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Spatial and temporal variation of snow in High Mountain Asia is very critical as it 

determines contribution of snowmelt to the freshwater supply of over 136 million 

people. Support vector machine (SVM) prediction of passive microwave brightness 

temperature spectral difference (∆Tb) as a function of NASA Land Information System 

(LIS) modeled geophysical states is investigated through a sensitivity analysis. AMSR-

E ∆Tb measurements over snow-covered areas in the Indus basin are used for training 

the SVMs. Sensitivity analysis results conform with the known first-order physics. LIS 

input states that are directly linked to physical temperature demonstrate relatively 

higher sensitivity. Accuracy of LIS modeled states is further assessed through a 

comparative analysis between LIS derived and Advanced Scatterometer based 



  

Freeze/Melt/Thaw categorical datasets. Highest agreement of 22%, between the two 

datasets, is observed for freeze state. Analyses results provide insight into LIS’s land 

surface modeling ability over the Indus Basin.  
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Chapter 1: Introduction 
 

The following sections introduce important components of this study and the 

motivation that prompted this undertaking.  

1.1. Importance of Snow in High Mountain Asia (HMA) 

Snow is a critical component of the hydrologic cycle within the Earth’s system. 

Under changing climatic conditions, the importance of snow quantification and 

monitoring has increased significantly. It is especially vital for areas that have 

experienced perennial snow up till now.  

High Mountain Asia (HMA), consisting of Hindukush, Karakoram, and 

Himalayan mountain ranges, lies between 27.5oN to 45.5oN and 69.5oE to 101.50oE. 

Known as the ‘third pole’, it experiences both perennial and ephemeral snow within its 

bounds (depending upon the location and elevation). It serves as one of the primary 

sources of fresh water supply for over 800 million people, primarily in south Asia [1]. 

The principal source of this fresh water is the snow and glacier melt during the summer 

months.  

Run-off flow in the Himalayan rivers (i.e. rivers originating in the Himalayan 

mountain ranges) is critically dependent on this snow and ice melt. Agrarian economies 

of the population residing in the Himalayan river basins are greatly influenced by the 

cryospheric conditions of HMA [2]. In Figure 1.1, this water dependency of the 

individual basin populations is outlined [1].   

There has been increasing evidence regarding the loss of snow cover and 

glaciers under evolving climatic scenarios in this region [3] [4] [5]. Thus, for the well-

being and sustenance of this area and its inhabitants, it is important to carry out a 

comprehensive hydrologic and cryospheric assessment of this area. 

1.1.1. Hydrologic Modelling of HMA 

Despite its importance in life sustenance in this area, there is still considerable 

uncertainty regarding the total amount of snow in HMA and its spatial and temporal 
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variation. HMA terrain has high spatial variation in elevation, with sizable differences 

between the high (highest peak >8500m) and low altitudes (<2500m). Simultaneous 

presence of mountains, valleys, and plateaus render the hydrologic modeling of this 

region quite complex. Current global land surface models have coarse spatial resolution 

that cannot resolve this complexity. Apart from that, there is little prior ground data in 

this region, which decreases the initializing accuracy of the land surface models. These 

factors create substantial discrepancies between the actual ground conditions and the 

land surface modeled parameter and state estimates.  

 

 
Figure 1.1. Baseline water stress (total annual water withdrawals as a percentage of the 
total annual available blue water) for HMA river basins in 2015. IAK refers to Indian 
administered Kashmir, PAK refers to Pakistan administered Kashmir [1]. 

 
Data assimilation is a technique used for increasing model accuracy through 

integration of observation data. Unfortunately, for HMA ground observations are few 
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and far. To counter this situation, satellite based remote sensing data can be used. 

Brightness temperature assimilation has been successfully applied for increasing SWE 

estimation accuracy in North America [6] [7] [8]. Land surface model estimated inputs 

were used to predict brightness temperatures using machine learning techniques. In the 

data assimilation framework, machine learning algorithms acted as the measurement 

operator and mapped the land surface model estimated states into the satellite observed 

brightness temperature space.  

1.1.2. NASA Land Information System  

In this study, NASA Land Information System (LIS) was used to model the 

hydrologic cycle over the Indus Basin. LIS is a software framework for high 

performance terrestrial hydrology modeling and data assimilation developed by NASA 

[9]. It integrates the use of: 

§ Land surface models 

§ Satellite and observed data 

§ Data assimilation techniques 

§ High performance computing tools 

The land surface model used for this study is Noah-MP. Noah-MP provides 

layered modeling of the snow pack and is thus suitable for this study [10]. A model 

open-loop (stand-alone model estimation) was run within the LIS framework. Modern-

Era Retrospective analysis for Research and Applications version-2 (MERRA2) 

forcings [11] were used as boundary conditions for the model. An important benefit of 

using LIS was the comparatively finer grid resolution (compared to other large scale 

land surface modeling frameworks) it provided with a grid cell size equal to 

0.01Ox0.01O. Further detail is provided in Chapters 2 and 3.   

1.2. Passive Microwave Radiation 

Electromagnetic radiation with wavelengths ranging from one meter to one 

millimeter and frequencies between 300MHz and 300GHz, is usually termed as 

microwave. However, there is some ambiguity regarding the exact frequency 

boundaries of the microwave radiation band. Some sources define the band frequency 
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limits to be 1 and 100 GHz, corresponding to wavelengths 300 mm and 3 mm 

respectively [12] [13] [14]. 

Microwave radiation inherently emitted by the Earth’s surface and measured by 

a sensor is called passive microwave (PMW). Passive microwave radiation, measured 

by different Earth orbiting satellites, has been used to retrieve information regarding 

various geophysical properties of the Earth’s surface such as precipitation, soil moisture 

[15], wind speed, and snow water equivalent [16].  

1.2.1. Brightness Temperature 

Brightness temperature is the temperature a black body in thermal equilibrium 

with its surroundings would have to possess to emit the same intensity of radiation (at 

a specific frequency) as a grey body object.  

According to the Raleigh-Jean approximation for microwave radiation, 

brightness temperature is primarily dependent on emissivity (ε) and physical 

temperature (T+,-) of the emitting body [17].  

T*	 ≈ 	ε ∗ 	T+,- 

Emissivity is a dimensionless inherent attribute. It is wavelength dependent and 

is affected by the dielectric constant of the material. It varies from 0 to 1 (‘0’ signifies 

no emission from the surface, while ‘1’ represents total emission of radiation at a 

particular wavelength). A perfect black body has emissivity equal to 1. 

Brightness temperature (T*) is the fundamental parameter measured by passive 

microwave radiometers. Brightness temperatures, measured at different microwave 

frequencies, are utilized in different satellite retrieval algorithms. 

1.2.2. Remote Sensing of Snow using PMW 

Passive microwave remote sensing of snow utilizes the wavelength dependency 

of brightness temperature in the microwave spectrum. PMW remote sensing of snow 

is dependent on preferential scattering of microwave radiation at a higher frequency 

(18.7GHz or 36.5GHz) compared to a lower frequency (10.7GHz or 18.7GHz) by the 

snow pack. This preferential scattering at higher frequency decreases the emissivity 

(1.1) 
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and hence lowers the corresponding measured brightness temperature [18]. In an 

idealized scenario, the snow layer depth is directly related to the scattering induced by 

the snow pack and inversely related to the ultimately measured brightness temperature 

at the corresponding frequency (Figure 1.2).  

 

 
Figure 1.2.  Preferential scattering of microwave radiation having frequency 37GHz 
compared to microwave radiation with frequency 19GHz by the snow pack [19]. 

 
Since this scattering is more prominent at higher frequencies, the brightness 

temperature measured at these frequencies will be lower. The difference between T* at 

18.7GHz and 36.5GHz is often used in snow water equivalent (SWE) retrievals [16]. 

This difference is representative of the amount of snow water equivalent present. The 

study detailed in this thesis is done for snow covered terrain in high mountain Asia and 

will contribute towards prediction and later assimilation of T* spectral difference to 

improve SWE estimates in that region. 

1.2.3. Advanced Microwave Scanning Radiometer – Earth Observing System  

The Advanced Microwave Scanning Radiometer for Earth Observing Systems 

(AMSR-E) is a twelve-channel, six-frequency, passive-microwave radiometer, Figure 

1.3. It is aboard the AQUA polar orbiting sun synchronous satellite. Some instrument 

specifications are presented in Table 1.1. 

AMSR-E being a passive microwave radiometer is quite suitable for snow 

retrievals, especially considering the 10.65GHz, 18.7GHz and 36.5GHz frequency 
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bands [20] [16]. These bands are relatively unaffected by the presence of clouds. 

Microwave radiations at these frequencies have wavelengths that are large enough to 

pass through the atmosphere with minimal attenuation, irrespective of day or night. 

Higher frequency microwave radiations are relatively more prone to atmospheric 

attenuation.  

Table 1.1.  AMSR-E instrument specifications [21]. 

Platform AQUA 

Launch date May 4, 2002 

End date October 4, 2011 

Swath width 1450 km 

Frequencies (GHz) Dual Polarization 6.9, 10.7, 18.7, 23.8, 36.5, 89.0 

Sample footprint sizes (km) 74 x 43 (6.9 GHz); 14 x 8 (36.5 GHz); 
6 x 4 (89.0 GHz) 

 

AMSR-E observations are also used for retrieving various geophysical 

parameters such as precipitation rate, cloud water, water vapor, sea surface winds, sea 

surface temperature, ice, and soil moisture [15].  

 

 
Figure 1.3.  AMSR-E instrument aboard the AQUA satellite [22]. 
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National snow and ice data center (NSIDC) provides processed and quality 

controlled brightness temperature measurements from AMSR-E that were used in this 

study [23]. End date in Table 1.1 marks the termination of operational data collection. 

 

1.3. Machine Learning in Hydrology  

Application of machine learning techniques in hydrology has witnessed an 

increase in the past years. These applications include usage of machine learning 

techniques to predict Earth’s geophysical parameters such as rainfall [24], streamflow 

[25], and soil moisture [26]. More recently, these techniques have been utilized within 

data assimilation frameworks for improvement of land surface model estimates [6] [7] 

[8] [27]. In this study, we utilize a machine learning technique (Support Vector 

Machines) to predict brightness temperatures using geophysical states from a land 

surface model as training and prediction data, and then analyze the importance of each 

input state through a sensitivity analysis. 

1.3.1. Support Vector Machine (SVM) 

Support vector machine is a machine learning technique that typically involves 

two steps: 1) training of SVM utilizing two datasets (input and target) to learn 

prediction patterns from, and 2) use of the resulting well-trained SVM for prediction 

[28]. SVM ‘training’ consists of identifying and attuning the support vectors to predict 

a known target given known input [29]. This is a black-box method that is based on 

statistical learning theory and falls under the realm of ‘supervised learning’. 

In this scheme, our input states consist of the land surface model (LIS) 

estimated geophysical states, while the output is in the form of brightness temperature 

spectral difference. AMSR-E brightness temperature (T*) measurements were utilized 

during the training process as training targets. The trained SVM is utilized to transport 

the model estimated geophysical states into the observation (T*) space. 
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1.3.2. SVM Prediction Framework 

SVM application has two stages: training and prediction. SVM training is 

performed for each pixel in the domain on a fortnightly interval. Training and 

prediction datasets are kept separate i.e., training is performed using data from all the 

years except the one that will ultimately be used for prediction. During the training 

stage, SVMs are setup using LIS (Noah-MP) modeled states as input and AMSR-E 

brightness temperature spectral difference (∆T*) as the training targets. LIS model 

resolution (0.01Ox0.01O) is much finer than the AMSR-E satellite data grid resolution 

(25km x 25km). To achieve consistency between the model estimated states and the 

satellite data, LIS states were scaled up to the coarser satellite grid. 

The prediction mechanism thus comprised of three main components: 

§ Input: LIS model estimate (geophysical states) 

§ Predicting model: SVM 

§ Output: Brightness temperature spectral difference (∆T*)  

A sensitivity analysis was carried out to assess the relative effect of each LIS state on 

the predicted output. Further detail is provided in Chapter 3. 

1.4. Study Objectives  

SVM is a statistical model based on statistical learning theory. It is a black box 

method with a plethora of nuances and complexity. The study goal was to infer physical 

meaning from this statistical model and to analyze whether the SVM predictions 

conform with the first-order physics. This goal was achieved through the following 

objectives: 

1.4.1. Sensitivity Analysis of SVM Predictions 

Normalized sensitivity coefficients (NSCs) were utilized in the sensitivity 

analysis. NSCs were calculated by perturbing each LIS input state (one at a time) while 

keeping the others at their default value and computing the normalized change in the 

predicted value. NSC has a magnitude and a sign. Importance of an input state is 
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represented by the NSC magnitude. NSC sign defines whether the relationship between 

the input state and the predicted ∆T* is directly proportional or inversely proportional. 

1.4.2. Relative Importance of LIS States for SVM Prediction 

The second study objective concerns the identification of LIS states that are 

most important for maintaining the accuracy of SVM prediction. This objective is 

intended to contribute towards selection of the most important LIS input states that will 

be utilized for SVM prediction within a data assimilation framework, without 

compromising significantly on the prediction accuracy. 

1.4.3. SVM Prediction Sensitivity to SWE 

The overarching project’s future work plan includes the improvement of SWE 

estimation in the HMA region using SVM within a data assimilation framework. 

According to the brightness temperature assimilation framework, any noticeable 

improvement can only be achieved if the SVM has significant relative sensitivity to 

SWE. The third objective includes analysis of the SVM prediction sensitivity to LIS 

estimated SWE using different number of predictors. 

1.4.4. Assessment of LIS Modeled States 

In order to refine the SVM prediction accuracy, the prediction mechanism can be 

improved in two ways: 

a) Analyzing the predicting mechanism through a sensitivity analysis 

b) Improving the accuracy of input states 

Accuracy of input states can be examined using different approaches. One such 

approach is to compare the land surface model geophysical state estimation with other 

measurement based data. Improving the geophysical input is expected to lead to better 

prediction. In this study, we compare Advanced Scatterometer (ASCAT) based 

Freeze/Melt/Thaw categorical dataset (satellite based ‘measurement’) with a LIS 

derived Freeze/Melt/Thaw product. 
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Chapter 2: Background and Literature Review 
 

2.1. Evaluation of Snow and Ice Melt in High Mountain Asia 

Snow in high mountain Asia is still a relatively unexplored avenue. The spatial 

and temporal snowfall patterns, snow on glaciers, and the presence and evolution of 

massive glaciers are complex phenomenon that are very important to unravel. 

Cryosphere in HMA is mainly composed of perennial glaciers and seasonal snow. The 

seasonal snow cover controls in part the water supply to the Himalayan rivers, 

especially on the short-term scale e.g. seasonal cycle. The long-term water supply is 

more dependent on the prevalent glacier mass [1]. Fluctuations in seasonal snow are 

thus critical for the short-term water supply management in that area. 

The three major Himalayan rivers are the Indus, Ganges and Brahmaputra, 

Figure 2.1. As discussed in Chapter 1, dependency of the population residing in the 

Himalayan river basins renders snow assessment vital for this region. In this study, we 

have restricted our domain to the Indus basin. 

 

 
Figure 2.1.  Three main Himalayan river basins in South-Asia [30]. 

 

Snowmelt valuation is very important for seasonal streamflow prediction [31]. 

Considering the water supply system of HMA, where bulk of the population is reliant 
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on river flow for domestic, commercial and industrial use, that importance is 

heightened considerably. Considerable population resides in these river basins. In case 

of river overflow, due to increased snow melt, the basins are flooded, resulting in loss 

of life and livelihood. 

Another importance of accurate estimation of snow in this region is the fact that 

several dams are built on the Himalayan rivers. For the smooth and safe functioning of 

these dams (population resides downstream), the amount of water that would be 

generated by the snowmelt must be known beforehand. 

2.2. Remote Sensing of Snow 

Remote sensing of snow has been performed using various wavelengths of the 

electromagnetic spectra, depending on the snow property or attribute being studied. 

Moderate Resolution Imaging Spectroradiometer (MODIS) data has been used to 

derive snow cover products [32]. MODIS collects data within the infrared and visible 

bands (0.4 to 14.0 𝜇m). NASA’s Airborne Snow Observatory was launched to study 

snow using an imaging spectrometer (380 to 1050 nm) and a scanning LIDAR (1064 

nm) [33]. Backscattering effects in active remote sensing have also been used to study 

snow [34]. Passive microwave remote sensing principles have been utilized in the 

generation of various snow retrieval products [35] [36].  

Different remote sensing techniques have different strengths. The selection 

criterion is based on the snow quantity under consideration and the availability of 

pertinent data and resources. In this study, we focus on passive remote sensing of snow.  

2.2.1. Passive Microwave Remote Sensing of Snow 

Passive remote sensing of snow is based on the measurement of brightness 

temperature at a lower (e.g., 10.65 or 18.7 GHz) and a higher frequency (e.g., 36.5 

GHz), within the microwave spectrum. Brightness temperature, in the microwave band, 

is primarily dependent on the emissivity and physical temperature of the emitting 

surface.  

In remote sensing using satellite data, the attribute measured at the top of the 

atmosphere is usually different from the value at the surface of the earth. Similarly, in 
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our case the brightness temperature measured by the AMSR-E instrument, at an 

elevation of ~700 km above the Earth’s surface, is not necessarily equal to the T*value 

near the Earth’s surface.  

2.2.1.1. Ancillary Effects on Brightness Temperature 

Ancillary influence on the AMSR-E measured brightness temperature is due to 

several simulated and parameterized processes. Some of these processes are: 

 

Ø Effect of snow depth 

Assuming the snow pack is dry, a higher snow pack depth will result in higher 

scattering of the upward radiation. T* and snow depth are generally inversely 

proportional. Greater snow depth renders a lower brightness temperature, Figure 2.2. 

This effect is more prominent on T* measured at higher frequencies. 

 

 
Figure 2.2. Brightness temperature, as measured at 37GHz (vertical pol.) by the 
Scanning Multi-channel Microwave Radiometer, versus snow depth for the Russian 
steppes, 15 February 1979. R2 represents the coefficient of determination [18]. 

 
Ø Effect of snow grain size 

Armstrong et al. discuss the relevance of snow grain size to passive microwave 

study of snow [37]. Scattering of the upward radiation is proportional to the snow grain 
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size. For a snow-covered surface, T* in the microwave band usually decreases with 

increasing grain size. Figure 2.3 [20] presents a plot of T* versus SWE for snow-packs 

of different mean grain size. The plots corroborate the inverse relationship between T* 

and snow grain size i.e. for a given amount of SWE, the T* observed for a snow pack 

having larger mean grain size is less than the T* observed for a snow pack with lower 

mean grain size.  

 

 

Figure 2.3.  Relationship between 37GHz brightness temperature (vertical polarization) 
and snow water equivalent (m) as a function of snow grain diameter (mm) [20]. 

 
Ø Effect of ice layer  

Ice layer within the ground (frozen soil) or within the snow pack will introduce 

greater scattering and hence lower the T*. This can lead to over-estimation of snow 

depth and SWE.  
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Ø Wet snow effect 

Wet snow complicates the snow-pack versus T* dynamics. Wet snow emits 

significant radiation itself and thus increases the ultimately measured T* [38]. This is 

due to the higher dielectric constant of water as compared to dry snow. Presence of 

liquid water in the snow-pack increases the dielectric of that snow mass. Contribution 

to the brightness temperature from liquid water as well as snow can result in erroneous 

estimation of snow retrievals. 

 

Ø Effect of vegetation 

Vegetation effect includes addition as well as attenuation of the emitted 

radiation. Presence of vegetation cover hinders the upwards transport of radiation, but 

can also increase the total upward microwave long-welling by the addition of 

microwave radiation emitted by the vegetation itself. This behavior is depicted in 

Figure 2.4. Accounting and removing the vegetation effect from the total T* measured 

at the top of atmosphere is a complex process that can introduce considerable 

uncertainty in the ultimate T*value recorded [39]. 

 

 
Figure 2.4.  Effect of vegetation and snow pack on microwave radiation emitted by the 
land surface [19]. 
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Ø Atmospheric attenuation  

Clouds and aerosols present in the atmosphere not only attenuate the upward 

microwave radiation but also emit radiation themselves. The microwave bands 

generally utilized in remote sensing of snow (i.e., 10.67GHz, 18.7GHz, and 36.5GHz) 

lie within the atmospheric window and are not significantly affected by the presence of 

clouds and aerosols [40]. 

2.2.2. Why Passive Microwave Remote Sensing of Snow? 

Although PMW remote sensing of snow faces numerous challenges, yet, there are 

a number of benefits of using this technique, some of which are: 

§ Microwave bands generally utilized in snow retrievals (i.e. 10.67GHz, 

18.7GHz, and 36.5GHz) are not significantly influenced by the presence of 

clouds (atmospheric window). 

§ It can be carried out at night-time as well as day-time. 

§ It renders greater continuity of data and does not suffer from diurnal data gaps. 

§ Global datasets can be developed from remotely sensed global satellite data. 

§ Analyses can be performed on regional as well as continental scales. 

2.2.3. AMSR- E Level-3 Brightness Temperature Dataset 

The data set used in this study is developed through the NASA-sponsored 

‘Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness 

Temperature Earth System Data Record’ project.  

The Calibrated Enhanced Resolution Brightness Temperature (CETB) dataset 

is an enhanced-resolution, gridded passive microwave record [41]. Multi-sensor, multi-

decadal time series of high-resolution radiometer products are generated. The newest 

available Level-2 satellite passive microwave records from 1978 to the present are used 

in developing these time series. Since our study period lies within years 2002-2011, 

only AMSR-E data is used. AMSR-E was selected due to its comparative higher 

resolution relative to other global passive microwave instruments available. 

CETB data processing comprises of two general steps. First, dataset pre-

processing is carried out for spatial and temporal selection, followed by gridding and 
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reconstruction of the data. Reconstruction algorithms are employed to resolve spatial 

and temporal resolution issues. 12-hour averaged values are given on a global scale for 

3.125km to 25km pixel spatial resolution.  

In this study, the CETB data are used as provided by the developing team i.e. 

no quality control checks have been applied. No correction has been applied for 

ancillary effects on T* by various sources (discussed in Section 2.2.1.1). Therefore, the 

existence of discrepancies in the T* data used for SVM training is known and 

acknowledged beforehand.  

2.3. Land Information System 

NASA’s Land Information System (LIS) was used to model the hydrologic 

cycle over the Indus basin. LIS is a software framework that assimilates satellite and 

ground-based observational data with advanced land surface models and computing 

tools to estimate land surface states and fluxes [9]. LIS can deal with the challenges 

introduced by the large scale and high resolution of the model outputs through scalable, 

high performance computing. LIS comprises of three main components: Land surface 

data toolkit, LIS core, and Land validation toolkit [42]. 

2.3.1. Main Components of LIS 

2.3.1.1. Land Surface Data Toolkit - LDT 

LDT functions as the front-end processor for the LIS core. It processes data 

inputs for land surface models on to a common grid domain [9]. 

2.3.1.2. LIS Core 

LIS Core handles the land surface modeling part [9]. LIS supports various land 

surface models that predict water, energy, and biogeochemical processes through 

equations linking the soil, vegetation, and snowpack medium, Figure 2.5. Model results 

are averaged to the required temporal and spatial scales according to the study demands 

[42]. Three types of inputs are required to run a land surface model:  

1. Initial conditions that describe the state of the land surface at the start of the 

simulation. 
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2. Boundary conditions that define the upper (atmospheric) fluxes and the lower 

(soil) fluxes.  

3. Parameters that characterize the soil, vegetation, topography, and other surface 

properties.  

 
Figure 2.5.  Depiction of land surface modeling as carried out in LIS [9]. 

 
2.3.1.3. Land surface Verification Toolkit - LVT 

Land surface Verification Toolkit (LVT) is devised for the evaluation and 

comparison of outputs generated by the Land Information System (LIS) with respect 

to other measurements or datasets [9]. 

2.3.2. Noah MP 

The land surface model used within the LIS framework for this study was Noah 

multi-parameterization (Noah–MP). It was particularly relevant for this study since it 

incorporates snow pack development and snow layering features. Noah-MP has been 

used in various simulation studies and has rendered positive validation results with 

respect to in-situ data [43]. 
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Cold season processes such as snow cover development, snow albedo effect on 

shortwave, heat and moisture exchange between land surface and atmosphere through 

snow pack are characterized in detail within the model [10]. Patchy snow cover and 

relevant atmospheric processes (e.g. surface sensible heat flux, increase in surface 

albedo) are represented at sub-grid level. Frozen soil dynamics such as the effect of 

latent heat release during soil water freezing in winter and supplementary precise 

estimation of temperatures during periods of thaw are highlighted in this model. Some 

of the other important processes incorporated in the Noah–MP land surface model are: 

§ Separate soil layer dynamics (temperature, thermal conduction, soil moisture) 

§ Range of spatial and temporal scales 

§ Canopy conductance formulation  

§ Bare soil evaporation and vegetation phenology  

§ Surface runoff and infiltration  

§ Continuous self-cycling of soil moisture and temperature  

§ Coupled simulation mode i.e. three-dimensional operational mesoscale analysis  

§ Snow accumulation and ablation 

2.4. Support Vector Machines 

Machine learning is a technique in which systems acquire the ability to learn 

automatically, without being explicitly programmed. Systems are programmed to 

optimize a performance criterion using test data [44]. A common form of machine 

learning is the supervised learning. It is based on attaining a generalization ability, 

which refers to the capability of estimating an appropriate answer for unlearned 

questions [28].  

Support Vector Machines (SVM) provide a supervised learning method that has 

proved to be quite successful in numerous applications [45]. The theoretical foundation 

of SVM is based on statistical learning theory, or Vapnik-Chervonenkis theory, which 

was developed by Vladimir Vapnik and Alexey Chervonenkis [46] [47] [48]. SVM has 

been used as a data-classifier as well as a regression tool.  
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2.4.1. Theoretical Basis of SVM 

The SVM learning problem is based on the assumption that there is some 

unknown and non-linear dependency between an input vector ‘xi’ and scaler output ‘yi’ 

[49]. Our only source of information is the training data set {(x1,y1) , (x2,y2) , (x3,y3) , 

… , (xl,yl)} ⊂ 𝒳xℝ, where 𝒳 denotes the input pattern space, ℝ specifies the real space 

to which yi belongs and ‘l’ is equal to the number of training data pairs [46]. Using this 

training data set, the relationship between the input vector and the output scaler is 

estimated. 

 

2.4.2.1. Linear objective function 

In 𝜀 − SV regression [48], the goal is to formulate an objective function f(x) that 

is as flat as possible, with at most 𝜺 deviation from the training targets yi. A linear form 

of such a function can be represented as eq. 2.1 [29]: 

                      𝒇 𝒙 = 	 𝒘	, 𝒙 + 𝒃  with  𝑤	𝜖	𝒳, 𝑏	𝜖	ℝ      

where 	. , .  is the dot product in 𝓧, 𝒘 is a vector of weights and b is analogous to a 

regression constant (known as intercept in a linear equation). In this case, 𝒘 is reduced 

to achieve a flat function by minimizing the norm (i.e. 𝑤 C = 	 	𝑤	, 𝑤 ). This can be 

represented as a convex optimization problem:  

    minimize  D
C
𝑤 C  

    subject to  𝑦E −	 	𝑤	, 𝑥E − 𝑏	 ≤ 	𝜀
	 	𝑤	, 𝑥E + 𝑏 −	𝑦E 	≤ 	𝜀 

 

Slack variables, ξi and ξ* [50], are introduced to handle the often unfeasible 

optimization problem constraints. Slack variables are integrated in the convex 

optimization problem as seen in eq. 2.3 [48]:  

    minimize  D
C
𝑤 C + 𝐶 𝜉E + 𝜉E

∗H

EID
  

    subject to  
𝑦E −	 	𝑤	, 𝑥E − 𝑏		 ≤ 	𝜀 +	𝜉E
	 	𝑤	, 𝑥E + 𝑏 −	𝑦E 			≤ 	𝜀 +	𝜉E

∗

𝜉E	, 𝜉E
∗ 												≥ 0

 

(2.1) 

(2.2) 

(2.3) 
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C is a constant that determines the trade-off between the allowance of 

deviations larger than 𝜺 and the weight vector 𝒘. It is a user-defined parameter and is 

similar to a penalty parameter. A large C corresponds to reduced slack variable values. 

The required precision is represented by 𝜺 and is chosen by the user.  

 
2.4.2.2. Formulation of the dual problem 

The optimization problem is usually solved in its dual form. Dual formulation 

is further utilized to handle non-linear functions for SVM.  Lagrange multipliers are 

used in the standard dualization method [51]. The dual or Lagrange function is 

formulated from the objective (primal) function and the corresponding constraints.  

 

𝐿 = 	
1
2
𝑤 C + 𝐶 𝜉E + 𝜉E

∗
H

EID

− 𝜂E𝜉E + 𝜂E∗𝜉E
∗

H

EID

 

− 𝛼E	 𝜀 + 𝜉E − 𝑦E +	 	𝑤	, 𝑥E + 𝑏
H

EID

 

 −	 𝛼E∗	 𝜀 + 𝜉E
∗ + 𝑦E −	 	𝑤	, 𝑥E − 𝑏

H

EID
 

where 𝑳 is the lagrangian function with primal (w, 𝜺 , 𝝃𝒊 , 𝝃𝒊
∗) and dual variables 

(𝜼𝒊 , 𝜼𝒊∗ , 𝜶𝒊 , 𝜶𝒊∗). Dual variables are lagrange multipliers and have to fulfill the 

positivity constraints i.e. 𝜂E , 𝜂E∗, 𝛼E , 𝛼E∗ ≥ 0. 

According to its formulation, the Lagrangian has to be minimized w.r.t the 

primal variables and maximized w.r.t the dual variables [52]. At the optimal solution, 

the partial derivatives of the Lagrangian, L, w.r.t the primal variables become zero. 

Resolving and substituting variables for the optimal solution, the dual optimization 

problem is reached [29]:  

 

 

 

(2.4) 



 

 

21 
 

maximize							

−
1
2

𝛼E − 𝛼E∗ 𝛼\ − 𝛼\∗ 	𝑥E, 𝑥\

H

E,\ID

−𝜀	 𝛼E + 𝛼E∗
H

EID

+	 𝑦E 𝛼E + 𝛼E∗
H

EID

	

 

subject	to				 𝛼E − 𝛼E∗ = 0				and			𝛼E, 𝛼E∗
H

EID

∈ 0, 𝐶  

The values of 𝜶𝒊, 𝜶𝒊∗and the slack variables 𝝃𝒊 , 𝝃𝒊
∗are obtained from the 

solution of this optimization problem. Weight vector, 𝒘, can be written in terms of 

𝜶𝒊	and 𝜶𝒊∗ as follows:  

𝑤 = 𝛼E − 𝛼E∗
H

EID

𝑥E 

Substituting the value of w in the objective function, the following form is 

achieved: 

𝑓 𝑥 = 	 𝛼E − 𝛼E∗
H

EID

𝑥E	, 𝑥 + 𝑏 

 

‘𝑏’ can be computed using the Karush–Kuhn–Tucker (KKT) conditions [53]. 

The process of SVM-training is basically determining weight vector, w, and 

coefficient, 𝑏, so that the eq. 2.7 is achieved, which is then utilized during prediction 

by inputting vector, x. 

 

2.4.2.3. Dealing with non-linear functions 

The algorithm described up till now used a linear objective function. When 

dealing with non-linear objective functions, some adjustments and substitutions have 

to be made. Especially, the dot product, 𝑥E	, 𝑥 , in eq. 2.7 becomes unfeasible for a 

higher dimension input space. A popular technique of dealing with this complexity is 

based on mapping (Φ) the input space 𝓧 to some feature space F, utilizing an 

appropriate kernel, represented as Φ : 𝒳	 → F. 

(2.6) 

(2.7) 

(2.5) 
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Figure 2.6.  Diagramatic description of a non-linear (1-dimensional) support vector 
regression and the corresponding relevant variables (𝑦E, 𝑥E, 𝑤, 𝜀, 𝜉E). Filled squares 
represent data points selected as support vectors; empty squares represent data points 
not categorized as support vectors, hence SVs only appear outside or on the tube 
boundary [54]. 

 
2.4.2.4. Application of the kernel method 

In machine learning, kernel methods are used to apply linear model principles 

to non-linear functions. Kernel functions map the input (non-linearly connected) data 

to some feature space of higher dimension where they exhibit linear patterns. The dot 

product, 𝒙𝒊	, 𝒙 , in eq. 2.7 is replaced by a kernel function, k(𝒙𝒊	, 𝒙) that implicitly 

computes the dot product in the feature space, F.  

Replacing the dot product with the kernel function in the optimization problem 

gives the following equations: 

maximize							

−
1
2

𝛼E − 𝛼E∗ 𝛼\ − 𝛼\∗ 𝑘(𝑥E, 𝑥\)
H

E,\ID

−𝜀	 𝛼E + 𝛼E∗
H

EID

+	 𝑦E 𝛼E + 𝛼E∗
H

EID

	

 

 

subject	to				 𝛼E − 𝛼E∗ = 0				and			𝛼E, 𝛼E∗
H

EID

∈ 0, 𝐶  

(2.8) 
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Similarly, the weight vector, 𝒘, can be written as:  

𝑤 = 𝛼E − 𝛼E∗
H

EID

Φ(𝑥E) 

𝑓 𝑥 = 	 𝛼E − 𝛼E∗
H

EID

𝑘(𝑥E, 𝑥\) + 𝑏	 

Mercer’s condition constrains the kernel function selection [55]. Mercer’s 

theorem deals with the dot product in a Hilbert space (a vector space with a dot product 

defined on it). Any kernel function,	𝒌(𝒙𝒊, 𝒙𝒋), that satisfies the following condition can 

(theoretically) be appropriately used.  

 

𝑘 𝑥E, 𝑥\ 𝑓 𝑥E 𝑓 𝑥\ 𝑑𝑥E𝑑𝑥\ 	≥ 0	 

 

for all functions 𝑓 𝑥E 	, 𝑓 𝑥\  satisfying:  

 

𝑓C 𝑥E 𝑑𝑥E	 ≤ ∞		 

 

2.4.2.4.1. Radial Basis Function (RBF) kernel 

In this study, the radial basis kernel function was used. It is described by the 

expression:  

𝑘 𝑥E, 𝑥\ 		= 						 Φ(𝑥E)	.Φ(𝑥\)  

																				= 		exp	 	−𝛾	 𝑥E −	𝑥\
C

 

 

Here, 𝒙𝒊 and 𝒙𝒋 are single instances of x, 	.  represents the Euclidean norm, 

and 𝛾 is a positive parameter also known as the smoothing factor or bandwidth [52]. If 

𝛾 is small, more weight will be allocated to points near 𝒙𝒊, whereas a large 𝛾 may impart 

greater importance to far-off points. RBF is appropriate to use here as it nonlinearly 

maps samples into a higher dimensional space and can therefore handle the nonlinear 

relation between our output target and input attributes.  

(2.9) 

 (2.10) 

(2.11)   

(2.12) 

(2.13) 
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2.4.2. Diagrammatic Summary of SVM 

Figure 2.7 adequately summarizes the SVM training and application process. 

 
Figure 2.7.  Description of a regression machine constructed by the support vector 
algorithm [29]. 

2.4.3. LIBSVM 

LIBSVM [56] is an open source machine learning library. It was developed at 

the National Taiwan University and is written in C and C++. LIBSVM uses the 

sequential minimal optimization (SMO) algorithm [57] for solving the quadratic 

programming problem that arises during the training of support vector machines. This 

library package was utilized for the implemention of the SVM algorithm for this study. 
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Chapter 3: SVM Prediction Framework  
 

3.1. Introduction 

The first three study objectives of this thesis, as presented in Section 1.4, are:  

§ Analyzing sensitivity of SVM prediction to LIS states. 

§ Comparison of relative importance of LIS states for SVM prediction. 

§ Estimating SVM prediction sensitivity to SWE. 

In this chapter, the methodology followed to attain these objectives is discussed. 

The SVM prediction and sensitivity analysis set-up is defined. It mainly consisted of 

three main phases: 

Ø Phase-1: Noah MP land surface model simulation is accomplished within the 

LIS framework. 

Ø Phase-2: SVM training and prediction using Noah MP output and AMSR-E 

brightness temperature data.  

Ø Phase-3: Normalized sensitivity coefficient computation to analyze the 

sensitivity of SVM to LIS modeled states. 

3.2. Phase-1: LIS Model Formulation and State Estimation  

Noah-MP was used in the LIS framework to simulate the geophysical states of 

the study domain. These geophysical states served as the training input for SVM 

generation, and later as the prediction input for trained SVMs. Henceforth, these states 

are referred to as LIS input states. LIS ‘open-loop’ is the uncoupled stand-alone 

model (Noah-MP) simulation. The open-loop accuracy is dependent on model physics 

and supplementary data such as boundary conditions, initial conditions, and parameters 

that illustrate domain characteristics. 

Boundary conditions used for the LIS open-loop simulation were obtained from 

the Modern-Era Retrospective analysis for Research and Applications - Version 2 

(MERRA2) forcings. MERRA2 is the recent atmospheric reanalysis produced by 

NASA’s Global Modeling and Assimilation Office (GMAO) [11]. The reanalysis 
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period starts from January 1980 and continues as a near real-time analysis. It has a 

native resolution of 0.5° lat x 0.625° lon x 72 model layers. It is based on the 

assimilation of ground and satellite data into the Goddard Earth Observing System –

version 5 (GEOS-5) model to produce gridded datasets.  MERRA2 is an improved 

version of the previously widely used MERRA datasets and incorporates updated 

methods in the GEOS model, new atmospheric variables, and the latest satellite data. 

MERRA2 boundary condition parameters included: 

§ Near surface air temperature 
§ Near surface specific humidity 
§ Incident shortwave radiation    
§ Incident longwave radiation               
§ Eastward wind                             
§ Northward wind                            
§ Surface pressure                          
§ Rainfall rate                             
§ Convective rainfall rate      

 
Some other datasets used to characterize the model domain features included 

land cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS), soil 

texture characterization from International Soil Reference and Information Centre 

(ISRIC), and topographic information such as slope, aspect, and elevation from Shuttle 

Radar Topography Mission (SRTM). The initial conditions were adjusted using a spin-

up time of 22 years, starting in January 1980 and ending in December 2001. Model 

simulation period spanned from year 2002 to 2016. The study period extends from Sep-

2002 to Sep-2011 (9 years). This coincides with the AMSR-E available CETB data 

period.  

3.2.1. Description of the Study Domain 

The study domain comprises the Indus Basin. The Indus Basin spans over parts 

of four countries: Pakistan, India, China, and Afghanistan. This includes the mountain 

ranges of Hindu Kush, Karakorum, and Himalaya. The total area is estimated to be 1.1 

million km2. Most of this area lies within Pakistan and India. The Indus river originates 

in the Tibetan Plateau and has 15 tributaries that contribute to it downstream. 
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The Indus basin has highly varying topography, with very high elevations 

(>7000 m) in the north, medium height mountains in the west (>2000m), and flat 

plateaus and plains comprising the rest of the basin area, as seen in Figure 3.1. This 

topographic setting renders the modeling of the entire basin a relatively complex task. 

The high mountains in the north provide greatest difficulty as little prior information is 

available regarding the prevalent glaciers and ephemeral snow patterns. Also, since the 

grid resolution of current land surface models is on the order of kilometers, the highly 

varying topography (and relevant land surface interaction) is not always adequately 

represented. 

 
Figure 3.1.  DEM of the Indus Basin showing variation in topography [58]. 

 

The largest lake in the area (Lake Saiful-Muluk) has a surface area of 

approximately 2.75 km2. Considering the grid resolution of the AMSR-E brightness 

temperature data (625 km2), the lake effect is neglected from our analysis. Heavy 
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snowfall primarily occurs in the northern Karakoram and Himalayan ranges and in the 

western Hindukush range. Moderate seasonal snow is also observed in the vicinities of 

Kashmir (Margalla and Murree Hills).  

Figure 3.2 depicts the land cover variation within the Indus Basin. From 

permanent ice in the northern areas to cultivated plains in the south, the Indus basin has 

significant vegetation heterogeneity. Only snow-covered (seasonally and permanently) 

areas are considered for the purposes of this study. Figure 3.2 is presented here only to 

convey a general idea of the vegetation types in the study domain. 

 

 
 

Figure 3.2.  Land cover map of the Indus Basin developed from 36 SPOT-Vegetation 
based NDVI values for 2007 [59]. 

3.2.2. LIS Input States used in SVM Training and Prediction 

LIS modeled states were inherently on an equidistant cylindrical grid (0.01O x 

0.01O). To maintain consistency between LIS and AMSR-E data, these states were re-

gridded to the EASE grid (pixel size = 25km x 25km) for further utilization. 

Ten LIS modeled states were used for SVM training and prediction (Table. 3.1). 

Selection criteria for the LIS input states included previous similar studies as well as 
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their individual physical effect on brightness temperature. Input states that were 

physically expected to significantly influence brightness temperature were chosen. 

  

Table 3.1.  LIS modeled geophysical states used as input for SVM training and prediction 

State Unit 

Snow water equivalent m 

Snow liquid water content m 

Top-layer snow temperature K 

Top-layer soil temperature K 

Air temperature (near surface) K 

Bottom-layer snow temperature K 

Snow density Kg/m3 

Soil moisture (near surface) m3/m3 

Vegetation temperature K 

Leaf area index dimensionless 

 

3.2.2.1 Unit conversion of LIS input states 

The LIS input states vary considerably in their units. Some quantities have 

dimensions of length, others temperature, while some are dimensionless. To introduce 

some consistency among the LIS input state magnitudes, all quantities were converted 

to such respective units that lie within the same order of magnitude. For example, 

temperatures varied between 170 to 350 Kelvin throughout, whereas SWE fluctuated 

between 0 and 7 meters. To place them in the same order of magnitude, temperature 

values were converted to 10-2 K.  

Since SVM does not make any provision for the different units of the input 

states, thus to decrease chances of dominance of some states over others due to 

magnitude only, this unit conversion is advisable [60] 
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Table 3.2.  List of unit conversion factors used for scaling LIS input states to constrict them on 
the same order of magnitude. 

State Unit Conversion Factor 

Snow water equivalent 10 

Snow liquid water content 1 

Top-layer snow temperature 0.01 

Top-layer soil temperature 0.01 

Air temperature (near surface) 0.01 

Bottom-layer snow temperature 0.01 

Snow density 0.01 

Soil moisture (near surface) 10 

Vegetation temperature 0.01 
Leaf area index 1 

 

3.3. Phase-2: SVM Framework 

SVM framework is divided into training and prediction sub-phases, described 

in Section 3.2.1 and Section 3.2.2. 

3.3.1. SVM Training 

SVM training was accomplished through the utilization of the LIBSVM library, 

provided by the National Taiwan University. During the SVM training process, the 

support vectors and their respective weights were selected through the process 

described in Chapter 2. AMSR-E T* data from Sep-2002 to Sep-2011 (total 9 years) is 

used as the training target. The SVM training process described by [7], [61], and [6] 

was followed for this study. 

A separate and independent SVM was generated for each fortnight in the study 

period. AMSR-E T* target data used for each fortnight SVM training included data 

from 2-weeks before and 2-weeks after the pertinent 2-week data. Thus, each SVM 

training data consisted of a 6-week period. This 2-week overlap for each fortnightly 
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SVM was intended to maintain continuity and to include seasonal effects in snow 

dynamics. To limit the possibility of errors introduced by wet snow, measurements 

gathered during the nighttime AMSR-E overpass were used during training. 

Parameter selection (described in section 3.3.1.1) was completed before the 

actual SVM training. While training for a certain fortnight, f, in a certain year, yr, the 

AMSR-E data from all the years except year ‘yr’ was used for training. Thus, each 

fortnight was trained using the relevant fortnight data from the remaining 8 years. The 

total number of AMSR-E data points for each fortnightly training was 336 (8 years x 6 

weeks x 7 days = 336 daily values). AMSR-E measurements, for the relevant year, that 

were excluded from training were then later used for validation purposes. 

 

3.3.1.1. SVM parameter selection (C, ε, γ): 

Parameter selection is an important step in model formulation. This is especially 

so in SVM, considering the non-linearity and complex model dynamics. As discussed 

in Chapter 2, three parameters need to be set manually for each SVM; C, ε, and γ.  ‘C’ 

is the penalty parameter and is defined in this study as the range of the training targets 

(z). This selection is based on the rationale provided by [62]. 

 
C = 𝑚𝑎𝑥{𝒛} – 𝑚𝑖𝑛{𝒛}    

 
Selection of ‘ε’ and ‘γ’ was done using a two-phase SVM training method. This 

involved formation of two subsets, a and b, of the total 9-year training data. Subset-a 

data was used to train a test SVM. Subset-a data trained SVM was then used to predict 

the subset-b data and the corresponding mean squared error (MSE) was computed. This 

process was repeated for a range of ‘ε’ and ‘γ’ values. The same procedure was 

employed for subset-b and MSE values (for various combinations of ‘ε’ and ‘γ’) 

calculated by predicting subset-a using the subset-b trained SVM were obtained.  

All of the MSE values were compared and the ‘ε’ and ‘γ’ pair that yielded the 

least MSE magnitude was selected for use during the second phase of SVM training. 

The second phase used the selected parameter values and training was completed using 

the entire 9-year AMSR-E data as described above.  
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3.3.2. ∆Tb Prediction using SVM 

SVM input consisted of the 10 geophysical LIS input states and the output 

consisted of four T* frequency differences and polarization combinations (Table 3.3). 

Since our analysis is primarily focused on snow covered areas, predictions were carried 

out for those locations only where snow water equivalent (SWE) was greater than 1 

cm. 

Table 3.3.  List of variables predicted by SVM using LIS input states 

Training target / SVM output Symbol Unit 

Difference in brightness temperature 
measured at 10.65GHz (vertical 
polarization) and 36.5GHz (vertical 
polarization) frequencies 

∆Tb (10.65V – 36.5V) Kelvin 

Difference in brightness temperature 
measured at 10.65GHz (horizontal 
polarization) and 36.5GHz (horizontal 
polarization) frequencies 

∆Tb (10.65H – 36.5H) Kelvin 

Difference in brightness temperature 
measured at 18.7GHz (vertical 
polarization) and 36.5GHz (vertical 
polarization) frequencies 

∆Tb (18.7V – 36.5V) Kelvin 

Difference in brightness temperature 
measured at 18.7GHz (horizontal 
polarization) and 36.5GHz (horizontal 
polarization) frequencies 

∆Tb (18.7H – 36.5H) Kelvin 

 

3.3.2.1 SVM prediction validation 

SVM output validation was accomplished using the one year data that was 

omitted during training for each fortnightly trained SVM. Figures 3.3 and 3.4 

summarize the over-all bias and RMSE of SVM predictions with respect to the AMSR-

E satellite data not used during training from year 2002 to 2011. Results for ∆Tb(18.7V 

– 36.5V) are presented as this frequency difference and polarization is most relevant to 

SWE remote sensing [6]. 
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Figure 3.3 shows the average bias observed at each location within the 

prediction area. Daily bias (∆Tb, SVM - ∆Tb, AMSR-E) values calculated for years 2002-

2011, for each location, are averaged to obtain the values presented in Figure 3.3. Most 

of the values lie between -0.5K and 0.5K. Two prominent zones experienced high bias. 

One location lies near 33.5ON and 68OE. This cluster of pixels displays negative bias 

values and highlights the under-prediction of SVM at this location. In contrast to this, 

pixels around 37.5ON, 74OE display positive bias values and present the over-

estimating tendencies of SVM in that cluster of pixels. 

 

 
Figure 3.3.  Average bias (SVM - AMSR-E) for ∆Tb (18.7V – 36.5V), in units of 
Kelvins, observed at each location where SWE > 1cm in the Indus Basin for years 
2002-2011. The solid black line represents country boundaries and the solid blue line 
depicts the coastline. 

Yearly RMSE values calculated for each year from 2002 to 2011, for each 

location, are averaged to obtain the values presented in Figure 3.4. Figure 3.4 

demonstrates that the two primarily biased zones identified above show high RMSE 

values. These locations have low prediction accuracy and are thus expected to have 

irrational sensitivity analysis results. The diagonally elongated area stretching from 

35ON and 75O E to 30ON and 83OE is collocated with glaciers. Brightness temperatures 

predicted over glaciers are expected to have errors since the list of LIS input variables 

used for SVM prediction does not include any ice sheet/glacier related variables. 
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Further details regarding SVM prediction validation and possible causes of bias and 

RMSE are provided by Forman et al. in [4]. 

 

 
Figure 3.4.  Average RMSE of SVM ∆Tb (18.7V – 36.5V) prediction, in units of 
Kelvin, observed at each location where SWE > 1cm in the Indus Basin for years 2002-
2011. The solid black line represents country boundaries and the solid blue line depicts 
the coastline. 

3.4. Phase -3: Sensitivity Analysis Metric Formulation 

An analysis of comparative importance of predictors in a linear model is usually 

achieved using the standard value of t, correlation (R), and S (=t*R) value. These 

methods are not applicable in this case since SVM is a non-linear, highly complex 

model. Therefore, to analyze the comparative predictor importance a sensitivity 

analysis was performed. This was intended to contribute towards the selection of the 

most important (sensitive) predictors for the formulation of the final SVM that is 

intended for use in a SWE data assimilation framework as a measurement operator. 

A sensitivity analysis is targeted towards examination of the sensitivity of 

model output to a change in each predictor. The three main types of sensitivity used for 

analyzing predictor importance are; absolute sensitivity, relative sensitivity, and 

deviation sensitivity [63].  
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§ Absolute sensitivity, 	𝑆v: change in one factor, y, with respect to change in another 

factor, x. It has units of ‘y/x’ and thus cannot be used for comparing sensitivity of 

different ‘x’ values. 

𝑆v = 	
𝜕𝑦
𝜕𝑥
		 

§ Relative sensitivity, 𝑆x: percent change in one factor, y, due to some prescribed 

percent change in another factor, x. It is unit-less and can, thus, be used for 

comparing the importance of various predictors.  

𝑆x =
𝜕𝑦
𝜕𝑥

∗
𝑥
𝑦

 

§ Deviation sensitivity, 𝑆y: incremental change in one factor, y, due to incremental 

change in another factor, x. It has units of ∆𝑦 and can thus be utilized for 

comparative study of various predictor sensitivities. It is usually employed in error 

analysis.  

𝑆y =
𝜕𝑦
𝜕𝑥

∗ 	∆𝑥 

For our specific case, Normalized Sensitivity Coefficients (NSC) are employed 

to compare the relative sensitivity of each LIS input state. NSCs will be used as 

deciding factors for predictor importance in SVM model prediction. 

3.4.1 Normalized Sensitivity Coefficient 

 Normalized sensitivity coefficients [64] are computed to assess the sensitivity 

of a well-trained SVM to each LIS modeled state variable.  

𝑁𝑆𝐶E,\ = 	
𝜕𝑀\
𝜕𝑃E

	 ∗ 	
𝑃E}

𝑀\}
	 ≈  

𝑀\E	 − 𝑀\}

∆𝑃E
	 ∗
𝑃E}

𝑀\}
		

where  i = state index,   j = output metric index,   𝑀\E = perturbed metric value,  

𝑀\}= initial metric value,  𝑃E} = initial state value,   ∆𝑃E = amount of perturbation. 

 

Each LIS input state is perturbed (one at a time), while maintaining the original 

value of all the other states. The observed change in output relative to the induced 

perturbation is a measure of the effect a change in that LIS input state will have on the 

(3.2) 

 (3.3) 

 (3.4) 

(3.1) 
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SVM predicted output. Since one LIS input state is perturbed at a time, while the other 

states remain constant, independence between the states is assumed; however, the 

sensitivity is dependent on the values of all states. The NSC value is representative of 

the effect of the perturbed state only on SVM output, while assuming the other states 

are not affected by that perturbation at all. 

A normalized sensitivity coefficient is representative of local sensitivity as 

compared to global sensitivity. Local sensitivity analysis is useful in studying the role 

of parameters or input variables in the model [65]. This technique has been effectively 

used in various studies [66] [67]. 

 

3.4.1.1 Suitability of NSCs  

NSCs are suitable for analyzing the relationship between SVM predicted output 

and LIS input states due to the following reasons: 

  
§ SVM is based on statistical learning theory and thus has a statistical rather than a 

physical model basis. Considering this statistical origin, it is uncertain whether the 

results obtained by SVM prediction are physically based or not. The NSCs help in 

exploring this avenue. 

§ NSCs are dimensionless and, thus, it is rational to utilize them in inter-predictor 

sensitivity comparisons. 

§ NSCs have a magnitude as well as a sign, and thus relate not only the importance 

of the predictor, but also the direction of its relationship (direct vs. inverse) to the 

model output. 

§ By perturbing each LIS input state (predictor variable) by the same amount and 

analyzing the resulting effect on the output, a measure of relative importance of the 

predictors is attained. 

 

3.4.1.2 NSC Formulation 

 The amount of perturbation (∆P�  in eq. 3.4) is selected manually by the users. 

The perturbation size should be large enough to detect a change in the output, yet small 

enough that the model behaves approximately linearly. For our case, a range of 
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perturbations was tested and the corresponding relative change was analyzed. Figure 

3.5 presents an example of the variation in relative change of ∆Tb (18.7V – 36.5V) as 

perturbation in SWE is increased from -20% to + 20%. A relative change is formulated 

as:  

 

 RC = 	 PO	−	NO	NO ∗ 100 

 

where RC = Relative change, PO = Perturbed Output, NO = Nominal Output. 

 

 
Figure 3.5.  Variation in relative change observed in ∆Tb (18.7V – 36.5V) prediction 
as LIS modeled SWE input is perturbed for a point location in the Indus Basin 
(35.73ON,76.28OE) for one day (Jan 1, 2004). Red–dashed line shows the perturbation 
bounds that were ultimately chosen. 

Apart from SWE, relative change versus perturbation plots for all the other 9 

states were also generated (Figure 3.6). After studying a range of locations and days, a 

perturbation value of +/-2.5% (total 5%) was selected. The perturbation value is 

selected according to the model output. It is desired that the model behaves linearly 

within the perturbation range. Figure 3.5 and Figure 3.6 show that the SVM behaves 

approximately linearly with respect to change in any of the LIS input states within the 

perturbation bounds of +/-2.5%. 

(3.5) 
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Figure 3.6.  Variation in percent relative change observed in ∆Tb (18.7V – 36.5V) 
prediction as LIS modeled input states are perturbed for a point location in the Indus 
Basin (Lat: 35.73ON, Lon: 76.28OE) for one day (Jan 1, 2004). 
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The slope of the curves in Figure 3.6 represent the NSC value. Therefore, 

steeper slopes reflect higher calculated NSC magnitudes. The corresponding sign is 

determined by the direction of the slope, i.e., positive for an increasing slope.  

Each LIS input state was perturbed by +/- 2.5% for each fortnightly SVM, and 

the corresponding NSC was calculated. A separate NSC was calculated for each of the 

10 individually perturbed LIS input states, for each of the four SVM predicted ∆Tb 

outputs (multi-frequency and multi-polarization), for each day in the study period, for 

each pixel in the domain where LIS modeled SWE was > 1cm. 

NSCs were calculated at the nominal state value, that is a positive and a negative 

(equal magnitude) perturbation was applied and a centered difference (eq. 3.4) was then 

calculated. This was done to remove the possibility of a biased NSC in case the SVM 

model behaved non-linearly within the perturbation limits for any day or location. 

3.4.2 Variability in the Effect of Perturbation on SVM Prediction  

Before delving into the NSC analysis, a brief overview of the effect of LIS input 

state perturbation on SVM prediction is presented here.  The objective here is to 

understand the variability in the effect of LIS input state perturbation on SVM 

prediction observed throughout the domain. This variability is ultimately linked to 

variation in accuracy of SVM prediction in the domain, as will be explained in the 

coming sections. The direct physical relationship between SWE and ∆Tb (18.7V – 
36.5V) is exploited to explain this effect. 

In Figure 3.7, most of the areas show zero change, meaning SVM ∆Tb (18.7V 

– 36.5V) prediction is not very sensitive to LIS modeled SWE at these locations. The 

negative and positive perturbation propagates opposite effects within the domain. 

Areas that exhibit a negative difference value (blue color) for the negative perturbation 

show a positive difference value (red color) for the positive perturbation. Of these, the 

locations near lat: 34.5ON, lon: 66OE and the diagonal cluster of pixels from lat: 

32.5ON, lon: 77.5OE to ~lat: 35ON, lon: 76OE show noticeable physically irrational 

results. This indicates physical irrationality because according to the principles of 

remote sensing of snow, as discussed in Chapter 1, SWE and ∆Tb (18.7V – 36.5V) have 

a directly proportional relation. If only SWE is decreased (negative perturbation) while 
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the other states are retained at their original values, then the resultant ∆Tb(18.7V - 
36.5V) is expected to decrease as well and hence the difference between the nominal 

(∆Tb,nom) and negatively perturbed (∆Tb,neg) output should be a positive value. The 

locations identified here exhibit the opposite of this principle, i.e., decreasing SWE 

(negative perturbation) is resulting in an increased ∆Tb,neg and subsequently resulting 

in a positive value for difference between the nominal and negatively perturbed output 

(∆Tb,nom - ∆Tb,neg), indicating an inversely proportional relation between SWE and 

∆Tb(18.7V - 36.5V). 

 

 
Figure 3.7.  Maps of Indus Basin showing the difference between nominal and -2.5% 
perturbed SWE SVM prediction of ∆Tb (18.7V – 36.5V) (left), and nominal and +2.5% 
perturbed SWE SVM prediction of ∆Tb (18.7V – 36.5V) (right) for Jan 1, 2004. The 
solid black lines represent country boundaries and the solid blue line depicts the 
coastline. 

Histograms (see Figure 3.8 and Figure 3.9) of all the differences between the 

nominal and perturbed SVM output values were generated from Figure 3.7. In Figure 

3.8, for negative perturbation, physical rationality suggests all difference between the 

nominal and negatively perturbed SVM output values (∆Tb,nom - ∆Tb,neg) should be 

greater than 0. The results show that although all the values are not > 0, most of them 

are. In Figure 3.9 the case should physically be opposite to this and all differences 

between the nominal and positively perturbed SVM output values (∆Tb,nom - ∆Tb,pos)  
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are expected to be < 0. The results here are similar to Figure 3.8 and it is observed that 

although all the values are not < 0, most of them are. 

 
Figure 3.8.  Histogram of difference between the nominal and -2.5% perturbed SWE 
SVM predicted ∆Tb (18.7V – 36.5V) values for areas where LIS modeled SWE > 1cm 
in the Indus Basin for Jan 1, 2004. 

 

 
Figure 3.9.  Histogram of difference between the nominal and +2.5% perturbed SWE 
SVM predicted ∆Tb (18.7V – 36.5V) values for areas where LIS modeled SWE > 1cm 
in the Indus Basin for Jan 1, 2004. 
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It is observed that the locations showing physically irrational perturbation 

effects in Figure 3.7 have high RMSE values (see Figure 3.4) and thus poor predicting 

capability. Apart from this, another reason is the inter-correlation between the LIS input 

states. When a single state is perturbed e.g. air temperature, physically rationalizing the 

soil temperature and the vegetation temperature is expected to undergo some change as 

well. During individual state perturbation, we ignore this physical phenomenon. The 

price of ignoring this inter-correlation between the LIS input states is paid in the form 

of misleading sensitivity analysis results (detailed in Chapter 4).  

To gain some knowledge of the extent of inter-correlation (cross-correlation) 

present, the inter-correlation matrix of all LIS input states was computed (Table 3.4) 

using LIS model output for the whole domain for year 2004. Some very high correlation 

values are visible, highlighted in red. For example, air temperature and soil temperature 

have a correlation of 0.981. Most of the high correlation values are related to 

temperature variables. This is physically expected as well. As far as SWE is concerned, 

the highest correlation value is for snow density (=0.568). Since snow density is 

calculated from SWE and snow depth estimates, this relationship between these 

variables is expected.  

 

Abbreviations used in Table 3.4: 

SWE = Snow water equivalent, SLWC = Snow liquid water content,  

ST = Soil temperature, TLST = Top-layer snow temperature, AT = Air temperature, 

BLST = Bottom-layer snow temperature, SD = Snow density, SM = Soil moisture 

VT = Vegetation temperature, LAI = Leaf area index 
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Table. 3.4. Inter-correlation matrix of 10 LIS input states, calculated using (daily) LIS 
modeled states over the Indus Basin for year 2004. 

 

 SWE       
m 

SLWC 
mm 

TLST 
K 

ST 
K 

AT 
K 

BLST 
K 

SD 
kg/m3 

SM 
m3/m3 

VT 
K LAI 

SWE  
m 1.000 0.202 -0.051 -0.041 -0.012 0.040 0.568 -0.051 -0.012 -0.042 

SLWC 
mm 0.202 1.000 0.275 0.245 0.262 0.271 0.240 0.248 0.263 -0.025 

TLST 
K -0.051 0.275 1.000 0.723 0.717 0.818 0.068 0.460 0.765 0.183 

ST 
K -0.041 0.245 0.723 1.000 0.981 0.869 0.136 -0.389 0.976 0.313 

AT 
K -0.012 0.262 0.717 0.981 1.000 0.685 0.240 -0.403 0.992 0.335 

BLST 
K 0.040 0.271 0.818 0.869 0.685 1.000 0.118 0.544 0.665 0.167 

SD 
kg/m3 0.568 0.240 0.068 0.136 0.240 0.118 1.000 0.174 0.243 0.285 

SM. 
m3/m3 -0.051 0.248 0.460 -0.389 -0.403 0.544 0.174 1.000 -0.427 0.235 

VT 
K -0.012 0.263 0.765 0.976 0.992 0.665 0.243 -0.427 1.000 0.321 

LAI -0.042 -0.025 0.183 0.313 0.335 0.167 0.285 0.235 0.321 1.000 

 

Supplementary to the LIS input states inter-correlation matrix, since the 

primary focus is on SWE, a graphical analysis of SWE vs. all the other (9) LIS input 

states (Fig 3.10) was performed. Based on these plots, all the other LIS input states, 

except snow density, do not seem to have any significant linear relationship with LIS 

SWE.  

The graphs in Figure 3.10 do not give any indication of what the location 

specific relationship between the states is. To garner more information about the 

variation in the correlation between LIS SWE and other LIS input states throughout the 

domain, correlation maps were generated using LIS modeled data for the Indus Basin 

for year 2004, Figure 3.11.  Correlation maps are developed using data from those 

pixels only where both variables had a non-zero value. The number of data points for 

each variable for each pixel is greater than 30 (8.22% of 365 days). 
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Figure 3.10.  Graphical analysis of LIS SWE estimate vs. all other LIS input states used 
in SVM ∆Tb prediction over the Indus Basin for year 2004. 
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Figure 3.11.  Correlation maps between LIS modeled SWE and all other (9) LIS input 
states for the Indus Basin for year 2004. The solid black line represents country 
boundaries and the solid blue line depicts the coastline. 

 
The correlation maps (Figure 3.11) show a much different view of the relations 

between LIS SWE vs. other LIS input states compared to the data plots in Figure 3.10. 

There are high correlation values (positive as well as negative) evident in each map at 

different locations. These locations with high correlation values guide in understanding 

the sensitivity analysis results in Chapter 4. 
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Chapter 4: Sensitivity Analysis of SVM Prediction 

 

In this chapter, the sensitivity analysis results are discussed. The relative 

sensitivity of SVM predicted brightness temperature (spectral difference) to the LIS 

modeled input states is studied spatially as well as temporally, using normalized 

sensitivity coefficients. 

The sensitivity analysis results described in this chapter focus on ∆Tb (18.7V-

36.5V), see Table 3.3, as this brightness temperature spectral difference is most 

significant for remote sensing of snow parameters (such as SWE) and thus very relevant 

to snow-covered areas of importance within the domain. Vertical polarization is 

selected for this analysis since horizontally polarized microwave radiation is 

comparatively more affected by ice-layers present within the snow pack than vertically 

polarized microwave radiation. The 10 LIS input states used for SVM prediction do 

not include any ice-layer characterizing state. Therefore, in order to achieve a better 

understanding of the effect of LIS input states on correctly trained SVMs, vertically 

polarized ∆Tb  are focused upon. 

4.1. Spatial Analysis of Normalized Sensitivity Coefficients 

Considering that the primary focus was on snow covered areas, two main 

seasons for our sensitivity analysis i.e. snow ablation (April, May, and June) and snow 

accumulation period (December, January, and February) were used. These months 

were selected in accordance with the climatology of the Indus basin. April marks the 

end of the spring season and the advent of the summer season (in general) and witnesses 

the start of snow melt in most areas. This snow melt period continues throughout the 

summer season. The main snow accumulation period falls within the months of 

December, January and February for most places in the Indus Basin. The snow 

accumulation and ablation periods were restricted to the three most important months 

to lessen excessive temporal averaging of the NSCs. This exercise helped identify the 

extent of the effect change in snow season had on the sensitivity values. 



 

 

47 
 

The objective of this spatial analysis was to find location specific relative 

sensitivities. Areas that are collocated with glaciers are expected to give irrational 

sensitivity values (due to the effect of glaciers on T* measurement, as discussed in 

Chapter 2). Figure 4.1 shows the locations identified by the Global Land Ice 

Measurements from Space (GLIMS) database where glaciers/ice masses are present. 

 
Figure 4.1.  Map of locations, as identified by Global Land Ice Measurements from 
Space [68], where glaciers or ice masses are present within the Indus Basin. 

 
NSCs were calculated only for those areas where SWE was greater than 1cm. 

These areas were identified as ‘snow-covered’. The snow ablation and accumulation 

period NSC maps (Figure 4.2 and Figure 4.3) for the Indus Basin for year 2004 indicate 

the relationship between each LIS input state and the SVM predicted ∆Tb (18.7V-
36.5V). Maps of soil moisture and the bottom-layer snow temperature are not included 

in Figure 4.2 and Figure 4.3. Soil moisture values modeled by LIS (Noah MP) under 

frozen soil conditions are not very accurate and thus have been removed from the 

sensitivity analyses. For some of the locations, the snow pack does not grow deep 

enough to have multiple layers, therefore a bottom-layer snow temperature does not 

exist in those cases. For locations that have values of snow temperature of the bottom-

layer of snow pack, the NSCs are approximately zero. 
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Figure 4.2.  Maps of normalized sensitivity coefficients of SVM predicted ∆Tb(18.7V-
36.5V) for LIS input states averaged over the snow accumulation period (Dec-2003, 
Jan-2004, Feb-2004) for snow-covered areas in the Indus Basin.  

 country boundary 
 coastline 
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Figure 4.3.  Maps of normalized sensitivity coefficients of SVM predicted ∆Tb(18.7V–
36.5V) for LIS input states averaged over the snow ablation period (Apr, May, Jun; 
year = 2004) for snow-covered areas in the Indus Basin.  

 
 

 country boundary 
 coastline 
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The highest NSC magnitudes are observed for snow-pack top-layer snow 

temperature. Most of the NSCs for snow temperature have a negative sign. This seems 

physically rational as for a higher snow temperature, the snow pack is expected to have 

a reduced amount of snow (SWE) and thus a decreased SVM predicted ∆Tb (18.7V – 
36.5V) is expected. This results in an inverse relationship between snow temperature 

and ∆Tb (18.7V – 36.5V). The negative NSC sign highlights this inverse relationship. 

Air temperature and vegetation temperature do not have a direct relationship 

with ∆Tb (18.7V – 36.5V), instead their relationship is defined through other states, 

e.g., if there is a cold (low) air temperature present, this will generally correspond with 

a lower snow temperature (ignoring effects of other physical processes). A lower snow 

temperature could indicate a deeper snow pack, which will correspond to a high ∆Tb 

(18.7V – 36.5V) value. This implies that (ignoring the effect of other physical 

processes) a decrease in air temperature would result in an increased ∆Tb (18.7V – 
36.5V), indicating an inverse relation and a negative NSC sign. Figure 4.2 and Figure 

4.3 show a majority of positive NSC values for air temperature. This can be explained 

by: (a) high cross-correlation of air temperature with other LIS input states such as 

snow temperature (Table 3.4), (b) effect of vegetation (increased in the snow ablation 

months) on T* (as discussed in Chapter 2), and (c) presence of wet snow, especially in 

the summer months, and its effect on T*. 

In Figures 4.2 and 4.3, it is observed that soil temperature (top-layer of soil) has 

NSC values that are all equal to zero, indicating that it had no effect on ∆Tb (18.7V – 
36.5V) SVM prediction. Vegetation temperature and air temperature also exhibit 

relatively high values as compared to SLWC (snow liquid water content) and LAI (leaf 

area index). Higher sensitivity to SLWC is expected during the snow ablation months 

(due to wetter snow) as compared to snow accumulation months (reduced presence of 

SLWC). Figures 4.2 and 4.3 corroborate this expectancy.  

For SWE, rationality generally suggests positive values of NSCs.  In Figures 

4.2 and 4.3, we observe that although the magnitudes are relatively small throughout 

the domain (expect for few locations), majority of the values are positive. NSCs for 

locations collocated with glaciers (Figure 4.1) are not very reliable.  

 



 

 

51 
 

From the discussion above, it is concluded that the NSC value we obtain for 

each LIS input state is a result of a number of concurrent and interacting physical 

processes, high cross-correlation between the LIS input states and effect of location 

specific parameters such as dense vegetation and glaciers. 

4.2. Temporal Analysis of Normalized Sensitivity Coefficients 

A temporal analysis of NSCs was carried out to broaden our understanding of 

the change that the relationship between LIS input states and SVM predicted output 

undergoes throughout the year. The time-period of the analysis presented here spans 

from 1st September 2003 to 31st August 2004. This marks one complete water year.  

4.2.1. Test Location Time-Series of NSCs 

A test location was selected to study the time-series of NSCs for all LIS input 

states. The location selection criteria included: 

• Not located on a glacier/ ice-mass 

• absence of dense vegetation 

• seasonal snow observed. 

 

This list was developed to locate a spot that would help correctly identify the 

relationship between well-trained SVM predicted output and LIS input states by 

avoiding erroneous AMSR-E T* measurement areas. 

The time series in Figure 4.4 displays that the bottom-layer snow temperature 

and top-layer soil temperature NSCs had either no value (no data) or were equal to zero. 

The highest variation was seen in NSCs of snow density (values range between -3.8 to 

3). Snow (top-layer), air, and vegetation temperature had more homogenous NSC 

values during the winter months and have highly varying NSCs during the summer 

months. SWE shows values that were mostly clustered between -1 and 1. SLWC had 

few available NSC values during the wet snow season and had no values present for 

the winter season (absence of moisture in the snow). 
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Figure 4.4.  Time-series of NSCs of SVM predicted ∆Tb (18.7V – 36.5V) for LIS input 
states, calculated using a perturbation of +/-2.5% for test location (35.73ON, 76.28OE). 

 

4.2.1.1. Absolute NSCs for test location 

To generalize the highly varying time series in Figure 4.5 and to deduce some 

simple conclusions, the test location absolute average NSCs for the snow accumulation 

and ablation months were calculated for the more sensitive of LIS input states (states 

which have < 95% of the NSC values = 0). 

As discussed in Chapter 1, T* (in the microwave band) is dependent on 

emissivity and physical temperature. The first four LIS input states in Figure 4.5 affect 

emissivity while the last three are related to physical temperature.  

In Figure 4.5, it is observed that for the snow accumulation period, snow 

temperature (top-layer of snow pack) had the highest absolute NSC of 1.4. All the 

physical temperature related states showed comparatively significant NSC values. 

Snow density and SWE had noticeable values due to their effect on emissivity, 

especially snow density which has the second-highest absolute NSC value. SLWC and 

LAI had negligible NSC values. 
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Figure 4.5.  Absolute NSCs of SVM predicted ∆Tb (18.7V – 36.5V) averaged over the 
snow accumulation months during relatively dry snow conditions (Dec-2003, Jan-
2004, Feb-2004) calculated using a perturbation value of +/-2.5% for test location 
(35.73ON, 76.28OE). 

 

 
Figure 4.6.  Absolute NSCs of SVM predicted ∆Tb (18.7V – 36.5V) averaged over the 
snow ablation months during relatively wet snow conditions (Apr, May, Jun -2004) 
calculated using a perturbation value of +/-2.5% for test location (35.73ON, 76.28OE). 

In Figure 4.6 the snow ablation period averaged absolute NSC values were 

analyzed. Physical temperature related LIS input states had higher magnitudes as 

compared to the emissivity related states. SWLC and LAI had almost zero values.  
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4.2.2. Domain-wide Time Series of NSCs 

One of the objectives was to find the domain-wide sensitivity of SVM predicted 

∆Tb (18.7V – 36.5V) to LIS modeled SWE. This is intended to access the usability of 

SVM as the measurement operator (it maps the model states into the measurement 

space) in a SWE data assimilation framework. Therefore, if the sensitivity of SWE is 

significant enough and the accuracy of ∆Tb (18.7V – 36.5V) measurements being 

assimilated is appropriate, we expect an improvement in the ultimate SWE estimates 

for the domain. These estimates will be a combination of the LIS modeled SWE and 

the assimilated ∆Tb (18.7V – 36.5V) measurements. 

Figure 4.7 presents the domain wide (snow-covered areas only) NSC range of 

SVM predicted ∆Tb (18.7V – 36.5V) for LIS SWE from Sep-2003 to Aug -2004. 

Outliers have been omitted in this figure to give a general idea of the snow-covered 

areas SVM prediction sensitivity to SWE. 

 

 
Figure 4.7.  Monthly boxplots (outliers not shown) of NSCs of (LIS inputs states =10) 
SVM predicted ∆Tb (18.7V – 36.5V), using a perturbation value of +/-2.5%, for LIS 
modeled SWE from Sep-2003 to Aug-2004 for the snow-covered areas in the Indus 
Basin. Red line represents the median value while the blue box depicts the interquartile 
range.  
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The box-plots for each month differ considerably in their total range (-0.7 to 0.8 in Feb 

as compared to -0.3 to 0.25 in Oct). Most of the NSCs seem to lie between -0.175 and 

0.3. This indicates that sensitivity of SVM output to LIS SWE for most of the areas 

within the domain is not very high.  

 

 
Figure 4.8.  Monthly boxplots (outliers shown) of NSCs of (LIS inputs states =10) SVM 
predicted ∆Tb (18.7V – 36.5V), using a perturbation value of +/-2.5%, for LIS modeled 
SWE from Sep-2003 to Aug -2004 for the snow-covered areas in the Indus Basin.  

 
Figure 4.8 shows the same boxplots as in Figure 4.7 with outliers visible. 

Outliers are classified as data points that are either 3 times the interquartile range or 

more above the third quartile or 3 times the interquartile range or more below the first 

quartile. Since a large amount of data (pixels) is being considered here, the number and 

range of outliers for each month is quite large. It can be inferred from Figures 4.7 and 

4.8, that although SVM output (obtained using all 10 LIS input states) sensitivity to 

LIS SWE is not very high for all the snow-covered areas in the domain, it is significant 

enough for some places during some periods of the year. As far as SWE data 

assimilation is concerned, the results seen in Figure 4.7 and Figure 4.8 suggest that 

noticeable improvement in SWE estimates through ∆Tb (18.7V – 36.5V) assimilation 

is expected for some places during some periods of the year.  
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The total number of NSCs calculated for each month differs. NSCs were 

calculated for those pixels only which had a defined magnitude for each of the 10 LIS 

input states, apart from having LIS SWE > 1cm (Table 4.1). 

 

Table  4.1.  Total no. of pixels having a defined NSC value of SVM predicted ∆Tb (18.7V – 
36.5V) for LIS SWE over snow-covered areas in Indus Basin (10 LIS input states used during 
prediction) 

Month (Year 2003-4) No. of NSC values 

Sep 2009 

Oct 5821 

Nov 8062 

Dec 19055 

Jan 26211 

Feb 27855 

Mar 20479 

Apr 11257 

May 10146 

Jun 3904 

Jul 2825 

Aug 2812 

 

4.3. SVM Prediction using 4 LIS Input States 

Continuing the SWE data assimilation discussion, it was analyzed whether the 

SVM output sensitivity to LIS SWE can be increased by using fewer LIS input states 

for SVM training and prediction.  The 4 LIS input states selected for this analysis were 

according to the initial ordering of the states (Table 3.1).  
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Figure 4.9.  Monthly boxplots (outliers not shown) of NSCs of (LIS inputs states =4) 
SVM predicted ∆Tb (18.7V – 36.5V), using a perturbation value of +/-2.5%, for LIS 
modeled SWE from Sep-2003 to Aug-2004 for the snow-covered areas in the Indus 
Basin. 

 
Figure 4.9 shows that the sensitivity can indeed be increased by decreasing the 

number of LIS inputs. Monthly boxplots of NSCs show increased range and 

interquartile NSC magnitudes for all months. Box-plots for each month still differ 

considerably in their total range (-2.7 to 3.2 in Jan as compared to -0.9 to 1.1 in May). 

Comparing each monthly box-plot to those in Figure 4.7, considerable change in the 

interquartile range is observed. The median monthly values however seem to remain 

unchanged except for the months of Dec and Jan. 

 
Total number of NSCs calculated for each month differs. NSCs were calculated 

for those pixels only which had a defined magnitude for each of the 4 LIS input states, 

apart from having LIS SWE > 1cm (Table 4.2). 
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Table 4.2.  Total no. of pixels having NSC value of SVM predicted ∆Tb (18.7V – 36.5V) for LIS 
SWE over snow-covered areas in Indus Basin (4-LIS input states used during prediction) 

Month (Year 2003-4) No. of NSC values  

Sep 2823 

Oct 7746 

Nov 13937 

Dec 25942 

Jan 35515 

Feb 37878 

Mar 27910 

Apr 15449 

May 13731 

Jun 5645 

Jul 3902 

Aug 3879 

 

NSC spatial and temporal analysis is utilized to detect the effect of decreased 

number of LIS input states on sensitivity of SVM predicted ∆Tb (18.7V – 36.5V) to 

each remaining LIS input state (total = 4).  

 

4.3.1. Spatial Analysis of SVM Prediction using 4 LIS Input States 

Comparing Figure 4.10 with Figure 4.2, an increase in the NSCs for SWE and 

snow temperature (top-layer) is observed. NSC values for SLWC and soil temperature 

(top-layer) however remain almost the same. Thus, decreasing the number of LIS 

inputs visibly increased the sensitivity of two of the states (SWE and top-layer snow 

temperature) and confirmed the zero sensitivity of soil temperature. It can thus be 

concluded that SVM predicted ∆Tb (18.7V – 36.5V) is independent of soil temperature. 
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Figure 4.10.  Maps of NSCs of SVM predicted ∆Tb (18.7V – 36.5V), using 4 LIS input 
states, averaged over the snow accumulation period (Dec-2003, Jan-2004, Feb-2004) 
for snow-covered areas in the Indus Basin. The solid black line represents country 
boundaries and the solid blue line depicts the coastline. 

 

Similar comparisons are visible in Figure 4.11 and Figure 4.3. Sensitivity of 

two states (SWE, and top-layer snow temperature) is increased, whereas top-layer soil 

temperature maintains its zero sensitivity. SLWC NSC values do not demonstrate any 

visible change. 
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Figure 4.11.  Maps of NSCs of SVM predicted ∆Tb (18.7V – 36.5V), using 4 LIS input 
states, averaged over the snow ablation period (Apr, May, Jun - 2004) for snow-covered 
areas in the Indus Basin. The solid black line represents country boundaries and the 
solid blue line depicts the coastline. 

 

4.3.2. Temporal Analysis of SVM Prediction using 4 LIS Input States 

Time-series of NSCs for the same test location described in Section 4.2.1 is 

presented in Figure 4.12. The magnitude range and variance of SWE NSCs increased 

visibly as compared to Figure 4.4. SLWC and top-layer soil temperature maintained 

their NSC values. Top-layer snow temperature NSCs displayed increased variance 

throughout the year. 
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Figure 4.12.  Time-series of NSCs of SVM predicted ∆Tb (18.7V – 36.5V), using 4 LIS 
input states, calculated using a perturbation of +/-2.5% for test location (35.73ON, 
76.28OE). 

 

Absolute average NSCs for snow accumulation and ablation periods in Figure 

4.13 and Figure 4.14 corroborate the increase in SWE and top-layer snow temperature 

NSC values.  

 

 
Figure 4.13.  Absolute NSCs of SVM predicted ∆Tb (18.7V – 36.5V), using 4-LIS input 
states, averaged over the snow accumulation months (Dec-2003, Jan-2004, Feb-2004) 
calculated using a perturbation value of +/-2.5% for test location (35.73ON, 76.28OE). 
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Figure 4.14.  Absolute NSCs of SVM predicted ∆Tb (18.7V-36.5V), using 4-LIS input 
states, averaged over the snow ablation months (Apr, May, Jun -2004) calculated using 
a perturbation value of +/-2.5% for test location (35.73ON, 76.28OE). 

4.4. Relative Importance of Predictors 

It must be considered that although decreasing the number of LIS inputs 

increases the sensitivity to SWE, it can also affect the prediction accuracy of 

∆Tb(18.7V-36.5V).  If the prediction accuracy is significantly decreased, a poorer SWE 

estimate would result after ∆Tb(18.7V-36.5V) assimilation instead of an improved 

SWE estimate. 

The objective is to achieve high SWE sensitivity while maintaining SVM 

prediction accuracy. For this purpose, the relative important of LIS input states is 

assessed, i.e., identification of LIS input states with the highest relative sensitivity. 

Therefore, if only those LIS input states (apart from SWE) are utilized for SVM 

prediction that have comparatively higher relative sensitivity, the objective of high 

SWE sensitivity (due to fewer LIS inputs states) without compromising considerably 

on SVM prediction accuracy is achieved. 

Absolute NSC values of SVM predicted ∆Tb (18.7V - 36.5V) using all 10 LIS 

input states were calculated for this purpose. In Figure 4.15 and Figure 4.16, maps of 8 

LIS input states are presented. NSC maps of snow temperature (bottom-layer of snow 

pack) and soil moisture are not included due to reasons discussed in Section 4.1.  
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Figure 4.15.  Maps of absolute NSCs of SVM predicted ∆Tb (18.7V – 36.5V) for LIS 
input states, averaged over the snow accumulation period (Dec-2003, Jan-2004, Feb-
2004) for snow-covered areas in the Indus Basin. 

 

 
Figure 4.16.  Maps of absolute NSCs of SVM predicted ∆Tb (18.7V – 36.5V) for LIS 
input states, averaged over the snow ablation period (Apr, May, Jun; year = 2004) for 
snow-covered areas in the Indus Basin. 
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Highest sensitivity for snow covered areas in the domain is dominated by the 

three temperature values; snow (top-layer) temperature, air temperature, and vegetation 

temperature. Snow density displays comparatively higher values than SWE, SLWC, 

and LAI. As observed previously, soil temperature maintains zero sensitivity 

throughout the domain. Comparing Figure 4.15 and Figure 4.16, NSC magnitudes are 

much higher for the snow accumulation period than the snow ablation period. One 

possible reason could be the increased snow presence during the accumulation months 

as compared to the ablation months.  

Based on the discussion and figures presented in this chapter, the order of 

decreasing relative sensitivity of SVM predicted ∆Tb (18.7V – 36.5V) to LIS input 

states is: 

1. Snow temperature 

2. Air temperature  

3. Vegetation temperature 

4. Snow density 

5. SWE 

6. SLWC 

7. LAI 

8. Top-layer soil temperature  

4.5. Limitations 

Some of the limitations that inhibited this sensitivity analysis were: 

§ LIS (Noah MP) estimation of soil moisture under frozen soil conditions was 

physically erroneous and was thus excluded from the sensitivity analysis. 

§ Since the LIS model grid (0.01Ox0.01O) used during the geophysical land 

surface states estimation was different from the AMSR-E brightness 

temperature grid resolution (25km x 25km), LIS modeled states were re-

gridded to the AMSR-E EASE-Grid for consistency. This re-gridding added 

uncertainty into the LIS state estimates. 

§ Coarse resolution of the AMSR-E brightness temperature measurements can 

introduce representativeness errors. 
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§ Most of machine learning techniques are black box methods. This means there 

are certain key aspects of the SVM model that are not observed or analyzed. 

§ Generalization of results is difficult for large varying domains, especially for 

complex models like the SVM.  

§ Cross-correlation between the LIS states is ignored in NSC generation. By 

perturbing one element only while maintaining the original value of all others, 

independence between the states is assumed. This is not true as seen by the 

cross-correlation matrix. Nonetheless, this correlation is ignored during 

individual perturbation and subsequent NSC calculation. This introduces 

irrationality in the NSC values, especially in terms of the sign associated with 

each magnitude. 
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Chapter 5:  Assessment of LIS Modeled States 

 

 As discussed in Chapter 3, SVM training and (brightness temperature spectral 

difference) prediction accuracy is affected by the accuracy of the LIS geophysical states 

used as input. Error in LIS modeled states will translate into error in the subsequent 

SVM predictions. One of the ultimate goals is to refine the prediction skill of SVM. 

One approach towards achieving this goal is to improve the accuracy of LIS modeled 

states through comparison with measurement based data. This defines the fourth 

objective discussed in Section 1.4. 

 This chapter deals with the comparison between the Advanced Scatterometer 

(ASCAT) based categorical Freeze/Melt/Thaw dataset, developed by the NASA 

HiMAT sub-team lead by Dr. McDonald at CUNY, and a LIS-based Freeze/Melt/Thaw 

product. 

5.1. Advanced Scatterometer (ASCAT) 

 A Scatterometer is a radar that transmits microwave pulses down to the Earth's 

surface and measures the power (backscatter) returned to the instrument. The 

backscatter is then analyzed to extract information about the land surface. Advanced 

Scatterometer (ASCAT) is installed on the EUMETSAT (European Union 

Meteorological Satellite) MetOp satellite. It is a polar orbiting satellite with a 3-day 

overpass and completes its global coverage in 1-2 days. Data availability period of 

ASCAT extends from 2007 to the present. 

5.2. ASCAT based Freeze/Melt/Thaw Dataset 

 ASCAT F/M/T record is derived from C-Band (5.255 GHz, vertical 

polarization) normalized backscatter measurements taken by the ASCAT instrument. 

Resolution enhancement is done using the SIR algorithm [69]. Detection of snowmelt 

and soil freeze/thaw status are determined from time-series singularities as detailed in 

[70] [71].  
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 This is a qualitative rather than a quantitative dataset. Each pixel is defined as 

experiencing one of the three states; ‘freeze’, ‘melt’ or ‘thaw’. All the states are 

dimensionless and represent only the presence or absence without any magnitude or 

unit. The pixel size is defined as 4.45 km x 4.45 km. This is a coarse grid resolution 

and accurate depiction of land surface states at such a scale encounters numerous 

difficulties. This dataset has been developed for years 2009 to 2016 (out of the total 

ASCAT data available). The study domain covers the whole of high mountain Asia. 

Dataset consists of mean daily values for areas of importance in the study domain. 

 Considering the coarse resolution of the measurements as well as expected 

errors in the algorithm utilized for converting the radar backscatter into 

freeze/melt/thaw states, the imperfections of the dataset are acknowledged beforehand. 

These are grouped into measurement errors. These measurement errors will be 

discussed further during the temporal and spatial dataset comparison detailed in Section 

5.4.  

5.2.1 Relevant Definitions 

 Since this is a qualitative dataset, the definition of each state is very important. 

Following are the definitions of the three categories as stated by the dataset developing 

team at CUNY: 

Ø Melt 

 Melt is defined exclusively for those areas that experience either seasonal snow 

or perennial glaciers. If the radar detects a loss of backscatter that resembles melt over 

areas of deep, seasonally permanent snow and ice, that pixel is categorized as 

undergoing ‘melt’. 

Ø Thaw 

 Thaw is defined for land areas (soil) where there is no snow. Thawed conditions 

are defined where there is a seasonal radar brightening from vegetation and surface 

moisture. 

Ø Freeze 

The frozen condition is where/when thaw and melt are not occurring, for both areas of 

land and snow/ice cover. 
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 Figure 5.1 shows an example of the dataset for Jan 1, 2011. A lot of data-holes 

are visible in the map. This is due to the fact that no category was allocated to pixels 

that lay outside the area of interest within the study domain or where the algorithm 

didn’t perform well.  

 
Figure 5.1.  Map of the Indus Basin representing the ASCAT F/M/T pixel assignment 
for Jan 1, 2011. White color represents the pixels that lie outside the area of interest. 

 

5.3. LIS Derived Freeze/Melt/Thaw Product 

 LIS is a land surface modeling framework and provides modeled geophysical 

land states as output. An algorithm based on the LIS modeled states was developed. 

Flowchart in Figure 5.2 provides an overview of the algorithm developed to define the 

LIS-based freeze/melt/thaw product.  

 Snow depth, air temperature, vegetation temperature, soil temperature, soil 

moisture and soil liquid water content used here belong to the same LIS (run) model 

output as was utilized previously in the sensitivity analysis of SVM predictions. Here, 

a very simplistic approach has been adopted to develop the pseudo-binary qualitative 

product. Since the fundamental objective was to achieve a first-order comparison 
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between the model (LIS) output and satellite measured data, this simple algorithm 

suited the purpose of this study. 

 
Figure 5.2.  Flowchart defining the algorithm utilized for developing the LIS-F/M/T 
product 

  

 The three states categorized here have almost the same definitions as the 

ASCAT F/M/T product. This was particularly stressed upon to ensure an accurate 

comparison between the same data type obtained from two different sources i.e. land 

surface model and remotely sensed satellite measurements. The only difference 

between the two datasets lies in their characterization of ‘freeze’ state. ASCAT defines 

freeze as any place that is not undergoing thaw or melt within the area of interest. In 

the LIS algorithm, secondary restrictions are applied to the detection of ‘freeze’ state 

with consideration to some physical parameters (e.g. air temperature and soil 

temperature.) 
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 A number of similar alternate algorithms where tested during the development 

phase (Figure 5.3). Selection criteria for the final algorithm included physical 

rationality and suitability to comparison with the ASCAT product. 

 

 
 

 
Figure 5.3.  Flowcharts (5.3a and 5.3b) describe alternate algorithms tested for 
developing LIS F/M/T product. 

5.3a) 

5.3b) 
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5.3.1 Soil Temperature Preliminary Mask 

 Thaw was defined for those pixels only that experience a soil temperature below 

freezing point (<273.15K) at least once during a period extending from the preceding 

summer to the end of the study period. The rationale behind this restriction being that 

if the soil never froze, it cannot undergo thaw, since thaw is a physical process that 

succeeds freeze as temperatures begin to rise. A soil temperature mask was developed 

for this purpose. It is quite useful in identifying areas that are too warm throughout the 

year to undergo transition from one to the another of the three defined states. Such 

locations are ousted from the area of importance.  

 

 
Figure 5.4.  Soil temperature mask; blue color represents areas that experience below 
freezing soil temperature before or during the study period; white color represents areas 
that never experience below freezing temperature or that lie outside the dataset 
boundary. 

5.3.2 LIS F/M/T Re-gridding 

 LIS F/M/T dataset was developed using the original 0.01O x 0.01O equidistant 

cylindrical grid. To maintain consistency between the two products, LIS dataset was 

re-gridded to the ASCAT F/M/T 4.45km x 4.45km grid. A ‘drop in the bucket’ re-

gridding method was used. In this method, a pixel is categorized as one of the states 
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according to the average value of the original (0.01O x 0.01O) grid cells falling within 

its bounds. In this study, the idea of plurality was used instead of averaging. Thus, a 

pixel was defined by the state that had the highest plurality, with the lower threshold 

(percentage of pixels defined by that state) set at 30%.  

 

 
Figure 5.5.  LIS F/M/T original dataset at 0.01O x 0.01O equidistant cylindrical grid 
(left) for Aug 1, 2011; LIS F/M/T dataset re-gridded to the ASCAT 4.45km x 4.45km 
grid (right) for Aug 1, 2011. 

5.4. Comparative Analysis of ASCAT vs. LIS F/M/T 

 As discussed before, the ASCAT F/M/T product experiences data-holes. 

Similarly, due to the numerous quality checks applied on LIS geophysical states, there 

are some temporal and spatial gaps in the LIS F/M/T product as well. Thus, for this 

comparative analysis only those locations have been used where both datasets have one 

of the three states defined.  

 Here ASCAT F/M/T is considered as the observed data and LIS F/M/T as the 

modeled or forecast values. This is not a validation of the LIS modeled output as the 

ASCAT based dataset is also preliminary and is undergoing further refinement. 

5.4.1 Spatial Analysis of ASCAT vs. LIS F/M/T 

 Figures 5.6, 5.7, 5.8 and 5.9 represent the spatial comparison between the two 

datasets. For Jan 1, 2011 (Figure 5.6), LIS F/M/T and ASCAT F/M/T seem to agree 

visibly regarding frozen areas. Both show that no snowmelt is detected. LIS F/M/T 
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identifies thawed soil locations in the upper-west corner of the study area, whereas 

ASCAT F/M/T shows no location under-going thaw conditions.  

 

 
Figure 5.6.  Maps of the Indus Basin displaying ASCAT F/M/T (right) and re-gridded 
LIS F/M/T (left) categorical pixel assignment for Jan 1, 2011. 

 

 
Figure 5.7.  Maps of the Indus Basin displaying ASCAT F/M/T (right) and re-gridded 
LIS F/M/T (left) categorical pixel assignment for May 1, 2011. 

 

 For May 1, 2011 (Figure 5.7), both datasets display locations undergoing one 

of the three state conditions. Highest agreement between the datasets is observed in 

identifying frozen areas, whereas the least agreement is observable for snowmelt 

identification. Considering the climatology of the Indus Basin, ‘freeze’ is not expected 
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around lat: 30ON and lon: 70OE. For these locations, it seems that ASCAT F/M/T is 

over-estimating freeze. Above these co-ordinates (near 32ON, 67.5OE), ASCAT F/M/T 

shows snowmelt happening. In Figure 5.8, it is seen that LIS estimates zero snow depth 

at these locations. According to the LIS algorithm, snowmelt can only occur where 

there is a snowpack (snow depth > 0m) present. Since zero snow conditions are 

estimated by LIS, the possibility of snowmelt occurring in these areas is nullified. LIS 

F/M/T identifies these locations as undergoing thaw instead. This disagreement can 

indicate possible incorrect LIS snow depth estimation for these locations. 

 

 
Figure 5.8.  Map of Indus Basin showing LIS estimated snow depth [meters] for May 
1, 2011. 

 

 The same snowmelt detection disagreement between the two datasets is 

perceived for Aug 1, 2011 (Figure 5.9). Here, freeze/thaw discord between the datasets 

is apparent as well. Locations identified as thawed in LIS F/M/T are categorized as 

frozen by ASCAT F/M/T. The Indus Basin experiences its peak summer temperatures 

around the end of July and start of August. This causes increased evaporation and 

subsequently decreased soil moisture. Apart from this, the rainfall season also initiates 

around this time for some parts of the basin. These events combine to result in an 

increased temporal variation in the surface moisture and hence affect the accuracy of 

the ASCAT backscatter analysis. 
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 Figure 5.10 presents the land state conditions for Nov 1, 2011. November 

roughly marks the end of the autumn season and the beginning of the winter season for 

the Indus Basin. ASCAT F/M/T still identifies some locations as undergoing snowmelt 

whereas LIS F/M/T displays presence of freeze or thaw only. Recalling the state 

definitions, this could indicate possible error in LIS estimation of snow liquid water 

content since episodes of consecutive snowfall and snowmelt are expected in some 

areas.  

 

 
Figure 5.9.  Maps of the Indus Basin displaying ASCAT F/M/T (right) and re-gridded 
LIS F/M/T (left) categorical pixel assignment for Aug 1, 2011. 

 

 
Figure 5.10.  Maps of the Indus Basin displaying ASCAT F/M/T (right) and re-gridded 
LIS F/M/T (left) categorical pixel assignment for Nov 1, 2011. 
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5.4.2 Temporal Analysis of ASCAT vs. LIS F/M/T 

 Figures 5.11, 5.12, and 5.13 show time series for one year (2011) for three 

different locations. Test location-1, Figure 5.11, displays LIS and ASCAT F/M/T 

agreement for the months of January, May, November and December. Both datasets 

show almost no snowmelt for this pixel throughout the year. Considering the location 

of the pixel, presence of snow is expected at least during the main winter months of 

December, January and February. With the advent of summer, that snow is expected to 

melt. Therefore, this ‘melt’ state agreement between the two datasets must be viewed 

with caution and needs supplementary data from other sources to corroborate the 

plausibility of no snowmelt.   

 

 
Figure 5.11.  Test location-1 (36.1861ON, 71.6222OE) time-series of ASCAT vs. LIS 
F/M/T pixel state assignment for year: 2011. 

 

 The time series for test location-2, in Figure 5.12, highlights the same 

phenomenon discussed in the spatial analysis for days; May 1 and Aug 1, 2011. The 

melt and thaw disagreement between the two datasets indicates either inaccurate snow 

depth estimation in LIS or over-estimation of snow presence in ASCAT F/M/T. This 

assumption is based on the fact that snowmelt and thaw both indicate an increase in 

surface moisture. Thus, the ASCAT radar backscatter perceives an increased dielectric 

constant. In the presence of snow, this condition would be identified as snowmelt, 

whereas for snow-free areas it would be categorized as thaw. 
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Figure 5.12.  Test location-2 (32.5528ON, 67.8278OE) time-series of ASCAT vs. LIS 
F/M/T pixel state assignment for year: 2011. 

 

 
Figure 5.13.  Test location-3 (35.4139ON, 77.2944OE) time-series of ASCAT vs. LIS 
F/M/T pixel state assignment for year: 2011. 

 

 The time-series for test location-3 in Figure 5.13 shows better agreement 

between the two data sets. Divergence between the two products is observed during the 

summer months of July, August, and September. This could be due to the highly 

increased temporal variability in surface moisture during these months which 

ultimately affects the ASCAT daily retrieval accuracy. 

 In all three time-series a discontinuity (data gaps) is perceived in LIS F/M/T 

point location time-series. One of the reasons behind this are the various quality checks 

that are applied on LIS state estimates. For example, during re-gridding if 75% of the 
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original (smaller) grid cells had no state defined, the re-gridded pixel was left blank. 

Different percent thresholds were tried such as 90%, 80%, and 60%. 75% seemed to 

give the best visible conformance between the original grid and the re-gridded dataset. 

5.4.3 Statistical Analysis of ASCAT vs. LIS F/M/T 

 Conformance between the two datasets is evaluated using the following 

statistical approaches: 

§ Contingency tables 

§ Probability of detection 

 

5.4.3.1 Contingency tables 

 Contingency tables (a.k.a. coincidence matrix or classification matrix) can be 

used to evaluate the agreement and disagreement between model forecast and observed 

values [72]. For this study, LIS F/M/T was labeled as forecast and ASCAT F/M/T as 

the observed values. 

 Since the goal is to investigate the monthly behavior of the two products, thus 

a more visually explanatory (graphical) approach was used instead of the conventional 

IxJ table (where IxJ is equal to the possible combinations of forecast and observation 

pairs).  

5.4.3.1.1 Contingency table of four possible Forecast/ Observation events  

 Four possible combinations of the forecast/ observation pairs were identified 

(Table 5.1): 

§ Yes: Presence of a state  

§ No: Absence of that state 

§ YY: The observation identifies presence of a state and the model forecasts 

presence of that state as well. 

§ NY: The observation identifies absence of a state while the model forecasts 

presence of that state. 

§ YN: The observation identifies presence of a state whereas the model forecasts 

absence of that state (meaning presence of any other state). 
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§ NN: The observation identifies absence of a state and the model also forecasts 

absence of that state  

 

Table 5.1.  ‘2x2’ Contingency table of four possible Forecast/ Observation events 

 
 Observation (ASCAT F/M/T) 

 Yes No  

Forecast 

(LIS F/M/T) 

Yes YY NY YY + NY 

No YN NN YN + NN 

 YY + YN NY + NN 
Total no. of 

events (n) 

 

 Separate analysis was carried out for the three individual states, i.e., monthly 

contingency table values were calculated for each state separately as seen in Figures 

5.14, 5.15, and 5.16. Due to the gaps in LIS data, the total number of events, n, varies 

for each month (ASCAT data-holes are constant). The total number of events for each 

month consists of all the points in the domain that had defined state values for both 

datasets during that month. In order to maintain consistency and to be able to compare 

the monthly values, relative frequency values are used instead of event counts. To 

obtain the relative frequency, the individual event counts are divided by the total 

number of events for each month. This way relative frequency values are achieved for 

each month and each state that are comparable to each other. 

 In Figure 5.14 the monthly change in agreement is observed between the two 

products for ‘freeze’ state. The highest ‘YY’ events occur in February while there are 

no discernable ‘YY’ events during the summer months (June, July, and August). This 

is expected as the frozen land condition is most prevalent during winter and lowest in 
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the summer months. Since these are relative frequency values, thus the total sum of the 

four events for each month should equal ‘1’. 

 

 
Figure 5.14.  Contingency table relative frequency values of ‘freeze’ state for the Indus 
Basin (Year: 2011). 

 

 Figure 5.15 presents the monthly occurrence of the four O/F events for ‘melt’ 

state. The ‘NN’ event relative frequency values decrease as the summer months 

approach and both products start detecting presence of snowmelt. There are no 

substantial ‘YY’ or ‘NY’ events throughout the year. This seems to indicate that there 

is a comparative dearth of pixels that are identified as ‘melt’ by the LIS F/M/T product. 

The highest disagreement (‘YN’ events) is also observed during the summer months. 

This is attributed to the fact that ‘melt’ instances primarily occur during that season and 

hence the possibility of disagreement is also highest during that period.  

 Figure 5.16 presents results similar to Figure 5.15 for the ‘NN’ event. Combined 

relative frequency of ‘NY’ and ‘NN’ events indicate that the ASCAT F/M/T product 

identifies comparatively few ‘thaw’ occurrences. Observing the ‘NY’ value alone, 

higher pixel categorization of ‘thaw’ by LIS F/M/T relative to ASCAT F/M/T is 

realized. 



 

 

81 
 

 
Figure 5.15.  Contingency table relative frequency values of ‘melt’ state for the Indus 
Basin (Year: 2011). 

 

 
Figure 5.16.  Contingency table relative frequency values of ‘thaw’ state for the Indus 
Basin (Year: 2011). 

 

 From the Figures 5.14, 5.15, 5.16, a first-order estimation is deduced, i.e., LIS 

F/M/T detects higher instances of ‘thaw’ than ASCAT F/M/T, whereas the ASCAT 

F/M/T detects a larger number of ‘melt’ occurrences than the LIS F/M/T product.  
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5.4.3.1.2.  Contingency table of nine possible ASCAT vs. LIS F/M/T events  

 Continuing along a similar vein, the contingency table theory is approached 

from a slightly different perspective. Instead of defining relative event frequencies for 

each individual state, a 3x3 table (Table 5.3) was developed that compared relative 

presence and absence of all the three states. This helped hone in on the states that 

showed most ASCAT vs. LIS F/M/T agreement and disagreement, and gave insight 

into the accuracy of corresponding LIS modeled states (such as snow depth and air 

temperature).  

 

Table  5.2.  ‘3x3’ Contingency table of nine possible ASCAT vs. LIS F/M/T events. 

 
 ASCAT F/M/T 

 Freeze Melt Thaw 

LIS F/M/T 

Freeze FF MF TF 

Melt FM MM TM 

Thaw FT MT TT 

 

 To facilitate the comparison, relative frequency values are calculated for each 

event, such that the summation of all (events) relative frequencies equals 1. In Figure 

5.17, the highest relative frequency value belongs to ‘MT’ event. ‘MT’ is when ASCAT 

F/M/T categorizes ‘melt’ happening whereas LIS F/M/T indicates occurrence of 

‘thaw’. This means that 46% of all (nine) events that occur are categorized as ‘thaw by 

LIS F/M/T while melt by ASCAT F/M/T’. Recalling the algorithm used for 

characterizing ‘thaw’ for LIS F/M/T, this MT percentage disagreement could indicate 

possible inaccurate ‘snow depth’ estimation by LIS.  

 



 

 

83 
 

 
Figure 5.17.  Contingency table relative frequency values of all ASCAT vs. LIS F/M/T 
event pairs for the Indus Basin (Year: 2011). 

 

 Interesting to note is the almost ‘0’ percentage of TM events (ASCAT F/M/T 

declares thaw happening while LIS F/M/T indicates melt). Relative frequency of ‘FT’ 

event occurrence is also comparatively noticeable (22.5%). Combining ‘MT’ and ‘FT’ 

relative frequencies, it seems LIS F/M/T is predicting considerably higher occurrence 

of thaw as compared to ASCAT F/M/T. It could be due to deficiencies in the algorithm 

(Figure 5.2) used for developing the LIS F/M/T product or it could indicate possible 

inaccurate LIS modeling of the states used for characterizing ‘thaw’. Highest 

agreement between the two datasets is observed for ‘freeze’, 22% of all (nine) event 

occurrences. 

 The relative frequency values in Figure 5.17 are representative of the whole 

year (2011). For a further detailed analysis, monthly contingency table (Table 5.2) 

values were calculated. Figure 5.18 displays monthly contingency graph values for 

January, March, August, and November 2011. These example months were selected 

considering the seasonal variation and climatology of the Indus Basin. Monthly results 

differ in the relative frequency magnitudes of all events yet still convey the same ‘MT’ 

and ‘FT’ disagreement between the two datasets as seen in Figure 5.17. 
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Figure 5.18.  Monthly contingency table (Table 5.2) relative frequency values of all 
ASCAT vs. LIS F/M/T event pairs for the Indus Basin; January (top-left), March (top-
right), August (bottom-left), November (bottom-right) – Year: 2011. 

 

5.4.3.2 Probability of Detection (POD) 

 Also known as prefigurance, POD is the fraction of ‘event being correctly 

forecast to occur’ over the total events of its actually having occurred (as determined 

by observations). In this case, the formula used to calculate POD includes the ‘YY’ and 

‘YN’ values from the contingency table (Table 5.1) values. It is given by [72]: 

𝑃𝑂𝐷 =	
𝑌𝑌

𝑌𝑌 + 𝑌𝑁
 

 For this statistical value, it was assumed that ASCAT F/M/T are ‘accurately 

observed measurement’ values and POD is the probability of LIS F/M/T forecasting 

the same state as identified by the ASCAT F/M/T observation. A POD of ‘1’ means 

perfect forecast while a ‘0’ value signifies poor forecast. 

(5.1) 
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Figure 5.19.  Monthly ‘freeze state POD, ASCAT (observed) vs. LIS F/M/T (model 
forecast), for the Indus Basin (Year : 2011). 

 
 In Figure 5.19, highest POD value was observed for Feb while almost ‘0’ values 

were calculated for June, July, August, and September. Low values coincide with the 

summer months when the total number of pixels undergoing ‘freeze’ was significantly 

reduced.  

 Highest value of POD observed in Figure 5.20 is 0.04575 (Nov 2011). This 

means the highest probability of LIS F/M/T detecting melt state in any month 

throughout the year 2011 (as detected by ASCAT F/M/T) over the Indus Basin is 

4.57%. This percentage highlights the poor ‘melt’ detection by LIS F/M/T. Figure 5.21 

presents POD values for ‘thaw’. These values are comparatively higher than melt but 

still too trivial to indicate any significant correct thaw detection by LIS F/M/T. 

 POD is useful in accessing the agreement between the two data-sets with 

respect to each state. Figures 5.19, 5.20, and 5.21 suggest that for ‘freeze’ state, the 

agreement between the two products is the highest while the greatest difference is 

perceived in ‘melt’ state. This is partly due to the scarce identification of ‘melt’ in LIS 

F/M/T. POD values for ‘thaw’ are quite low and represent the discord between the 

datasets regarding occurrence of ‘thaw’. One of the reasons is the comparatively high 

‘thaw’ detection in LIS F/M/T, as discussed in Section 5.4.3.1.2. 
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Figure 5.20.  Monthly ‘melt’ state POD, ASCAT (Obs.) vs. LIS F/M/T (Model 
forecast), for the Indus Basin (Year : 2011). 

 

 
Figure 5.21.  Monthly ‘thaw’ state POD, ASCAT (Obs.) vs. LIS F/M/T (Model 
forecast), for the Indus Basin (Year : 2011) 

5.5. Limitations 

 Some of the limitations that constricted the effectiveness of this comparative 

analysis are: 

§ Both datasets are qualitative in nature and thus inhibit error analysis. 
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§ According to the algorithm defined for LIS F/M/T, some pixels in the area of 

importance within the domain remain uncategorized. For example, pixels that 

have air temperature <= 273.15K and soil temperature > 273.15 K are not 

assigned any category. For special cases, similar to this, greater in-depth 

knowledge regarding the ASCAT F/M/T retrieval algorithm is required. 

§ The LIS re-gridding technique utilized is very basic and can lead to incorrect 

categorization in some cases. A more sophisticated re-gridding technique is 

expected to improve the accuracy of the LIS F/M/T product. 

§ Coarse grid resolution affects the accuracy of the ASCAT measurements and 

subsequent F/M/T retrieval. 

§ Both datasets are in their preliminary development stages. Further refinement 

of the respective algorithms is expected to improve the accuracy of both. 

§ Statistical methods described above ignore the serial correlation in both 

datasets. Accounting for serial correlation will decrease the sample size, and is 

hence expected to affect the outcome of the various statistics utilized here. 
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Chapter 6:  Conclusion 
 

 

 In this study, NASA’s Land Information System (LIS) was used to model the 

hydrologic cycle over the Indus basin. The ability of support vector machines (SVM), 

a machine learning technique, to predict passive microwave brightness temperature 

(spectral difference) as a function of LIS land surface model output was explored 

through a sensitivity analysis. Multi-frequency and multi-polarization passive 

microwave brightness temperatures measured by the Advanced Microwave Scanning 

Radiometer - Earth Observing System (AMSR-E) over the Indus basin were used as 

training targets during the SVM training process. Normalized sensitivity coefficients 

(NSC) were then computed to assess the relative sensitivity of a well-trained SVM to 

each LIS-modeled state variable. Special focus was targeted towards SVM prediction 

sensitivity to LIS estimated snow water equivalent (SWE) for snow-covered areas in 

our domain. An assessment of LIS modeled states was carried out through a 

comparative analysis with a satellite based (ASCAT) dataset. 

6.1. Sensitivity Analysis of a well-trained SVM to each LIS-Modeled State  

The NSC values obtained for each LIS input state were representative of a 

number of concurrent and interacting physical processes, high cross-correlation 

between the LIS input states and effect of location specific parameters such as dense 

vegetation and glaciers.  

According to the results we obtained from our sensitivity analysis, SVM ∆Tb 

prediction conforms with the known first-order physics. LIS input states that are 

directly linked to physical temperature like snow temperature, air temperature, and 

vegetation temperature generally displayed large absolute NSCs throughout the 

domain, signifying higher relative sensitivity. 

 Snow temperature (of the top-layer of the snow-pack) exhibited the largest 

sensitivity coefficient magnitudes. Near surface soil temperature displayed almost zero 

sensitivity. It can thus be concluded that SVM predicted ∆Tb (18.7V – 36.5V) is 
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insensitive to soil temperature. One possible reason could be the relatively low 

variability of soil temperature compared to other land surface parameters.  

 According to all the spatial and temporal analyses of NSCs carried out, the 

general order of decreasing relative sensitivity of SVM predicted ∆Tb to the LIS input 

states is: 

1. Snow temperature 

2. Air temperature  

3. Vegetation temperature 

4. Snow density 

5. SWE 

6. SLWC 

7. LAI 

8. Top-layer soil temperature  

 

Bottom-layer snow temperature values did not exist for most locations and thus 

had no NSC values. Soil moisture was eliminated from the analyses due to the 

erroneous estimation by LIS under frozen soil conditions.  

SWE had smaller NSC magnitudes compared to some of the other 9 LIS input 

states. Decreasing the total number of LIS input states (from ‘10’ to ‘4’) used for SVM 

training and prediction resulted in an increase in the relative sensitivity of SWE. 

6.2. Assessment of LIS Modeled States 

 Accuracy of the LIS modeled geophysical states was assessed by comparing a 

LIS derived Freeze/Melt/Thaw dataset with the Advanced Scatterometer (ASCAT) 

based Freeze/Melt/Thaw product. In this assessment, the ASCAT based product was 

considered as ‘observed’ data whereas the LIS based F/M/T dataset was regarded as 

model forecast. Various spatial, temporal, and statistical analyses were carried out to 

study the agreement between the two datasets. The comparisons detailed in Chapter 5 

suggest some common themes: 

 



 

 

90 
 

§ ASCAT F/M/T overestimates freeze state condition in some areas due to its 

relaxed defining criteria for freeze. This is especially noticeable in the lower 

latitudes, around 32ON, within the basin boundaries. 

§ ASCAT F/M/T displays greater data continuity, having static data-holes while 

LIS F/M/T has non-uniform data gaps. 

§ ASCAT F/M/T demonstrates less variability compared to LIS F/M/T which is 

significantly more (spatially and temporally) dynamic. This relates back to the 

ASCAT bearing MetOp satellite’s overpass of 3 days. Hence, to develop a daily 

temporal resolution product some interpolations are required. 

§ Highest agreement between the datasets is realized for ‘freeze’ state.  

§ Considering the best agreement for ‘freeze’ state detection, it can be deduced 

that LIS modeled geophysical states (e.g. snow depth, air temperature) that are 

utilized in defining freeze (in the LIS algorithm) seem to have better accuracy.    

§ Based on the algorithm used, discrepancy in the datasets regarding ‘melt’ 

occurrence could be due to underestimation of snow liquid water content by 

LIS. 

§ LIS F/M/T detects higher instances of ‘thaw’ than ASCAT F/M/T, whereas the 

ASCAT F/M/T detects a larger number of ‘melt’ occurrences than the LIS 

F/M/T product.  

§ ASCAT F/M/T seems to underestimate thaw conditions, especially during the 

summer months. Considering the radar backscatter analysis principles, this 

could be related to the rapidly varying (at time interval < daily temporal 

resolution) soil moisture during those months.  

6.3. Future Work 

6.3.1. Data assimilation to improve SWE estimation in HMA. 

 This study was carried out to identify the relative importance of LIS input states 

to SVM brightness temperature (spectral difference) prediction. It will further 

contribute towards selection of LIS input states used in brightness temperature (spectral 

difference) prediction and assimilation to improve SWE estimation in high mountain 
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Asia. Previous studies [73] have successfully explored the usability of SVM as the 

observation operator in an assimilation framework. A similar SWE data assimilation 

framework will be developed for the high mountain Asia region.  

6.3.2. Improvement of the ASCAT vs. LIS F/M/T Comparison 

Further effort needs to be targeted towards overcoming the limitations 

identified in Chapter 5. Taking into account the serial correlation of ASCAT and LIS 

F/M/T products is likely to affect the comparison between the two datasets. 

Considering that both the datasets used were in their preliminary stages, the various 

analyses described in Chapter 5 need to be repeated for the newer and improved 

versions of LIS land surface geophysical state estimation and the ASCAT 

freeze/melt/thaw product. 

6.3.3. Data assimilation of ASCAT Freeze/Melt/Thaw 

 One new avenue that can be explored is the possibility of ASCAT 

freeze/melt/thaw data assimilation in the LIS model estimates and analyses of the 

resulting change in LIS states. 

6.3.4. Assessment of LIS land surface modeling accuracy with other datasets 

 The accuracy of LIS modeled states was assessed here using a LIS derived 

product. For an improved accuracy analysis, ground observations of the various states 

should be compared directly with the LIS model state estimates (ground observations 

were not available at the time this study was carried out and have been acquired 

recently). 
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