller fragment; and elongation - a fragment replaced
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Figure 4.2: Identification of protein splicing fragments (PSFs). Protein sequences corre-
sponding to the major and a minor isoform of a gene are aligned, and regions in the align-
ment that differ identified. Deletions are defined as missing fragments in minor isoforms.
Replacement is defined as a substitution of identical size. Truncations and Elongations
are substitutions that change the length of a fragment. Numbers above each intron bridge
are conservation scores, the number of species in which this or a homologous bridge is
found. Here, the alternative intron has a score of 2, indicating it was detected in Human
and one other species (maximum conservations score is 11)
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NM_213674

NM_003289

NM_213674               MDAIKKKMQMLKLDKENAIDRAEQAEADKKQAEDRCKQLEEEQQALQKKL
NM_003289               MDAIKKKMQMLKLDKENAIDRAEQAEADKKQAEDRCKQLEEEQQALQKKL

NM_213674               KGTEDEVEKYSESVKEAQEKLEQAEKKATDAEADVASLNRRIQLVEEELD
NM_003289               KGTEDEVEKYSESVKEAQEKLEQAEKKATDAEADVASLNRRIQLVEEELD

NM_213674               RAQERLATALQKLEEAEKAADESERGMKVIENRAMKDEEKMELQEMQLKE
NM_003289               RAQERLATALQKLEEAEKAADESERGMKVIENRAMKDEEKMELQEMQLKE

NM_213674               AKHIAEDSDRKYEEVARKLVILEGELERSEERAEVAESRARQLEEELRTM
NM_003289               AKHIAEDSDRKYEEVARKLVILEGELERSEERAEVAE-------------

NM_213674               DQALKSLMASEEE--------------------------YSTKEDKYEEE
NM_003289               -------------SKCGDLEEELKIVTNNLKSLEAQADKYSTKEDKYEEE

NM_213674               IKLLEEKLKEAETRAEFAERSVAKLEKTIDDLE-----------------
NM_003289               IKLLEEKLKEAETRAEFAERSVAKLEKTIDDLEDEVYAQKMKYKAISEEL

NM_213674               ----------ETLASAKEENVEIHQTLDQTLLELNNL-------------
NM_003289               DNALNDITSL----------------------------------------

PSF1 PSF2

Figure 4.3: Example of Protein Splicing Fragments (PSFs) in tropomyosin 2 (TPM2).
The exon alignment of two isoforms shows two PSFs. In this case, both are the result of
exon swaps (an exon in one isoform is replaced by a different one in the other isoform),
and in each instance, the replacement exon is the same length as the major isoform one.
The PSF in the middle of the sequence is thus classified as an internal replacement, and
the one at the 3’ end is a C-terminal Replacement.
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with a larger fragment. We also classified PSFs into four broad classes based on location:

N-terminal, Internal, C-terminal and Not Classified. The last category is reserved for

differences that extend over the entire length of the alignment. As an example, consider

the alignment between two isoforms of tropomyosin 2 (TPM2) gene in Figure 4.3, where

there are two replacements, one creating an internal 26 residue long substitution, the other

also a 26 residue replacement, at the C terminus.

Not Classified Cterm Internal Nterm Fraction (%)
Truncation 3000 9425 1252 2336 47.2

Deletion 278 4603 8359 39.0
Elongation 369 1070 507 537 7.3

Insertion 25 1597 444 6.1
Replacement 1 39 68 35 0.4
Fraction(%) 9.9 31.9 23.6 34.5 100

Table 4.1: Classification of Protein Splicing Fragments (PSFs). Subsequences affected
by splicing are classified by the effect on length (Replacement - same length fragment,
Truncation - shorter fragment than in the major isoform, Insertion - longer fragment,
Deletion, Insertion) and by location in the open reading frame (Internal, C-terminal, N-
terminal, and Not-Classified) The majority of PSFs belong to the Deletion and Truncation
categories.

The results of the protein splicing fragment classification are summarized in Table

4.1. As already implied by the whole protein length comparisons, the majority of frag-

ments are Deletions and Truncations (87.6% of all fragments). Many of the C-terminal

Truncations are produced as a result of premature stop codons due to frame shifts. Many

of these are predicted to be degraded by NMD by the ”50 nucleotide rule” [93], although

this prediction might not be correct: Recent evidence by Pan et al, suggests that signifi-

cant fraction of transcripts with premature stop codon will not be affected by NMD [35].

The most common types of deletions are N-terminal deletions. These are largely gener-

ated through alternative promoters, and strictly speaking, should be considered separately

from other alternative splicing events, since different machinery is involved. As far as

is known, there is no quality control mechanism similar to NMD for deletions on the N-

terminal ends of proteins, thus we would expect that these proteins are actually produced.
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Replacement of a protein fragment with another protein fragment of exactly the same

size is the least common type of fragment (0.4%). Although rare, these events are highly

expressed (supported by large number of EST observations) and we will show in the next

section that these events exhibit the strongest conservation signal across multiple species.

4.3.2 Conserved Alternative Splicing Subsets

To obtain a splicing subset enriched for function, we compiled a list of alternative

splicing events conserved across multiple species. Although it is reasonable to assume

that cross species conservation is correlated to functionality, there are two caveats to be

borne in mind. First, the conserved subset is biased toward genes expressed in high abun-

dance in other species, since they are more likely to be detected in EST experiments.

Second, high abundance genes are also likely to produce more alternative isoforms as a

result of noise (Chapter 3), so some of the isoforms are likely to be non-functional. Nev-

ertheless, several evolutionary trends have been shown to be correlated to conservation

of alternative splicing events, such as increase in selection pressure against synonymous

mutations and an increase in selection pressure for protein reading-frame preservation

(reviewed by Xing et al. [32]), supporting the idea of at least enrichment for function in

conserved events.

To find conserved alternative splicing events, we searched sequences of all exon-

exon junctions for hits in transcripts of other species, and defined the conservation score

for each junction as the number of species that had at least one significant hit to that junc-

tion. We then define the conservation score for each protein splicing fragment (PSF) as

the maximum conservation score from all of alternative splice junctions that underlie that

PSF. The distribution of PSF conservation scores from all isoforms except those predicted

to be subject to NMD is shown in Table 4.2.
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Human Only 2 Species 3 Species 4+ Species
Replacement 0.4 0.6 6.2 9.8

Deletion 50.6 38.7 27.6 29.4
Truncation 34.2 29.6 29.2 21.6
Elongation 7.7 15.7 26.9 33.3

Insertion 7.0 15.4 10.0 5.9
Total 100% 100% 100% 100%

N(PSFs) 23287 1761 438 51

Table 4.2: Cross-species conservation of Protein Splicing Fragments (PSFs). Splic-
ing effects most likely to be functional (replacement, and elongation and insertion) are
markedly enhanced in the conserved sets.

The perfect length replacements show strongest conservation. They represent 9.8%

of all PSFs conserved across four or more species - a 25 fold increase from the 0.4% value

in the Human only subset. The fraction of Insertions and Elongations also increases with

increasing conservation, while Deletions and Truncations decrease. The most obvious

explanation for these observations is that deletions and truncations have a greater tendency

to disrupt protein structure and are thus less likely to be conserved. As we observed in

the distribution of length changes (Figure 4.1), deletions and truncations tend to remove a

large numbers of residues, typically more than a 100. Of course, perfect replacements are

least likely to effect protein structure, since they preserve protein length. Insertions and

Elongations tend to change the length by fewer than 25 residues, and are thus also less

likely to disrupt structure. This effect is investigated further in the next section.

The relationship between change in length and conservation across species is shown

in Figure 4.4A. Figure 4.4B shows the relationship between length change and minor iso-

form abundance. The assumption here is that more abundant isoforms are more likely to

be functional, providing another means of examining the relationship between structure

properties and function. Abundance is defined as the number of EST observations for

alternative splice junctions underlying the PSF. In cases where there are multiple alterna-

tive splice junctions underlying a PSF, we use the junction with the highest EST count as
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Figure 4.4: Cross-species Conservation and Abundance vs. Protein Splicing Fragment
(PSF) length change. PSFs were divided into 120 groups, with at least 200 PSFs within
each group, and mean conservation scores and abundance were calculated. Large changes
in length are typically only found in unconserved splice forms and at low abundance.

the measure of abundance. This is an approximate measure of abundance because it does

not take into account EST sampling biases, however it is expected to be proportional to

actual number of copies of the isoform in the sample. The Figure 4.4 clearly shows that

change in length is highly correlated to both abundance and conservation across species.

Small changes are both conserved and abundant, suggesting that they are more likely to

be functional.

4.3.3 Properties of Disease Gene Subsets

We have also analyzed the frequency of alternative splicing events in a subset

of genes strongly associated with Human disease. Disease associated genes were ob-

tained from three databases: OMIM [94] (2241 genes), HGMD [95] (834 genes), and

Genetests [96] (1000 genes). We also compiled a CORE set of 530 genes found in all

three databases. Although the exact mechanism leading to disease is different in each
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case, in general the cause can be attributed to reduced total activity of a protein product

as a result of a mutation of some kind.

The extent of change to protein sequence as a result of alternative splicing is far

greater than change due to a typical single amino acid mutation, and as a consequence

the likelihood of disruption of function is also greater. But unlike a deleterious amino

acid mutation, which will affect all transcripts of a gene, alternative splicing only affects

a fraction of all transcripts. As long as the fraction of alternative transcripts does not

exceed some level where the normal function of a gene is seriously affected, there will be

no pressure to reduce deleterious changes. Assuming that these assumptions are correct,

disease genes should undergo alternative splicing with the same frequency as all other

genes.

Figure 4.5 shows the distribution of the number of isoforms per gene for all Human

genes in our database (19,743 genes, 85,136 isoforms) and for the various subsets of dis-

ease associated ones. Except for the first set of bars (single isoform, i.e. no alternative

spicing ), all the sets show nearly identical distributions. Abundance of alternative iso-

forms (as measured by fraction of all transcripts per gene that are alternative) is nearly

identical ( 8% all vs ∼ 7% disease). We also looked at the distribution of overall length

change between major and minor forms of proteins in disease associated genes, which

also shows no significant differences between gene sets. We did not find significant dif-

ferences in predicted NMD fraction, or the types and locations of PSFs. Based on these

observations, we conclude that pressure to reduce the frequency, or severity of impact of

alternative splicing events is the same for disease genes as non-disease genes.
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Figure 4.5: Fraction of genes with alternative splicing in disease associated genes. All
genes (19,743 genes, 85,136 isoforms), and three subsets of disease related genes derived
from OMIM (2241 genes), Genetests (1000 genes) and HGMD (834 genes). The Core set
are genes present in all three databases (530 genes). All sets show a similar distribution of
number of isoforms per gene, with the exception of the first set of bars, which represent
the fraction of genes without alternative splicing ( 7% vs ∼ 2-3% in disease subsets).
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4.3.4 Stability of Protein Structures Produced by Alternative Splicing

For proteins with known or modelable three-dimensional structure, we can ask what

fraction of alternative splicing events is likely to result in a stably folded protein product.

For this purpose possible templates were identified in the PDB for the major isoform of

each gene, the exons were mapped on to the 3D structural coordinates, and regions cor-

responding to protein structure fragments arising from Internal Deletions were removed

(see Methods). The analysis was performed on the resulting set of modified protein struc-

tures. The impact of a deletion is measured in terms of the distance between the resulting

chain ends, newly exposed hydrophobic area, total newly exposed area, and number of

residue-residue contacts lost. An example of mapping of alternative splicing to structural

fragments in growth hormone 1 gene (GH1) is illustrated in Figure 4.6.

There are no tools for accurate prediction of protein stability. However, deletion of a

randomly chosen exon is very unlikely to result in a stable protein structure. We make use

of this feature to generate a reference set of unstable structures, and compare properties

of proteins produced by observed alternative splicing deletions with these. About 60%

of all possible internal exon deletions result in a frame shift, and almost all of these are

predicted to be degraded by nonsense mediated decay, thus they were not considered in

our calculations.

The remaining 40% of in-frame deletions form a pool from which the reference set

were selected. For each observed exon deletion included in the analysis, a random exon

deletion with the same number of residues was found, generating a reference set with the

same length distribution as the observed data. Just as with real deletions, random exon

deletions were mapped to 3D structure coordinates, and regions of chain corresponding

to the exon was removed. The final data sets consist of 1439 random deletions and 1439

real deletions (1085 splicing events observed only in Human, 263 in two species, and 76
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 mRNAA
AW963024
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NM_022562F
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Figure 4.6: Alternative splicing in growth hormone 1 (GH1). The exon structure of the
major isoform and six minor isoforms are shown as yellow bars. The location of deletions
and truncations in the protein structure relative to the major isoform are highlighted in red.
Isoforms A, B, C and D are classified as Internal Deletions. Isoforms E and F produce
a frame shift and are classified as C-terminal Truncations. Isoform B was derived from
EST sequence, and part of the exon structure (colored brown) was copied from the major
isoform. The isoforms are sorted by severity of impact on structure.
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in three species, and 15 in four or more species).

The distributions of the various structural features are shown in Figure 4.7. The ran-

dom and full Human only sets have very similar distributions for all structural properties.

We conclude from this that the large majority of alternatively spliced deletions result in

the production of unstable protein folds. On the other hand, it is immediately obvious that

deletions that are conserved across multiple species tend to remove fewer residues, have

a smaller end-to-end distance, lose fewer contacts, and expose less total and hydrophobic

surface area. That is, conserved deletions also tend to be conservative in term of struc-

tural impact, supporting the view that these sets are enriched for function compared with

unconserved events.

4.4 Discussion

Alternative splicing can generate a large number of isoforms starting from a single

premessege mRNA. A well known example of production of molecular diversity by al-

ternative splicing is the Drosophila Dscam gene, which can potentially generate as many

as 38,000 isoforms [83]. In Human, nearly every gene ( 93% , Figure 4.5) is alternatively

spliced, (median 3 isoforms per gene). Most (>70%) isoforms change protein coding

regions, and therefore potentially produce novel protein products [97]. On this basis, it

is frequently argued that alternative splicing provides a mechanism for complex organ-

isms such as Human to generate a large number of novel molecular components from a

relatively small number of genes [23].

The basic assumption in this view is that products of alternative splicing are func-

tional. However, little is known about the protein sequences and resulting protein struc-

ture of alternative isoforms. In an effort to decipher the functionality of isoforms by

other means, numerous bioinformatics studies have analyzed various properties. It has
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Figure 4.7: Comparison between random exon deletions and deletions observed in minor
isoforms. Genes are divided into 5 sets: Random Exon Deletions, Human Only Deletions,
Conserved across 2 species, 3 species, and 4 or more Species. A: Number of residues
deleted (amino acids). B: Number of contacts lost. C: Newly exposed surface area (
square Å) D: Newly exposed hydrophobic surface area (square Å) E: Distance between
C-alpha atoms and ends of a deletion (Å2) F: Number of EST sequences that support
the alternative splicing). For all the structural properties, the random and all Human
distributions are very similar, whereas minor isoforms found in multiple species exhibit
more conservative structural changes.
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been found that a small fraction of alternative splicing shows clear signs of functionality,

particularly those exhibiting tissue specificity [28], expression in high abundance [64],

and cross species conservation [27]. Conserved isoforms especially seem tend to pre-

serve protein coding frames and are less likely to be subject to nonsense mediated decay

[39, 31, 90]. Compared to a large body of literature on the effects of alternative splicing

on a sequence level, relatively little is known about its affect on protein structure and

function.

Impact of alternative splicing on protein domains has been analyzed by a number

of researchers [60, 98, 99, 90, 97]. Kriventseva et al. have found that alternative splicing

removes/inserts whole domains more frequently than expected by chance (approximately

3 fold enrichment), while partial disruption of domains occurs less frequently than ex-

pected by chance (approximately 1.6 fold reduction) [60]. More recently, Yeo et al. also

analyzed alternative spliced exons that partially overlap with INTERPRO-annotated pro-

tein domains and found that frequency of alternatively spliced exons that disrupt domain

regions is lower than expected by chance, although the reduction was smaller than in

Kriventseva et al. study (approximately 1.3 fold reduction) [90]. Analysis of the types of

domains affected by alternative splicing indicates that many are involved in signal pro-

cessing, development, and differentiation [98]. Resch et al. have found that disruption

of domains involved in protein-protein interactions is the most common type of domain

impact, a finding that is consistent with a regulatory function of alternative splicing [99].

There have been a few studies of the impact of alternative splicing on the secondary

and tertiary structure of proteins. Homma et al. have analyzed the location of alternative

splice sites and relation to SCOP domain boundaries [100]. They found that alterna-

tive splice sites occur inside SCOP domains at the expected frequency (13.2% observed

vs 14.3% expected), although there is greater tendency for them to occur near SCOP do-

main boundaries (9.4% observed vs 3.9% expected). Furthermore, they examined relative
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abundance of the variants, and found that the variants encoding unstable protein products

tend to be species specific and are expressed at a significantly lower levels compared to

the stable variants. Wang et al. have examined the secondary structure and surface ex-

posure of alternatively spliced regions in alternative isoforms found in the SWISS-PROT

database [101]. They found that the boundaries of alternative splicing tend to occur in coil

regions and at surface exposed regions of proteins at frequencies greater than expected by

chance. Wang et al. also examined 3D models of alternative isoforms via threading and

molecular dynamics, and concluded that isoforms are capable of producing proteins with

stable conformations. More recently, Romero et al. found that a significant fraction of al-

ternatively spliced regions (81% of 75 alternative spliced fragments) were predicted to be

disordered [84]. A proposed explanation for this observation is that alternative splicing

enables functional and regulatory diversity, while avoiding structural complications by

generating disordered regions in proteins (regions that lack an equilibrium 3D structure

under physiological conditions).

It is clear that impact of alternative splicing on protein structure, stability, and func-

tion remains poorly understood. Although, there seems to be a general agreement that

alternative splicing events conserved across species probably results in stable and func-

tional protein products, there seems to be no consensus of species-specific isoforms.In

Chapter 3 we argued that a large fraction of isoforms are products of occasional splicing

mistakes in selection of splice sites. That hypothesis is supported by observations that the

increase in number of isoforms is proportional to expression level and number of introns

in a genes; that most isoforms are expressed at low abundance levels; and that few show

clear tissue specificity [25, 34]. The main principle of the noise hypothesis is that large

error rates can be tolerated as long as adequate levels of functional product are produced

and toxic effects on the system are avoided. If these requirements are satisfied, there will

be no selection pressure to reduce frequency of alternative splicing, and a great diversity

of isoforms can be generated.
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At the sequence level, we find that many alternative isoforms are predicted to pro-

duce proteins that are significantly smaller than the corresponding major isoforms. Re-

moving isoforms that are predicted to be subject to nonsense-mediated decay does not

change this outcome. These finding are in a qualitative agreement with other studies of

impact of alternative splicing on protein sequences [101]. Wang et al. have analyzed

alternative isoforms annotated in the SWISS-PROT database and found that deletions ac-

count for 57% of all annotated events, while insertions only account for 5% of all annoted

splicing events.

Using conservation as a proxy for functionality, we find that small changes in se-

quence length are more likely to be conserved. Replacements that do not change the pro-

tein length show the strongest conservation signal. These observations make sense, since

the smaller the change, the less likely it is to be disruptive to protein structure, increasing

the likelihood of maintaining function or possibly generating new function.At the level

of three-dimensional structure, we compared the impact of in-frame deletions introduced

by alternative splicing to that of randomly selected in-frame exon deletions. Random

deletions are unlikely to result in a stable protein fold, and so provide a reference set for

testing the viability of deletions observed in real isoforms. We find that isoforms observed

only in Human show the same distribution as the random ones, for all structural param-

eters. Deletions that are conserved across multiple species tend to be more structurally

conservative - the distances between ends of deletions tend to be smaller, they expose less

hydrophobic surface, and lose fewer contacts. From this observation we conclude that

most species specific isoforms are unlikely to result in stable conformations.

Our analysis of disease genes did not reveal any surprising results. If alternative

splicing had a negative impact on the normal functions of these genes, we should have

observed strong selection pleasure to reduce the frequency and severity of such events

since in this set, protein function is tightly coupled to fitness. No such pressure was ob-
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served. The distributions of number of alternative isoforms, fractional abundance of alter-

native transcripts, number of NMD isoforms, and protein length changes in disease genes

were nearly identical to those for all genes. If any pressure exists to reduce frequency of

alternative splicing, it is not particularly pronounced in this set of genes.

In conclusion, our findings support the hypothesis that a large fraction of species

specific isoforms are products of occasional mistakes by splicing machinery.

4.5 Methods

4.5.1 Overview

In this study, both DNA and EST sequences were collected from the Unigene, Ref-

seq, and H-invDB databases. Sequences were aligned to Human Genome, and checked

for errors. Major isoforms were selected on the basis of the most commonly observed

isoform in EST libraries. See Common Methods Appendix for full description.

Briefly, we determine isoforms present in EST and cDNA data, predict protein prod-

ucts, compare major and minor isoforms to determine the difference in a primary sequence

of the respective proteins, identify 3D templates, map sequence to structure, and compute

various statistics. Each step is described in more detail below.

4.5.2 Reconstruction of Exon Structure for EST sequences

The full exon structure of EST derived isoforms must be predicted before these iso-

forms can be translated. We make the assumption that missing exon structure is identical

to the exon structure observed in the mRNA sequence of the major isoform. On this basis,
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the major isoforms are used as templates to expand each EST to a full-length transcript.

For 3’ EST sequences, we copy exon structure starting at the 5’ end of the major iso-

form until we find an overlap with an exon in the EST sequence. Since EST sequences

typically end at an arbitrary location within an exon, the overlapping exon is discarded,

and replaced with the corresponding exon from the major isoform. An equivalent process

is used to extend 5’ EST sequences. For internal EST sequences, the exon structure is

copied from both ends of the major isoform.

4.5.3 Location of Translation Initiation Site

Although typically the first ”AUG” in an mRNA sequence is used to initiate transla-

tion, this not always correct [102], and the exact location of protein translation initiation

is not generally known. To make sure that our protein translations are plausible, we

find the longest translation with the translation initiation site supported by other species.

This is done by first finding all possible translations of an isoform. The translations are

sorted according to distance to the 5’ end of the transcript, and the first 20 amino acids

of each implied translation are searched against a database of all N-terminal 20 amino

acid sequences compiled from 40 Eukaryotic Refseq genomes (540,000 sequences). The

translation initiation sites are sorted based on the number of hits to other species, and the

one with the most hits is selected.

Approximately 55% of all isoforms had translations that could be confirmed in

more than two species, the remaining 45% were found only in Human. As a check of

this procedure, we compared our translations of Refseq sequences with Refseq annotated

translations and found 95% agreement between the two sets. In some cases single mRNA

transcript can produce variety protein sequence through leaky translation [103]. In our

analysis, we assume that each isoform produces a single protein sequence.
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4.5.4 Protein Splicing Fragments (PSFs)

Protein translations of isoforms were aligned using the genomic coordinates of the

underlying exons. This is done by first generating an mRNA alignment between ma-

jor and minor isoforms pairs to genomic sequence, and then using the mRNA alignment

to generate protein alignment. Protein splicing fragments (PSFs) are defined as regions

within the protein alignment that differ. The alternative splicing event(s) that are responsi-

ble for producing differences in protein sequence are identified by looking for alternative

introns in the region underlying each PSF. (Figure 4.2).

4.5.5 Conservation of Splice Junctions

We search a 40-nucleotide sequence around each splice junction (20 into each exon)

against all EST and mRNA sequences of all homologous genes from other species. Gene

homology information was obtained from the NBCI HomoloGene [70] database. Tran-

scripts of homologous genes were obtained from the UNIGENE database. All 40 nu-

cleotides must align with a minimum E-score of 0.01 and no more than 2 gaps to the

corresponding fragment in the homologous transcript. We define the conservation score

for each junction as the number of other species that had at least one significant hit to that

junction. For example, if a junction was detected in mouse, rat and Human, it would re-

ceive a conservation score of 3. This procedure was repeated for all exon-exon junctions

from all isoforms in all genes.

4.5.6 Conservation Score for PSFs

Using the mapping between exon structure and protein translation, we find the sub-

set of introns in the major and minor isoforms underlying each PSF. By comparing ge-
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nomic coordinates of minor and major introns within each PSF’s intron subset, we identify

all alternative intron pairs responsible for production of the PSF. The conservation score

for a PSF is taken to be the maximum species conservation score of all the minor isoform

introns. For example, if an exon insertion event resulted in an Insertion PSF with two al-

ternative splice junctions and the first junction is supported by 2 species while the second

one is supported by 3, the conservation score is 3.

4.5.7 Mapping of PSFs to Structure

A PSI-BLAST [104] position specific matrix (PSSM) is complied for the protein

sequence of each major isoform, by searching against the Uniprot [105] database for 3

rounds. The PSSMs were then used to search the RCSB [106] protein sequence database

for potential homologous templates using PSI-BLAST with an E-score cutoff of 10e-5.

The location of each exon in the 3D structure is obtained by mapping the protein segment

corresponding to the exon onto the alignment. The PSF coverage score was calculated as

the fraction of all residues in the PSF that are covered by a structural template. Only PSFs

that are 95% covered by a structural template were used in this study

4.5.8 Calculation of Structural Properties

We deleted the atomic coordinates of protein fragments corresponding to Deletion

PSFs from the structural templates and calculated various statistics.CCP4 [107] was used

to calculate the exposed surface area of all atoms in the original templates and for all

atoms in the modified templates formed by deletion of PSFs. The newly exposed area is

calculated as the sum over all atoms that were previously buried but now exposed (buried

defined as zero surface area). The newly exposed hydrophobic area is the sum of all

contribution from carbon atoms to newly exposed area. The number of lost contacts is the
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number of contacts in an original template that no longer exist in the modified template

(contact defined as distance between atoms of less than 6Å). Deletion end-to-end distance

was calculated as the distance between C-alpha atoms of residues at each end of a deletion.

92



Chapter 5

Chapter 5. Conclusion

Based on the frequency of alternative splicing events and their consequence on

protein sequences and structures, we conclude that mistakes in the selection of splice

sites largely determins the number of observed isoforms for a given gene. As was shown

in the last chapter, isoforms resulting from mistakes in the selection of splice sites are

unlikely to result in a production of stable proteins, and therefore unlikely to result in

functional protein products. We do not know exactly what fraction of all isoforms are

functional, but our expectation is that this number is not much higher than fraction of

isoforms conserved across multiple species.

Although, we have not considered the long term consequence of alternative splicing

on the evolution of new functionality, the process by which alternative splicing transcripts

come to code for new functionality is of great interest. It has been argued that alternative

splicing can create opportunities for evolution of new functionality [108, 30, 32]. For

example, Letunic et al. have found that approximately 10% of all genes in H.sapiens,

D.melanogaster and C.elegans contain exon duplications and that these exons are under

increased selection pressure (reduced Ka/Ks ratio), suggesting that mutualy exclusive

selection of duplicated exons provides a framework for evolution of a novel functionality

[108].

More recently analysis of mutation rates in mammalian genes by Xing et al has

shown that Ka/Ks ratios are correlated to the expression level of the exons [32]. They

found that alternatively spliced exons expressed at low abundance levels are under re-
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duced selection pressure (higher Ka/Ks) compared to constitutive exons and highly ex-

pressed alternative exons. Remarkably, the reduction in selection pressure with decreased

expression level was not due to a significant increase in amino acid substation rate Ka,

but due to a large decrease in synonymous substitution Ks. Reduced Ks is seen as evi-

dence for an increased selection pressure on a regulatory regions within RNA. Combined

with observation that there is an increased preservation of coding frames by alternative

splicing, the authors argue that these observations are consistent with the hypothesis that

alternative splicing provides a mechanism for evolution of new functionality by creating

evolutionary ”hot-spots - localized regions of a gene structure with an accelerated rate of

evolution.

Intron regions around alternativly spliced exons have also been shown to be un-

der increased selection pressure (reduced nucleotide substitution rates) by a number re-

searchers [109, 110, 111]. Sorek et al. compared intronic sequences of human and mouse

genomes flanking alternative exons and found that these regions tend to have a higher

conservation level compared to constitutive exons. Remarkably they also find that con-

served regions around alternative exons tend to be longer than constitutive exons. Thus,

it is argued that there is increased selection pressure on introns around alternative exons

due to the increased need for regulatory control of these exons.

A general theory that has emerging from these observations is that alternative splic-

ing provides a neutral pathway for exploring the functionality landscape (reviewed [112]).

The validity of this hypothesis is hard to judge without knowing the costs of making mis-

takes. We show in Chapter 4 that one of the costs associated with increased alternative

splicing is increased production of unstable protein folds, which if not degraded, will have

toxic consequences on a cell. Based on analysis of frequency of alternative splicing, we

also conclude that splicing error rates are tuned for each gene, to minimize production

of non viable protein products to such a level that they do not interfere with the normal
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function of a gene. Once functional and toxic constrains on splicing are satisfied, there

will be little selection pressure to further reduce frequency of mistakes, allowing for a

production of rich diversity of the trial transcripts.
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Chapter 6

Common Methods Appendix

6.1 Data Sources

The human genome sequence[113] was downloaded from NCBI (NCBI Human

Genome Build 35). The transcript data was obtained from Refseq [70] (Release 17; May

2006; 29,475 sequences), Unigene [70](May 2006; 6,586 ,000 sequences), and H-InvDB

[58] (Release 3.0;4 49,186 sequences). The location of genes to chromosomes was taken

from Refseq database annotation. Information about homologous genes in other species

was obtained from the NCBI Homologene Database [70] (Release 48, May 2006).

For each gene, all sequences were aligned to a human genomic contig using the

sim4 algorithm [114] and then checked for alignment errors (see list of rules below).

6.2 Alignment Quality Control

The following five rules are used to identify sequences containing alignment and
sequencing errors.

1. All implied splice sites must conform to the spliceosome pattern -’GT/AG’.

2. All exons must have greater than 90% identity with the corresponding genomic
sequence.

3. Alignment to genomic sequence must not contain any missing segments ( see Figure
6.1).

4. The sequence around exon junctions (6 nucleotides into each exon) must have 100%
identity with the corresponding contig.
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CONTIG

TRANSCRIPT

90% 90%

GT

1 49 59 60 10050

A
GT AG AG

B C

90%

Figure 6.1: Alignment Quality Controls. A hypothetical 100 nucleotide transcript with
three exons (A, B, C) is aligned to a corresponding genomic sequence. Introns are verified
to conform to the ’GT-AG’ motif. All introns must be more than 30 nucleotides in length.
All exons must align with at least 90% identity to the contig. The alignment must not
contain any missing segments. For example, exon A stops the alignment at position 49,
and so exon B must start the alignment at position 50. A sequence on each side of an exon-
exon junction (6 nucleotides on each side - highlighted in red) must align to the contig
with 100% identity and no gaps). If the application calls for a full length alignment, the
5’ end of the transcript must start alignment at the first nucleotide, and the 3’ end of the
transcript must end alignment at the last nucleotide (position 100 in this example).

5. The cDNA must not contain any introns of size less than 30 nucleotides

Two additional filters were applied to minor isoforms: 1. Minor isoforms must

share at least one exon with the corresponding major isoform (overlap of greater than 1

nucleotide). 2. Minor isoforms must not contain an intron retention event relative to the

major isoform.

6.3 Selection of Major Isoform

For each gene, we identified one of the cDNAs as the major isoform - that is, the

isoform whose splicing patterns are most frequently observed across all Unigene EST
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libraries. The exon structure of major isoforms is used as a reference to which the exon

structures of minor isoforms are compared. To determine major isoforms, sequences are

sorted using the following procedure: First we created a list of introns and all sequences

that are associated with those introns. For each intron in a cDNA, we calculate the number

of EST sequences and number of unique EST libraries that contain this intron. For each

cDNA we then compute three values: sequence length, number of ESTs containing one or

more of its introns, and the number of unique EST libraries containing any of its introns.

Finally, we sort the cDNAs using these values in the following order: 1. Number of

unique EST libraries. 2. Total number of ESTs. 3. Sequence Length. The top ranking

sequence is selected as the major isoform.
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