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equations analyzed by Krishnaprasad [1985] and Sénchez de Alvarez [1986]. We establish stabilization with
a single rotor by using the energy-Casimir method. We also show how to realize the external torque feedback
equations using internal torques. Finally, extending some work of Montgomery [1990], we derive a formula
for the attimde drift for the rigid body-rotor system when it is perturbed away from a stable equilibrium and we
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2 Stabilization of a Rigid Body with Internal Rotors

Introduction

The problem of stabilization of the rigid body and systems of rigid bodies is of importance
for numerous practical applications. There has been much work recently on stabilizing the angular
momentum equations and attitude equations of the rigid body with n 2 2 torques. Work in this
area includes that of Baillieul [1981], Bonnard [1986], Brockett [1976], [1983], Crouch [1986],
Aeyels [1985a,b], Krishnaprasad [1985], Sdnchez de Alvarez [1986], [1989], Aeyels and
Szafranski [1988], Sontag and Sussman [1988], and Byrnes and Isidori [1989].

A related area where there has also been much progress, is the problem of analyzing the
stability of coupled rigid and flexible bodies. A method of analysis based on ideas of geometric
mechanics for these systems (including dissipation) was introduced in Krishnaprasad [1985],
Krishnaprasad and Marsden [1987], and Baillieul and Levi [1987]. In particular, stability of a
rigid body with flexible attachment was analyzed in the body frame by the Energy-Casimir method
developed by Amold {1966] and further developed by Holm, Marsden, Ratiu and Weinstein
[1985]. (The method has a long history, special cases of which can be found already in the last
century in the work of Riemann and Poincaré on gravitating fluid masses). In this method, energy
and momentum are used together to prove Lyapunov stability. More recently, a variant of this
method called the energy-momentum method, where the stability analysis is in the material
representation, has been developed. See, for example, Simo, Posbergh and Marsden [1989] and
Simo, Lewis and Marsden [1989].

Bloch and Marsden [1989b,c] showed that the Energy-Casimir method could be used to
prove a stabilization result, namely that the angular momentum equations of the rigid body can be
stabilized about the intermediate axis of inertia by a single external torque applied about the major
or minor axis. Moreover, they showed that there was an interesting Lie-Poisson structure
associated with the system. This gave a quite different feedback law and method of analysis for a
closely related result originally due to Aeyels [1983].

A striking feature of the analysis is that there are still conserved quantities, even while
torque is being applied. This leads one to conjecture that the feedback might be realizable as an
internal torque between the rigid body and an attached rigid body or bodies. We show in this
paper that the externally stabilized feedback system may be realized as a rigid body with three
internal rotors. Our analysis is based on the original analysis of this system by Krishnaprasad
[1985] (see also Sdnchez de Alvarez [1986]). In fact, we show that the three internal rotors can
realize any external torque feedback for the rigid body. Moreover, we show that a particular choice
of internal torques for body-rotor system makes this system behave precisely like the classical
heavy rigid body.
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We go on, however, to do more than this. We analyze the rigid body with internal rotors
with certain quadratic feedbacks that make the rigid body-rotor system Hamiltonian with respect to
a Lie-Poisson bracket. We show that with a specific choice of feedback, the rotors rotate at
constant angular velocity— i.e., we obtain as a special case, the driven dual spin satellite as
analyzed by Krishnaprasad [1985] and Sdnchez de Alvarez [1986].

Thus, we have produced a further class of systems that, despite having feedback torques,
are Hamiltonian. In fact, we show that under certain integrability conditions, even under cubic
feedback, we get Hamiltonian systems.

We then discuss the Hamiltonian structure of the single rotor case and show that we can
again prove stabilization of the system about the intermediate axis for sufficiently large torque by
using the Energy-Casimir method.

We then show, using the work of Marsden, Montomery and Ratiu [1990], Krishnaprasad
[1990] and Montgomery [1990], (see also Levi [1990]) on geometric phases, how an attitude drift
can occur if the body is perturbed away from a stable equilibrium. Generalizing a formula of
Montgomery [1990], we show how to calculate this drift precisely and indicate how to compensate
for it.

The outline of the paper is as follows. First we present the rigid body with a single external
torque. We introduce feedback, discuss the Lie-Poisson structure of the system, and recall the
stability result proved in Bloch and Marsden [1989b, c]. We also show how this feedback system
is indeed the generalized (possibly indefinite) rigid body. Next, we show how to realize the rigid
body with external torque as a system with three internal rotors. We then discuss the body-rotor
system with quadratic feedback and its Hamiltonian structure, as well as the cubic feedback case.
In the next section we discuss stabilization by one rotor with quadratic feedback using the Energy-
Casimir method.

Finally, we discuss the question of attitude drift and how to compensate for it. We remark
that the work discussed above on phases may be useful here when used in conjunction with the
work on chaos in mechanical system using Melnikov's method, as was done in Oh et. al. [1989].

Another thing that can be done with the ideas here is the following. Suppose that one
wanted to control a satellite to rotate stably about its middle axis, and that this is done by means of
the techniques of this paper, say through internal rotors. Then one uses geometric phases to
reorient the body. One way to do this is to relax the control so the body becomes unstable, then let
it go unstable so it will swing around its homoclinic orbit, and when it comes back to the opposite
saddle point, one imposes the stabilizing control again. One can also help initiate motion along the
homoclinic orbit using a linear control near the saddle point, as in Bloch and Marsden [1989a].
Some of these ideas are reminiscent of those in Beletsky [1981], p. 72. This maneuver achieves a
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reorientation of 180° about the body's long axis, but one can imagine reorienting it using more
general phases. See also §5.

§1 The Rigid Body with an External Torque

The rigid body equations with a single torque about the minor axis are given by

I,-1
: 2~ 73
© =7 W03
1
@ =~ @0 (1.1)
L-1

@ = T ®,0,+u

where the I, are the principal moments of inertia and we assume for the moment that 1, > I, > I5.

There are no essential changes in the analysis if the torque is taken about the major axis. Now let
us implement the feedback torque -

I, -1
u=-¢ 113 2 0,0,. (1.2)

Making the transformation to the classical momentum variables

m = lo, i=12,3,

the equations of motion become

ml = al m2m3

m, = a, mym, (1.3)
where
R A A

Remarkably, this feedback system (1.3) has two constants of motion.

Lemma 1.1 The functions
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2 2 2
_1fm my o 1
Hg 2( I, + I, + L 1_oc ) (1.4)
and
MZ = 3 (mX1-¢€) + m}(1-e)+m}). (1.5)

are constants of the motion (we assume € # 1 for the moment).

The proof is a straightforward computation. The form of the constants of motion is
chosen to give us the following

Proposition 1.2 The controlled system (1.3) is Lie-Poisson with Hamiltonian Hg with

respect to the Lie-Poisson structure

{F,G)p = ~VMZ-(VF x VG) (1.6)

This follows from checking that rhi = {m, Hp}g, i=1, 2,3 (For a discussion of Lie-
Poisson systems see, for example, Krishnaprasad [1985] and references therein).

There are three other canonical Poisson structures associated with the system (1.3), which
are discussed in Bloch and Marsden [1989b]. Note also, as pointed out in the latter paper, that for
€ < 1, the invariance group of the Lie-Poisson bracket (1.6) is 80(3), while for £ > 1, itis
S0(2,1). Thus, we have a deformation of the structure with the parameter €. (Deformations of
Poisson structures are discussed in Weinstein [1983]). In fact, we can show that (1.3) are
generalized rigid body equations. The generalized rigid body is discussed in Abraham and
Marsden [1978] and in Arnold [1978]; for € > 1, we get an indefinite rigid body, which is
discussed in the work of Klein [1897].

Theorem 1.3 The equations (1.3) are the generalized rigid body (Euler) equations for the Lie
group Gy ={ A|Ae SL3), ATZA =X}, where X is the quadratic form given by X =

diag((1 - &), 1-g)1, D).

Proof We use the fact (see, for example, Marsden, et. al. [1983]) that any Lie-Poisson system is

the reduction of the system on T*G obtained by declaring the Hamiltonian to be left invariant on
the corresponding group, in this case, G = Gy. Note that (1.6) is the Lie-Poisson bracket (with a
minus sign, hence we take a left invariant extension) for the group Gy with Mg a Casimir. One

can check explicitly that the equations may be written in Eulerian form as
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m= AZVHF(m)
where Ay is the Poisson tensor:
0 -m; (1 -¢€)m,
A = m, 0 —(1 - €)m, n
—-(1-¢)m, (1-¢€)m, 0

Bloch and Marsden [1989b] analyzed stabilizability of the free rigid body system about its
intermediate axis using the feedback u=- €aym;m, . This is, of course, equivalent to analyzing

stability of the closed loop system (1.3).

Note first that (1.3), linearized about the (relative) equilibrium (m;, m,, m3) = (0, M, 0),
has one zero, one stable and one unstable eigenvalue for € < 1, but has one zero and two
imaginary eigenvalues for € > 1. The Energy-Casimir method shows that the system is (non-
linearly) stable for € > 1. For € =1 the system is gyroscopically stable.

Recall that the Energy-Casimir method (see, for example, Holm, Marsden, Ratiu and
Weinstein [1985] and Krishnaprasad and Marsden [1987]) involves finding a constant of motion
for the system of the form H + C, where H is usually the energy and C is a Casimir function
or a Casimir function plus a momentum map, such that H+ C has a critical point at the relative
equilibrium of interest. Definiteness of the second variation of H + C at the critical point is

sufficient to prove stability (at least in finite dimensions—the infinite dimensional case is
discussed in the cited references). In the case here, we used the energy Hy and the Casimir M.

It is easy to check that Mg is indeed a Casimir—it commutes with every dynamical variable under
the Poisson bracket {, }p. We omit the proof here, but state the theorem.

Theorem 1.4 The rigid body equations with a single torque about the minor axis and with
feedback u =-ga;m; m,, i.e., the system (1.3), is stabilized about the relative equilibrium (m,,
m,, my) = (0, M, 0) for £> 1.

82 Recovery of the Externally Torqued System and
the Heavy Rigid Body

As discussed in the introduction, the fact that the system of §1 with external torque
feedback has conserved quantities and a Lie-Poisson structure, leads one to ask if there is a
mechanical extension of the system to larger system where the closed loop dynamics is realized by
an internal torque feedback. In this section we show that such a mechanical extension does indeed
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exist—a rigid body carrying three symmetric rotors with associated internal torques. The Lie-
Poisson structure and stability of this system was first analyzed by Krishnaprasad [1985] and also
by Sanchez de Alvarez [1986].

Consider a rigid body carrying one, two or three symmetric rotors. Denote the system
center of mass by 0 in the body frame and at 0 place a set of (orthonormal) body axes. Assume
that the rotor axes are aligned with principal axes of the carrier body.

The configuration space of the system is 80(3) x S! x S! x §! with tangent space denoted
T(80(3) x S! x §! x S1).

Let ]Ibody be the inertia tensor of the main body, I = the diagonal matrix of rotor
inertias about the principal axes and I, = the remaining rotor inertias about the other axes. Let
Lok = IIbody + I .+ L, be the locked inertia tensor (i.e., with rotors locked) of the full system;
this definition coincides with the usage in Marsden et. al. [1989].

The Lagrangian (kinetic energy) of the free system is the total kinetic energy of the body
plus the total kinetic energy of the rotor; i.e.,

1 1 ’ 1
L = 3 (Q'ﬂbodyg) +5 Q I’ Q-+ 2 Q+Q)I

TOotor

Q+Q) 2.1)

rotor
= % (Q'(]Ilock - ]Irolor)Q) + % (Q+ Qr)'I[mlor(Q + Q,) (2.2)

where Q is the vector of body angular velocities and € is the vector of rotor angular velocities
about the principal axes with respect to a body fixed frame.
By the Legendre transform, the conjugate momenta are:

oL
e 55 - (]Ilock - ]Irotor) Q-+ ][mtor(Q + Qr) = ]Ilock Q-+ ]IrotorQJr (2'3)
JL
=& 1 Q+0 2.4
aQr rolor( r) ( )

and the equations of motion with internal torques (controls) u in the rotors are

m=mxQ=mx @, -1 Im-1) (2.5)

rotor)
I =u (2.6)

We now show how to recover the feedback equations with a single external torque from
§1. To do so, it is convenient to use the variables t=m-—/ and I Let I=1_, — I (for
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explicit computation we will let ]Ibody = diag(l;, I, I;) as before andlet I=1 -1 . =

diag('fl, Tz, T3)). Then we get the equations

m+DHx I'ln—u Q.7

n
[=u (2.8)

Then we have

Theorem 2.1 There is a choice of internal torque feedback u(m,l) such that the body

dynamics in the system (2.7)-(2.8) are precisely those of system (1.3) (with external torque
feedback)

Proof: Firstly set
u(m, ) = Ix IFln - u'(n), (2.9)

so the system (2.7)-(2.8) becomes: -

n=mnx I"ln+u'(n) (2.10)

A Y
|

= Ix I'lg—u'(n). 2.11)

Now suppose that [ = diag('fl, T2, T3), Tl > Tz > T3 and

0
u'(n) = 0 2.12)
—a,EM; T,

Here a,,a,, and a, are defined as in §1, & = (n;, Ty, 7)7, and 1= (I}, 1, 13)7. Then the
equations (2.7), (2.8) reduce to

R, B3Ry

L2 a;(1-¢e)m; w,
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Lry _ Lm,
hh=2—--==
I; I
. L, In,
h =—"-=2
I I
. T n
I; =2 (,+en)-=L (I, +emy), (2.13)
I I

in which the & equations are precisely (1.3). =

In fact, we see from (2.10) and (2.11) that we can realize any external torque feedback for
the rigid body with our rigid body plus rotor system.

Consider now the following interesting case. Let m =t +/ as before and take as controls
v’(m, m). Then (2.10) and (2.11) may be written

T =nx I"ln+u(n, m

m=mx I"lx. (2.14)
In particular we have

Proposition 2.2 For v'(n, m) = — Cy xm where C is a constant, and X is a constant
(body fixed) vector, the equations (2.14) are the equations for the heavy top. Hence these admit
the conserved Hamiltonian H = %n-]l’ln + Cx'm and kinematic conserved quantities

(casimirs), C; = |lm|?* and C,=m-m.

This may be verified by referring to the heavy top equations in Marsden, Ratiu and Weinstein
[1984], for example. The equations are Lie-Poisson on the dual of the Euclidean Lie algebra e(3).

§3 The Hamiltonian Structure of the Rigid Body with Three Rotors
under Feedback

The equations of motion for the three rotor system with internal torque controls are

m=mxQ=mx @ ~L, )lm-D (2.5)
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I=u (2.6)

We have the following result:

Theorem 3.1 For the feedback
u= k(m X (]I]ock- ]I‘rowr)—l(m - I))’ (3°l)

where K is a constant real matrix such that the marrix J = (1- K1, — L,,,) is symmetric,

the system (2.5) reduces to a Hamiltonian system on so(3)* with respect to the standard Lie-
Poisson structure {F, G}(m) =—- m-(VF x VG)

Proot We have
I =u=km (3.2)

which is an acceleration feedback. (Note that also u = K((,,, Q + I.,,,$,) X ). Therefore,

km—1/=p, (3.3)

where p is an arbitrary constant. Hence the closed loop system becomes

m X (Toe, = ]]‘rotor)—l (m-1)

m

m X (I[lock - ]Lrotor)_l(m —Kkm+ P)

= mX (o = Lo (1 = K)(m - &) (3.4)
where & =— (1 —K)~!p. Under the hypothesis on K, we can define the K-dependent "inertia
tensor”

7= (1= K Qg = Lo (3.5)

Then the equations become
m = VCxVH (3.6)
where C =1 |m|? 3.7

and H=3m-8Jm-§. (3.8)
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Equations (3.6) are Hamiltonian on so(3)* with respect to the usual Lie-Poisson structure.

Remark 1 Note that (3.3) is equivalent to

k(]Ilock Q+ Irotor Qr) - ]Lmtor (Q + Qr) =P
ie.,

(]Irotor -k ]Irotor )Qr = (kl[lock - ][rotor) Q-p

Thus for
k]Iloc:k = ]Irotor (3-9)

one specializes to the usual dual spin case (see Krishnaprasad (1985) and Sanchez de Alvarez
(1986)) where the acceleration feedback is such that each rotor rotates at constant angular velocity
relative to the carrier. Also note that the Hamiltonian in (3.8) is indefinite for high gains.

Remark 2 Furthermore, if we set m, =m ~§, the equations become
m, = (m,+ &) xJ ' m, (3.10)

which is a k-dependent form of the dual-spin equations. Hence one can apply, for example, the
Morse-theoretic analysis of Krishnaprasad and Berenstein [1984] to this situation. For a related
stability analysis using the energy-momentum method (see L.S. Wang [1990]). ¢

It is instructive to consider the case where K = diag(k,, ky, kq). Let I= (I 4 — L) =
diag('fl, fz, T3) and the matrix J satisfies the symmetry hypothesis of Theorem 3.1. Then /, =

p;+km, i=1,2,3, and the equations become m =m x VH where

T

Y L L PR
(1 - k)T, (1 - k)T, (1-kyT,

It is possible to have more complex feedback mechanisms where the system still reduces to a
Hamiltonian system on so(3)*. If we set u=K(m, Hm, the key to reduction is that K(m, /) m —
I=0 isintegrable. The natural case to consider is kK = K(m). Then we have
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k,(m)T
Theorem 3.2 The system (2.5), (2.6) with u=K(m)m, where k(m) = | K,(m)T | and
Ky (m)T
k,(m) = V¢,(m) for some smooth ¢., and such that (I, — L . ) 'K(m) is symmerric, is
Hamiltonian.

Proof We have

k(m)m - =0=Vo,(m)m -/, ,
e, £ [o,@m -] =0
or ¢;(m) -1 =p;.

Thus, K(m) = 3—2 , where @ is the vector potential [¢; ¢, ¢3]T gives integrability. Then (2.5)
and (2.6) reduce to

m=mx I, -1, ) m-®m)+ p). (3.12)

Totor
This is Lie-Poisson on so(3)* if and only if there exists an H(m) such that

VH = (), = Lo, ) (m = O(m) + p).

rotor )—

By equality of mixed partial derivatives, this holds if

5:?1_1 (€; Tioek = Lotor ) }(m — ®(m) + p)) = % (ej-(IIlock ~ I ) N (m — ®(m) + p)),

J 1

where e, is the i® unit vector. This is true if and only if € ok — Lotor )‘lk(m)ej =€
Tpoex = Lo, ) TK(m) €, i, (o — Ly, ) 'K(m) is symmetric. =

To compute H, we need to solve the set of partial differential equations
VH = (]Ilock - ][rotor )—l(m - ®(m) + p).

Consider the special case where (I, — I . .

) and k(m) are diagonal, (I, — L o)

- = = @
=diag(1,, I,, I,) and K(m) = diag (k;m,, k,m,, k,m;). Then K(m) = g;l (m) where
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klmf
P(m) = | kym?
k3m§
Hence
k.m?
58——— = ;17 (mi— % +piJ, i=1,2,3.
m

3
Thus, letting H = 2 H (m,) we have

i=1

| (m?  km?
H =—|5 -~ +pm (3.13)
Ii

This procedure clearly generalizes to k;(m,) an arbitrary polynomial in m;, yielding a

large class of Hamiltonian feedback systems.

§4 The Rigid Body with a Single Rotor-
Feedback Stabilization by the Energy-Casimir Method

We now consider the equations for a rigid body with a single rotor. This reveals the essentials of
the dynamics and Hamiltonian structure and, further, we are able to obtain the result that with a
single rotor about the third principal axis, quadratic feedback with sufficiently high gain stabilizes
the system about its intermediate axis - a result similar to that of the single gas jet (external torque)
case.

We adopt the following notation: Let the rigid body have moments of inertia 1, >I,>1; as
before and suppose the symmetric rotor is aligned with the third principal axis and has moments of
inertia J, =J, and J;. Let @, i=1,2,3, denote the carrier body angular velocities and let o
denote that of the rotor (relative to a frame fixed on the carrier body). Let

diag (A, Ay, Ag) = diag (0, + 1, + L, I, + 1) (4.1)

be the locked inertia tensor. Then from (2.3) and (2.4), the natural momenta are

o, i=1,2

1

m = (,+ Lo, =10
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m; = Lo, +1;

I = L(w; +0) 4.2)

From (2.5) and (2.6), the equations of motion are:

M, = m,m (1 1) hm,
! U A,) I
,
1 1) Lm
= mmy|— —+ |[+=3—
m, ™, TG)T L
i, = mym (1 1]
= oy -y
Ay A
I; =u (4.3)
1 1 -
Choose u =ka3rn1r.n2 where ay = K_ _i— . Then we have
2 1

Theorem 4.1 With u=ka,m;m, the equations (4.3) reduce 1o the equations

b—‘B ’
[

. (1-k)m;-p m,m,
= - +
i ml( I ) A

thy = a;mym, (4.4)
which are Hamiltonian on so(3)* with respect to the usual Lie-Poisson structure with
Hamiltonian

(™ ™ (A-Km,-p)?) .,  p?
H= [—+-%+ 3 +5 (4.5)

where p is a constant
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Proof First note that p =/, — km, is conserved. Eliminating I, gives rise to equations (4.3)
which are Hamiltonian with respect to the standard bracket {f, g}(u) = — m-(Vf x Vg) and the
given H. =

Remark When k =0, we get the equations for the free rotor. We get the dual spin case J;o =

J .
0, when KT, =I_,  from (3.9), or, in this case k = 1—3 . One can check that for this k, p=
3
(1 - k), amultiple of c. o

We can now use the Energy-Casimir method to prove

I
Theorem 4.2 For k>1- f— (and p = 0) the system (4.4) is stabilized about the middle
2

axis, i.e., about the relative equilibrium (0, M, 0).

Proof Consider the Energy-Casimir function H + C where C = @(m?), and m? = m? + m3 +
m? . The first variation is

m, dm, N m,dm, . (1 - k)m,

OH+C) = i _P dm, + (p'(mz)(mlﬁm1 +m,0m, + m,8m,).(4.6)
A A, 3
This is zero if

2t ¢'m, =0
A, TR
-HQ+ ¢'m,=0
Ay 27

(I1-k)m;-p ,
L 3 +¢'m,;=0. (4.7)

Then we compute

Gm)?  Gm)? (1-k)Emy)?

8)H+C) =
H+O A Ay I

+¢'(?)(Bm;)? + (Bm,)*+ (Bm;)?)

+ @”(m?)(m,8m, + m,dm, + mydm;)? . (4.8)
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If p=0, ie, L=km,, (0,M,0) is arelative equilibrium and (4.7) are satisfied if ¢ = —i— .
2
In that case,
1 1 1-k 1
SH+C) = Gm)—-— |+ (Om,)? —— |+ ¢”(Bm,)?
H+C) = ( 1)[11 12) Gy =3~ =3, [+ o 6m,
1 1 IL,-1 ) 1-k 1

Now ———=-2—1 <0 for I, >I, >1; . Clearly for k sufficiently large —4— — =< 0,

so if we choose ¢ <0 we get negative definiteness and hence stability. (Note that for k =0 the
second variation is indefinite as it should be.) ®

Note that we don't get precisely the gas jet equations as we do in §2, but we achieve the
same effect - for k greater than a certain value we achieve stability about the middle axis. Also,
we are using a much simpler feedback than in Theorem 2.1 of §2, as we don't need to "cancel”
the I; dynamics. Note also that while the Hamiltonian here is indefinite for k sufficiently large,
the conserved momentum here is the usual definite momentum, in contrast to the possibly
indefinite "momentum" of the gas jet case in §1.

Corresponding to the Hamiltonian (4.5) there is a (nonphysical) Lagrangian found using
the inverse Legendre transformation

5 ™
1 ;\'1
~ _ I
(02 =
A’Z
~ (l“k)m3"p
W, = T,
g -J-kms-p  p 4.9)

1-K, 1-kI,
Note that @,, @, and @, are the angular velocities ©,, @,, and ®, for the free system, but
that & is not equal to a. In fact,

(1-k) (1-K1;°

(4.10)
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Thus the equations on TSO(3) determined by (4.9) are the Euler-Lagrange equations for a
Lagrangian quadratic in the velocities, so the equations can be regarded as geodesic equations. The
torques can be thought of as residing in the velocity shift (4.10). Using the free Lagrangian, the
torques appear as generalized forces on the right hand side of the Euler-Lagrange equations. Thus,
the d'Alembert principle can be used to describe the Euler-Lagrange equations with the generalized
forces. However, this latter approach hides the useful fact that the equations are actually derivable
from a Lagrangian (and hence a Hamiltonian) in velocity shifted variables. Also, for problems like
the driven rotor, one might think that this is a velocity constraint and should be treated by using
constraint theory. Again for the particular problem at hand, this can be circumvented and standard
methods are in fact applicable, as we have demonstrated.

§5 Phase Shifts

In this final section we discuss an attitude drift that can occur in the system and a method
for correcting it.

If the system (3.10) is perturbed from a stable equilibrium, and the perturbation is not too
large, the closed loop system executes a periodic motion on a level surface (momentum sphere) of
the Casimir function |lmy + E|I? in the body-rotor feedback system. This leads to an attitude drift
which can be thought of as rotation about the (constant) spatial angular momentum vector.

We will calculate the amount of this rotation. This can be done following a method
developed by Montgomery [1990] for calculating the phase shift for the single rigid body. Other
pertinent work on phases may be found in Marsden, Montgomery and Ratiu [1990] and
Krishnaprasad [1990].

Recall that the equations of motion for the rigid body-rotor system with feedback law (3.1)
may be written (see 3.10) as

m, = (m, +§) x I m,

= VCx VH (5.1)

where my=m+ (1- K)"'(km-/) and & =-(1-Kk)'(km-1) and

C = 2 Imy+E|P (5.2)
H= % m,-J-'m, . (5.3)
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Here H is the conserved Hamiltonian and C = constant determines a momentum sphere in the

reduced phase space centered at £ € R3=so0(3)*.
The attitude equation for the rigid-body rotor system is

A=AQ,
where, in the presence of the feedback law (3.1),
Q = (I[lock - ]Irotor)_1 (m -1

= (Hlock - Irotor)_l(m -km + P)

J Y m-§&) = I''m, .
Therefore the attitude equation may be written
A = A(Im)"
where " denotes the canonical map from vectors in R3 to elements of so(3),

and A is the attitude matrix, A € SO(3).

The net spatial (constant) angular momentum vector is now given by

H= A(mb+ g)
Then we have the following

Theorem 5.1 Suppose that the solution of

II.lb = (mb+ é) X J‘lmb

(5.4)

(5.5)

(5.6)

sweeps out a periodic orbit of period T on the momentum sphere, ||m,+§ IZ=ull?, enclosing a
solid angle ®_ ... Let Q, denote the average value of the body angular velocity over this

period. Let E denote the constant value of the Hamiltonian and let ||| denote the magnitude of
the angular momentum vector. Then the body undergoes a net rotation A8 about the spatial

angular momentum vector | given by the formula
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2ET T
8= —+— (gg v)_d)soi (5.7)
lt g o Tseld

Proof Consider the reduced phase space (the momentum sphere)
P, = {my| lm,+ &I =117}, (5.8)

for p fixed. Suppose we have a periodic orbit in P‘L of period T. We then compute how A(t)
changes. Now

my(to+T) = my(ty) (5.9)
and from momentum conservation
po= AT+ te)(my(T + tg) + &)
= A(to)(my(ty) + ) . (5.10)

Hence

AT+ 1AM =1,

Thus A(T + tO)A(tO)‘1 is an element of Gu’ the subgroup of the group of rotations that fixes L,
SO

A(T+t A" = cxp(AO ﬁﬁ J (5.11)

for some AO, which we wish to determine.

Consider a phase trajectory of our system
2(t) = (A®), my(®), 2ty =z, (5.12)
with A(ty) =I and my(t)) = — &, the body thus being in the reference configuration at t =t
The two curves in phase space

C, = (z(t) : ty St <ty + T} (the dynamical evolution from z,)
and

G = {cxp[el—lu—")zo:OSBSAG}interscctat t=T.
!

Thus C=C,~C, is aclosed curve in phase space and from Stokes' theorem we have,
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Jc1 pdq'ch qu=”>; d(pdq) (5.13)

3
where pdq = Z p,dq; and where g; and p, are configuration space variables and conjugate
i=1
momenta in the phase space and X is a surface enclosed by the curve C.

Evaluating each of these integrals will give the formula for A8. To see this, first consider
the dynamical evolution along C,. Letting @ be the spatial angular velocity, we get

pS = wo = AGQ+EAQ = (Q+DQ
= IQOQ +EQ . (5.14)
Hence
qﬂ T
pdq = pg dt = IQ Qdt + §th
o c,

2ET + (£:Q,)T (5.15)

since the Hamiltonian is conserved along orbits. Similarly, along C, we have,

_9 _ _ a8 u
Pg dt = - dt -f p-{ }dt
j jcz” c, L9 jull

= il [ | d0 = i ae, (5.16)
G,

where we substituted the spatial angular velocity along C,.

Finally we note that the map =, from the set of points in phase space with angular momentum H
to Pp satisfies

,”E d(pdq)=‘Un ();)dA = 2 lpll @y (5.17)
H

where dA is the area form on the two-sphere and np(E) is the spherical cap bounded by the
periodic orbit
{m,®[t,<t<ty+ T} cP,.
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From (5.15), (5.16) and (5.17) we have the result. ®

Remark 5.2 @ When £ =0, (5.7) reduces to Montgomery's formula [1990].

b This theorem may be viewed as a special case of a scenario that is useful for other systems,
such as rigid bodies with flexible appendages. Phases are usually viewed as occurring in the
reconstruction process, which lifts the dynamics from Pu to J1(u), where J: P — g* isthe
momentum map for a mechanical system with symmetry and P, = J“(u)/Gu is the reduced space;
see Marsden, Montgomery and Ratiu [1990]. The cotangent bundle reduction theorem states that
P, itself is a bundle over T*S, where S =Q/G is shape space. The fiber of this bundle is O,
the coadjoint orbit through y. For a rigid body with three internal rotors, S is the three torus T3
parametrized by the rotor angles. Controlling them by a feedback or other control and using other

conserved quantities associated with the rotors as we have done, leaves one with dynamics on the
"rigid variables" Op, the momentum sphere in our case. Then the problem reduces to that of

lifting the dynamics on Ou to J-1(u) with the T*S dynamics given. For G =80(3) this

"reduces” the problem to that for geometric phases for the rigid body given by Mongomery [1990].
¢

Finally, following Krishnaprasad [1990] we show that in the zero total angular momentum case
one can compensate for this drift using two rotors.

The total spatial angular momentum if one has only two rotors is of the form
Ho= Ay Q + ba, + byay) (5.18)

where the scalars &, and o, represent the rotor velocities relative to the body frame. The
attitude matrix A satisfies
A=AQ, (5.19)

as above. If pu =0, then from (5.18) and (5.19) we get,
A = —A(@ZL b o + (I b)) ay) . (5.20)

It is well known (see for instance Brockett [1973] or Crouch [1986]) that if we treat the (xl, i=1,
2 as controls, then attitude controllability holds iff
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(1,53 b)" and (I} by)" generate so(3), (5.21a)

or equivalently, iff the vectors

I;L b, and I;L b, are linearly independent. (5.21b)

Moreover, one can write the attitude matrix as a reverse path-ordered exponential
_ t
A(t) = AQO)Pexp [_J’o {( Ilchk bl)A dl(o) + (]Ik;clk bz)A (xz (o)} dcr] . (5.22)

A key observation is that the right-hand side of (5.22) depends only on the path traversed in the
space T2 of rotor angles (a,, ®,) and nor on the history of velocities ('xi. This can be easily
checked by carrying out a time rescaling t+ B(t). Hence the formula (5.22) should be interpreted
as a "geometric phase"”. Furthermore, the controllability condition can be interpreted as a curvature
condition on the principal connection on the bundle T2x 80(3) — T2 defined by the so(3)-
valued differential 1-form,

6(a;, a,) = —((Iz4 b)" doy + @5 b)) dory). (5.23)

For further details on this geometric picture of multibody interaction see Krishnaprasad [1990] and
Krishnaprasad and Yang [1990).

Conclusions

Natural mechanical systems subject to exogenous forces determined by suitable classes of
feedback laws can sometimes be modeled as hamiltonian systems. Often the hamiltonian structures
so derived may be viewed as deformations (by feedback gains) of the hamiltonian structure
governing the open loop unforced system. The methods of geometric mechanics such as reduction,
reconstruction phases, energy-Casimir and energy-momentum algorithms for stability analysis,
prove to be naturally applicable to such feedback systems. The present paper illustrates this via a
careful study of the problem of rigid body control using external torques (as implemented by gas
jets) and internal torques (via reaction wheels/rotors), and the relationships between these two
methods of control. We reveal a Hamiltonian structure for the controlled system that involves a
velocity shift (or a gyroscopic term), a technique that should be of general utility. We especially
note that we find a nonobvious but rich Hamiltonian structure for the controlled system, despite the
presence of controlling torques.
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One of the main accomplishments of the present work is the stabilization analysis of these
examples.as the feedback parameter is increased. We also calculate the geometric phase (the
attitude drift) in the presence of this control when one is executing a periodic motion in the carrier
body angular momentum phase space.

A general theory for feedback systems of gyroscopic type appears in the recent thesis of
Wang. We note however that, in the examples of the present paper, we go on to consider feedback
laws that also effectively alter the metric structure underlying a simple mechanical system. The
introduction of geometric phases (a subject of great current interest to physicists) in the analysis of
attitude drift due to perturbations from relative equilibria is one of the novel features of the paper.
The methods we use for both the phase and stability calculations should be applicable to more
complex many-body systems such as those incorporating flexible elements.

In work under way, we are also considering problems of instability in feedback systems. It
appears to be possible to establish instability theorems based on second variation criteria analogous
to the classic work of Kelvin and Chetayev. Details will appear in a forthcoming paper.
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