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Graphene with large grain size and high electronic mobility was synthesized by

ambient-pressure chemical vapor deposition on platinum and transferred to a variety

of substrates for characterization by electrical transport, Raman spectroscopy, and

transmission electron microscopy. The grain boundaries and pyramid-like multilayer

structures of graphene samples prepared in this way were imaged with dark-field

transmission electron microscopy, and a method was developed to use differences in

first- and second-order diffraction intensities to characterize the layer-number and

stacking-order of graphene up to at least seven layers. Combining this dark-field

method with secondary electron microscopy, electron backscatter diffraction, Ra-

man microscopy, and electronic transport measurements, it was also discovered that

nano-crystalline carbon impurities distributed inhomogeneously under mono-layer

graphene. These impurities were distributed inhomogenously, exhibiting micron-

sized islands of denser impurity concentration whose shapes depended on the orien-

tation of the grains of the Pt substrate. In such impurity-decorated samples both



linear and quadratic magnetoresistance was observed. The linear magnetoresistance

was found for carrier densities well beyond filling the ground Landau level, there-

fore Abrikosov’s quantum magnetoreistance is ruled out. Sample 1, 2, and 3 with

suppressing inhomogeneity were synthesized by controlling growing conditions in

the chemical vapor deposition process. The magnetoresistance positively correlates

with the density of inhomogeneity. The magnetoresistance in samples with widely

varying impurity concentrations can be described by a unique function of the ratio

of carrier-density inhomogeneity to gate-induced carrier density, and can therefore

be attributed to impurity-induced inhomogeneity.
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Preface

Graphene is a one-atom-thick layer of graphite. As an allotrope of carbon,

graphene has unique mechanical[1], electronic[2], and optical[3] properties and has

been investigated widely as a promising post-silicon electronic material after it was

discovered in 2004[4].

Two-dimensional graphene is the only low-dimensional carbon allotrope (oth-

ers are one-dimensional carbon nanotube and zero-dimensional fullerene) that can

be prepared via the top-down method: the well known exfoliation method[4]. How-

ever, the application of this method is limited due to small size (< 100µm) of the

samples prepared. Thus the method of chemical vapor deposition (CVD) was de-

veloped to produce graphene samples with macroscopic size (∼ m). This method of

CVD with platinum as the catalyst and substrate was adopted to synthesize cen-

timeter size monolayer graphene samples with 100 µm crystal grains[5] as introduced

in Chapter 1.

Despite having good electronic properties, the samples synthesized on Pt were

found to be decorated with carbon impurities. Chapter 2 describes the development

of methods based on selected area electron diffraction (SAED) patterns and dark

field (DF) images of transmission electron microscopy (TEM) to characterize layer-

number and stacking sequence of graphene up to at least seven layers. Using tech-

niques from Chapter 2 and combining other methods such as Raman microscopy (see

Appendix A), secondary electron microscopy (SEM), electron backscatter diffraction

(EBSD), energy-dispersive X-ray (EDX), atomic force microscopy (AFM) and high
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resolution TEM (HRTEM), the impurities were identified as nanocrystalline carbon

layers growing under the continuos monolayer graphene. Such impurities distribute

throughout the whole sample inhomogeneously and concentrate in some regions to

form optically visible island-like impurities whose morphology depends on the ori-

entation of the substrate as in Chapter 3.

In Chapter 4 I explore the electronic transport properties of such impurity-

decorated graphene sample. A linear-to-quadratic transition of magnetoresistance

was observed at Landau level filling� 1 indicating a classical rather than a quantum

origin. With Sample 1, 2 and 3 of different density of carbon impurities controlled by

growing conditions in the chemical vapor deposition process, the magnetoresistance

was found to positively correlate with the inhomogeneity density induced by the

carbon impurities. The magnetoresistance was described by a unique function of

the ratio of carrier-density inhomogeneity n∗ to gate-induced carrier density n, and

therefore attribute the magnetoresistance to impurity-induced inhomogeneity. It

was found that the inhomogeneity has a significant remnant over a large range of

carrier density scaled by the inhomogeneity density n∗.

Except the introductory chapter, each chapter in this thesis, though logically

correlated, tells a relatively independent story and has been either published or

submitted or prepared as a single article. I have taken part in the preparation,

writing, and revision of all those articles, published or not. Thus I uses similar, and

sometimes exactly the same, words in this thesis as those in the manuscripts.
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Chapter 1

INTRODUCTION

This chapter is an introduction to the aspects of graphene related to this thesis: the

crystal structure and band structure, the synthesis of graphene via chemical vapor

deposition(CVD), the method of transferring graphene from growth substrate to

other substrate, and a summary of the characterization methods employed in the

works discussed in this thesis.

1.1 Graphene Crystal Structure

Figure 1.1: Monolayer graphene crystal strucutre. Each unit cell contains two atoms: A

and B. The Bravais lattice is triangular.

The structure of graphene’s honeycomb lattice is oblique in terms of triangular

Bravais lattice, as shown in Figure 1.1. There are two atoms A and B in each

unit cell. The primitive vectors are a = a(1, 0) and b = a(−1/2,
√

3/2), where
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a = 0.246 nm is the lattice constant. Occasionally, a′ = a = a(1, 0) and a′′ =

a(1/2,
√

3/2) is also adopted. Vectors connecting nearest neighboring carbon atoms

are τ1 = a(0, 1/
√

3), τ2 = a(−1/2,−1/2
√

3), and τ3 = a(1/2,−1/2
√

3). A unit cell

has an area

Ω0 =

√
3

2
a2. (1.1)

Figure 1.2: Bilayer graphene (a) and trilayer graphene with Bernal (AB) stacking (b)

and rhombohedral (ABC) stacking (c).

The concept of layer-number and stacking-order arises when there is more

than one layer of graphene. To minimize the free energy, graphene tends to stack

closely, which induces a shift of the second added layer with respect to the first

one. The layer to layer distance is d = 0.34nm, as in Figure 1.2(a). There are two

possible stacking modes when adding another layer of graphene to bilayer graphene:

Bernal stacking as in Figure 1.2(b), by adding a third layer shifting in the opposite

direction of the second layer, and rhombohedral stacking as in Figure 1.2(c), in

which case the third layer shifts further in the direction of the second layer. The

physical properties of multi-layer graphene depend greatly on the layer-number[7]

and stacking-order[8, 9].
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1.2 Graphene Band Structure

Given the crystal structure of graphene shown in Section 1.1, we can obtain the

band structure of graphene via the tight-binding approach[10, 11].

The conducting electrons are in the π band, which comes from the pz orbitals

of the carbon atoms. For symmetry reasons, the π band can be calculated indepen-

dently from the σ band, which comes from s, px and py orbitals. And since there

are two atoms, A and B, in a primitive cell in the graphene lattice, the Hamiltonian

matrix [12] in the tight-binding model can be written as:

H =

 HAA HAB

H∗AB HBB

 . (1.2)

By ignoring integrals between any pair of atoms other than nearest neighbors we

have

H =

 εp tf(k)

tf ∗(k) εp

 , (1.3)

where εp is the atomic electron energy −
∫
dV φ∗(r)Hφ(r) whose value is arbitrarily

chosen to be 0 while t is the nearest neighbor integral −
∫
dV φ∗(r−R)Hφ(r). The

term f(k) is the geometric factor

f(k) =
∑
δ

eik·δ

= 2e−ikya/2 cos

(
kxa
√

3

2

)
+ eikya. (1.4)

Thus we have the energy

E(k) = ±t|f(k)| = ±t
√

3 + s(k), (1.5)

3



where

s(k) = 2 cos
(√

3kxa
)

+ 4 cos

(√
3

2
kxa

)
cos

(
3

2
kya

)
. (1.6)

It can be seen that at two symmetrically unequal points K = (2π/3
√

3a,−2π/3a)

and K′ = (−2π/3
√

3a,−2π/3a), E(K) = E(K′) = 0, meaning that band crosses at

K and K′, the so called Dirac points. The band structure is shown in Figure 1.3(a).

Figure 1.3: Graphene band structure calculated by tight-binding theory. The x and y

axes are kxa and kya, the z axis represents the scale of energy. In (a) kxa and kya range

from −π to π. The maximum and minimum values of the energy in the band structure is

3t and −3t respectively. Linear dispersion relationship close to the Dirac point is shown

in (b).

In the light of second quantization, the Hamiltonian of Equation 1.3 can also

4



be written in a suggestive form

H = −t
∑
i,j,σ

(a†iσbjσ + h.c.) (1.7)

where i or j represents orbital of atom on site A or B and σ is the spin. The wave

function can be written as(
αk

βk

)
=
∑
i

eik·Ri

(
a†ie
−ik·δ/2

b†ie
ik·δ/2

)
, (1.8)

where δ is the vector pointing from sublattice A to B. Thus the eigenstate component

arising from K and that from K′ are decoupled with each other and can be written

in a spinor form with component e±ik·δ/2. This quantized quantity called isospin,

together with pseudospin arising from unequal sublattice A and B, are two counter

quantities to the real spin σ.

Expanding to first order of Equation 1.5, we can write the Hamiltonians as

HK′(q) ≈ 3at

2

 0 β(qx + iqy)

β∗(qx − iqy) 0

 , (1.9)

and

HK(q) ≈ 3at

2

 0 β∗(qx − iqy)

β(qx + iqy) 0

 , (1.10)

where β = e5iπ/6, q = k −K′ for HK′ and q = k −K for HK . After combination

and unitary transformation[13], we have

HK,K′(q) =
3at

2

 0 qx ∓ iqy

qx ± iqy 0

 , (1.11)

which is linear with respect to qx and qy, as shown in Figure 1.3(b). Defining

~vF = 3at/2, we have the linear dispersion relationship of graphene band structure
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close to the Dirac points:

E = ±~vF q. (1.12)

This linear dispersion relationship is analogous to that of massless relativistic

particles with momentum q. The role of the speed of light is played here by the

Fermi velocity vF = 3at/2~ ≈ c/300. In other words, electrons in graphene have

a constant Fermi velocity vF as the Fermi level changes, which is a property more

similar to photons rather than to electrons.

The Hamiltonian in Equation 1.11 can be written as

HK = ~vFσ · q, (1.13)

where σ is the Pauli matrices, and

HK′ = HT
K. (1.14)

1.3 Chemical Vapor Deposition of Graphene

Figure 1.4: Schematic of graphene synthesis process by chemical vapor deposition.

Graphene is the only allotrope of carbon that can be obtained from naturally

existing material, graphite, by mechanical exfoliation[4], which is widely used as a
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clean and easy way to prepare graphene in the laboratory. As a crucial disadvantage

for applications, the size of exfoliated graphene is usually limited to linear dimension

below 100µm. Thus attempts to obtain large-size graphene have never stopped after

graphene was discovered. Examples are chemical vapor deposition (CVD)[5, 14, 15]

and epitaxial growth from SiC[16]. CVD has the advantages of high yield, low cost,

and large size compared to epitaxial growth, making it the most prominent method

for industrial production of graphene.

Even though copper is the most widely used catalyst for CVD of graphene,

platinum has risen rapidly after its capacity of catalyzing centimeter-scale monolayer

graphene at ambient pressure (copper-catalyzed CVD requires a low-pressure fur-

nace), and transfer of graphene from Pt by electrolysis, enabling reuse of substrate,

has been reported[5]. The CVD process of graphene on platinum is illustrated in

Figure 1.4. A piece of 2 cm × 1 cm × 2 µm platinum foil is placed on a quartz

boat in the center heating zone of a quartz tube following with hydrogen(H2) gas

whose mass flow rate is controlled by a flowcontroller. The boat is then heated up

to about 1000◦ C in one hour. After the temperature is hold for 15 minutes for

annealing, methane(CH4) gas is turned on during the deposition duration. After

the intended amount of graphene has been deposited, the quartz tube is pulled out

of the heating zone of the furnace for fast cooling and the methane supply is turned

off as the temperature drops below 650◦ C.

The decomposition process of methane takes place automatically, due to the

lowering of free energy from reactants, methane and hydrogen, to the product,

graphene. When the temperature increases over 700◦ C, the speed of methane de-
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composition accelerates in the presence of catalyst platinum[5], generating a mixture

components of active CH*
3, CH*

2, CH*, and C*. The active C* deposited on platinum

forms graphene. It should be noted that above about 500◦ C deposited carbon can

be etched by hydrogen. Thus the formation of graphene is a complex balancing pro-

cess of growing and etching and interaction with catalyst[17, 18, 19] in addition to

diffusion and segregation[19]. The mechanism of CVD process of graphene remains

an open question. And it is not confirmed if the CVD process on copper and on

platinum share the same mechanism even though there are clues in our experiment

supporting a positive answer to this question.

Thus temperature and mass flow rate of reactants, methane and hydrogen,

heating rate and reaction time are adjustable parameters to control the growth

of graphene. Low pressure, which is necessary to produce large-size single-crstal

graphene in CVD process on copper[15], is not crucial to achieve this on platinum[5].

In all CVD experiment in this thesis, ambient pressure is used.

Technically, the advantages of using platinum as catalyst are summarized:

• The ambient pressure reduces the difficulty to obtain graphene of good quality,

making it unnecessary to use the costly equipment for preserving low-pressure

at high temperature.

• The platinum foil is reusable. Platinum as an inert metal does not react with

most acids or alkalis. Thus electrolysis method is used to ”peel” graphene off

from the substrate as described in Section 1.4. The graphene sample obtained

in this way is much cleaner than that obtained by wet-etching.
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• Graphene synthesized on platinum is intrinsically decorated with carbon im-

purities. Such decoration can be adjusted, from almost none to fully-covered,

by adjusting the growing condition such as temperature and mass flow rate

of reactants. We found that the magnetoresistance depends sensitively on the

carbon impurity coverage and thus can be adjusted as well, as descussed in

Chapter 4.

It should be noted that though the grain size of our sample is large(>100µm),

graphene produced by CVD is polycrystal. Grain boundaries exist between the

junction of each two monocrystal grains. It is also not completely uniform: there are

pyramid-like multilayer impurities as discussed in Chapter 2 and more importantly,

nanocrystalline graphene impurities as discussed in Chapter 3.

For comparison and investigation purpose, I also grow graphene sample on

25 µm thick high purity copper foil (99.999%) at 1040◦ C in an ambient-pressure

furnace[15, 20]. The sample is annealed for 30 minutes under flowing 430 sccm

(standard cubic centimeter per minute) argon and 170 sccm hydrogen to remove

oxide impurities and increase copper grain size. Then 10 sccm methane gas is added

for eight minutes and many-layer graphene is deposited. Then the sample is annealed

in argon/hydrogen with the same temperature and gas flow rates for 30 minutes and

then cooled down. The average number of layers can be controlled by the hydrogen

etching duration.

I use a four-step method to transfer synthesized graphene on copper to sub-

strates: (1) two layers of PMMA, Poly(methyl methacrylate) (MicroChemCorp
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PMMA 950 A4) are spin coated onto graphene with speed of 6000 rpm for 45 sec-

onds; (2) the coated sample is immersed in CE-100 (Transene) copper etchant for 5

minutes and rinsed in de-ionized water so that graphene on the uncovered side of the

copper foil is removed; (3) the sample is immersed in CE-100 at room temperature

for sufficient time so that only PMMA and attached graphene is left; (4) the PMMA

with attached graphene is rinsed in de-ionized water and then transferred to a silicon

dioxide wafer or a silicon transmission electron microscopy (TEM) sample holder

with a 1.0 mm x 1.0 mm window covered by 50 nm thick silicon nitride membrane.

To remove PMMA, samples are annealed for four hours at 400◦ C under flowing

argon (300 sccm) and hydrogen (700 sccm). No noticeable changes are observed

by secondary electron microscopy (SEM) for graphene single-crystal flakes annealed

at the same condition, indicating that no additional etching takes place during the

400◦ C anneal.

1.4 Electrolysis Transferring Method

Wet-etching is widely used to transfer graphene synthesized on copper. For the

reason of (i) expensiveness of platinum and (ii) cleanness, an electrolysis method

is adopted to transfer graphene synthesized on platinum[5]. A layer of PMMA is

spin coated onto graphene on platinum foil with speed of 2000 rpm. The graphene-

PMMA-coated platinum is then connected with the cathode of a current supplier,

as in Figure 1.5, and to the anode, a piece of bare platinum is connected. Then

both foils are immersed in a 1 M sodium hydroxide solution. The sodium hydrox-
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Figure 1.5: Schematic of the electrolysis system for graphene transferring.

ide increases the conductivity of electrons and when a 1 A current is applied, the

following reactions happen at the cathode:

2 H+ + 2 e− −→ H2(g), (1.15)

and at the anode:

4 OH− −→ 2 H2O + O2(g). (1.16)

Hydrogen gas is generated between the graphene layer and the platinum foil

and the graphene detaches itself from the platinum. It takes about 15 seconds

to ”peel” the graphene/PMMA membrane from the platinum foil. The detached

membrane is washed in de-ionized water and transfered to a substrate such as silicon

dioxide or TEM sample holder. Then acetone is used to roughly remove PMMA.

A thorough removal of PMMA requires hydrogen annealing. The general ambient-

pressure recipe for PMMA removing is: 300 sccm of argon, 700 sccm of hydrogen,

11



ramping from room temperature(RT) to temperature between 300◦ C and 350◦ C

in two hours, standing by that temperature for an hour and dropping to RT by

shutting the furnace power down.

The electrolysis method is etchant-free and metallic-residue-free. The only

residue on graphene, PMMA, could be almost fully removed by annealing. A small

amount of PMMA residue is acceptable in TEM darkfield investigation and trans-

port measurements. The only occasion I need to pay special attention to the residue

is when I am trying to obtain high resolution TEM (HRTEM) images. When copper

is used as the catalyst, however, I observed significant amount of copper residue on

graphene after the wet-etching process.

1.5 Characterization of Graphene

The characterization of graphene as a single-layer atomic thick material is a chal-

lenge to experimentalists and has received much attention. Graphene probably

has been characterized by all normal methods in surface physics such as optical

microscopy[3, 21], atomic force microscopy(AFM), SEM[22], Raman microscopy[21],

scanning tunneling microscopy(STM)[23] and TEM[24, 25, 26, 27, 28].

Optical microscopy is used to distinguish layer number of thin graphene samples[3,

29]. As the first-step for most characterization, this method has a low optical-level

resolution (µm) and is prone to be confounded by the presence of residues on or

under graphene. Raman spectroscopy is a widely-used and effective method to

characterize layer number and stacking order of exfoliated few-layer graphene[8, 29],
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but for graphene synthesized by chemical vapor deposition or epitaxial growth on

SiC, it often does not show clear signatures of Bernal stacking[21, 30]. Similar to

optical microscopy, Raman microscopy as a technique using laser detection is also

limited in spatial resolution by optical wavelength, as in Appendix A.

AFM may reach quasi-atomic resolution, but absolute measurement of layer

number is difficult on continuous graphene or samples with residues. STM with

an atomic resolution has been used to investigate the roughness[23] of graphene

samples and electron-hole puddles[31, 32] with the disadvantage of slow scanning

and a crucial requirement of the sample cleanness. Generally speaking, it cannot

be used to identify layer-number and stacking-order for continuous graphene as in

AFM even though Morié patterns in an STM image can be used to identify stacking

of bi-layer graphene[33].

Electron microscopy, which will be introduced in Section 1.6, can be used to

image graphene structure on nanometer scales in the presence of PMMA residue.

SEM as a convenient method was used to identify the layer number of graphene[22]

though it lacks the ability to identify crystal orientation. As one of the most

prominent methods, TEM is used broadly: high angle annular dark field scan-

ning transmission electron microscopy (STEM) coupled with electron energy loss

spectroscopy has been shown to distinguish graphene layer number[34]; real-space

high-resolution TEM images have also been analyzed to distinguish between mono-

layer and multi-layer graphene[24]; electron diffraction has given information in

graphene layer number and stacking order[28, 35]; dark-field TEM (DF-TEM) has

been used to characterize the polycrystalline structure of graphite or single-layer
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graphene[25, 26, 27, 35].

Table 1.1 summarize the pros and cons of these characterization methods. It is

clear that TEM is the only method by which both layer-number and stacking-order

of CVD graphene can be obtained.

Table 1.1: Pros and cons of characterization methods for graphene. Here symbol ,

means that the method gives convincing and positive result about the information needed

on the left column, / means negative results and , means that the method can provide

certain information with significant uncertainties.

optical AFM SEM Raman STM TEM

convenience , / , , , ,

resolution / , , / , ,

in situ / , , , , /

layer number , , , , , ,

stacking order / / / , , ,

CVD sample compatible / / , / , ,

1.6 Introduction to Transmission Electron Microscopy

As discussed in Section 1.5, TEM is one of the most prominent method to charac-

terize the atomic-scale structure of graphene. We introduce TEM by starting with

the electron microscopy[36, 37].

As a sample is exposed to electron beam, various physical phenomena take
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Figure 1.6: Signals generated in electron-material interaction. The strength of electron

beams are shown roughly proportional to the width of the beam. Those generated in

elastic processes are presented by solid lines while those in inelastic process are in dashed

lines. Electron beams are straight lines while X-rays are wavy.

place, carrying information of the sample’s crystallography, morphology, configura-

tion, components, etc. For a thin sample, as shown in Figure 1.6, majority of the

incident beam passes directly through the sample, forming a bright-field image. The

thickness of the sample correlates with contrast in the image: thicker regions are al-

ways darker than thinner regions as might be expected. A small portion of electron

beam scattered by the sample atoms can be used to form dark-field image or diffrac-

tion pattern, depending on whether the microscope lenses are set up in image mode

or diffraction mode as explained in detail below. Thus there is a one-to-one corre-
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spondence between dark-field image and diffraction pattern. The diffracted beam

contains abundant information of the crystalline of the sample: grain boundary,

phase, orientation, etc. Contrary to bright field images and perhaps to intuition,

the contrast in the dark field images is inverse to the thickness: a thicker region

is brighter than a thinner one. That is because a thicker region contributes more

scattered electrons than a thinner region in constructive interference. The direct

beam and the diffracted beam are the two main electron signals used in TEM.

A parallel beam source of electrons is used in TEM, whatever in image mode

or diffraction mode. When the beam is concentrated into a nano-size spot on the

sample, convergent beam electron diffraction (CBED) occurs. By scanning the

spot over the sample, scanning transmission electron microscopy (STEM) image

is obtained with abundant information on the roughness and morphology of the

sample.

For thick samples, all electrons are scattered back and secondary electron mi-

croscopy (SEM) uses a detector placed right above the sample. Elastically back

scattered electrons contain the information of crystal structure, as the electron sig-

nal used in electron backscattering diffraction (EBSD), with which we identify the

crystal orientation of Pt foil in the thesis in Chapter 3. Inelastically scattered, or

secondary, electrons have low energy and they are mainly used to provide nano-scale

resolution images.

X-rays are also generated in inelastic collision of electrons with atoms, when

an electron is excited and transits back to the ground state. Thus the frequency or

energy of the X-ray depends on the atom excited and can be used to identify the
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components of the material investigated. Two elements, hydrogen and lithium, are

not detectable with this method because of the low energy of the signal generated

(or ”too light” in the language of electron microscopy). Both TEM and SEM can

take advantage of this signal and such technology is called energy-dispersive X-ray

spectroscopy (EDX).

Now we discuss the imaging principles of TEM in detail. The simplified optical

path diagram is shown in Figure 1.7. Passing through condenser lenses, objective

lenses, and projective lenses, electrons converge into bright spots indicating the

crystal structure of the sample, the so called diffraction mode, or form image of the

sample, the so called image mode. In the diffraction mode, the brightest center spot

(1) is formed by electron passing right through the sample, the direct beam; the

weaker spots (2) bearing certain symmetry arise from electron diffraction by crystal

facets. In both modes, the optical path is exactly the same above a plane under the

objective lens, the so-called focal plane. By placing an objective aperture in the focal

plane to select either spot (1) or (2) in Figure 1.7, the electron beam with certain

diffraction angle is selected. Therefore there is a one-to-one correspondence between

a diffraction spot and a dark field image. Switching from the diffraction mode to

the image mode, either a bright field image or dark field image corresponding to

the selected spot is obtained. The bright field image has little contrast, especially

for thin samples such as graphene, and the thicker region of the sample is shown to

be darker. The dark field image, on the contrary, provides abundant information

of the crystal structure and shows the opposite relationship between thickness and

intensity: the thicker part of the sample is brighter in the image.
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The technique discussed above is especially effective with thin materials such as

graphene. It can be used to identify the orientation of polycrystal graphene[27]. In

the six-fold symmetry diffraction pattern of graphene, there are 6n diffraction spots

for each order, which is determined by the order of primitive vector in reciprocal

lattice. Here n indicates the number of regions with different crystal orientations.

The relative angle of the orientation of a crystallite is demonstrated directly by

the rotating angle of one set of diffraction spots with respect to another. In the

image mode, a part that is bright in one dark field image and totally black in others

indicates that it shares a different orientation with the other parts.

An important part of this thesis is the powerful technique developed using se-

lected area electron diffraction (SAED) and DF imaging to quantitatively determine

the layer number and stacking sequence of graphene[35], which will be discussed in

Chapter 2.
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Figure 1.7: Optical path diagram of the diffraction mode (left) and the image mode

(right) of TEM. The image mode can generate either a bright field image or a dark field

image by selecting, with an aperture placed in the diffraction pattern, the direct beam

(1) or the diffracted beam (2) respectively.
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Chapter 2

LAYER NUMBER AND STACKING ORDER IDENTIFICATION

OF GRAPHENE BY ELECTRON DIFFRACTION

In this chapter I introduce the dark-field electron microscopy technique based on

SAED patterns and DF images of TEM. This method is applied to identify the

layer number and stacking order of Pt-grown graphene up to seven(7) layers[34, 35]

and characterize grain boundaries of graphene and pyramid-like mulitlayer structure.

The results of this study have been published in Ref.[35]. Armed with this technique,

I discovered nanocrystalline graphene impurities under the Pt-grown continuos crys-

talline monolayer graphene sample and understood the crystallity and morphology

of such impurities shown in Chapter 3. It is the characterization by electron mi-

croscopy that provides us with clues to understand the abnormal magneto-transport

behavior of our graphene samples, as discussed in Chapter 4.

Using kinematical theory, I calculated the first- and second-order diffraction

intensities of multi-layer graphene of arbitrary stacking (arbitrary number of layers

on A, B, or C sites of the hexagonal lattice). For simple samples (layer number

n ≤ 3), the intensity ratios of first- and second-order SAED spots measured match

with theory. Real-space DF images are used to produce maps of layer number

contrast with few-nanometer spatial resolution. For complex heterogeneous multi-

layer graphene samples with layer number n ≤ 7, we use contrast in DF images

20



to unambiguously distinguish the layer-number and stacking-order. We find that

multilayer graphene exhibits Bernal (ABAB) or rhombohedral (ABCABC) stacking

correlations across multiple layers.

2.1 Electron Diffraction by Graphene

Electrons as source particles provide more detailed information than x-rays, let

alone optical microscopy. Both electrons and x-rays are diffracted by crystal lattices

but electrons have a wavelength (3.7 pm at 100 keV) 3.7% of that of x-rays (100

pm). Thus microscopy techniques based on electron scattering can give much higher

resolution. The radius of the Ewald sphere formed by an electron(K0 = 170 Å
−1

) is

about 30 times larger than that by an x-ray(6.3 Å
−1

), meaning more deflection. The

diffraction angle of diffracted electrons ranges from 0◦ to 2◦ in contrast to 0◦ to 180◦

of x-ray. Thus the diffracted electron beams are close to the direct(undiffracted)

beam, making it possible to select a diffracted beam from diffraction pattern with

an aperture. What is more, the interaction of electrons with the investigated matter

is 106 to 107 times greater than that of x-rays, so that the diffracted electron beam

has a high intensity and the exposure time is short (typically several seconds) and

more microscopic information is extracted from the interaction, elastic or inelastic,

as in Section 1.6.

Our calculation of electron diffraction by graphene is based on the kinematic

approximation that the interaction of an electron with an atom is so transient that

the carbon atom can be seen as a rigid body[36]. The electronic structure of a

21



Figure 2.1: Electron diffracted by carbon atoms located on different layers. The param-

eters are given in Chapter 1. The path colored in blue and green corresponds to parts

with the same color in Equation 2.2.

single carbon and crystal structure of multilayer graphene, as shown in Figure 1.2 in

Chapter 1, contains the full information needed to calculate the diffraction pattern.

The intensity can be written as

I = I0 × ξ, (2.1)

where the atomic scattering intensity I0 arises from the electron structure of a carbon

atom and the modulation term ξ contains crystallographic information about the

graphene lattice.

As given in Chapter 1, the length of the primitive vector in the reciprocal

lattice is b = 4π/a
√

3 = 2.95Å
−1

. Thus we have lengths of the first order and

second order primitive vectors in the reciprocal lattice: K1 = b = 2.95Å
−1

and
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K2 = 5.11Å
−1

.

A schematic of electron diffraction by bilayer graphene is shown in Figure 2.1.

The path difference is

∆ =
d

cos θ
+ (a− d tan θ) sin θ − d

≈ aθ (2.2)

where θ = Ki/K0 is approximately 0.017 for Ki = K1 or 0.03 for Ki = K2. Here K0

is the radius of the Ewald sphere.

The meaning of Equation 2.2 is that for electron scattering by few-layer graphene,

atoms located on different layers can be treated as if they were on the same layer:

a three-dimensional crystal is ”squeezed” into a two-dimensional crystal. With this

view point, the calculation of electron diffraction is greatly simplified.

The modulation term ξ(K) in Equation 2.1 is the square modulus of the struc-

ture factor f(K):

ξ(K) = |f(K)|2

= |
∑
i

eiK·ri |2. (2.3)

We define the stacking mode to represent the stacking order of layers of

graphene. An ABABC stacking graphene, for example, has stacking mode (2,2,1).

The structure factor can be analytically calculated by noticing that a stacking mode

A contributes a term 1 + ei
4
3
π(n1+n2), B a term ei

2
3
π(n1+n2) + ei

4
3
π(n1+n2) and C a term
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1 + ei
2
3
π(n1+n2). The modulation term ξ for an arbitrary stacking is

ξ =


(a+ b+ c)2 = 4n2 if n1 + n2 = 3k, k ∈ Z

1
2

[(a− b)2 + (b− c)2 + (c− a)2] if n1 + n2 6= 3k, k ∈ Z,

(2.4)

where a, b and c are one of 1, ei
2
3
π(n1+n2) and ei

4
3
π(n1+n2) and n1 and n2 are integers

which equal to K·ri/2π. The valid values of K are primitive vectors in the reciprocal

lattice which starts from first order K1 to infinity.

Provided with stacking order, we can have the stacking modes and obtain ξ

for first and second order diffraction by Equation 2.4, as shown in Table 2.1 and

Figure 2.2. It can be seen that ξ2 = ξ(K2) varies quadratically with layer number.

Thus the intensity of the second order diffraction alone is sufficient to discriminate

between different layer numbers. In the case of ξ1 = ξ(K1), and hence first order

diffraction intensity, the magnitude depends on layer number and structure. There

are degeneracies, however, such as for the monolayer and bilayer. So the ratio of

first- to second-order intensities, which is written as

I1

I2

=
I01

I02

ξ1

ξ2

, (2.5)

is used as an indicator of stacking order; I1/I2 is evaluated for 100 keV incident

electrons and listed in the last column of Table 2.1 and Figure 2.3. It should be noted

that for 100 keV accelerating voltage, the intensity ratio of atomic scattering by

electrons is I01/I02 = 4.49[38]. Single layer graphene (and all AA stacked graphene)

has the highest I1/I2 ratio of 1.12. Bernal stacked graphene tends to converge to

a ratio 0.3, and rhombohedral graphene to a ratio 0 (i.e. the first-order spot is

missing). Thus for layer number n ≤ 3, the ratio clearly identifies all possible layer

24



numbers and structure models. For large layer number, the ratio gives some contrast

between regions of differing layer number (especially differing by one layer) and is

particularly sensitive to the presence of stacking faults.
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Table 2.1: Diffraction pattern parameters for various structure models. The structure

model means stacking mode. For example, structure model 1,2,1 means a layer of

graphene in A stacking position, two layers in B position and one in C position.

Layer Number Structure Model ξ1 ξ2 I1/I2

1 1 2 8 1.12

2 1,1 2 32 0.28

3 1,2 6 72 0.37

1,1,1 0 0

4 1,3 14 128 0.49

2,2 8 0.28

1,1,1 2 0.07

5 1,4 26 200 0.58

2,3 14 0.4

1,3,1 8 0.31

2,2,1 2 0.04

6 1,5 42 288 0.65

2,4 24 0.37

3,3 18 0.28

1,1,4 18 0.28

2,3,1 6 0.09

2,2,2 0 0
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Figure 2.2: Kinematical calculation of the modulation factor ξ of electron diffraction of

graphene. The curves show ξ1 for Bernal and rhombohdral stacking and ξ2 obtained

from Table 2.1. Note the layer-number-identification ability of ξ2 despite the stacking

order.
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Figure 2.3: Kinematical calculation of intensity ratios for electron diffraction of graphene

extracted from Table 2.1. Squares are electron diffraction intensity ratios for first- and

second-order diffraction spots as a function of layer number. The structural model is

denoted using the notation described in the text. The dashed red line connects structure

models representing Bernal stacking, and the dashed blue line connects structure models

representing rhombohedral stacking. The shaded pink and blue regions enclose structure

models containing two elements (AB) and three elements (ABC) respectively. The

numbers on the right side of each colored square are structure models as in Table 2.1.

Note that there are degeneracies existing for certain models.
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2.2 Characterization by Dark Field Image

The samples used in this section were grown on platinum at 1040◦ C in the gas

mixture of hydrogen (700 sccm) and methane (5 sccm) and transfered to a silicon

dioxide wafer or silicon TEM sample holders with a 1.0 mm x 1.0 mm window

covered by 50 nm thick silicon nitride membrane. While the samples are dominantly

monolayer graphene, I also find heterogeneous multi-layer graphene structure which

are characterized in this section. Figures 2.4(a) and (b) show bright-field images of

stepped-pyramid structures of small graphene crystallites. The second-order dark

field images (Figures 2.4(c) and (d)) clearly distinguish the presence of many discrete

layer number regions with sharp boundaries. Interestingly, the first-order dark-field

images show regions of different contrast within each terrace of constant second-order

contrast, which we interpret as regional areas of different stacking order as verified

below. Note that in one sample (Figures 2.4(a), (c), (e)) there is an additional single

graphene layer covering the upper portion of the image which is slightly rotated

with respect to all the other layers, producing a Moiré pattern (this was verified by

noticing that the Moiré pattern orientation rotated according to the diffraction spot

used to produce the image).
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Figure 2.4: Bright-field images (a) and (b) of two samples can barely distinguish layers.

The scale bars are 500 nm. Second order DF images (c) and (d) and first order DF

images (e) and (f) corresponds to (a) and (b) in the same column with the same scale.

Cyan contours in (e) and (f) are obtained from (c) and (d), which are sufficient to give

layer-number, as labeled. Stacking order are labeled in (e) and (f) with values of ξ1 in

parenthesis. The boundary of Bernal and rhombohedral stacking in (e) is indicated by

the purple arrow. The segmented lines in (c-f) correspond to intensity profiles shown in

Figure 2.5.
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I assigned stacking orders to the various regions in Figure 2.4 as follows. I

notice that for a given second-order intensity there are at most two different first-

order intensities. Therefore I assume that there are only two types of stackings:

Bernal (AB) and rhombohedral (ABC). I assign the higher-intensity first-order ar-

eas as Bernal stacked, and lower-intensity areas as rhombohedrally stacked. The

stacking assignments are denoted in Figures 2.4(e) and (f). In Figure 2.4(e), there

is a sharp boundary (purple arrow) between rhombohedrally-stacked graphene on

the lower left, and Bernal stacking on the upper right. The first-order intensity

grows monotonically with layer number for the Bernal-stacked region, but is low

and non-monotonic in layer number for rhombohedrally-stacked graphene, in qual-

itative agreement with Figure 2.2(a). Similar but less sharply-defined regions of

rhombohedral stacking are observed in Figure 2.4(f).

I now analyze the first- and second-order diffraction contrast quantitatively.

Figures 2.5(a), (b), (c), (d) show line profiles along the colored lines in Figures 2.4(c),

(e), (d), (f) respectively. I take averages over the regions denoted by horizontal lines

(the vertical position of the line shows the average) which are identifiable on the

dark-field images as areas of uniform contrast. Figures 2.5(e)-(h) show the average

contrast values for each region in Figures 2.5(a)-(d) plotted versus the expected

contrast (see Figure 2.2(a)). There is an offset in the experimental values mainly

due to a diffuse background in the dark-field images due to the presence of the

silicon nitride membrane. For this reason I used the diffraction contrast directly

instead of the quantity I1/I2. The linear relationship in Figures 2.5(e)-(h) indicates

agreement between experiment and theory. The experiment shows the fine details
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Figure 2.5: Intensity profiles (a-d) correspond to the same-color segmented lines in Fig-

ures 2.4(c)-(e). The break points corresponds to the dashed line segments. Horizontal

lines and shaded regions denote the mean value and standard deviation of the intensity

averaged over each segment. Experimentally determined mean intensities (e)-(h) as

a function of the theoretically calculated values from Table I for the structure assign-

ments indicated in Figures 2.4(c)-(e). A linear relationship indicates agreement between

experiment and theory.

of the theory: The second-order intensity varies quadratically with layer number

(Figures 2.5(e),(g)). For Bernal and rhombohedral stacking within the same layer

number (Figure 2.5(h); ABCA vs. ABAB) the experiment shows the expected

relative intensities. For Bernal stacking the first-order diffraction intensity (Fig-

ure 2.5(f)) rises with layer number monotonically but non-uniformly [for example,
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ABA (6) and ABAB (8), and ABABA (14) and ABABAB (18) are relatively closely

spaced in intensity]. We note that because of the background, absolute layer thick-

ness determinations from measurement of only one or a few structures would be

difficult with our technique, but the situation could be significantly improved by

suspending the graphene.

I now discuss the observation of different stacking sequences in the same sam-

ple. The coexistence of rhombohedral and Bernal stacking had been previously

observed in Raman microscopy on trilayer graphene. Here the TEM technique,

with high spatial resolution, has allowed me to make two new observations: First,

I observe that stacking correlations (rhombohedral vs. Bernal) persist over several

layers (up to seven layers in Figure 2.4(e)). This is quite surprising given the weak

interlayer interactions in graphene. Second, I observe that most boundaries between

rhombohedral and Bernal stacked regions appear to be associated with out-of-plane

deformation or wrinkling of graphene (seen as a dark contrast in the second-order

dark-field images Figures 2.4(c) and (d)). This suggests mechanical stress as either a

cause or a result of the stacking fault boundary. The very straight boundary between

rhombohedral and Bernal stacking seen in Figure 2.4(e) appears somewhat unusual

compared to the meandering lines that we presume are wrinkles; I am unsure of the

origin of this feature.
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2.3 Characterization by Diffraction Pattern

Figure 2.6: SAED pattern (a) and corresponding raw DF images (b) of a sample hydrogen

etched for 30 minutes. Combined dark field images (c, d) for first-order (c) and second-

order (d) diffraction spots. Color corresponds to crystallographic orientation as indicated

in (a). Index in (d) are structure models. (e) Grey scale image of ratio of first-order to

second-order diffraction intensity. (f) Same image as (e), colored to indicate areas of

single-layer graphene (green) and Bernal stacked bilayer graphene (red). (g) Histograms

of the intensities of the DF image (d) for blue (upper panel) and orange (lower panel)

crystallographic orientations. The dashed lines indicate histograms of the raw image, and

the solid points indicate histograms after Gaussian filtering the images at 4.8 nm. The

solid lines are fitted to two Gaussians, with individual Gaussian components indicated

by green lines. The diameters of all DF images are 1µm.

I now give another quantitative example of our imaging technique. The sample in

this case is graphene deposited and annealed on copper and transfered as described
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in Section 1.3 in Chapter 1. From selected area electron diffraction (SAED) studies

I determine that the multi-layer graphene crystallites grown by this method in most

cases (95%) show crystallographic alignment among all the layers. Rare overlap

of graphene layers with different orientations is identified by Moiré patterns in DF

images.

Figure 2.6(a) shows a typical SAED pattern which indicates that two differ-

ent crystallographic orientations (two grains) are present. Four raw DF images in

Figure 2.6(b) correspond to the first and second order diffraction spots for the two

crystallographic orientations (orange or blue circles in (a)). The data of raw DF

images are converted to grey scale and area of graphene are isolated by applying a

threshold on the grey scale mapping. They are then colored, orange or blue respec-

tively corresponding to the two crystallographic orientations, with intensity corre-

sponding to the greyscale value, and merged and inverted to generate Figure 2.6(c)

(for DF images corresponding to first order spots) and Figure 2.6(d) (second order

spots). Based on the one-to-one correspondence between SAED patterns and DF

images, regions with different colors (orange, blue) represent graphene with differ-

ent orientations. The first order DF image ( Figure 2.6(c)) shows no layer number

contrast, as expected from I1 in Table 2.1, while the second order DF image shown

( Figure 2.6(d)) demonstrates clear contrast within each crystallographic region. As

Table 2.1 indicates, the second order SAED pattern, and thus its corresponding DF

map, is sufficient to distinguish layer number. Hence dark and light regions in (d)

correspond to thicker layer and thinner regions respectively.

In order to generate a map of layer number contrast alone, the raw second
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order DF images in (b) are added and then Gaussian filtered with a 6 pixel variance

(4.8 nm), resulting in image (e). A histogram of the intensities in (e) shows two well-

resolved peaks indicating two contrast level are well-resolved at 4.8 nm resolution.

(The histogram of the raw image shows only one peak.) Setting the threshold

between the two peaks allows the image to be colored corresponding to the areas

of different layer number ( Figure 2.6(f)). Moreover, the histogram also measures

the areas of graphene with different layer numbers but the same orientation, which

are proportional to the areas enclosed by each peak, and the total area of graphene

with each orientation, which is proportional to the area enclosed by the whole fitting

curve.

Table 2.2: Determination of the structure model of the graphene samples shown in

Figure 2.6. The experimental quantities I1/I2 and I
(m)
k /I

(n)
k and the theoretical results

for the structure model are shown. Sign ”&” in the Structure Model column represents

the coexistence of two or more structure models with the same crystal orientation.

Percentages in Structure Model column represent the fraction of area with that structure

determined experimentally from histograms (Figure 2.6(g)).

I1/I2 I
(o)
1 /I

(b)
1 I

(o)
2 /I

(b)
2 Structure Model

Region

exp theo exp theo exp theo

orange 0.39 0.38 1(36%)&1,1(64%)

blue 0.34 0.35

1.54 1.51 1.34 1.37

1(27%)&1,1(73%)

I now determine the layer number and structure model for the different regions

36



of the sample in Figure 2.6. The background of the SAED pattern is eliminated by

a rolling-ball algorithm with ball radius 50 pixels, and intensities of SAED spots

are obtained by integration over Gaussian peaks and then spots of the same order

are averaged and the ratio I1/I2 is indicated in Table 2.2. A parameter β(i) that

indicates the area portion of graphene with layer number index i is evaluated from

the area of peaks obtained from histograms (Figure 2.6(g)). For orientation-identical

graphene with two different layer numbers, we have

I1

I2

=
β(i)I

(i)
1 /I

(j)
1 + 1− β(i)

β(i)I
(i)
2 /I

(j)
2 + 1− β(i)

× I
(j)
1

I
(j)
2

. (2.6)

The theoretical values of I1/I2 in Table 2.2 match the experimental data very well.

The quantity I1/I2 may not be accurate enough to identify layer numbers of

complicated layer-mixed and/or many-layer graphene because (i) there is always

more than one possible combination of structure model having values close to I1/I2

and (ii) the distribution of I1/I2 becomes denser as layer number increases, as shown

in Figure 2.2. However, if there are multiple grains of different orientations, addi-

tional information is possible by comparing I
(m)
k /I

(n)
k , the ratios of intensity from

SAED spots of grains m and n with the same order k. The additional ratios are

shown in Table 2.2 for the sample shown in Figure 2.6; again, the theory matches

with the experiment well.

Second-order DF images are also used to investigate my hydrogen-etched sam-

ples on a larger scale and I find thin graphene layers at the edges of crystallites,

implying that etching always takes place at the boundaries between graphene single

crystals, as in Figure 2.6. This technique also provides us with clues for under-
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Figure 2.7: Second-order mapping of a typical graphene sample grown on copper. The

scale bar is 1 µm. Graphene single crystals with the same orientation shares the same

color in the image.

standing the growing processes of graphene. As shown in Figure 2.7, I observed

long-range correlations of the graphene orientation indicating an effect of substrate

lattice orientation growth of graphene on copper[39].

As another verification, I measured I1/I2 for single layer graphene flakes grown

on copper as shown in Figure 2.8. The measured value turns out to be 1.03, within

10% uncertainty with respect to the theoretical value 1.1.
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Figure 2.8: Top-left: TEM image of graphene single layer flakes grown on copper. Top-

right and bottom-right: corresponding rotated bright field image and dark field image

respectively with large magnification in the region enclosed by the blue rectangular in

the top-left image. Bottom-left: background-substrated DP in the blue rectangular

region. Each first or second order diffraction spots is marked and averaged with circles

as indicated.

2.4 Disorder and Thermal Fluctuations

It is also worthwhile to address the robustness of our TEM technique to disorder

or thermal fluctuations. The high Debye temperature of graphene indicates that

corrections to I1/I2 due to the thermal Debye-Waller factor are on order 1% at

room temperature[40]. Static disorder due to e.g. vacancies or adatoms[41] which
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shift the atomic positions can lead to a static Debye-Waller factor[42]. However,

point defects are easily detectable through the presence of a Raman D band. The

Raman D to G intensity ratio is at most 0.3 in our samples (and often much lower),

indicating a point defect concentration at most 100 ppm[43], which would lead to

corrections to I1/I2 on order 100 ppm or less. Static disorder is therefore unlikely

to significantly modify the analysis of our samples, or any technologically-relevant

graphene samples with modest disorder.
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Chapter 3

INTRINSIC CARBON IMPURITIES DECORATING

CONTINUOUS MONOLAYER GRAPHENE

In the last chapter, the technique of characterization of graphene by dark-field TEM

was brought out. In this chapter I discuss the use of this powerful technique com-

bined with other methods such as optical microscopy, SEM, EBSD, TEM, HRTEM,

AFM, Raman spectroscopy, and electrical transport measurements, to identify novel

carbon impurity structures that have not been previously observed in Pt-synthesized

graphene. These impurities consist of nanocrystalline sp2 carbon, and can cause con-

siderable confusion in characterizing the layer number and defect concentration of

Pt-synthesized graphene by conventional methods.

3.1 Sample Preparation and Initial Characterization

The graphene samples were grown, as in Section 1.3 of Chapter 1, at 1000◦ C on

a 0.2 mm thick platinum foil under a flowing ambient gas mixture of 700 sccm

hydrogen and 5 sccm methane[5]. Figure 3.1(a) shows an SEM micrograph of the

sample on Pt foil, and Figure 3.1(b) shows an optical micrograph of the sample

after transfer to SiO2/Si. As will be shown below, monolayer graphene covers the

whole surface, but optical and SEM micrographs show few-micron-sized islands of

increased contrast. Characterization of graphene on the Pt substrate via energy
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dispersive X-ray spectroscopy (EDX) shows no significant peaks except carbon and

Pt as in Figure 3.2. The size, morphology and configuration of the islands, as

shown in Figure 3.1(a), depend on the crystalline orientations of the Pt substrate

which are distinguished by contrast in SEM images due to the tunneling effect of

secondary electrons. Such correlations will be investigated further via EBSD below

in Section 3.2.

Typically graphene is transferred onto silicon dioxide substrates facing the

same direction as it is on Pt, i.e. the side originally touching the metal sur-

face touches the silicon dioxide surface after transfer. Imaging the topography

of graphene transferred in this normal way requires removal of the transfer sup-

port, typically poly(methyl methacrylate) ( PMMA), in which case PMMA residue

may contaminate the image. To investigate the topography of graphene grown on Pt

without exposing the surface to be probed to PMMA, we use an up-side-down trans-

fer method: we transfer the graphene/PMMA stack to SiO2/Si with the graphene

on top, and do not remove the PMMA.

Figure 3.1(c) shows an AFM image of graphene/PMMA transferred by the up-

side-down method. The surface being imaged has no contact with PMMA. Islands

similar in morphology to those seen in Figure 3.1(a) and (b) can be identified in the

AFM image with height of about 0.35 nm to more than 1 nm. We also observed

two types of wrinkles in graphene transferred by this method: raised wrinkles which

were valleys in graphene on the Pt growth substrate and may represent the Pt metal

grain boundaries, and indented wrinkles which were raised when graphene was on

Pt, and likely arose from the differential thermal expansion between graphene and
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Pt[4]. Such narrow wrinkles are not the consequence of the transfer process as

graphene adheres tightly to the 300nm thick PMMA and only wrinkles close to that

scale can result from transfer.

Figure 3.1: Scanning electron micrograph (a), optical micrograph (b), and atomic force

micrograph (c) of graphene grown by ambient-pressure chemical vapor deposition on Pt

foil. Image (a) is as-grown sample on Pt foil; the scale bar is 5 µm. The three large

areas of different contrast are three crystalline grains of the Pt foil. Image (b) is taken

after transfer of graphene to SiO2/Si substrate; the scale bar is 10 µm. Image (c) is

taken on graphene on poly methylmethacrylate transfer layer transferred upside-down to

SiO2/Si. The scale bar is 5 µm. Raised and lowered wrinkles are indicated by white and

black arrows, respectively. In all cases few-micron-sized islands of different contrast are

evident.
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Figure 3.2: EDX detects carbon, silicon and oxygen for a transferred graphene sample

on SiO2. The inset shows EDX for pre-transferred graphene on Pt. Only carbon and

substrate elements are detected in both cases.
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3.2 Orientation Dependence of Impurities

We identify the orientations of monocrystal Pt via EBSD and image the island

layers grown on corresponding Pt grains via SEM. Crystalline orientations can be

compeletely described by either the combination of plane direction and crystal di-

rection {h k l}<u v w> or Euler angles (φ1, Φ, φ2). Index {h k l} represents atomic

arrangements on the cleavage surface, the last Euler angle, φ2, represents rotation

of the crystal in the plane of cleavage surface with respect to the reference direction

(RD), provided that Bunges (passive) description is used. As an example given

in Figure 3.3, maps of inverse pole figure (IPF), Figure 3.3(b), and Euler angles,

Figure 3.3(c), are shown for three monocrystals A, B, and C as in Figure 3.3(a).

Given {h k l} and φ2, we obtain the top-view of the crystals shown in Figure 3.3(g)-

(i). We define a direction in the cleavage face along the most exposed atoms on

the top layer, representing the anisotropy of this facet. We found that the defined

direction coincides with the longitudinal axis of the impurity layers, if there is one.

For cleavage faces lacking such an axis, as in case A of Figure 3.3(d), the impurity

layers do not show obvious anisotropy. Thus the anisotropy of the crystal face does

relate with that of the morphology of the impurity layers. This relationship holds

for about 50 grains on the sample that have been scanned.
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Figure 3.3: The SEM image (a) shows platinum substrate with 3 grains A, B, and C of

different orientations, whose IPF map and Euler angles map are shown in (b) and (c).

The plane direction {h k l} and the last Euler angle φ2 are shown in the corresponding

map. The atomic arrangements are shown respectively in (g), (h), and (i) below detailed

SEM images in (d), (e), and (f) marked with directions, if exist, defined in the text.

The angles formed by the axes and the RD are also shown in the SEM images to guide

eyes. The scale bars in (a) and (d) are 5 µm.
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It is important to understand whether the impurity carbon is deposited on

top of the monolayer graphene or forms underneath. Our EBSD results show a

strong correlation between the anisotropy of the impurity islands and the crys-

talline orientation of the Pt substrate (Figure 3.3), but not the crystalline orienta-

tion of the graphene which is continuous across many Pt grains. The correlation

strongly suggests that the impurity islands form beneath the monolayer graphene

at the Pt surface; given that the islands are not highly crystalline themselves the

anisotropy probably results from anisotropic diffusion of carbon along the Pt. The

detailed mechanism of the carbon cluster formation calls for further theoretical

investigation[44, 45]. However all results confirm the growth-from-below model for

graphene on Pt[46].
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3.3 Characterization of Impurity Decorated Sample by Dark Field

TEM Technique

Figure 3.4: Transmission electron microscopy and diffraction of Pt-grown graphene. (a)

Bright field image with scale bar of 1 µm. (b) Electron diffraction pattern corresponding

to sample in (a). (c-e) Dark field images corresponding to orange (c), blue (d) and

magenta (e) apertures indicated in (b).

Dark field TEM technique as an efficient characterization method of graphene is

discussed in Chapter 2. To investigate the structure of the impurity decorated
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samples via TEM, I transferred them onto 10 nm thick silicon nitride membranes.

Figure 3.4(a) is a bright-field TEM image of the sample showing an island similar

to those seen in Figure 3.1. Figure 3.4(b) shows the corresponding electron diffrac-

tion pattern. The diffraction pattern contains (1) bright main spots corresponding

to monolayer graphene (2) a diffuse background from the amorphous Si3N4 mem-

brane, and (3) sharp rings at the same radius as the monolayer graphene spots,

with varying intensity along the rings, including some discrete spots. The pattern

of intensity variation along the first-order and second-order rings has six-fold sym-

metry; the wave vector and symmetry of the sharp rings is entirely consistent with

graphene indicating that the rings originate from crystalline graphitic carbon. Note

that the possibility of the existence of additional carbon adatoms or/and nano-

size isolated amorphous carbon cannot be excluded as these would be difficult to

detect in diffraction. Dark field images of the first-order (Figure 3.4(c)) and second-

order (Figure 3.4(d)) graphene diffraction spots are fairly uniform indicating that a

monolayer of graphene corresponding to the main diffraction spots covers the whole

image area. The second-order dark field image (Figure 3.4(d)) demonstrates that

overwhelming majority of the additional material in the island region does not share

the same orientation with the background monolayer graphene, though there are mi-

nority parts with a radial configuration and sizes ranging from nm to 100 nm that

do align with the continuous monolayer. The observation of the impurities on my

sample is in contrast with bilayer graphene impurities in graphene grown on Cu[46],

Ni[47, 48] and Fe[49], and hardly Raman-detectable due to their small sizes.

Figure 3.4(e) shows an additional dark-field TEM image, with a larger aper-
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ture to include many diffraction spots on the sharp second-order ring. Here dark

field TEM shows bright domains distributing throughout the whole surface inhomo-

geneously. The correspondence between the dark region in the bright field image

Figure 3.4(a) and bright region in the dark field image Figure 3.4(d) and (e) confirms

that the bright domains in Figure 3.4(d) and (e) mainly represent carbon impurities

as an additional layer instead of crystalline defects in the continuous monolayer.

This is the major finding of this chapter: nanocrystalline graphene, misoriented

with respect to the continuous monolayer graphene, exists across the entire sample.

The impurity graphene is inhomogeneously distributed, with a higher concentration

in few-micron-sized island regions, but concentrations also detected outside the is-

lands. This is consistent with what we observed by optical microscope and AFM

and further verified with high resolution TEM (HRTEM) as in Figure 3.5.

50



Figure 3.5: HRTEM image of graphene sample synthesized via CVD on Pt, which shows

the background monolayer graphene and nanocrystalline impurities.
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3.4 Characterization by Raman Spectroscopy and Electronic Trans-

port Measurement

We now turn to Raman spectroscopy of our Pt-grown graphene samples, using a 633

nm laser excitation source and a confocal microscope to map the Raman spectra at

the submicron scale. Figure 3.6(inset) shows a typical Raman spectrum of graphene

grown on Pt similar to those examined in Figure 3.1 and 3.4 and a reference sample

grown on copper (with reduced carbon impurities as seen in TEM). It is immediately

evident that the Raman spectrum for the Pt-grown graphene with carbon impurities

is distinct from that reported for exfoliated graphene[29] or Cu-grown CVD graphene

shown here or reported before[15]. The Pt-grown graphene exhibits a pronounced

and extremely wide D peak and broad wings to the G peak. The spectrum could

be consistent with the superposition of a graphene spectrum (with sharp G and

2D peaks) with a spectrum of nanocrystalline graphitic carbon (with very broad

D and G peaks, and similar G and D intensities). The ID:IG ratio attributed to

the nanocrystalline graphene is about 1:1, corresponding to a grain size of order 10

nm[43]. The main panels of Figure 3.6(a) show the G and 2D peaks in greater detail.

Excepting the broad background, the G peak of the impurity-decorated sample is

similar in width, but slightly upshifted in position, compared to those of the Cu-

grown sample (and typical exfoliated graphene samples). The impurity-decorated

sample also shows a somewhat broader, upshifted, but still Lorentzian 2D peak.
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Figure 3.6: Raman spectroscopy and electrical characterization of Pt-grown graphene

with impurities similar to Figures 3.1 and 3.4 is shown in red, and for comparison Raman

spectrum from a Cu-grown graphene sample without impurity regions is shown in blue.

Inset shows full spectra while main panel shows the G and 2D peak regions, with peak

positions in wavenumbers (cm−1). Lorentzian fits to the 2D peaks are shown in green.
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Figure 3.7: Raman spectra (b) of Pt-grown graphene taken at points with spacing of

0.31 µm along the 9 µm long black segment in the optical image (a). The position

or blueshift of the 2D peak is extracted from Raman spectra and projected onto the

real-position optical image. The length of the yellow and green arrows in (a) is 15.32

cm−1. Note that the maximum blueshift happens inside the edge of the island due to

µm resolution of Raman microscopy.

Figure 3.7 (b) shows Raman spectra of the impurity-decorated Pt-grown graphene
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taken along a line crossing an impurity island as shown in the optical image (a).

Raman spectra both on the island and off show the broad background in the D and

G peak regions, indicating nanocrystalline graphitic carbon. The 2D peak remains

Lorentzian everywhere, showing no evidence of large-sized Bernal-stacked graphite.

An upshift of the 2D peak is associated with the island region, while the G peak is

hardly changed in width or position. The consistency of the G peak excludes doping

as the cause of the changes observed in the 2D peak[50]. Instead, the blueshift of 2D

peak is in consistent with what was observed in turbostratic graphene[51, 21] sup-

porting our identification of the impurity carbon as graphitic but largely mis-aligned

with the continuous monolayer graphene.

Figure 3.8 shows the electrical conductivity as a function of back-gate volt-

age of the impurity-decorated Pt-grown graphene transferred to a SiO2/Si sub-

strate. The field effect mobility at 4.2 K and room temperature(RT) is about 6000

cm2V−1s−1, comparable to other graphene samples obtained by CVD[15, 52] show-

ing much lower D peaks in Raman spectra. Again this is indicative that the D peak

in our samples arises from defects in the carbon impurity layer, not in the continuous

monolayer. We also explored the conductivity of a Hall bar region from which the

impurity islands were excluded by etching and found only a slight mobility change

in the blue curve of Figure 3.8 indicating that the impurity island regions are not

entirely responsible for the decreased mobility compared to exfoliated graphene on

SiO2[2, 53]. The Hall bar is an ideal geometry for Hall effect measurement[54]. As

shown in the inset of Figure 3.8, constant current is applied between leads a and

b. The transverse resistance is measured between each pair of A, B and C or A, B,
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and C. The Hall resistance is measured between AA, BB, or CC. Such four-probe

geometry decouples the resistance of the sample from that of the contacts between

sample and leads.

Figure 3.8: Conductivity as a function of back gate voltage for a Pt-grown graphene

sample with impurities on 300 nm SiO2/Si substrate. An image of the Hall bar device

is shown in the inset; the top and bottom electrodes a and b are used as the source and

sink current. The width of the Hall bar is 10 µm.

Amorphous carbon impurity islands can be easily mistaken for multi-layer re-
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gions in optical images. The Raman spectra of our sample shows a very large and

broad D feature normally associated with highly defected carbon[43]. Here we have

associated the enhancement of the D peak with carbon impurities; the high elec-

tronic quality of our sample excludes the possibility that the defects responsible

for the D band are in the continuous monolayer graphene[43]. Therefore the work

demonstrates the importance of characterization by TEM for reports of new synthe-

sis methods for graphene, since it gives the most accurate crystalline information.
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Chapter 4

MAGNETO-TRANSPORT OF IMPURITY DECORATED

GRAPHENE

My discovery of nanocrystalline carbon impurities with TEM techniques is dis-

cussed in the preceding chapter. I found that the impurities not only concentrate

in island-like regions but also distribute sparsely under monolayer graphene. Such

inhomogeneous impurity decorated sample indicates inhomogeneity may lead to triv-

ial electron-transport property, as shown by the conductance curve of Figure 3.6 in

Chapter 3, since the electrical field E is always perpendicular to the current J. The

application of magnetic field, however, introduces bias in the transverse direction of

the sample, the Hall effect, that reveals more about the transport properties, such

as mobility, effective mass, scattering rate, magnetoresistance, etc. of the system.

Magnetoresistance (MR), the change of resistance of a material in a magnetic

field, has long been of interest for both fundamental understanding of electronic

conduction, and applications such as magnetic memory[55]. Resistivity is symmetric

in B, and hence the leading correction to the resistivity ρ(B) − ρ(0) is typically

quadratic in B and such quadratic MR is understood as a classical phenomenon. A

long-standing theoretical quandary then has been the explanation of linear MR (i.e.

ρ(B) − ρ(0) is linear in B) in certain materials. The consensus is that linear MR

arises from one of two mechanisms[56]: (1) in small bandgap materials with very

58



high mobility, a quantum linear MR arises when the Fermi energy lies in a partially-

filled Landau level[57, 58] while (2) in highly spatially inhomogeneous materials

linear MR can also arise.

In this chapter I present transport and magneto-transport measurements of

chemical-vapor-deposited graphene samples with different degrees of inhomogene-

ity induced by controlling the amount of nanocrystalline graphitic impurities. I

find that the charge carrier inhomogeneity in graphene, characterized by the width

of the minimum conductivity region n∗, is positively correlated with the density

of graphitic impurities on the graphene, and cannot be explained by variation in

charged impurity density alone. I examine the low-field quadratic MR as a function

of carrier density n. I find that the quadratic MR is a universal function of n/n∗

for all the samples studied here, and an additional exfoliated sample from Ref.[6].

The scaling suggests that the MR arises from a classical mechanism due to carrier-

density inhomogeneity, though a theory for MR in an inhomogeneous medium at

finite carrier density is lacking. In the most inhomogeneous samples the MR near

the Dirac point is strikingly linear. I exclude the possibility that the linearity re-

flects Abrikosov’s quantum MR, and instead relate the magnitude and linearity of

the MR with inhomogeneity. I find a phenomenological three-parameter equation

to describe the linear and quadratic MR near the Dirac point in all samples as a

universal function of n/n*, again suggesting that the magnetoresistance is driven by

inhomogeneity.

59



4.1 Normal Transport and Magneto-transport Properties of Impurity

Decorated Graphene

In Figure 3.8 of Chapter 3, the conductivity of as-grown impurity decorated graphene

synthesized on Pt at 1000◦ C demonstrates a decent mobility of about 6000 cm2V−1s−1

unrelated to the island-like impurity layers. We call this sample as Sample 1. The

conductivity of Sample 1 is linear over a large range of carrier density, σ ∝ n,

as a consequence of charged impurity scattering[59, 60]. The mean-free-path λ of

mesoscopic-size device made from Sample 1 depends on conductivity σ as

λ(n) =
σ

2e2/h

1

2
√
n/π

, (4.1)

where e is the charge of an electron, h is the Planck constant and n is the carrier

density relating to Fermi energy εF as

n ≈ 1

π

(
εF
~vF

)2

, (4.2)

where ~ is the reduced Planck constant and vF is the Fermi velocity. The mean-

free-path shown in Figure 4.1 increases linearly beyond the Dirac point.

The divergence of the mean-free-path near the Dirac point is contrary to the

finite conductivity at the Dirac point that was observed. The reason is the notorious

spontaneous electron-hole puddles of graphene near the Dirac point[31, 32], limiting

the mean-free-path to the scale of the fluctuation. Since electrons and holes in

graphene obey Dirac quantum mechanics as in Section 1.2 of Chapter 1, there are

certain possibilities that charge carriers penetrate through barriers and contribute

to the overall conductivity[11], breaking the Anderson localization[61]. The range of
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the carrier density in which the conductivity is governed by this electron-hole puddle

is estimated by n∗ = σmin/eµ[62, 63, 64] where σmin is the minimum carrier density

and µ is the mobility. Using Equation 4.1 and 4.2, we obtain the inhomogeneity-

dominated range of Fermi energy ε∗F as indicated in Figure 4.1.
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Figure 4.1: The estimated mean free path of Sample 1 is shown with the shadow region

covers the range between −ε∗F and ε∗F .
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We write the total conductivity as[59, 62, 63, 65, 66, 67]

σ = σres + Ce

∣∣∣∣ n

nimp

∣∣∣∣ , (4.3)

where C is a constant and σres is the residual conductivity at n = 0. The residual

conductivity for Sample 1 is ∼ 0.25 mS as indicated in Figure 3.8.

Figure 4.2: Transverse resistance shows Shubnikov-de Hass oscillations at Fermi lev-

els described by Equation 4.5. The Hall conductivity indicates plateaus according to

Equation 4.4. N = 1 to 5 is shown in the Landau Fan below the device configuration.

More properties of Sample 1 can be understood by applying a magnetic field[68].

The classical Hall effect in graphene can be well interpreted by Boltzmann trans-

port theory as explained in Appendix B. The quantum Hall conductivity indicates
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plateaus due to[69, 70]

σxy = ±4(N + 1/2)
e2

h
, (4.4)

where N = 0,±1 ± 2, · · · is the quantum number corresponding to blue dashed

lines in Figure 4.2 and 1/2 corresponding to red energy level arises from the specific

Berry phase π of graphene[69] due to the zero effective carrier mass near the Dirac

point[71]. The Landau level, indicated by yellow dashed lines, is described by[69, 70]

EN = sgn(N) =
√

2e~v2
FNB, (4.5)

where N = 0,±1 ± 2, · · · , generating the Shubnikov-de Hass oscillations. The

Landau levels for N > 1 are related to the carrier density by[69, 70]

n

B
=

2eN

π~
, (4.6)

resulting in the Landau fan shown in Figure 4.2.

4.2 Inhomogeneity Correlated Magnetoresistance

A homogeneous single-band two-dimensional conductor such as ideal (homogeneous)

graphene exhibits no MR (linear or quadratic) within the classical Boltzmann trans-

port framework. MR has been abundantly observed in graphene-related mate-

rials, such as exfoliated graphene[6], graphite[72, 73, 74] or epitaxial multilayer

graphene[75]. For monolayer graphene at or near the charge neutral point, or

Dirac point, for which the poorly-screened Coulomb potential of randomly-placed

charges in the environment generates carrier-density inhomogeneity, i.e. the noto-

rious electron-hole puddles[31, 32], the MR can be explained as a classical effect
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within effective medium theory[6, 76]. In the case of equal areas of electron and

hole puddles with equal mobility µ, one expects

ρ(B)− ρ(0)

ρ(0)
=

√
1− (µB)2, (4.7)

which for µB � 1 is approximately linear. Such MR was observed previously in

graphene near the Dirac point[6] but with small corrections to Equation 4.7 possibly

due to asymmetry in electron/hole area or mobility. However, no detailed study

of MR in graphene with varying degrees of inhomogeneity has been carried out.

Linear MR observed in multilayer graphene epitaxial grown on SiC was explained

by a quantum mechanical model[75], due to the robustness of MR from 2.2 K to

room temperature. This claim, however, is not valid to graphene whose mobility is

barely temperature dependent.

Figure 4.3: 10×10 µm optical images of Sample 1 to 3. Note the island-like impurities

in Sample 1.
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Figure 4.4: Raman spectroscopy with 633 nm laser.

The MR can be observed in Sample 1 in the Landau fan for |B| ∼ 2 T as

shown in Figure 4.2. Here I explore the MR in single-crystal monolayer graphene

synthesized on Pt as described in previous chapters[35, 77]. I prepared graphene

Samples 1 to 3, as in Figure 4.3, via CVD in flowing gas mixture of hydrogen and

methane (5 sccm) on 20 µm thick Pt foil. For Sample 1, 2 and 3, temperature of

1000◦ C, 950◦ C, 900◦ C and hydrogen mass flow rate of 700 sccm, 500 sccm and

380 sccm respectively are used. The Raman spectrum of Sample 1 has a suppressed

and red-shifted 2D peak, an enhanced D peak and an un-shifted G peak comparing

to pristine graphene sample[77]. This trend in Raman spectroscopy is also built up

through Sample 3 to 1 as in Figure 4.4. The implication is that Sample 1 has the

greatest concentration of nanocrystalline carbon impurities, and Sample 3 the least.

Synthesized graphene is coated with PMMA with a spinning speed of 2000

rpm and transferred to a silicon dixoide wafer by the electrolysis method. The im-

purity layer was between the monolayer graphene and the substrate. Gold contacts
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Table 4.1: Transport quantities of graphene samples synthesized on Pt with different

inhomogeneity.

Sample σ∗(mS) µ(cm2V−1s−1) n∗(1011cm−2)

1 0.276 6400 2.7

2 0.166 8200 1.3

3 0.205 11300 1.1

were evaporated onto single-crystal graphene which is then plasma-etched into a

Hall-bar. All three devices share the same configuration as shown in the inset of

Figure 4.5(a). The Dirac points are shifted to V
(0)
g = 0. From the conductivity

curves in Figure 4.5(a), we extract the field-effect mobility µ and inhomogeneity

density[62] n∗ = σmin/eµ as in Table 4.1, indicating trends of enlargement of µ and

reduction of n∗ from Sample 1 to 3. The mobilities are comparable with each other

and relatively high for synthesized graphene with CVD method especially for Sample

3 to the level of exfoliated graphene. The variation in n∗ is somewhat greater (factor

of 2.5) than would be expected from variation due to charged impurity density nimp

alone (nimp ∼ 1/µ which varies by a factor of 1.8). The difference is particularly

striking for Sample 1 and 2 with mobility differing by a factor of 1.3 while n∗ dif-

fers by a factor of 2.1. For Sample 1, there is a noticeable long range linearity of

conductivity on the electron side due to charged-impurity scattering[59, 64, 65].
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Figure 4.5: Conductivity at 4.2 K is shown in (a). Shadowed regions in the Hall bar

device are etched afterwards to verify the influence of island-like impurities on MR. The

width of the Hall bar is 10 µm. Transverse resistance and Hall resistance at 4.2 K under

magnetic field of 8 T for all three samples are shown in (b).

The transverse resistance Rxx and Hall conductivity σxy of all three samples

in Figure 4.5(b) demonstrate Subnikov-de Haas oscillations and plateaus and even-

tually quantized Hall conductivity plateaus with σxy = 4(n + 1/2)e2/h where the

factor 1/2 is the fingerprint of Berry’s phase π in monolayer graphene[70, 52] as in

Section 4.1. Figure 4.6 shows the MR of Samples 1-3 at a few different gate voltages.

Qualitatively one can see that the MR behavior shows differences among the three
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samples. In particular Sample 1 clearly shows non-quadratic (and as I show below,

quite linear) MR at small V
(0)
g . For comparable V

(0)
g values both the magnitude and

the functional form of the MR are different for different samples. Note for instance

that at V
(0)
g = 7 V the zero-field resistance for Samples 1 and 2 are similar, but the

MR in Sample 1 has a large magnitude and is linear, while the MR in Sample 2

shows smaller magnitude and is nearly quadratic. These differences are explored in

detail below.

Figure 4.6: The MR at 4.2 K for Sample 1 to 3 from left to right is compared. The MR

of the same gate voltage, or carrier density, shares the same color.
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4.3 Phenomenological Investigation on the Magnetoresistance

Figure 4.7: Transverse MR and Hall MR of Sample 1 are shown in top image and bottom

image respectively at 4.2 K. The linearity and quadracity of MR at gate voltage of 7.6

V and 37.6 V is shown in the log-log plot of RMR, with fitted slopes of 0.95± 0.05 and

2.04 ± 0.05 respectively. Plateaus of Hall index 1/6, and 1/10 are marked out by grey

lines.

I now discuss the MR and Hall effect in Sample 1 in detail. I find a region of low

magnetic field where the Hall resistivity is linear in field (showing no correction due

to Subnikov-de Haas oscillations, Figure 4.7(b)) but there is signifcant MR as seen in
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Figure 4.7(a). Two features are noticed. (i) There is a transition from linear MR to

quadratic MR as the carrier density increases. This is shown more clearly in the inset

of Figure 4.7(a): a log-log plot of the MR vs. B shows a slope of ∼ 1 (linear MR) at

carrier density ∼ 5.5×1013 cm−2 and slope of ∼ 2 (quadratic MR) at n ∼ 2.7×1012

cm−2. (ii) The linear MR clearly exists for carriers densities beyond filling the

first Landau level, as seen by the appearance of Shubnikov-de Haas oscillations at

higher field for carrier densities where linear MR is observed. Feature (i) can not be

explained by the quantum MR and feature (ii) disagrees with the extreme quantum

condition of quantum MR that only one Landau level participates[57]. Thus we

might expect that the linear MR in graphene samples produced by CVD on Pt

and in that by epitaxial growth could be a result of inhomogeneity, a particularly

enticing explanation as I have previously observed macroscopic inhomogeneity in

the concentration of nanocrystalline graphitic impurities on these samples.
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Figure 4.8: MR of pre- and post-etched Sample 1 at 4.2 K and gate voltage of 17.6 V.

I first checked whether the island-like structure of the impurities is responsible

for the linear MR. I etched the island-like regions from the Hall bar of Sample 1 (see

the inset of Figure 4.3(c)) but observed uneliminated MR after etching as shown

in Figure 4.8. I therefore exclude island-like impurities as the origin of MR and

instead turn to focus on the inhomogeneity induced by inhomogeneously distributed

nanocrystalline carbon impurity under the monolayer graphene. The inhomogeneity

results in inhomogeneous potential and thus electron-hole puddles[31, 32] and other

networks of microscopic, such as NN or PP[78], junctions.
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Figure 4.9: The log-log plot of unitless quantity A with respect to the carrier density n

is shown in (a). Log-log plot of A vs n/n∗ is shown in (b). The data for the Pristine

sample are from published data of Fuhrer’s group[6].

Before addressing the origin of the prominent linear MR in Sample 1, I explore

the quadratic MR which is present in all samples at finite carrier density. The MR

behaves quadraticaly in the low-field limit as
(
ρ−ρ0
ρ0

)
ρ
ρ0
→0

= A (µB)2. Figure 4.9(a)

shows the coefficient A as a function of carrier density n for Samples 1-3 as well as

an additional exfoliated graphene sample (studied in Ref.[6]). There is a clear trend
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of A decreasing with n for all samples, following roughly a power law A ∼ 1/n2.

This is qualitatively consistent with inhomogeneity-induced MR: as the average

carrier density increases, the size of the fluctuations relative to the average carrier

density decreases, and increased free-carrier screening reduces the magnitude of the

fluctuations as well. Thus one expects a strong suppression of MR at high carrier

density, as observed.

If carrier-density inhomogeneity is driving the MR, I expect that the MR is de-

termined by the parameter n∗. Since the coefficient A is dimensionless, dimensional

analysis argues that it should be a function of the only dimensionless parameter

n∗/n (Note that the Dirac band in graphene has no other characteristic length be-

sides k−1
F ∼ n−1/2; in particular there is no Bohr radius for Dirac electrons, and the

screening length is proportional to kF ). Figure 4.9(b) shows A with respect to n∗/n

and clearly demonstrates a collapse of data. Phenomenologically I find that at high

carrier density A = α1

(
n∗

n

)−2
with α1 ≈ 1.

I extend the description of the MR closer to the Dirac point and to higher field

by fitting to the following empirical formula inspired by the inhomogeneous effective

medium theory (Equation 4.7)[6, 76]:

ρxx(B) =

σxx − σmin

α2

+
σmin/α2√

1 + (2α1α2σmin/σxx) (µB)2

−1

. (4.8)

The MR predicted by this equation with two unitless parameters, α1 and α2, has the

same tendency of the observed MR: quadratic at low field, linear over a relatively

large range of field and saturates at high field. This functional form was shown pre-

viously to give an excellent description of the MR near the Dirac point in exfoliated
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graphene[6]. Equation 4.8 at the Dirac point (σxx = σmin) reduces to Equation 4.7

to within an adjustable parameter α2. Equation 4.8 also gives the correct value of

A = α1

(
n∗

n

)−2 ≈ α1

(
σmin

σ

)−2
consistent with the findings above.

Figure 4.10(a) shows fits of the MR to Equation 4.8, which gives an excellent

description of the deviations from quadratic MR over most of the range of carrier

density for Samples 1-3. For Sample 1 at very low carrier density, the linear MR

over a large range of magnetic field cannot be well-fitted. For Samples 2 and 3 at

high carrier desnity the deviations from quadratic MR are very small, so there are

large uncertainties in the parameter α2. All the fits in Figure 4.10(a) are performed

in the magnetic field region of linear Rxx, and data near zero field (∼0.2 T), where

the weak anti-localization dominates[45, 79, 80], are excluded from the fits. The

extracted α2 from the fitting as shown in Figure 4.10(b) has the order of unity for

all three samples.
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Figure 4.10: RMR of Sample 1 to 3 and fitted curves are shown in (a) from left to

right. MR indicated by hollow squares(�) cannot be well-fitted by Equation 4.7. Fitted

unitless parameter α2 is shown in (b).
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4.4 Summery and Future Work

In summary, I have phenomenologically described the MR of graphene samples with

varying degrees of inhomogeneity by a specific function of the inhomogeneity pa-

rameter n/n∗ (or conversely σ/σmin). I have identified the form of the dependence

on this parameter and roughly determined the constants α1 and α2 in Equation 4.8

to be of order unity. The results indicate that MR in graphene is governed by a clas-

sical transport mechanism described by mobility, carrier density and inhomogeneity

density, rather than via a quantum effect. It is interesting to see that the inhomo-

geneity, which induces a large MR near Dirac point, has a significant remnant over a

large range of carrier density, even to n� n∗, scaled by the inhomogeneity density

n∗. Thus the results can serve as a basis for future detailed comparison between

experiment and theory of charge inhomogeneity in this regime where there are few

other experimental signatures.

Lastly I note that the extremely linear MR near the Dirac point in the most

inhomogeneous Sample 3 remains a possible outlier to the universal description of

MR developed here. Without a detailed theory of the MR it is impossible to say

whether the linear MR can be explained within the classical framework using effec-

tive medium theory, or whether it points to new physics. I also note that a detailed

description of the mechanism for producing inhomogeneity from the graphitic im-

purities is also lacking. Differences in the Raman 2D peak could be interpreted as

changes in the electron dispersion (Fermi velocity) in impurity-decorated graphene

due to band structure changes or changes in electron-electron interaction. It remains
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to be seen whether the relevant inhomogeneity is in the electronic dispersion or in the

scattering potential. Future scanned-probe studies may elucidate this. Moreover,

the MR at low carrier density can not even be understood with effective medium

theory since graphene p-n junctions play important role. Further theoretical and

experimental investigations are called for to explain MR in this regime.

78



Appendix A

RAMAN SPECTROSCOPY OF GRAPHENE

The Raman effect describes inelastic scattering of light by the excitations of a solid

such as phonons[81]. Thus Raman spectroscopy can be used to gain information

about phonons and thus the crystal structure of graphene, by measuring the fre-

quency, or energy, and strength of the quantum excitation in the Raman effect.

Figure A.1 shows a typical Raman spectrum of monolayer graphene. Raman

intensity is enhanced when the incident and/or scattered light is resonant or nearly

resonant with an electronic transistion. In graphene, this electronic resonance con-

dition leads to three important characteristic peaks of graphene: the D peak, the

G peak and the 2D peak[29]. The G peak and D peak are first-order modes of the

Raman effect where the incident and scattered light are resonant with transitions

in one valley. The G peak thus results from excitation of phonon near zero mo-

mentum. The line width of the G peak is mainly due to the anharmonicity of the

optical phonon. The D peak corresponds to zone-edge phonons and is a result of the

breaking-down of momentum conservation, a sign of disorder in a graphene sample.

The 2D peak arises from a second-order Raman process involving scattering of an

excited electron and a hole from one valley to another via two zone-edges, the so

called inter-valley transition. The 2D peak is entirely resonant and does not require

disorder.
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A pristine monolayer graphene usually shows characteristic sharp G and 2D

peak which are Lorentzian in lineshape, and a suppressed or absent D peak. The 2D

peak of multi-layer graphene is broader and consists of multiple Lorentzian peaks:

four peaks, for example, for bi-layer graphene. This is the result of multiple 2D

subbands in multi-layer graphene, resulting in multiple resonance conditions. The

relative intensity of the 2D to the G peak is usually close to 2. For mono-layer

graphene synthesized via CVD, the above rules may be violated[21, 35], except for

the Lorentzian lineshape of the 2D peak. As the layer-number increases, the num-

ber of possible modes contributing to the 2D peak increases dramatically, making

the discrimination between different layer numbers difficult. Besides, as an optical

technique, the resolution of Raman spectroscopy is limited by optical wavelengths

and is not suitable for examining graphene’s structure on the nanometers scale.
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Figure A.1: The D, G and 2D peaks of a typical Raman spectrum of graphene. The

pink curve is the Lorentzian fit for the 2D peak. The oscillation of the atoms for the G

and 2D peaks are shown beside the corresponding peaks. A schematic of the resonance

process for the G peak and 2D peak is shown below. Optical phonons are generated

during the process of the incidence(red) and emission(yellow) of photons; for the G peak

(left) a single phonon near q = 0 is excited, and for the 2D peak (right) two phonons

with q ≈ K are excited. Electrons and holes are denoted by solid and hollow circles.
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Appendix B

BOLTZMANN MAGNETO-TRANSPORT APPROACH

In this Appendix we deduce the non-magnetoresistance of a single-carrier conductor

and the quadratic magnetoresistance of a two-carrier conductor from Boltzmann’s

transport equation based on Ziman’s Theory of Solids [82].

In a steady(but not the equilibrium) state,

∂fk
∂t

]
diff.

+
∂fk
∂t

]
field

+
∂fk
∂t

]
scatt.

= 0, (B.1)

where fk is the number of carriers in the neighbourhood of r at time t. The rate of

change of the distribution due to diffusion is

∂fk
∂t

]
diff.

= −vk ·
∂fk
∂r

. (B.2)

(i) By writing

gk = fk − f 0
k, (B.3)

in which f 0
k is the equilibrium Fermi distribution:

f 0
k =

1

exp [(εk − µ)/kBT ]
, (B.4)

where εk is the energy, µ is the chemical potential, kB is the Boltzmann

constant and T is the temperature, we have

∂fk
∂t

]
diff.

= −vk ·
∂f 0

k

∂T
∇T − vk ·

∂gk
∂r

. (B.5)
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(ii) We write the term caused by the external field in Equation B.1 as

∂fk
∂t

]
field

=
e

~
(E + vk ×B) · ∂fk

∂k
, (B.6)

where E and B are the electrical and magnetic field respectively.

(iii) The effect of scattering is complicated. By introducting a relaxation time

τ , we make the following assumption:

∂fk
∂t

]
scatt.

=
1

τ
gk. (B.7)

Substituting Equation B.5,B.6,B.7 into Equation B.1, and assuming (a) no

temperature dependence and (b) small field, we have

eE · vk

(
−∂f

0

∂ε

)
=
gk
τ

+
e

~
vk ×B · ∂gk

∂k
. (B.8)

Now we will discuss the Hall effect based on the Boltzmann transport equation.

With a free electron assumption, namely,

~k = mv, (B.9)

we may substitute into the Boltzmann quation B.8 to obtain

v · E = v ·A + µv ×B ·A, (B.10)

where µ = eτ
m

, by imposing a solution of the form

gk =

(
−∂f

0

∂ε

)
τvk ·A. (B.11)

Thus we have

E = A + µB×A, (B.12)
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whose solution is

A =
E− µB× E

1 + (µB)2 , (B.13)

by a claim of elementary geometry.

With Equation B.11, we have

J = 2

∫
evkfkdk

= 2

∫
evkgkdk

= 2

∫
e2τvk(vk ·A)

(
−∂f

0

∂ε

)
dk (B.14)

Following the same deduction, the electronic conductivity without a magnetic field

can be written as:

σ0 = 2

∫
e2τvkvk

(
−∂f

0

∂ε

)
dk. (B.15)

We now have

J = σ ·A. (B.16)

Thus in the presence of magnetic field, the current follows the same expression

as there is no magnetic field, except that the electric field E is replaced by A, as we

can see in Equation B.13, A = E is B = 0.

Replacing A by J, we have

E =
1

σ0

J + µB× 1

σ0

J

= ρ0J + αB× J, (B.17)

where α = µρ(0). Along the current we have

E‖ = ρ(0)J (B.18)
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which means that the resistance of the specimen in unaltered by the magnetic field,

i.e. there is no magnetoresistance.

In the direction perpendicular to J on the same plane, we have

EH = µρ(0)BJ. (B.19)

This is the Hall effect, and we can define a Hall coefficient:

R = µρ(0)

=
1

ne
, (B.20)

yielding

EH = RBJ. (B.21)

For a material with two types of carriers, the equation for the first charge

carrier is B.17, namely:

E =
1

σ
(0)
1

+ α1B×
1

σ
(0)
1

J1 (B.22)

and similarly for the second carrier

E =
1

σ
(0)
2

+ α1B×
1

σ
(0)
2

J2. (B.23)

Since J = J1 + J2, we have

J =

(
σ

(0)
1

1 + α2
1B

2
+

σ
(0)
2

1 + α2
2B

2

)
E−

(
σ

(0)
1 α1

1 + α2
1B

2
+

σ
(0)
2 α2

1 + α2
2B

2

)
B× E, (B.24)
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which finally gives the quadratic magnetoresistance as

ρ− ρ(0) =
J · E
J2

=

σ
(0)
1

1+α2
1B

2 +
σ
(0)
2

1+α2
2B

2(
σ
(0)
1

1+α2
1B

2 +
σ
(0)
2

1+α2
2B

2

)2

+

(
σ
(0)
1 α1B

1+α2
1B

2 +
σ
(0)
2 α2B

1+α2
2B

2

)2 −
1

σ
(0)
1 + σ

(0)
2

=
σ

(0)
1 σ

(0)
2

σ
(0)
1 + σ

(0)
2

(α1 − α2)2B2

(σ
(0)
1 + σ

(0)
2 )2 +B2(α1σ

(0)
1 + α2σ

(0)
1 )2

. (B.25)
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