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This study presents a general method for estimating the classification

reliability of complex decisions based on multiple scores from a single test

administration. The proposed method consists of four steps that can be applied to a

variety of measurement models and configural rules for combining test scores:

Step 1: Fit a measurement model to the observed data.

Step 2: Simulate replicate distributions of plausible observed scores based

on the measurement model.

Step 3: Construct a contingency table that shows the congruence between

true and replicate scores for decision accuracy, and two replicate

scores for decision consistency.

Step 4: Calculate measures to characterize agreement in the contingency

tables.



Using a classical test theory model, a simulation study explores the effect of

increasing the number of tests, strength of relationship among tests, and number of

opportunities to pass on classification accuracy and consistency. Next the model is

applied to actual data from the GED Testing Service to illustrate the utility of the

method for informing practical decisions.

Simulation results support the validity of the method for estimating

classification reliability, and the method provides credible estimation of classification

reliability for the GED Tests. Application of configural rules results in complex

findings which sometimes show different results for classification accuracy and

consistency. Unexpected findings support the value of using the method to explore

classification reliability as a means of improving decision rules.

Highlighted findings: 1) The compensatory rule (in which test scores are

added) performs consistently well across almost all conditions; 2) Conjunctive and

complementary rules frequently show opposite results; 3) Including more tests in the

decision rule influences classification reliability differently depending on the rule; 4)

Combining scores from highly-related tests increases classification reliability; 5)

Providing multiple opportunities to pass yields mixed results. Future studies are

suggested to explore use of other measurement models, varying levels of test

reliability, modeling multiple attempts in which learning occurs between testings; and

in-depth study of incorrectly classified examinees.
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Chapter 1: Introduction

Background

The desire to improve education in the United States is high on the national

agenda, and much of the current discussion relates to raising the rigor of instruction

toward increasing the knowledge and skills of students. Assessment of student

achievement is a key piece in evaluating whether students, and schools, have met

learning objectives. Decisions regarding promotion or high school graduation are

increasingly being made on the basis of achievement, attendance, and classroom

performance. According to a 2005 report by the Center on Education Policy by

Sullivan et al, 26 states either required, or are planning to require, the passage of a

series of tests in order to earn a high school diploma. Although less prevalent, some

states also require students to pass tests in order to be promoted in elementary and

middle school. In light of the consequences of such decisions, the ability of test scores

to provide accurate and valid measures is of great importance.

One example of the complex rules in place today is found in the Chicago

Public Schools. In order to be promoted in the Chicago public elementary schools,

each student must pass district tests in reading and math, earn passing grades in

reading and math classes, and have no more than nine unexcused absences. Students

who do not pass this rule can be promoted through a special review process, or

through substitution of test scores received following summer school. High school

promotion standards in the Chicago schools require each student to pass at least three

core courses both semesters, as well as earning a prescribed number of credits.
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Although the reliability of individual achievement test scores is routinely examined,

the reliability of such complex decision rules has not been addressed.

The call for responsible use of test scores comes from measurement experts

and educational policy analysts as well as the general public. It is well recognized by

all these constituencies that no assessment score is without error, and therefore

important decisions are best made using several scores or sources of information. The

Committee on Appropriate Test Use, formed by the National Research Council,

articulated the importance of the use of more than one measure in making decisions in

High Stakes: Testing For Tracking, Promotion, and Graduation (Heubert & Hauser

(Eds.), 1999, pg. 3): “An educational decision that will have a major impact on a test

taker should not be made solely or automatically on the basis of a single test score.”

Other relevant information about the student’s knowledge and skills should also be

taken into account.” This recommendation was also expressed in Standard 13.7 in

Standards for Educational and Psychological Testing (AERA, 1999, pg. 147): “In

educational settings, a decision or characterization that will have major impact on a

student should not be made on the basis of a single test score. Other relevant

information should be taken into account if it will enhance the overall validity of the

decision.” The importance of this recommendation was underscored in 2003 by the

National Council on Measurement in Education which devoted an entire issue of

Educational Measurement: Issues and Practice (Vol. 22, No. 2) to an exploration of

the use of multiple measures in decision making.

From a validity standpoint it is logical to suggest that using more than one test

score will result in better decisions: common sense tells us that more evidence,
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assuming it is credible, should improve our decisions. If a student passes both the

essay portion of a test as well as multiple-choice questions on grammar we are more

confident that the student can write at the desired level. Using both classroom grades

in math and a score on a mathematics achievement test should provide a better

estimate of a student’s math abilities. However, Cronbach, Linn, Brennan and

Haertel (1997) suggested caution in adopting this logic. They used generalizability

analysis to investigate various sources of error in performance assessment, and issued

a warning on combining assessment scores based on a complex decision rule (pg.

381), saying "Those who endorse such a rule should be aware that measurement error

is likely to make decisions highly fallible." The reason for this admonition is that

measurement error compounds under certain multiple decision strategies. The laws of

probability state that the joint probability of two independent events1 is equal to the

product of the individual probabilities. Consider a student whose true2 score is above

the criterion on two tests and therefore should pass a conjunctive rule (that is, the

student must pass both tests) but due to measurement error has a probability of

passing Test 1 equal to 0.6, and probability of passing Test 2 equal to 0.8. The

probability of the student passing both tests is the product of 0.6 and 0.8, or 0.48,

which is lower than the probability of passing either test alone. In this case, more

information does not always increase the accuracy of the decision.

1 In most situations, test scores are most likely correlated. This discussion assumes independence for
simplicity.
2 “True” score is used throughout to denote the score an examinee would receive on the test if there
were no measurement error, rather than as a measure of true ability on the construct of interest. The
second usage is more closely related to the concept of validity.
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Multiple Measures and Complex Decision Rules

The term “multiple measures” has been applied to a wide number of decision

strategies and purposes. Gong and Hill (2001) listed twelve different situations in

which the use of multiple measures may be indicated. These uses range from

combining test scores from several content areas to make an overall decision (such as

promotion or graduation), combining scores from several different types of

assessments in the same content area to increase the validity of the decision (such as a

multiple-choice test on grammar and a writing sample), combining scores for students

who substitute an alternative test for the usual test (such as Advanced Placement

Tests for high school exit exams), and allowing students who fail the opportunity to

retake tests to reduce the impact of measurement error and/or to allow for

remediation.

The purpose of each decision leads to different rules for combining multiple

measures, which in turn influences the estimation of classification reliability.

Examples of complex rules are readily found in examples of high-stakes testing

throughout the United States. The following policy regarding requirements for

promotion to fifth grade is excerpted from the Louisiana State Department of

Education:

"The LEAP 21 tests measure your knowledge and skills in English language

arts, math, science and social studies to see whether you know enough to

move to the next grade. Students must pass the English Language Arts and

Math tests to be considered for promotion to the next grade. … Current policy
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states that a student who scores at the Approaching Basic level in

Mathematics must score at the Basic level or above in English Language Arts

to pass the LEAP 21. Alternatively, a student who scores at the Approaching

Basic level in English Language Arts must score at the Basic level or above in

Mathematics to pass the LEAP 21."

Louisiana has a similar policy for promotion to ninth grade.

At the high school level, an increasing number of states are requiring passage

of exit exams in order to receive a high school diploma. Maryland requires students to

pass tests in Algebra, Biology, English, and Government, and applies the following

criteria in evaluating the results of these tests:

“The passing scale scores for the High School Assessments are: Algebra 412,

Biology 400, English 396, and Government 394. If a student does not pass an

HSA, he or she can still fulfill the HSA requirement for the Maryland

diploma by earning at least the minimum score on each test and a combined

score of 1602. The combined score is the total of all HSA test scores. The

minimum HSA scale scores are Algebra 402, Biology 391, English 386, and

Government 387.”

Chester (2003) provides a clear overview of the different ways in which any

measure (e.g., test scores, assessments, attendance records, teacher ratings, other

indicators) can be combined in making a decision about a student. He outlines three

basic combination rules and provides some insight into the situations in which each

type of rule is applicable:
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o conjunctive (AND)

o complementary (OR)

o compensatory (+)

A conjunctive rule requires the student to pass all measures; a complementary rule

requires the student to pass only one of a number of measures. The compensatory rule

adds scores together, and therefore allows a higher performance on one measure to

counterbalance a lower score on another measure. Chester further outlines four

general situations in which multiple measures are used: measures of different

constructs; different measures of the same constructs; multiple opportunities to pass;

and allowance for accommodations and alternate assessments. He suggests that it is

usually most appropriate to combine measures of different constructs using a

conjunctive rule, whereas multiple opportunities and alternate assessments lend

themselves to a complementary rule. Different measures of the same construct may

be combined with any of the types of rules. Table 1.1 presents examples offered by

Chester of application of each of the types of rules in educational settings.

Table 1.1: Examples of Application of Decision Rules
Rule Example

Conjunctive • Diploma awarded based on passage of a set of exit tests.
• Passage of course based on minimum teacher’s grade as well

as passage of district-wide exam.
Complementary • Providing multiple opportunities to pass a test.

• Allowing students to pass any of a set of alternate assessments,
such as is the case for English Language Learners or students
in accelerated classes (such as Advanced Placement).

Compensatory • Class grades calculated by adding together scores from
midterm and final exam.

• Test score calculated by adding the number of correct items.
Items could be of a similar type, or mixture of multiple-choice
and constructed response.
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In practice, school and licensing policies frequently combine several of these

basic rules. Chester describes promotion and graduation policies in the Philadelphia

School System in 1999 that combined several of these types of decision rules. For

example, in order to be promoted to fifth grade a student must:

• receive a passing mark (‘D’ or higher) in reading, mathematics,

science, and social studies; and

• achieve the Below Basic III standard on the Stanford Achievement

Test, Ninth Edition (SAT-9) or achieve the third-grade level on the

citywide test in both reading and mathematics; and

• successfully complete a multidisciplinary project.

Furthermore, students in bilingual programs could substitute Spanish-language

versions of the standardized and/or citywide test. This policy represents a complex

combination of conjunctive and complementary rules. The decision rule is even more

complex because students are allowed multiple opportunities to pass each measure,

can take accommodated versions of the tests, and/or can substitute versions in other

languages.

A search of the literature and other likely sources, such as state department of

education websites, did not yield an exhaustive summary of the prevalence of

different types of decision rules used for high school graduation and promotion

decisions in use today. According to a 2005 report by the Center on Education Policy,

most states use a conjunctive rule in which the student must earn a passing score on

each test for high school exit decisions; however, because the student is allowed

multiple attempts to pass each test this rule adds a complementary layer to the
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conjunctive rule. One state, Maryland, uses a conjunctive-compensatory rule for high

school exit exams in which the student can pass either by earning a criterion score on

each of five tests or by earning a somewhat lower score on some tests and a

prescribed overall score (Maryland State Department of Education website). Of

course, since students are allowed multiple opportunities to pass, and may substitute

accommodated or alternate test versions, in actuality the rule is even more complex.

The GED Testing Service requires examinees to earn a passing score on five tests, as

well as a total overall score, in order to be eligible for a high school equivalency

credential (GED Technical Manual, 2006). Although each state sets its own rules in

regard to retesting for the GED, most states allow examinees to retest as many as

three times each year.

Complex decision rules are also used to combine different types of test items.

For example, the CLAS tests in California incorporated performance-rated and

multiple-choice items. Overall proficiency ratings on the tests allowed for several

different combinations of the two types of scores3. A student could be designated as

‘Proficient” by earning a rating of 4 on the performance item and a total score of 3, 4,

or 5 on the multiple-choice items, or by earning a rating of 3 on the performance item

and a total multiple-choice score of 5. This is an example of a complex combination

of conjunctive and complementary rules.

The examples offered above illustrate the complexity of decisions in use in a

variety of school and testing programs. Chester (2003) suggests that in estimating the

validity and reliability of complex decisions, the choice of decision rule may be as

important as the measures on which the decision is based. Established methods for

3 Personal communication: David Wiley, 9/20/2004.
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estimating the classification reliability for decisions based on single tests do not allow

for the estimation of reliability of such complex rules. This study suggests a method

that has the flexibility to evaluate classification reliability for many of the complex

decisions commonly used in educational settings today.

Reliability As Replicability

An investigation of the impact of measurement error on classification

reliability must first include a definition of what is meant by the term “reliability.”

Entire books have been written about reliability, but in its most general sense it refers

to consistency of measurement. If we obtained a second score (or replicate) for a

group of examinees, how similar would it be to the first score obtained? The

conditions that are varied in obtaining the replicate score depend on the intended use

of the test score. For example, test-retest reliability estimates the consistency of

measurement for the same test form given under similar test conditions; alternate-

form reliability investigates the consistency of scores obtained from two forms of the

same test; and inter-rater reliability assesses the similarity between scores given by

two independent raters of the same performance. It is important to remember that

reliability, however it is defined, is specific to a set of test scores used for a given

population of examinees for a prescribed purpose.

The approach to reliability taken in this study is described in Brennan (2001),

who frames the basic question of reliability in terms of replicability and emphasizes

the importance of delineating the conditions under which we want to assess the

replicability in scores. More specifically, the replicability of classifications based on

test scores is of central importance in this project.
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In most cases, the ideal method for measuring the reliability of test scores

would be to obtain two sets of scores for each examinee and then calculate the

correlation between the sets of scores. A second best approach is to calculate the

correlation between two split-half scores if only one set of scores is available. Such

approaches are informative for norm-referenced tests, in which the relative ranking of

scores is of interest, but are less informative for criterion-referenced tests in which

interest lies in classifying scores based on a criterion. The critical issue in

classification reliability is not the absolute amount of measurement error, but whether

the measurement error results in inconsistent classification. Two sets of scores can be

highly correlated, but result in low classification reliability if the tests vary in

difficulty. In such a case a high correlation indicates that examinees have similar

rankings on both sets of scores, but fewer examinees would pass the criterion on the

more difficult test. Ultimately, the decision about acceptable levels of measurement

error in classification situations rests on the consequences for decisions based on the

scores. Different uses of test scores allow for different levels of consistency

depending on the nature of the decision to be made, the population of interest, and the

criterion applied.

Reliability of Classification

Crocker and Algina (1976) discuss the estimation of decision consistency for

parallel forms of mastery tests from the standpoint of generalizability theory and

highlight four factors that affect consistency.

1. Test length. Increasing the number of items is a well accepted technique

for increasing test reliability, which in turn increases decision consistency.
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2. Location of the cut score in the score distribution. Scores near to the cut

score are most at risk for misclassification, and therefore when the cut

score is located near many scores classification error increases.

3. Test score generalizability. Higher generalizability is associated with

higher consistency.

4. Similarity of the score distributions for the two forms. Higher similarity is

associated with higher consistency.

The question has been raised as to whether all misclassifications are equally

important. For example, is misclassifying an examinee who is just below the cut score

more serious than misclassifying an examinee who is further away from the cut

score? Crocker and Algina (1976) describe two reliability indices designed to

incorporate information about distance of scores from the cut-score -- Livington’s K2

and Kane and Brennan’s M(C) – citing Kane and Brennan’s index as preferred

because it incorporates a measure of variance due to item difficulty. Crocker and

Algina compare K2, M(C), percent agreement, and Cohen’s Kappa at a number of cut-

scores imposed on a set of hypothetical data consisting of two scores for eight

examinees. All four indices yielded similar estimates at extreme cut scores, and were

most disparate when the cut score was in the middle of the distribution. The decision

of whether to use K2 or M(C) rests with the researcher and his or her decision

regarding whether misclassifications are equally important regardless of the

proximity of observed score to the cut score. Both of these measures address the

reliability of test scores rather than the reliability of classification decisions (i.e.,
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master or non-master), and are therefore not of primary interest in this study given its

focus on the reliability of classification decisions.

Purpose

Given current recommendations to use multiple measures in making

decisions, and the admonition issued by Cronbach et al (1997) about the potential for

increased error in such decisions, a method for estimating decision reliability for

complex decisions is warranted. The purposes of this study are to (1) present a

general method for estimating decision reliability for multiple measures using data

from a single test administration; (2) investigate factors that affect decision reliability

of complex decision rules; and (3) demonstrate the utility of the method using actual

data.

Ideally, decision reliability would be demonstrated by administering two or

more versions of an assessment to the same examinees and assessing the consistency

of the decision outcome based on each of the assessment scores. Such an approach is

often not practical, and much attention has been focused on estimating reliability

from a single administration of a test or assessment. Because the underlying scales for

test and assessment scores can be either continuous (as is the case for many

standardized tests) or categorical (as is typical for performance tasks), a general

method that accommodates a variety of response scales and ability distributions

would prove most useful. In addition, proficiency levels can be thought to represent

segments along an underlying continuous distribution, or they can be conceptualized

as representing qualitative differences in ability such as in latent class analysis. In

many practical applications, the continuous distribution is most commonly assumed
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with the imposition of a number of cut-scores used to assign students to proficiency

levels. Latent class analysis, however, provides an alternative to what can be viewed

as an arbitrary process in dividing the latent trait distribution into proficiency classes.

This study will present a general method that could be used for any type of response

scale or latent trait distribution, and illustrate this method through application using a

classical test theory measurement model.

Significance

This study will expand existing theory about classification reliability for a

single test to address classification reliability in the common situation of imposing

complex decision rules on sets of multiple measures. Complex decision rules may be

motivated by the desire to increase validity, reliability, or both. The estimation of

classification reliability provided by the method lays the necessary groundwork for

investigating important questions concerning the validity of such rules since it is

commonly thought that reliability is a necessary condition for validity. A general

method is outlined that is suitable for estimating classification accuracy and

consistency from a single administration for a wide variety of assessment types and

measurement models. This method is demonstrated using simulation techniques for

the specific case of multiple scores obtained from standardized tests. Finally, the

application of the method to a real world application provides evidence of the utility

of the approach.
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Chapter 2: Literature Review

Although no examples are found in the measurement literature of methods to

estimate classification reliability for complex decision rules, a number of studies

present such methods for single standardized test scores and/or performance

assessment scores. A selection of these studies is reviewed to illustrate different

approaches used in estimating classification reliability for single scores as a starting

point in developing an approach for use with multiple scores, as well as to shed light

on factors that influence classification reliability. The emphasis in this review is on

the methods utilized, rather than specific findings in regard to level of reliability. The

amount of potential misclassification estimated in these studies is of interest,

however, in supporting the need to investigate potential misclassification as it applies

to multiple measures. Results for studies cited in this review appear at the end of this

chapter in Tables 2.1 and 2.2.

Studies Related to Traditional Standardized Tests

Increased interest in criterion-referenced testing in the 1970’s spawned

investigation of the reliability of classifications based on these test scores. Subkoviak

(1980) reviewed five analytic approaches to estimating classification reliability for

tests comprised of dichotomously-scored items. Two of these methods (Carver, 1970;

Swaminathan, Hambleton & Algina, 1974) require two sets of scores for each

examinee to estimate classification reliability, and are therefore not useful for most

practical problems. Three other methods, however, present approaches to estimating

classification reliability on the basis of a single score for each examinee (Huynh,



15

1976; Marshall-Haertel, 1976; Subkoviak, 1976). Huynh (1976) modeled a set of test

scores using a beta binomial distribution, and based on the desired mean, variance,

and Kuder-Richardson 21 coefficient for a set of scores then calculated the proportion

of the joint distribution that represented consistent classification on both scores for a

given criterion score. Due to the computational complexity of this approach, Huynh

(1976) also demonstrated a simpler approximation method by assuming that scores

are normally distributed, and asserted that such an assumption is warranted in cases

where the number of items exceeds 8, and the ratio of mean score to the number of

items is between .15 and .85.

Subkoviak’s method (1976) uses only the mean and Kuder-Richardson 20

coefficient to calculate the probability of getting an item right for an examinee at each

observed score. Assuming a binomial distribution, the probability of getting a specific

number of items right (for example, 8 items on a 10 item test) is calculated for each

observed score. Then the probability of consistent classification is obtained for the

entire group.

The Marshall-Haertel method (1976) uses the binomial distribution to

estimate scores on a hypothetical test with twice as many items. This hypothetical test

is then divided into two split-half tests and the consistency of classification between

the half tests is calculated. Since there are many ways to split a test, the Marshall-

Haertel method calculates the consistency for each possible split-half and then takes

the average.

Subkoviak (1980) compares results for each of these approaches (along with

the Swaminathan et al method that uses two observed test scores) using data for
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which 1,586 students took parallel forms for each of several tests. The test lengths

were 10, 30, and 50 items. He also applied four different mastery criteria to each test.

Subkoviak found that all three single-test methods were difficult to compute and

yielded biased estimates for short tests. Estimates using the Huynh method provided

underestimates at all criterion levels, whereas the other two methods provided either

underestimates or overestimates depending on the criterion level. Subkoviak

summarized this exercise by recommending the Huynh method because it offers

conservative estimates of consistency, and computation can be simplified through use

of a normal distribution. In all approaches, classification reliability increased as test

reliability increased, and also as the location of the cut-score became more extreme in

relation to the score distribution. In a later study, Subkoviak (1988) uses Hyunh’s

method to estimate classification consistency for a wide range of cut-scores for tests

with reliability ranging from 0.10 to 0.90. Results demonstrate that classification

consistency is lowest when the cut-score is in the middle of the distribution and test

reliability is also low (cut-score at z = 0.0; reliability =.10; exact agreement = .53),

and highest when the cut-score is at the extreme of the test score distribution and test

reliability is highest (cut-score at z = 2.00; reliability = .90; exact agreement = .98).

Studies of classification reliability reviewed thus far were based on tests

comprised of dichotomous, exchangeable items sampled from well-specified

domains. Interest in this topic continued to spawn related studies in the more recent

literature, perhaps for several reasons: the increased prevalence of high-stakes

decisions based on performance assessment scores with constructed response items,

and the arrival of new computer capabilities that greatly expand the possibility for
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both analytic solutions and simulation studies. Studies by Wainer and Thissen (1996),

Rogosa (1999), and Klein and Orlando (2000) examined decision reliability for

dichotomous test items using a classical test theory model. Wainer and Thissen

(1996) used a simulation approach to generate two scores for each hypothetical

student by constructing two distributions with mean of 500 and standard deviation of

100 in which the scores are correlated to reflect the level of test reliability. They

reported three simulations in which the level of the test reliability was varied, and

compared actual differences between the two scores. The impact of these differences

on classification reliability (i.e., in regard to a potential criterion) was not explored,

but the differences between the two scores increased as test reliability decreased.

Rogosa (1999) extended the investigation to examine the reliability of

decisions based on percentile ranks (rather than standard scores) both in terms of

accuracy and consistency. A particularly useful contribution of Rogosa’s study was

his straight-forward conceptualization of reliability. Rogosa compared test reliability

to the desired accuracy with which a Tomahawk missile hits a target (i.e., “hit rate”).

In testing, the hit rate describes how often a percentile score falls within an acceptable

target range of the percentile that would be obtained with error-free measurement.

Rogosa used a simulation approach in which he generated a hypothetical distribution

of true scores, and a distribution of plausible scores around each true score. He then

drew two plausible scores for each true score and calculated the probability that the

scores were in the same score range (defined as “tolerance”) in several conditions in

which desired tolerance and test reliability were varied. Rogosa did not, however,

apply a decision criterion so no estimates were provided concerning consistent
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classification. His findings support Wainer and Thissen (1996) in that higher test

reliability was associated with a higher hit rate.

A RAND report by Klein and Orlando (2000) evaluating the City College of

New York (CUNY) testing program reported the results of a simulation approach to

classification reliability. Findings based on a Monte Carlo simulation study with

10,000 replications reported misclassification as a function of passing rate and test

reliability. Given a normal distribution of scores, a higher percentage of examinees

will pass when the mean score is increasingly higher than the cut-score. More

consistent classification was found as the passing rate moved in either direction away

from 50 percent and as test reliability increased.

A study by Rudner (2001) departed from the classical test theory approach in

earlier studies, and investigated misclassification from an item response theory (IRT)

approach. Using a three parameter IRT model, Rudner generated data for a 50 item

test and calculated a standard error of measurement (based on the information

function) for each true score. He then calculated the proportion of the distribution of

plausible scores for each true score that fell above and below a criterion, and

constructed a 2 X 2 contingency table summarizing the two types of correct

classification (true masters and true non-masters) and two types of incorrect

classification (false master and false non-masters). He reported the potential benefit

of including more items toward increasing the reliability of the test, and presumably

classification reliability. Rudner explored an interesting, and highly relevant, issue in

high-stakes testing by estimating classification consistency in the common case of

allowing multiple opportunities to pass a test. His calculations are inaccurate,
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however, because he inappropriately used a conditional probability (i.e., the

probability of misclassification for a particular true score) as though it represented the

probability for the entire group of masters who initially failed the test.

Studies Related to Performance Assessments

Recent trends in the use of performance and constructed-response items

present the need to model categorical as well as continuous scores. Livingston and

Lewis (1995) developed a complex analytic method that can be used with any type of

assessment score, and can also be used for assessments comprised of both

dichotomous and polytomous items. Their approach allows for different types of

scores by first calculating an estimate of effective test length using the mean,

variance, and reliability coefficient for an assessment score. Livingston and Lewis

define effective test length as the number of dichotomous, equally difficult, locally

independent items necessary to obtain a prescribed reliability estimate. Use of

effective test length allows the method to be used with a variety of types of scores,

such as essay ratings and performance measures, or a combination of both. Next, a

distribution of true scores is estimated based on a four parameter beta distribution and

several hypothetical observed scores based on this distribution and the effective test

length. From these distributions both classification accuracy and consistency can be

summarized. Classification accuracy describes how often the same classification

would be made based on the true score and observed score. Classification consistency

describes how often the same classification would be made based on two observed

scores. Livingston and Lewis evaluated the effectiveness of their approach by
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applying it to real data, and comparing the results to those obtained through

calculating split-half scores for the tests. The seven tests varied in reliability, location

of cut-scores, and consistency of classification. Support for the method was seen in

high agreement between results using the analytic method and those based on the

split-half scores (most of which yield estimates within .01 of each other) across all

conditions. Livingston and Lewis suggested that the method should be further

explored with a variety of types of assessments, and with real test-retest data. The

Livingston and Lewis method is useful in its flexibility to address several types of

scores for a single assessment but given the complexity of the calculations, extension

to multiple measures is quite difficult. Their findings generally support other studies

in which higher consistency is found for more extreme cut-scores and for higher test

reliability.

Another study relevant to the scoring of performance assessments was

presented in Bradlow and Wainer (1998), in which a simulation approach was used

to examine the potential effect of rescoring on the accuracy of decisions based on

performance tasks. Since multiple rating of subjective items is a laborious and

expensive task, the question of the accuracy of such decisions is highly pertinent to

practitioners. The simulation design was based on the classical test theory (CTT)

model, and included a total of 54 conditions with 250,000 examinees in each

condition: 3 rescoring rules, 2 levels of initial probability of passing criterion, 3

levels of standard error of measurement, and 3 levels of ratio of true score variance

to total variance. Bradlow and Wainer reported the estimated percentage of initial

scoring error, as well as the percentage of errors created or ameliorated by rescoring.
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Fewer initial scoring errors were found in conditions with smaller standard errors of

measurement, and also for conditions with higher ratios of true score to total

variance.

Studies reviewed so far all rely on measurement models and assumptions

about the distribution of true and observed scores. A simulation study by Brennan and

Wan (2004) avoided problems in specifying a distribution by using a bootstrap

approach at the item level (termed the “boot-i” method) to estimate classification

consistency. Similar to the Livingston and Lewis method, the boot-i method can

model assessments comprised of both dichotomous and polytomous items. Each

examinee’s item responses serve as the pool of potential responses for the examinee’s

simulated test. After hypothetical scores are generated, decision rules are applied to

both the observed score and hypothetical score, and classification consistency is

assessed. An interesting question raised in this approach is whether the sampling of

items should be the same for all examinees, or allowed to differ among examinees.

Brennan and Wan concluded that sampling the same items for all examinees was

most consistent with a test-retest approach to reliability. Sampling different items for

examinees would be equivalent to each examinee taking a different form of the test.

Brennan and Wan offered an example of a complex assessment comprised of 80

multiple-choice items and 8 constructed response items scored on a four-point scale

to which a pass/fail criterion is applied. Using 1000 boot-i replications, the average

proportion of consistent decisions was .936.

As noted earlier, the fact that the boot-i approach does not require any

assumptions about distributional form is appealing. It does require other assumptions,
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however, that may or may not be justified. In the boot-i approach all items are

sampled with replacement, and it is assumed that items are exchangeable (within

dichotomous or polytomous item types). This may be a questionable assumption if

items are not equally difficult or discriminating. In addition, the relatively small

sample sizes for items, particularly the constructed response items, may provide

questionable estimates. Brennan and Wan recognized that the boot-i method may not

introduce enough “noise” and may over-estimate the similarity between observed and

simulated scores.

Which of the methods reviewed holds the most promise for investigating

complex rules for multiple measures? Given the additional complexity introduced by

increasing the number of measures on which a decision is based, analytic methods

become difficult if not impossible to utilize. Simulation approaches, when well

conceptualized, facilitate the modeling of complex distributions and relationships.

Although the lack of distributional assumptions in the boot-i method is attractive, the

number of items in many tests (particularly performance tests) makes this approach

questionable. Bayesian methods present an attractive option due to their utility in

estimating complex relationships that are not readily calculated analytically (Gelman

et al, 1995) and because distributional assumptions are not made about the posterior

distributions.

An example of a Bayesian approach was presented in a recent study by

Wainer, Wang, Skorupski, and Bradlow (2005) in which the efficacy of a

polytomously scored test at a variety of passing scores is investigated using

Samejima’s graded response model and Markov chain Monte Carlo (MCMC)
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procedures. In the Bayesian approach, a prior distribution is combined with observed

data to estimate a posterior distribution. Draws can then be made from the posterior

distribution and can simply be counted to provide an estimate of the probability of

passing. Wainer et al counted draws from the posterior distribution that were above

the prescribed passing score, and then constructed graphs showing the probability of

passing at a number of levels of proficiency. An example of the method is provided

using scores for 6,066 examinees on the Integrated Clinical Encounter Score of

Clinical Skills Assessment (CSA). This is a lengthy assessment that includes 10

scores on simulated encounters with patients. These 10 scores are constructed by

counting the number of times the examinee solicits information from the patient. In

addition, a communication subscore is also constructed based on the effectiveness

with which the examinee communicates with the patient. Wainer et al used MCMC

procedures to obtain estimates of ability for each examinee, and then constructed a

curve depicting the probability of passing by proficiency. Based on this curve they

calculated that the probability of incorrectly passing was .028, and the probability of

incorrectly failing was .014. Therefore, the probability of a consistent decision was

.958.

The closing to the Wainer et al paper provides encouragement for the

application of Bayesian methods to investigate complex problems saying, “Using a

Bayesian approach requires care and computer time, but not genius.” (p. 278) Given

the complexity of estimating and performing calculations on joint distributions for

more than two variables, the Bayesian approach seems most appropriate in estimating

classification reliability for multiple measures.
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Classification Reliability Estimates in Cited Studies

A summary of highlighted classification reliability estimates for studies

reviewed appears in Tables 2.1 and 2.2. Studies are listed with abbreviated

information about the design, methods, and estimates of classification reliability

found in the study. These studies vary greatly in the focus and conditions

investigated, such as whether a criterion was applied, and the properties of the

distribution that were varied. The purpose of this table is to illustrate the range of

classification reliability estimates obtained in these studies as a starting point for

investigating such estimates in more complex studies. The lowest estimate, .56, was

found for a difficult test with low reliability (Bradlow & Wainer, 1998). The highest

reliability, .97, was found for a moderately easy test with 50 items (Subkoviak, 1980).
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Table 2.1: Summary of Classification Reliability in Studies Using Analytic Methods

Authors Assessment
Type of

Congruence
Test Reliability Classification Reliability

.50 .83Huynh’s
method

(Subkoviak,
1980)

dichotomous
items

consistency
.80 .96

.50
.84Marshall-

Haertel’s
method

(Subkoviak,
1980)

dichotomous
items

consistency
.80 .96

.50
.91

Subkoviak
(1980)

dichotomous
items

consistency
.80 .97

Subkoviak
(1988)

dichotomous
items

consistency .90
.86 (cut-score set at z=0)

dichotomous
items

accuracy Not specified
.90 - .97 (depending on

cut-score)

.64
.75 to .88

(depending on cut-score)
Livingston &
Lewis (1995)

Advanced
Placement

Test scores :
mostly MC, a

few CR

consistency
.85

.92 to .98
(depending on cut-score)

.70
.36 at 50th percentile and

tolerance = .10
Rogosa
(1999)

dichotomous
items

accuracy

.95
.75 at 50th percentile and

tolerance = .10
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Table 2.2: Summary of Classification Reliability in Studies Using Simulation
Methods
Authors Assessment Type of

Congruence
Test Reliability Classification Reliability

.90
.88 when probability of

passing=.5

.40
.56 when probability of

passing = .5

.90
.95 when probability of

passing = .9

Bradlow &
Wainer (1998)

essay accuracy

.40
.90 when probability of

passing = .9

Brennan and
Wan (2004)

licensure
exam –MC

and CR
items

accuracy Not provided .94

.30
.60 when probability of

passing = .5Klein &
Orlando
(2000)

CUNY tests;
dichotomous

items
accuracy

.90
.86 when probability of

passing = .5

Rudner (2001)
dichotomous

items
accuracy .92 .89

.40
65% differ by more than

50 pointsWainer &
Thissen
(1996)

dichotomous
items

consistency

.85
36% differ by more than

50 points

Wainer,
Wang,

Skorupski &
Bradlow
(2005)

certification
test;

polytomous
items

consistency Not provided .96
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Chapter 3: Model

A general framework for investigating classification reliability for a variety of

complex decisions and assessment scores follows. This model is presented from the

standpoint of accuracy; that is, determining the congruence between decisions based

on true score and those based on observed scores. The same model can be applied in

estimating classification consistency by comparing the congruence of decisions based

on two observed scores.

• Observable scores are written as X = (X1, …, Xn). Elements of X can be

discrete or continuous to reference test scores, performance assessments,

or ratings. Elements of X can be from one time point, as when multiple

tests must be passed in order to pass a decision rule, or from multiple time

points, as occurs when students are allowed multiple attempts to pass a

criterion.

• A configural scoring rule is a partition of the X space, into exhaustive and

mutually exclusive categories. Examples of such rules include: Pass/Fail;

Below Basic, Basic, Proficient, & Advanced; Remedial Math, Algebra

only, Geometry only, Algebra + Geometry, Exempt from Math. Coarser

partitions can be made by collapsing equivalence classes together, such as

combining Proficient and Advanced into Above Basic.

o A configural scoring rule g that partitions students into K equivalence

classes is denoted by g(X)=(g1(X), …, gK(X)). Each element in this K-
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dimensional vector is either 0 or 1: gk(X )=1 if X is in class K and 0 if

not.

• A configural rule is defined by the description of the equivalence classes

of the X space. Examples of such rules include:

� CR1: { g(X ) = 0: X 1 < 3 OR X 2 < 3}

� CR2: { g(X ) = 1: X 1 > 3 OR X 2 > 3 AND X 1 + X 2 ≥ 10}

� CR3: { g(X ) = 1: X 1 > 3 AND X 2 > 3 AND X 1 + X 2 ≥ 10}

In addressing the motivating question concerning the reliability of g(X), note

that a specific context and population must be specified. As noted previously,

reliability of scores is specific to a particular group of students and a particular

decision rule. This population is characterized by a distribution of observed scores.

Such reliability could be obtained empirically by administering the test or assessment

twice, or through estimation of a model that estimates the conditional distribution of

X given proficiency θ from the perspective of any one of a number of measurement

models, as best suits the data at hand. Throughout this model, θ represents the score

that an individual would earn on a given assessment if measurement could be

accomplished without error.

The Model-Based Approach

Given the practical challenges posed by an empirical approach to accuracy, a

model-based approach is proposed. Examples of potential measurement models

include classical test theory (CTT), item response theory (IRT; both unidimensional
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and multidimensional), and latent class analysis (LCA). For each measurement

model, the following steps are required:

• Apply the appropriate measurement model to data to estimate p(X |θ) and the

population distribution of proficiency p(θ). 

• Characterize the accuracy of g(X) conditional on θ, or marginal with respect to

some distribution p(θ) of θ in a given population.

There are two cases in the model-based approach:

• Case 1. One-to-one relationship between elements of θ and elements of X.

o g can be applied directly to θ as if it were X in order to get the true

value of g corresponding to this θ. Call it gt(θ). This is the case in

CTT, or Haertel & Wiley’s (1993) “true skill vector” LCA model.

• Case 2. One-to-many relationship between elements of θ and elements of X,

as is the case for multidimensional assessments. That is, a given true value of

θ is not associated with a single specific true value of X; it can give rise to

many possible values X. For example, in factor analysis there can be 3 factors

and 7 X js. A question arises as to what to use as the true value gt(θ) of g in

this case, for characterizing accuracy. Propose the category with the highest

expected value of g given θ:

( ) ( )max .t
k

k
E gθ θ=   g X (3.1)

In all cases, the product of interest is a contingency table comparing true and

observed decision outcomes. This table facilitates examination of either marginal or
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conditional probabilities of passing the configural rule. Standard indices for

classification agreement can be applied to the resulting table, such as percent correct

classification or Kappa index, and false negative and false positive rates can be

estimated.

• Conditional. Through application of the appropriate measurement model, for

any given value of θ, gt(θ) can be calculated and the distribution p(g(X)| θ)

can be produced either analytically or by simulation. In simulation, X is

generated conditional on particular θ, and g(X) computed for each. The

resulting distribution can be examined for qualities such as proportion of

correct classifications, and types of misclassifications (i.e., false negatives

versus false positives).

• Marginal. Given any particular distribution p(θ) of θ, a contingency table

can be created comparing gt(θ)s versus g(X)s, again either analytically or by

simulation. In simulation, first θ is drawn from p(θ) then X is generated

conditional on drawn θ. Next g(X) is computed for each, and a table of true

and observed g’s is constructed.

Application of Model Using Classical Test Theory

In classical test theory (CTT), each observed score is modeled as a

combination of true score and error (Lord & Novick, 1968):

εθ +=X (3.2)

For simplicity, normality is assumed for both θ and the conditional observed score

distributions. However, other distributions could be applied.
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p(Xi|θ) = N(θ,σe
2) (3.3)

p(θ) = N(µ,Σ) (3.4)

If X and θ are unidimensional, Σ is true-score variance, and (1) and (2) together imply

that X is also normally distributed in the population:

p(X) = N(µ,Σ + σe
2) (3.5)

If θ is multidimensional, then p(θ) is multivariate normal, with mean vector µ and

covariance matrix Σ. In this case,

p(X |θk) = N(θk,σe
2) (3.6)

p(X1, …, XiK)=N((µ1, …, µK), Σ + diag(σe1
2, …, σeK

2) (3.7)

Figure 1 illustrates the CTT model approach for a unidimensional test with

normally distributed true score and error . The heavy line represents the overall

distribution of true scores for examinees (denoted f(θ)). The expected distribution of

observed scores for seven values of θ are drawn below the true score distribution,

h(X|θ). An arbitrary cut score is shown to illustrate the importance of the proximity

between true score and criterion in the potential for misclassification. For example,

given the cut point in this diagram, an examinee with θ1 has a probability of virtually

zero of earning an observed score above the criterion. In contrast, an examinee with

θ4 has a moderate probability of obtaining an observed score above the criterion even

though θ4 is below the cut score.
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Figure 1: Illustration of Individual Observed Score and True Score Distributions
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A presentation of equations for calculating the probability of consistent and

inconsistent classifications follows. The following notation is used to indicate true

and observed scores, as well as outcome decisions.

• xik = observed score for student i for test k
• θik = true score for student i for test k
• Ck = cut-score set for passing test k
• O = Observed. In the case of a single test, O indicates the observed score.

In the case of a decision rule, O indicates the actual decision rendered.
• T = True. In the case of a single test, T indicates the student’s true score.

In the case of a decision rule, T indicates the decision that would be made
based on true scores.

• m = mastery on a single test.
• nm = non-mastery on a single test
• p = passage of a decision rule
• f = failure of a decision rule

There are four possible outcomes in estimating the accuracy of a decision rule.

These outcomes are illustrated in Table 3.1. A similar table can be constructed to
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estimate the consistency of a decision rule by comparing outcomes on two observed

scores.

Table 3.1: Comparison of the Accuracy of Decision Outcomes
Observed Status

True Status
Fail Pass

Fail
True

Non-Master
False

Master
(false positive)

Pass
False

Non-Master
(false negative)

True
Master

Classification Reliability of a Single Test

Equations to estimate each of the cells in the contingency table for a single

test in the CTT model appear below. These equations integrate over two distributions

(true and observed) and dissect the joint distribution according to the decision

criterion.

True Master:

( ) ( ) ( )1 1 1 1 1 1

1 1

1Pr ; ,
i i i i im m

C C

O T h x x fθ θ µ θ
∞ ∞

= ∂ Σ ∂∫ ∫  (3.8)

False Master:

( ) ( ) ( )
1

1 1 1 1 1

1

1 1Pr ; ,
i i i i i

C

m nm

C

O T h x x fθ θ µ θ
∞

−∞

= ∂ Σ ∂∫ ∫  (3.9)
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False Non-Master:

( ) ( ) ( )
1

1 1 1 1 11 1

1

Pr ; ,
i i i i i

C

nm m

C

O T h x x fθ θ µ θ
∞

−∞

= ∂ Σ ∂∫ ∫  (3.10)

True Non-Master:

( ) ( ) ( )
1 1

1 1 1 1 1 11Pr ; ,
i i i i i

C C

nm nmO T h x x fθ θ µ θ
−∞ −∞

= ∂ Σ ∂∫ ∫  (3.11)

Classification Reliability of Two Tests Using a Conjunctive Rule

In a conjunctive rule, the examinee must pass all tests. Equations 3.8 – 3.11

can be extended to incorporate two tests for each examinee by integrating over the

joint distributions of two true score and two observed scores, and obtaining the

density of the area that corresponds to the classification of interest. For example, the

following equation calculates the probability of correct classification as a Master (i.e.,

true score above the criterion on both tests) on the basis of observed scores.

Therefore, the equation calculates the probability that all four scores are above the cut

score.

True Master:

( ) ( )
( )

1 1 2 2

1 1 2 2 1 1 2 2

Pr Pr

Pr .

ip ip ip i i

i i i i

O T O C C

X C X C C C

θ θ

θ θ

= ≥ ≥

= ≥ ≥ ≥ ≥

I

I I  (3.12)

2 2 1 1 2 2 1 1

1 1 2 2 1 2 1 2 1 2( | ) ( | ) ( , )
i C i C i C i C

i i i i i i i i i i

x x

h x h x f x x
θ θ

θ θ θ θ θ θ
= = = =

∞ ∞ ∞ ∞

= ∂ ∂ ∂ ∂∫ ∫ ∫ ∫
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False Master:

( ) ( )
( )

1 1 2 2

1 1 2 2 1 1 2 2

Pr Pr

Pr .

ip if ip i i

i i i i

O T O C C

X C X C C C

θ θ

θ θ

= < <

= ≥ ≥ < <

U

I U
 (3.13)

2 1

2 1 2 2 1 1

1 1 2 2 1 2 1 2 1 2( | ) ( | ) ( , )
i i i C i C

C C

i i i i i i i i i i

x x

h x h x f x x
θ θ

θ θ θ θ θ θ
=−∞ =−∞ = =

∞ ∞

= ∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 

1

2 2 1 2 2 1 1

1 1 2 2 1 2 1 2 1 2( | ) ( | ) ( , )
i C i i C i C

C

i i i i i i i i i i

x x

h x h x f x x
θ θ

θ θ θ θ θ θ
= =−∞ = =

∞ ∞ ∞

+ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 

2

2 1 1 2 2 1 1

1 1 2 2 1 2 1 2 1 2( | ) ( | ) ( , ) .
i i C i C i C

C

i i i i i i i i i i

x x

h x h x f x x
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Classification Reliability of Two Tests Using a Complementary Rule

The complementary rule stipulates that the examinee must pass at least one of

a series of tests. As in the conjunctive rule, each equation integrates over the joint

distribution of four scores (two true and two observed).
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The complexity of solving these equations highlights the advantage of a

simulation approach as the configural rule incorporates more tests. Calculating the

density of partitioned areas under a multivariate distribution is problematic. Numeric

solutions to the equations presented above are extremely difficult and are also subject

to estimation assumptions (such as the number of quadratures utilized). A simulation

approach, as used in the Wainer et al (2005) study, presents a reasonable method

given that the multivariate distribution can be modeled and an adequate number of

draws is made. The use of simulation approaches for single tests was demonstrated in

a number of studies reviewed in Chapter 2 (Bradlow & Wainer, 1998; Brennan and

Wan, 2004; Klein & Orlando, 2000; Rudner, 2001; Wainer & Thissen, 1996; Wainer,

Wang, Skorupski & Bradlow, 2005).
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Chapter 4: Method

Design

The purpose of this study is to demonstrate a general method for estimating

the reliability of classifications based on multiple tests from a classical test theory

perspective. Based on a review of the literature and characteristics of classical test

theory, a set of simulation conditions is structured to investigate the influence of three

important factors on classification accuracy and reliability: number of tests,

covariance among tests, and number of attempts permitted. To investigate the

possibility that these factors have differential effects depending on test difficulty, all

questions are addressed for both a 50% and a 70% passing rate.

Research Question 1: Does increasing the number of tests used to make a

decision increase decision accuracy and/or decision consistency?

Research Question 2: Does increasing the covariance among tests increase

decision accuracy and/or decision consistency?

Research Question 3: Does allowing multiple attempts to pass increase

decision accuracy and/or decision consistency? For simplicity, the assumption is

made that true score is the same at each attempt.

Simulation Study

The five decision rules investigated in this study are referred to as

conjunctive, complementary, compensatory, conjunctive-complementary, and

conjunctive-compensatory. The first three rules, conjunctive (AND), complementary
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(OR), and compensatory (+), exhaust the simple ways of combining multiple test

scores.

A conjunctive rule requires the examinee to pass all of the tests in the battery.

It is the rule used by most states for high school exit exams, if the stipulation that

examinees can only take each test once is added. In practice, most states allow

multiple attempts to pass each of the high school exit exams.

In the complementary rule the examinee must pass at least one of the tests in

the battery. Allowance of repeated attempts to take a test is an example of this rule.

Another example of the application of the complementary rule is the situation in

which one test is allowed to substitute for another, such as in the case when AP tests

can be substituted for high school exit exams. In Philadelphia, students are promoted

to the ninth grade based on Stanford Achievement Test scores or by virtue of their

scores on a citywide test in reading and math.

The third simple rule, compensatory, applies a criterion to the sum (or

average) of a set of test scores. An example of the application of this rule is the case

of a college admission criterion that requires a minimum total score for the math and

verbal portions of the SAT Tests. It differs from the conjunctive and complementary

rules in that the criterion is not applied directly to individual test scores, but rather to

the sum of test scores. From a reliability standpoint it offers the potential advantage

of allowing errors in test scores on different tests to counterbalance each other.

However, if the goal of the rule is to certify a minimum performance on each test this

rule is not sufficient.
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There are a great number of ways in which these three simple rules can be

combined to create more complex rules. Two combination rules are illustrated in this

study to show the application of the approach to more complex decisions rules:

conjunctive-complementary and conjunctive-compensatory. These rules were

selected because they are similar in spirit to rules in use in testing programs today, as

is illustrated below.

In the conjunctive-complementary rule used in this study, the examinee must

pass several of the tests in a battery, but must only pass one of the remaining tests. A

real world example of this rule would be if students were required to pass reading and

math tests for promotion to a higher grade, but were only required to pass either a

social studies or science test.

The conjunctive-compensatory rule used in the study requires the examinee to

meet a criterion for two tests in a battery, and also a prescribed overall score for all

tests. This is similar to the rule used by the GED Testing Service in which the

examinee must meet a minimum criterion on each of five tests, and also attain a

prescribed average over all five tests. Another variation of this rule is used by

Maryland for high school exit tests. Students who do not attain the desired score on

each of the exit exams can pass if they attain a minimum score on each test and an

overall total score. The overall total score is set at a level that allows for superior

performance on one or more tests to counterbalance lower performance on others.

The following steps were used to structure the simulations (using version

2.3.1 of R) for these five decision rules:
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1. Generated 3 multivariate normal datasets consisting of true scores on five tests

(T1, T2, T3, T4, T5) for 500,000 examinees. The covariance among the tests

was set to either 0.0 (‘COVAR.0’), 0.6 (‘COVAR6’), or 0.9 (‘COVAR9’).

The COVAR.0 dataset was used only to show the credibility of the method,

and therefore was not included in the full set of simulation conditions.

2. Three replicate scores were generated for each true score for each test for

COVAR.0 and COVAR9. Research Question 3 required six replicate scores

for COVAR6. Distributions from which the replicate scores were drawn were

constructed using the true score, θ, as the mean, with a standard deviation

equal to 0.31623 to simulate a test with a reliability coefficient equal to 0.9.

For notational purposes, replicate scores are labeled with the test number first,

followed by the replication number. For example, the second set of replicate

scores for Test 1 is labeled R1.2; the third set of replicate scores for Test 2 is

labeled R2.3.

3. Passage of each test was determined by applying a criterion to each score,

both true and replicate. To simulate a 50% passing rate, a cut-score of 0.0 was

applied to each of the five tests. The criterion for passage of the compensatory

rule was also 0.0, and for the conjunctive-compensatory rule an average score

of 0.5 (i.e., half of a standard deviation) was required for passage. In the 70%

passing rate conditions, a cut-score of -0.525 was applied to each test score.

The compensatory rule required an average score of -0.525 or better, and the

conjunctive-composite rule required an average score of -.025.
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4. Each of the five decision rules was then applied to the sets of true and

replicate scores to determine whether the examinee passed each overall

decision rule.

5. A contingency table was constructed for each decision rule showing the

congruence between classification based on true scores and replicate scores to

estimate classification accuracy, and the congruence between two replicate

scores to estimate classification consistency.

Table 4.1: Contingency Table for Classification Accuracy and Consistency
Failed Passed Total

Failed a b g
Passed c d h
Total e f N

Measures of agreement were calculated for each contingency table. There are

a surprising number of measures for characterizing the relationship between the

agreement in a simple contingency table. Some measures, such as chi-square and phi,

are most appropriate when the goal is to describe the dependence of one variable on

the other. The purpose of this study is most akin to rater agreement, in which interest

is in determining whether scores by two raters yield the same decision about the

competence of the examinee. Rater agreement is typically assessed by examining the

hit rate; i.e., the number of examinees who receive the same classification based on

the two ratings. Conditional measures that compute agreement separately for Masters

and Non-Masters are also of interest. In addition, measures of the type of

disagreement may be important in some decisions. For example, in the case of

medical diagnosis it may be more important to avoid false negatives (missing the

presence of disease) rather than false positives (diagnosing the patient with a disease
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when in fact it is not present). In a legal framework, the United States system of law

is based on the premise that the accused is innocent until proven guilty. Therefore,

judges may be more concerned with false positives (sentencing an innocent person)

than with false negatives (releasing a guilty person). In educational decisions,

students who are falsely identified as passing the decision rule may be unable to

perform at the next grade level, whereas students who are falsely held back lose

valuable instructional time.

Different estimates of agreement were calculated for contingency tables

comparing accuracy and consistency. For all tables, however, the following two

measures of agreement were calculated.

• Percentage agreement. The percentage of examinees who received the

same decision based on both sets of scores. P represents the proportion

of agreement. The proportion is multiplied by 100 to obtain percentage

agreement.

P = (a + d) / N (4.1)

PCT (Agree) = P * 100 (4.2)

• Cohen’s Kappa. The marginal proportions in a contingency table have a

strong impact on percentage agreement. When almost all examinees

pass (or fail) the decision, the probability of making the correct

classification may be high strictly due to chance. Cohen suggested a

correction to percentage agreement (PC) that adjusts for the likelihood

of making the correct classification strictly by chance. PC represents
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the proportion of agreement that would be obtained if the two

classifications were completely independent of one another.

PC = (e/N * g/N) + (f/N * h/N) (4.3)

K = (P – PC) / (1-PC) * 100 (4.4)

Kappa is normally reported on a scale from 0 to 1. It was multiplied by

100 in this study to facilitate comparison with exact agreement.

It must be emphasized that Kappa represents a different, but not necessarily

superior, alternative to exact agreement. First, kappa represents the gain in prediction

over chance, and therefore its interpretation is not straight forward. Second, Kappa is

also influenced by the marginal distribution as shown in Feinstein and Cicchetti

(1990) who illustrate several paradoxical relationships between exact agreement and

Kappa. Subkoviak (1988) demonstrated that the level of reliability has an inverse

effect on Kappa and exact agreement. Both measures are included in this study in an

effort to illustrate the utility of various measures of agreement.

For classification accuracy, four additional measures were calculated to

further characterize agreement. All four measures take advantage of the fact that the

correct decision outcome is known, and can be used to further investigate specific

types of disagreement.

• Conditional percentage of agreement for those who passed the decision

rule based on true score.

PCT (Agree|Master) = d / h * 100 (4.5)

• Conditional percentage of agreement for those who failed the decision

rule based on true score.
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PCT (Agree|Non-Master) = a / g * 100 (4.6)

• Percentage of false positives. The percentage of examinees that passed

the decision, but should have failed based on true score.

PCT (FP) = b / N * 100 (4.7)

• Percentage of false negatives: The percentage of examinees that failed

the decision, but should have passed based on their true score.

PCT (FN) = c / N * 100 (4.8)

Given that these measures of agreement are all based on the same simple

contingency table, it is informative to consider how they relate to one another. For

example, the sum of PCT(Agree), PCT(FP) and PCT(FN) is equal to 100. Therefore,

as PCT(Agree) increases, the sum of PCT(FP) and PCT(FN) must decrease. This

decrease be reflected equally in PCT(FP) and PCT(FN), or asymmetrically (i.e., an

increase in one and a decrease in the other). Conditional measures operate

independently of PCT(Agree), PCT(FP), and PCT(FN).

For tables comparing replicate scores (i.e., classification consistency), it is not

appropriate to consider false negatives and positives; and conditional agreement is not

of great interest. Uebersax (2003) suggests a measure called the “percentage of

specific agreement” which is appropriate for such situations. Cicchetti and Feinstein

(1990) and Fitzmaurice (2002) also present this measure in more general discussions

of measures of agreement. This measure provides an estimate of conditional

agreement that takes into account the number classified as passers (and failers) on

both sets of replicate scores.
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• Percentage of specific agreement for Passers: The number of consistent

positive classifications divided by the average number of positive

classifications across both tests.

PCT (SA|Passers) = d / [(d + b + d + c)/2] * 100 (4.9)

• Percentage of specific agreement for Failers: The number of consistent

negative classifications divided by the average number of negative

classifications across both tests.

PCT (SA|Failers) = a / [(a+ b + a + c)]/2 * 100 (4.10)

In all simulation conditions the following parameters remained fixed:

1. Single cut-score. Although in many situations decisions may be based on

multiple proficiency categories, overall decisions typically apply only one

criterion (e.g., must be in basic proficiency group or higher).

2. Individual test reliability equal to 0.9 for all tests. This is reflective of the

lower level of reliability typically found in standardized, multiple-choice tests.

It would not be typical, however, of many performance-based tests.

3. Standard, normal distribution, N(0,1), for true score on all tests. Although

many score distributions are not normally distributed, a normal distribution is

used for simplicity in the simulations.

Because the five tests were identically distributed, and the same criterion was

applied to each test, results are descriptive of a set of parallel tests. This stipulation

makes sense in the case of repeated attempts on the same test, but is less likely to be

true for sets of different tests. For example, it is likely that for many groups of

examinees tests of math, reading, social studies, and science would have different
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levels of difficulty. The case of differential difficulty and variability will be illustrated

later when the general method is applied to actual data from GED test takers.

Details for the simulation conditions appear in Table 4.2. The rule for

combining scores is illustrated to clarify the decision rule used in each condition. For

Research Questions 1 and 2, all conditions determined classification accuracy by

comparing true scores to scores from the first replicate group. For classification

consistency, in which decisions are based on multiple sets of replicate scores, the rule

was applied to the first and second replicate scores.

For Research Question 3, in which examinees were allowed multiple attempts

to pass the test, classification accuracy was estimated by comparing the decision

outcomes based on true scores to that based on Replications 1 and 2 for the condition

allowing two attempts, and Replications 1, 2, and 3 for the condition allowing 3

attempts. Classification consistency for two attempts compared the decision outcomes

based on Replications 1 and 2 with those for Replications 4 and 5. Classification

consistency for three attempts compared Replications 1, 2 and 3 to Replications 4, 5,

and 6. For the composite rules, the maximum of replication scores for each test was

used in creating the overall score.

Table 4.2 shows a symbolic representation for each decision rule. For

Research Questions 1 and 2, the same rule was applied to true score and replicate

score in each condition. Research Question 3 varied the number of attempts, and used

multiple replicate scores in each decision. Table 4.2 shows the rule for replicate

scores; the rules for true score are the same as in Research Question 1.
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Table 4.2: Summary of Simulation Conditions for Research Questions 1, 2, and 3
Type of Decision

Rules Combination Rule
Number of

Tests
Covar-
iance

Number of
Attempts

RESEARCH QUESTION 1
Conjunctive

(AND)
1 ∩ 2
1 ∩ 2 ∩ 3
1 ∩2 ∩ 3 ∩4
1 ∩ 2 ∩ 3 ∩ 4 ∩ 5

2
3
4
5

.6 1

Complementary
(OR)

1 U 2
1 U 2 U 3
1 U 2 U 3 U 4
1 U 2 U 3 U 4 U 5

2
3
4
5

.6 1

Compensatory
(+)

(1 + 2)
(1 + 2 + 3)
(1 + 2 + 3 + 4)
(1 + 2 + 3 + 4 + 5)

2
3
4
5

.6 1

Conjunctive-
Complementary

(AND/OR)

1 ∩ 2 ∩ (3 U 4)
1 ∩ 2 ∩ (3 U 4 U 5)

4
5

.6 1

Conjunctive-
Compensatory

(AND/+)

1 ∩ 2 ∩ 3 ∩ (1+ 2+ 3)
1 ∩ 2 ∩ 3 ∩ 4 ∩ 5 ∩ (1+ 2 +3 + 4 +
5)

3
5

.6 1

RESEARCH QUESTION 2
Conjunctive

(AND)
1 ∩ 2 ∩ 3 ∩ 4 ∩ 5

5
.6
.9

1

Complementary
(OR)

1 U 2 U 3 U 4 U 5
5

.6

.9
1

Compensatory
(+)

(1 + 2 +3 + 4+ 5)
5

.6

.9
1

Conjunctive-
Complementary

(AND/OR)

1 ∩ 2 ∩ (3 U 4 U 5)
5

.6

.9
1

Conjunctive-
Compensatory

(AND/+)

1 ∩ 2 ∩ 3 ∩ 4 ∩ 5 ∩ (1+ 2 +3 + 4 +
5) 5

.6

.9
1
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Type of Decision
Rules Rule

Number
of Tests

Covar-
iance

Number of
Attempts

RESEARCH QUESTION 3
Conjunctive

(AND)
(R1.1 U R 1.2) ∩ (R2.1 U R 2.2) ∩
(R3.1 U R 3.2) ∩ (R4.1 U R 4.2) ∩
(R5.1 U R 5.2)

(R1.1 U R 1.2 U R1.3) ∩
(R2.1 U R 2.2 U R2.3) ∩
(R3.1 U R 3.2 U R3.3) ∩
(R4.1 U R 4.2 U R4.3) ∩
(R5.1 U R 5.2 U R5.3)

5 .6

2

3

Complementary
(OR)

(R1.1 U R 1.2) U (R2.1 U R 2.2) U
(R3.1 U R 3.2) U (R4.1 U R4.2) U
(R5.1 U R 5.2)

(R1.1 U R 1.2 U R1.3) U
(R2.1 U R 2.2 U R2.3) U
(R3.1 U R 3.2 U R3.3) U
(R4.1 U R4.2 U R4.3) U
(R5.1 U R5.2 U R5.3)

5 .6

2

3

Compensatory
(+)

[R1.1 U R1.2] + [R2.1 U R 2.2] +
[R3.1 U R 3.2] + [R4.1 U R 4.2] +
[R5.1 U R 5.2]

[R1.1 U R1.2 U R1.3] +
[R2.1 U R2.2 U R2.3] +
[R3.1 U R3.2 U R3.3] +
[R4.1 U R4.2 U R4.3] +
[R5.1 U R5.2 U R5.3]

5 .6

2

3

Conjunctive-
Complementary

(AND/OR)

(R1.1 U R 1.2) ∩ (R2.1 U R 2.2) ∩
([R3.1 U R 3.2] U [R4.1 U R 4.2] U
[R5.1 U R 5.2])

(R1.1 U R 1.2 U R1.3 ) ∩
(R2.1 U R 2.2 U R2.3) ∩
([R3.1 U R 3.2 U R3.3] U
[R4.1 U R 4.2 U R4.3] U
[R5.1 U R 5.2 U R5.3])

5 .6

2

3

Conjunctive-
Compensatory

(AND/+)

([R1.1 U R1.2] ∩ [R2.1 U R 2.2] ∩
([R1.1 U R1.2] + [R2.1 U R 2.2] +
[R3.1 U R 3.2] + [R4.1 U R 4.2] +
[R5.1 U R 5.2])

[R1.1 U R1.2 U R1.3] ∩
[R2.1 U R 2.2 U R2.3] ∩
([R1.1 U R1.2 U R1.3] + [R2.1 U
R 2.2 U R 2.3] + [R3.1 U R 3.2 U
R3.3] + [R4.1 U R 4.2 U R4.3] +
[R5.1 U R 5.2 U R5.3])

5 .6

2

3
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Chapter 5: Simulation Results

Presentation of simulation results begins with a description of the

characteristics of the simulated datasets, followed by results for Research Questions

1, 2, and 3. For each research question, results are presented first for the conditions in

which 50% of examinees pass the individual tests, followed by results for the 70%

passing rate. Contingency tables used to calculate passing rates and all measures of

classification reliability appear in Appendix I. The properties of the simulated

datasets are presented first, followed by the classification accuracy and reliability for

the individual tests. Throughout the chapter, tables showing classification consistency

are shaded to differentiate them from those for classification accuracy.

Description of Simulated Datasets

Means and standard deviations for the true and replicate score distributions for

COVAR6 and COVAR9 appear in Tables 5.1, 5.2, and 5.3. The means for all

distributions are quite close to the desired value of zero. The standard deviations for

the true scores are all near to 1.0; and, as expected, the replicate scores have higher

standard deviations due to the additional error variance. For COVAR6, the covariance

among the five sets of true scores ranged from .599 to .601; covariance among the

tests for each replicate group ranged from .598 to .603. For COVAR9, covariance

among the set of true scores range from .899 to .901, and the covariance among

replicate scores ranges from .899 to .902. The reliability of the resulting distributions

is obtained by correlating the replicate scores for each test. For both COVAR6 and

COVAR9, the reliability of the replicate scores is .909.
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Table 5.1: Descriptive Statistics and Covariance for True Scores
COVAR6

Test Mean 1 2 3 4 5
1 0.00069 0.99882 0.60013 0.59847 0.60129 0.60068
2 0.00162 0.60013 0.99941 0.59890 0.60013 0.60009
3 0.00156 0.59847 0.59890 0.99850 0.60002 0.59949
4 0.00218 0.60129 0.60013 0.60002 1.00313 0.60238
5 0.00201 0.60068 0.60009 0.59949 0.60238 1.00208

COVAR9
Test Mean 1 2 3 4 5

1 -0.00199 1.00107 0.90079 0.90132 0.89968 0.90020
2 -0.00189 0.90079 1.00074 0.90108 0.89976 0.89999
3 -0.00201 0.90132 0.90108 1.00153 0.90017 0.90031
4 -0.00138 0.89968 0.89976 0.90017 0.99883 0.89937
5 -0.00211 0.90020 0.89999 0.90031 0.89937 0.99945
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Table 5.2: Descriptive Statistics and Covariance for Six Sets of Replicate Scores,
COVAR6

Replicate 1
Test Mean 1 2 3 4 5

1 0.00105 1.10029 0.60000 0.59878 0.60234 0.60131
2 0.00178 0.60000 1.09912 0.59826 0.60044 0.59995
3 0.00109 0.59878 0.59826 1.09892 0.60023 0.60074
4 0.00236 0.60234 0.60044 0.60023 1.10480 0.60285
5 0.00185 0.60131 0.59995 0.60074 0.60285 1.10280

Replicate 2
Test Mean 1 2 3 4 5

1 0.00075 1.09813 0.59888 0.59828 0.60031 0.60116
2 0.00075 0.59888 1.09946 0.59996 0.59977 0.60022
3 0.00144 0.59828 0.59996 1.09927 0.60068 0.59953
4 0.00223 0.60031 0.59977 0.60068 1.10284 0.60290
5 0.00181 0.60116 0.60022 0.59953 0.60290 1.10311

Replicate 3
Test Mean 1 2 3 4 5

1 0.00080 1.09885 0.59999 0.59890 0.60101 0.60074
2 0.00247 0.59999 1.09887 0.59856 0.59962 0.60017
3 0.00138 0.59890 0.59856 1.09895 0.59977 0.59979
4 0.00169 0.60101 0.59962 0.59977 1.10251 0.60253
5 0.00166 0.60074 0.60017 0.59979 0.60253 1.10320

Replicate 4
Test Mean 1 2 3 4 5

1 0.00047 1.09895 0.60134 0.59908 0.60136 0.60086
2 0.00132 0.60134 1.09957 0.59897 0.59865 0.60008
3 0.00143 0.59908 0.59897 1.09887 0.59958 0.59998
4 0.00231 0.60136 0.59865 0.59958 1.10311 0.60213
5 0.00120 0.60086 0.60008 0.59998 0.60213 1.10264

Replicate 5
Test Mean 1 2 3 4 5

1 0.00057 1.09951 0.60053 0.59849 0.60184 0.60079
2 0.00191 0.60053 1.09937 0.59861 0.60069 0.60060
3 0.00157 0.59849 0.59861 1.09854 0.60115 0.59944
4 0.00192 0.60184 0.60069 0.60115 1.10498 0.60316
5 0.00227 0.60079 0.60060 0.59944 0.60316 1.10226

Replicate 6
Test Mean 1 2 3 4 5

1 0.00016 1.09847 0.59928 0.59893 0.60099 0.60077
2 0.00192 0.59928 1.09777 0.59870 0.59996 0.59902
3 0.00206 0.59893 0.59870 1.09908 0.60074 0.59966
4 0.00259 0.60099 0.59996 0.60074 1.10280 0.60252
5 0.00238 0.60077 0.59902 0.59966 0.60252 1.10195
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Table 5.3: Descriptive Statistics and Covariance for Three Sets of Replicate Scores,
COVAR9

Replicate 1
Test Mean 1 2 3 4 5

1 -0.00199 1.10010 0.90067 0.90047 0.89850 0.89949
2 -0.00189 0.90067 1.10116 0.90089 0.90019 0.90014
3 -0.00201 0.90047 0.90089 1.10129 0.89952 0.89997
4 -0.00138 0.89850 0.90019 0.89952 1.09817 0.89863
5 -0.00211 0.89949 0.90014 0.89997 0.89863 1.09896

Replicate 2
Test Mean 1 2 3 4 5

1 -0.00164 1.10285 0.90176 0.90198 0.90080 0.90053
2 -0.00174 0.90176 1.10135 0.90119 0.89989 0.89985
3 -0.00248 0.90198 0.90119 1.10019 0.89992 0.89898
4 -0.00120 0.90080 0.89989 0.89992 1.09962 0.89886
5 -0.00227 0.90053 0.89985 0.89898 0.89886 1.09893

Replicate 3
Test Mean 1 2 3 4 5

1 -0.00193 1.10048 0.90112 0.90126 0.89970 0.89904
2 -0.00157 0.90112 1.10095 0.90170 0.90072 0.89960
3 -0.00214 0.90126 0.90170 1.10257 0.90095 0.90008
4 -0.00133 0.89970 0.90072 0.90095 1.09994 0.89939
5 -0.00231 0.89904 0.89960 0.90008 0.89939 1.09802

Individual Tests

The classification accuracy and consistency for individual tests serves as the

baseline for considering the impact of combining additional tests. Because the five

tests were all generated to have similar means and standard deviations, a comparison

of the various measures of agreement for true and replicate scores also informs the

precision of such measures. Table 5.4 presents the measures of accuracy for all five

tests for COVAR6 at the 50% passing rate. The standard deviation of each statistic

serves as an estimate of its standard error.

The mean exact agreement for single tests is 90.3%, and a similar level of

conditional agreement is demonstrated. The mean percentage of false positives and

false negatives is 4.88% and 4.87% respectively.
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Table 5.4: Accuracy for Individual Tests, COVAR6, 50%

Scores
Exact

Agreement Kappa

Condition.
Agree

True Master

Conditional
Agree,

True Non-Master
False

Positives
False

Negatives
Test 1: True Score With -

Rep 1 90.30 80.60 90.31 90.29 4.86 4.84
Rep 2 90.26 80.51 90.27 90.24 4.88 4.86
Rep 3 90.27 80.53 90.23 90.31 4.85 4.89
Rep 4 90.30 80.61 90.32 90.28 4.86 4.84
Rep 5 90.32 80.64 90.29 90.34 4.83 4.85
Rep 6 90.22 80.43 90.23 90.20 4.90 4.88

Test 2: True Score With -
Rep 1 90.22 80.45 90.23 90.22 4.89 4.89
Rep 2 90.17 80.34 90.13 90.21 4.89 4.94
Rep 3 90.22 80.43 90.21 90.22 4.89 4.90
Rep 4 90.27 80.53 90.28 90.25 4.87 4.86
Rep 5 90.27 80.54 90.28 90.26 4.87 4.86
Rep 6 90.24 80.48 90.26 90.23 4.88 4.87

Test 3: True Score With -
Rep 1 90.33 80.66 90.31 90.35 4.82 4.85
Rep 2 90.27 80.53 90.27 90.27 4.86 4.87
Rep 3 90.27 80.53 90.26 90.28 4.86 4.88
Rep 4 90.34 80.67 90.26 90.41 4.79 4.87
Rep 5 90.24 80.49 90.21 90.28 4.86 4.90
Rep 6 90.27 80.54 90.31 90.24 4.88 4.85

Test 4: True Score With -
Rep 1 90.23 80.46 90.24 90.23 4.88 4.89
Rep 2 90.24 80.47 90.28 90.20 4.89 4.87
Rep 3 90.13 80.25 90.17 90.08 4.95 4.92
Rep 4 90.19 80.37 90.25 90.12 4.93 4.88
Rep 5 90.26 80.52 90.30 90.22 4.88 4.86
Rep 6 90.24 80.48 90.29 90.19 4.90 4.86

Test 5: True Score With -
Rep 1 90.25 80.50 90.27 90.23 4.89 4.87
Rep 2 90.25 80.51 90.29 90.22 4.89 4.86
Rep 3 90.36 80.72 90.42 90.31 4.84 4.79
Rep 4 90.22 80.43 90.20 90.24 4.88 4.90
Rep 5 90.22 80.44 90.33 90.11 4.94 4.84
Rep 6 90.22 80.43 90.28 90.15 4.92 4.86

Mean 90.25 80.50 90.27 90.24 4.88 4.87
StdDev 0.049 0.099 0.054 0.070 0.034 0.028

Measures of consistency for the six replicate scores for Test 1 appear in Table

5.5. As expected, the measures of consistency are lower than similar measures of
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accuracy since both scores incorporate error in the case of consistency. The mean

exact agreement in consistency is 86.4% (compared to 90.3% for accuracy), and the

measures of conditional agreement are also lower than the corresponding accuracy

measures. The increased error incorporated into replicate scores is also reflected in a

higher percentage of examinees who pass one test but fail the other (a corollary to

false negatives and false positives in tables showing accuracy) -- 6.8% for

consistency compared to 4.9% for accuracy.

Table 5.5: Measures of Consistency for Test 1, COVAR6, 50%

Replicates
Exact

Agreement Kappa
Pass Rep1 and

Fail Rep 2

Specific
Agreement,

Masters

Specific
Agreement,
Nonmasters

Rep 1 & Rep 2 86.41 72.82 6.79 86.41 86.41
Rep 1 & Rep 3 86.41 72.82 6.82 86.40 86.41
Rep 1 & Rep 4 86.41 72.83 6.79 86.42 86.41
Rep 1 & Rep 5 86.39 72.79 6.82 86.39 86.40
Rep 1 & Rep 6 86.36 72.71 6.82 86.36 86.35
Rep 2 & Rep 3 86.33 72.66 6.86 86.33 86.34
Rep 2 & Rep 4 86.38 72.77 6.81 86.39 86.38
Rep 2 & Rep 5 86.36 72.72 6.84 86.36 86.36
Rep 2 & Rep 6 86.31 72.62 6.85 86.31 86.30
Rep 3 & Rep 4 86.32 72.65 6.81 86.32 86.33
Rep 3 & Rep 5 86.37 72.75 6.80 86.37 86.38
Rep 3 & Rep 6 86.34 72.67 6.80 86.33 86.34
Rep 4 & Rep 5 86.44 72.88 6.80 86.44 86.44
Rep 4 & Rep 6 86.37 72.75 6.81 86.38 86.37
Rep 5 & Rep 6 86.32 72.64 6.82 86.32 86.32

Mean 86.37 72.74 6.82 86.37 86.37
StdDev 0.0384 0.0768 0.0193 0.0391 0.0381

Descriptive statistics presented for the individual tests indicate that the

simulations were successful in generating data with the desired means, standard

deviations, and covariances for a set of highly reliable tests. The sample size of

500,000 in each condition contributes to a high level of precision for estimates. The

mean exact agreement in regard to accuracy and consistency is similar to that
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obtained in previous simulation studies cited in Chapter 2 (Bradlow & Wainer, 1998;

Klein & Orlando, 2000; Rudner, 2001).

Another test of the proposed method is shown by calculating the percentage of

examinees passing the conjunctive rule using a dataset generated in a similar fashion

but with covariance equal to zero among the tests. Probability theory states that the

probability of passing a series of uncorrelated tests is equal to the product of the

probabilities of passing each individual test. It follows that for a set of five tests, each

with a probability of passing of .50, the probability of passing two uncorrelated tests

is .25; for three tests, the probability reduces to .125, four tests to .0625, and five tests

to .03125. The conjunctive rule was applied to the COVAR0 dataset combining 2, 3,

4, and 5 tests. The resulting proportion of examinees who passed the decision rule

was .249, .125, .062, and .031 respectively. This example supports the utility of the

proposed method for other types of rules and for use with related tests.

Research Question 1: Increasing the Number of Tests

This research question investigates the effect of increasing the number of tests

on the classification accuracy and consistency of simple and complex decisions.

Results are first presented for conditions in which 50% of examinees pass each test;

then for conditions in which 70% of examinees pass; and then an overall summary of

the results for the research question follows.

Fifty Percent Passing Rate

Table 5.6 shows the percentage of examinees that passed each type of

decision rule based on true score.
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Table 5.6: Percentage Passing Based on True Score, COVAR6, 50%
Number of Tests

ONE TWO THREE FOUR FIVE
Conjunctive 50.00 35.28 27.91 23.36 20.27
Complementary 50.00 64.74 72.14 76.69 79.74
Compensatory 50.00 50.02 50.02 50.06 50.11
Conj-Complem 50.00 32.43 33.88
Conj-Compens 50.00 23.65 18.94

The results for a single test are presented first in each row to provide a point

of comparison4. The passing rate decreases with each additional test in the

conjunctive rule, from 50.0% to 20.3%, whereas the passing rate increases in the

complementary rule to 79.8%. The passing rate remains stable at around 50% with

the addition of more tests in the compensatory rule. The direction of these changes in

the percentage passing the simple rules follows expectations. The conjunctive rule

becomes more stringent with each additional test, whereas the complementary rule

allows more opportunities to pass with additional tests. In the compensatory rule each

additional test contributes equally to passage of the overall rule, and therefore the

passing rate does not change.

The addition of more tests in the complex rules combines the features of these

simple rules toward less predictable outcomes. The conjunctive-complementary rule

becomes both more stringent (the examinee must pass more tests) and less stringent

(there are more ways to pass) with additional tests. The net effect is that fewer

examines pass when comparing the four- and five-test conditions to a single test.

Similarly, the conjunctive-compensatory rule combines the requirements of the

4 For individual tests, the mean value over all five tests is presented. This value is the same for all
decision rules in each condition.
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conjunctive rule with the stable effect of adding tests in a compensatory manner. In

this case, the conjunctive-compensatory rule was structured to require a minimum

score and a more stringent overall average score. The result is that fewer examinees

pass this rule than either of the simple conjunctive or compensatory rule, and the

percentage passing the conjunctive-compensatory rule declines with the addition of

more tests. In fact, the conjunctive-compensatory rule yields the lowest passing rate

in Table 5.6, with only 18.9% passing the five test rule.

Table 5.7 shows the percentage who pass based on replicate scores as more

tests are included in the decision rule. Passing rates show a similar pattern as that seen

for accuracy, but at reduced levels. Only 17.3% pass the conjunctive-compensatory

rule when comparing two replicate scores.

Table 5.7: Percentage Passing Based on Two Replicate Scores, COVAR6, 50%
Number of Tests

ONE TWO THREE FOUR FIVE
Conjunctive 50.00 34.25 26.32 21.50 18.26
Complementary 50.00 65.79 73.69 78.52 81.72
Compensatory 50.00 50.07 50.07 50.12 50.12
Conj-Complem 50.00 31.14 32.73
Conj-Compens 50.00 22.81 17.33

As described in the Chapter 4, there are a number of measures for

characterizing classification reliability in contingency tables and an optimal measure

for all purposes has not been clearly identified. It is possible that the choice of

measure depends on the primary purpose of the decision. Furthermore, all measures

are percentages and comparisons are complicated by differences in the percentage

passing the decision rules. As shown in Tables 5.6 and 5.7, there are substantial

differences among the decision rules in the percentage passing as more tests are

added to the rule. Conditional measures that estimate the reliability for Masters and
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Non-Masters separately are less affected by the differences in marginal distributions,

and may provide a more consistent pattern of results. The following measures of

classification accuracy compare decision outcomes based on true and replicate scores

for the five decision rules.

• Exact Agreement is the ‘hit rate’; that is, the percentage of examinees who

received the correct classification as Masters or Non-Masters. There is no

established value of acceptable levels of exact agreement across all

decision purposes. Subkoviak (1988) suggests 85% as the lower bound of

acceptable exact agreement for decisions with important outcomes. As the

percentage of Masters increases, which is more typical in mastery tests,

Subkoviak advises expecting higher levels of exact agreement.

• Kappa is a measure of agreement that has been adjusted for the likelihood

of obtaining the same classification purely by chance. It can be interpreted

as the additional contribution of true score in predicting replicate score

over and above the prediction that would be made based on chance (i.e.,

the overall proportion of passers). Similar to exact agreement, acceptable

levels for Kappa vary according to the decision context. Subkoviak (1988)

illustrates that Kappa decreases as the percentage of Masters increases. He

suggests that Kappa’s between 60% and 70% are acceptable for decisions

in which 50% of examinees are Masters, and adjusts the acceptable level of

Kappa to 65% when 90% are Masters.
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• Conditional Agreement for Masters is the percentage of Masters who are

correctly classified. Since the denominator for this percentage is the

marginal total, it is less affected by the overall percentage passing the rule.

• Conditional Agreement for Non-Masters is the percentage of Non-Masters

who are correctly classified. This percentage is also less affected by

differences in the percentage passing the rule.

• False Negatives estimate the percentage of all examinees who are

incorrectly classified as Non-Masters.

• False Positives estimate the percentage of all examinees who are

incorrectly classified as Masters.

The following measures of consistency compare decision outcomes for two

sets of replicate scores. As in the case of accuracy, measures that use the total number

of examinees in the denominator (exact agreement and percentage of examinees who

receive different decisions based on the two sets of replicate scores) are most affected

by differences in the percentage passing the overall decision rules.

• Exact Agreement is the percentage of examinees who receive the same

classification on both sets of replicate scores.

• Kappa estimates the agreement between classifications on two replicate

scores adjusting for the marginal distribution.

• Pass 1, Fail 2 is the percentage of examinees who passed on the basis of

one set of replicate scores, but not on the other. It is similar to the false

negative and false positive measure used to describe classification

accuracy.
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• Specific agreement for Passers is the number of examinees who pass the

decision rule on the basis of both sets of replicate scores divided by the

number who pass on either set of scores.

• Specific agreement for Failers is the number of examinees who fail the

decision rule on the basis of both sets of scores divided by the number who

fail on either set of scores.

Criteria for Comparing Measures of Agreement

Given the number of comparisons made possible by the large number of

conditions in this simulation study, and the computational intensity required to

calculate standard errors for each measure in each condition, a more general approach

was taken in characterizing differences between measures of agreement. Standard

errors estimated for the measures of agreement for individual tests were used to

estimate confidence intervals for each measure. Differences among the measures are

highlighted when they differ by more than four standard errors (analogous to non-

overlapping 95% confidence intervals). To facilitate the reading of results tables, the

decision rule label is shown in bold typeface if the decision shows an increase in

reliability across the conditions in the table. The decision rule label is shown in

italicized typeface if the decision shows a decrease in reliability. Note that measures

of false negatives, false positives, and Pass 1/Fail 2 show increased classification

reliability when the estimates decrease.

Results for the accuracy of classification as more tests are added to the

decision rule appear in Table 5.8.
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Table 5.8: Accuracy for One to Five Tests, COVAR6, 50%
Exact Agreement

ONE TWO THREE FOUR FIVE
Conjunctive 90.25 90.80 91.70 92.46 93.10
Complementary 90.25 90.84 91.78 92.57 93.17
Compensatory 90.25 92.21 93.38 94.09 94.56
Conj-Complem 90.25 91.17 91.02
Conj-Compens 90.25 93.61 94.06

Kappa
ONE TWO THREE FOUR FIVE

Conjunctive 80.50 79.71 79.02 78.34 77.84
Complementary 80.50 79.81 79.20 78.62 78.07
Compensatory 80.50 84.42 86.75 88.17 89.12
Conj-Complem 80.50 79.63 79.80
Conj-Compens 80.50 82.09 80.01

False Negatives
ONE TWO THREE FOUR FIVE

Conjunctive 4.87 5.12 4.95 4.70 4.45
Complementary 4.87 4.06 3.34 2.80 2.42
Compensatory 4.87 3.87 3.29 2.93 2.73
Conj-Complem 4.87 5.07 5.06
Conj-Compens 4.87 3.61 3.78

False Positives
ONE TWO THREE FOUR FIVE

Conjunctive 4.88 4.09 3.35 2.84 2.44
Complementary 4.88 5.10 4.88 4.63 4.41
Compensatory 4.88 3.92 3.34 2.99 2.72
Conj-Complem 4.88 3.77 3.91
Conj-Compens 4.88 2.78 2.16

Conditional Agreement for True Masters
ONE TWO THREE FOUR FIVE

Conjunctive 90.27 85.50 82.28 79.87 78.03
Complementary 90.27 93.73 95.37 96.35 96.96
Compensatory 90.27 92.27 93.43 94.15 94.56
Conj-Complem 90.27 84.38 85.06
Conj-Compens 90.27 84.73 80.06

Conditional Agreement for True Non-Masters
ONE TWO THREE FOUR FIVE

Conjunctive 90.24 93.69 95.35 96.30 96.93
Complementary 90.24 85.53 82.47 80.13 78.26
Compensatory 90.24 92.15 93.33 94.02 94.56
Conj-Complem 90.24 94.42 94.08
Conj-Compens 90.24 96.36 97.33
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Table 5.8 shows that, with the exception of the compensatory rule, different

patterns are found for various measures of agreement as the number of tests

incorporated into the decision rule increases. Exact agreement increases with the

addition of more tests for all decision rules, with the largest increase seen for the

compensatory rule (94.6%). Kappa, however, decreases consistently with the addition

of more tests for all but the two rules that incorporate a compensatory rule. The

addition of more tests decreases the percentage of false positives for all rules, but

variable effects are found for false negatives.

A clear picture emerges when considering measures of conditional agreement.

Once again the compensatory rule increases reliability for all decision rules. For

Masters, the conjunctive rule shows decreased classification reliability with the

addition of more tests, and the complementary rule shows increased reliability. The

reverse is seen for Non-Masters – the conjunctive rule shows increased reliability and

the complementary rule shows decreased reliability. The complex rules show similar

results to those for the simple conjunctive rule.

Measures of consistency show similar patterns to those for accuracy, but at

somewhat lower levels.
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Table 5.9: Consistency for One to Five Tests, COVAR6, 50%
Exact Agreement

ONE TWO THREE FOUR FIVE
Conjunctive 86.37 87.45 88.99 90.25 91.28
Complementary 86.37 87.42 89.03 90.30 91.31
Compensatory 86.37 89.06 90.53 91.61 92.36
Conj-Complem 86.37 88.17 87.91
Conj-Compens 86.37 91.24 92.26

Kappa
ONE TWO THREE FOUR FIVE

Conjunctive 72.74 72.13 71.60 71.10 70.77
Complementary 72.74 72.05 71.70 71.23 70.86
Compensatory 72.74 78.13 81.06 83.22 84.71
Conj-Complem 72.74 72.41 72.52
Conj-Compens 72.74 75.14 72.95

Pass Rep 1, Fail Rep 2
ONE TWO THREE FOUR FIVE

Conjunctive 6.82 6.30 5.51 4.89 4.38
Complementary 6.82 6.28 5.45 4.81 4.31
Compensatory 6.82 5.51 4.76 4.22 3.83
Conj-Complem 6.82 5.93 6.09
Conj-Compens 6.82 4.38 3.89

Specific Agreement for Passers
ONE TWO THREE FOUR FIVE

Conjunctive 86.37 81.66 79.07 77.31 76.10
Complementary 86.37 90.44 92.56 93.83 94.68
Compensatory 86.37 89.07 90.54 91.62 92.37
Conj-Complem 86.37 80.99 81.50
Conj-Compens 86.37 80.81 77.63

Specific Agreement for Failers
ONE TWO THREE FOUR FIVE

Conjunctive 86.37 90.46 92.53 93.79 94.67
Complementary 86.37 81.61 79.13 77.40 76.18
Compensatory 86.37 89.06 90.52 91.59 92.34
Conj-Complem 86.37 91.41 91.02
Conj-Compens 86.37 94.33 95.32
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Seventy Percent Passing Rate

The following tables present results for a passing criterion set to yield a 70%

passing rate for each individual test. This higher rate of passage is reflected in Tables

5.10 and 5.11. The conjunctive-compensatory rule yields the lowest passing rate

(39.3%) based on true score, compared to 18.9% in the corresponding 50% passing

rate condition.

Table 5.10: Percentage Passing Based on True Score, COVAR6, 70%
Number of Tests

ONE TWO THREE FOUR FIVE
Conjunctive 70.06 57.37 49.81 44.63 40.79
Complementary 70.06 82.76 87.95 90.73 92.45
Compensatory 70.06 72.17 73.03 73.52 73.79
Conj-Complem 70.06 54.99 56.33
Conj-Compens 70.06 45.23 39.32

Table 5.11: Percentage Passing Based on Two Replicate Scores, COVAR6, 70%
Number of Tests

ONE TWO THREE FOUR FIVE
Conjunctive 69.21 55.43 47.14 41.52 37.42
Complementary 69.21 82.98 88.55 91.48 93.28
Compensatory 69.21 71.59 72.59 73.15 73.50
Conj-Complem 69.21 52.80 55.43
Conj-Compens 69.21 43.42 36.41

Table 5.12 presents the estimated accuracy of decision rules in the 70%

passing condition. Whereas in the 50% condition exact agreement increased with the

addition of more tests in all five rules, now there are differences in the rules in regard

to the impact of adding more tests. The simple conjunctive rule, and the two complex

rules that incorporate a conjunctive element, show stable or slight decreases in exact

agreement as they incorporate more tests. The complementary and compensatory

rules show increased exact agreement. Conditional measures show consistent results

with those found in the 50% condition.
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Table 5.12: Accuracy for One to Five Tests, COVAR6, 70%
Exact Agreement

ONE TWO THREE FOUR FIVE
Conjunctive 91.41 90.00 89.79 89.84 90.05
Complementary 91.41 93.72 95.15 96.03 96.65
Compensatory 91.41 93.37 94.46 95.08 95.55
Conj-Complem 91.41 90.02 89.57
Conj-Compens 91.41 91.47 91.05

Kappa
ONE TWO THREE FOUR FIVE

Conjunctive 79.69 79.68 79.57 79.31 79.14
Complementary 79.69 77.89 76.61 75.54 74.76
Compensatory 79.69 83.61 86.02 87.43 88.53
Conj-Complem 79.69 79.93 78.86
Conj-Compens 79.69 82.71 81.00

False Negatives
ONE TWO THREE FOUR FIVE

Conjunctive 4.73 5.97 6.44 6.63 6.66
Complementary 4.73 3.03 2.13 1.61 1.26
Compensatory 4.73 3.60 2.99 2.64 2.37
Conj-Complem 4.73 6.08 5.66
Conj-Compens 4.73 5.17 5.93

False Positives
ONE TWO THREE FOUR FIVE

Conjunctive 3.86 4.03 3.77 3.53 3.29
Complementary 3.86 3.25 2.73 2.36 2.08
Compensatory 3.86 3.03 2.55 2.27 2.08
Conj-Complem 3.86 3.90 4.76
Conj-Compens 3.86 3.36 3.02

Conditional Agreement for True Masters
ONE TWO THREE FOUR FIVE

Conjunctive 93.24 89.59 87.07 85.14 83.67
Complementary 93.24 96.34 97.58 98.23 98.63
Compensatory 93.24 95.01 95.91 96.40 96.79
Conj-Complem 93.24 88.94 89.95
Conj-Compens 93.24 88.56 84.92

Conditional Agreement for True Non-Masters
ONE TWO THREE FOUR FIVE

Conjunctive 87.11 90.55 92.48 93.63 94.45
Complementary 87.11 81.16 77.38 74.56 72.39
Compensatory 87.11 89.13 90.56 91.42 92.05
Conj-Complem 87.11 91.35 89.09
Conj-Compens 87.11 93.86 95.02
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For the 70% passing rate condition, measures of consistency show similar

results to those for accuracy.

Table 5.13: Consistency for One to Five Tests, COVAR6, 70%
Exact Agreement

ONE TWO THREE FOUR FIVE
Conjunctive 87.89 86.36 86.37 86.78 87.28
Complementary 87.89 91.41 93.50 94.88 95.83
Compensatory 87.89 90.69 92.16 93.04 93.78
Conj-Complem 87.89 86.55 86.36
Conj-Compens 87.89 88.28 88.26

Kappa
ONE TWO THREE FOUR FIVE

Conjunctive 71.60 72.39 72.66 72.78 72.85
Complementary 71.60 69.57 67.93 67.11 66.72
Compensatory 71.60 77.11 80.30 82.29 84.03
Conj-Complem 71.60 73.01 72.39
Conj-Compens 71.60 76.15 74.65

Pass Rep 1, Fail Rep 2
ONE TWO THREE FOUR FIVE

Conjunctive 6.04 6.83 6.79 6.60 6.36
Complementary 6.04 4.28 3.24 2.55 2.07
Compensatory 6.04 4.66 3.92 3.47 3.10
Conj-Complem 6.04 6.73 6.83
Conj-Compens 6.04 5.85 5.89

Specific Agreement for Passers
ONE TWO THREE FOUR FIVE

Conjunctive 91.25 87.69 85.55 84.09 83.01
Complementary 91.25 94.83 96.33 97.20 97.77
Compensatory 91.25 93.50 94.60 95.25 95.77
Conj-Complem 91.25 87.26 87.69
Conj-Compens 91.25 86.50 83.87

Specific Agreement for Failers
ONE TWO THREE FOUR FIVE

Conjunctive 80.35 84.70 87.10 88.70 89.84
Complementary 80.35 74.75 71.60 69.91 68.95
Compensatory 80.35 83.61 85.70 87.04 88.26
Conj-Complem 80.35 85.75 84.70
Conj-Compens 80.35 89.64 90.78
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Summary of Results for Research Question 1

A summary of the overall trends in measures of classification

reliability for the 50% and 70% conditions appears in Tables 5.14 and 5.15. These

tables highlight the similarity of results for conditional measures of classification

reliability across the five decision rules in contrast to those based on other measures.

The addition of more tests to the decision rule has a large impact on the

percentage of examinees who pass all decision rules, except the compensatory rule.

For the conditions in which only 50% of examinees pass each individual test, only

20% pass the five-test conjunctive rule. In contrast, the five test complementary rule

yields an 80% passing rate. Only the compensatory rule maintains the same passing

rate as more tests are added to the decision rule. As expected, the addition of a

complementary component to the conjunctive rule raises the five-test passing rate

(34%), but the addition of the compensatory rule to the conjunctive rule slightly

decreases the passing rate (19%).

Given the variability in results for different measures of accuracy and

consistency across different types of decision rules, what can be said about the effect

of adding more tests to decision rules?

• Measures of accuracy and consistency provide similar results for most, but

not all, conditions.

• The compensatory rule shows increased classification reliability for all

measures and all decision rules with the addition of more tests. In the five-

test rule, the percentage of agreement is 95% (compared to 90% for one

test).
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• For Masters, adding more tests decreases classification reliability when

combined in a conjunctive manner, and the same is true when

complementary and compensatory rules are used in combination with the

conjunctive rule. The opposite is true for the complementary rule, for

which classification reliability increases with the addition of more tests.

The complementary rule yields the highest agreement for Masters ( 97%).

The conjunctive rule yields the lowest agreement for Masters (78%).

• For Non-Masters, classification reliability shows an opposite pattern of

results to that for Masters. The addition of more tests increases reliability

in the conjunctive rule and complex rules that include the conjunctive rule,

but decreases reliability in the complementary rule. The conjunctive rule,

and the complex conjunctive-compensatory rule, yield the highest

agreement for Non-Masters at 97%. The complementary rule yields the

lowest agreement for Non-Masters at (78%).

• The impact of adding more tests shows a similar pattern of results for both

levels of test difficulty, but the level of accuracy differs by test difficulty

and number of tests. For a single test, the easier test (70% passing) has

higher accuracy for overall agreement and conditional agreement for

Masters than the more difficult test (50% passing), but lower accuracy for

Non-Masters. For the five-test rules, similar results are found for the

conditional comparisons, but exact agreement is higher for rules with a

conjunctive element on the more difficult test, and lower for the other

rules.
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Table 5.14: Effect of Adding More Tests on Classification Reliability, COVAR6, 50%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail
2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive H H L L L L H H ~ H H
Complementary H H L L H H L L H H H
Compensatory H H H H H H H H H H H
Conj-Complem H H L ~ L L H H L H H
Conj-Compens H H ~ ~ L L H H H H H

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.

Table 5.15: Effect of Adding More Tests on Classification Reliability, COVAR6, 70%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail
2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive L L L H L L H H L H ~
Complementary H H L L H H L L H H H
Compensatory H H H H H H H H H H H
Conj-Complem L L ~ H L L H H ~ L L
Conj-Compens L H H H L L H H L H H

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.
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Research Question 2: Varying the Covariance Among Tests

For this question, results for the five-test condition for each decision rule are

compared for COVAR6 and COVAR9 to investigate the effect of the strength of

relationship among tests on classification reliability.

Fifty Percent Passing Rate

The percentage of examinees who passed each rule is shown in Table 5.16.

The compensatory rule shows similar passing rates for each level of covariance, as

was also the case when the number of tests was increased in Research Question 1. For

the conjunctive rule the passing rate based on true score increases with higher

covariance from 20.3% to 35.3%, whereas the passing rate decreases in the similar

comparison for the complementary rule (from 79.7% to 64.7%).

Table 5.16: Passing Rate for COVAR6 and COVAR9, 50%, Five Tests
COVAR6, 50% COVAR9, 50%

TRUE
SCORE REPLICATE

TRUE
SCORE

REPLICATE

Conjunctive 20.27 18.26 35.25 30.05
Complementary 79.74 81.72 64.67 69.91
Compensatory 50.12 50.11 49.88 49.88
Conj-Complem 33.88 32.73 42.13 39.33
Conj-Compens 18.94 17.33 29.36 27.13

Table 5.17 shows that the effect of increasing covariance on exact agreement,

false negatives, and false positives depends on the decision rule. Kappa, and the

conditional measures of agreement increase for all decision rules as covariance

increases.
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Table 5.17 : Accuracy for COVAR6 and COVAR9, Five Tests, 50%
COVAR6 COVAR9

Exact Agreement
Conjunctive 93.10 91.65
Complementary 93.17 91.60
Compensatory 94.56 95.33
Conj-Complem 91.02 91.43
Conj-Compens 94.06 94.55

Kappa
Conjunctive 77.84 81.08
Complementary 78.07 80.98
Compensatory 89.12 90.65
Conj-Complem 79.80 82.26
Conj-Compens 80.01 86.57

False Negatives
Conjunctive 4.45 6.77
Complementary 2.42 1.58
Compensatory 2.73 2.33
Conj-Complem 5.06 5.68
Conj-Compens 3.78 3.84

False Positives
Conjunctive 2.44 1.57
Complementary 4.41 6.82
Compensatory 2.72 2.34
Conj-Complem 3.91 2.89
Conj-Compens 2.16 1.61

Conditional Agreement|Masters
Conjunctive 78.03 80.79
Complementary 96.96 97.56
Compensatory 94.56 95.32
Conj-Complem 85.06 86.51
Conj-Compens 80.06 86.93

Conditional Agreement|Non-Masters
Conjunctive 96.93 97.57
Complementary 78.26 80.70
Compensatory 94.56 95.33
Conj-Complem 94.08 95.01
Conj-Compens 97.33 97.72

Although exact agreement and kappa show similar results for measures of

consistency to those found for accuracy, conditional measures of agreement show

different effects. The conjunctive and complementary rules exhibit opposite patterns.
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Specific agreement for Passers increases in the conjunctive rule, but decreases in the

complementary rule. The opposite pattern is found for Failers.

Table 5.18: Consistency for COVAR6 and COVAR9, Five Tests, 50%
COVAR6 COVAR9

Exact Agreement
Conjunctive 91.28 90.46
Complementary 91.31 90.46
Compensatory 92.36 93.42
Conj-Complem 87.91 88.67
Conj-Compens 92.26 92.72

Kappa
Conjunctive 70.77 77.30
Complementary 70.86 77.33
Compens 84.71 86.84
Conj-Complem 72.52 76.26
Conj-Compens 72.95 81.59

Pass Rep 1, Fail Rep 2
Conjunctive 4.34 4.79
Complementary 4.31 4.80
Compensatory 3.82 3.27
Conj-Complem 6.09 5.67
Conj-Compens 3.89 3.64

Specific Agreement for Passers
Conjunctive 76.10 84.11
Complementary 94.68 93.17
Compensatory 92.37 93.41
Conj-Complem 81.50 85.59
Conj-Compens 77.63 86.58

Specific Agreement for Failers
Conjunctive 94.67 93.18
Complementary 76.18 84.15
Compensatory 92.34 93.44
Conj-Complem 91.02 90.66
Conj-Compens 95.32 95.01
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Seventy Percent Passing Rate

Results comparing two levels of covariance with a 70% passing rate are

similar to those for the 50% passing rate, but with more examinees passing each of

the decision rules.

Table 5.19 : Passing Rates for COVAR6 and COVAR9, Five Tests, 70%
COVAR6, 70% COVAR9, 70%

TRUE OBSERVED TRUE OBSERVED
Conjunctive 40.79 37.42 56.33 50.13
Complementary 92.45 93.28 82.05 85.32

Compensatory 73.79 73.50 70.72 70.54
Conj-Complem 56.33 55.43 63.14 59.78
Conj-Compens 39.32 36.41 50.06 46.99

Results for classification reliability are shown in Tables 5.20 and 5.21. The

pattern of results is very similar to those for the 50% passing rate, but at generally

higher levels of agreement.
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Table 5.20: Accuracy for COVAR6 and COVAR9, Five Tests, 70%
COVAR6 COVAR9

Exact Agreement
Conjunctive 90.05 90.48
Complementary 96.65 94.43
Compensatory 95.55 95.95
Conj-Complem 89.57 91.31
Conj-Compens 91.05 93.41

Kappa
Conjunctive 79.14 80.95
Complementary 74.76 79.64
Compensatory 88.53 90.24
Conj-Complem 78.86 81.67
Conj-Compens 81.00 86.82

False Negatives
Conjunctive 6.66 7.86
Complementary 1.26 1.15
Compensatory 2.37 2.11
Conj-Complem 5.66 6.03
Conj-Compens 5.93 4.83

False Positives
Conjunctive 3.29 1.66
Complementary 2.08 4.42
Compensatory 2.08 1.93
Conj-Complem 4.76 2.67
Conj-Compens 3.02 1.76

Conditional Agreement|Masters
Conjunctive 83.67 86.05
Complementary 98.63 98.60
Compensatory 96.79 97.01
Conj-Complem 89.95 90.45
Conj-Compens 84.92 90.34

Conditional Agreement|Non-Masters
Conjunctive 94.45 96.20
Complementary 72.39 75.37
Compensatory 92.05 93.40
Conj-Complem 89.09 92.77
Conj-Compens 95.02 96.48
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Table 5.21 : Consistency for COVAR6 and COVAR9, Five Tests, 70%
COVAR6 COVAR9

Exact Agreement
Conjunctive 87.28 88.97
Complementary 95.83 93.84
Compensatory 93.78 94.28
Conj-Complem 86.36 88.43
Conj-Compens 88.26 91.21

Kappa
Conjunctive 72.85 77.94
Complementary 66.72 75.42
Compens 84.03 86.23
Conj-Complem 72.39 75.95
Conj-Compens 74.65 82.35

Pass Rep 1, Fail Rep 2
Conjunctive 6.36 5.51
Complementary 2.07 3.08
Compensatory 3.10 2.87
Conj-Complem 6.83 5.80
Conj-Compens 5.89 4.37

Specific Agreement for Passers
Conjunctive 83.01 89.00
Complementary 97.77 96.39
Compensatory 95.77 95.94
Conj-Complem 87.69 90.32
Conj-Compens 83.87 90.65

Specific Agreement for Failers
Conjunctive 89.84 88.94
Complementary 68.95 79.02
Compensatory 88.26 90.29
Conj-Complem 84.70 85.63
Conj-Compens 90.78 91.70
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Summary of Results for Research Question 2

Findings for this research question yield less consistent patterns than those for

Research Question 1 (Tables 5.22 and 5.23). One consistent result, however, is that

the compensatory rule shows increased classification reliability and consistency for

all rules.

The relationship between covariance and the percentage passing varies

according to the decision rule. Whereas for the conjunctive rules, the percentage who

pass is higher in the higher covariance condition, the reverse is found for the

complementary rule.

• For comparisons of accuracy, measures of conditional agreement for both

Masters and Non-Masters increase for all but the complementary rule (70%

passing).

• For comparisons of consistency, measures of conditional agreement

increase for Passers in the conjunctive rule, but decrease in the

complementary rule. The opposite is true for Failers, in which measures of

agreement decrease in the conjunctive rule but increase in the

complementary rule.

• The pattern of results for the 70% passing rate are generally similar to those

for the 50% passing rate in regard to accuracy. An exception is found for

measures of consistency for Failers, which shows opposite results for the

complex conjunctive rules based on test difficulty.

• As was the case when considering rules based on additional tests, test

difficulty has differential impact on exact agreement for the five decision
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rules, but similar results for conditional measures of agreement. For

COVAR9, conditional agreement for Masters is lower for the more difficult

test than the easier test, and conditional agreement for Non-Masters is

higher on the more difficult test.
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Table 5.22: Effect of Increasing Covariance, Five Tests, 50%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail 2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive L L H H H H H L L H L
Complementary L L H H H L H H H L L
Compensatory H H H H H H H H H H H
Conj-Complem H H H H H H H L L H H
Conj-Compens H H H H H H H L ~ H H

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.

Table 5.23: Effect of Increasing Covariance, Five Tests, 70%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail 2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive H H H H H H H L L H H
Complementary L L H H L L H H ~ L L
Compensatory H H H H H H H H H H H
Conj-Complem H H H H H H H H L H H
Conj-Compens H H H H H H H H H H H

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.



82

Research Question 3: Allowing Multiple Opportunities to Pass

The third research question investigates the effect of allowing examinees

multiple attempts to pass each of five tests on the classification reliability of the five

decision rules. The assumption is made that true score remains the same across all

attempts. Results are presented first for the conditions in which 50% of examinees

pass each individual test, and then for conditions in which 70% pass each individual

test.

Fifty Percent Passing Rate

The percentage of examinees who passed on the basis of true score, as well as

on the basis of replicate scores for one, two, or three attempts is shown in Table 5.24.

As expected, for each of the five rules the percentage passing increases with each

additional attempt. This is the case even for the compensatory rule which did not

show increases in the percentage passing when the number of tests and the covariance

was increased.

Table 5.24: Percentage Passing Multiple Attempts, COVAR6, Five Tests, 50%
REPLICATE SCORE

TRUE
SCORE

ONE
ATTEMPT

TWO
ATTEMPTS

THREE
ATTEMPTS

Conjunctive 20.27 18.26 24.70 28.28
Complementary 79.74 81.72 86.10 88.06
Compensatory 50.12 50.11 58.56 62.67
Conj-Complem 33.88 32.73 40.21 44.14
Conj-Compens 18.94 17.33 23.60 27.11

The accuracy of classification reliability for each number of attempts is shown

in Table 5.25. The results for each type of measure are quite consistent for all

decision rules. Conditional agreement for Masters, as well as the percentage of false
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positives, increases with more attempts; almost all other measures of reliability

decrease for all the decision rules.
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Table 5.25 : Accuracy For Multiple Attempts, COVAR6, Five Tests, 50%
Number of Attempts

Exact Agreement
ONE TWO THREE

Conjunctive 93.10 92.85 91.01
Complementary 93.20 92.53 91.35
Compensatory 94.56 91.26 87.44
Conj-Complem 91.02 90.68 88.67
Conj-Compens 94.06 93.27 91.13

Kappa
ONE TWO THREE

Conjunctive 77.84 79.54 75.76
Complementary 78.07 73.82 68.40
Compensatory 89.12 82.52 74.87
Conj-Complem 79.80 80.09 76.44
Conj-Compens 80.01 79.97 75.22

False Negatives
ONE TWO THREE

Conjunctive 4.45 1.36 0.49
Complementary 2.42 0.55 0.16
Compensatory 2.73 0.15 0.01
Conj-Complem 5.06 1.50 0.54
Conj-Compens 3.78 1.03 0.35

False Positives
ONE TWO THREE

Conjunctive 2.44 5.79 8.50
Complementary 4.41 6.92 8.48
Compensatory 2.72 8.59 12.55
Conj-Complem 3.91 7.83 10.80
Conj-Compens 2.16 5.70 8.52

Conditional Agreement|Masters
ONE TWO THREE

Conjunctive 78.03 93.28 97.58
Complementary 96.96 99.31 99.80
Compensatory 94.56 99.70 99.99
Conj-Complem 85.06 95.57 98.41
Conj-Compens 80.06 94.54 98.15

Conditional Agreement|Non-Masters
ONE TWO THREE

Conjunctive 96.93 92.74 89.34
Complementary 78.26 65.86 58.13
Compensatory 94.56 82.79 74.84
Conj-Complem 94.08 88.16 83.67
Conj-Compens 97.33 92.97 89.49
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The consistency of classification shows a different pattern of results to those

for accuracy. Kappa and specific agreement for Passers increases for all decision

rules with additional attempts, but specific agreement for Failers decreases for the

conjunctive rule and increases for complementary and compensatory rules.

Table 5.26 : Consistency for Multiple Attempts, COVAR6, Five Tests, 50%
Number of Attempts

Exact Agreement
ONE TWO THREE

Conjunctive 91.28 91.15 91.32
Complementary 91.31 93.77 94.84
Compensatory 92.36 93.86 94.62
Conj-Complem 87.91 89.03 89.78
Conj-Compens 92.26 92.13 92.29

Kappa
ONE TWO THREE

Conjunctive 70.77 76.23 78.61
Complementary 70.86 73.99 75.42
Compensatory 84.71 87.34 88.51
Conj-Complem 72.52 77.18 79.27
Conj-Compens 72.95 78.19 80.52

Pass Rep 1, Fail Rep 2
ONE TWO THREE

Conjunctive 4.34 4.40 4.29
Complementary 4.31 3.12 2.57
Compensatory 3.82 3.08 2.69
Conj-Complem 6.09 5.51 5.12
Conj-Compens 3.89 3.91 3.82

Specific Agreement for Passers

ONE TWO THREE
Conjunctive 76.10 82.11 84.67
Complementary 94.68 96.38 97.07
Compensatory 92.37 94.75 95.71
Conj-Complem 81.50 86.35 88.42
Conj-Compens 77.63 83.34 85.80

Specific Agreement for Failers
ONE TWO THREE

Conjunctive 94.67 94.12 93.94
Complementary 76.18 77.61 78.35
Compensatory 92.34 92.59 92.80
Conj-Complem 91.02 90.83 90.85
Conj-Compens 95.32 94.85 94.71
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Seventy Percent Passing Rate

When the passing criterion is lowered to produce a 70% passing rate, the

percentage passing with multiple attempts is even higher than that found for the 50%

passing rate. In the complementary rule, 96% pass when allowed three attempts,

compared with 88% at one attempt.

Table 5.27: Percentage Passing Multiple Attempts, COVAR6, Five Tests, 70%
OBSERVED SCORE

TRUE
SCORE

ONE
ATTEMPT

TWO
ATTEMPTS

THREE
ATTEMPTS

Conjunctive 40.79 37.42 46.26 50.71
Complementary 92.45 93.28 95.37 96.22
Compensatory 73.79 73.50 80.11 83.01
Conj-Complem 56.33 55.43 62.28 66.11
Conj-Compens 39.32 36.41 45.15 49.62

Results in Table 5.28 show a similar pattern for the accuracy of classifications

to that seen for the 50% passing rate condition. The reliability of classification is

particularly high for conditional agreement for Masters, for which the compensatory

rule yields an agreement of 99.99%.
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Table 5.28: Accuracy For Multiple Attempts, COVAR6, Five Tests, 70%
Number of Attempts

Exact Agreement
ONE TWO THREE

Conjunctive 90.05 90.66 88.72
Complementary 96.65 96.55 96.09
Compensatory 95.55 93.42 90.78
Conj-Complem 89.57 90.66 89.06
Conj-Compens 91.05 90.99 88.61

Kappa
ONE TWO THREE

Conjunctive 79.14 81.07 77.50
Complementary 74.76 69.92 63.62
Compensatory 88.53 81.55 73.10
Conj-Complem 78.86 80.72 77.19
Conj-Compens 81.00 81.60 77.18

False Negatives
ONE TWO THREE

Conjunctive 6.66 1.93 0.68
Complementary 1.26 0.27 0.08
Compensatory 2.37 0.13 0.00
Conj-Complem 5.66 1.69 0.58
Conj-Compens 5.93 1.59 0.54

False Positives
ONE TWO THREE

Conjunctive 3.29 7.40 10.60
Complementary 2.08 3.19 3.84
Compensatory 2.08 6.45 9.22
Conj-Complem 4.76 7.65 10.36
Conj-Compens 3.02 7.42 10.85

Conditional Agreement|Masters
ONE TWO THREE

Conjunctive 83.67 95.26 98.34
Complementary 98.63 99.71 99.92
Compensatory 96.79 99.82 99.99
Conj-Complem 89.95 96.99 98.97
Conj-Compens 84.92 95.96 98.62

Conditional Agreement|Non-Masters
ONE TWO THREE

Conjunctive 94.45 87.50 82.09
Complementary 72.39 57.79 49.13
Compensatory 92.05 75.39 64.82
Conj-Complem 89.09 82.49 76.28
Conj-Compens 95.02 87.77 82.12
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In contrast, the pattern for consistency in classification reliability is quite

different than that for accuracy. With the exception of specific agreement for Failers,

all measures showed increased classification reliability.

Table 5.29: Consistency for Multiple Attempts, COVAR6, Five Tests, 70%
Number of Attempts

Exact Agreement
ONE TWO THREE

Conjunctive 87.28 88.69 89.66
Complementary 95.83 97.29 97.88
Compensatory 93.78 95.58 96.37
Conj-Complem 86.36 89.17 90.49
Conj-Compens 88.26 89.57 90.48

Kappa
ONE TWO THREE

Conjunctive 72.85 77.25 79.31
Complementary 66.72 69.29 70.81
Compensatory 84.03 86.13 87.13
Conj-Complem 72.39 76.95 78.80
Conj-Compens 74.65 78.93 80.97

Pass Rep 1, Fail Rep 2
ONE TWO THREE

Conjunctive 6.36 5.67 5.20
Complementary 2.07 1.37 1.06
Compensatory 3.10 2.21 1.81
Conj-Complem 6.83 5.43 4.79
Conj-Compens 5.89 5.21 4.79

Specific Agreement for Passers

ONE TWO THREE
Conjunctive 83.01 87.77 89.79
Complementary 97.77 98.58 98.90
Compensatory 95.77 97.24 97.81
Conj-Complem 87.69 91.30 92.81
Conj-Compens 83.87 88.45 90.40

Specific Agreement for Failers
ONE TWO THREE

Conjunctive 89.84 89.48 89.51
Complementary 68.95 70.71 71.92
Compensatory 88.26 88.88 89.32
Conj-Complem 84.70 85.65 85.99
Conj-Compens 90.78 90.49 90.56
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Summary of Results for Research Question 3

As expected, as more opportunities are provided for retaking tests, more

examinees pass the decision rule. The passing rate is even higher for complex rules as

more students pass each individual test. However, the passing rate does have a

differential effect on the accuracy and consistency of classifications.

• For accuracy, adding more attempts to pass increases measures of

conditional agreement for Masters for all decision rules for both passing

rates. The opposite is found for Non-Masters, for which conditional

agreement and false positives decrease.

• For consistency, a different pattern is seen for the reliability of

classifications in the 70% passing rate conditions to that in the 50% passing

rate conditions. In the 70% passing condition all measures (except one)

show increases with multiple attempts.

• Test difficulty shows similar effects as those found in Research Questions

1 and 2, with the more difficult test showing lower accuracy for Masters,

and higher accuracy for Non-Masters when candidates are given multiple

opportunities to pass.

• Multiple attempts results in the highest classification reliability found in

any of the simulation conditions – 99.99% for conditional agreement for

Masters. It also results in the highest rate of false positives and the lowest

rate of false negatives. In the compensatory rule with a 50% passing rate,

12.5% of examinees are classified as false positives and 0.01% are

classified as false negatives.
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Table 5.30: Effect of Multiple Attempts to Pass, COVAR6, Five Tests, 50%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail 2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive L ~ ~ H H H L L H L ~
Complementary L H L H H H L H H L H
Compensatory L H L H H H L H H L H
Conj-Complem L H ~ H H H L L H L H
Conj-Compens L ~ L H H H L L H L ~

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.

Table 5.31: Effect of Multiple Attempts to Pass, COVAR6, Five Tests, 70%

Exact
Agreement

Kappa Conditional
Agreement|Master*

Conditional
Agreement|Non-

Master*

False
Negative**

False
Positive**

Pass 1/
Fail 2**

ACC CON ACC CON ACC CON ACC CON ACC ACC CON
Conjunctive L H ~ H H H L L H L H
Complementary L H L H H H L H H L H
Compensatory L H L H H H L H H L H
Conj-Complem ~ H ~ H H H L H H L H
Conj-Compens L H ~ H H H L L H L H

H indicates increased reliability; L indicates decreased reliability; ~ indicates no or mixed effect
*For CON, this column indicates Specific Agreement for Passers and Failers respectively.
**Higher reliability is associated with lower percentage of false negatives, false positives, and Pass 1/Fail 2.
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Overview of Simulation Results

Simulation results for Research Questions 1, 2, and 3 reveal both expected and

unexpected findings. Results for individual tests, and for passing rates, perform as

expected and provide evidence that the simulation method is a valid approach to the

estimation of classification reliability. The consistency of findings with other studies

of individual tests lends support to the viability of the simulation method for

investigating questions about multiple measures and complex decision rules. The

simulation method is particularly valuable in its ability to illustrate the different

effects that characteristics of tests and decision rules have on accuracy and

consistency. Overall, results for classification reliability are not always intuitive,

which offers support to the value of structuring simulations to investigate various

decision rules, test characteristics, and examinee populations.

One particular contribution of this study is the presentation of a wide variety

of measures of agreement. Previous studies have generally used measures of exact

agreement, and sometimes Kappa, to characterize classification reliability. Although

the use of fewer measures would simplify the interpretation of results, it also obscures

an important finding of this study –factors such as number of tests, covariance, and

multiple attempts may have differential effects on different measures of agreement.

Some may suggest that it is desirable to summarize agreement using a single measure,

and the literature cited previously illustrates the debate surrounding use of exact

agreement versus Kappa to describe such agreement. Cicchetti and Feinstein (1990)

question the desirability of searching for a single measure of agreement. Findings

from this study provide support for their viewpoint – the use of a single index would
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result in quite different interpretations of the results. Some decision rules provide

higher accuracy and consistency for students who should pass, and others are more

accurate for students who should fail. Rather than viewing this phenomenon as a

problem to be overcome, researchers and decision makers need to appreciate this

distinction and consider its implications when structuring decision rules. There may

be situations in which it is advantageous to use a rule that provides greater accuracy

for particular subgroups.

Simulation results for individual tests are similar to those found in previous

analytic and simulation studies (Bradlow & Wainer, 1998; Klein & Orlando, 2000;

Rudner, 2001; Subkoviak, 1988). For a moderately difficult test (50% passing rate)

with high reliability (i.e, r = .90), the same decision would be made based on two

parallel tests for 86% of examinees. This percentage increases to 88% for an easier

test in which 70% of examinees pass. If the decision could be based on the

examinee’s true score, the corresponding percentages would increase to 90% and

91% respectively. These levels of reliability serve as the benchmark for the

comparisons of the effects of increasing number of tests, covariance, and

opportunities to retest. In an important decision, misclassification of 12% of the

examinees may not be acceptable. In cases of lower test reliability and therefore

lower classification reliability, the need to improve classification reliability becomes

that much more important.

In the midst of conflicting findings among the many conditions in the

simulation, one clear pattern emerges. The compensatory rule provides, in almost

every condition, the most accurate and consistent classification. This occurs because
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test errors counterbalance each other in the compensatory rule due to the additive

method of combining scores, in contrast to the conjunctive and disjunctive rules in

which errors compound. The effect of this compounding varies according to whether

we are interested in classification reliability for Masters and Non-Masters.

In the testing world there are strong recommendations that important decisions

should be based on multiple measures. With the exception of the compensatory rule,

findings from conditions that increase the number of tests in the decision rule show

nuanced results. Measures of exact agreement increase for all types of decision rules.

However, when we look at the effect for Masters and Non-Masters, we see that

increasing the number of tests increases agreement for Masters when the rule is

complementary or compensatory, but not with any rule that incorporates a

conjunctive element. The opposite is true for Non-Masters – increasing the number of

tests increases agreement for the conjunctive rule, but not the complementary rule.

Increasing the number of tests can result in very high levels of classification accuracy

for some rules – over 97% for some measures of agreement.

It is reasonable to believe that increasing the covariance between tests should

increase classification reliability. Results from the simulation studies are quite mixed

except for the compensatory rule, and differ according to the difficulty of the test.

Classification accuracy is higher for both Masters and Non-Masters, but consistency

shows opposite results for Masters versus Non-Masters. One curious finding is that

the passing rate is actually lower with higher covariance between tests in the

complementary rule than in the lower covariance condition. This suggests that

variability among tests plays an important role in complementary decisions, and
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lower covariance relates to higher variability among the scores for an examinee

across the five tests.

Allowing students to retest is a commonly used strategy in practical testing

situations to increase classification reliability. The simulation results clearly illustrate

the benefits and liabilities of allowing examinees to retest. With each retest, the

classification reliability for the overall group and for Non-Masters declines, but

increases for Masters. The pattern of false negatives and positives supports this

finding – false negatives increase and false positives decrease for every rule. The

percentages of classification reliability become quite high, with over 97% agreement

for Masters for all decision rules given three attempts. This increased accuracy for

Masters comes with a price – false positive rates also increase, with over 12% of

examinees identified as Masters who in fact are Non-Masters.

Test difficulty shows consistent effects across all three research questions.

The easier test in which 70% passed each test shows higher accuracy for Non-

Masters, and the harder test (50% passing rate for each test) shows higher accuracy

for Masters. The impact of test difficulty for the overall measure of exact agreement

is different based on the decision rule utilized: the difficult test has higher accuracy

for all rules utilizing a conjunctive element, but the opposite is true for the

complementary and compensatory rule.

Simulation results in this study also provide a comparison between measures

of accuracy and consistency. Although in most conditions the pattern of results is

similar for accuracy and consistency, when multiple attempts are permitted results for

exact agreement and kappa are quite different according to whether accuracy or
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consistency is assessed. This is an example of the unpredictable effect of highly

complex rules, since in the multiple attempt conditions a complementary rule is

layered on top of all the rules. If only the consistency measures were available, the

conclusion would be reached that increased opportunities to retest improves all types

of classification consistency. Measures of accuracy, however, show lower agreement

for the overall group and for Non-Masters.

In summary, results from the simulation study confirm the value of the

approach for exploring classification accuracy and reliability for complex decision

rules under a variety of testing conditions since important determinants of

classification reliability may combine to produce unexpected outcomes. Major

findings have been highlighted, but there are many more comparisons that can be

made based on the tables presented in this chapter.

Given the recommendation to use simulation methods to explore the

classification reliability of complex decisions, it is valuable to explore the application

of the method to an actual testing scenario. Chapter 6 provides just such an

application to data obtained from the GED Testing Service.
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Chapter 6: Illustration using GED Test Data

The fourth research question investigates the application of the general

method explored through the simulation approach in Chapter 5 to a real dataset. The

utility of the approach is evaluated by comparing classification reliability estimated

by the simulation method with that obtained using actual data for approximately

100,000 examinees who took Form G of the General Educational Development

(GED) Tests in 2004.

Research Question 4: How well does the suggested simulation method for

estimating classification reliability of complex decisions estimate the classification

reliability that would be obtained if actual data for two test administrations could be

compared?

The question of classification consistency is best answered through the

administration of two parallel test forms to each examinee. For practical reasons,

obtaining parallel form data for an operational test is usually not feasible. An

alternative approach is to create two, half-tests from a single administration as a

proxy for parallel form data. Such an approach was used in the Livingston and Lewis

(1995) study to evaluate their method for calculating the classification reliability for a

test based on one administration, and by Subkoviak in a 1988 article exploring

practical guidelines for considering the reliability of mastery tests.

Use of split-half scores requires item-level data, which is frequently not

readily available to researchers. The simulation method presents a practical

alternative to the split-half approach because it can be implemented based on

information easily obtained for a set of tests: descriptive statistics, test reliability, and
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the covariance matrix. It also represents an advantage over the split-half method

because it creates the opportunity to investigate decision accuracy as well as

consistency. In this chapter, a comparison will be provided of the classification

consistency estimated by creating two, split-half scores to those obtained by

simulating scores through the method illustrated in Chapter 5. The empirical baseline

will be compared directly with the model-based approach as it is applied to a half-

length GED. If substantial agreement is found, we can apply the model-based

approach to the full-length GED with confidence. The accuracy and consistency of

the GED passing rule will be explored as well.

Description of GED Test Battery

Over 700,000 examinees take the GED Test Battery in the U.S. states and

affiliated territories, Canadian provinces, military installations, and prisons as a

means of earning a high school equivalency credential. The battery includes five

tests: Language Arts, Reading; Language Arts, Writing; Mathematics, Social Studies,

and Science. All tests are comprised of multiple-choice items, with the exception of

Language Arts, Writing which includes both multiple-choice items and an essay

scored using a 4-point rating scale. The multiple-choice and essay scores are

combined to yield a single score for the Writing test. GED candidates must earn a

minimum scale score of 410 on each test, and an overall average scale score of 450,

to be awarded a high school equivalency credential. The GED Tests are normed on

graduating high-school seniors, and the passing criterion for each test is set so that

40% of graduating high-school seniors would not pass each GED Test.
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The entire battery of tests requires about 7 ½ hours to complete, and not all

candidates take all of the tests at one sitting. Candidates are also given multiple

opportunities to pass each test, and the number of attempts permitted varies

depending on the locale in which the candidate tests. For the current study, only data

from one attempt for candidates who took all five tests are included.

Method

A dataset containing item-level responses for 110,991 candidates who took all

five GED tests was obtained from the GED Testing Service.5 To provide a proxy for

parallel form data for the examinees, the item-level responses were used to construct

half-test scores. These half-test scores for each examinee were then used to provide a

measure of classification consistency for each test and for the overall GED decision

rule.

A number of different techniques have been suggested for constructing half-

test scores. Crocker and Algina (1986) outline the most common methods:

1. Construct each half-test, to the extent possible, to match the table of

specifications for the overall test.

2. Rank the items in order of difficulty, and then include items with odd-

numbered ranks in one half-test, and even-numbered ranks in the other.

3. Randomly assign half the items to each half-test.

4. Include odd-numbered items in one half-test, and even-numbered scores in

the other.

5Since a classical test theory approach was used, only the multiple-choice portion for the Writing Test
is used in this study.
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Of these methods, the first one is most appealing from a validity standpoint because

it maximizes the similarity of content between the two half-tests. It is also the most

difficult to implement because it requires more information about the test items than

may be available to researchers who are not test specialists. The second approach

creates two half-tests that are most likely quite similar in difficulty, but may in fact be

measuring different constructs. The same is true for the third method. The last

method, the odd/even approach, is simple to carry out based on item-level responses,

and controls for some important factors known to affect test performance, such as the

effects of familiarity and fatigue.

Feldt and Brennan (1993) discuss the pros and cons of different strategies of

allocating items to half-tests given the current practice of constructing items that

relate to a common passage (as is the case with most of the tests in the GED battery). 

Feldt and Brennan reason that splitting items from the same passage among different

half-scores creates positive bias in the correlation coefficient, whereas assigning all

items related to a specific passage to the same half score creates negative bias.

Although Feldt and Brennan do not offer any empirical evidence to support this

reasoning, based on their hypothesis the source of bias in using the odd/even method

with the GED Tests would be to positively bias the correlation between the two half-

tests.

The following steps were used to create and score split-half scores for the

GED Tests:

1. Create two scores for each examinee on each test by summing the number

of correct responses separately for odd and even numbered items.
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2. A cut-score for each half-test was determined using the following steps:

a. Found the percentage who passed each full test by earning a scale

score of 410 or higher (the GED criterion).

b. Selected the score for each half-test that yielded a similar pass rate to

that on the full test.

c. Applied this score for each half-test to determine whether the

examinee passed each half-test.

3. The overall average criterion for the half-scores (equivalent to an average

scale score of 450) was calculated using the following steps:

a. Converted the half-test scores to z-scores (using mean and standard

deviation for the same half-test). This was done prior to averaging

scores for the five tests since the Reading Test has fewer items than

the other tests.

b. Found the average z-score for each examinee for odd and even half-

tests.

c. Fouind the z-score for each half-test that corresponded to an average

scale score of 450.

d. Apply this average z-score criterion to each examinee’s average z-

score for odd and even half-tests.

4. Apply GED rule (must pass each test with a scale score equivalent of 410

and overall average equivalent to 450) to each examinee’s scores on odd

and even half-tests.
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Overview of GED Test Data

Descriptive statistics for the raw and split-half scores for all five GED Tests

appear in Table 6.1. The Writing, Social Studies, Science, and Math tests each

include 50 multiple-choice items; the Reading Test contains 40 multiple-choice items.

Table 6.1: Descriptive Statistics for Half- and Full-Length GED Tests
Mean StdDev Skewness Kurtosis

Writing 37.40 7.66 -.859 .700
Odd 19.49 3.85 -1.129 1.414

Even 17.91 4.28 -.577 -.003
Social Studies 37.26 8.55 -.727 .044

Odd 18.14 4.55 -.587 -.222
Even 19.11 4.40 -.869 .379

Science 38.26 7.45 -.952 .811
Odd 19.84 3.85 -1.145 1.375

Even 18.42 4.04 -.705 .191
Reading 31.95 5.88 -1.220 1.649

Odd 16.03 3.16 -1.191 1.461
Even 15.92 3.11 -1.097 1.347

Math 29.99 9.58 -.209 -.626
Odd 14.63 5.18 -.168 -.647

Even 15.36 4.87 -.261 -.582

The score distributions for the GED tests are shown in Figures 6.1. The cut-

score set by the GED Testing Service is also indicated in each figure. Several

characteristics of test performance are evident in the histograms. First, none of these

tests appears to be normally distributed. With the exception of Math, the tests are

negatively skewed and kurtotic. The degree of skewness and kurtosis is documented

in Table 6.1. Such distributions are not uncommon on criterion-referenced tests and

licensing tests such as the GED Tests. Second, the passing rate is high on all tests,

with the lowest rates seen on the Writing and Math tests.
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Figure 6.1: Histograms Showing Raw Score Distributions for GED Tests
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The GED Tests are moderately correlated with each other (Table 6.2), with

the highest relationship between Social Studies and Science (r=.80) and the lowest

relationship for Reading and Math (r=.51). Table 6.2 also shows the correlations

among the odd half-tests and the even half-tests, which are fairly similar to each other

and, as expected due to their shorter length, lower than the correlations among the

full-length tests.

Table 6.2: Correlations Among Half- and Full-Length Tests
Writing Social

Studies
Science Reading Math

Writing 1 .695
.636
.612

.701

.650

.606

.694

.637

.589

.651

.554

.612

Full Test
Odd
Even

Social
Studies

1 .803
.729
.717

.787

.704

.708

.634

.575

.581

Full Test
Odd
Even

Science 1 .740
.674
.640

.685

.597

.632

Full Test
Odd
Even

Reading 1 .559
.488
.513

Full Test
Odd
Even

The reliability of the GED tests was calculated using Coefficient Alpha for the

full-length tests and each of the half-length tests. The correlation between the split-

half scores also serves as an estimate of reliability. It is presented in Table 6.3 along

with the adjusted estimate of the reliability of the full-length test through use of the

Spearman Brown prophecy formula. Inspection of Table 6.3 shows that internal

consistency (as measured by Coefficient Alpha) for the two half-tests for each GED

Test is similar, as is the adjusted split-half correlation and the Coefficient Alpha for

the full-length test. All half-test correlations are similar for each test, and are similar

to the full-test correlations.
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Table 6.3: Reliability Estimates for GED Test Data
Coefficient Alpha Correlation

Full Test Odd
Half-Test

Even Half-
Test

Half-Tests Adjusted*

Writing .877 .781 .784 .773 .872
Social Studies .900 .815 .821 .828 .906
Science .872 .783 .762 .782 .878
Reading .853 .751 .732 .757 .862
Math .898 .819 .810 .819 .901
*Spearman Brown prophecy formula was used to estimate the reliability of the full-length tests based
on the correlation between the half-tests.

Passage of the full-length tests was determined using the raw score passing

criterion for each test obtained from the GED Testing Service. The criterion for each

half-test was determined by selecting the score yielding the closest passing rate to that

obtained on the full-length test. Passing scores for full- and half-length tests, as well

as the resulting passing rates, are presented in Table 6.4.

Table 6.4: Passing Criteria and Rates for Half- and Full-Length Tests.
Test Passing

Score:
Full Test

Passing
Score:
Odd

Passing
Score:
Even

Passing
Rate:
Odd

Passing
Rate:
Even

Passing
Rate:
Full Test

1. Writing* 33 18 16 74.99% 72.73% 76.62%
2. Social Studies 24 12 13 90.74% 91.05% 92.34%
3. Science 28 15 13 89.98% 90.91% 90.59%
4. Reading 20 10 10 95.39% 95.75% 95.72%
5. Math 23 11 12 77.12% 77.16% 76.82%
Passed GED rule 61.59% 60.54% 63.20%
*The passing criterion for the Writing test combines the multiple-choice and essay score. For purposes
of this example, the passing score was set to yield a similar pass rate to that obtained on the combined
score.

For most of the tests, the passing rates are quite similar for the full- and half-

length tests. However, for the Writing and Social Studies Tests the closest

approximation to the passing rate is somewhat lower for the half-length tests than the

full-length tests. This contributes to a slightly lower overall passing rate for the half-
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tests (61.6% and 60.5% for odd and even scores respectively) as compared that for

the full-length test (63.0%). Although the GED decision rule incorporates both a

conjunctive and compensatory component, very few (1.9%) of examinees fail the

overall decision rule because they do not earn an overall scale score of 450. This is a

reflection of the very high passing rates for several of the tests.

The similarity between passing rates for the half-length tests is encouraging

for their use for estimating classification consistency, which is presented later in the

chapter in comparison to that obtained based on simulated data.

Simulated Data

Using the method illustrated in Chapter 5, a dataset was generated with

similar true score variance, covariances, and test reliability to those of the GED tests.

Next, two sets of replicate scores were generated for each examinee on the five tests,

and the classification consistency between the two sets was assessed.

The simulation procedure illustrated in Chapter 5 assumes that each test is

normally distributed (and therefore the set of tests has a multivariate normal

distribution), an assumption that is questionable for the GED Tests given the

histograms in Figure 6.1 and descriptive statistics in Table 6.1. This assumption of

normality is important because it provides the framework for estimating the true score

distribution from that of the observed scores. It is therefore desirable to normalize the

observed score distributions before constructing the covariance matrix for the

simulated data. If normalization cannot be achieved, an alternate approach is to

simulate data for a non-normal multivariate distribution. However, such an approach

introduces new challenges into the simulation approach by requiring the estimation of
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the true score distribution from a non-normal observed score distribution. For the

interested reader, methods for simulating multivariate non-normal distributions are

presented in Vale and Maurelli (1983), Headrick and Sawilowsky (1999), and Nevitt

and Hancock (1999). Each of these studies estimates multivariate non-normal

distributions by allowing for the estimation of skew and kurtosis for each individual

variable. An alternate approach is suggested by Mislevy (1984) through use of

mixture modeling for estimating non-normal latent distributions.

Peng and Subkoviak (1980) studied the impact of non-normality on

classification agreement for individual tests, and found that estimates remained fairly

stable as long as the distribution was unimodal. Their findings for individual tests

offer support for using the multivariate normal distribution to approximate

classification reliability for non-normal distributions. However, since their study did

not explicitly address the case of multivariate distributions, the GED Test

distributions were normalized.

Several methods were applied to the raw scores for the full-length test in an

attempt to transform the scores to a normal distribution. Both log and exponential

transformations were unsuccessful in producing normally distributed scores.

However, the normalized ranking transformation in SPSS, using Blom’s formula

(6.1), was moderately successful in transforming the scores for each test to a standard,

normal distribution, as shown in Fig. 6.2.

( 3 / 8)
( )

( 1/ 4)

r
ns p

N

−
= Φ

+
(6.1)

where: ns = normalized score

Φ = pth quantile from the standard normal distribution
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r = rank

N = number of observations

Figure 6.2: Histograms Showing Normalized Scores for GED Tests
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Given the goal of replicating the relationships seen in the raw scores for the

GED Tests, comparison of the correlation matrices for the raw scores and normalized

scores is informative. As shown in Table 6.5, the correlational structure observed in

the raw scores for the GED tests is well duplicated by the normalized scores.

Table 6.5: Correlations Among Tests for Raw Score Versus Normalized Scores
Writing Social

Studies
Science Reading Math

Writing 1 .695
.688

.701
.689.

.694

.681
.651
.660

Raw Score
Normalized

Social
Studies

1 .803
.795

.787
.775.

.634

.642
Raw Score
Normalized

Science 1 .740
.719

.685

.699
Raw Score
Normalized

Reading 1 .559
.568

Raw Score
Normalized

The following steps were used in constructing the simulated dataset in which

true and replicate scores were generated to study classification accuracy and

consistency of the GED Tests.

1. The covariance matrix for the normalized scores among the five tests was

calculated using the half-test scores from the odd-numbered items. (Table

6.6).

Table 6.6: Covariance Matrix for Normalized Scores for Odd Half-Length Test
Writing Social

Studies
Science Reading Math

Writing .963872
(.765159)

.603844 .596741 .576515 .545608

Social
Studies

.603844 .965223
(815213)

.692102 .655146 .564010

Science .596741 .692102 .956095
(.773073)

.603774 .591530

Reading .576515 .655146 .603774 .935907
(.738919)

.470365

Math .545608 .564010 .591530 .470365 .984991
(.815174)
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2. The true score variance for each test was calculated by multiplying the

observed variance for each test by the test reliability. Table 6.6 shows the true

score variance in parentheses for each test. The observed score covariances

remain the same.

3. A simulated dataset containing 100,000 true scores, and two replicate scores

for each true score were generated (using R,  as illustrated in Chapter 5).

4. Passing status for true and replicate scores was obtained by applying the

normalized score equivalent to the passing score for the odd half-test.

5. Contingency tables were constructed showing classification accuracy (by

comparing the outcome for true score to that of one replicate score) and

consistency (comparing the outcomes based on two replicate scores) for each

test, as well as for the overall GED passing rule.

6. Measures of agreement were calculated to characterize classification

reliability as in Chapter 5.

The covariances among tests and reliability6 of test scores in the simulated

data are shown in Table 6.7. In general, the simulated data provided a good

approximation of test reliability and covariances among tests for the odd, half-length

test.

6 Estimated by correlating the two replicate scores for each test.
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Table 6.7: Covariance and Reliability for Half-Length Test Simulated Data

Test Reliability Writing
Social
Studies Science Reading Math

Writing .774 .965565 .608858 .601254 .579545 .549217
Social

Studies
.830

.608858 .969608 .696622 .657921 .568894
Science .782 .601254 .696622 .961652 .606085 .597079
Reading .756 .579545 .657921 .606085 .936459 .473104

Math .821 .549217 .568894 .597079 .473104 .992670

A comparison of the passing rates for both sets of data is shown in Table 6.8.

The highly similar passing rates between the simulated and odd-half scores support

the success of the simulation in approximating the score distribution.

Table 6.8: Passing Rates for Raw Score and Simulated Data, Half-Length Tests
Test Raw Score:

Odd Half-Test
Simulated,
Half-Length
Test

Writing 74.99% 75.14%
Social Studies 90.74% 92.00%
Science 89.98% 90.20%
Reading 95.39% 95.67%
Math 77.12% 75.46%
Passed GED rule 61.59% 59.40%

The consistency of classification based on the comparison of split-half scores

and simulated half-length scores is shown in the first two columns in Table 6.9.

Counts from which the measures of agreement were calculated appear in Appendix I.
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Table 6.9: Consistency Among Split-Half, Half-Length Simulated Scores, and Full
Length Simulated Scores

Split-Half Simulated
Half Length

Simulated
Full Length

Exact Agreement
Writing 83.08 82.99 86.95
Social Studies 92.88 93.35 94.86
Science 92.45 91.06 93.05
Reading 96.29 95.08 95.98
Math 86.38 84.91 88.97
Overall Rule 83.62 82.82 87.80

Kappa
Writing 56.22 54.44 65.42
Social Studies 56.99 54.64 65.88
Science 56.32 49.56 61.97
Reading 56.15 40.95 53.81
Math 61.38 59.28 70.20
Overall Rule 65.56 64.38 74.32

Pass 1, Fail 2
Writing 9.59 8.49 6.52
Social Studies 3.41 3.28 2.58
Science 3.31 4.49 3.47
Reading 1.68 2.48 2.01
Math 6.79 7.56 5.47
Overall Rule 8.71 8.58 5.98

Specific Agreement, Passers
Writing 88.55 88.68 91.27
Social Studies 96.08 96.39 97.20
Science 95.82 95.04 96.13
Reading 98.06 97.43 97.90
Math 91.17 90.00 92.69
Overall Rule 86.59 85.54 90.02

Specific Agreement, Failers
Writing 67.64 65.76 74.15
Social Studies 60.90 58.25 68.68
Science 60.48 54.51 65.83
Reading 58.08 43.53 55.91
Math 70.21 69.28 77.51
Overall Rule 78.97 78.85 84.30

In general, the simulation method provided somewhat lower estimates of

classification reliability than the split-half method for the individual tests, but quite
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similar estimates for the overall decision rule. Results are consistent with Feldt and

Brennan’s supposition that using an odd/even approach with passage-based tests may

result in overestimation of classification consistency.

Both the simulation and split-half methods provide estimates of classification

consistency for tests half the length of the GED tests. It is expected that the half-test

provides an underestimate of test reliability given the strong relationship between test

length and reliability. A more accurate estimate of reliability for the GED Tests may

be found by simulating data for the full length tests. The same method (Steps 1-6)

was utilized, but the covariances for the full-length tests (Table 6.10) and the stepped-

up reliability for each test were used to generate the simulated data.

Table 6.10: Covariance Matrix for Normalized Scores for Full-Length Test
Writing Social

Studies
Science Reading Math

Writing .989856
(.863154)

.678962 .681302 .669293 .654642

Social
Studies

.678962 .984558
(.892009)

.784387 .759690 .635370

Science .681302 .784387 .988584
( .867977)

.706269 .693413

Reading .669293 .759690 .706269 .976115
(.8414111)

.559507
(.896791)

Math .654642 .635370 .693413 .559507 .995329

Table 6.11 shows the covariances among tests and reliability7 of test scores in

the simulated data. Comparisons with Table 6.10 indicate that the simulated data

provided a good approximation to the normalized raw scores for the full-length test.

7 Estimated by correlating the two replicate scores for each test.
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Table 6.11: Covariance and Test Reliability for Full-Length Test Simulated Data

Test Reliability Writing
Social
Studies Science Reading Math

Writing .871 .987146 .679478 .683724 .666164 .654553
Social

Studies
.907

.679478 .987192 .788571 .758539 .640294
Science .879 .683724 .788571 .989186 .705644 .696441
Reading .862 .666164 .758539 .705644 .973531 .559052

Math .901 .654553 .640294 .696441 .559052 .997333

The passing rates for the raw and simulated data for full length tests are shown

in Table 6.12. As was the case for the half-length tests, the simulated full-length test

had very similar passing rates to that observed in the raw data.

Table 6.12: Passing Rates for Raw Score and Simulated Data for Full-Length Tests
Test Raw

Score
Simulated*

Writing 76.62% 74.76%
Social Studies 92.34% 91.81%
Science 90.59% 89.83%
Reading 95.72% 95.45%
Math 76.82% 75.43%
Passed GED rule 62.81% 61.03%
*For Replicate 1

Results of the full-length test simulation are presented in Table 6.9 in the third

column. The effect of a longer test was to increase classification reliability, a similar

result to the well documented effect of increasing test length on test reliability. The

simulation results for the full-length test provide a better estimate of classification

consistency for the GED Tests. Exact agreement for the overall decision rule was

87.8%, and 6% of examinees would receive a different decision based on which

replicate score was used.

Although all the GED Tests exhibit fairly high levels of reliability, unlike in

the simulation study in Chapter 5 there is some variability among the tests. In
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addition, there is variability in passing rates among the tests. This provides the

opportunity to examine classification consistency in relation to test reliability and

passing rate. The influence of test difficulty is illustrated by results for the Reading

test. Reading has the highest classification consistency for almost all measures, with

the exception of Kappa and Specific Agreement for Failers. Reading has the lowest

test reliability (r=.757). This inverse relationship is most likely due to the effect of

test difficulty – Reading is the easiest test, and therefore the scores for most of the

examinees are not near to the cut-score. A comparison of the test and classification

reliability for the other tests is consistent with this interpretation. There is no

monotonic relationship between test reliability and classification reliability. However,

classification reliability increases consistently with higher passing rates.

One advantage of the simulation method over the split-half approach is the

opportunity to estimate classification accuracy. Table 6.13 shows measures of

classification accuracy for the simulated full-length tests.

Table 6.13: Classification Accuracy for Simulated, Full-Length Tests
Exact

Agreement
Kappa

False
Negatives

False
Positives

CA|Masters
CA|Non-
Masters

Writing 90.69 74.83 5.42 3.89 92.90 83.59
Social
Studies 96.46 75.08 2.27 1.27 97.55 82.40
Science 95.10 71.30 3.20 1.70 96.49 80.42
Reading 97.24 64.18 1.92 0.84 98.01 75.88
Math 92.19 78.59 4.49 3.32 94.14 85.80
Overall
Rule 90.85 80.42 6.44 2.71 90.06 92.30

The classification accuracy of the overall GED rule is 90.9%, with the

individual test accuracy varying from 90.7% for Writing to 97.2% Reading. The

overall rule provides slightly better classification accuracy for Non-Masters than
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Masters, as evidenced by conditional agreement for Non-Masters and the percentage

of false negatives.

Summary of GED Test Illustration

This illustration investigated the utility of the proposed simulation method for

providing information about the classification reliability of actual test data. A

comparison of results for the simulation method and the traditional, split-half

approach also sheds light on the validity of the proposed method. The split-half

approach, however, is not without pitfalls and differences in results could reflect

shortcomings in either method. The split-half approach can only estimate the

classification reliability of a test half the length of the original test Although the

Spearman Brown prophesy formula provides an adjustment for test length to the

reliability coefficient, there is no such adjustment for classification reliability. In

addition, the lower number of items on the half-tests contributes to difficulty in

replicating the passing rate for the full-length test, and the similarity between the two

scores may be influenced by how the items were divided between the two tests.

The simulation method brings its own challenges, primarily the necessity of

modeling test scores using a normal distribution. The GED Tests are not normally

distributed, and this is not an uncommon finding for high stakes tests. Although it

may be possible to adjust the covariance matrix through normalization of scores, this

does not address the underlying problem of non-normality in the data. Nevertheless,

the effect of non-normality did not have much of an effect on findings in the

simulation study, perhaps because the passing rates are relatively high on all the GED
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Tests. This is an area that will need more study if the simulation method is to prove

useful in applied settings.

Results for the GED Test data show, however, that simulated data provided

reasonably close approximation to the raw score data in terms of passing rates, and

very similar results for measures of classification consistency with the split-half

approach. These results estimate that 88% of examinees would receive the same

overall decision if they took two parallel forms of the GED Test Battery; that 91% are

accurately classified in regard to mastery; and that the overall decision is somewhat

better at detecting Non-Masters than Masters. Similar results were demonstrated for

conjunctive decisions in Chapter 5. The simulation differed from actual GED test data

in two important ways. First, only the multiple-choice portion of the writing test was

modeled. It is likely that inclusion of the essay portion would result in lower

reliability, and therefore lower accuracy, for the writing test. Second, only one

attempt was modeled for each test. Since GED test takers are given multiple attempts

to pass, the estimated accuracy is most likely higher than that of the actual GED

Tests.

The impact of choice of decision rule on percentage of candidates passing the

GED is illustrated in Table 6.14. Some decision rules are logically nested in all

testing applications given that similar passing criteria are applied. All students who

pass each of the five tests (conjunctive rule) will also pass at least one test

(complementary rule). Similarly, all students who pass the conjunctive-compensatory

rule will pass the simple conjunctive rule. Students who pass the conjunctive rule will

also pass the compensatory rule if the same average passing criteria is used. The other
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rules – compensatory and complex combinations of the simple rules – are not

necessarily nested. The GED passing criterion for each test was applied to each

individual test. For the simple compensatory rule, an average score of 410 was

required across all five tests. The conjunctive-compensatory rule was the same as the

actual GED rule, and required an average score of 450.

Table 6.14: Percentage of Candidates Who Pass Various Decision Rules

63% Pass Conjunctive-Compensatory Rule

98% Pass Complementary Rule
88% Pass Compensatory Rule

65% Pass Conjunctive Rule

All Candidates

Almost all candidates (98%) pass at least one of the GED tests, and the next

highest percentage (88%) earns an average scale score of 410 and therefore passes the

compensatory rule. The percentage passing the GED (conjunctive-compensatory) rule

is only slightly less than the percentage passing the simple conjunctive rule. In this

case, use of a compensatory rule would result in the passage of many candidates who

did not meet minimum mastery of all five individual tests. This is most likely due to

the high passing rates on the tests, which provides great opportunity for a high score

on one test to compensate for a low score on another. Table 6.14 also illustrates that,

given the choice, candidates would most likely choose to be evaluated using the

complementary rule.

The only rule that does not exhibit a nested relationship with the other rules

for the GED is the conjunctive-complementary rule. For purposes of this example, the

conjunctive-complementary rule requires the student to pass reading, writing, and

math tests and either the social studies or science test. Thirty-two percent of the

candidates pass the complementary but fail the conjunctive-complementary rule; a
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very small percentage (1%) pass the conjunctive-complementary but fail the

conjunctive rule; and 23% fail the conjunctive-complementary but pass the

compensatory rule.

Extension to More Complex Configural Rules

In the previous illustration, promising results were presented regarding the

utility of the simulation method for estimating the classification reliability of complex

decision rules for actual test data. One advantage of the simulation method is the ease

with which highly complex configural rules can be accommodated. Once simulated

data has been created, it is straight forward to apply even the most complex

configural rule. The following hypothetical example uses the simulated data for the

GED Tests to illustrate application of the simulation method to a configural rule that

is more complex than those modeled in Chapter 5.

This example is structured to show how the classification reliability of a

simple conjunctive rule for five tests is impacted by increasing the complexity of

passing conditions. It is similar in spirit to the Louisiana rule in which students may

compensate for a lower score on one test by earning a higher score on another test.

Interest in changing the decision rule might stem from a concern about the potential

error in applying a criterion to test scores. Therefore a proposal is made to alter the

decision rule to allow multiple criteria for passing each test.

For purposes of this example, the simple rule requires a student to earn a

standard score of zero or higher on each of five tests (Writing, Social Studies,

Reading, Science, and Math).
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For the complex rule, each test is viewed as measuring primarily verbal or

quantitative skills. A student can demonstrate proficiency on each type of skill in a

number of ways. This complex rule is defined below.

Verbal: There are three configural rules for passing.

1. Writing >= 0 AND Reading >= -.5 AND Social Studies >= -.5
OR

2. Reading >= 0 AND Writing >= -.5 AND Social Studies >=-.5
OR

3. Social Studies >= 0 AND Reading >= -.5 AND Writing >=-.5

Quantitative: There are two configural rules for passing.

1. Math >= 0 AND Science >= -.5
OR

2. Science >= 0 AND Math >= -.5

Overall Decision: Pass one Verbal and one Quantitative rule.

Table 6.15 shows the resulting contingency tables for accuracy and

consistency of decision outcomes for both the simple and complex rules. As expected,

the additional opportunities to retest increases the number of Masters who pass:

28,167 pass the simple rule versus 45,655 for the complex rule. A similar pattern, but

at a lower level, is seen for consistency which compares the percentage who pass

based on two replicate scores. 
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Table 6.15: Contingency Table for Simple and Complex Rule
Simple Rule Complex Rule

Accuracy Accuracy
Replicate 1 Replicate 1

TRUE Fail Pass Total TRUE Fail Pass Total

Fail 69615 2218 71833 Fail 51714 2631 54345

Pass 6444 21723 28167 Pass 7129 38526 45655

Total 76059 23941 100000 Total 588443 41157 100000

Consistency Consistency
Replicate 2 Replicate 2

Replicate
1

Fail Pass Total Replicate
1

Fail Pass Total

Fail 70970 5089 76059 Fail 52735 6108 58843

Pass 5103 18838 23941 Pass 6030 35127 41157

Total 76073 23927 100000 Total 58765 41235 100000

Classification accuracy is shown in Table 6.16. Although more students pass

the complex rule than the simple rule, most measures of classification reliability

remain fairly stable. Exact agreement is 91.3% in the simple rule, and 90.2% in the

complex rule. The largest difference is found for the accuracy of classifying Masters,

77.1% in the simple rule versus 84.4% in the complex rule. Exceptions are found for

conditional agreement for Masters, which is higher in the complex rule than in the

simple rule, and the percentage of false negatives which is also higher in the complex

rule.
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Table 6.16: Classification Accuracy for Simple and Complex Rule

Exact
Agreement

Kappa
False

Negatives
False

Positives
CA|Masters

CA|Non-
Masters

Simple 91.34 77.57 6.44 2.22 77.12 96.91
Complex 90.24 80.18 7.13 2.63 84.39 95.16

Results for classification consistency (Table 6.17) are similar to those found

for accuracy with the largest difference found for the consistency with which Masters

are classified.

Table 6.17: Classification Consistency for Simple and Complex Rule
Exact

Agreement
Kappa

Pass
1/Fail 2

SA|Passers SA|Failers

Simple 89.81 72.01 5.10 78.71 93.30
Complex 87.86 74.95 6.03 85.27 89.68

Therefore, if the goal is to increase the overall accuracy of the decision rule,

the suggested change to the rule would not be successful. However, if the goal is to

increase the accurate identification of Masters, such a change would be beneficial but

at the expense of accuracy for Non-Masters.

Summary of Hypothetical Example

This example illustrates the value of the simulation method for investigating a

seemingly endless variety of configural rules. Using the simulation method, various

decision rules can be evaluated for the level of classification reliability provided and

their ability to meet the particular needs of a given decision. As shown in Chapter 5,

different decision rules maximize accuracy and consistency for Masters versus Non-

Masters, and also create different percentages of false negatives versus false

positives.



122

Other Strategies for Improving Accuracy of GED Decision Rule

The previous illustration is just one of many that could be conducted to

investigate ways to increase the accuracy of decisions based on the GED tests.

Previous studies, and the simulations in this study, suggest the following factors

increase overall accuracy. The effect of these factors varies based on test difficulty

and type of decision rule, which supports the value of simulations in establishing the

impact on accuracy for a specific testing situation and population. All suggestions

must be evaluated in regard to validity; i.e., whether the change makes sense in terms

of the purpose of the decision.

1. Increasing the reliability of individual tests. The writing test has the lowest

reliability, and lowest accuracy. Simulations could be constructed to identify the

necessary increase in reliability to obtain the desired level of overall accuracy for the

GED decision rule.

2. Increasing the number of tests. Simulations show increased overall

accuracy for all decision rules with the addition of more tests. Validity questions

dictate whether it makes sense to add another test to the battery.

3. Increasing the covariance among tests. This factor is more difficult to

conceptualize and manipulate in a practical testing situation. One could argue that to

the extent that the tests become more similar the validity of the decision is reduced.

There may be ways, however, to increase the covariance among the tests without

sacrificing the integrity of the individual constructs that are measured.

4. Use of compensatory decision rule. This factor may also be difficult to put

into practice due to validity concerns. The GED credential represents mastery of each
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separate content area, and allowing high performance on one task to compensate for

another may be inappropriate. Simulations could identify how many examinees

would pass the overall rule without passing each individual test.

5. Acceptable number of attempts. Although this illustration did not model

multiple attempts to pass, the actual GED tests allow for several attempts to pass.

Simulations could be structured to estimate the loss of accuracy with each additional

attempt.

If it were deemed desirable to increase accuracy for Non-Masters, increasing

the difficulty of the tests could be effective in raising accuracy.
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Chapter 7: Discussion

The purpose of this study is to explore how decision making strategies

contribute to the reliability of decision outcomes given that the scoring of tests

necessitates imposing arbitrary cut-scores on errorful test scores. More specifically,

the subject of this study is the extent to which methods of combining information in

complex decisions contribute to errors in classification. The central question posed is

whether we would make the same decision based on a replicate source of information

about the examinee. Previous studies explored this topic for a single test, but cannot

shed light on this question for decisions based on multiple measures.

The answer to questions of classification reliability requires comparison of

two scores for each examinee. Parallel test data provide such data, but are difficult

and costly to obtain. A practical alternative is to artificially create two scores for each

examinee by dividing each test into two, half-tests that are equivalent in content,

difficulty, and variability. However, the split-half approach requires item-level data,

and constructing equivalent half-scores can be challenging. In addition, the resulting

classification reliability is estimated for a test half the length of the original test, and

therefore provides an underestimate of reliability. The Spearman-Brown formula

provides a way to adjust the reliability coefficient of a single test for length, but not

the reliability of multiple tests combined by an arbitrary decision rule. The general

method outlined in this study estimates classification reliability based on a single test

administration for a variety of testing purposes and situations. It is illustrated for the

particular case of continuous test scores and pass/fail decisions but the method
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extends to other testing situations as well, such as multiple proficiency categories

applied to continuous scores.

The proposed general method includes the following basic steps:

1. Using the appropriate measurement model, generate a dataset containing

true and replicate scores with a similar distribution to the target data.

2. Determine passage of both true and replicate scores for each individual

test.

3. Determine passage of the overall decision rule for all sets of scores.

4. Construct a contingency table comparing the decision outcome for true and

replicate scores for decision accuracy, and two sets of replicate score for

decision consistency.

5. Calculate the appropriate measures of agreement based on the contingency

table.

These same steps can be utilized for any complex decision rule for a variety of

measurement models, including the classical test theory situations explored in this

study, and latent variable approaches such as item response theory and latent class

models.

The general method is illustrated using conditions that are plausible given

actual testing situations in many high stakes decisions, incorporating moderately

correlated tests (r = .6) with high reliability (r = .9). The difficulty of the test is

examined at two levels: 50%, the point at which classification reliability for each

individual test is lowest; and also at a somewhat higher rate (70%). However, in many
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practical applications passing rates are higher than 70% as demonstrated by the GED

Tests example.

What is the utility of this simulation method for answering questions of

classification reliability? This question is best answered by examining the adequacy

of the simulations in matching desired distributions and providing results that are

congruent with previous studies. As shown in Chapter 5, the simulated datasets

provide a good approximation to the desired distributions; estimates of classification

for individual tests are similar to those in previous studies; and the number of

examinees who pass complex decision rules makes sense. When applied to real test

data, results are also encouraging.

Application to real data, however, forces the modeling of data that may not

meet all the model assumptions. In the case of the GED Test data, credible results are

obtained despite some non-normality in the distributions. The utility of the method

for non-normal distributions can be interpreted in light of the following quote from

Box and Draper (p. 424, 1987), “Essentially, all models are wrong, but some models

are useful.” The question of how much departure from normality influences estimates

is left for future studies, but the model worked reasonably well for the GED Tests.

Simulation results in this study illustrate the importance of how measures are

combined, which measure is used to characterize agreement, and whether accuracy or

consistency is considered. The lack of straight-forward results emphasizes the value

of constructing simulations as a means of exploring the consequences of decision

rules. Findings support Chester’s assertion (pg. 39, 2003) that the manner in which
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scores are combined may be the most important factor when evaluating the validity

and reliability of decisions.

The validity of complex decision rules is a subject for another study, but the

motivation to increase validity lays the groundwork for practical scenarios related to

reliability. For example, if interest lies in identifying examinees who have acquired

necessary skills in a variety of subjects (such as the case for high school exit exams),

it is logical to propose a conjunctive rule in which the examinee must pass each

individual test. If the purpose of the decision is to increase the validity of

measurement of a particular skill, such as writing, it is logical to allow examinees to

demonstrate skills using tests with different types of items. Allowing examinees

multiple opportunities to pass a test may be undertaken in the quest to reduce the

effect of error from a particular test.

What do the simulation results tell us about the reliability of decisions based

on these strategies? Despite the seemingly mixed findings among the many

conditions in the study a few general principles are apparent.

Choice of Agreement Measure is Important. Different measures of agreement

may provide different answers. Overall measures of agreement can be affected by the

overall passing rate, and changes in decision rules can result in large differences in

passing rates. In the most extreme case, decisions that result in all (or no) examinees

passing will tend to show higher agreement than those with a more moderate passing

rate. Conditional measures of agreement describe reliability separately for Masters

and Non-Masters and may therefore be more useful. Conditional measures may

provide a different answer than overall measures so decision makers need to consider
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what type of accuracy is most important for the given purpose. Some decision rules

have different effects for Masters and Non-Masters. Based on the consequences for

incorrect decisions, certain types of error may be preferable over others. For example,

if a decision is designed to certify newly graduated surgeons, most of us would prefer

that it minimize the percentage of examinees that are not qualified but in fact pass the

decision rule. On the other hand, a decision rule that determines high school

graduation may be more concerned with minimizing the number of examinees who

should pass but in fact fail.

Compensatory Rules Increase Classification Reliability. First and foremost,

adding up scores provides the most reliable decision for almost every testing scenario

examined. From a validity standpoint, a compensatory decision seems less desirable

for the high school exit exam situation because it would not guarantee that the

examinee had mastered all the desired skills. The more common decision rule in this

situation is to use a simple conjunctive rule. Simulation results show that the

conjunctive rule approach does a better job of correctly identifying examinees who

have not acquired the necessary skills at the expense of misclassifying some

examinees who in fact have acquired such mastery. Results consistently show that,

compared to the simple conjunctive rule, adding a compensatory component to the

conjunctive rule increases classification accuracy and consistency.

The second scenario, in which examinees are given multiple ways of

demonstrating skills, uses a complementary rule to combine measures. The

complementary rule frequently shows opposite results to those obtained in the

conjunctive rule because the two rules apply inverse logic. In the conjunctive rule,
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only one of the four cells in the contingency table passes the rule; in the

complementary rule, the inverse cell in the table fails the rule. The complementary

rule does a better job of identifying examinees who actually meet the desired criteria,

but at the same time incorrectly classifies examinees who should fail the criteria.

Perhaps due to the inverse relationship between conjunctive and complementary

rules, the combination of conjunctive and complementary rules does not generally

increase classification reliability. The choice of a conjunctive versus a

complementary rule forces us to consider which type of error is preferable – false

identification of examinees as Masters or as Non-Masters.

Cronbach et al’s (1997) admonition concerning the potential error introduced

by adding more tests to a decision in conjunctive decisions was not fulfilled in this

study. Overall, the conjunctive decision becomes more reliable as more tests are

added. Cronbach et al, however, assumed that tests were unrelated in making

calculations. This study shows that, for the overall group, the percentage of

examinees correctly classified increases with the addition of related tests. Cronbach et

al also estimated reliability for one individual at the greatest risk for misclassification,

whereas this study looked at the impact on the overall group.

Providing Multiple Opportunities to Pass Produces Mixed Results. Allowing

examinees multiple attempts presents a good example of unanticipated findings in the

simulation method. When considering classification accuracy, allowing retests is

clearly related to lower reliability for all decision rules. However, the opposite is true

when considering classification consistency -- measures of agreement are higher for

all types of decisions with the addition of more opportunities to pass the test. This
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presents a conundrum in terms of recommendations. On the one hand, we don’t have

true scores in actual testing situations so consistency is the more appropriate

consideration. However, the fact that accuracy decreases with the addition of more

tests is concerning. The reason for the conflicting findings may be found in the strong

complementary component that overlays all decision rules in the case of multiple

attempts to pass. Comparison of the tables for accuracy and consistency (Table 5.25

and 5.26) shows the most marked difference between rates of false positives and

false negatives for accuracy, but a more moderate percentage for the analogous

measure for consistency (pass one test but fail the other). Clarification of this finding

might be helped by more in-depth analysis of the score configurations for

misclassified examinees based on replicate scores.

It is also important to recognize that this simulation study cannot address the

impact of multiple attempts when examinees receive remediation and further

instruction in preparation for subsequent testing. In practical situations the purpose of

allowing repeated attempts is to allow students to demonstrate increased knowledge

as well to account for error in test scores on one particular attempt.

Highly-Related Tests Yield Higher Classification Reliability. The purpose of

adding more tests to a decision rule may be to increase the reliability of the decision.

In such a case, the question arises as to what types of tests and test characteristics

would most benefit classification reliability. Although the content of the tests will be

of central importance, the similarity of the tests is another consideration. Is it better to

add similar tests to reinforce the information already obtained, or dissimilar tests that

bring new information to the decision? Simulation results suggest that increasing the



131

covariance among tests results in higher agreement unless the tests are combined in a

complementary fashion. An unexpected finding, however, is that the percentage of

examinees who pass the decision rule actually decreases as covariance increases.

Some Complex Rules Provide Poorer Classification Reliability Than

Individual Tests. In terms of the absolute levels of agreement demonstrated in the

simulations, measures of accuracy vary from a low of 49% in the complementary

condition with three attempts to 99% in the same condition. Consistency estimates

vary from 71% to 99%. Therefore, there are rules that decrease, as well as increase,

classification reliability beyond that obtained for a single test (90% for accuracy; 86%

for consistency).

Accuracy Varies According to Test Difficulty. Two students at different levels

of proficiency who take the same set of tests to which the same passing criteria are

applied may have a different likelihood of correct classification. This finding

highlights the potential unfairness inherent in applying both simple and complex

decision rules, and therefore has important policy implications. Furthermore,

simulation results suggest that difficult tests provide higher accuracy for Non-

Masters, but lower accuracy for Masters. In the current climate in which increasing

pressure is being applied to make tests more challenging, this finding provides useful

information for consideration by policy makers.

Future Directions

Findings from this study are encouraging, and support the consideration of

additional questions that can be answered using the proposed general method. Some

questions extend the classical test theory approach to address the importance of
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distributional assumptions and test characteristics, as well as provide more in-depth

study of the nature of classification error. Other questions extend the method to

encompass other measurement models that are found in practical testing situations.

• The examples in the study all used the same level of test reliability, and

classification reliability is strongly related to test reliability. It would be

informative to construct simulations to investigate the impact of lower test

reliability. In particular, what is the effect of adding a less reliable test to a

set of highly reliable tests? This corresponds to a real world example in

which a performance based test may be added to a decision to increase

validity, but it may have a negative impact on reliability.

• The multiple attempt conditions in this study are structured so that the

examinee’s true score remains the same throughout all retests. This is an

unlikely assumption in real life testing situations. Efforts to model change

in true score, perhaps using mixture models in which examinees vary in

how much true score changes between testings, would be more authentic.

• Further analysis of the types of incorrect decisions that are made would be

informative. For example, are there unusual test score configurations that

are more likely to receive incorrect decisions? Such analysis could be

useful in practical situations to identify examinees for which additional

information would help to improve the reliability of the decision.

• The assumption of normality is central to classical test theory, but may not

be tenable for actual test scores. Simulation studies can be structured to

investigate the effect of departures from normality on classification
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reliability. In addition, the utility of the simulation method for decisions

with multiple cut-scores requires more accurate modeling of the full score

distribution. The development of methods for modeling multivariate non-

normal distributions, either through specification of additional moments or

mixture modeling, is an important requirement in extending the simulation

method.

• This study explored the modeling of data that can be appropriately

addressed using classical test theory. However, the method is equally

applicable to other measurement models, such as item response theory and

latent class analysis. Such application would extend the utility of the

method to a variety of practical applications that use performance-based

assessments to assess examinee knowledge and skills. In both classical test

theory and item response theory the underlying trait is modeled as a

continuous scale. Classification of examinees using a latent class approach,

in which the underlying scale is categorical, could also prove useful in

categorizing examinees and could be accommodated using the general

method.

The use of test scores to make educational decisions about examinees is likely

to continue in the foreseeable future. Measurement specialists, teachers, parents, and

examinees are rightfully concerned about the potential error inherent in all test scores

on which important decisions are based. The motivation for this study is to provide a

useful methodology for improving the reliability of such decisions. Given the
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complexity of findings for the conditions investigated in this study, the practical

recommendation is made to use simulation methods to investigate decision rules and

maximize classification reliability through the choice of tests, configural strategies,

and number of opportunities to retest before implementing or changing policies that

dictate important outcomes for examinees.
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Appendix I: Contingency Tables with Counts

INDIVIDUAL TESTS: COVAR.6, 50%
Accuracy Consistency

TEST 1 REPLICATE 1 TEST 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 225737 24283 250020 FAIL 215965 33986 249951
PASS 24214 225766 249980 PASS 33970 216079 250049
TOTAL 249951 250049 500000 TOTAL 249935 250065 500000

TEST 2 REPLICATE 1 TEST 2 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 225414 24436 249850 FAIL 215576 34282 249858
PASS 24444 225706 250150 PASS 34502 215640 250142
TOTAL 249858 250142 500000 TOTAL 250078 249922 500000

TEST 3 REPLICATE 1 TEST 3 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 225701 24117 249818 FAIL 215913 34023 249936
PASS 24235 225947 250182 PASS 33946 216118 250064
TOTAL 249936 250064 500000 TOTAL 249859 250141 500000

TEST 4 REPLICATE 1 TEST 4 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 225171 24390 249561 FAIL 215416 34206 249622
PASS 24451 225988 250439 PASS 34032 216346 250378
TOTAL 249622 250378 500000 TOTAL 249448 250552 500000

TEST 5 REPLICATE 1 TEST 5 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 225477 24427 249904 FAIL 215726 34078 249804
PASS 24327 225769 250096 PASS 34030 216166 250196
TOTAL 249804 250196 500000 TOTAL 249756 250244 500000
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INDIVIDUAL TESTS: COVAR.6, 70%
Accuracy Consistency

TEST 1 REPLICATE 1 TEST 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 130752 19341 150093 FAIL 124243 30048 154291
PASS 23539 326368 349907 PASS 30035 315674 345709
TOTAL 154291 345709 500000 TOTAL 154278 345722 500000

TEST 2 REPLICATE 1 TEST 2 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 129901 19393 149294 FAIL 123304 30387 153691
PASS 23790 326916 350706 PASS 30322 315987 346309
TOTAL 153691 346309 500000 TOTAL 153626 346374 500000

TEST 3 REPLICATE 1 TEST 3 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 130598 19337 149935 FAIL 123718 30643 154361
PASS 23763 326302 350065 PASS 30356 315283 345639
TOTAL 154361 345639 500000 TOTAL 154074 345926 500000

TEST 4 REPLICATE 1 TEST 4 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 130238 19313 149551 FAIL 123606 30342 153948
PASS 23710 326739 350449 PASS 30066 315986 346052
TOTAL 153948 346052 500000 TOTAL 153672 346328 500000

TEST 5 REPLICATE 1 TEST 5 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 130515 19121 149636 FAIL 123785 30260 154045
PASS 23530 326834 350364 PASS 30222 315733 345955
TOTAL 154045 345955 500000 TOTAL 154007 345993 500000
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RESEARCH QUESTION 1: COUNTS FOR ONE TO FIVE TESTS

CONJUNCTIVE: RQ1, COVAR.6, 50%
Accuracy Consistency

2 TESTS REPLICATE 1 2 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 303162 20428 323590 FAIL 297526 31221 328747
PASS 25585 150825 176410 PASS 31524 139729 171253
TOTAL 328747 171253 500000 TOTAL 329050 170950 500000

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 343695 16757 360452 FAIL 340931 27490 368421
PASS 24726 114822 139548 PASS 27565 104014 131579
TOTAL 368421 131579 500000 TOTAL 368496 131504 500000

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 368991 14191 383182 FAIL 368190 24315 392505
PASS 23514 93304 116818 PASS 24440 83055 107495
TOTAL 392505 107495 500000 TOTAL 392630 107370 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 386420 12223 398643 FAIL 386987 21704 408691
PASS 22271 79086 101357 PASS 21890 69419 91309
TOTAL 408691 91309 500000 TOTAL 408877 91123 500000
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COMPLEMENTARY: RQ1, COVAR.6, 50%
Accuracy Consistency

2 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 150778 25502 176280 FAIL 139561 31501 171062
PASS 20284 303436 323720 PASS 31402 297536 328938
TOTAL 171062 328938 500000 TOTAL 170963 329037 500000

3 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 114875 24410 139285 FAIL 103971 27592 131563
PASS 16688 344027 360715 PASS 27237 341200 368437
TOTAL 131563 368437 500000 TOTAL 131208 368792 500000

4 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 93404 23160 116564 FAIL 83007 24408 107415
PASS 14011 369425 383436 PASS 24073 368512 392585
TOTAL 107415 392585 500000 TOTAL 107080 392920 500000

5 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 79282 22027 101309 FAIL 69484 21909 91393
PASS 12111 386580 398691 PASS 21554 387053 408607
TOTAL 91393 408607 500000 TOTAL 91038 408962 500000
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COMPENSATORY: RQ1, COVAR.6, 50%
Accuracy Consistency

2 TESTS REPLICATE 1 2 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 230296 19609 249905 FAIL 222517 27121 249638
PASS 19342 230753 250095 PASS 27555 222807 250362
TOTAL 249638 250362 500000 TOTAL 250072 249928 500000

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 233207 16678 249885 FAIL 226071 23577 249648
PASS 16441 233674 250115 PASS 23779 226573 250352
TOTAL 249648 250352 500000 TOTAL 249850 250150 500000

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 234763 14934 249697 FAIL 228541 20853 249394
PASS 14631 235672 250303 PASS 21108 229498 250606
TOTAL 249394 250606 500000 TOTAL 249649 250351 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 235805 13576 249381 FAIL 230344 19086 249430
PASS 13625 236994 250619 PASS 19138 231432 250570
TOTAL 249430 250570 500000 TOTAL 249482 250518 500000
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CONJUNCTIVE-COMPLEMENTARY: RQ1, COVAR.6, 50%
Accuracy Consistency

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 318985 18841 337826 FAIL 314834 29479 344313
PASS 25328 136846 162174 PASS 29670 126017 155687
TOTAL 344313 155687 500000 TOTAL 344504 155496 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 311029 19561 330590 FAIL 306321 30024 336345
PASS 25316 144094 169410 PASS 30442 133213 163655
TOTAL 336345 163655 500000 TOTAL 336763 163237 500000

CONJUNCTIVE-COMPOSITE: RQ1, COVAR.6, 50%
Accuracy Consistency

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 367885 13881 381766 FAIL 364042 21896 385938
PASS 18053 100181 118234 PASS 21885 92177 114062
TOTAL 385938 114062 500000 TOTAL 385927 114073 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 394484 10812 405296 FAIL 394118 19248 413366
PASS 18882 75822 94704 PASS 19461 67173 86634
TOTAL 413366 86634 500000 TOTAL 413579 86421 500000
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CONJUNCTIVE: RQ1, COVAR.6, 70%
Accuracy Consistency

2 TESTS REPLICATE 1 2 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 193024 20150 213174 FAIL 188794 34075 222869
PASS 29845 256981 286826 PASS 34150 242981 277131
TOTAL 222869 277131 500000 TOTAL 222944 277056 500000

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 232090 18861 250951 FAIL 230094 34188 264282
PASS 32192 216857 249049 PASS 33953 201765 235718
TOTAL 264282 235718 500000 TOTAL 264047 235953 500000

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 259217 17630 276847 FAIL 259274 33104 292378
PASS 33161 189992 223153 PASS 32987 174635 207622
TOTAL 292378 207622 500000 TOTAL 292261 207739 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 279626 16442 296068 FAIL 281127 31791 312918
PASS 33292 170640 203932 PASS 31790 155292 187082
TOTAL 312918 187082 500000 TOTAL 312917 187083 500000



142

COMPLEMENTARY: RQ1, COVAR.6, 70%
Accuracy Consistency

2 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 69968 16245 86213 FAIL 63563 21550 85113
PASS 15145 398642 413787 PASS 21397 393490 414887
TOTAL 85113 414887 500000 TOTAL 84960 415040 500000

3 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 46634 13635 60269 FAIL 40970 16291 57261
PASS 10627 429104 439731 PASS 16207 426532 442739
TOTAL 57261 442739 500000 TOTAL 57177 442823 500000

4 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 34571 11797 46368 FAIL 29749 12853 42602
PASS 8031 445601 453632 PASS 12755 444643 457398
TOTAL 42602 457398 500000 TOTAL 42504 457496 500000

5 TESTS REPLICATE 1 REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 27311 10418 37729 FAIL 23136 10487 33623
PASS 6312 455959 462271 PASS 10347 456030 466377
TOTAL 33623 466377 500000 TOTAL 33483 466517 500000
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COMPENSATORY: RQ1, COVAR.6, 70%
Accuracy Consistency

2 TESTS REPLICATE 1 2 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 124037 15131 139168 FAIL 118778 23254 142032
PASS 17995 342837 360832 PASS 23302 334666 357968
TOTAL 142032 357968 500000 TOTAL 142080 357920 500000

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 122102 12733 134835 FAIL 117441 19604 137045
PASS 14943 350222 365165 PASS 19586 343369 362955
TOTAL 137045 362955 500000 TOTAL 137027 362973 500000

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 121030 11360 132390 FAIL 116803 17445 134248
PASS 13218 354392 367610 PASS 17337 348415 365752
TOTAL 134248 365752 500000 TOTAL 134140 365860 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 120626 10416 131042 FAIL 116891 15588 132479
PASS 11853 357105 368958 PASS 15510 352011 367521
TOTAL 132479 367521 500000 TOTAL 132401 367599 500000
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CONJUNCTIVE-COMPLEMENTARY: RQ1, COVAR.6, 70%
Accuracy Consistency

4 TESTS REPLICATE 1 4 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 205581 19478 225059 FAIL 202358 33635 235993
PASS 30412 244529 274941 PASS 33639 230368 264007
TOTAL 235993 264007 500000 TOTAL 235997 264003 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 194552 23817 218369 FAIL 188794 34075 222869
PASS 28317 253314 281631 PASS 34150 242981 277131
TOTAL 222869 277131 500000 TOTAL 222944 277056 500000

CONJUNCTIVE-COMPENSATORY: RQ1, COVAR.6, 70%
Accuracy Consistency

3 TESTS REPLICATE 1 3 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 257051 16802 273853 FAIL 253570 29354 282924
PASS 25873 200274 226147 PASS 29250 187826 217076
TOTAL 282924 217076 500000 TOTAL 282820 217180 500000

5 TESTS REPLICATE 1 5 TESTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 288314 15104 303418 FAIL 288724 29236 317960
PASS 29646 166936 196582 PASS 29443 152597 182040
TOTAL 317960 182040 500000 TOTAL 318167 181833 500000
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RESEARCH QUESTION 2: COMPARING COVAR6 TO COVAR9 FOR FIVE
TESTS

CONJUNCTIVE: RQ2, FIVE TESTS, 50%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 386420 12223 398643 FAIL 386987 21704 408691
PASS 22271 79086 101357 PASS 21890 69419 91309
TOTAL 408691 91309 500000 TOTAL 408877 91123 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 315881 7872 323753 FAIL 325976 23765 349741
PASS 33860 142387 176247 PASS 23946 126313 150259
TOTAL 349741 150259 500000 TOTAL 349922 150078 500000

COMPLEMENTARY: RQ2, FIVE TESTS, 50%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 79282 22027 101309 FAIL 69484 21909 91393
PASS 12111 386580 398691 PASS 21554 387053 408607
TOTAL 91393 408607 500000 TOTAL 91038 408962 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 142541 34096 176637 FAIL 126715 23725 150440
PASS 7899 315464 323363 PASS 23995 325565 349560
TOTAL 150440 349560 500000 TOTAL 150710 349290 500000
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COMPENSATORY: RQ2, FIVE TESTS, 50%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 235805 13576 249381 FAIL 230344 19086 249430
PASS 13625 236994 250619 PASS 19138 231432 250570
TOTAL 249430 250570 500000 TOTAL 249482 250518 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 238926 11693 250619 FAIL 234060 16538 250598
PASS 11672 237709 249381 PASS 16350 233052 249402
TOTAL 250598 249402 500000 TOTAL 250410 249590 500000

CONJUNCTIVE-COMPLEMENTARY: RQ2, FIVE TESTS, 50%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 311029 19561 330590 FAIL 306321 30024 336345
PASS 25316 144094 169410 PASS 30442 133213 163655
TOTAL 336345 163655 500000 TOTAL 336763 163237 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 274925 14443 289368 FAIL 275054 28294 303348
PASS 28423 182209 210632 PASS 28358 168294 196652
TOTAL 303348 196652 500000 TOTAL 303412 196588 500000
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CONJUNCTIVE-COMPENSATORY: RQ2, FIVE TESTS, 50%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 394484 10812 405296 FAIL 394118 19248 413366
PASS 18882 75822 94704 PASS 19461 67173 86634
TOTAL 413366 86634 500000 TOTAL 413579 86421 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 345162 8042 353204 FAIL 346188 18163 364351
PASS 19189 127607 146796 PASS 18224 117425 135649
TOTAL 364351 135649 500000 TOTAL 364412 135588 500000

CONJUNCTIVE: RQ2, FIVE TESTS, 70%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 279626 16442 296068 FAIL 281127 31791 312918
PASS 33292 170640 203932 PASS 31790 155292 187082
TOTAL 312918 187082 500000 TOTAL 312917 187083 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 210050 8306 218356 FAIL 221746 27604 249350
PASS 39300 242344 281644 PASS 27538 223112 250650
TOTAL 249350 250650 500000 TOTAL 249284 250716 500000
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COMPLEMENTARY: RQ2, FIVE TESTS, 70%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 27311 10418 37729 FAIL 23136 10487 33623
PASS 6312 455959 462271 PASS 10347 456030 466377
TOTAL 33623 466377 500000 TOTAL 33483 466517 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 67643 22105 89748 FAIL 58012 15380 73392
PASS 5749 404503 410252 PASS 15416 411192 426608
TOTAL 73392 426608 500000 TOTAL 73428 426572 500000

COMPENSATORY: RQ2, FIVE TESTS, 70%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 120626 10416 131042 FAIL 116891 15588 132479
PASS 11853 357105 368958 PASS 15510 352011 367521
TOTAL 132479 367521 500000 TOTAL 132401 367599 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 136725 9669 146394 FAIL 133050 14248 147298
PASS 10573 343033 353606 PASS 14364 338338 352702
TOTAL 147298 352702 500000 TOTAL 147414 352586 500000



149

CONJUNCTIVE-COMPLEMENTARY: RQ2, FIVE TESTS, 70%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 194552 23817 218369 FAIL 188794 34075 222869
PASS 28317 253314 281631 PASS 34150 242981 277131
TOTAL 222869 277131 500000 TOTAL 222944 277056 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 170954 13328 184282 FAIL 172236 28855 201091
PASS 30137 285581 315718 PASS 28975 269934 298909
TOTAL 201091 298909 500000 TOTAL 201211 298789 500000

CONJUNCTIVE-COMPENSATORY: RQ2, FIVE TESTS, 70%
ACCURACY CONSISTENCY

COVAR6 COVAR6
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 288314 15104 303418 FAIL 288724 29236 317960
PASS 29646 166936 196582 PASS 29443 152597 182040
TOTAL 317960 182040 500000 TOTAL 318167 181833 500000

COVAR9 COVAR9
5 TESTS REPLICATE 1 5 TESTS REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 240899 8791 249690 FAIL 242966 22104 265070
PASS 24171 226139 250310 PASS 21854 213076 234930
TOTAL 265070 234930 500000 TOTAL 264820 235180 500000
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RESEARCH QUESTION 3: COMPARING TWO AND THREE ATTEMPTS

CONJUNCTIVE: RQ3, FIVE TESTS, COVAR6, 50%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 369697 28946 398643 FAIL 354236 22268 376504

PASS 6807 94550 101357 PASS 21982 101514 123496

TOTAL 376504 123496 500000 TOTAL 376218 123782 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 356153 42490 398643 FAIL 336650 21960 358610

PASS 2457 98900 101357 PASS 21461 119929 141390

TOTAL 358610 141390 500000 TOTAL 358111 141889 500000

COMPLEMENTARY: RQ3, FIVE TESTS, COVAR6, 50%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 66722 34587 101309 FAIL 53946 15538 69484

PASS 2762 395929 398691 PASS 15595 414921 430516

TOTAL 69484 430516 500000 TOTAL 69541 430459 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 58888 42421 101309 FAIL 46732 12967 59699

PASS 811 397880 398691 PASS 12853 427448 440301

TOTAL 59699 440301 500000 TOTAL 59585 440415 500000
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COMPENSATORY: RQ3, FIVE TESTS, COVAR6, 50%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 206455 42926 249381 FAIL 191915 15303 207218

PASS 763 249856 250619 PASS 15418 277364 292782

TOTAL 207218 292782 500000 TOTAL 207333 292667 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 186630 62751 249381 FAIL 173233 13431 186664

PASS 34 250585 250619 PASS 13458 299878 313336

TOTAL 186664 313336 500000 TOTAL 186691 313309 500000

CONJUNCTIVE-COMPLEMENTARY: RQ3, FIVE TESTS, COVAR6, 50%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 291464 39126 330590 FAIL 271669 27293 298962
PASS 7498 161912 169410 PASS 27548 173490 201038
TOTAL 298962 201038 500000 TOTAL 299217 200783 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 276613 53977 330590 FAIL 253789 25512 279301
PASS 2688 166722 169410 PASS 25609 195090 220699
TOTAL 279301 220699 500000 TOTAL 279398 220602 500000

CONJUNCTIVE-COMPENSATORY: RQ3, FIVE TESTS, COVAR6, 50%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 376808 28488 405296 FAIL 362205 19775 381980
PASS 5172 89532 94704 PASS 19573 98447 118020
TOTAL 381980 118020 500000 TOTAL 381778 118222 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 362710 42586 405296 FAIL 345013 19448 364461
PASS 1751 92953 94704 PASS 19084 116455 135539
TOTAL 364461 135539 500000 TOTAL 364097 135903 500000
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CONJUNCTIVE: RQ3, FIVE TESTS, COVAR6, 70%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 259049 37019 296068 FAIL 240513 28197 268710

PASS 9661 194271 203932 PASS 28350 202940 231290

TOTAL 268710 231290 500000 TOTAL 268863 231137 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 243057 53011 296068 FAIL 220740 25711 246451

PASS 3394 200538 203932 PASS 26012 227537 253549

TOTAL 246451 253549 500000 TOTAL 246752 253248 500000

COMPLEMENTARY: RQ3, FIVE TESTS, COVAR6, 70%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 21804 15925 37729 FAIL 16388 6748 23136

PASS 1332 460939 462271 PASS 6826 470038 476864

TOTAL 23136 476864 500000 TOTAL 23214 476786 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 18536 19193 37729 FAIL 13604 5308 18912

PASS 376 461895 462271 PASS 5317 475771 481088

TOTAL 18912 481088 500000 TOTAL 18921 481079 500000
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COMPENSATORY: RQ3, FIVE TESTS, COVAR6, 70%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 98790 32252 131042 FAIL 88368 11075 99443

PASS 653 368305 368958 PASS 11027 389530 400557

TOTAL 99443 400557 500000 TOTAL 99395 400605 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 84941 46101 131042 FAIL 75882 9082 84964

PASS 23 368935 368958 PASS 9072 405964 415036

TOTAL 84964 415036 500000 TOTAL 84954 415046 500000

CONJUNCTIVE-COMPLEMENTARY: RQ3, FIVE TESTS, COVAR6, 70%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 180138 38231 218369 FAIL 161598 27010 188608
PASS 8470 273161 281631 PASS 27157 284235 311392
TOTAL 188608 311392 500000 TOTAL 188755 311245 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 166564 51805 218369 FAIL 145890 23575 169465
PASS 2901 278730 281631 PASS 23956 306579 330535
TOTAL 169465 330535 500000 TOTAL 169465 330154 500000

CONJUNCTIVE-COMPENSATORY: RQ3, FIVE TESTS, COVAR6, 70%
Accuracy Consistency

2 ATTEMPTS REPLICATE 1 2 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 266321 37097 303418 FAIL 248160 26101 274261
PASS 7940 188642 196582 PASS 26069 199670 225739
TOTAL 274261 225739 500000 TOTAL 274229 225771 500000

3 ATTEMPTS REPLICATE 1 3 ATTEMPTS REPLICATE 2
TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 249177 54241 303418 FAIL 228271 23615 251886
PASS 2709 193873 196582 PASS 23968 224146 248114
TOTAL 251886 248114 500000 TOTAL 252239 247761 500000
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RESEARCH QUESTION 4: GED TESTS
Observed Split-Half Scores Simulated Half-Length Tests

Writing

REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 19623 8134 27757 FAIL 16333 8526 24859

PASS 10641 72593 83234 PASS 8485 66656 75141

Total 30264 80727 110991 Total 24818 75182 100000

Social Studies

REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 6158 4125 10283 FAIL 4638 3364 8002

PASS 3781 96927 100708 PASS 3284 88714 91998

Total 9939 101052 110991 Total 7922 92078 100000

Science
REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 6416 4709 11125 FAIL 5356 4444 9800

PASS 3675 96191 99866 PASS 4494 85706 90200

Total 10091 100900 110991 Total 9850 90150 100000

Reading

REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 2854 2259 5113 FAIL 1896 2438 4334

PASS 1860 104018 105878 PASS 2482 93184 95666

Total 4714 106277 110991 Total 4378 95622 100000

Math

REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 17815 7581 25396 FAIL 17013 7526 24539

PASS 7537 78058 85595 PASS 7560 67901 75461

Total 25352 85639 110991 Total 24573 75427 100000

Overall Rule
REPLICATE 2 REPLICATE 2

REPLICATE 1 FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL

FAIL 34124 8508 42632 FAIL 32019 8599 40618

PASS 9669 58690 68359 PASS 8582 50800 59382

Total 43793 67198 110991 Total 40601 59399 100000
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SIMULATED, FULL-LENGTH GED TESTS
Accuracy Consistency

Writing
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 19829 3893 23722 FAIL 18712 6533 25245

PASS 5416 70862 76278 PASS 6516 68239 74755

TOTAL 25245 74755 100000 TOTAL 25228 74772 100000

Social Studies
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 5921 1265 7186 FAIL 5638 2557 8195

PASS 2274 90540 92814 PASS 2584 89221 91805

TOTAL 8195 91805 100000 TOTAL 8222 91778 100000

Science
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 6968 1696 8664 FAIL 6695 3476 10171

PASS 3203 88133 91336 PASS 3473 86356 89829

TOTAL 10171 89829 100000 TOTAL 10168 89832 100000

Reading
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 2630 836 3466 FAIL 2548 2005 4553

PASS 1923 94611 96534 PASS 2013 93434 95447

TOTAL 4553 95447 100000 TOTAL 4561 95439 100000

Math
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 20088 3324 23412 FAIL 19012 5562 24574

PASS 4486 72102 76588 PASS 5472 69954 75426

TOTAL 24574 75426 100000 TOTAL 24484 75516 100000

Overall Rule
REPLICATE 1 REPLICATE 2

TRUE FAIL PASS TOTAL REPLICATE 1 FAIL PASS TOTAL
FAIL 32527 2713 35240 FAIL 32747 6219 38966

PASS 6439 58321 64760 PASS 5982 55052 61034

TOTAL 38966 61034 100000 TOTAL 38729 61271 100000
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Appendix II: Computer Code for R-Software Programs

GENERATING SIMULATION DATA FOR CHAPTER 5

COVAR0:

N=10000 #number of examinees
T=5 #number of tests
true<-array(0,c(N,T))

mu=c(0,0,0,0,0)
sigma = matrix(c(1,0,0,0,0,

0,1,0,0,0,
0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1),5,5)

for (i in 1:N) {
for (j in 1:T){
true[i,j]<-mvrnorm(N,mu,sigma) }}

obsc1<-array(0,c(N,T)) #first replicate score
obsc2<-array(0,c(N,T)) #second replicate score

SEM<-.31623 #reliability = .9

for (i in 1:N) {
for (j in 1:T) {
obsc1[i,j] = rnorm(1,true[i,j],SEM) #generate first replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc2[i,j] = rnorm(1,true[i,j],SEM) #generate second replicate score
}}

COVAR6

N=500000 #number of examinees
T=5 #number of tests
mu=c(0,0,0,0,0)
sigma = matrix(c(1,.6,.6,.6,.6,

.6,1,.6,.6,.6,

.6,.6,1,.6,.6,

.6,.6,.6,1,.6,
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.6,.6,.6,.6,1),5,5)

crit<-c(0,0,0,0,0)

true=mvrnorm(n=N,mu,sigma)

obsc1<-array(0,c(N,T)) #first replicate score
obsc2<-array(0,c(N,T)) #second replicate score

SEM<-.31623 #reliability = .9

for (i in 1:N) {
for (j in 1:T) {
obsc1[i,j] = rnorm(1,true[i,j],SEM) #generate first replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc2[i,j] = rnorm(1,true[i,j],SEM) #generate second replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc3[i,j] = rnorm(1,true[i,j],SEM) #generate third replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc4[i,j] = rnorm(1,true[i,j],SEM) #generate FOURTH replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc5[i,j] = rnorm(1,true[i,j],SEM) #generate FIFTH replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc6[i,j] = rnorm(1,true[i,j],SEM) #generate SIXTH replicate score
}}

COVAR9

N=500000 #number of examinees
T=5 #number of tests
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mu=c(0,0,0,0,0)
sigma = matrix(c(1,.9,.9,.9,.9,

.9,1,.9,.9,.9,

.9,.9,1,.9,.9,

.9,.9,.9,1,.9,

.9,.9,.9,.9,1),5,5)

crit<-c(0,0,0,0,0)

true=mvrnorm(n=N,mu,sigma)

obsc1<-array(0,c(N,T)) #first replicate score
obsc2<-array(0,c(N,T)) #second replicate score

SEM<-.31623 #reliability = .9

for (i in 1:N) {
for (j in 1:T) {
obsc1[i,j] = rnorm(1,true[i,j],SEM) #generate first replicate score
}}

for (i in 1:N) {
for (j in 1:T) {
obsc2[i,j] = rnorm(1,true[i,j],SEM) #generate second replicate score
}}
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GENERATING SIMULATION DATA FOR GED EXAMPLE

HALF-LENGTH TESTS

N=100000 #number of examinees
T=5 #number of tests
mu=c(-.00598, -.00551, -.00752, -.01128, -.00118)
sigma = matrix(c(.745073, .603844, .59741, .576515, .545608,

.603844, .799204, .692102, .655146, .564010,

.59741, .692102, .747666, .603774, .591530,

.576515, .655146, .603774, .708481, .470365,

.545608, .564010, .591530, .470365, .806708),5,5)

true=mvrnorm(n=N,mu,sigma)

obsc1<-array(0,c(N,T)) #first replicate score
obsc2<-array(0,c(N,T)) #second replicate score

SEMwrit<-.468 #reliability, writing = .773
SEMss<-.407 #reliability, social studies = .828
SEMsci<-.457 #reliability, science = .782
SEMread<-.477 #reliability, reading = .757
SEMmath<-.422 #reliability, math = .819

for (i in 1:N) {

obsc1[i,1] = rnorm(1,true[i,1],SEMwrit) #generate first replicate writing score
obsc1[i,2] = rnorm(1,true[i,2],SEMss) #generate first replicate social studies score
obsc1[i,3] = rnorm(1,true[i,3],SEMsci) #generate first replicate science score
obsc1[i,4] = rnorm(1,true[i,4],SEMread) #generate first replicate reading score
obsc1[i,5] = rnorm(1,true[i,5],SEMmath) #generate first replicate math score
}

for (i in 1:N) {

obsc2[i,1] = rnorm(1,true[i,1],SEMwrit) #generate second replicate writing score
obsc2[i,2] = rnorm(1,true[i,2],SEMss) #generate second replicate social studies

score
obsc2[i,3] = rnorm(1,true[i,3],SEMsci) #generate second replicate science score
obsc2[i,4] = rnorm(1,true[i,4],SEMread) #generate second replicate reading score
obsc2[i,5] = rnorm(1,true[i,5],SEMmath) #generate second replicate math score
}
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FULL-LENGTH TESTS

N=100000 #number of examinees
T=5 #number of tests
mu=c(-.00154, -.002522, -.001804, -.004091, -.000382)
sigma = matrix(c(.86315431,.678962, .681302, .669293, .654642,

.678962, .892009273, .784387, .759690, .635370,

.681302, .784387, .867977039, .706269, .693413,

.669293, .759690, .706269, .841411177, .559507,

.654642, .635370, .693413, .559507, .896791211),5,5)

true=mvrnorm(n=N,mu,sigma)

obsc1<-array(0,c(N,T)) #first replicate score
obsc2<-array(0,c(N,T)) #second replicate score

SEMwrit<-.355952 #reliability, writing = .872
SEMss<-.304218 #reliability, social studies = .906
SEMsci<-.347286 #reliability, science = .878
SEMread<-.36702 #reliability, reading = .862
SEMmath<-.313907 #reliability, math = .901

for (i in 1:N) {

obsc1[i,1] = rnorm(1,true[i,1],SEMwrit) #generate first replicate writing score
obsc1[i,2] = rnorm(1,true[i,2],SEMss) #generate first replicate social studies score
obsc1[i,3] = rnorm(1,true[i,3],SEMsci) #generate first replicate science score
obsc1[i,4] = rnorm(1,true[i,4],SEMread) #generate first replicate reading score
obsc1[i,5] = rnorm(1,true[i,5],SEMmath) #generate first replicate math score
}

for (i in 1:N) {

obsc2[i,1] = rnorm(1,true[i,1],SEMwrit) #generate second replicate writing score
obsc2[i,2] = rnorm(1,true[i,2],SEMss) #generate second replicate social studies

score
obsc2[i,3] = rnorm(1,true[i,3],SEMsci) #generate second replicate science score
obsc2[i,4] = rnorm(1,true[i,4],SEMread) #generate second replicate reading score
obsc2[i,5] = rnorm(1,true[i,5],SEMmath) #generate second replicate math score
}
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