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 This dissertation research is comprised of three projects examining the effect 

of voluntary parental exercise on health-related phenotypes in two generations of 

mouse offspring. We developed a novel model of exercise ancestry where C57BL/6 

mice (F0) were exposed to voluntary exercise (EX) or a sedentary (SED) lifestyle and 

were bred with like-exposed mates to produce first-generation (F1) offspring; F1 

offspring were bred with like-exposed offspring to produce second-generation 

offspring (F2). F0 mice exercised before breeding and continuously through gestation 

and lactation; all offspring remained sedentary after weaning, thus F0 exercise 

exposure was the only distinguishing factor between offspring. The first project 

examined whole body and tissue masses, glucose tolerance, and skeletal muscle gene 

expression in two generations of 8-week old offspring of exercised vs. sedentary 

parents. F1 EX females were lighter with less fat mass compared to F1 SED females. 

F2 EX females had lower baseline blood glucose and impaired glucose tolerance. 



  

Further, skeletal muscle lipogenic gene expression was downregulated in females 

with exercise ancestry, while it was upregulated in males with exercise ancestry. The 

second study further examined these phenotypes in two generations of adult (28 

week) offspring. Parental exercise did not influence offspring body mass or glucose 

tolerance in 28 week-old offspring, though F1 EX females had higher baseline 

glucose. Additionally, while some differences in skeletal muscle gene expression 

were observed, the effect of parental exercise on offspring was blunted at 28 

compared to 8 weeks of age. The third study further examined the effects of parental 

exercise in skeletal muscle as well as adipose and hepatic tissue with regards to 

metabolite content and gene expression. Exercise ancestry did not affect offspring 

skeletal muscle or liver triglyceride or glycogen content. Further, there were no 

effects of exercise ancestry on gene expression levels of glycogen- or triglyceride-

related enzymes in skeletal muscle, liver, or adipose tissue. Overall, these studies 

suggest no adverse effects of parental exercise on metabolic health in multiple 

generations of mouse offspring. 
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Chapter 1: Introduction and Specific Aims 

Noncommunicable diseases such as cardiovascular disease, diabetes, and 

cancers make up 87% of all deaths in the United States (5). It is well established that 

preventable lifestyle factors (i.e., diet, physical activity, exposure to toxins) play a 

critical role in the development of many of these diseases; however, increasing 

evidence suggests environmental stimuli experienced during development or early-

life can also alter adult disease risk. During development, an organism experiences 

critical windows of plasticity, especially during times of rapid cell proliferation or 

differentiation, where it is particularly sensitive to the environment. The environment 

during these stages is therefore critical for the proper development of tissues and 

major physiologic processes (12). Though this plasticity can be advantageous, 

allowing the organism to fine-tune gene expression based on the environment to meet 

current needs, improper development of organ systems can alter the organism’s 

control of physiology and homeostasis throughout life (117).  

Both epidemiological and animal studies support this notion that alterations in 

environmental factors during development can affect the adult phenotype of the 

organism. This phenomenon has been studied primarily with regards to nutritional 

imbalances (under- or over-nutrition and exposure to toxins). The impact of these 

various interventions have been similar with offspring displaying phenotypes related 

to the metabolic syndrome such as obesity and impaired glucose metabolism (56), 

suggesting common mechanisms may play a role. In mammals, the “environment” is 

transmitted to the developing organism through the maternal environment and, 
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specifically, the placenta. Studies of paternal-specific stimuli altering offspring 

phenotypes suggest additional mechanisms are also involved. 

Parental physical exercise represents yet another environmental stimulus that 

could influence offspring development. Physical exercise affects many organ systems 

throughout the body, including the metabolic pathways that respond to changes in 

nutrition. Acute responses or chronic metabolic adaptations to exercise could directly 

(e.g., maternal exposure during pregnancy or lactation) or indirectly (e.g., maternal or 

paternal exposures prior to conception) affect a developing organism. The benefits of 

exercise on the individual are well established, but comparatively little is known 

about the effects of maternal or paternal exercise on the developing fetus. 

One of the mechanisms by which environmental factors experienced during 

development are thought to alter adult phenotypes is through the control of gene 

expression without alterations in the DNA sequence of the genes themselves (21). For 

example, small changes in the expression levels of key metabolic genes could have a 

large impact on the subsequent protein abundance and enzyme activity. If the DNA 

contained in the germ cells is affected, these modifications could even be passed 

through multiple generations. 

 

Overall Aim 

The overall aim of this dissertation research was to investigate the effects 

of parental exercise on mouse offspring phenotypes related to metabolism. To 

comprehensively characterize these effects, a wide range of phenotypes was 

investigated from the whole body to the transcriptional level. 
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Specific Aim 1 

 To determine the impact of exercise ancestry on body morphology, 

metabolic phenotypes and skeletal muscle gene expression in two generations of 

mouse offspring. 

To achieve this aim, we developed a novel model of exercise ancestry where 

C57BL/6 mice were exposed to voluntary exercise (EX) or sedentary lifestyle (SED) 

and bred with like-exposed mates to produce an F1 generation. F1 mice of both 

ancestries remained sedentary and were either sacrificed at 8 wk or bred with 

littermates to produce an F2 generation, which also remained sedentary and was 

sacrificed at 8 wk. 

First, we examined body, fat, organ and skeletal muscle mass differences. We 

found F1 EX females were lighter than F1 SED females and that F1 SED females had 

higher tibialis anterior and omental fat masses. Second, we examined metabolic 

phenotypes such as glucose tolerance and circulating insulin and lipids. We found 

lower serum insulin in F1 SED females compared to F1 EX females. Also, F2 EX 

females had impaired glucose tolerance compared to F2 SED females. Lastly, we 

examined gene expression differences by skeletal muscle microarray and targeted 

gene expression analyses. The microarray analysis revealed many generation-specific 

up- and down-regulated transcripts between EX and SED offspring. Three of the 

transcripts (Adipoq, Cidec, and Scd1) have been previously linked to lipogenesis. 

They were all upregulated in F1 SED males, with a similar pattern observed in F0 and 

F2 males but all downregulated in females, indicating the possibility of a sex-specific 

alteration in lipogenesis based on EX ancestry. The targeted analysis of gene 
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expression also revealed several generation- and sex-specific differences in mRNA 

expression of multiple genes related to metabolism, though no striking overall pattern 

was observed. 

We concluded that EX ancestry can affect whole-body and transcription-level 

offspring phenotypes across two generations, but in a generation- and sex-dependent 

manner. Together, our results reflect a small, but broad impact of EX ancestry. The 

manuscript resulting from the experiments of Specific Aim 1 was published in 

Experimental Physiology and comprises Chapter 3 of this dissertation.  

 
Specific Aim 2  

 To determine the effect of exercise ancestry on body morphology, 

metabolic phenotypes and skeletal muscle gene expression in two generations of 

mature mouse offspring. 

The purpose for this study was two-fold. First, we aimed to extend our 

findings from Study 1 while exerting tighter control over some of our techniques 

related to breeding and whole-body phenotype measurements. Second, based on the 

fact that we found relatively small differences in phenotypes between EX and SED 

offspring in Study 1, we wanted to further stress the offspring. We chose aging as our 

additional metabolic stressor and examined the same offspring phenotypes as in 

Study 1, but at 28 weeks of age. We hypothesized that larger differences between EX 

and SED offspring would be observed at 28 weeks of age. 

In 8-week old offspring, we found that body mass tended to be higher in F1 

EX offspring. Liver mass was higher in F1 EX males and tended to be higher in F1 

EX females. In the F2 generation, average plantaris mass tended to be lower in SED 
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males. F2 female mice with EX ancestry had lower baseline blood glucose and tended 

to have lower IPGTT area under the curve (AUC).  We found higher Cytc and 

tendencies towards higher Pparg, and Scd1 mRNA expression in F1 EX females 

compared to F1 SED females and lower Cidec, and Scd1 and a tendency for higher 

Adipoq mRNA expression in F2 EX males compared to F2 SED males. Though our 

sample size and thus statistical power was smaller in Study 2 for the 8-week 

offspring, our gene expression results, particularly our qRT-PCR targets, follow some 

similar trends to those observed in Study 1, though not all of our results were 

supported. 

In 28-week old offspring, we found lower liver and soleus mass in F1 and F2 

EX males compared to F1 and F2 SED males. F1 EX females had higher baseline 

glucose. Pgc1a mRNA expression was higher in F1 EX males than F1 SED males 

and Cox1 mRNA expression was lower in F2 EX males compared to F2 SED males. 

No other differences were observed. Interestingly the difference in male offspring 

liver mass was in the opposite direction at 8 compared to 28 weeks of age. Similarly, 

28 week old EX F2 females had better glucose tolerance compared to worse glucose 

tolerance at 8 weeks. Our hypothesis that aging the offspring to 28 weeks would 

increase the phenotype separation between EX and SED offspring was not supported. 

It is possible that 28 weeks is not a sufficient duration of aging to see this separation, 

as other researchers have not seen differences in whole body and glycemia-related 

phenotypes until even older ages (33, 34). 

Overall, as a result of this study we maintain our prior conclusion that EX 

ancestry can affect whole-body and transcription-level offspring phenotypes across 
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two generations, but that these effects are not only generation- and sex-dependent, but 

also strongly impacted by offspring age. The manuscript resulting from the 

experiments for Specific Aim 2 comprises Chapter 4 of this dissertation. 

 
Specific Aim 3  

 To determine the effect of exercise ancestry on metabolic phenotypes in 

skeletal muscle, adipose tissue, liver, and serum in two generations of mature 

mouse offspring. 

Our focus on skeletal muscle phenotypes through the first two aims was based 

on the clear impact of exercise on skeletal muscle. However, it is possible that other 

tissues may be more sensitive to developmental programming. Due to the hallmark 

obesity and insulin resistance observed in many models of altered maternal nutrition, 

offspring adipose and hepatic tissue are frequently studied. 

Carter et al. (33) used a similar study design to ours (perinatal exercise 

exposure) and observed enhanced glucose disposal in response to a glucose or insulin 

challenge in the offspring of exercised mice. This difference in glucose disposal was 

mimicked by enhanced glucose uptake in response to insulin by soleus and adipose 

tissue from the offspring of exercised mice. This effect was particularly dramatic in 

the adipose tissue, suggesting adipose tissue insulin sensitivity is contributing to the 

enhancement of whole-body glucose disposal in the offspring of exercised mice. 

These phenotypes, however, were not observable until the offspring reached 7 months 

of age. Thus, examining the control of glucose as well as lipid homeostasis prior to 

the development of overt insulin resistance may help uncover the underlying 

dysfunction preceding glucose intolerance. 
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 Though limited information exists regarding the effects of maternal/paternal 

exercise on offspring liver, both adipose and hepatic tissue work in concert with 

skeletal muscle to maintain metabolic homeostasis. Defects in the normal metabolic 

function of one or more of these tissues are likely to precede overt pathology; we 

therefore examined basic metabolite stores (glycogen and TAG in skeletal muscle and 

liver) in these tissues and the gene expression of the key enzymes regulating the 

storage and breakdown of these metabolites in skeletal muscle, liver, and adipose 

tissue. We hypothesized that mature mouse offspring with an exercise ancestry would 

store less TAG and more glycogen in skeletal muscle and liver compared to offspring 

of sedentary parents. We also hypothesized that these differences would be associated 

with more glycogenic/less glycogenolytic and less lipogenic/more lipolytic gene 

expression patterns in metabolically active tissues of EX ancestry offspring. Contrary 

to our hypotheses, we did not observe any differences in TAG or glycogen storage or 

associated gene expression in skeletal muscle, liver, or adipose tissue. The manuscript 

resulting from the experiments for Specific Aim 3 comprises Chapter 5 of this 

dissertation. 
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Chapter 2: Review of Literature 
 

Overview 

 The first section of this literature review will describe basic the metabolic 

processes required for the storage and breakdown of carbohydrate and lipid. The 

remainder of this review will discuss the existing developmental programming 

literature with a focus on the effect of parental environment on offspring metabolic 

health; this section will include epidemiological and experimental evidence of 

developmental programming, a detailed review of parental exercise on offspring 

outcomes in humans and animal models, a discussion of proposed mechanisms of 

developmental programming (including mechanisms specific to maternal exercise), 

and a review of multigenerational inheritance of offspring phenotypes.  

 
Metabolism 

 Humans and animals gain energy from consuming and breaking down 

carbohydrates, fats, and proteins. The energy released from breaking down these 

carbon-containing compounds is used to generate ATP, which can then be used to 

power energy-requiring processes such as movement and growth. Only a limited 

amount of ATP can be stored, and animals have thus evolved to store excess nutrients 

(glucose and fatty acids) to act as reserves for periods of fasting. Specialized cells 

contribute to this storage process; most excess glucose is stored as glycogen in the 

skeletal muscle and liver and most excess lipid is stored in adipocytes. Thus energy 

balance requires complex coordination between energy-storing and energy-utilizing 

tissues as well as organs involved in metabolic regulation; these tissues communicate 



 

 9 

via secreted hormones and cytokines, which affect gene transcription and/or induce 

protein-signaling cascades. The purpose of this section of the literature review is to 

briefly review the metabolic processes controlling carbohydrate and/or lipid storage 

and release, highlighting the unique aspects of metabolism in each of these 

specialized tissues (muscle, liver, and adipose). A schematic overview of the 

metabolic processes reviewed here is provided in Figure 2.1. 

 
Carbohydrate Metabolism  

 Glycogen is a highly-branched polysaccharide made up of hundreds of 

glucose molecules joined by glycosidic bonds. Storing glucose as glycogen is 

advantageous, as it reduces the burden of glucose molecules on cell osmotic pressure 

(196). Skeletal muscle is the major site of glycogen storage in the body, though the 

liver stores more glycogen per gram of tissue (196).  Muscle takes up glucose from 

the blood via the insulin-sensitive GLUT4 glucose transporter. GLUT4 is generally 

sequestered in storage vesicles, but translocates to the plasma membrane in response 

to insulin signaling or muscular contraction via parallel but distinct signaling 

pathways. In contrast to skeletal muscle, the liver takes up glucose when the 

circulating blood glucose level exceeds the euglycemic threshold, independent of 

insulin stimulation. Glucose uptake in the liver occurs via the hepatic glucose 

transporter GLUT2, which maintains intracellular and extracellular glucose 

concentrations in equilibrium (161).  

 Glucose must be phosphorylated to glucose-6-phosphate by hexokinase 2 

(Hk2, in muscle) or glucokinase (GK, in liver) upon entry to the cell to maintain a 

concentration gradient of glucose promoting continued glucose uptake (82). The 



 

 10 

accumulation of glucose-6-phosphate activates the glycogen synthase (GS) enzyme 

(24). Glycogen synthase is the rate-limiting enzyme of glycogenesis and is regulated 

by phosphorylation-induced inactivation in addition to allosteric activation by 

glucose-6-phosphate (119). Insulin activates GS by promoting dephosphorylation of 

the enzyme via activation of protein phosphatase-1 as well as the inactivation of 

upstream kinases, such as glycogen synthase kinase 3, among others (141). To 

synthesize glycogen, glucose-6-phosphate must be converted to glucose-1-phosphate 

by phosphoglucomatase. Glucose-1-phosphate then reacts with uridine triphosphate 

to form UDP-glucose, the immediate precursor to glycogen. Lastly glycogen synthase 

adds glucose units from UDP-glucose to the non-reducing end of an existing 

glycogen molecule, releasing UDP in the process (196).  

 Glycogenolysis is the cleavage of glucose units from the glycogen molecule 

through hydrolysis. The glycogen phosphorylase enzyme catalyzes the cleavage of 

the terminal glycosidic linkages of glycogen, releasing glucose-1-phosphate. 

Glycogenolysis is regulated by the activity of phosphorylase. In muscle, 

phosphorylase activity is increased by calcium and epinephrine; it can also be 

regulated by the concentrations of glycogen and inorganic phosphate or by allosteric 

effectors (ATP, ADP, AMP, IMP) (196).  In liver, phosphorylase is primarily 

regulated by glucagon (activating) and insulin (inactivating). Glucose-1-phosphate is 

converted into glucose-6-phosphate by phosphoglucomutase (196). Muscle does not 

express glucose-6-phosphatase, so it cannot release glucose back into the 

bloodstream. Therefore the glucose-6-phosphate released from muscle glycogen is 

primarily directed towards glycolysis and used to meet the energy demands of the 
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muscle cell. In contrast, the majority of the glucose liberated from liver glycogen 

enters the circulation to maintain blood glucose levels. This is made possible by the 

expression of glucose-6-phosphatase by the liver, which dephosphorylates glucose-6-

phosphate into free glucose, which can be released into the bloodstream (203). 

 In addition to its ability to release glucose liberated from glycogen, the liver 

can also synthesize glucose from noncarbohydrate precursors through 

gluconeogenesis. Essentially, gluconeogenesis is the reversal of the glycolytic 

pathway, with alternate reactions working around the enzymatically irreversible steps 

of glycolysis. When lactate is the precursor, it is taken up and oxidized into pyruvate. 

Next, pyruvate is converted to oxaloacetate via pyruvate carboxylase (many amino 

acids, when deaminated, can also be transformed into oxaloacetate). Next, 

phosphoenolpyruvate carboxykinase (Pepck) catalyzes the reaction converting 

oxaloacetate to phosphoenolpyruvate. The next several steps reversing the glycolytic 

pathway are reversible, so glycolysis can run backward until fructose-1,6-

bisphosphate is formed. Here, fructose-1,6-bisphosphatase removes a phosphate 

group, producing fructose-6-phosphate, which is reversibly converted to glucose-6-

phosphate. Glucose-6-phosphatase removes the phosphate group, resulting in free 

glucose. The rate of gluconeogenesis is primarily determined by the activities of 

Pepck, fructose-1-6, bisphosphatase, and glucose-6-phosphatase (G6P). Pepck 

catalyzes one of the rate-limiting steps of gluconeogenesis and G6P catalyzes the 

final step, converting glucose-6-phosphate to free glucose. Glycerol is another 

precursor for glycolysis; it is phosphorylated by glycerol kinase to glycerol-3-P, 

which is oxidized to produce dihydroxyacetone phosphate by glycerol 3-P 
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dehydrogenase.  These genes are also controlled at the transcriptional level by 

hormones; transcription of G6pc and Pepck is stimulated by glucocorticoids and 

glucagon (released during fasting) and repressed by insulin (released after 

carbohydrate feeding) (95). 

 

Lipid Metabolism 

 Excess lipid is predominantly stored in adipocytes (fat cells) in white adipose 

tissue, though small amounts of lipid can be found in many other tissues. The primary 

metabolic functions of white adipose tissue are to store fatty acids (in the form of 

triacylglycerols, abbreviated TAG) and to mobilize those fatty acids (along with 

glycerol) in response to energetic demands. Most of an adipocyte’s volume is 

comprised of TAG within a lipid droplet. These lipid droplets consist of a neutral 

lipid core surrounded by a phospholipid monolayer. Perilipin proteins, residing within 

this monolayer, promote TAG storage by protecting the TAG from lipases (25). 

 Fatty acids are either taken up from the bloodstream or produced de novo. 

Adipose tissue, liver, and skeletal muscle can all synthesize fatty acids from non-lipid 

precursors, though of these tissues only the liver contributes substantially. Long-term 

regulation of fatty acid and triglyceride synthesis in the liver is controlled 

transcriptionally through a number of genes encoding proteins collectively termed 

“lipogenic enzymes.” These enzymes are upregulated with carbohydrate feeding, 

either by insulin or glucose (163), and lead to the conversion of excess carbohydrate 

into triglycerides. The primary source of TAG storage in adipose tissue is from the 

uptake of circulating fatty acids from circulating TAG contained in chylomicrons or 
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very-low-density lipoproteins. Lipoprotein lipase (produced by the adipocytes) 

liberates the fatty acids from these TAG molecules. Once fatty acids are liberated and 

enter the adipocyte, they are attached to coenzyme A via acyl CoA synthetase. In 

skeletal muscle, circulating fatty acids are taken up by a combination of passive 

diffusion and protein-mediated transport, where they can be oxidized or stored as 

TAG or other lipid types. The fate of fatty acids in skeletal muscle is determined by a 

variety of factors including the muscle fiber type, hormonal milieu, and the current 

muscle energy requirements (210). Regardless of the tissue, TAG is synthesized by 

the sequential addition of fatty acids to a glycerol backbone. In the remodeling 

pathway, two fatty acids are added to a monoacylglycerol by the monoglycerol 

acyltransferase and diacylglycerol transferase (DGAT) enzymes, respectively. In de 

novo lipogenesis, glycerol-3-phosphate is sequentially acylated by glycerol phosphate 

acyltransferase and lysophosphatidic acid acyltransferase and then dephosphorylated 

by phosphatidic acid phosphatase, resulting in diacylglycerol. The diacylglycerol 

produced by the de novo is also converted to TAG by DGAT, making DGAT the 

common link between these two TAG formation pathways (183). Two isoforms of 

DGAT exist, DGAT1 and DGAT2. DGAT2 is more critical to TAG synthesis based 

on knockout studies, where the absence of DGAT1 led to reduced adiposity while the 

absence of DGAT2 led to lethal lipopenia (183). DGAT2 overexpression in skeletal 

muscle led to higher TAG content in young adult mice (123); similarly, DGAT2 

overexpression in liver led to increased liver TAG content and steatosis (145).  

 Lipolysis occurs in response to increases in energy demand. TAG stored in 

adipose tissue is broken down into fatty acids and glycerol and primarily released into 
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the bloodstream, whereas in the muscle, the fatty acids liberated from TAG 

hydrolysis are oxidized to meet the energetic demands of the muscle cell. Regardless 

TAG must be broken down into fatty acids before it can be oxidized or released to 

blood stream. Three lipases remove the fatty acids: adipose tissue triglyceride lipase 

(ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase. ATGL 

specifically catalyzes the hydrolysis of TAG, resulting in diacylglycerol and a fatty 

acid. HSL can catalyze the hydrolysis of both TAG and diacylglcerol. ATGL and 

HSL combined are responsible for about 95% of TG hydrolysis in adipocytes (179). 

When ATGL associates with the protein CGI-58, the catalytic activity of ATGL is 

increased (87). HSL is activated via phosphorylation in response to 

epinephrine/norepinephrine, or calcium stimulation, allowing HSL to translocate to 

the surface of the lipid droplet. Phosphorylation events also prevent the perilipins 

coating the lipid droplet from preventing lipolysis. The final lipolytic step is catalyzed 

by monoacylglycerol lipase (196). 

 The proper function and regulation of these basic metabolite processes are 

critical for the maintenance of metabolic health in humans as alterations in metabolic 

function are associated with the development of metabolic disease. Over the last 25 

years, evidence supporting a developmental origin of adult metabolic dysfunction has 

accumulated; the following section will review this literature.  
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Figure 2.1. Overview of glycogen and triacylglycerol storage and breakdown in 
skeletal muscle, liver, and adipose tissue. This figure is focused on the metabolic 
processes relative to this dissertation work and is not intended to provide a 
comprehensive overview of metabolic processes in these tissues. TAG: 
triacylglycerol, DAG: diacylglycerol, MAG: monoacycl glycerol, FA: fatty acid, 
DGAT: diacyclglyceroltransferase, MGAT: monoacylglycerol transferase, ATGL: 
adipose triglyceride lipase, HSL: hormone-sensitive lipase, G-6-P: glucose-6-
phosphate, G-1-P: glucose-1-phosphate, G6Pase: glucose-6-phosphatase, GCK: 
glucokinase, PEP: phosphoenolpyruvate, PEPCK: phosoenolpyruvate carboxykinase, 
GP: glycogen phosphorylase, GS: glycogen synthase, HK2: hexokinase 2 
 

Developmental Programming  

 In the late 1980s David Barker and his colleagues (11) observed a correlation 

between low birth weight and cardiovascular mortality; they subsequently observed a 

similar correlation of low birth weight with poor glucose tolerance and insulin 

resistance (93) in adult men. These studies gave rise to Barker’s “thrifty phenotype” 

hypothesis (94), which proposes exposure to undernutrition during fetal or early life 
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alters fundamental metabolic processes controlling substrate metabolism. While these 

alterations may be advantageous in times of low nutrient availability, in times of 

adequate or excess nutrient availability these changes become deleterious and result 

in disease states such as obesity and impaired glucose tolerance. The “thrifty 

phenotype” hypothesis gave way to the paradigm now known as the Developmental 

Origins of Health and Disease hypothesis, which has become a scientific field in its 

own right. 

 Some of the most substantial support for these hypotheses has come from a 

series of studies on the long-term health of individuals who were exposed during fetal 

or early life to the Dutch Famine of 1944-45 (192). From October, 1944 to through 

May, 1945 a portion of the Netherlands with a population of 4.3 million people was 

blocked from food shipment supplies. As a result, food rations quickly fell from 1600 

kilocalories per day to below 1,000 and as low as 500 kilocalories per day (202). 

Prenatal famine exposure was associated with increased body weight, BMI, and waist 

circumference (167, 191) as well as a higher prevalence of impaired glucose tolerance 

(57). Since the publication of these findings, many other studies of adult health 

outcomes related to prenatal or early exposure to other temporary famines have been 

conducted (202), early life nutrition and adult health and development) with similar 

findings.  

  

Experimental Models of Developmental Programming 

 Several models of maternal undernutrition have been developed to 

experimentally test the observations from epidemiological studies like the Dutch 
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Hunger Winter studies; these include maternal caloric restriction, macro- and micro-

nutrient restriction, and uterine artery ligation. More recently, models of maternal 

overnutrition and obesity have been investigated. Interestingly, both maternal under- 

and over-nutrition yield consistent offspring phenotypes, including obesity, perturbed 

glucose homeostasis, and insulin resistance (118). Greater adiposity, for example, has 

been observed in the offspring of animals exposed to maternal protein restriction, 

high fat diet, and obesity (15, 17, 150). Similarly, impaired offspring glucose 

tolerance has been observed in the offspring of both protein-restricted (151) and high 

fat diet-fed rodents (182). Higher serum insulin levels have also been observed in the 

offspring of both protein-restricted (136) and high fat diet fed dams (8, 18, 182). 

 Animal models of developmental programming have also demonstrated 

effects of a variety of maternal environments on the function of basic metabolite 

storage systems (TAG and glycogen storage) in skeletal muscle, adipose tissue, and 

liver. Maternal consumption of a high fat hypercaloric cafeteria diet “composed of 

pâté, cheese, bacon, potato chips, biscuits and chocolate” was associated with greater 

adipose tissue mass and elevated serum and adipose tissue TAG content in offspring 

(18). Elevated serum TAG content has also been observed in the offspring of protein-

restricted (136) and stressed (27) dams. Conversely, another study of maternal protein 

restriction in rats found exposed offspring were lighter and had less visceral and total 

fat along with lower circulating insulin, glucose, triglycerides and cholesterol (72). 

Higher offspring liver TAG content has been observed in a number of models of 

maternal dietary programming, including maternal caloric restriction in sheep (81, 

104) and rats (135), as well as maternal high-fat feeding (8). Both maternal caloric 
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restriction (216) and overfeeding (211) in sheep led to greater accumulation of 

intramuscular triglyceride in offspring. Higher liver glycogen has also been detected 

in offspring exposed to maternal caloric restriction (81), protein restriction (72, 86), 

and stress (77). Offspring muscle glycogen was also elevated in female offspring in 

response to maternal protein restriction (215).  

 While most of the available research on developmental programming has 

focused on the effects of maternal interventions on offspring health, the effects of the 

paternal environment have also been investigated. Pre-mating fasting of males 

resulted in lower offspring serum glucose concentration compared to the offspring of 

males who were not fasted prior to mating (7). Male rats that were chronically 

exposed to a high fat diet had female offspring with impaired insulin secretion and 

glucose tolerance compared to the offspring of control fathers (148). Protein-

restriction has also been studied in male rats (31); transcriptional profiling 

demonstrated elevated expression of lipid and cholesterol biosynthesis-related genes 

in the livers of offspring whose fathers were protein-restricted. Further analysis of 

hepatic lipid content indicated cholesterol depletion along with higher levels of free 

fatty acids and triglycerides in offspring of protein-restricted fathers.  

 

Effects of Parental Exercise on Offspring Health 

Parental physical exercise represents another environmental stimulus that 

could, like parental nutrition, program offspring metabolic health. Exercise affects 

many organ systems throughout the body, including the same metabolic pathways 

that respond to nutritional interventions, but little is known about the effects of 
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maternal or paternal exercise on the developing fetus. Here we review the existing 

literature related to the influence of parental exercise on offspring health.  

  

Parental Exercise and Offspring Outcomes in Humans  

 Most of the available research on parental exercise in humans is related to 

maternal exercise and/or fitness levels. Further, these studies are thus far limited to 

neonatal and childhood outcomes. Women who exercised before and during 

pregnancy had infants with lower (but still normal) birth weights compared to women 

who did not exercise; these lower birth weights were associated with lower infant fat 

mass with no difference in lean mass (38, 44). In one study, women who started 

exercising during pregnancy had infants with higher birth weight as a result of 

increased lean mass with no change in fat mass (40); these observations were 

associated with greater placenta growth and volume. Conversely, another study of 

women who began exercising in mid-gestation found lower birth weights, but no 

differences in body composition in the offspring of exercising women (100); lower 

cord blood concentrations of insulin-like growth factors I and II were also observed in 

the offspring of exercising mothers. Cessation of exercise training during pregnancy 

is associated with higher infant birth weights due to greater infant fat mass compared 

to infants of mothers who were sedentary throughout their pregnancy (42). Several 

other studies of exercise during pregnancy have yielded no effects on birth weight 

(16, 46, 48, 112).  

 At one year of age, the offspring of exercising mothers (who had lower birth 

weight and fat mass) were comparable in weight and body composition to the 
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offspring of less active mothers (43). Interestingly, at five years of age, the children 

of mothers who exercised weighed less and had less fat mass than the children of less 

active mothers (45). It is important to note that these two follow-up studies were 

performed on different birth cohorts. While both cohorts were lighter and leaner at 

birth, the absence of a persistent effect in the cohort followed up on at one year of age 

could be explained by the less intensive exercise program undergone during exercise 

in the mothers of these children, suggesting maternal exercise intensity and volume 

may be important to long-term offspring health outcomes. A recent prospective 

cohort study of 4665 maternal-offspring pairs studied the association of self-reported 

maternal physical activity in mid-gestation with cardiovascular risk factors in 

offspring at 15 years of age (143). Higher levels of maternal physical activity were 

associated with lower BMI, waist circumference, glucose, and insulin prior to 

adjusting for confounders, but all associations were null after adjustment. Similarly, 

another smaller (439 offspring) prospective study found no protective associations of 

maternal physical activity on markers of metabolic syndrome; in fact, subtle adverse 

associations of higher levels of physical activity with body mass index, HDL 

cholesterol, and diastolic blood pressure were detected (52). 

 Beyond morphological traits, infants born to exercising mothers performed 

better on orientation and state regulation at five days after birth compared to infants 

born to less active mothers, suggesting improved neurological development in the 

offspring of exercising women (42). At one year of age, neurodevelopmental 

outcomes were did not differ between the children of exercising and sedentary 

mothers (43); however, at five years of age the children of mothers who exercised 
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during pregnancy performed better on oral language skill and intelligence tests (45). 

It is important to consider when interpreting these results that some more recent large 

epidemiological studies have suggested that the independent effect of exercise during 

pregnancy is minor and may be largely explained by the confounding effects of 

maternal body composition (74, 108). 

 

Parental Exercise and Offspring Outcomes in Animal Models  

 The use of animal models to study the effects of parental exercise on offspring 

health is critical, as animal models allow for more careful control of experimental 

variables and offer more flexibility in the tissues to be studied. Further, the short 

gestation and lifespan of rodents in particular allows researchers to study the more 

long-term effects of parental exercise on offspring health. 

 Maternal exercise in rodents has been associated with smaller litters (199) and 

birth weights (60, 102, 162) in some studies, but these findings are not consistent (33, 

34, 146, 171). In these studies, higher exercise intensities were more often associated 

with lower offspring birth weights. 

 Much of the available literature regarding maternal exercise and offspring 

outcomes has focused on neurological phenotypes. Briefly, maternal swimming 

during gestation was associated with greater brain-derived neurotrophic factor 

expression, more hippocampal neurogenesis, and better short-term memory (120). 

Offspring of dams exposed to treadmill exercise before and during pregnancy 

performed better in an open field anxiety test compared to the offspring of control 

dams; this was associated with greater prefrontal cortex expression of brain-derived 
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neurotrophic factor and vascular endothelial growth factor expression (2). Better 

spatial memory has also been observed in the offspring of exercised compared to 

control dams, an effect that was associated with greater hippocampal neurogenesis 

(54).  

 More recently, researchers have begun to study the physiological effects of 

maternal exercise. Vega et al. (205) observed lower glucose values in the 36-day old 

offspring of rats exposed to controlled wheel running. In this study, dams exercised 

on a wheel for two 15-minute sessions per day for 30 days prior to breeding and for 

one 15-minute session per day during gestation. No differences in fat pad mass, 

serum triglycerides, insulin, or leptin were detected in the offspring.  

 Carter et al. (33, 34) were the first to study the effect of maternal exercise on 

the metabolic health of mature rodent offspring; they observed improved mature 

offspring insulin sensitivity and glucose regulation in both mouse and rat models of 

maternal exercise. In the mouse model, dams were exposed to voluntary wheel 

running exercise one week before and during pregnancy and through two weeks of 

lactation (33). The offspring of exercised dams had better glucose tolerance from 7 to 

16 months of age (when the study was terminated) compared to the offspring of 

sedentary dams. Further, maternal exercise was associated with enhanced in vivo and 

ex vivo insulin-stimulated glucose uptake into adipose and skeletal muscle compared 

to the offspring of control dams, indicating better insulin sensitivity. Lastly, male 

offspring from exercised dams had lower fat and higher lean body mass by nine 

months of age compared to male offspring of sedentary dams. In a study using the 

same intervention model in rats, glucose disposal was enhanced in female offspring 
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of exercised dams by 10 months of age; by 17 months of age, female offspring of 

exercise dams had enhanced insulin sensitivity as measured by hyperinsulinemic 

euglycemic clamp (34). The researchers also noted lower fasting insulin and fat pad 

mass, but no difference in glucose tolerance in the exercising F0 females mid-

gestation.  

 Another series of recent studies has investigated the effect of maternal bipedal 

stance exercise in rats; rats are required to “stand” on their hindlimbs in order to reach 

their food and must maintain that position to eat or drink (212). Fetuses exposed to 

this type of maternal exercise were heavier, longer, and had greater placental mass 

compared to fetuses from control rats (172) but did not differ in body mass at birth or 

weaning (171), or through adulthood (170). However, in stark contrast to the findings 

of Carter (33), the mature male offspring of exercised rats had higher body fat and 

less lean mass compared to the offspring of control rats (170). Significantly higher 

serum undercarboxylated osteocalcin (uOC) concentrations were also observed in the 

male offspring of exercised dams. Interestingly, uOC may regulate metabolism; uOC 

injections reduced glucose and improved insulin sensitivity in normal mice (105). No 

effects of maternal exercise on offspring food intake or efficiency, blood glucose, or 

grip strength were detected in this model (170), but this study highlights a potential 

endocrine role of bone in mediating the metabolic effects of parental exercise on 

offspring. 

 

Proposed Mechanisms of Developmental Programming 

 Developmental origins researchers have proposed numerous potential 
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mechanisms linking parental environment to offspring health outcomes. These 

include (but are not limited to) structural differences in organ development, 

epigenetic modifications, changes in glucocorticoid exposure, alterations in appetite 

regulation, and oxidative stress. 

 

Structural changes to organs 

 Tissue and organ structure is, by necessity, very plastic during development. 

Any alterations in offspring environment that disrupt the processes of cell 

proliferation and/or differentiation could have permanent effects on tissue size or the 

relative content of different cell types within tissues. Maternal protein restriction in 

rats reduces pancreatic mass in offspring along with islet cell mass and the relative 

concentration of β-cells (the insulin-producing cells of the pancreas) within islets 

(158, 188). In skeletal muscle, maternal undernutrition alters the number of secondary 

muscle fibers formed during development (66) as well as fiber type composition (51, 

73), and intramuscular fat content (51). The livers of rat offspring exposed to 

maternal protein restriction have fewer, but larger lobules (29). In adipose tissue, 

maternal undernutrition is associated with a greater proportion of large fat cells in 

offspring visceral fat (149). 

 

Epigenetic Modifications  

 Epigenetics is the study of heritable changes in gene expression that are 

independent of changes in DNA sequence. DNA methylation and histone 

modification are the two primary types of epigenetic marks, though various 
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noncoding RNAs and prions are also included in some definitions. DNA methylation 

in promoter regions generally suppresses gene expression through directly blocking 

the access of transcriptional machinery or interfering with transcription factor 

binding. Conversely, histone acetylation generally promotes gene expression (20). 

 In animals, the majority of methylated DNA in the genome is demethylated 

following fertilization and then remethylated de novo in a developmental stage- and 

tissue-specific manner. Epigenetic marks are thought to be stably inherited, which 

allows marks to be passed from cell to cell during division and may even allow 

phenotypic traits induced by developmental programming to be passed on to 

subsequent offspring where germ cells are affected (187). Epigenetic modifications 

are particularly sensitive to environmental factors during development because this is 

the time when these marks are already undergoing modification (88); fully developed 

tissues, while still somewhat plastic, are likely more resistant to environmental 

stimuli. This mechanism could explain why the expression of genes and proteins 

remain altered in adult offspring, long after the environmental signal is withdrawn. 

 In humans, a 5% reduction in methylation of the insulin-like growth factor 

gene was observed in adults who were exposed to famine in early gestation when 

compared to their unexposed siblings (97). Similar differences in the methylation 

status of several other genes related to growth and metabolic disease have since been 

associated in adults prenatally exposed to famine (197). Godfrey et al. (85) correlated 

umbilical cord DNA methylation of the retinoid X-receptor-α gene with both 

maternal diet composition and childhood adiposity at 9 years of age. While not a 
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causative finding, this study implicates a potential role of perinatal epigenetic status 

on later health in humans. 

 In animals, Lillycrop et al. (126) observed, for the first time, that alterations in 

epigenetic regulation of specific genes in offspring could be induced by alterations in 

maternal nutrition. Specifically, differential methylation of the glucocorticoid 

receptor and peroxisome proliferator activated receptor α (Pparα) genes was observed 

in the livers of offspring exposed to maternal protein restriction. DNA methylation 

was lower while mRNA expression was dramatically higher in the offspring of 

protein-restricted dams for both the glucocorticoid receptor gene and Pparα (126). A 

subsequent study by the same group observed the opposite effect, with 

hypermethylation and lower expression of both Pparα and the glucocorticoid receptor 

in the livers of offspring of calorie-restricted mothers (84); these findings were 

associated with obesity and impaired glucose homeostasis in offspring (28). 

Similarly, paternal protein restriction substantially (30%) upregulated DNA 

methylation at a predicted enhancer of Pparα in offspring liver; this upregulation was 

associated with a downregulation of Pparα gene expression in the same tissue. 

Further, the expression levels of many lipid synthesis genes were upregulated in the 

same tissue, consistent with the role of Pparα in the regulation of lipid metabolism 

(31).  

   Epigenetic modifications could alter the expression of a wide range of gene 

targets. Even small, temporary changes in gene expression during development could 

have a large impact on the morphology of the tissues developing at the time of the 
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insult (e.g., more or less proliferation; alterations in genes promoting alternative 

lineages of progenitor cells).  

 

Glucocorticoids  

 Another hypothesized mechanism by which developmental programming 

occurs is via glucocorticoids. 11β-hydroxysteroid dehydrogenase Type 2 (11βHSD2) 

is a placental enzyme responsible for maintaining the glucocorticoid gradient between 

mother and fetus (180). Lower placental mRNA expression and activity of 11βHSD2 

has been observed in undernourished pregnancies (22, 116). Offspring of protein-

restricted rodents have increased glucocorticoid receptor expression and higher 

activities of glucocorticoid sensitive enzymes (115). The resultant excessive 

glucocorticoid exposure results in persistent alterations in hypothalamic-pituitary-

adrenal axis activity. This proposed mechanism is most closely related to alterations 

in offspring blood pressure (159). Glucocorticoids also help regulate tissue 

proliferation and differentiation during development (76), thus overexposure to 

glucocorticoids may also be linked to the alterations in tissue structure discussed 

above.  

 The hypothesized glucocorticoid mechanism has also been linked with 

epigenetics. Offspring of protein restricted rat dams had dramatically upregulated 

liver glucocorticoid receptor expression, which was associated with reduced binding 

of DNA methyltransferase to and hypomethylation of the promoter of GR110 (127). 

This suggests maternal undernutrition established an epigenetic mark promoting 

increased glucocorticoid receptor expression and thus glucocorticoid hypersensitivity. 
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Appetite Regulation 

 The hypothalamus is responsible for regulating appetite. In rodents, alterations 

in maternal nutrition induce changes in the hypothalamic circuitry as well as the 

expression and action of neuropeptides such as insulin, leptin, ghrelin, and 

neuropeptide Y, among others (142). Offspring exposed to maternal overnutrition in 

utero or during lactation had altered hypothalamic circuitry along with greater fat 

mass and glucose intolerance (63). 

 

Oxidative Stress 

 Oxidative stress is an imbalance between reactive oxygen species production 

and antioxidant defense capacity. Rodent pups that were growth-restricted in utero 

have higher levels of oxidative stress and impaired mitochondrial function in the 

pancreatic β-cell, liver, and skeletal muscle compared to control pups (157, 181, 184). 

The authors propose the downstream effects of mitochondrial dysfunction across 

these tissues contributed to the development of Type 2 diabetes. Specifically, low 

liver mitochondrial function in liver was associated with suppressed pyruvate 

oxidation, enhancing hepatic gluconeogenesis and glucose output (157), while the 

chronic reduction of ATP production in muscle reduced the need for glucose transport 

into the muscle, further contributing to hyperglycemia (181). 

 Oxidative stress may further affect genomic DNA (37); telomeres, in 

particular, are sensitive to oxidative damage and increased oxidative damage at these 

regions can induce telomere shortening and accelerated aging (207). This hypothesis 
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is supported by the fact that many of the phenotypes programmed by prenatal or 

early-life environment are classically associated with aging (e.g., obesity, glucose 

intolerance, cardiovascular disease risk).  

 

Sex-Specific Offspring Outcomes 

 Sexually dimorphic effects of developmental programming are evident across 

many models of developmental programming in both humans and animals (1); these 

effects have been observed for differences in body mass, body composition, and 

glucose tolerance in addition to many other phenotypes. The mechanisms responsible 

for sex-specific offspring effects are, at present, largely speculative. The placentas of 

female offspring may be more readily affected by prenatal insults (78, 137), though 

conversely, the adaptability of the female placenta may actually protect female 

offspring from environmental insult (190). Male and female offspring develop at 

different rates in utero as well as postnatally through sexual maturity, thus male and 

female offspring may be in a slightly different stage of development when exposed to 

an acute maternal influence. Male and female fetuses are also exposed to varying 

levels of sex-steroids in utero (13) and sex-steroid exposure can be further altered by 

intrauterine position in polytocous species such as mice (175). Lastly, epigenetic 

regulation varies between male and female embryos (70), which could result in 

altered epigenetic programming in offspring between sexes. 
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Exercise-Specific Potential Mechanisms  

 During pregnancy, skeletal muscle and adipose tissue become more insulin 

resistant (174), which increases maternal fat deposition and decreases maternal 

glucose uptake and utilization; these alterations maintain sufficient glucose 

availability for the developing fetus. Conversely, exercise decreases adipose tissue 

mass (195) and enhances insulin sensitivity in skeletal muscle (98). While greater 

insulin sensitivity is generally advantageous for health, elevated maternal insulin 

sensitivity during pregnancy has been associated with fetal growth restriction (35).  

 In a study of moderate-intensity (65% of predicated VO2max) exercise 

training in pregnant women, however, neither maternal insulin sensitivity nor any 

other parameters of glucose regulation were affected despite a sufficient training 

stimulus evidenced by improvements in submaximal exercise performance (100). 

These findings suggest the physiological response of insulin sensitivity to pregnancy 

supersedes the physiological response to exercise training observed in nonpregnant 

individuals, prioritizing fetal growth.  It is important to note that the absence of a 

chronic effect on insulin sensitivity does not exclude the possibility of exercise-

induced acute alterations in maternal insulin action and any subsequent effect on fetal 

growth or metabolism. 

 In humans, chronic exercise increases placental growth, size, and blood flow 

in early pregnancy (40, 41, 44). While greater placenta size and blood flow could 

improve glucose and oxygen delivery to the fetus, acute exercise bouts may cause 

intermittent reductions in blood flow to the placenta in favor of directing blood to 

maternal muscle and skin (40, 173). Fetal glucose uptake, however, was not affected 
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despite dramatically reduced placental perfusion in response to acute maternal 

hypoxia (194).  In addition to the effect of exercise on placental blood flow, however, 

single exercise bouts have been shown to temporarily reduce maternal circulating 

glucose and insulin (23, 39) and increase insulin sensitivity (213) following an 

exercise session in pregnant females. The combined effect of reduced placental blood 

flow along with lower maternal circulating glucose and insulin result in acute 

reductions in glucose delivery to the fetus; these reductions could impact the fetus, as 

maternal glucose levels signal the fetal pancreas to release insulin. Animal studies 

indicate that acute increases in glucose concentration stimulate fetal insulin secretion 

while chronic overexposure to glucose blunt glucose-stimulated fetal insulin secretion 

(36). Further, maternal glucose can modify fetal expression of glucose transporters; 

acute maternal hyperglycemia downregulated GLUT4 expression in fetal skeletal 

muscle and adipose tissue and was associated with insulin resistance in the offspring 

(3, 53). Intermittent reductions in nutrient delivery to the fetus may lead to lower 

average fetal insulin concentrations, which could downregulate fetoplacental growth 

(47). The lower expression levels of insulin-like growth factor I and II observed in 

cord blood from offspring of exercising women support this hypothesis (100). 

In addition to the many metabolic effects of exercise training, exercise is also 

associated with benefits related to cognition, mood, and anxiety (134). Similar to the 

cognitive effects of exercise in the general population, women who exercise report 

lower anxiety and more stable moods compared to sedentary women (49, 164). Lower 

circulating corticosterone levels have also been observed in pregnant rats exposed to 

wheel running compared to sedentary rats (205). Given the established negative 
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effects of maternal stress on human and animal offspring (139), reduced maternal 

stress through maternal exercise may also play a role in improving offspring health 

outcomes. 

 Exercise can also influence breast milk composition. In humans, moderate to 

intense exercise training during lactation does not affect lipid or lactose 

concentrations, but does increase protein content of breast milk (61) and milk volume 

(130). In rats, swim exercise did not alter milk protein or lipid content but did lower 

lactose concentrations (200). The use of animal models to study the effects of 

maternal exercise on postnatal nutrition, specifically, is limited given the immature 

stage of development at which rodent pups are born and begin nursing relative to 

humans.  

Multigenerational Inheritance of Offspring Phenotypes 

 Evidence from both human and animal studies supports the notion that the 

effects of developmental programming are not necessarily limited to the directly 

exposed offspring, but that they can be transmitted to subsequent generations. A birth 

cohort study from Sweden observed a link between paternal grandparents’ food 

availability during their slow growth study and their grandchildren’s subsequent 

longevity and risk of cardiovascular and metabolic disease (109, 110). Paternal 

grandfathers’ food supply was linked with their grandsons’ longevity and paternal 

grandmothers’ food supply was linked with their granddaughters’s longevity (155). 

Additionally, adult females who were exposed to the Dutch Hunger Winter in utero 

bore offspring who were more than twice as likely to develop cardiometabolic disease 

than the offspring of unexposed controls (152). In animal models, F0 maternal 
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undernutrition led to insulin insensitivity and glucose intolerance in F1 and F2 

offspring (107, 138, 214). Maternal overnutrition in the F0 generation also influenced 

insulin sensitivity in both F1 and F2 offspring (68). Only one study beyond those 

comprising this dissertation has examined the effect of maternal exercise over 

multiple generations of offspring. Pinto & Shetty (162) found maternal swimming led 

to low-birth-weight pups in F1 and F2 offspring; this observation was independent of 

whether the F1 dams were also exposed to exercise. 

 Three potential mechanisms have been postulated to explain multigenerational 

observations (64). First, the phenotype may be the result of an environmental stimulus 

that persists for multiple generations, programming the same phenotypes in each 

successive generation. An example of a persistent phenotype could be the chronic 

food insecurity or stress in some socioeconomic populations. Such a pattern appears 

heritable, but may be largely developmental within each generation of offspring 

(114). Unsurprisingly, rodent models of persistent maternal overnutrition (F0 and F1 

mothers fed the same high fat diet) produce F2 offspring that are particularly 

susceptible to obesity and hepatic steatosis (124).  

 The second proposed mechanism for multigenerational effects is that a single 

exposure in the F0 generation produces a multigenerational phenotype where the 

programming of the F1 fetus affects the adult F1 female’s physiology in such a way 

that the intrauterine environment she provides programs the F2 fetus. This process 

can lead to a similar phenotype with a potentially different cause. For example, F1 

offspring of a protein-restricted F0 dam were insulin sensitive but lacked sufficient 

insulin secretory capacity, resulting in a glucose intolerant phenotype (50). The 
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offspring of these F1 females were insulin-resistant and hyperinsulinemic, though the 

resultant phenotype of glucose intolerance was the same (138). These findings 

suggest unique developmental programming events in glucose/insulin metabolism in 

each generation. It is also important to remember that the primordial germ cells that 

will eventually give rise to the F2 generation are simultaneously exposed to any 

environmental insult to which the F0 female is exposed, so a direct effect of the F0 

environment on the F2 offspring cannot be ruled out.  

 According to Skinner (185), information about the parental exposure must be 

transmitted through the germline for true “transgenerational” inheritance. A 

transgenerational effect, therefore cannot be observed until F3 and beyond (though 

one may be present in earlier generations, particularly when only the father is 

exposed). It is also important to note that not all F3 effects are necessarily due to 

germline transmission, however; an F2 offspring expressing a disease phenotype as 

discussed in the previous mechanism above may influence her offspring outside of a 

germline effect. Until recently, developmental biologists believed that all epigenetic 

marks were completely reset in primordial germ cells and then reestablished during 

development, clouding the potential for an epigenetic mechanism of transgenerational 

inheritance; however, new research indicates that some (rare) DNA methylation 

marks escape the resetting process (92). Further, it is now known that approximately 

one percent of histone marks (71) as well as a number of RNA species are retained in 

differentiated mouse sperm (6). Together these retained features allow for the 

transmission of paternal epigenetic information to offspring DNA.   
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 In rats, F0 maternal protein restriction led to lower insulin secretory capacity 

in F1 offspring and insulin resistance in F2 offspring as well as in F3 males, though 

the severity of insulin resistance was diminished in the F3 generation (19). In another 

rodent study, a high fat F0 maternal diet resulted in increased body length and insulin 

resistance through the F1 and F2 generations of both maternal and paternal lines. 

While the F3 offspring were no longer insulin resistant, paternal line females still 

inherited greater body length (69). It is important to note, however, that other animal 

studies, despite demonstrating an F2 effect, have not found evidence of transmission 

to F3 offspring (65, 96).  

Summary 

 It is clear from the existing literature that alterations in parental environment 

can induce substantial effects on offspring metabolic health outcomes, though the 

specific mechanism(s) responsible for transmitting information about the parental 

environment into offspring phenotypes remain unclear. The influence of parental 

exercise as an environmental stimulus affecting offspring health is understudied 

relative to the wealth of published literature on the influence of parental nutritional 

interventions. Further, those studies that have examined the effect of parental exercise 

on offspring metabolic health lack support for the potential underlying mechanisms 

responsible for their observed alterations in metabolic phenotypes. The studies 

comprising this dissertation will further explore the influence of parental exercise on 

offspring metabolic health while investigating a potential role of altered basal 

metabolic gene expression in the development of offspring phenotypes. 
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Chapter 3: Sex-Specific Effects of Exercise Ancestry on Metabolic, 
Morphological, and Gene Expression Phenotypes in Multiple Generations of 
Mouse Offspring 

 
The following manuscript was published in Experimental Physiology 98(10):1469-84, 

2013. 
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Abstract 

Early life and pre-conception environmental stimuli can affect adult health-

related phenotypes. Exercise training is an environmental stimulus affecting many 

systems throughout the body and appears to alter offspring phenotypes. The aim of 

this study was to examine the influence of parental exercise training, or “exercise 

ancestry,” on morphological and metabolic phenotypes in two generations of mouse 

offspring. F0 C57BL/6 mice were exposed to voluntary exercise or sedentary lifestyle 

and bred with like-exposed mates to produce an F1 generation. F1 mice of both 

ancestries were sedentary and sacrificed at 8 wk or bred with littermates to produce 

an F2 generation, which was also sedentary and sacrificed at 8 wk. Small, but broad 

generation- and sex-specific effects of exercise ancestry were observed for body 

mass, fat and muscle mass, serum insulin, glucose tolerance, and muscle gene 

expression. F1 EX females were lighter than F1 SED females, and had lower absolute 

tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females 

compared to F1 SED females. F2 EX females had impaired glucose tolerance 

compared to F2 SED females. Analysis of skeletal muscle mRNA levels revealed 

several generation- and sex-specific differences in mRNA levels for multiple genes, 

especially those related to metabolic genes (e.g., F1 EX males had lower mRNA 

levels of Hk2, Ppard, Ppargc1α, Adipoq, and Scd1 than F1 SED males). These results 

provide preliminary evidence that parental exercise training can influence health-

related phenotypes in mouse offspring.  
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Introduction 

The beneficial effects of exercise training on metabolic health are well 

characterized.  Among other outcomes, exercise training leads to increased 

mitochondrial oxidative capacity, which may be protective against a variety of 

chronic diseases (201).  In addition, exercise training improves glucose homeostasis 

and fat oxidation (75, 101). In contrast, lack of exercise (or sedentary lifestyle) is 

associated with chronic disease development and all-cause mortality (144). 

Mounting evidence suggests early life (even pre-conception) events can affect 

adult health-related phenotypes, such as disease risk; this is referred to as the 

developmental origins of health and disease hypothesis (83). Maternal protein 

restriction results in offspring with lower birth weights and adult metabolic 

dysfunction (154). Excess maternal caloric intake also affects offspring health, 

leading to excess adiposity (15) as well as reduced muscle force production (14) in 

exposed offspring compared to mothers consuming a normal diet. The existing 

literature is primarily focused on maternal factors, however there is emerging 

evidence that dietary and other environmental factors can also influence offspring 

health through the paternal line (148).  

Exercise training is an environmental stimulus affecting many systems 

throughout the body, and it may be capable of inducing transgenerational 

modifications similar to these more commonly studied nutritional interventions. The 

clinical literature concerning the effect of maternal exercise on maternal, fetal, and 

child health has been reviewed elsewhere (111). In summary, exercise during 

pregnancy appears to have beneficial effects in the mother and fetus. Child health 
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outcomes are less clear, with studies reporting greater, lower, or no difference in body 

weight between neonates whose mothers did or did not exercise during pregnancy 

(111). In those studies that observed decreased body weight, the difference appeared 

to be due to a lower percent body fat (38). The impact of maternal exercise on adult 

health outcomes or the impact on multiple generations has not been studied in 

humans. Likewise in rodents, varying effects of maternal exercise have been 

observed. Maternal treadmill running has been linked to smaller litters in some (199) 

though not all (146) studies, but has not been associated with fetal or offspring body 

mass or length (146, 199). Similarly, maternal swimming has been associated with 

lower birth weight offspring in one (162) but not all studies (200). Two recent studies 

documented beneficial adaptations in body composition and glucose and insulin 

dynamics in the mature offspring of dams who had access to a voluntary running 

wheel during the perinatal period (33, 34). To the best of our knowledge, only one 

study has examined the impact of maternal exercise over multiple generations of 

offspring; there, maternal swimming led to low-birth-weight pups in the first 

generation. This growth retardation was also observed in a second generation of rat 

pups born to the offspring of exercised dams, regardless of whether the first 

generation offspring were also exposed to exercise (162). Whether these observed 

changes in body size and/or composition are associated with metabolic health or 

function has not been elucidated. Additionally, the potential impact of paternal 

exercise has not been examined.  

Thus, we sought to determine how body morphology, metabolic phenotypes 

and skeletal muscle gene expression are affected by exercise ancestry in multiple 
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generations of mouse offspring. Our aims were 1: determine body, fat, organ and 

skeletal muscle mass differences, 2: examine metabolic phenotypes such as glucose 

tolerance and circulating insulin and lipids, and 3: determine gene expression 

differences by skeletal muscle microarray and targeted gene expression analyses. We 

hypothesized that multiple generations of offspring from exercise ancestry would 

exhibit advantageous morphological, metabolic and gene expression phenotypes 

compared to offspring from a sedentary ancestry. 

 

Methods 

Ethical Approval 

 All animal procedures were performed in accordance with the National 

Institutes of Health guidelines and were approved by the Institutional Animal Care 

and Use Committee at the University of Maryland (Appendix A). 

 

Animal Procedures 

We performed a breeding experiment including three generations of animals 

that were either exposed to exercise or kept sedentary in the F0 generation. An 

overview of our experimental design and timeline is provided in Figure 3.1. A 

standard diet (Purina Prolab RMH 3000, 60% carbohydrate, 14% fat, 26% protein) 

and water were provided ad libitum for all generations in all conditions. 20 male and 

20 virgin female 5-wk old C57BL/6 mice were purchased from Jackson Laboratories 

(Bar Harbor, ME); these mice made up the F0 generation. C57BL/6 is an inbred strain 

of mouse that was chosen based on their propensity to perform voluntary wheel 
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running, their common use in research studies of exercise, nutrition, metabolism, and 

gene expression, and their fecundity. Until 8 weeks of age, these animals were kept 

sedentary (i.e., unexposed to voluntary running wheel; standard cage conditions) and 

group-housed with same-sex mice.  

At 8 weeks of age, each sex was randomly split into two condition groups: 

exercise (EX) and sedentary (SED) (n=10 per group). F0 animals were placed into 

standard cages (F0 SED) or in cages with computer-monitored voluntary running 

wheels (F0 EX). F0 mice were housed individually in their respective cages for 10 

weeks. Following this intervention males and females from like conditions (EX or 

SED) were randomly paired for mating. The F0 EX breeding pairs had continued 

access to the running wheel throughout the breeding period, however running activity 

could not be monitored during the breeding period as there were two mice in each 

cage. Males were removed after pregnancy was visually confirmed by abdominal 

distention, vaginal plug and/or and body weight changes. After removal, F0 males 

had continued access to the running wheel (EX) or SED condition until sacrifice at 20 

weeks (a total of 12 weeks of wheel access). F0 females had continued access to the 

running wheel (EX) or SED condition during pregnancy and lactation and were 

sacrificed at 25 weeks after the F1 mice were weaned (a total of 17 weeks of wheel 

access). Eight of ten breeding pairs in each condition produced viable litters. All of 

the F0 animals that underwent the intervention period (EX or SED condition) were 

included in the F0 analyses. The pups resulting from this original mating were 

designated as F1. A random group of 10 male and 10 female F1 pups from each 

condition (EX and SED) were designated as F1 breeders and were mated at 8 weeks 
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with F1 littermates to produce the F2 generation. Of the 10 breeding pairs per 

condition, 7 F1 EX and 9 F1 SED pairs produced viable litters. The remaining F1 

pups were glucose tolerance tested and sacrificed at 8 weeks. F2 pups from each 

condition were glucose tolerance tested and sacrificed at 8 weeks. Body weight was 

monitored weekly for all animals. F1 and F2 offspring remained sedentary throughout 

the experiment. Following weaning at 21-25 days, all F1 and F2 offspring were 

group-housed with same-sex littermates. We used 1-7 offspring per litter for the 8-

week analyses. 

 

Intraperitoneal Glucose Tolerance Test (IPGTT) 

Glucose tolerance tests were performed on all F0, F1, and F2 mice at 8 (F1 

and F2 generations), 20 (F0 males), or 25 (F0 females) weeks. For F0 EX mice, the 

voluntary running wheels were locked 36 hours prior to the glucose tolerance test to 

limit the effect of acute exercise. All animals were fasted overnight (12 hr) prior to 

glucose tolerance testing. Baseline blood glucose measurements were made and then 

each mouse was injected intraperitoneally with 2.0 mg of D-glucose (Sigma-Aldrich, 

St. Louis, MO) per gram of body mass. Blood glucose was measured 30, 60, 90, and 

120 minutes after injection in all animals; blood glucose was also measured 15 min 

after injection in F2 males and females. Area under the curve for concentration vs. 

time was calculated using the linear trapezoidal rule. Blood glucose measurements 

were made using a rodent-specific glucometer (AlphaTRAK; Abbott Laboratories, 

Abbott Park, IL) on blood removed from a tail snip. Following the glucose tolerance 

test, wheels were unlocked and animals were returned to ad libitum food and water. 



 

 44 

Tissue & Serum Collection 

Animals were euthanized 2-5 days following the glucose tolerance test. To 

limit the effects of acute exercise and feeding, running wheels were locked 24 hours 

and animals were fasted for 4 hours prior to euthanasia. Euthanasia was performed 

under isoflurance anesthesia; the method of euthanasia was exsanguination by cardiac 

puncture followed by removal of the heart. Heart, liver, omental fat, cerebellum, 

tibialis anterior (TA), extensor digitorum longus (EDL), soleus, plantaris, 

gastrocnemius, and quadriceps muscles were dissected, weighed, and flash frozen in 

liquid nitrogen and then stored at -80°C until analysis. Approximately 1 mL of blood 

was obtained from a cardiac puncture and allowed to coagulate. The coagulated blood 

was centrifuged at 1750 x g for 15 minutes to obtain serum. Serum was removed to a 

fresh tube and stored at -80°C until analysis. 

 

Serum Measures 

Serum triglyceride and glycerol were measured using the Serum Triglyceride 

Determination Kit (TR0100; Sigma-Aldrich, St. Louis, MO). Serum insulin was 

measured following a 4-hour fast using a mouse-specific ELISA kit (80-INSMS-E01, 

ALPCO Diagnostics, Salem, NH).  

 

Tissue Preparation 

The gastrocnemius muscle was chosen for analysis because it is a mixed-fiber 

type muscle (9) and therefore may be more representative of the average mouse 

skeletal muscle than a predominantly fast or slow muscle . Whole gastrocnemius 
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muscle was powdered in liquid nitrogen. Total RNA was isolated with Trizol reagent 

(15596-026, Life Technologies, Grand Island, NY), DNase-treated, and quantified 

with the NanoDrop (Bio-Rad, Hercules, CA) spectrophotometer. Reverse 

transcription was performed with 1µg of total RNA with the High-Capacity cDNA 

RT kit (4368813, Life Technologies, Grand Island, NY).  

 

Microarray  

Genome-wide analyses of gene expression were performed on subsets of F1 

and F2 males. Total RNA was extracted from powdered gastrocnemius muscle using 

the RNeasy Fibrous Tissue Mini Kit (Qiagen, Germantown, MD). All samples were 

diluted to 98 ng/µl and pooled by generation and condition (5 pooled samples per 

array). A total of 8 arrays were performed (2 arrays each for F1 EX males, F1 SED 

males, F2 EX males, and F2 SED males).  Microarray experiments were performed as 

two-color experiments using GeneChip Mouse Exon 1.0 ST Array chips (Affymetrix, 

Santa Clara, CA). The microarray gene expression data were imported from the probe 

cell intensity CEL files and the Affymetrix Expression Console software was used to 

calculate the summary measure of the probe level data. These microarray data have 

been deposited in the NCBI Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) website and can be accessed through GEO Series 

accession number GSE40469. 
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Gene Expression 

Real-time quantitative PCR was used to assess the gene expression level of 

adiponectin (Adipoq), cell death-inducing DFFA-like effector c (Cidec), and stearoyl-

Coenzyme A desaturase 1 (Scd1) (n=10-20 per group). Primer and probe sequences 

were designed for each gene’s mRNA sequence using PrimeTime qPCR Assay 

designer (IDT). 18S rRNA was used as an expression control for both real-time and 

gel-based PCR and did not differ between treatment groups. RT-PCR was used to 

measure the expression of metabolic genes (peroxisome proliferator-activated 

receptor gamma, coactivator 1 alpha, Ppargc1a; pyruvate dehydrogenase kinase, 

isozyme 4, Pdk4; peroxisome proliferator activated receptor alpha, delta, and gamma, 

Ppara, Ppard, and Pparg, aminolevulinate, delta-, synthase 1, Alas1; hexokinase 2, 

Hk2; cytochrome c, somatic, Cycs; citrate synthase, Cs; and cytochrome c oxidase 

subunit I, Cox1) (n=7-10 per group). Primer and probe sequences and PCR conditions 

are available upon request. Products were visualized on 1.5% agarose gels using 

ethidium bromide. qPCR data were normalized to 18S using the -∆Ct method (176) 

and expressed as fold induction (2-∆Ct) of mRNA expression compared to the 

corresponding EX group (1.0-fold induction). Relative band intensities from PCR 

gels were be analyzed with NIH ImageJ software and normalized to 18s. Values are 

shown as means ± standard error.  

 

Statistics 

Two-tailed t-tests were used to compare body and tissue masses, serum 

measures, and IPGTT AUC between EX and SED groups within each sex and 
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generation. A repeated-measures ANOVA was used to compare the IPGTT response 

between EX and SED groups within each sex and generation. One- (F1 male RT-

qPCR analysis) and two- (all other analyses) tailed t-tests were used to compare gene 

expression between EX and SED groups within each sex and generation using SPSS 

version 18. Statistical significance was accepted at p < 0.05. A 2-stage ANOVA 

procedure was carried out on the 4 arrays of the F1 generation and F2 generations, 

respectively. Details about this procedure can be found in Lee (121). Briefly, in the 

first-stage ANOVA, a one-way ANOVA model for EX vs. SED ancestry was fitted 

on the entire dataset, resulting in normalized estimates of gene expression centered by 

the ancestry factor. These normalized values were used in a second-stage ANOVA to 

identify which probe sets were significantly differentially expressed between EX and 

SED ancestries.  

 

Results 

During the pre-breeding intervention period, F0 EX males ran an average of 

6558 ± 503 m x 24 hr-1 while F0 EX females ran a significantly greater (p < 0.05) 

average of 8378 ± 533 m x 24 hr-1. Running behavior was only measured prior to 

mating, though the F0 EX mice had continued access to the voluntary running wheel 

throughout breeding, pregnancy and lactation. To examine the effects of parental 

exercise, we characterized the body mass, various tissue masses, glucose tolerance, 

and serum insulin, glycerol, and triglyceride levels in the original parent generation 

(F0) and F1 and F2 offspring from EX and SED ancestries. 
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F0 generation 

Males:  After the intervention period, F0 EX males weighed significantly less 

than F0 SED males (p=0.024; Table 3.1). F0 EX males also had significantly less 

omental fat mass compared to SED males (p=0.003; Table 3.1), a difference that was 

maintained after normalizing to body mass (p=0.009; Table 3.2). Additionally, when 

normalized to body mass, F0 EX males had greater EDL mass and lower omental fat 

mass compared to F0 SED males (p=0.021 and p=0.001, respectively; Table 3.2). 

There were no other differences in organ or tissue mass in F0 males.  Baseline blood 

glucose and glucose tolerance was not affected by the EX intervention in F0 males 

(Figure 3.2A). 

Females:  F0 female body mass was not affected by the EX intervention, but 

EX females had significantly greater soleus mass and normalized soleus mass than 

SED females (p=0.001 for both; Tables 3.1 & 3.2). Baseline blood glucose 

concentration was not affected by the EX intervention in females. However, glucose 

tolerance tended to be better (p=0.051, 16.4%) in EX compared to SED females as 

indicated by AUC and EX females had significantly lower (p=0.001) blood glucose 

60 minutes following the glucose injection (Figure 3.2B). 

 

F1 generation 

 The F1 offspring sacrificed at 8 wk of age for analysis was comprised of 

20 EX males, 17 SED males, 12 EX females, and 18 SED females. F1 litter size 

ranged from 3-9 (EX) and 4-9 (SED). The average litter size was not affected by EX 

(6.5 offspring/litter for F1 EX and 6.9 offspring/litter for F1 SED, p>0.05). 
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Males: There were no differences in body mass in F1 male offspring at 8 

weeks. F1 males from EX parents had lower soleus, EDL, and quadriceps masses (all 

p < 0.05; Table 3.1) than F1 males from SED parents, though only EDL mass 

remained significantly lower in F1 EX males after normalizing to body mass 

(p=0.015, Table 3.2). When normalized to body mass, F1 EX males had greater heart 

mass compared to F1 SED males (p=0.01, Table 3.2). No differences were observed 

in baseline blood glucose concentration, glucose tolerance (Figure 3.2C) or serum 

insulin, free glycerol, and triglyceride (Table 3.3) between EX and SED F1 males. 

Females: F1 female offspring from EX parents were significantly lighter (5%) 

at 8 weeks (p=0.001; Table 3.1) compared to offspring from SED parents. F1 females 

from EX parents also had lower TA and omental fat masses compared to F1 females 

from SED parents (p < 0.05; Table 3.1). After normalizing to body mass, the 

difference in TA mass was no longer significant, but omental fat mass remained 

lower in F1 EX females (p=0.017; Table 3.2). No differences in baseline blood 

glucose concentration or glucose tolerance were observed between EX and SED in F1 

females (Figure 3.2D), but serum insulin was significantly higher (55%) in F1 EX 

females compared to SED females (p=0.008; Table 3.3). Serum free glycerol and 

total triglyceride concentration were not affected by EX ancestry in F1 females (Table 

3.3). 

 

F2 generation 

The F2 generation was comprised of 18 EX males, 18 SED males, 14 EX 

females, and 23 SED females. F2 litter size ranged from 3-7 (EX) and from 1-7 
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(SED). The average litter size was not affected by EX ancestry (4.6 F2 offspring for 

both F2 EX and F2 SED, p>0.05). 

Males: At 8 weeks, no differences in absolute or normalized body, organ, or 

muscle weights were observed between F2 male offspring with EX and SED 

ancestries (Tables 3.1 & 3.2). No differences in baseline blood glucose concentration 

or glucose tolerance were observed in F2 male offspring between EX and SED 

ancestries (Figure 3.2E). No differences in serum insulin, free glycerol or 

triglycerides were observed between EX and SED F2 male offspring (Table 3.3) 

Females: There were no differences in body, organ, or muscle weights 

between F2 EX and SED female offspring (Table 3.1), however after normalizing to 

body mass, F2 EX females had lower soleus, EDL, and omental fat mass (p=0.003, 

0.015, and 0.048, respectively; Table 3.2). Baseline blood glucose concentration did 

not vary between EX and SED F2 female offspring, but EX offspring exhibited 

slightly impaired glucose tolerance compared to SED offspring as indicated by a 

larger (14%) AUC (P=0.015; Figure 3.2F). Additionally, EX female offspring had 

significantly higher blood glucose concentration at both 60 and 120 minutes after the 

glucose injection (p=0.049 and <0.001, respectively). There were no differences in 

serum insulin, free glycerol, or triglyceride between EX and SED F2 offspring (Table 

3.3). 

 

Gene Expression Analyses 

 In order to broadly assess the impact of EX ancestry on muscle gene 

expression, we performed a genome-wide gene expression microarray on 
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gastrocnemius muscle of F1 and F2 males. In F1 males, 86 targets were upregulated 

and 23 targets were downregulated with EX ancestry (see Supplementary Figure 3.1, 

Supplementary Table 3.1). In F2 males, 142 targets were upregulated and 35 targets 

were downregulated with EX ancestry (see Supplementary Figure 3.2, Supplementary 

Table 3.2). Examination of the differentially regulated genes revealed three genes that 

have been linked to lipid metabolism: Adipoq, Cidec, and Scd1 were all 

downregulated in F1 EX males. We used real-time qPCR analysis of these genes to 

validate the microarray findings and further examine the expression of these genes in 

our remaining groups. 

 Real-time qPCR analysis confirmed the lower gastrocnemius expression of 

Adipoq and Scd1 in F1 EX males (p < 0.05, Figure 3.4C) and demonstrated a 

tendency for lower expression of Cidec (p = 0.06, Figure 3.4C). We also examined 

the expression level of these genes in F0 and F2 males and found lower expression of 

Scd1 in F2 males with EX ancestry compared to F2 males of SED ancestry (p=0.07; 

Figure 3.4E), but no other differences. We also measured the gastrocnemius 

expression levels of these genes in all three generations of females. Interestingly, 

many of the patterns observed in the males were reversed in females. In F0 females, 

there was a tendency for higher expression of Adipoq and Cidec in the EX group 

(p=0.06-0.09; Figure 3.4B). Adipoq expression was significantly higher in F1 EX 

females and Scd1 expression was significantly higher in F2 EX females (Figure 3.4F). 

 To further investigate processes that might contribute to some of the observed 

body and tissue mass and glucose metabolism differences, we also performed targeted 

gene expression analyses in gastrocnemius muscle. We examined a number of genes 
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that have been previously associated with acute exercise, exercise training responses 

or other metabolic health outcomes (122, 140). These included Alas1, Cox1, Cycs, Cs, 

Hk2, Pdk4, Ppara, Ppard, Pparg, and Ppargc1a. No significant differences in 

expression of any of these genes were observed in F0 males. In F0 females, Pdk4 

expression was significantly lower in exercised animals (Figure 3.3A). There was a 

tendency for Pparg expression to be higher in exercised females, but this difference 

did not reach statistical significance (p=0.07; Figure 3.3A). No expression differences 

were observed for any of these genes in F1 females. F1 males with EX ancestry had 

significantly lower expression levels of Hk2, Ppard, and Ppargc1a (all p<0.05; 

Figure 3.3B). Additionally, F1 males with EX ancestry tended to have lower 

expression levels of Cs, Ppara, and Alas1, though these differences did not reach 

statistical significance (p=0.06-0.09; Figure 3.3B). F2 males with EX ancestry had 

significantly higher expression levels of Cycs and significantly lower expression 

levels of Cox1 and Pparg (all p<0.05; Figure 3.2C). F2 EX females had significantly 

lower expression levels of Pparγ and significantly higher expression levels of 

Ppargc1a (all p<0.05; Figure 3.2D). In addition, F2 females with EX ancestry tended 

to have higher expression levels of Alas1, Hk2, and Ppard, though these differences 

did not reach statistical significance (p=0.06-0.09; Figure 3.3D). 

 

Discussion 

In this study, we sought to determine the effect of EX ancestry on the 

morphological and metabolic phenotypes of two generations of offspring. This study 

investigated the influence of maternal and paternal EX ancestry on anatomical 
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characteristics and metabolic phenotypes, including skeletal muscle gene expression. 

Our results indicate broad effects of EX ancestry on various offspring phenotypes, 

including body mass, fat and muscle mass, fasting serum insulin, and glucose 

tolerance. Further, we observed effects of EX ancestry on the expression of several 

gastrocnemius muscle mRNAs through two generations of offspring. 

 Following the EX training period, F0 EX males were lighter with less omental 

fat mass and greater normalized muscle mass than SED males. F0 EX females had 

greater soleus mass than SED females but did not differ in fat or body mass. Other 

researchers have also observed lower body mass in male, but not female mice after a 

period of voluntary exercise (55), though this is not universal as some have observed 

decreased body mass in both sexes (193) or no differences in either sex (4). There 

were no differences in glucose tolerance in males following the exercise intervention 

and a tendency for improved glucose tolerance in exercised females. Though forced 

exercise can induce improvements in glucose tolerance in mice (106), no other 

studies that we are aware of have observed an effect of voluntary exercise on glucose 

tolerance in non-obese mice on standard chow. Our voluntary wheel running 

approach alleviates the induction of systemic handling stress seen with forced running 

or swimming, however it does not allow us to control exercise volume or intensity. 

We anticipated that voluntary running wheel would be sufficient to produce 

significant adaptations as measurable changes in muscle fiber type content have been 

observed in comparable studies in the gastrocnemius muscle in the same mouse strain 

as used here (4).  
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F1 females with EX ancestry were lighter than those with SED ancestry at 8 

weeks of age; no other differences in offspring body mass were observed. Maternal 

exercise training has previously led to offspring with lower (162) or not different (33) 

body mass. Our study does not allow us to identify a specific mechanism leading to 

lower body mass in F1 EX females because F0 dams were exposed to exercise from 

pre-conception through gestation and lactation (e.g. epigenetic, in utereo, or 

lactational mechanisms). There does not appear to be a transgenerational effect (e.g., 

F2 offspring were unaffected) of parental exercise on body mass at 8 weeks of age in 

our study. Only one other study we are aware of has examined the effect of maternal 

exercise on offspring mass over multiple generations. Pinto and Shetty (162) found 

EX ancestry led to decreased body mass in both F1 and F2 offspring; however, the 

exercise intervention in that study was forced swimming, which is often questioned as 

a form of exercise in a rodent (10) and may have induced an additional maternal 

stress independent of the exercise stimulus. Maternal stress alone has induced both 

higher (178) and lower (153) offspring body mass in other studies.  

Although we did not measure body composition, we examined individual 

tissue masses to identify potential differences in organ mass in the offspring. F1 

males with EX parents had lower muscle masses than F1 males from SED parents, 

and F1 females from EX parents had lower TA and omental fat mass compared to F1 

females from SED parents. Recent evidence suggests that the maternal environment 

can have significant effects on developmental partitioning of muscle, adipose tissue, 

and connective tissue precursors (67); however, we are unable to confirm if this 

would explain our differences. Interestingly, F1 EX males had lower muscle masses 
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compared to F1 SED males, however, there were no corresponding differences in 

omental fat pad mass. Carter et al. (33) observed lower fat mass and higher lean mass 

percentages in mature (39 wk) male, but not female, offspring of exercised dams, 

while in a similar study, no body composition differences were observed (34). 

Though these results are not directly comparable due to the difference in offspring 

age and method of body composition assessment, it is interesting that we observed a 

contrasting effect, with lower fat mass in only female offspring. In the F2 offspring, 

EX females had lower relative muscle and omental fat pad mass compared to F2 SED 

females. The differential effects of EX ancestry on offspring body and tissue mass 

between sexes and generations suggest the observed differences may be induced 

through sex- and/or generation-specific mechanisms. 

 Glucose tolerance was affected only in F2 female offspring where those with 

EX ancestry had slightly reduced glucose tolerance than those with SED ancestry. It 

is possible that the greater fasting insulin concentration observed in F1 EX females 

could have led to impaired glucose disposal and thus hyperglycemia during 

pregnancy if insulin resistance developed in the F1 EX females. Mild maternal 

hyperglycemia during pregnancy has been linked with reduced glucose tolerance in 

rat offspring (79, 80) Two recent studies have examined the influence of maternal 

exercise on glucose tolerance in healthy animals. In both, offspring from exercised 

dams had improved glucose tolerance as well as insulin sensitivity (33, 34). It is 

critical to note, however, that these improvements were not observed until offspring 

were 31-32 weeks (33) or 10 months of age (34). Together with our results this 
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indicates that while the positive effects of exercise training on glucose tolerance may 

be transmittable to offspring, they are not yet apparent at a young age.    

The effects of EX and EX ancestry on gene expression were examined by a 

combination of global mRNA profiling and targeted gene expression analysis of 

gastrocnemius muscle.  Our study is the first to examine the effect of maternal 

exercise or exercise ancestry on skeletal muscle gene expression. Our microarray 

approach revealed a number of mRNA transcripts were differentially expressed as a 

function of EX ancestry in both generations, with a greater number of transcripts 

affected in the F2 compared to the F1 generation. Surprisingly, there was no overlap 

in differentially expressed transcripts between F1 and F2 offspring, again highlighting 

the difference between in utero versus transgenerational effects. Three of the 

differentially regulated transcripts (Adipoq, Cidec, and Scd1) have previously been 

associated with lipid metabolism and specifically intramuscular lipogenesis. Adipoq 

codes for the adipokine adiponectin, that when secreted from adipocytes promotes 

fatty acid oxidation and enhances insulin sensitivity (198) in muscle. Adipoq mRNA 

is expressed in muscle (58, 128), but it is unclear whether the resultant protein has 

similar effects to circulating adiponectin. Adipoq mRNA in muscle is associated with 

greater intramuscular fat (208) and lipotoxicity (59), but also enhanced insulin 

sensitivity (128). Cidec codes for cell death-inducing DFFA-like effector c, which 

promotes apoptosis (125) and is upregulated in adipose tissue during adipogenesis 

(166). In muscle, Cidec mRNA expression is associated with de novo lipogenesis 

(209). Scd1 codes for steroyl-CoA desaturase-1, which enzymatically regulates the 

formation of monounsaturated fatty acids within the cell (113). Scd1 mRNA 
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expression in muscle is associated with the increased intramuscular triglyceride 

concentrations observed with both obesity (103) and exercise training (62). These 

lipogenic transcripts were downregulated in F1 EX male offspring, with a similar 

pattern observed in the F0 and F2 generations. In females, we found the opposite 

result, an overall tendency towards increased expression of Adipoq, Cidec, and Scd1 

in EX / EX ancestry females. Recalling that F1 EX females had less omental fat than 

F1 SED ancestry females while there were no differences in fat mass in male 

offspring, we speculate that EX ancestry females preferentially decreased adipose 

tissue lipid storage compared to SED ancestry females while EX ancestry males 

preferentially decreased ectopic (including muscle) lipid storage.  

In addition to the targets identified by the microarray, we examined a number 

of a priori metabolic gene expression targets. Direct exposure to EX did not lead to 

differences in basal expression of the a priori metabolic genes in F0 males and only 

Pdk4 expression was significantly lower in EX females. Although altered expression 

levels of the selected genes have been observed following exercise in previous studies 

(165, 177), the lack of expression differences in our study is not surprising because 

sacrifice occurred 24 hours after the last bout of wheel running and in humans, the 

exercise-induced increase in transcription of some metabolic genes is transient and 

expression returns to baseline by 24 hours post-exercise (160). In F1 offpring, EX 

males tended to have lower expression levels of Cs, Ppara, and Alas1. If these gene 

expression differences reflect a more extensive effect of EX ancestry on skeletal 

muscle gene expression then perhaps the morphological differences seen in the F1 EX 

males (smaller soleus, EDL, and quadriceps muscle mass) can be partially explained 
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by an impact of EX ancestry on skeletal muscle gene expression and tissue 

development. Interestingly, there were more significant effects of EX ancestry on 

metabolic gene expression in F2 offspring than F1 offspring. The magnitude of the 

difference between EX and SED ancestries, however, was smaller, which may 

explain why the differences in gene expression were not associated with gross 

morphological changes in the F2 generation. Alternatively, EX may uniquely affect 

skeletal muscle gene expression in the F2 offspring through the germ line whereas the 

gross morphological effects observed in the F1 generation may be related to a direct 

influence of exercise during the F1 in utero period. 

Altered maternal nutrition and other stressors have been associated with 

epigenetic changes in a number of genes and tissues, however in many of these 

studies the associated physiological effects of these gene changes do not present until 

later in life or following a metabolic challenge such as a high fat diet (206). Similarly, 

the lack of overt physiological phenotype observed in the present study may be 

related to the young age (8 wk) of our animals and/or their exposure to only typical 

cage conditions and diet. The body composition differences between offspring of 

sedentary and exercised dams observed by Carter et al. (33) were observed at 39-40 

weeks of age. Further, the authors note that the observed differences in glucose 

tolerance were not detectable until 7 months of age (33). Thus we believe future 

studies should investigate the effects of EX ancestry on metabolic phenotypes such as 

glucose tolerance in animals following aging or a metabolic challenge.  

  We observed differences in gene expression patterns between males and 

females in multiple offspring groups. For several genes, the expression pattern was 
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inverted between F1 males and F2 females, with Alas1, Hk2, Ppard, and Ppargc1a all 

lower in EX F1 male compared to SED while they were higher in F2 EX females 

compared to SED. Overall, EX ancestry led to primarily greater mRNA expression in 

female offspring and lower mRNA expression in male offspring. These patterns along 

with the body and tissue weight results demonstrate an apparent sex-specific effect of 

EX ancestry on offspring outcomes. Sex-specific environmental influences have been 

observed previously for offspring phenotypes in both humans (133, 191) and rodents 

(33, 68, 204). In humans, prenatal exposure to famine was associated with increased 

BMI (191) and blood lipids (133) in women, but not men. In mice, in utero protein 

restriction influenced the development of metabolic dysfunction in female, but not 

male offspring (204). Additionally, maternal high fat diet induced greater body length 

in both sexes of second-generation offspring, but higher Igf1 levels in females only 

(68). With regard to exercise, voluntary maternal wheel running in the perinatal 

period led to higher lean and lower fat mass percentages in mature male, but not 

female offspring (32, 33). One proposed mechanism for these sex-dependent 

observations is a difference in placental function between male and female fetuses. 

Chronic maternal stress in mice led to sex-specific differences in placenta gene 

expression where male placentas had greater expression levels of genes important to 

growth while female placentas were not affected (147). Several possible mechanisms 

could lead to this sex-specificity, such as an effect of the environmental stimulus on 

early development (gametogenesis or embryonic sexual differentiation). Alternately, 

the environment could interact with the offspring’s own sex chromosomes or 

hormones later in development. 
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A critical difference between our study and the other studies of maternal 

exercise and offspring phenotypes is the inbred status of the mice used in our study. 

The rats used in the Pinto and Shetty (162) study and the mice and rats used in the 

Carter et al. (33, 34) studies were both from outbred lines, while we studied C57Bl/6 

mice, an inbred strain. Though there are additional confounding factors, the effect of 

maternal exercise in outbred lines appears to be more dramatic than the effect of 

exercise ancestry observed in the present study. Interestingly, other environmentally-

induced transgenerational effects on offspring health have also been shown to be 

dependent on the inbred vs. outbred status of the rodent line used for the experiment 

(89, 186). Guerrero-Bosagna et al. (89) found maternal vinclozolin treatment led to 

increased adult onset disease in an outbred, but not an inbred mouse model. This is 

the only study we are aware of to directly compare transgenerational phenotypes in an 

inbred and outbred mouse strain within the same study. The mechanisms contributing 

to this differential response between inbred and outbred lines of rodents have not yet 

been identified. However, we speculate that the stress of continued inbreeding may 

modify the epigenetic mechanisms responsible for manifestation of environmentally 

induced phenotypic changes, thus making the inbred organism less susceptible to 

epigenetic reprogramming of the germ line in response to environmental factors. 

Together these studies suggest a critical role of rodent strain when examining the role 

of the environment in modifying transgenerational phenotypes.  

We would like to acknowledge some limitations to our study related to the 

breeding and pre-weaning methodology. The litter sizes reported reflect those 

offspring that were weaned from each breeding pair. We did not collect information 
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on litter size, survival or body mass prior to weaning. Additionally, we recognize that 

the variability in litter size and weaning time could have affected early offspring 

nutrition. Overnutrition induced by culling litters during lactation leads to neonatal 

overgrowth and can induce the development of obesity and glucose intolerance (156) 

as well as a number of other cardiometabolic risk factors (91). As noted previously, 1-

7 offspring per litter were used for analysis in this study. The use of multiple 

offspring per litter was unavoidable due to sample size limitations. However, it is 

important to note that the use of multiple offspring per litter could confound the 

findings due to the “litter effect”, where pups within litters are more similar to one 

another than pups between litters (99). 

In summary, EX ancestry affects various offspring phenotypes across two 

generations, but in a generation- and sex-dependent manner. We have observed 

effects at both the whole-body (body and tissue mass and glucose tolerance) and 

skeletal muscle gene expression levels, which together reflect a broad impact of EX 

ancestry. This study is the first to examine the effect of exercise ancestry on a broad 

range of metabolic phenotypes, however this study is descriptive in nature and the 

specific mechanisms responsible for the observed phenotypes were not elucidated. 

Future studies should examine the potential influences of maternal vs. paternal 

exercise, and their cooperative effects. Similarly, additional work should isolate the 

EX exposure to discrete phases (i.e. pre-conception, gestation, lactation) to provide 

further insight into potential mechanisms.  
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Tables 

Table 3.1. Mean body, organ, and muscle mass in exercise and sedentary 
ancestry groups for males and females of each generation (F0, F1, and F2). 
    Males  Females 
F0 generation EX (N=10) SED (N=10)  EX (N=10) SED (N=10) 
 Body Mass (g) 29.1 ± 0.1 31.1 ± 0.7*  27.4 ± 0.7 26.7 ± 0.5 
 Heart (mg) 143.6 ± 4.0 145.7± 4.3  157.7 ± 9.2 155.6 ± 6.3 
 Cerebellum (mg) 51.9  ± 3.8 53.2 ± 2.7  64.5 ± 3.7 63.2 ± 3.3 
 Gastrocnemius (mg) 144.7 ± 3.6 140.6 ± 2.9  117.1 ± 3.4 111.1 ± 3.9 
 Soleus (mg) 11.6 ± 0.4 10.9 ±0.7  9.5 ± 0.3 7.1 ± 0.4* 
 EDL (mg) 16.6 ± 0.7 14.3 ± 0.9  7.5 ± 0.8 8.5 ± 0.4 
 Plantaris (mg) 21.5 ± 0.6 21.2 ± 1.1  16.2 ± 1.0 17.2 ± 1.8 
 TA (mg) 55.8 ± 1.8 55.3 ± 1.2  39.3 ± 1.2 39.2 ± 1.8 
 Quadriceps (mg) 216.8 ± 7.6 212.2 ± 3.5  124.6 ± 6.3 116.9 ± 36.2 
 Omental Fat (mg) 608.9 ± 34.7 929.8 ± 78.0*  387.1 ± 49.9 346.6 ± 44.1 
 Liver (mg) 1042.9 ± 34.8 1274.9 ± 52.5  1238.8 ± 33.1 1241.9 ± 76.1 
       
F1 generation EX (N=20) SED (N=17)  EX (N=12) SED (N=16) 
 Body Mass (g) 22.3 ± 0.2 22.5 ± 0.3  17.5 ± 0.2 19.0 ± 0.3* 
 Heart (mg) 107.6 ± 1.8 103.3 ± 1.7  92.2 ± 1.4 96.0 ± 2.6 
 Cerebellum (mg) 51.4 ± 2.0 51.5 ± 2.9  51.0 ± 2.8 53.4 ± 1.7 
 Gastrocnemius (mg) 108.2 ± 1.8 107.8 ± 1.4  77.7 ± 2.4 82.5 ± 2.3 
 Soleus (mg) 6.6 ± 0.2 7.3 ± 0.3*  5.9 ± 0.5 6.0 ± 0.2 
 EDL (mg) 8.9 ± 0.4 12.4 ± 1.4*  10.7 ± 2.5 9.5 ± 1.0 
 Plantaris (mg) 14.3 ± 0.4 14.2 ± 0.05  10.3 ± 0.5 11.4 ± 0.5 
 TA (mg) 39.0 ± 0.8 41.2 ± 0.9  29.8 ± 0.5 33.0 ± 0.8* 
 Quadriceps (mg) 112.1 ± 6.8 135.4 ± 8.8*  98.3 ± 6.3 98.5 ± 6.2 
 Omental Fat (mg) 257.6 ± 8.3 274.9 ± 15.6  111.3 ± 7.6 154.7 ± 11.2* 
 Liver (mg) 965.5 ± 17.8 973.3 ± 32.3  770.0 ± 22.0 799.3 ± 24.6 
       
F2 generation EX (N=18) SED (N=18)  EX (N=14) SED (N=23) 
 Body Mass (g) 22.1 ± 0.2 22.5 ± 0.2  18.6 ± 0.3 18.2 ± 0.2 
 Heart (mg) 119.2 ± 4.3 113.1 ± 2.4  103.6 ± 3.0 96.0 ± 2.4 
 Cerebellum (mg) 47.3 ± 2.4 54.0 ± 3.3  43.8 ± 2.8 49.4 ± 3.0 
 Gastrocnemius (mg) 92.1 ± 2.7 97.0 ± 3.3  71.8 ± 1.5 74.3 ± 1.3 
 Soleus (mg) 6.9 ± 0.3 7.1 ± 0.4  5.3 ± 0.2 5.7 ± 0.1 
 EDL (mg) 7.7 ± 0.3 7.9 ± 0.6  5.8 ± 0.2 5.5 ± 0.3 
 Plantaris (mg) 11.6 ± 0.6 12.4 ± 0.5  8.8 ± 0.3 9.3 ± 0.3 
 TA (mg) 36.9 ± 0.7 36.8 ± 15.7  28.7 ± 0.6 29.4 ± 0.8 
 Quadriceps (mg) 97.5 ± 27.2 101.4 ± 25.6  81.2 ± 2.7 75 ± 2.1 
 Omental Fat (mg) 253.3 ± 15.7 279.0 ± 8.9  129.7 ± 35.4 147.0 ± 61.7 
  Liver (mg) 866.6 ± 29.2 973.3 ± 45.8  736.3 ± 35.4 727.7 ± 21.2 
Values are means ± SEM. 
*significantly different from EX within sex and generation (p < 0.05) 
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Table 3.2. Organ and muscle masses relative to body mass in exercise and 
sedentary ancestry groups for males and females of each generation (F0, F1, and 
F2).  
    Males  Females 
F0 generation EX (N=10) SED (N=10)  EX (N=10) SED (N=10) 
 Heart 4.94 ± 0.10 4.70 ± 0.15  5.76 ± 0.28 5.84 ± 0.25 
 Cerebellum 1.78 ± 0.13 1.71 ± 0.09  2.36 ± 0.13 2.48 ± 0.14 
 Gastrocnemius 4.98 ± 0.08 4.54 ± 0.12*  4.29 ± 0.11 4.16 ± 0.13 
 Soleus 0.40 ± 0.01 0.35 ± 0.03  0.35 ± 0.01 0.27 ± 0.01* 
 EDL 0.57 ± 0.03 0.47 ± 0.03*  0.27 ± 0.03 0.32 ± 0.02 
 Plantaris 0.74 ± 0.02 0.68 ± 0.03  0.59 ± 0.04 0.64 ± 0.05 
 TA 1.92 ± 0.07 1.78 ± 0.04  1.44 ± 0.04 1.46 ± 0.06 
 Quadriceps 7.46 ± 0.26 6.87 ± 0.24  4.58 ± 0.30 4.39 ± 0.16 
 Omental Fat 20.89 ± 1.06 29.60 ± 2.01*  14.04 ± 1.76 12.84 ± 1.50 
 Liver 45.50 ± 0.79 41.06 ± 1.58  45.64 ± 1.80 46.50 ± 2.75 
       
F1 generation EX (N=20) SED (N=17)  EX (N=12) SED (N=16) 
 Heart 4.83 ± 0.07 4.58 ± 0.06*  5.28 ± 0.10 5.07 ± 0.10 
 Cerebellum 2.20 ± 0.15 2.28 ± 0.12  2.92 ± 0.16 2.95 ± 0.09 
 Gastrocnemius 4.86 ± 0.07 4.52 ± 0.29  4.44 ± 0.13 4.46 ± 0.05 
 Soleus 0.30 ± 0.01 0.33 ± 0.01  0.34 ± 0.03 0.32 ± 0.01 
 EDL 0.40 ± 0.02 0.55 ± 0.06*  0.61 ± 0.14 0.53 ± 0.06 
 Plantaris 0.64 ± 0.01 0.63 ± 0.02  0.59 ± 0.03 0.61 ± 0.02 
 TA 1.75 ± 0.03 1.83 ± 0.03  1.71 ± 0.03 1.76 ± 0.03 
 Quadriceps 5.05 ± 0.32 6.00 ± 0.37  5.66 ± 0.40 5.42 ± 0.32 
 Omental Fat 11.57 ± 0.35 12.12 ± 0.55  6.36 ± 0.42 8.29 ± 0.60* 
 Liver 43.44 ± 0.84 43.13 ± 1.16  43.97 ± 1.00 43.16 ± 0.95 
       
F2 generation EX (N=18) SED (N=18)  EX (N=14) SED (N=23) 
 Heart 5.40 ± 0.19 5.04 ± 0.12  5.58 ± 0.14 5.28 ± 0.95 
 Cerebellum 2.15 ± 0.12 2.42 ± 0.16  2.35 ± 1.50 2.73 ± 1.74 
 Gastrocnemius 4.17 ± 0.11 4.10 ± 0.28  3.86 ± 0.06 4.09 ± 0.44* 
 Soleus 0.31 ± 0.01 0.32 ± 0.02  0.28 ± 0.01 0.32 ± 0.01* 
 EDL 0.35 ± 0.01 0.35 ± 0.03  0.32 ± 0.01 0.30 ± 0.02 
 Plantaris 0.53 ± 0.02 0.55 ± 0.02  0.47 ± 0.01 0.51 ± 0.02 
 TA 1.67 ± 0.03 1.65 ± 0.07  1.54 ± 0.03 1.62 ± 0.04 
 Quadriceps 4.42 ± 0.12 4.53 ± 0.13  4.38 ± 0.15 4.13 ± 0.10 
 Omental Fat 11.49 ± 0.68 12.42 ± 0.37  6.95 ± 0.47 8.10 ± 0.33* 
  Liver 39.33 ± 1.38 43.45 ± 1.99  39.60 ± 1.64 40.17 ± 1.23 
Values are means ± SEM, all units are mg g-1 body mass. 
*significantly different from EX within sex and generation (p < 0.05) 
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Table 3.3 Serum insulin, glycerol, and triglyceride levels in exercise and 
sedentary ancestry groups for male and female offspring (F1 and F2). 
    Males  Females 
F1 generation EX (N=9) SED (N=8)  EX (N=12) SED (N=16) 
 Insulin (ng mL-1) 0.30 ± 0.04 0.26 ± 0.06  0.33 ± 0.05 0.15 ± 0.02 * 
 Free Glycerol (mg dL-1) 43.0 ± 4.0 58.2 ± 6.6  51.3 ± 8.0 54.0 ± 5.6 

 Total Triglyceride (mg dL-

1) 94.9 ± 8.8 109.8 ± 10.8  80.8 ± 6.9 80.8 ± 5.6 

       
F2 generation EX (N=18) SED (N=18)  EX (N=14) SED (N=23) 
 Insulin (ng mL-1) 0.28 ± 0.04 0.25 ± 0.03  0.23 ± 0.04 0.22 ± 0.04 
 Free Glycerol (mg dL-1) 31.9 ± 4.3 36.5 ± 7.6  34.0 ± 7.7 46.7 ± 7.7 

  Total Triglyceride (mg dL-

1) 100.4 ± 3.3 94.0 ± 11.8  67.6 ± 6.1 77.8 ± 7.4 

*significantly different from EX within sex and generation (p < 0.05) 
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Figures 

 
Figure 3.1 Experimental design. A, overview. B, time line. 
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Figure 3.2. Blood glucose concentration during an intraperitoneal glucose 
tolerance test in: (A) F0 males, (B) F0 females, (C) F1 males, (D) F1 females, (E) 
F2 males, and (F) F2 females. Mice were fasted 12 hours and given a 2 g/kg body 
mass glucose load at time 0. Glucose levels were determined before and 30, 60, 90, 
and 120 min after injection. Blood glucose was also measured 15 min after injection 
in F2 males and females. Area under the curve for concentration vs. time was 
calculated using the linear trapezoidal rule. Values are means ± SE. *significant 
difference in AUC between EX and SED within sex and generation (p < 0.05) 
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Figure 3.3. Relative gastrocnemius muscle mRNA levels of Alas1, Cox1, Cycs, Cs, 
Hk2, Pdk4, Ppara, Ppard, Pparg, and Ppargc1a determined by RT-PCR in: (A) 
F0 females, (B) F1 males, (C) F2 males, and (D) F2 females. For each offspring 
group, only mRNA targets with p ≤ 0.10 between EX and SED ancestry are shown in 
the figure; no mRNA targets met this threshold for F0 males or F1 females. Average 
expression level in EX was set to 1.0. Sample sizes were n=7-10. *significantly 
different from EX within sex and generation (p < 0.05) 
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Figure 3.4. Relative gastrocnemius muscle mRNA levels of Adipoq, Cidec, and 
Scd1 determined by RT-qPCR in: (A) F0 males, (B) F0 females, (C) F1 males, 
(D) F1 females, (E) F2 males, and (F) F2 females. Average expression level in EX 
was set to 1.0. Sample sizes were n=10-20. *significantly different from EX within 
sex and generation (p < 0.05) 
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Supplementary Material 

Supplementary Table 3.1. List of transcripts significantly affected by exercise 
compared to sedentary ancestry in F1 males.  
Upregulated Transcripts     
Probe ID Gene mRNA Accession Number Fold Change 
10582882 --- --- 7.08 
10368222 4930444G20Rik NM_053264 6.33 
10608646 --- NM_001013828.1 5.25 
10455954 Gm4951 NM_001033767 4.52 
10462390 Cd274 NM_021893 4.46 
10399823 --- ENSMUST00000083266 3.48 
10562592 Gm5114 NM_177890 3.02 
10582888 --- ENSMUST00000099042 2.79 
10582899 --- ENSMUST00000099035 2.78 
10598794 --- --- 2.70 
10561166 --- --- 2.23 
10554162 --- --- 2.15 
10442270 1300003B13Rik BC025651 2.03 
10597513 --- ENSMUST00000083215 1.96 
10474687 --- ENSMUST00000083911 1.87 
10494753 --- ENSMUST00000121385 1.78 
10532019 EG634650 NM_001039647 1.77 
10368370 Gm8681 XR_032130 1.68 
10574427 Impdh2 NM_011830 1.63 
10589790 --- --- 1.58 
10439889 --- --- 1.34 
10585976 Myo9a NM_173018 1.33 
10598041 --- NC_005089 1.23 
10531407 Cxcl9 NM_008599 1.16 
10385507 OTTMUSG00000005523 NM_001045540 1.08 
10376324 Gm12250 NM_001135115 0.81 
10507431 --- --- 0.69 
10582896 --- --- 0.62 
10608693 --- M31319.1 0.55 
10409259 --- --- 0.49 
10424347 Gm7691 XM_001473789 0.46 
10582916 --- --- 0.19 
10414706 --- AJ311366 0.13 
10582890 --- ENSMUST00000099042 0.06 
10431635 --- ENSMUST00000082986 0.06 
10423803 Gm5213 XR_032412 0.03 

    
Downregulated Targets     
Probe ID Gene mRNA Accession Number Fold Change 
10385518 Tgtp NM_011579 -30.05 
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10434747 Adipoq NM_009605 -12.52 
10399820 Acp1 NM_001110239 -11.52 
10455961 Iigp1 NM_001146275 -8.84 
10385533 Tgtp NM_011579 -7.12 
10346069 Gm8304 XM_001477007 -6.10 
10415642 Sap18 NM_009119 -4.50 
10598236 Nudt11 NM_021431 -4.44 
10458052 Epb4.1l4a NM_013512 -3.62 
10539574 Npm3-ps1 NR_002702 -3.56 
10409876 Ctla2a NM_007796 -3.18 
10376326 Irgm2 NM_019440 -2.86 
10496592 Gbp2 NM_010260 -2.82 
10546929 Cidec NM_178373 -2.81 
10605355 --- ENSMUST00000083925 -2.72 
10562657 Gm5595 NM_001008427 -2.64 
10374117 --- ENSMUST00000117212 -2.54 
10360324 LOC100045972 XR_030924 -2.53 
10471550 Rpl12 BC075731 -2.47 
10388898 Fam58b BC027022 -2.43 
10385500 Irgm1 NM_008326 -2.42 
10424555 --- ENSMUST00000083234 -2.24 
10531994 Mpa2l NM_194336 -2.23 
10344835 --- GENSCAN00000012277 -2.21 
10524312 Ttc28 ENSMUST00000100894 -2.10 
10596257 Dnajc13 NM_001163026 -2.08 
10459066 LOC100044195 BC150900 -2.03 
10482073 --- ENSMUST00000121664 -1.99 
10367960 Pex3 NM_019961 -1.98 
10583316 Taf1d BC056964 -1.83 
10346191 Stat1 NM_009283 -1.77 
10456005 Cd74 NM_001042605 -1.70 
10556167 --- GENSCAN00000037385 -1.69 
10346722 Nbeal1 NM_173444 -1.66 
10479228 Etohi1 ENSMUST00000098999 -1.61 
10362424 Trdn NM_029726 -1.56 
10537227 Tmem140 NM_197986 -1.56 
10549592 --- ENSMUST00000097237 -1.55 
10459375 Txnl1 NM_016792 -1.53 
10603911 --- --- -1.51 
10480345 --- ENSMUST00000117515 -1.51 
10500133 Prune NM_173347 -1.51 
10440909 --- ENSMUST00000103851 -1.50 
10583806 Gm6581 XR_001828 -1.49 
10353773 --- ENSMUST00000044356 -1.49 
10457250 Arhgap12 NM_001039692 -1.49 
10389373 Appbp2 NM_025825 -1.48 
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10484512 Olfr992 NM_146865 -1.48 
10485357 --- ENSMUST00000099683 -1.47 
10455970 BC023105  // BC023105 BC023105 -1.45 
10415873 --- mmu-mir-598 -1.43 
10587627 Cyb5r4 NM_024195 -1.43 
10533085 Pebp1 NM_018858 -1.43 
10608681 --- NM_001034859.1 -1.42 
10498160 Ufm1 NM_026435 -1.38 
10558295 Zranb1 ENSMUST00000106157 -1.34 
10496569 Gbp6 NM_145545 -1.31 
10497265 Fabp4 NM_024406 -1.31 
10462363 Jak2 NM_008413 -1.28 
10392087 Ccdc47 NM_026009 -1.28 
10548661 --- --- -1.27 
10569017 Ifitm3 NM_025378 -1.25 
10467979 Scd1 NM_009127 -1.25 
10444830 H2-Q7 NM_010394 -1.24 
10418927 Bmpr1a NM_009758 -1.24 
10362462 Trdn NM_029726 -1.24 
10529873 Rab2a NM_021518 -1.24 
10362428 Trdn NM_029726 -1.22 
10362422 Trdn NM_029726 -1.21 
10497483 Hmgb1 NM_010439 -1.18 
10475414 B2m NM_009735 -1.17 
10584777 Ddx6 NM_001110826 -1.15 
10362442 Trdn NM_029726 -1.14 
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Supplementary Table 3.2. List of transcripts significantly affected by exercise 
compared to sedentary ancestry in F2 males. 
Upregulated Transcripts     
Probe ID Gene mRNA Accession Number Fold Change 
10473107 --- --- 87.46 
10584578 Hspa8 M13967 15.01 
10378445 E130309D14Rik BC150886 13.13 
10584576 Hspa8 M13967 10.77 
10413012 Fut11 AK034234 10.69 
10414932 --- ENSMUST00000103643 10.43 
10606016 Il2rg NM_013563 8.92 
10574598 Es31 BC057188 8.86 
10548207 Pzp NM_007376 7.55 
10547655 --- --- 7.36 
10546086 --- ENSMUST00000090438 6.92 
10592727 Rnf26 ENSMUST00000065379 6.19 
10570513 2900016B01Rik ENSMUST00000058886 5.15 
10392142 Cd79b NM_008339 5.12 
10362939 --- ENSMUST00000095717 4.85 
10434689 Ahsg NM_013465 4.29 
10433887 Pkp2 NM_026163 4.22 
10345704 --- ENSMUST00000083695 4.03 
10414744 --- DQ340292 4.01 
10513521 Mup20 NM_001012323 3.86 
10538868 --- ENSMUST00000103302 3.74 
10468448 --- --- 3.70 
10604661 --- ENSMUST00000054770 3.66 
10419726 --- --- 3.55 
10544648 Dfna5 NM_018769 3.47 
10550451 --- ENSMUST00000081336 3.31 
10425333 Apobec3 ENSMUST00000100423 3.19 
10526098 Scand3 NM_183088 3.14 
10514645 --- ENSMUST00000119478 3.06 
10414736 --- ENSMUST00000103580 2.98 
10435489 Ccdc58 NM_198645 2.81 
10560089 --- ENSMUST00000094828 2.48 
10531149 Gc NM_008096 2.48 
10517165 Cd52 NM_013706 2.48 
10350689 Ncf2 NM_010877 2.45 
10397780 A630072L19Rik AK153749 2.42 
10573210 Ptger1 NM_013641 2.42 
10460146 --- BC028925 2.41 
10511429 Car8 NM_007592 2.31 
10537880 --- --- 2.28 
10545208 Gm189 ENSMUST00000103357 2.25 
10409259 --- --- 2.23 
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10558454 Glrx3 NM_023140 2.22 
10361129 --- ENSMUST00000083887 2.21 
10607398 --- ENSMUST00000122032 2.15 
10433172 Glycam1 NM_008134 2.09 
10526339 Trim50 NM_178240 2.06 
10351197 Sell NM_011346 2.06 
10422393 --- GENSCAN00000028428 2.05 
10408848 --- GENSCAN00000041460 2.03 
10450189 Btnl5 NR_004051 1.95 
10541480 Mug1 NM_008645 1.88 
10362426 Trdn NM_029726 1.83 
10529299 Slbp NM_009193 1.77 
10502230 --- --- 1.73 
10478421 Kcnk15 BC147256 1.68 
10546450 Adamts9 NM_175314 1.65 
10422009 --- NM_028615 1.64 
10513512 Mup1 NM_001163011 1.63 
10381930 --- --- 1.63 
10355264 Gm10072 ENSMUST00000076473 1.62 
10436200 Gm8824 XR_034572 1.61 
10593015 Cd3g NM_009850 1.61 
10551025 Cd79a NM_007655 1.60 
10428449 --- ENSMUST00000083378 1.55 
10369481 H2afy2 NM_207000 1.51 
10454059 --- ENSMUST00000069552 1.50 
10566205 Dub2a NM_001001559 1.49 
10603706 Med4 NM_026119 1.44 
10355528 Tns1 NM_027884 1.34 
10533869 Ccdc92 NM_144819 1.33 
10465838 Mta2 NM_011842 1.29 
10529457 Cpz NM_153107 1.29 
10507431 --- --- 1.22 
10598085 ATP6 ENSMUST00000119235 1.22 
10513437 Mup2 NM_008647 1.20 
10513497 Mup2 NM_001045550 1.20 
10523062 Alb NM_009654 1.19 
10513504 Mup2 NM_001045550 1.19 
10513428 Mup2 NM_001045550 1.19 
10513455 Mup2 NM_008647 1.18 
10513472 Mup2 NM_008647 1.18 
10513420 Mup7 NM_001134675 1.17 
10450920 AY036118 AY036118 1.12 
10575955 Klhl36 NM_146219 0.97 
10435185 --- ENSMUST00000093713 0.94 
10446425 --- ENSMUST00000083372 0.88 
10430818 Tnfrsf13c NM_028075 0.80 
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10373610 Olfr767 NM_146318 0.80 
10437205 Pcp4 NM_008791 0.66 
10520948 Plb1 NM_001081407 0.59 
10569303 --- --- 0.53 
10414706 --- AJ311366 0.53 
10582888 --- ENSMUST00000099042 0.47 
10598771 Maoa NM_173740 0.42 
10515974 Nfyc NM_008692 0.35 
10381416 Rnd2 NM_009708 0.33 
10379223 1810012P15Rik NM_001076681 0.33 
10517419 --- ENSMUST00000119054 0.33 
10379153 Aldoc NM_009657 0.15 
10358224 Ptprc NM_001111316 0.14 
10558866 Drd4 NM_007878 0.13 
10499703 --- ENSMUST00000083111 0.05 

    
Downregulated Transcripts     
Probe ID Gene mRNA Accession Number Fold Change 
10536593 Tsen15 NM_025677 -14.93 
10576896 Gm9457 XM_974415 -12.43 
10584252 Gm9513 EU703629 -7.71 
10598075 --- NC_005089 -6.77 
10579987 Scoc NM_001039137 -6.76 
10507589 --- ENSMUST00000122207 -6.60 
10362271 --- GENSCAN00000041810 -5.53 
10442081 --- mmu-mir-99b -4.39 
10385297 Gabra1 NM_010250 -3.93 
10608675 --- NM_011458.1 -3.91 
10513912 Aldoart1 EF662061 -3.67 
10538965 Fabp1 NM_017399 -3.04 
10458762 --- ENSMUST00000097581 -2.95 
10574478 Dync1li2 NM_001013380 -2.91 
10430372 Rac2 NM_009008 -2.64 
10383358 --- ENSMUST00000076255 -2.57 
10532180 Cplx1 NM_007756 -2.37 
10362454 Trdn NM_029726 -2.26 
10441753 Plg NM_008877 -2.17 
10538352 --- ENSMUST00000083282 -2.13 
10434719 Kng1 NM_001102411 -2.13 
10580624 Es1 NM_007954 -2.12 
10390961 Krtap17-1 NM_001099774 -2.10 
10568731 --- --- -2.08 
10548857 Hist4h4 NM_175652 -1.96 
10365134 --- ENSMUST00000102273 -1.90 
10362416 Trdn NM_029726 -1.90 
10437149 --- --- -1.87 
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10373651 --- ENSMUST00000102219 -1.73 
10450224 --- GENSCAN00000027119 -1.70 
10589846 --- ENSMUST00000122685 -1.68 
10597513 --- ENSMUST00000083215 -1.67 
10541410 Mug1 NM_008645 -1.65 
10466528 Rfk NM_019437 -1.65 
10582582 --- ENSMUST00000101826 -1.63 
10582584 --- ENSMUST00000101826 -1.63 
10539581 --- ENSMUST00000089584 -1.61 
10514532 Cyp2j5 NM_010007 -1.53 
10412657 --- --- -1.53 
10564161 Snord116 NR_002895 -1.43 
10564163 Snord116 NR_002895 -1.41 
10564167 Snord116 NR_002895 -1.41 
10564171 Snord116 NR_002895 -1.41 
10564173 Snord116 NR_002895 -1.41 
10564175 Snord116 NR_002895 -1.41 
10564179 Snord116 NR_002895 -1.41 
10564181 Snord116 NR_002895 -1.41 
10564185 Snord116 NR_002895 -1.41 
10564187 Snord116 NR_002895 -1.41 
10564189 Snord116 NR_002895 -1.41 
10564191 Snord116 NR_002895 -1.41 
10564193 Snord116 NR_002895 -1.41 
10564195 Snord116 NR_002895 -1.41 
10564197 Snord116 NR_002895 -1.41 
10564199 Snord116 NR_002895 -1.41 
10564201 Snord116 AF241256 -1.41 
10564205 Snord116 AF241256 -1.41 
10564207 Snord116 AF241256 -1.41 
10521698 --- AK149205 -1.37 
10365204 Gm10777 ENSMUST00000099432 -1.37 
10555233 --- ENSMUST00000083377 -1.33 
10430572 --- --- -1.31 
10497644 Sec62 NM_027016 -1.29 
10408121 --- ENSMUST00000102282 -1.28 
10394936 --- ENSMUST00000101540 -1.28 
10356170 --- ENSMUST00000116749 -1.24 
10434283 --- ENSMUST00000102219 -1.24 
10394938 --- ENSMUST00000116749 -1.23 
10399657 --- ENSMUST00000116749 -1.23 
10471909 --- ENSMUST00000118928 -1.21 
10400708 --- ENSMUST00000102219 -1.19 
10362672 --- ENSMUST00000099956 -1.17 
10467206 Ppp1r3c NM_016854 -1.16 
10366705 Gm9081 XR_030920 -1.11 
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Supplementary Figure 3.1. Heatmap of microarray data showing mRNA targets 
differentially expressed in gastrocnemius muscle between offspring of exercise 
compared to sedentary ancestry in F1 males, color-coded and clustered 
according to normalized expression pattern. Each letter indicates one array 
performed on mRNA from five pooled offspring of the same condition. 
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Supplementary Figure 3.2. Heatmap of microarray data showing mRNA targets 
differentially expressed in gastrocnemius muscle between offspring of exercise 
compared to sedentary ancestry in F2 males, color-coded and clustered 
according to normalized expression pattern. Each letter indicates one array 
performed on mRNA from five pooled offspring of the same condition.  
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Chapter 4: Effects of Exercise Ancestry on Metabolic, Morphological, and Gene 
Expression Phenotypes in Multiple Generations of Mature Mouse Offspring 
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Abstract 

Recent evidence indicates that parental exercise prior to breeding or during 

offspring development can alter body mass and gene expression in young mouse 

offspring. The current study aimed to examine these phenotypes in mature mouse 

offspring exposed to parental exercise. First-generation (F0) C57BL/6 mice were 

exposed to voluntary exercise (EX) or sedentary (SED) lifestyle and bred with like-

exposed mice to produce an F1 generation. A subset of F1 mice was bred with like-

exposed F1 offspring to produce an F2 generation. Body and tissue anthropometry, 

glucose tolerance tests and skeletal muscle mRNA expression were analyzed in 

offspring at 8 and 28 weeks. At 8 weeks, liver mass was higher in F1 EX males. F2 

EX female offspring tended to have lower baseline blood glucose. F1 EX female 

offspring had higher muscle Cytc expression compared to F1 SED female offspring. 

F2 EX males had lower Cidec and Scd1 expression compared to F2 SED males. At 28 

weeks, liver and soleus masses were lower in EX males compared to SED males. F1 

EX females had higher baseline glucose than F1 SED females. Pgc1a mRNA 

expression was higher in F1 EX males than F1 SED males and Cox1 mRNA 

expression was lower in F2 EX males compared to F2 SED males. Overall, aging the 

offspring to 28 weeks did not increase phenotype separation between EX and SED 

offspring. We maintain EX ancestry may affect whole-body and transcription-level 

offspring phenotypes across two generations, but that these effects are not only 

generation- and sex-dependent, but also impacted by offspring age.  
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Introduction 

Early life events, potentially even those occurring prior to conception, can 

impact adult physiology. Various manipulations of parental status (i.e. protein 

restriction, high fat diet, induced stress, etc.) can alter offspring physiology at birth 

and into adulthood. These physiological alterations induced during development can 

then manifest as disease in adulthood.  

Exercise training leads to many beneficial metabolic health outcomes, 

including improved glucose homeostasis and lipid oxidation (75, 101), while a 

sedentary lifestyle is associated with increased incidence of chronic disease (144). 

Exercise is also beneficial for pregnant women (111), though the effects of maternal 

and/or paternal exercise on the developing offspring remain less clear, as few studies 

have examined the effect of voluntary parental exercise. Carter et al. (33, 34) 

described beneficial alterations in body composition and glucose and insulin 

dynamics in the mature mouse offspring of dams who had access to a voluntary 

running wheel during the perinatal period. 

Recently, we investigated the potential of parental (both maternal and 

paternal) voluntary exercise on two generations of young mouse offspring (90). We 

exposed mice (F0) to voluntary wheel running prior to breeding and through gestation 

and lactation (in dams). The resultant first generation (F1) female offspring from 

exercised parents weighed less and had less omental fat mass at 8 weeks compared to 

females from sedentary parents. Interestingly, this finding was not observed in males 

or in either sex of second-generation (F2) offspring. We identified differences in 

basal gene expression in both generations and sexes; these differences were both 
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generation- and sex-specific. Overall, we determined that parental exercise could 

broadly alter offspring phenotypes, though these effects were small and specific. 

In the current study, we sought to extend our investigation to include adult 

offspring. Our aims were to compare body and tissue masses, glucose tolerance, and 

metabolic gene expression patterns between offspring from exercised versus 

sedentary parents. We again hypothesized that exercise ancestry would alter offspring 

phenotypes through two generations and that the differences between exercise- and 

sedentary-ancestry offspring would be larger in adult offspring than in young 

offspring.  

 
Methods 

All animal procedures were performed in accordance with the National 

Institutes of Health guidelines and were approved by the Institutional Animal Care 

and Use Committee at the University of Maryland (Appendix A). A standard diet 

(Purina Prolab RMH 3000, 60% carbohydrate, 14% fat, 26% protein) and water were 

provided ad libitum for all generations in all conditions. 

We used a breeding paradigm to produce two generations of offspring (F1 and 

F2) from an initial F0 generation that was either exposed to exercise or kept 

sedentary. 20 male and 20 virgin female 5-wk old C57BL/6 mice were purchased 

from Jackson Laboratories (Bar Harbor, ME); these mice made up the F0 generation. 

C57BL/6 is an inbred strain of mouse that was chosen based on their propensity to 

perform voluntary wheel running, their common use in research studies of exercise, 

nutrition, metabolism, and gene expression, and their fecundity. Until 8 weeks of age, 
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these animals were kept sedentary (i.e., unexposed to voluntary running wheel; 

standard cage conditions) and group-housed with same-sex mice.  

At 8 weeks of age, each sex was randomly split into two condition groups: 

exercise (EX) and sedentary (SED) (n=10 per group). Mice in the F0 SED group were 

housed individually in standard cages without access to running wheels. Mice in the 

F0 EX group were housed individually in cages with computer-monitored voluntary 

running wheels. After group assignment, F0 mice were exposed to their group 

condition for 12 weeks. Following this intervention males and females from like 

conditions (EX or SED) were randomly paired for mating. The F0 EX breeding pairs 

had continued access to the running wheel throughout mating, pregnancy, and 

lactation; however running activity could not be accurately measured during the 

breeding period as there were two mice in each cage. Males were removed from 

female cages after two weeks. The pups resulting from this original mating were 

designated as F1. A random group of 10 male and 10 female F1 pups from each 

condition (EX and SED) were designated as F1 breeders and were mated at 8 weeks 

with like-condition (EX or SED) F1 offspring to produce the F2 generation. The 

remaining F1 pups were glucose tolerance tested and sacrificed at 8 weeks. F2 pups 

from each condition were glucose tolerance tested and sacrificed at 8 weeks or 28 

weeks. Following weaning at 21 days, all F1 and F2 offspring were group-housed 

with same-sex littermates. Body weight was monitored weekly for all animals. F1 and 

F2 offspring remained sedentary throughout the experiment. Only litters 8 or fewer 

offspring were used for analysis and no more than 3 offspring per sex per litter were 

studied per age group. 
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Intraperitoneal Glucose Tolerance Test (IPGTT) 

Glucose tolerance tests were performed on all F1 and F2 offspring at 8 and 28 

weeks. All animals were fasted for 6 hours prior to glucose tolerance testing. Baseline 

blood glucose measurements were made and then each mouse was injected 

intraperitoneally with 2.0 mg of D-glucose (Sigma-Aldrich, St. Louis, MO) per gram 

of body mass. Blood glucose was measured 15, 30, 60, 90, and 120 minutes after 

injection in all animals. Area under the curve for concentration vs. time was 

calculated using the linear trapezoidal rule. Blood glucose measurements were made 

using a rodent-specific glucometer (AlphaTRAK; Abbott Laboratories, Abbott Park, 

IL) on blood removed from a tail snip. Following the glucose tolerance test animals 

were returned to ad libitum food and water access. 

 

Tissue & Serum Collection 

Animals were euthanized 24 hours after the glucose tolerance test; animals 

were fasted for 6 hours prior to euthanasia. Euthanasia was performed under 

isoflurane anesthesia; the method of euthanasia was exsanguination by cardiac 

puncture followed by removal of the heart. Heart, liver, omental fat, cerebellum, 

tibialis anterior (TA), extensor digitorum longus (EDL), soleus, plantaris, 

gastrocnemius, and quadriceps muscles were dissected, weighed, and flash frozen in 

liquid nitrogen and then stored at -80°C until analysis. Approximately 1 mL of blood 

was obtained from a cardiac puncture and allowed to coagulate. The coagulated blood 

was centrifuged at 1750 x g for 15 minutes to obtain serum. Serum was removed to a 

fresh tube and stored at -80°C until analysis. 
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Gene Expression 

Total RNA was isolated from frozen powdered gastrocnemius muscle with 

Trizol reagent (15596-026, Life Technologies, Grand Island, NY), DNase-treated, 

and quantified by spectrophotometer. Reverse transcription was performed with 1µg 

of total RNA with the High-Capacity cDNA RT kit (4368813, Life Technologies, 

Grand Island, NY).  

Real-time quantitative PCR was used to assess the gene expression level of 

peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargc1a), 

adiponectin (Adipoq), cell death-inducing DFFA-like effector c (Cidec), and stearoyl-

Coenzyme A desaturase 1 (Scd1) (n=3-11) per group). Primer and probe sequences 

were designed for each gene’s mRNA sequence using PrimeTime qPCR Assay 

designer (IDT). 18s rRNA was used as an expression control for both real-time and 

gel-based PCR and did not differ between treatment groups. RT-PCR was used to 

measure the expression of metabolic genes (peroxisome proliferator activated 

receptor alpha, delta, and gamma, (Ppara, Ppard, and Pparg); hexokinase 2, Hk2; 

cytochrome c, somatic, Cycs; citrate synthase, Cs; and cytochrome c oxidase subunit 

I, Cox1) (n=3-11 per group). Products were visualized on 1.5% agarose gels using 

ethidium bromide. Primer and probe sequences and PCR conditions are available 

upon request. qPCR data were normalized to 18s using the -∆Ct method (176) and 

expressed as fold induction (2-∆Ct) of mRNA expression compared to the 

corresponding EX group (1.0-fold induction). Relative band intensities from PCR 

gels were be analyzed with NIH ImageJ software and normalized to 18s. Values are 

shown as means ± standard error.  
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Statistics 

Two-tailed t-tests were used to compare body and tissue masses and IPGTT 

AUC between EX and SED groups within each sex and generation. A repeated-

measures ANOVA was used to compare the IPGTT response between EX and SED 

groups within each sex and generation. Two-tailed t-tests were used to compare gene 

expression between EX and SED groups within each sex and generation. Statistical 

analyses were performed using SPSS version 18, and statistical significance was 

accepted at p < 0.05.  

 

Results 

 The final offspring numbers for analysis are shown in Table 4.1. Two F0 EX 

breeding pairs did not produce viable F1 pups, and three F1 breeding pairs each from 

EX and SED ancestries did not produce viable F2 pups. Average litter size for F1 

offspring was 4.3 ± 0.4 EX and 4.6 ± 0.3 SED offspring/litter, while average litter 

size for F2 offspring was 5.0 ± 1.1 EX and 4.7 ± 0.7 SED offspring/litter. There were 

no significant differences in litter size between groups or significant differences in 

sex ratio between groups (data not shown). 

 
Young Offspring (8 weeks) 
 

Body and tissue mass are shown in Table 4.2. In 8-week old offspring, we 

found that body mass tended to be higher in F1 EX offspring, regardless of sex 

(males, p = 0.05; females, p = 0.06). Liver mass was higher in F1 EX offspring, 

regardless of sex (p < 0.05). In the F2 generation, average plantaris mass tended to be 

lower in SED males compared to EX males (p = 0.07). No other differences in tissue 
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mass between offspring of EX and SED ancestry were detected in these young 

offspring. F2 female mice with EX ancestry tended to have lower baseline blood 

glucose following a 6-hour fast (p = 0.051, Figure 4.2A&B). No differences in area 

under the curve were detected during the glucose tolerance test. 

F1 EX females had higher skeletal muscle Cytc (p <0.05) and tended to have 

higher Pparg, (p= 0.05) and Scd1 (p= 0.08) mRNA expression compared to F1 SED 

females (Figure 4.3B). F2 EX males had lower Cidec and Scd1 (p < 0.05) and a 

tendency for higher Adipoq (p= 0.10) mRNA expression compared to F2 SED males 

(Figure 4.3C). No other differences in gene expression were detected. 

 
Mature Offspring (28 weeks) 
 

There was no effect of exercise ancestry on body mass in 28-week old 

offspring (Table 4.3). F1 EX males had lower liver mass (p < 0.05) and F1 and F2 EX 

males had lower liver and soleus mass (all p < 0.05) than SED males within the same 

generation. F2 EX males also had lower gastrocnemius mass (p <0.05) and tended to 

have lower heart mass (p = 0.06). No other differences in tissue masses were detected 

in these mature offspring. Baseline blood glucose was higher in F1 EX females 

compared to F1 SED females (p < 0.05, Figure 4.2D), but glucose tolerance was not 

affected by exercise ancestry in either sex or generation of offspring (Figure 

4.2C&D). 

Skeletal muscle Pgc1a mRNA expression was higher in F1 EX males 

compared to F1 SED males (p < 0.05, Figure 4.4A) and Cox1 mRNA expression was 

lower in F2 EX males compared to F2 SED males (p < 0.05, Figure 4.4C). No other 

differences in mRNA expression were detected.  
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Discussion 

This is the first study to investigate the effects of parental exercise on health-

related phenotypes in two generations of mouse offspring at both young and mature 

age points. We observed generation-, sex-, and age-specific effects of exercise 

ancestry in the offspring studied; however, contrary to our hypothesis, we did not 

observe more dramatic differences in mature (28-week) compared to 8-week old 

offspring. 

In 8-week old offspring in the current study, body mass tended to be higher in 

F1 EX offspring, regardless of sex. We previously observed the opposite response, 

with significantly higher body mass in 8-week old F1 SED female offspring, but no 

difference in male offspring (90).  Although variability in the effect of maternal 

exercise on offspring body mass has been reported (33, 162), this is the first 

observation of higher body mass in the offspring of exercised dams. Liver mass was 

higher in F1 EX males and tended to be higher in F1 EX females, while no 

differences in liver mass were observed in our previous study(90).  

 In the current study, 8-week old F2 female mice with EX ancestry tended to 

have lower baseline blood glucose. In our previous study, there were no differences in 

baseline blood glucose between offspring with EX compared to SED ancestry but F2 

EX females had slightly higher IPGTT area under the curve (90).  

 We also examined skeletal muscle gene expression differences between 

offspring of EX and SED ancestry at 8 weeks of age. We found higher Cytc 

expression and tendencies towards higher Pparg, and Scd1 mRNA expression in F1 

EX females compared to F1 SED females; none of these differences were observed in 
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our previous study (90). In F2 males, we found lower Cidec and Scd1 expression and 

a tendency for higher Adipoq mRNA expression in EX offspring; we also observed a 

tendency towards lower Scd1 expression in F2 EX males in our previous study (90). 

To our knowledge, ours are the only investigations of parental exercise interventions 

to include gene expression analyses. 

 Overall, our present findings in 8-week old offspring were not consistent with 

our previous study. There are several potential contributors to this inconsistency. 

First, though we maintained a similar experimental design, we made small 

modifications to our procedures relative to our previous study (90). These included an 

extension of the pre-breeding exercise intervention to 12 instead of 10 weeks, 

breeding F1 non-littermates instead of littermates, including only offspring born in 

litter sizes of 4-7, and fasting animals for 6 hours prior to IPGTT and sacrifice instead 

of 12 and 4 hours, respectively. Lastly, as the primary aim of the current study was to 

investigate the effects of exercise ancestry on mature offspring, our sample size for 8-

week old offspring was very limited relative to our previous study. This reduced our 

statistical power to detect differences in 8-week old offspring in the current study.  

 There were no differences in body mass in 28-week old offspring, 

demonstrating a normalization of the tendency toward higher body mass in F1 EX 

ancestry offspring observed at 8 weeks of age. Liver and soleus muscle mass were 

lower in F1 EX males relative to F1 SED males. Interestingly, this represents an 

opposite effect of exercise ancestry on liver mass to that observed at 8 weeks of age. 

F1 EX females developed higher baseline blood glucose compared to F1 SED 

females at 28 weeks of age while the lower blood glucose vales in F2 EX females 
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observed at 8 weeks were no longer apparent. No differences in glucose tolerance 

were observed at 28 weeks, in contrast to the findings of Carter et al. (33), who 

reported improved glucose tolerance in the offspring of exercised dams compared to 

the offspring of sedentary dams at 7 months of age. 

 Few gene expression differences were detected in 28-week old offspring 

(higher Pgc1a expression in F1 EX compared to SED males and lower Cox1 

expression in F2 EX compared to SED males). None of the gene expression 

differences observed at 8 weeks of age were apparent at 28 weeks of age. This 

suggests that transcriptional differences stimulated by exercise ancestry during 

development may “fade” over time or be further modified by the current 

environment. In our study, offspring environment was identical from 3 to 28 weeks of 

age for all offspring.  

Overall, our hypothesis that aging the offspring to 28 weeks would increase 

the phenotype separation between EX and SED offspring was not supported. It is 

possible that 28 weeks is still not a sufficient duration of aging to see this separation, 

as other researchers have not seen differences in whole body and glycemia-related 

phenotypes until even older ages (33, 34). It is important to note that outbred strains 

of rodents have been used in other studies, while an inbred strain was used in the 

current study. There is evidence to suggest inbred vs. outbred status can influence 

environmentally-induced transgenerational effects on offspring health phenotypes 

(89, 186).  

Overall, as a result of this study we maintain our prior conclusion that EX 

ancestry may affect whole-body and transcription-level offspring phenotypes across 
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two generations, but are cognizant that the observed effects are small and variable. 

Further, we conclude that the physiological effects of exercise ancestry are not only 

generation- and sex-dependent, but also strongly impacted by offspring age. Future 

studies should evaluate offspring phenotypes as they continue to age beyond 28 

weeks. Additional metabolic stressors, such as subjecting the offspring to a high-fat 

diet, should also be considered.  
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Tables 

Table 4.1. Final Offspring Numbers for Analyses  
Generation Age Exercise (EX) Sedentary (SED) 
  Male Female Male Female 

F1 Offspring 8 weeks 10 3 8 10 
28 weeks 10 10 10 9 

F2 Offspring 8 weeks 10 7 4 10 
28 weeks 11 8 10 8 
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Table 4.2. Body and Tissue Mass in 8-week old Offspring. 
      Males     Females 

           F1 generation EX SED   EX SED 

  Mean SE Mean SE  Mean SE Mean SE 

 Body Mass (g) 24.20 0.49 22.92 0.31  20.49 0.20 19.01 0.38 

 Heart (mg)  123.90 3.60 116.40 3.21  108.40 3.00 100.50 2.56 

 Liver (g) 1.25 0.06 1.09* 0.03  1.07 0.01 0.98* 0.03 

 Omental Fat (g) 237.70 8.78 255.00 11.90  146.20 15.30 155.30 8.41 

 Testis (mg) 92.40 2.02 90.10 1.34      
 T. Anterior (mg) 46.90 1.23 45.50 1.21  38.10 0.72 36.10 2.12 

 EDL (mg) 10.00 0.74 9.28 0.34  8.02 0.89 7.86 0.64 

 Soleus (mg) 8.50 0.56 8.88 0.48  7.65 0.58 6.62 0.36 

 Plantaris (mg) 16.00 0.74 15.20 0.93  15.96 0.74 15.24 0.93 

 
Gastrocnemius 
(mg) 112.40 5.13 110.60 7.02  87.70 2.20 82.40 4.09 

           F2 generation EX SED   EX SED 

  Mean SE Mean SE  Mean SE Mean SE 

 Body Mass (g) 22.73 0.46 23.25 0.50  18.92 0.26 19.42 0.18 

 Heart (mg)  119.20 3.07 123.80 7.23  103.60 4.28 107.40 3.08 

 Liver (g) 1.08 0.03 1.11 0.01  0.82 0.04 0.87 0.02 

 Omental Fat (mg) 225.10 14.70 243.60 25.70  163.90 13.40 172.00 7.06 

 Testis (mg) 87.50 1.21 87.40 1.49      
 T. Anterior (mg) 45.40 1.05 44.60 1.87  37.20 1.00 37.30 0.67 

 EDL (mg) 9.18 0.63 9.29 0.43  8.66 0.22 7.97 0.52 

 Soleus (mg) 8.47 0.28 8.75 0.55  7.34 0.45 7.42 0.14 

 Plantaris (mg) 16.30 0.47 14.40 1.02  12.50 0.52 12.90 0.24 

  Gastrocnemius 
(mg) 117.10 3.34 112.80 3.51   90.40 2.02 92.30 2.27 

* significantly different from EX within sex and generation (p < 0.05) 
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Table 4.3 Body and Tissue Mass in 28-week old Offspring. 
      Males     Females 
F1 generation EX SED   EX SED 

  Mean SE Mean SE  Mean SE Mean SE 

 Body Mass (g) 28.63 0.34 29.46 0.52  25.45 0.25 25.87 0.35 

 Heart (mg)  141.20 5.75 143.60 5.30  136.10 3.83 136.00 4.25 

 Liver (g) 1.21 0.04 1.31* 0.02  1.13 0.05 1.05 0.06 

 
Omental Fat 
(mg) 501.20 31.00 585.10 75.50  330.90 34.60 399.10 54.30 

 Testis (mg) 100.30 2.42 93.10 3.57      
 T. Anterior (mg) 50.90 0.79 52.10 0.84  43.40 0.95 45.60 0.85 

 EDL (mg) 10.40 0.32 10.20 0.43  10.36 0.32 10.95 0.43 

 Soleus (mg) 9.14 0.41 10.20* 0.27  8.23 0.27 8.79 0.30 

 Plantaris (mg) 18.00 0.82 17.60 0.81  14.60 0.41 15.20 0.59 

 
Gastrocnemius 
(mg) 140.40 3.78 137.40 1.34  116.80 2.99 118.20 3.14 

           
F2 generation EX SED   EX SED 

  Mean SE Mean SE  Mean SE Mean SE 

 Body Mass (g) 28.19 0.58 28.87 0.60  23.85 0.40 24.11 0.58 

 Heart (mg)  126.80 2.75 137.50 4.82  120.60 3.79 117.00 2.47 

 Liver (g) 1.32 0.04 1.34 0.04  1.06 0.04 1.05 0.04 

 
Omental Fat 
(mg) 543.80 57.60 518.70 43.80  262.20 23.00 279.30 20.80 

 Testis (mg) 95.00 2.31 92.60 4.28      
 T. Anterior (mg) 51.10 0.79 52.30 1.57  43.90 0.98 42.90 0.83 

 EDL (mg) 9.35 0.35 10.20 0.59  8.47 0.36 8.61 0.63 

 Soleus (mg) 8.70 0.28 9.66* 0.37  7.80 0.27 8.39 0.45 

 Plantaris (mg) 17.50 0.57 17.90 0.44  13.90 0.40 13.67 0.64 

  Gastrocnemius 
(mg) 128.30 2.13 138.10* 2.48   112.70 3.48 113.30 2.28 

* significantly different from EX within sex and generation (p < 0.05) 
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Figures 

Figure 4.1 Experimental Design. 
 
Figure 4.2. Blood glucose concentration during an intraperitoneal glucose 
tolerance test in: (A) F1 males at 8 weeks, (B) F1 males at 28 weeks, (C) F1 
females at 8 weeks, (D) F1 females at 28 weeks, (E) F2 males at 8 weeks, (F) F2 
males at 28 weeks, (G) F2 females at 8 weeks, and (H) F2 females at 28 weeks. 
Mice were fasted 6 hours and given a 2 g/kg body mass glucose load at time 0. 
Glucose levels were determined before and 15, 30, 60, 90, and 120 min after 
injection. Area under the curve for concentration vs. time was calculated using the 
linear trapezoidal rule. Values are means ± SE. *significant difference between EX 
and SED at timepoint (p < 0.05). 
 
Figure 4.3. Relative gastrocnemius muscle mRNA levels. Hk2, Cd36, Cox1, CS, 
Cytc, Ppara, Ppard, Pparg, Pgc1a, Adipoq, Cidec, and Scd1 determined by RT-
PCR in: (A) F0 females, (B) F1 males, (C) F2 males, and (D) F2 females at 8 
weeks of age. Average expression level in EX was set to 1.0 *significantly different 
from EX within sex and generation (p < 0.05) 
 
Figure 4.4. Relative gastrocnemius muscle mRNA levels. Hk2, Cd36, Cox1, CS, 
Cytc, Ppara, Ppard, Pparg, Pgc1a, Adipoq, Cidec, and Scd1 determined by RT-
PCR in: (A) F0 females, (B) F1 males, (C) F2 males, and (D) F2 females at 28 
weeks of age. Average expression level in EX was set to 1.0 *significantly different 
from EX within sex and generation (p < 0.05) 
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Figure 4.1  
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Figure 4.2  

 

  



 

 99 

Figure 4.3 
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Figure 4.4 
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Chapter 5:  Effects of Exercise Ancestry on Metabolic Phenotypes in Skeletal 
Muscle, Liver, and Adipose Tissue over Two Generations of Mature Mouse 
Offspring. 
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Abstract 

Recent evidence suggests that parental exercise can influence metabolism in 

the mature offspring of rodents, though the underlying physiological mechanism 

remains unclear. The purpose of this study was to examine carbohydrate and lipid 

storage combined with related gene expression patterns in metabolically active tissues 

of two generations of mature mouse offspring exposed to either exercise or sedentary 

ancestry. F0 C57BL/6 mice were exposed to voluntary exercise or sedentary lifestyle 

and bred with like-exposed mates to produce an F1 generation. F1 mice of both 

ancestries were bred with like-exposed F1 offspring to produce an F2 generation. All 

offspring remained sedentary until sacrifice at 28 weeks, thus exercise ancestry was 

the only distinguishing feature between offspring groups. Exercise ancestry was not 

associated with significant differences in triglyceride or glycogen storage in skeletal 

muscle or liver in offspring, but there were tendencies toward lower serum TAG and 

glycerol in F1 male offspring of exercise compared to sedentary parents. Exercise 

ancestry did not significantly affect gene expression in skeletal muscle, liver, or 

adipose tissue. Overall, these results indicate no adverse effects of exercise ancestry 

on glycogen or triglyceride storage or associated gene expression through two 

generations of mature mouse offspring. 
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Introduction 

The Developmental Origin of Health and Disease hypothesis states that early 

life events can influence adult health and disease risk (131). The effects of maternal 

or early life nutrition on offspring metabolic phenotypes have been well studied in 

both humans and animals. Parental exercise has more recently been investigated as a 

potential environmental influence (33, 34, 90, 205). 

We previously developed a novel model to investigate the effects of voluntary 

parental exercise on multiple generations of mouse offspring (90). Using this model, 

we have demonstrated broad, small effects of parental exercise on whole-body and 

skeletal muscle phenotypes in two generations of mouse offspring at 8 (90) Chapter 

4) and 28 (Chapter 4) weeks of age. While our previous studies have focused 

primarily on skeletal muscle, it is possible that other tissues may be more sensitive to 

developmental programming. Due to the hallmark obesity and insulin resistance 

observed in many models of altered maternal nutrition, offspring adipose and hepatic 

tissue are frequently studied. 

Other researchers (33) have documented effects of perinatal maternal 

voluntary exercise on body composition, insulin sensitivity, and glucose dynamics in 

one generation of mouse offspring. They observed a more dramatic difference in 

glucose uptake in adipose tissue than skeletal muscle when comparing offspring of 

exercised and sedentary dams. This observation suggests a greater influence of 

adipose tissue insulin sensitivity over skeletal muscle in the enhancement of whole-

body glucose disposal in the offspring of exercised dams. Limited information exists 

regarding the effects of parental exercise on offspring liver; however, both adipose 
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and hepatic tissue work in concert with skeletal muscle to maintain metabolic 

homeostasis by regulating the uptake, storage, and release of carbohydrate and lipid. 

Thus, the purpose of this study was to investigate whether exercise ancestry is 

associated with underlying differences in the control of carbohydrate and lipid storage 

and/or release. We hypothesized that mature mouse offspring with exercise ancestry 

would have larger skeletal muscle and liver glycogen stores along with a more 

glycogenic and less glycogenolytic gene expression pattern. We further hypothesized 

mature mouse offspring with an exercise ancestry would have lower TAG content in 

skeletal muscle, liver, and serum along with a less lipogenic and more lipolytic gene 

expression pattern in skeletal muscle, liver, and adipose tissues. 

 

Methods 

Experimental Design 

 The experiments for Specific Aim 3 utilized tissues from the same mice 

examined in Specific Aim 2, thus specific experimental design and animal handling 

details can be found in Chapter 4. Briefly, C57BL/6 mice (F0) were exposed to EX 

(computer-monitored voluntary wheel running, N=20) or a SED condition (no wheel 

access, N=20) for 12 weeks prior to breeding. EX males were bred with EX females 

and SED males were bred with SED females to obtain F1 pups. EX mice had 

continued access to the running wheel during breeding, pregnancy, and lactation. F1 

pups were bred with like-ancestry F1 offspring to obtain F2 generation pups. F1 and 

F2 offspring were sacrificed at 28 weeks without EX exposure (EX ancestry was the 
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only distinguishing feature). A visual summary of the experimental design is provided 

in Figure 5.1. 

 

Animal Numbers 

 For the F1 generation, we obtained a total of 10 EX male offspring, 10 SED 

male offspring, 10 EX female offspring, and 9 SED female offspring. For the F2 

generation, we obtained a total of 11 EX male offspring, 9 SED male offspring, 10 

EX female offspring, and 8 SED female offspring. Six to ten offspring per group were 

used for each analysis.  

 

Tissue Harvesting and Preservation 

 Animals were euthanized under isoflurane anesthesia after a 6-hour fast. 

Approximately 1 ml of blood was obtained from a cardiac puncture and allowed to 

coagulate. The coagulated blood was centrifuged at 1750 x g for 15 minutes to obtain 

serum. Serum was removed to a fresh tube and stored at -80°C until analysis. Liver 

and omental fat pads were dissected, weighed, and flash frozen in liquid nitrogen and 

then stored at -80°C until analysis. 

 

Serum  

 Serum TAG and glycerol were measured using the Serum Triglyceride 

Determination Kit (TR0100; Sigma-Aldrich, St. Louis, MO). Serum insulin was 

measured using an ultrasensitive mouse-specific ELISA kit (ALPCO). 
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Tissue Triglyceride  

 Liver and gastrocnemius muscle TAG were assessed using a method based on 

Rector et al. (168). Frozen samples of liver and powdered gastrocnemius muscle were 

weighed and homogenized in 1 ml lipid extraction solution (1:2 vol/vol methanol-

chloroform) and rotated overnight at 4°C. One ml of 4 mM MgCl2 was added, 

vortexed, and centrifuged at 1000 x g for 1 h at 4°C. The organic phase was removed, 

evaporated overnight, and resuspended in butanol-Triton X-114 (3:2 vol/vol). TAG 

content was measured using a commercially available kit (Sigma TR0100) and 

expressed relative to the wet tissue weight of the sample. 

 

Glycogen Content 

 Glycogen content in liver and gastrocnemius was assessed by measuring the 

glucose released from glycogen breakdown by amyloglucosidase (132). Samples of 

frozen liver or powdered gastrocnemius muscle were weighed and mechanically 

homogenized at 4ºC in 0.03N HCl, then boiled. Four µl of homogenate was incubated 

for 30 minutes at room temperature with 20 µl 0.1 M acetate buffer (pH 4.7) and 

amyloglucosidase (10 µg/ml in 20mM Tris/0.02% BSA, pH 7.5) to hydrolyze 

glycogen in the sample.  Following the incubation, 200 µl glucose reagent cocktail 

(50 mM Tris, 25 mM HCl, 1 mM MgCl2, 0.5 mM dithiothreitol, 0.3 mM ATP, 0.05 

mM NADP, 1 U/ml hexokinase, and 0.1 U/ml glucose-6-phosphate dehydrogenase, 

all from Sigma) was added to each sample and allowed to stand 10 minute at room 

temperature. Glucose content was measured spectrophotometrically at 340 nm and 
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absorbance was compared to a glucose standard curve and expressed relative to the 

wet tissue weight of the sample.  

 

Total Protein 

 Sections of frozen liver, adipose tissue, and powdered gastrocnemius muscle 

were mechanically homogenized in Mueller buffer (50 mM Hepes (pH 7.4), 0.1% 

Triton-X100, 4 mM EGTA, 10 mM EDTA, 15 mM Na4P2O7·H2O, 100 mM β-

glycerophosphate, 25 mM NaF, 50µg/ml leupeptin, 50µg/ml pepstatin, 40µg/ml 

aprotinin, 5 mM Na3VO4, and 0.1% NP-40 and centrifuged for 10 min at 4°C and 

13,000 x g. The supernatant was collected and stored at -80°C until analysis. Total 

protein content was determined using a BCA assay (Thermo). To examine differences 

in total protein banding patterns, equal amounts of protein (5 µg) from EX and SED 

samples within a generation and sex were loaded onto 4-20% gradient 

polyacrylamide gels (BioRad) and electrophoresed to separate proteins by size. After 

electrophoresis, the gels were be stained with GelCode Blue (Thermo) and imaged 

(GelDox XR, BioRad) and visually inspected for differences in banding patterns 

between EX and SED groups. 

 

Gene Expression 

 Sections of frozen liver and adipose tissue were mechanically homogenized in 

TRIzol reagent (15596-026, Life Technologies, Grand Island, NY). RNA was isolated 

by chloroform extraction, DNase-treated, and quantified spectrophotometrically. 

Reverse transcription was performed with 1µg of total RNA with the High-Capacity 
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cDNA RT kit (4368813, Life Technologies, Grand Island, NY). Real-time 

quantitative PCR was used to assess the mRNA expression levels of diglyceride 

acyltransferase 2 (Dgat2), adipose triglyceride lipase (Atgl), hormone-sensitive lipase 

(Hsl), glucokinase (Gck), glycogen synthase 2 (Gys2), glycogen phosphorylase, liver 

(Pygl), and phosphoenolpyruvate carboxykinase (Pepck) in adipose, liver, and/or 

gastrocnemius muscle as appropriate. Primer and probe sequences were designed for 

each gene’s mRNA sequence using the PrimeTime qPCR Assay designer (IDT). 

qPCR data was be normalized to expression of β-actin using the -∆Ct method (176) 

and expressed as fold induction (2-∆Ct) of mRNA expression. 

 

Statistical Analysis  

 A three-way factorial design was used to analyze the data. Specifically, a 2 

(condition, EX vs. SED) x 2 (generation, F1 vs. F2), x 2 (sex, male vs. female) 

ANOVA was be used to determine main effects and interactions for these factors. 

Pre-planned contrasts were used to compare EX and SED offspring within sex and 

generation groups regardless of the significance of the overall ANOVA. Statistical 

significance was accepted at p < 0.05. Statistical analyses were performed using 

SPSS Statistics Version 21.0 (IBM). 

 
Results 

 Body and tissue masses for these animals have been reported previously (see 

Chapter 4, Table 4.3). Briefly, there was no effect of exercise ancestry on body mass, 

but liver and soleus mass were lower in F1 and F2 EX males compared to SED males 

of the same generation. 
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Carbohydrate Metabolism 

Fasting blood glucose and intraperitoneal glucose tolerance for these animals 

have been reported previously (see Chapter 4, Figure 4.2). Briefly, fasting blood 

glucose was higher in F1 EX females relative to F1 SED females, but no effect of 

exercise ancestry was observed for glucose tolerance in either sex or generation.  

Fasting insulin levels and muscle and liver glycogen content were assessed to 

investigate the potential effect of exercise ancestry on carbohydrate metabolism. No 

significant differences in serum insulin were observed (Table 5.1). Similarly, no 

differences in muscle or liver glycogen content were observed (Figures 5.2 & 5.3).  

We examined the mRNA expression of genes encoding enzymes critical to 

liver glycogen storage (Gck and Gys2) and breakdown (Pygl) (Figure 5.4). Exercise 

ancestry did not significantly affect the mRNA expression of any of these genes. We 

observed a main effect of generation for Gys2 (p < 0.05, Figure 5.4B), where Gys2 

expression was higher in F1 compared to F2 offspring. Pepck mRNA expression was 

higher in females compared to male offspring; expression was also higher in F1 

compared to F2 offspring (p < 0.05, Figure 5.4D). Gck and Pygl levels were not 

affected by generation or sex. It is critical to note that main effects of generation and 

offspring sex were observed for housekeeping gene expression in liver (p < 0.05, data 

not shown); this potentially confounds the observed differences in Gys2 and Pepck 

expression.  
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Lipid Metabolism 

 Circulating levels of TAG and glycerol were measured in all offspring 

following a 6-hr fast (Figure 5.5). Preplanned contrasts between offspring of EX and 

SED ancestry indicated tendencies towards higher serum TAG (p = 0.061) and 

glycerol (p = 0.079) in F1 SED male offspring compared to F1 EX male offspring.  

 No significant differences in muscle triglyceride content were observed 

(Figure 5.6). The mRNA expression of selected genes critical for TAG synthesis 

(Dgat2) and breakdown (Atgl & Hsl) were examined in liver. Hsl expression was 

higher in female compared to male offspring (p <0.05 Figure 5.7C), but no 

differences in mRNA expression were detected for Dgat2 or Atgl. No significant 

differences in liver triglyceride content were observed (Figure 5.8). The mRNA 

expression of selected genes critical for TAG synthesis (Dgat2) and breakdown (Atgl 

& Hsl) were examined in liver. Dgat2 expression was significantly higher in F1 

compared to F2 offspring; expression was also higher in female compared to male 

offspring (p < 0.05, Figure 5.9A). No differences in liver Atgl or Hsl expression were 

detected. It is critical to note that main effects of generation and offspring sex were 

observed for housekeeping gene expression in liver (p < 0.05, data not shown); this 

potentially confounds the observed main effects in Dgat2 expression.  

 The mRNA expression of selected genes critical for TAG synthesis (Dgat2) 

and breakdown (Atgl & Hsl) were also examined in adipose tissue. Significant main 

effects of sex and generation were observed for Dgat2 expression in adipose tissue, 

where expression was higher in female compared to male offspring as well as in F2 

compared to F1 offspring (both p < 0.05, Figure 5.10A). Preplanned contrasts also 
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indicated a tendency (p = 0.09) for higher mRNA expression of Dgat2 in F1 SED 

male offspring compared to F1 EX male offspring. Atgl expression was also higher in 

female compared to male offspring (p <0.05, Figure 5.10B). No differences in Hsl 

expression were observed.  

 
Total Protein 
  
 Total protein gel images from muscle, liver, and adipose tissue are included in 

Supplementary Figures 5.1, 5.2, and 5.3, respectively. Visual inspection of these gels 

yielded one band of interest at ~75kDa that was more prominent in the skeletal 

muscle of F1 EX males relative to other offspring groups (Figure 5.1). Identification 

of this band was outside the scope of this study but a follow-up study of this protein 

could be of interest. 

 

Discussion 

 This study was the first to investigate the effects of parental exercise on 

metabolite storage and associated gene expression in offspring skeletal muscle, liver, 

and adipose tissue. Contrary to our hypotheses, offspring glycogen and TAG storage 

were not affected by parental exercise, nor did parental exercise influence the 

expression of genes related to glycogen and TAG storage and breakdown pathways in 

skeletal muscle, liver, or adipose tissue.  

No differences in muscle or liver glycogen were detected in the present study. 

This is in contrast to our hypothesis and to the greater liver glycogen stores others 

have previously observed in the offspring of exercise-trained rats, though this effect 

was observed at 28 days of age (169). We are not aware of any published data 
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reporting muscle glycogen content in the offspring of exercised animals. The present 

study is the first to examine the skeletal muscle or liver glycogen content or the 

expression of genes related to liver glycogen storage and breakdown and 

gluconeogenesis in the offspring of exercised mice. The glucokinase enzyme 

(encoded by Gck) catalyzes the critical first step towards glycogen storage by 

phosphorylating glucose. Glycogen synthase 2 (encoded by Gys2) is the enzyme 

responsible for most glycogen formation in the liver, which glycogen phosphorylase 

(encoded by Pygl), catalyzes the rate-limiting step of glycogen breakdown). None of 

these genes were differentially regulated by exercise ancestry in the present study; 

while many additional factors beyond transcriptional control of these rate-limiting 

enzymes influence glycogen storage, the lack of differential gene expression for Gck, 

Gys2 and Pygl is consistent with the lack of difference in liver glycogen content 

between EX and SED ancestry offspring. The expression of Pck, which encodes 

phosphoenolpyruvate carboxykinase was examined based on this enyzme’s role in 

regulating gluconeogenesis in the liver. No differences in Pck expression were 

detected between EX and SED ancestry offspring. While blood glucose was higher in 

F1 EX compared to F1 SED female offspring, this effect does not appear to be related 

to altered Pck expression. Differences in the translational or post-translational control 

of Pck or other gluconeogenic enzymes could be responsible for the higher glucose 

observed in F1 EX offspring; alternatively, the difference in baseline glucose could 

be related to tissue glucose uptake or metabolism rather than gluconeogenesis. 

 We observed tendencies towards lower serum TAG and glycerol in F1 EX 

compared to F1 SED male offspring, though these magnitude of difference is likely 
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not physiologically relevant. Higher serum TAG levels have been observed in the 

offspring of dams exposed to protein-restriction (136), high-fat diet (18) and stress 

(27). No differences in skeletal muscle or liver TAG were observed in the present 

study, refuting our hypothesis that TAG content would be lower in both skeletal 

muscle and liver in offspring with exercise ancestry. We did not measure TAG 

content in adipose tissue as TAG is the primary constituent of adipose tissue and there 

were no observed differences in omental adipose tissue mass (Chapter 4).  The 

present study is the first to examine TAG content in skeletal muscle or liver or the 

expression of genes related to TAG storage and breakdown in the offspring of 

exercised mice. Diacylglycerol transferase (encoded by Dgat2) is critical for 

lipogenesis as it catalyzes the final step of TAG formation (adding a third fatty acid to 

diacylglycerol). Conversely, adipose triglyceride lipase and hormone-sensitive lipase 

(encoded by Atgl and Hsl, respectively) are responsible for catalyzing the opposing 

reactions leading to the fatty acid liberation from TAG. Exercise ancestry did not 

affect the expression of any of these TAG-related genes in offspring skeletal muscle 

or liver. While many additional factors beyond mRNA expression of these selected 

genes influence the control of TAG storage and breakdown, the lack of differential 

gene expression for Dgat2, Atgl, and Hsl is consistent with the absence of an exercise 

ancestry effect on skeletal muscle or liver TAG content. In adipose tissue, the only 

exercise ancestry-related difference we observed was a tendency for higher Dgat2 

expression in F1 SED compared to F1 EX male offspring; this tendency reflects only 

a 4% greater mRNA expression level for Dgat2 in F1 SED compared to F1 EX males, 

which is likely not sufficient to be physiologically relevant.  
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 Parental exercise did not affect the metabolic phenotypes examined in the 

present study, but Carter et al. (33) found voluntary maternal exercise significantly 

improved whole body glucose tolerance and insulin-stimulated glucose uptake in 

skeletal muscle and liver in mature mouse offspring, suggesting maternal exercise can 

program offspring metabolism. While the Carter et al. studies used an outbred mouse 

strain, we used the inbred C57Bl/6 strain of mice in the present study to control for 

the potentially confounding effects of parental genetic variation. Very recent 

evidence, however, suggests inbred animals do not respond the same as animals from 

outbred strains to environmental stressors during development. Maternal vinclozoin 

exposure resulted in higher offspring disease in an outbred, but not in an inbred 

mouse model (89). The causative mechanism for this differential response remained 

to be identified, but we speculate that the stress of continued inbreeding could reduce 

offspring susceptibility to temporary environmental stressors during developmentally 

sensitive periods.  

 A primary limitation of this study is the investigation of metabolic storage and 

gene expression in only the fasted state. Future studies should investigate the 

phenotypes examined in the present study in offspring exposed to an acute or chronic 

metabolic (i.e. diet or exercise) stress. Alternatively, tissues responses to an acute ex 

vivo stress could be investigated.  

In conclusion, parental exercise does not influence the basal storage nor the 

transcriptional control of glycogen or TAG in skeletal muscle, liver, or adipose tissue 

in mouse offspring at 28 weeks of age. Our results together with the physiological 

findings of others using similar models continue to support a potential for parental 
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exercise to influence metabolically active tissues in mouse offspring, but importantly, 

our results indicate no adverse effects of parental exercise through multiple 

generations of mouse offspring.  
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Tables 

Table 5.1. Fasting Serum Insulin (ng/ml) 
Generation Exercise (EX) Sedentary (SED) 

 Male Female Male Female 
F1 Offspring 0.50 ± 0.08 0.72 ± 0.15 0.72 ± 0.11 0.56 ± 0.14 
F2 Offspring 0.58 ± 0.08 0.62 ± 0.08 0.56 ± 0.11 0.59 ± 0.10 
Values are means ± SE.  
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Figures 

 

 
 
Figure 5.1. Experimental Design 
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Figure 5.2. Gastrocnemius glycogen content following a 6-hour fast. Values are 
means ± SE expressed in µmol per gram wet weight. 
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Figure 5.3. Liver glycogen content following a 6-hour fast. Values are means ± SE 
expressed in µmol per gram wet weight. 
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Figure 5.4. Liver mRNA levels of Gck (A), Gys2 (B), Pygl (C), and Pepck (D) 
determined by RT-qPCR and normalized to ActB expression. Average expression 
level in F1 EX male was set to 1.0 and all other groups are expressed relative to this 
value. Values are means ± SE. *a significantly different from EX within sex and 
generation (p < 0.05) 
 
Other significant findings (p < 0.05) (not indicated above): 
B (Gys2): Main effect of generation – higher Gys2 expression in F1 compared to F2 
offspring.  
D (Pepck): Main effect of offspring sex – higher expression of Pepck in female 
compared to male offspring. Main effect of generation – higher expression of Pepck 
in F1 compared to F2 offspring. 
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Figure 5.5. Serum triglyceride (A) and glycerol (B) content following a 6-hour 
fast. Values are means ± SE. acompared to EX within sex and generation.  
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Figure 5.6. Gastrocnemius triglyceride content following a 6-hour fast. Values 
are means ± SE expressed in nmol per gram wet weight. 
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Figure 5.7. Relative gastrocnemius mRNA levels of Dgat2 (A), Atgl (B), and Hsl 
(C) determined by RT-qPCR and normalized to ActB expression. Average 
expression level in F1 EX male was set to 1.0 and all other groups are expressed 
relative to this value. Values are means ± SE. *a significantly different from EX 
within sex and generation (p < 0.05) 
 
Other significant (p < 0.05) findings (not indicated above): 
C (Hsl): Main effect of offspring sex – higher expression of Hsl in female compared 
to male offspring.  
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Figure 5.8. Liver triglyceride content following a 6-hour fast. Values are means ± 
SE expressed in nmol per gram wet weight. 
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Figure 5.9. Relative liver mRNA levels of Dgat2 (A), Atgl (B), and Hsl (C) 
determined by RT-qPCR and normalized to ActB expression. Average expression 
level in F1 EX male was set to 1.0 and all other groups are expressed relative to this 
value. Values are means ± SE. *a significantly different from EX within sex and 
generation (p < 0.05) 
 
Other significant (p < 0.05) findings (not indicated above): 
A (Dgat2): Main effect of generation – higher expression of Dgat2 in F1 compared to 
F2 offspring. 
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Figure 5.10. Relative adipose tissue mRNA levels of Dgat2 (A), Atgl (B), and Hsl 
(C) determined by RT-qPCR and normalized to ActB expression. Average 
expression level in F1 EX male was set to 1.0 and all other groups are expressed 
relative to this value. Values are means ± SE. *a significantly different from EX 
within sex and generation (p < 0.05) 
 
Other significant (p < 0.05) findings (not indicated above): 
A (Dgat2): Significant main effects of Sex and Generation. Significantly higher 
expression in female compared to male offspring. Significantly higher expression in 
F2 compared to F1 offspring. 
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Supplementary Material 

 The following total protein gel images serve as supplementary material for 

Chapter 5 of this dissertation but will not be included in the manuscript submitted for 

publication. 
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Chapter 6: Summary, Limitations, and Future Directions 
 

Summary 

 The overall aim of this dissertation research was to investigate the effect of 

parental exercise on metabolic health in multiple generations of mouse offspring. In 

Specific Aim 1 (Chapter 3), we used a novel breeding paradigm to examine the effect 

of parental exercise on several phenotypes from the whole body to the transcriptional 

level in 8-week old offspring. These included body mass and morphology, glucose 

tolerance, and skeletal muscle gene expression. Exposure of F0 (parent) mice to 

voluntary exercise was associated with lower body and fat mass, but higher fasting 

serum insulin in F1 female offspring. In F2 offspring, females with exercise ancestry 

had impaired glucose tolerance compared to F2 SED females. We also observed 

alterations in gene expression, including the relatively consistent pattern of 

upregulation of three lipogenic genes in both generations of male offspring. 

Interestingly, these genes were generally downregulated in female offspring, 

indicated a potential sex-specific effect of exercise ancestry on lipogenesis.  

From this study, we concluded that EX ancestry can affect whole-body and 

transcription-level offspring phenotypes across two generations of young mouse 

offspring in a generation- and sex-dependent manner. Next, we aimed to extend these 

findings by investigating the same health-related phenotypes in mature offspring 

(Specific Aim 2, Chapter 4). We used a similar breeding paradigm, but in this study 

we sacrificed one subset of offspring at 8 weeks of age and a second subset of 

offspring at 28 weeks of age. We hypothesized that the effect of exercise ancestry 

would be more profound in mature offspring; however, our hypotheses were not 
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supported. In fact, we observed fewer differences between EX and SED offspring at 

28 compared to 8 weeks of age. Further, many of our findings were not consistent 

with our previous observations in 8-week old offspring (90). Stanford et al. (189) 

observed differences in liver glycogen content and gene expression at 4 weeks and 52 

weeks of age between the offspring of trained and untrained dams; interestingly, these 

differences were not observed at intermediate ages. While the Stanford et al. data are 

not published, these observations combined with our findings that more differences 

between EX and SED offspring existed at 8 compared to 28 weeks further support an 

age-specific response. We speculate overt differences may be present at birth through 

sexual maturity, but that these differences are managed by the offspring during adult 

life until a metabolic challenge is presented. Additional experiments could be 

designed to test this hypothesis where phenotypes of interest are compared in EX- 

and SED-exposed offspring at more frequent samplings of offspring age. 

 The final investigation of this dissertation research (Chapter 5) aimed to 

expand our scope of interest into metabolically active tissues beyond skeletal muscle. 

We examined phenotypes related to carbohydrate and lipid storage and breakdown in 

skeletal muscle, liver, and adipose tissue. We hypothesized that mature mouse 

offspring with exercise ancestry would have greater skeletal muscle and liver 

glycogen stores combined with a more glycogenic and less glycogenolytic gene 

expression pattern. We further hypothesized that mature mouse offspring with an 

exercise ancestry would have lower TAG content in skeletal muscle and liver 

combined with a less lipogenic and more lipolytic gene expression pattern in these 

and adipose tissues. Contrary to our hypotheses, we did not observe any differences 
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in glycogen or TAG content in liver or skeletal muscle, though we did observe a 

tendency towards lower serum TAG and glycerol in F1 EX compared to F1 SED 

male offspring. No differences in mRNA expression of either glycogen- or TAG-

related pathway enzymes were detected.  

 We did not observe a consistent beneficial effect of parental exercise on 

glucose tolerance at either 8 or 28 weeks of age in the studies comprising this 

dissertation, but using a very similar model, Carter et al. (33) found voluntary 

maternal exercise significantly improved glucose tolerance and insulin-stimulated 

glucose uptake in mature mouse offspring, a result that was further supported by 

enhanced glucose disposal during a hyperinsulinemic-euglycemic clamp in a similar 

rat model (34). While the Carter et al. studies used outbred rodent strains, we used the 

inbred C57Bl/6 strain of mice for all of the studies comprising this dissertation. The 

advantage of inbred strains is that all mice of the strain are considered to be 

(autosomally) genetically identical. This trait was important to us as it allowed us to 

eliminate genetic variability while trying to elucidate the effect of an environmental 

stimulus (i.e., parental exercise). Very recent evidence, however, suggests inbred 

animals do not respond the same as animals from outbred strains to environmental 

stressors during development. In a study of the effects of maternal vinclozoin 

exposure on offspring disease risk, exposure to the drug induced adult-onset disease 

in an outbred but not in an inbred mouse model (89). The causative mechanism for 

this differential response has not been identified; however, we speculate that the 

stress of continued inbreeding could render the inbred rodent less susceptible to 

temporary environmental stressors, even during developmentally sensitive periods. 
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Unpublished findings from Stanford et al. indicate maternal exercise is associated 

with lower offspring percent body fat and fasting insulin and better glucose tolerance 

in male offspring at 52 weeks of age, suggesting that inbred mice may, in fact, be 

affected by maternal exercise, but on a longer timeframe (189). 

Overall, while no overt effects of parental exercise on offspring health were 

consistently detected, some small differences in skeletal muscle gene expression were 

observed. It is possible that parental exercise is “priming” offspring metabolic 

physiology through alterations in gene expression. Bruce et al. (26)  examined 

maternal high fat feeding during gestation in mice; they found while body fat and 

liver histology were normal in offspring weaned onto a control diet, these mice 

presented with similar lipogenic gene expression patterns in liver to mice weaned 

onto a high-fat diet that had already developed nonalcoholic steatohepatitis. By 30 

weeks of age, the mice weaned onto the control diet had developed nonalcoholic fatty 

liver disease, an effect possibly primed by the altered lipogenic gene expression prior 

to measurable dysfunction (26). The skeletal muscle gene expression differences 

observed in our studies may indicate a similar priming of metabolic physiology 

through basal control of metabolic gene expression that has yet to be exposed by age 

or metabolic challenge. We also speculated that the detection of overt differences 

could be related to offspring age, and thus present from birth through sexual maturity 

and then suppressed during “young adult” life. If our speculation is accurate, the lack 

of more substantial phenotypic differences between EX and SED offspring across 

these three studies could be due to our testing of offspring at intermediate ages rather 

than closer to birth and/or at older ages. Overall, our results together with the 
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physiological findings of others using similar models continue to support a potential 

for parental exercise to influence metabolically active tissues in mouse offspring. 

Importantly, our results indicate no adverse effects of parental exercise through 

multiple generations of mouse offspring. 

  

Limitations  

 In our model, both parents were exposed to exercise prior to breeding and 

dams continued to exercise throughout gestation and lactation. Given that these were 

some of the first studies of their kind when designed and implemented, we took an 

approach to maximize the parental exercise exposure conditions rather than narrow 

the exposure in a more mechanistic fashion. As a result, we cannot identify specific 

effects of maternal versus paternal exercise, or identify whether a critical period for 

exercise exposure occurs.  

 All of the studies in the dissertation examined the effect of voluntary exercise. 

Wheel running exercise was chosen because it is less stressful for the animal (129) 

and maternal stress alone has a negative effect on offspring metabolism (27). The use 

of voluntary exercise, however, imparts a number of limitations on the 

standardization of exercise intensity, duration, and overall volume between breeding 

pairs. This variability in exposure to the intervention could contribute to variability in 

offspring phenotypes.  

 Inbred mice were chosen as the model organism for all of the studies 

comprising this dissertation research. Here, the use of an animal model was critical 

for ethical and logistical limitations: mice provide a number of advantages in that 



 

 137 

they are time- and cost-effective and share basic metabolic processes with humans. 

The use of inbred mice allowed us to control for genetic and confounding pre- and 

post-natal environmental factors that would be impossible to control for in a human 

study. Mice, however, pose a number of limitations in the ability to translate findings 

to human health. Most notably, mice and other rodents bear young in large litters in 

an undeveloped state, while human offspring are born in a fully developed state, and 

generally as singleton births. Additionally, brown adipose tissue, which is detectable 

only neonatally in humans, contributes substantially to metabolic regulation in 

rodents throughout the life cycle (30).  

 

Future Directions 

 When examining our results with those of others, we argue continued research 

in this area is warranted. In particular, the potential limitation of strain type-specific 

responses should be investigated by repeating the same experimental model used here 

in an outbred strain of mouse. Further, offspring should be exposed to one or more 

acute or chronic metabolic challenges to determine if the small gene expression 

differences observed here do, in fact, represent a priming of metabolic physiology. 

Potential metabolic challenges could include an acute exercise bout, chronic exercise 

training, an acute glucose or lipid challenge, or a chronic high-caloric/high-fat diet. 

Alternatively (or in addition) tissues could be exposed to an acute metabolic stress 

such as muscle contraction, insulin stimulation, or lipid incubation ex vivo. These 

metabolic challenges would allow for examination of stimulated gene expression 
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and/or protein signaling patterns, which may shed light on the impact of phenotypes 

previously observed at baseline. 

 Lastly, the role of parental exercise as an intervention to prevent deleterious 

developmental programming from other stressors could be examined. Vega et al. 

recently studied exercise as an intervention in obese rat dams before and during 

pregnancy. Despite no change in maternal caloric intake or body mass, maternal 

exercise partially prevented the higher fat mass and serum insulin and completely 

prevented the higher glucose and fat cell size observed in the offspring of obese dams 

that did not exercise (205). An investigation of the underlying mechanisms 

responsible for this rescue effect would help further elucidate the role of parental 

exercise in developmental programming. 
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Appendices 

Appendix A – Institutional Animal Care and Use & Chemical Authorization 
Appendix B – Statistical Outputs 
Appendix C – Curriculum Vitae 
  



 

 141 

Appendix A - Institutional Animal Care and Use & Chemical Authorizations 
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Appendix B – Statistical Outputs  

 Statistical Outputs for Chapter 5 are provided. A 3-way factorial ANOVA 

(Generation|Sex|Condition) was performed for each outcome using the factor coding 

below. Pre-planned contrasts (EX vs. SED) were performed within each sex and 

generation. 

 
Generation 
F1 offspring = 1.0 
F2 offspring = 2.0 
 
Sex 
Male = 0.0 
Female = 1.0 
 
Condition 
Exercise Ancestry = 0.0 
Sedentary Ancestry = 1.0 
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ANOVA Outputs 
 
Univariate Analysis of Variance – Serum Glycerol 
 
Between-Subjects Factors 
 N 

Generation 
1.0 39 
2.0 37 

Sex .0 39 
1.0 37 

Condition 
.0 40 
1.0 36 

 
 

Descriptive Statistics 
Dependent Variable:   serumglycerol   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 .318930336608312 .141669463707052 10 
1.0 .482036927150370 .238077069052338 10 
Total .400483631879341 .208222698240905 20 

1.0 
.0 .379663827860347 .207652821885312 10 
1.0 .321141936479400 .127497625342006 9 
Total .351942931943056 .172295804790899 19 

Total 
.0 .349297082234330 .175791767853203 20 
1.0 .405823510516752 .205857952994907 19 
Total .376835598577049 .190641589130643 39 

2.0 

.0 
.0 .403270637734111 .173243582715196 10 
1.0 .355756412504061 .155450865831142 9 
Total .380763899467245 .162298375151254 19 

1.0 
.0 .390728922683521 .179749825814701 10 
1.0 .359256306480272 .224013112338260 8 
Total .376741093259855 .195006101909018 18 

Total 
.0 .396999780208816 .171938869579581 20 
1.0 .357403421434043 .184500131132619 17 
Total .378806858609596 .176442370651246 37 

Total 

.0 
.0 .361100487171212 .159986613759330 20 
1.0 .422219841265276 .208030889090001 19 
Total .390876582755499 .185081763178849 39 

1.0 
.0 .385196375271934 .189108633563021 20 
1.0 .339078110597457 .174547792708363 17 
Total .364006902313391 .181543901634739 37 

Total 
.0 .373148431221573 .173323779108113 40 
1.0 .382958468449917 .194824106524777 36 
Total .377795290961315 .182643650692135 76 
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Tests of Between-Subjects Effects 
Dependent Variable:   serumglycerol   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .188a 7 .027 .787 .600 
Intercept 10.699 1 10.699 314.366 .000 
Generation 6.186E-005 1 6.186E-005 .002 .966 
Sex .014 1 .014 .414 .522 
Condition .001 1 .001 .023 .881 
Generation * Sex .010 1 .010 .288 .593 
Generation * Condition .040 1 .040 1.169 .283 
Sex * Condition .050 1 .050 1.466 .230 
Generation * Sex * Condition .067 1 .067 1.959 .166 
Error 2.314 68 .034   
Total 13.349 76    
Corrected Total 2.502 75    

 
a. R Squared = .075 (Adjusted R Squared = -.020) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   serumglycerol   
Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.376 .021 .334 .419 

 
 

2. Generation 
Dependent Variable:   serumglycerol   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 .375 .030 .316 .434 
2.0 .377 .030 .316 .438 

 
3. Sex 

Dependent Variable:   serumglycerol   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .390 .030 .331 .449 
1.0 .363 .030 .302 .423 

 
 

4. Condition 
Dependent Variable:   serumglycerol   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .373 .029 .315 .431 
1.0 .380 .031 .318 .441 
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5. Generation * Sex 
Dependent Variable:   serumglycerol   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .400 .041 .318 .483 
1.0 .350 .042 .266 .435 

2.0 
.0 .380 .042 .295 .464 
1.0 .375 .044 .288 .462 

 
 

6. Generation * Condition 
Dependent Variable:   serumglycerol   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .349 .041 .267 .432 
1.0 .402 .042 .317 .486 

2.0 
.0 .397 .041 .315 .479 
1.0 .358 .045 .268 .447 

 
7. Sex * Condition 

Dependent Variable:   serumglycerol   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 .361 .041 .279 .443 
1.0 .419 .042 .334 .503 

1.0 
.0 .385 .041 .303 .468 
1.0 .340 .045 .251 .430 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   serumglycerol   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 .319 .058 .203 .435 
1.0 .482 .058 .366 .598 

1.0 
.0 .380 .058 .263 .496 
1.0 .321 .061 .198 .444 

2.0 
.0 

.0 .403 .058 .287 .520 
1.0 .356 .061 .233 .478 

1.0 
.0 .391 .058 .274 .507 
1.0 .359 .065 .229 .489 
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Univariate Analysis of Variance – Serum TAG 
 
 
Between-Subjects Factors 
 N 

Generation 
1.0 39 
2.0 37 

Sex .0 39 
1.0 37 

Condition 
.0 40 
1.0 36 

 
 

Descriptive Statistics 
Dependent Variable:   serumTAG   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 .502215777721161 .132109264957748 10 
1.0 .603219976200266 .089472225370143 10 
Total .552717876960714 .121424109622637 20 

1.0 
.0 .512826418347634 .147304027591453 10 
1.0 .450754223688553 .097483134993441 9 
Total .483423799824911 .126833406126018 19 

Total 
.0 .507521098034398 .136290119803230 20 
1.0 .530999356589455 .119764332484381 19 
Total .518959223997118 .127370036959878 39 

2.0 

.0 
.0 .597404579441088 .151163786185192 10 
1.0 .604304142054437 .119652434023811 9 
Total .600672793310569 .133419460618141 19 

1.0 
.0 .577041485261310 .161747262589509 10 
1.0 .472054440513694 .125574878418583 8 
Total .530380576484592 .152398636014198 18 

Total 
.0 .587223032351199 .152727359921678 20 
1.0 .542068988388205 .136700451455650 17 
Total .566476579719553 .145384091140146 37 

Total 

.0 
.0 .549810178581125 .146545245956774 20 
1.0 .603733528446979 .101813205734507 19 
Total .576080528515772 .128037114075064 39 

1.0 
.0 .544933951804472 .154129773685826 20 
1.0 .460777855135678 .108492106050076 17 
Total .506267637118810 .139917879796772 37 

Total 
.0 .547372065192798 .148465329165649 40 
1.0 .536226682716643 .126296087239864 36 
Total .542092673493567 .137611259036412 76 
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Tests of Between-Subjects Effects 
Dependent Variable:   serumTAG   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .254a 7 .036 2.114 .054 
Intercept 22.026 1 22.026 1284.020 .000 
Generation .039 1 .039 2.274 .136 
Sex .102 1 .102 5.966 .017 
Condition .004 1 .004 .241 .625 
Generation * Sex .000 1 .000 .008 .929 
Generation * Condition .022 1 .022 1.292 .260 
Sex * Condition .089 1 .089 5.202 .026 
Generation * Sex * Condition .003 1 .003 .180 .672 
Error 1.166 68 .017   
Total 23.754 76    
Corrected Total 1.420 75    

 
a. R Squared = .179 (Adjusted R Squared = .094) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   serumTAG   
Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.540 .015 .510 .570 

 
 

2. Generation 
Dependent Variable:   serumTAG   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 .517 .021 .475 .559 
2.0 .563 .022 .520 .606 

 
 

3. Sex 
Dependent Variable:   serumTAG   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .577 .021 .535 .619 
1.0 .503 .022 .460 .546 

 
 

4. Condition 
Dependent Variable:   serumTAG   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .547 .021 .506 .589 
1.0 .533 .022 .489 .576 
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5. Generation * Sex 
Dependent Variable:   serumTAG   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .553 .029 .494 .611 
1.0 .482 .030 .422 .542 

2.0 
.0 .601 .030 .541 .661 
1.0 .525 .031 .463 .587 

 
 

6. Generation * Condition 
Dependent Variable:   serumTAG   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .508 .029 .449 .566 
1.0 .527 .030 .467 .587 

2.0 
.0 .587 .029 .529 .646 
1.0 .538 .032 .475 .602 

 
 

7. Sex * Condition 
Dependent Variable:   serumTAG   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 .550 .029 .491 .608 
1.0 .604 .030 .544 .664 

1.0 
.0 .545 .029 .486 .603 
1.0 .461 .032 .398 .525 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   serumTAG   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 .502 .041 .420 .585 
1.0 .603 .041 .521 .686 

1.0 
.0 .513 .041 .430 .595 
1.0 .451 .044 .364 .538 

2.0 
.0 

.0 .597 .041 .515 .680 
1.0 .604 .044 .517 .691 

1.0 
.0 .577 .041 .494 .660 
1.0 .472 .046 .380 .564 
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Univariate Analysis of Variance – Muscle Glycogen 
 
Between-Subjects Factors 
 N 

Generation 
1.0 31 
2.0 31 

Sex .0 31 
1.0 31 

Condition 
.0 31 
1.0 31 

 
 

Descriptive Statistics 
Dependent Variable:   mglycogen   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 42.908363094977630 7.805700033505358 7 
1.0 41.149723317670370 9.354141475860452 8 
Total 41.970421880413750 8.407564461467505 15 

1.0 
.0 45.404043658493954 6.702385997036197 8 
1.0 45.103807728768494 13.433100090671456 8 
Total 45.253925693631220 10.256548019513666 16 

Total 
.0 44.239392728853005 7.087616655418660 15 
1.0 43.126765523219430 11.367134261238201 16 
Total 43.665133525945350 9.400426415571427 31 

2.0 

.0 
.0 35.115992284582970 7.226508401075842 8 
1.0 37.673137914317586 7.095063956860495 8 
Total 36.394565099450276 7.043164386580833 16 

1.0 
.0 41.959248365264500 10.017538580879764 8 
1.0 38.301876556065324 9.392493409103231 7 
Total 40.252474854304886 9.568212222046057 15 

Total 
.0 38.537620324923730 9.148169709017509 16 
1.0 37.966549280466540 7.942511994750059 15 
Total 38.261295625992830 8.447936448111864 31 

Total 

.0 
.0 38.752431996100476 8.271390352415482 15 
1.0 39.411430615993970 8.218782762200657 16 
Total 39.092560316045520 8.112563486867360 31 

1.0 
.0 43.681646011879224 8.423688263295737 16 
1.0 41.929573181507020 11.847779298532170 15 
Total 42.833868835892666 10.088478539654485 31 

Total 
.0 41.296542455857260 8.583525713957485 31 
1.0 40.629886696080940 10.045722190049338 31 
Total 40.963214575969076 9.272462406198501 62 
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Tests of Between-Subjects Effects 
Dependent Variable:   mglycogen   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model 739.320a 7 105.617 1.266 .285 
Intercept 103631.254 1 103631.254 1242.092 .000 
Generation 446.962 1 446.962 5.357 .024 
Sex 187.132 1 187.132 2.243 .140 
Condition 9.636 1 9.636 .115 .735 
Generation * Sex 1.009 1 1.009 .012 .913 
Generation * Condition .887 1 .887 .011 .918 
Sex * Condition 21.841 1 21.841 .262 .611 
Generation * Sex * Condition 56.844 1 56.844 .681 .413 
Error 4505.372 54 83.433   
Total 109279.759 62    
Corrected Total 5244.692 61    

 
a. R Squared = .141 (Adjusted R Squared = .030) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   mglycogen   

Mean Std. Error 95% Confidence Interval 
Lower Bound Upper Bound 

40.952 1.162 38.622 43.282 
 
 

2. Generation 
Dependent Variable:   mglycogen   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 43.641 1.643 40.347 46.936 
2.0 38.263 1.643 34.968 41.557 

 
 

3. Sex 
Dependent Variable:   mglycogen   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 39.212 1.643 35.917 42.506 
1.0 42.692 1.643 39.398 45.987 

 
 

4. Condition 
Dependent Variable:   mglycogen   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 41.347 1.643 38.052 44.642 
1.0 40.557 1.643 37.263 43.852 
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5. Generation * Sex 
Dependent Variable:   mglycogen   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 42.029 2.364 37.290 46.768 
1.0 45.254 2.284 40.676 49.832 

2.0 
.0 36.395 2.284 31.816 40.973 
1.0 40.131 2.364 35.392 44.869 

 
 

6. Generation * Condition 
Dependent Variable:   mglycogen   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 44.156 2.364 39.417 48.895 
1.0 43.127 2.284 38.549 47.705 

2.0 
.0 38.538 2.284 33.959 43.116 
1.0 37.988 2.364 33.249 42.726 

 
 

7. Sex * Condition 
Dependent Variable:   mglycogen   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 39.012 2.364 34.273 43.751 
1.0 39.411 2.284 34.833 43.990 

1.0 
.0 43.682 2.284 39.103 48.260 
1.0 41.703 2.364 36.964 46.442 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   mglycogen   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 42.908 3.452 35.987 49.830 
1.0 41.150 3.229 34.675 47.624 

1.0 
.0 45.404 3.229 38.929 51.879 
1.0 45.104 3.229 38.629 51.578 

2.0 
.0 

.0 35.116 3.229 28.641 41.591 
1.0 37.673 3.229 31.199 44.148 

1.0 
.0 41.959 3.229 35.485 48.434 
1.0 38.302 3.452 31.380 45.223 
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Univariate Analysis of Variance – Liver Glycogen 
 
Between-Subjects Factors 
 N 

Generation 
1.0 31 
2.0 32 

Sex .0 31 
1.0 32 

Condition 
.0 30 
1.0 33 

 
 

Descriptive Statistics 
Dependent Variable:   lglycogen   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 272.870713396449700 71.538636603772390 7 
1.0 276.014159671276900 161.653448249562360 8 
Total 274.547218076357500 123.539007864003600 15 

1.0 
.0 335.942136047587550 165.031253809945980 8 
1.0 234.041169163533800 84.869005895978900 8 
Total 284.991652605560660 137.259284683793900 16 

Total 
.0 306.508805477056500 129.891459787694700 15 
1.0 255.027664417405400 126.593582295963150 16 
Total 279.937893962397900 128.726145673067400 31 

2.0 

.0 
.0 435.720915520973700 192.089981500090180 7 
1.0 417.247436298536740 180.907335110834100 9 
Total 425.329583458352940 179.732175848793560 16 

1.0 
.0 333.491571598409300 160.723227432436120 8 
1.0 293.470489586875150 117.932684598151070 8 
Total 313.481030592642200 137.740641678790600 16 

Total 
.0 381.198598762272600 177.528975805959600 15 
1.0 358.999461375401840 162.800557862224800 17 
Total 369.405307025497560 167.449836620060070 32 

Total 

.0 
.0 354.295814458711600 162.887097350135750 14 
1.0 350.784717885708600 181.869338390751440 17 
Total 352.370374402548630 170.707999218136280 31 

1.0 
.0 334.716853822998360 157.373211413113580 16 
1.0 263.755829375204540 103.892072303267870 16 
Total 299.236341599101370 136.036296306276770 32 

Total 
.0 343.853702119664660 157.488460357586580 30 
1.0 308.588893153342900 153.455519573787770 33 
Total 325.381659327781800 155.146825289613960 63 
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Tests of Between-Subjects Effects 
Dependent Variable:   lglycogen   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model 276285.763a 7 39469.395 1.785 .109 
Intercept 6609499.176 1 6609499.176 298.928 .000 
Generation 127581.422 1 127581.422 5.770 .020 
Sex 41090.416 1 41090.416 1.858 .178 
Condition 24200.042 1 24200.042 1.094 .300 
Generation * Sex 59756.534 1 59756.534 2.703 .106 
Generation * Condition 1586.480 1 1586.480 .072 .790 
Sex * Condition 15683.245 1 15683.245 .709 .403 
Generation * Sex * Condition 6822.807 1 6822.807 .309 .581 
Error 1216087.555 55 22110.683   
Total 8162386.445 63    
Corrected Total 1492373.319 62    

 
a. R Squared = .185 (Adjusted R Squared = .081) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   lglycogen   

Mean Std. Error 95% Confidence Interval 
Lower Bound Upper Bound 

324.850 18.789 287.196 362.503 
 
 

2. Generation 
Dependent Variable:   lglycogen   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 279.717 26.751 226.106 333.328 
2.0 369.983 26.390 317.095 422.870 

 
 

3. Sex 
Dependent Variable:   lglycogen   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 350.463 26.854 296.647 404.279 
1.0 299.236 26.286 246.558 351.915 

 
 

4. Condition 
Dependent Variable:   lglycogen   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 344.506 27.209 289.979 399.034 
1.0 305.193 25.918 253.252 357.135 
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5. Generation * Sex 
Dependent Variable:   lglycogen   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 274.442 38.479 197.329 351.556 
1.0 284.992 37.174 210.493 359.490 

2.0 
.0 426.484 37.468 351.397 501.572 
1.0 313.481 37.174 238.982 387.980 

 
 

6. Generation * Condition 
Dependent Variable:   lglycogen   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 304.406 38.479 227.293 381.520 
1.0 255.028 37.174 180.529 329.526 

2.0 
.0 384.606 38.479 307.493 461.720 
1.0 355.359 36.127 282.959 427.759 

 
 

7. Sex * Condition 
Dependent Variable:   lglycogen   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 354.296 39.741 274.653 433.938 
1.0 346.631 36.127 274.231 419.030 

1.0 
.0 334.717 37.174 260.218 409.216 
1.0 263.756 37.174 189.257 338.254 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   lglycogen   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 272.871 56.202 160.239 385.502 
1.0 276.014 52.572 170.657 381.371 

1.0 
.0 335.942 52.572 230.585 441.299 
1.0 234.041 52.572 128.684 339.398 

2.0 
.0 

.0 435.721 56.202 323.090 548.352 
1.0 417.247 49.566 317.916 516.579 

1.0 
.0 333.492 52.572 228.135 438.849 
1.0 293.470 52.572 188.113 398.828 
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Univariate Analysis of Variance – Muscle TAG 
 
Between-Subjects Factors 
 N 

Generation 
1.0 32 
2.0 28 

Sex .0 31 
1.0 29 

Condition 
.0 30 
1.0 30 

 
 

Descriptive Statistics 
Dependent Variable:   mTAG   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 29.077184013365443 22.571682157342714 8 
1.0 37.894692237738270 20.001901160269520 8 
Total 33.485938125551860 21.099592418193918 16 

1.0 
.0 33.358234066839074 12.171384645731933 8 
1.0 24.480363786496960 16.874942831556726 8 
Total 28.919298926668016 14.934547021803729 16 

Total 
.0 31.217709040102264 17.657243339937730 16 
1.0 31.187528012117617 19.172297811070404 16 
Total 31.202618526109937 18.130651264024490 32 

2.0 

.0 
.0 32.560512436899600 20.051840145144457 7 
1.0 27.765341904798590 21.266906352177430 8 
Total 30.003088153112397 20.114440261965370 15 

1.0 
.0 36.856009967060730 20.424952891126896 7 
1.0 23.413279959723518 17.176975443268702 6 
Total 30.651673040597405 19.498156352505050 13 

Total 
.0 34.708261201980170 19.572566180317390 14 
1.0 25.900172499766416 19.026601276490900 14 
Total 30.304216850873296 19.464437396450844 28 

Total 

.0 
.0 30.702737277681383 20.743539948344280 15 
1.0 32.830017071268430 20.618626600547437 16 
Total 31.800688138887590 20.360151823150970 31 

1.0 
.0 34.990529486942520 16.003896091820163 15 
1.0 24.023042146451200 16.343646848657563 14 
Total 29.695880426015670 16.828200088315850 29 

Total 
.0 32.846633382311960 18.333835942954700 30 
1.0 28.720095439687057 18.963253368760242 30 
Total 30.783364410999510 18.609149277678817 60 
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Tests of Between-Subjects Effects 
Dependent Variable:   mTAG   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model 1477.742a 7 211.106 .579 .770 
Intercept 55898.443 1 55898.443 153.357 .000 
Generation 16.493 1 16.493 .045 .832 
Sex 78.388 1 78.388 .215 .645 
Condition 310.778 1 310.778 .853 .360 
Generation * Sex 76.469 1 76.469 .210 .649 
Generation * Condition 306.691 1 306.691 .841 .363 
Sex * Condition 644.109 1 644.109 1.767 .190 
Generation * Sex * Condition 75.983 1 75.983 .208 .650 
Error 18953.984 52 364.500   
Total 77288.657 60    
Corrected Total 20431.726 59    

 
a. R Squared = .072 (Adjusted R Squared = -.053) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   mTAG   

Mean Std. Error 95% Confidence Interval 
Lower Bound Upper Bound 

30.676 2.477 25.705 35.646 
 
 

2. Generation 
Dependent Variable:   mTAG   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 31.203 3.375 24.430 37.975 
2.0 30.149 3.627 22.871 37.426 

 
 

3. Sex 
Dependent Variable:   mTAG   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 31.824 3.435 24.932 38.717 
1.0 29.527 3.570 22.363 36.691 

 
 

4. Condition 
Dependent Variable:   mTAG   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 32.963 3.493 25.953 39.973 
1.0 28.388 3.513 21.339 35.437 
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5. Generation * Sex 
Dependent Variable:   mTAG   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 33.486 4.773 23.908 43.064 
1.0 28.919 4.773 19.342 38.497 

2.0 
.0 30.163 4.940 20.249 40.077 
1.0 30.135 5.311 19.478 40.792 

 
 

6. Generation * Condition 
Dependent Variable:   mTAG   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 31.218 4.773 21.640 40.795 
1.0 31.188 4.773 21.610 40.765 

2.0 
.0 34.708 5.103 24.469 44.947 
1.0 25.589 5.155 15.244 35.934 

 
 

7. Sex * Condition 
Dependent Variable:   mTAG   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 30.819 4.940 20.905 40.733 
1.0 32.830 4.773 23.252 42.408 

1.0 
.0 35.107 4.940 25.193 45.021 
1.0 23.947 5.155 13.602 34.292 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   mTAG   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 29.077 6.750 15.532 42.622 
1.0 37.895 6.750 24.350 51.440 

1.0 
.0 33.358 6.750 19.813 46.903 
1.0 24.480 6.750 10.936 38.025 

2.0 
.0 

.0 32.561 7.216 18.080 47.041 
1.0 27.765 6.750 14.220 41.310 

1.0 
.0 36.856 7.216 22.376 51.336 
1.0 23.413 7.794 7.773 39.054 
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Univariate Analysis of Variance – Liver TAG 
 
Between-Subjects Factors 
 N 

Generation 
1.0 26 
2.0 26 

Sex .0 24 
1.0 28 

Condition 
.0 28 
1.0 24 

 
 

Descriptive Statistics 
Dependent Variable:   lTAG   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 31.341600401068310 12.137002031950830 7 
1.0 28.816129934279310 20.833933185883524 5 
Total 30.289321039906223 15.487985082469852 12 

1.0 
.0 60.877570806833280 35.734383479022945 6 
1.0 41.324183684469100 18.822059566610633 8 
Total 49.704206736910890 27.977302580900588 14 

Total 
.0 44.973586742190610 28.992828623461786 13 
1.0 36.513393780549950 19.785283929121500 13 
Total 40.743490261370270 24.697963870009854 26 

2.0 

.0 
.0 34.033692933051780 23.288877549320926 7 
1.0 37.160362432525960 25.690773489283927 5 
Total 35.336471891166020 23.204246847946155 12 

1.0 
.0 31.896907455680630 31.066162652206636 8 
1.0 29.237043685111360 17.482270703869737 6 
Total 30.756965839722370 25.280200360679405 14 

Total 
.0 32.894074011787160 26.762209478908830 15 
1.0 32.838552206663450 20.831293081934234 11 
Total 32.870584017311740 23.972041435355330 26 

Total 

.0 
.0 32.687646667060050 17.895933321219026 14 
1.0 32.988246183402640 22.485402666935823 10 
Total 32.812896465536120 19.464912335142213 24 

1.0 
.0 44.317191749031764 35.104306846566466 14 
1.0 36.143980827601500 18.623701041680192 14 
Total 40.230586288316630 27.886422710599433 28 

Total 
.0 38.502419208045914 27.975003712769514 28 
1.0 34.829091392518635 19.909994556183385 24 
Total 36.807037139341006 24.423541854654150 52 
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Tests of Between-Subjects Effects 
Dependent Variable:   lTAG   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model 4759.118a 7 679.874 1.166 .342 
Intercept 68429.834 1 68429.834 117.326 .000 
Generation 710.682 1 710.682 1.218 .276 
Sex 806.094 1 806.094 1.382 .246 
Condition 368.056 1 368.056 .631 .431 
Generation * Sex 2139.274 1 2139.274 3.668 .062 
Generation * Condition 400.542 1 400.542 .687 .412 
Sex * Condition 410.149 1 410.149 .703 .406 
Generation * Sex * Condition 99.578 1 99.578 .171 .681 
Error 25662.861 44 583.247   
Total 100869.394 52    
Corrected Total 30421.979 51    

 
a. R Squared = .156 (Adjusted R Squared = .022) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   lTAG   

Mean Std. Error 95% Confidence Interval 
Lower Bound Upper Bound 

36.836 3.401 29.982 43.690 
 
 

2. Generation 
Dependent Variable:   lTAG   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 40.590 4.809 30.897 50.283 
2.0 33.082 4.809 23.389 42.775 

 
 

3. Sex 
Dependent Variable:   lTAG   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 32.838 5.000 22.762 42.914 
1.0 40.834 4.611 31.540 50.127 

 
 

4. Condition 
Dependent Variable:   lTAG   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 39.537 4.588 30.291 48.783 
1.0 34.134 5.021 24.015 44.254 
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5. Generation * Sex 
Dependent Variable:   lTAG   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 30.079 7.071 15.829 44.329 
1.0 51.101 6.521 37.958 64.244 

2.0 
.0 35.597 7.071 21.347 49.847 
1.0 30.567 6.521 17.424 43.710 

 
 

6. Generation * Condition 
Dependent Variable:   lTAG   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 46.110 6.718 32.570 59.649 
1.0 35.070 6.884 21.196 48.944 

2.0 
.0 32.965 6.250 20.370 45.560 
1.0 33.199 7.312 18.462 47.935 

 
 

7. Sex * Condition 
Dependent Variable:   lTAG   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 32.688 6.454 19.679 45.696 
1.0 32.988 7.637 17.597 48.380 

1.0 
.0 46.387 6.521 33.244 59.530 
1.0 35.281 6.521 22.138 48.424 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   lTAG   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 31.342 9.128 12.945 49.738 
1.0 28.816 10.800 7.049 50.583 

1.0 
.0 60.878 9.859 41.007 80.748 
1.0 41.324 8.538 24.116 58.532 

2.0 
.0 

.0 34.034 9.128 15.637 52.430 
1.0 37.160 10.800 15.394 58.927 

1.0 
.0 31.897 8.538 14.689 49.105 
1.0 29.237 9.859 9.367 49.107 
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Univariate Analysis of Variance - Insulin 
 
Between-Subjects Factors 
 N 

Generation 
1.0 38 
2.0 35 

Sex .0 37 
1.0 36 

Condition 
.0 40 
1.0 33 

 
 

Descriptive Statistics 
Dependent Variable:   insulin   
Generation Sex Condition Mean Std. Deviation N 

1.0 

.0 
.0 .501950000000100 .266863099526597 10 
1.0 .719800000000100 .348641745444713 10 
Total .610875000000100 .322179742045143 20 

1.0 
.0 .720800000000100 .488024031739886 10 
1.0 .562125000000100 .402250432833038 8 
Total .650277777777878 .446426735383813 18 

Total 
.0 .611375000000100 .398941160250713 20 
1.0 .649722222222322 .370777609825333 18 
Total .629539473684311 .381141624057228 38 

2.0 

.0 
.0 .583300000000100 .260522359885005 10 
1.0 .559642857142957 .285227645090490 7 
Total .573558823529512 .262354774253456 17 

1.0 
.0 .625950000000100 .278946176608500 10 
1.0 .585062500000100 .292257523122138 8 
Total .607777777777878 .277131324901905 18 

Total 
.0 .604625000000100 .263602665258968 20 
1.0 .573200000000100 .278829492188939 15 
Total .591157142857243 .266631927709348 35 

Total 

.0 
.0 .542625000000100 .260048521535277 20 
1.0 .653852941176571 .324779481182423 17 
Total .593729729729830 .292796492526968 37 

1.0 
.0 .673375000000100 .389924988569089 20 
1.0 .573593750000100 .339866994511679 16 
Total .629027777777878 .366837156251139 36 

Total 
.0 .608000000000100 .333767288037892 40 
1.0 .614939393939494 .329461913522925 33 
Total .611136986301470 .329539643757051 73 
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Tests of Between-Subjects Effects 
Dependent Variable:   insulin   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .411a 7 .059 .515 .820 
Intercept 26.439 1 26.439 231.977 .000 
Generation .025 1 .025 .223 .638 
Sex .019 1 .019 .164 .687 
Condition 3.229E-005 1 3.229E-005 .000 .987 
Generation * Sex 5.324E-005 1 5.324E-005 .000 .983 
Generation * Condition .017 1 .017 .150 .699 
Sex * Condition .174 1 .174 1.524 .222 
Generation * Sex * Condition .145 1 .145 1.269 .264 
Error 7.408 65 .114   
Total 35.084 73    
Corrected Total 7.819 72    

 
a. R Squared = .053 (Adjusted R Squared = -.050) 

 
 
 
Estimated Marginal Means 
 
 

1. Grand Mean 
Dependent Variable:   insulin   
Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.607 .040 .528 .687 

 
 

2. Generation 
Dependent Variable:   insulin   
Generation Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1.0 .626 .055 .516 .736 
2.0 .588 .058 .473 .704 

 
 

3. Sex 
Dependent Variable:   insulin   
Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .591 .056 .479 .703 
1.0 .623 .057 .510 .737 

 
 

4. Condition 
Dependent Variable:   insulin   
Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
.0 .608 .053 .501 .715 
1.0 .607 .059 .488 .725 
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5. Generation * Sex 
Dependent Variable:   insulin   
Generation Sex Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .611 .075 .460 .762 
1.0 .641 .080 .482 .801 

2.0 
.0 .571 .083 .405 .738 
1.0 .606 .080 .446 .765 

 
 

6. Generation * Condition 
Dependent Variable:   insulin   
Generation Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 .611 .075 .461 .762 
1.0 .641 .080 .481 .801 

2.0 
.0 .605 .075 .454 .755 
1.0 .572 .087 .398 .747 

 
 

7. Sex * Condition 
Dependent Variable:   insulin   
Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

.0 
.0 .543 .075 .392 .693 
1.0 .640 .083 .474 .806 

1.0 
.0 .673 .075 .523 .824 
1.0 .574 .084 .405 .742 

 
 

8. Generation * Sex * Condition 
Dependent Variable:   insulin   
Generation Sex Condition Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

1.0 
.0 

.0 .502 .107 .289 .715 
1.0 .720 .107 .507 .933 

1.0 
.0 .721 .107 .508 .934 
1.0 .562 .119 .324 .801 

2.0 
.0 

.0 .583 .107 .370 .797 
1.0 .560 .128 .305 .814 

1.0 
.0 .626 .107 .413 .839 
1.0 .585 .119 .347 .823 
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Pre-planned contrasts 
 
Generation = 1.0, Sex = .0 

 
Group Statisticsa 

 Condition N Mean Std. Deviation Std. Error Mean 

Bactin_F 
.0 7 1.000000000000100 .064304394662600 .024304776640889 
1.0 7 1.067543310475806 .091094988445845 .034430669301778 

ATGL_B_F .0 7 1.000000000000100 .026557184924215 .010037672404552 
1.0 7 .996636127815681 .031675478059184 .011972205372017 

DGAT_B_F .0 7 1.000000000000100 .017488282168248 .006609949353621 
1.0 7 1.014144917402574 .010669075292003 .004032531420300 

HSL_B_F .0 7 1.000000000000100 .022045381025052 .008332370821484 
1.0 7 1.011176650725896 .015445193853625 .005837734555473 

Bactin_L .0 7 1.000000000000100 .073596846945222 .027816993470854 
1.0 7 1.002716171092484 .051747591581476 .019558751181652 

ATGL_L .0 7 1.000000000000100 .029909040591162 .011304554765312 
1.0 7 .990991389350246 .024925364812586 .009420902376014 

DGAT_L .0 7 1.000000000000100 .013741792628059 .005193909408928 
1.0 7 1.011355158003877 .015412642503295 .005825431301500 

GCK_L .0 7 1.000000000000100 .044512556710106 .016824165039291 
1.0 7 1.005983760465029 .030166597211674 .011401902017654 

GYS_L .0 7 1.000000000000100 .020956824471719 .007920935117462 
1.0 7 .991765806134653 .020582440374365 .007779431229403 

HSL_L .0 7 1.000000000000100 .037029684018791 .013995905005923 
1.0 7 1.003864628436157 .028794724910419 .010883383026274 

PEPCK_L .0 7 1.000000000000100 .017026974865587 .006435591582075 
1.0 7 .999696152824187 .021990754483271 .008311723929407 

PYGL_L .0 7 1.000000000000100 .026928741039486 .010178107415853 
1.0 7 .994430870323691 .031160261193012 .011777471700709 

Bactin_M .0 8 1.000000000000100 .033811449458879 .011954152597124 
1.0 8 1.004311636428912 .037069474041256 .013106038234860 

ATGL_M .0 8 1.000000000000100 .030684512323720 .010848613370817 
1.0 8 1.003971107606967 .023415687325203 .008278695646962 

DGAT_M .0 8 1.000000000000100 .024743329825582 .008748088154467 
1.0 8 1.002029147044994 .018736465629224 .006624340951011 

HK_M .0 8 1.000000000000100 .008293585476718 .002932225265533 
1.0 8 1.001842809182919 .015644286619299 .005531090577731 

HSL_M 
.0 8 1.000000000000100 .014154049508470 .005004212194409 
1.0 8 .995407415187559 .010064312551086 .003558271826492 

 

a. Generation = 1.0, Sex = .0 
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Independent Samples Testa 
 Levene's Test 

for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean Difference Std. Error 
Difference 

Bactin_F 

Equal 
variances 
assumed 

.817 .384 -
1.603 

12 .135 -.06754331047580 .042144906645152 

Equal 
variances 
not assumed 

  -
1.603 

10.790 .138 -.06754331047580 .042144906645152 

ATGL_B_F 

Equal 
variances 
assumed 

.604 .452 .215 12 .833 .003363872184519 .015623334111821 

Equal 
variances 
not assumed 

  .215 11.646 .833 .003363872184519 .015623334111821 

DGAT_B_F 

Equal 
variances 
assumed 

1.264 .283 -
1.827 

12 .093 -.01414491740257 .007742915478846 

Equal 
variances 
not assumed 

  -
1.827 

9.923 .098 -.01414491740257 .007742915478846 

HSL_B_F 

Equal 
variances 
assumed 

1.904 .193 -
1.099 

12 .294 -.01117665072589 .010173865943980 

Equal 
variances 
not assumed 

  -
1.099 

10.747 .296 -.01117665072589 .010173865943980 

Bactin_L 

Equal 
variances 
assumed 

.966 .345 -.080 12 .938 -.00271617109248 .034004850735456 

Equal 
variances 
not assumed 

  -.080 10.767 .938 -.00271617109248 .034004850735456 

ATGL_L 

Equal 
variances 
assumed 

.111 .744 .612 12 .552 .009008610649954 .014715514262816 

Equal 
variances 
not assumed 

  .612 11.622 .552 .009008610649954 .014715514262816 

DGAT_L 

Equal 
variances 
assumed 

.555 .471 -
1.455 

12 .171 -.01135515800387 .007804636109135 

Equal 
variances 
not assumed 

  -
1.455 

11.845 .172 -.01135515800387 .007804636109135 

GCK_L 

Equal 
variances 
assumed 

4.475 .056 -.294 12 .773 -.00598376046502 .020323776688595 

Equal 
variances 
not assumed 

  -.294 10.551 .774 -.00598376046502 .020323776688595 

GYS_L 

Equal 
variances 
assumed 

.015 .904 .742 12 .473 .008234193865547 .011102286403581 

Equal 
variances 
not assumed 

  .742 11.996 .473 .008234193865547 .011102286403581 

HSL_L 

Equal 
variances 
assumed 

.419 .529 -.218 12 .831 -.00386462843615 .017729449597491 

Equal 
variances 
not assumed 

  -.218 11.313 .831 -.00386462843615 .017729449597491 

PEPCK_L 
Equal 
variances 
assumed 

.361 .559 .029 12 .977 .000303847176013 .010511973824601 
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Equal 
variances 
not assumed 

  .029 11.292 .977 .000303847176013 .010511973824601 

PYGL_L 

Equal 
variances 
assumed 

.163 .693 .358 12 .727 .005569129676509 .015566075620669 

Equal 
variances 
not assumed 

  .358 11.753 .727 .005569129676509 .015566075620669 

Bactin_M 

Equal 
variances 
assumed 

.282 .604 -.243 14 .811 -.00431163642891 .017738940287613 

Equal 
variances 
not assumed 

  -.243 13.883 .812 -.00431163642891 .017738940287613 

ATGL_M 

Equal 
variances 
assumed 

1.573 .230 -.291 14 .775 -.00397110760696 .013646582490990 

Equal 
variances 
not assumed 

  -.291 13.088 .776 -.00397110760696 .013646582490990 

DGAT_M 

Equal 
variances 
assumed 

4.973 .043 -.185 14 .856 -.00202914704499 .010973191850719 

Equal 
variances 
not assumed 

  -.185 13.041 .856 -.00202914704499 .010973191850719 

HK_M 

Equal 
variances 
assumed 

5.837 .030 -.294 14 .773 -.00184280918292 .006260264210595 

Equal 
variances 
not assumed 

  -.294 10.647 .774 -.00184280918292 .006260264210595 

HSL_M 

Equal 
variances 
assumed 

1.596 .227 .748 14 .467 .004592584812641 .006140312539065 

Equal 
variances 
not assumed 

  .748 12.637 .468 .004592584812641 .006140312539065 

 

a. Generation = 1.0, Sex = .0 
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Generation = 1.0, Sex = 1.0 

 

 
Group Statisticsa 

 Condition N Mean Std. Deviation Std. Error Mean 

Bactin_F 
.0 8 .993353028065093 .040244618542039 .014228621338735 
1.0 7 1.008055252386596 .043070980164195 .016279300319813 

ATGL_B_F .0 8 1.018301532728459 .026794334261449 .009473227726889 
1.0 7 1.031191071889615 .034617172409869 .013084061327028 

DGAT_B_F .0 8 1.037827632696701 .027523188205545 .009730916510072 
1.0 7 1.036762671673279 .016627296822186 .006284527481028 

HSL_B_F .0 8 1.009771069315450 .016287367502822 .005758454004526 
1.0 7 1.019286073055554 .027354111613206 .010338882380583 

Bactin_L .0 8 .898215256797683 .035035619393439 .012386962028151 
1.0 8 .900541819049234 .058873414942672 .020814895468851 

ATGL_L .0 8 1.013422323810248 .031695530908170 .011206062419302 
1.0 8 1.006854469343553 .041078360202201 .014523393529564 

DGAT_L .0 8 1.018223300423874 .017830919940986 .006304182202598 
1.0 8 1.016858936951206 .014649475050985 .005179371574752 

GCK_L .0 8 .997213036561659 .053747182349335 .019002498554507 
1.0 8 .999901868499849 .059013865231677 .020864552144739 

GYS_L .0 8 .984833921632115 .026742907854379 .009455045746304 
1.0 8 .986378209690991 .027126619483947 .009590708293948 

HSL_L .0 8 .986391840644081 .032399022539453 .011454784270796 
1.0 8 .983341598315252 .040425437121493 .014292550360584 

PEPCK_L .0 8 1.011361391000865 .019230890845221 .006799146662522 
1.0 8 1.027505287634216 .019526449838364 .006903642546668 

PYGL_L .0 8 .998147963714333 .030776504030762 .010881137350748 
1.0 8 .994062220059818 .037689459909899 .013325236340839 

Bactin_M .0 8 1.017361388888912 .029141924402926 .010303226181132 
1.0 8 1.000434564338897 .033857787907480 .011970535712742 

ATGL_M .0 8 1.003953274646893 .034119265857380 .012062982128495 
1.0 8 1.002019179959337 .029603918133326 .010466565630948 

DGAT_M .0 8 1.006313703148757 .019122151715779 .006760701574617 
1.0 8 1.002953659540020 .025593730023973 .009048750027969 

HK_M .0 8 .991945863203459 .014946769719915 .005284481112958 
1.0 8 .989376103941930 .012547146775283 .004436086284737 

HSL_M 
.0 8 1.013843645669117 .014372153445719 .005081323580926 
1.0 8 1.002839275152262 .011325522344625 .004004176825247 

 

a. Generation = 1.0, Sex = 1.0 
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Independent Samples Testa 
 Levene's Test 

for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean Difference Std. Error 
Difference 

Bactin_F 

Equal 
variances 
assumed 

.001 .975 -.683 13 .506 -
.014702224321603 

.021516059638269 

Equal 
variances 
not assumed 

  -.680 12.444 .509 -
.014702224321603 

.021621037997793 

ATGL_B_F 

Equal 
variances 
assumed 

.706 .416 -.812 13 .431 -
.012889539161256 

.015864930089235 

Equal 
variances 
not assumed 

  -.798 11.282 .441 -
.012889539161256 

.016153473446094 

DGAT_B_F 

Equal 
variances 
assumed 

.291 .599 .089 13 .931 .001064961023522 .011976525133489 

Equal 
variances 
not assumed 

  .092 11.685 .928 .001064961023522 .011583869033483 

HSL_B_F 

Equal 
variances 
assumed 

.281 .605 -.832 13 .420 -
.009515003740204 

.011435226908104 

Equal 
variances 
not assumed 

  -.804 9.515 .441 -
.009515003740204 

.011834368652401 

Bactin_L 

Equal 
variances 
assumed 

4.565 .051 -.096 14 .925 -
.002326562251650 

.024221822839420 

Equal 
variances 
not assumed 

  -.096 11.405 .925 -
.002326562251650 

.024221822839420 

ATGL_L 

Equal 
variances 
assumed 

.285 .602 .358 14 .726 .006567854466795 .018344067012482 

Equal 
variances 
not assumed 

  .358 13.154 .726 .006567854466795 .018344067012482 

DGAT_L 

Equal 
variances 
assumed 

.428 .524 .167 14 .870 .001364363472767 .008158958460014 

Equal 
variances 
not assumed 

  .167 13.492 .870 .001364363472767 .008158958460014 

GCK_L 

Equal 
variances 
assumed 

.334 .572 -.095 14 .925 -
.002688831938290 

.028220993737149 

Equal 
variances 
not assumed 

  -.095 13.879 .925 -
.002688831938290 

.028220993737149 

GYS_L 

Equal 
variances 
assumed 

.023 .881 -.115 14 .910 -
.001544288058976 

.013467723476638 

Equal 
variances 
not assumed 

  -.115 13.997 .910 -
.001544288058976 

.013467723476638 

HSL_L 

Equal 
variances 
assumed 

1.024 .329 .167 14 .870 .003050242328930 .018316360951314 

Equal 
variances 
not assumed 

  .167 13.366 .870 .003050242328930 .018316360951314 

PEPCK_L 
Equal 
variances 
assumed 

.013 .911 -
1.666 

14 .118 -
.016143896633451 

.009689616904183 
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Equal 
variances 
not assumed 

  -
1.666 

13.997 .118 -
.016143896633451 

.009689616904183 

PYGL_L 

Equal 
variances 
assumed 

1.993 .180 .237 14 .816 .004085743654615 .017203519220893 

Equal 
variances 
not assumed 

  .237 13.462 .816 .004085743654615 .017203519220893 

Bactin_M 

Equal 
variances 
assumed 

.065 .803 1.072 14 .302 .016926824550114 .015793992370148 

Equal 
variances 
not assumed 

  1.072 13.696 .302 .016926824550114 .015793992370148 

ATGL_M 

Equal 
variances 
assumed 

.884 .363 .121 14 .905 .001934094687656 .015970739930824 

Equal 
variances 
not assumed 

  .121 13.727 .905 .001934094687656 .015970739930824 

DGAT_M 

Equal 
variances 
assumed 

3.471 .084 .297 14 .770 .003360043608836 .011295439913912 

Equal 
variances 
not assumed 

  .297 12.958 .771 .003360043608836 .011295439913912 

HK_M 

Equal 
variances 
assumed 

.520 .483 .372 14 .715 .002569759261628 .006899608840962 

Equal 
variances 
not assumed 

  .372 13.592 .715 .002569759261628 .006899608840962 

HSL_M 

Equal 
variances 
assumed 

.527 .480 1.701 14 .111 .011004370516955 .006469411208247 

Equal 
variances 
not assumed 

  1.701 13.274 .112 .011004370516955 .006469411208247 

 

a. Generation = 1.0, Sex = 1.0 
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Generation = 2.0, Sex = .0 

 

 
Group Statisticsa 

 Condition N Mean Std. Deviation Std. Error Mean 

Bactin_F 
.0 6 1.036359849485396 .062848961062169 .025657980911120 
1.0 8 1.029891198020192 .078023448868659 .027585454893360 

ATGL_B_F .0 6 1.004513890937867 .023159551466762 .009454847294275 
1.0 8 .994947730997337 .022728803067811 .008035845388816 

DGAT_B_F .0 6 1.016533014020804 .011626990929492 .004746699170263 
1.0 8 1.018676551550157 .013715732832303 .004849243847397 

HSL_B_F .0 6 1.001779379050077 .010038579692783 .004098232998323 
1.0 8 1.004594477801851 .015397049956505 .005443679217321 

Bactin_L .0 8 .870623191286473 .070089213824291 .024780279191660 
1.0 8 .869448083956214 .038268300727422 .013529887474488 

ATGL_L .0 8 1.010115858669212 .043297436760819 .015307955570850 
1.0 8 1.003163565868960 .032887593452653 .011627520173703 

DGAT_L .0 8 .972402493638986 .012818301620105 .004531953999500 
1.0 8 .974815664207705 .026727874903579 .009449730795578 

GCK_L .0 8 .966870299758867 .041675630761936 .014734560561061 
1.0 8 .969563649709480 .034968626528267 .012363276473523 

GYS_L .0 8 .955186337466962 .033163125093200 .011724935319435 
1.0 8 .958201310473710 .028193966878124 .009968072584100 

HSL_L .0 8 .951462513795181 .046122562984348 .016306788526033 
1.0 8 .957186509110302 .037433897202469 .013234881279118 

PEPCK_L .0 8 .980926643906309 .018712570013606 .006615892575089 
1.0 8 .980449370950800 .027529804679639 .009733255786922 

PYGL_L .0 8 .971382996771378 .040070634104512 .014167108550937 
1.0 8 .970327781963943 .032303877692607 .011421145487596 

Bactin_M .0 8 1.001871218990701 .035645573216510 .012602613270403 
1.0 8 .974777707379136 .029019860909740 .010260070219248 

ATGL_M .0 8 1.014373590873626 .032453352977956 .011473992981541 
1.0 8 1.008696075975440 .040888730307212 .014456349237234 

DGAT_M .0 8 .999460517195259 .021115901866744 .007465598700487 
1.0 8 .988387604212467 .024908189744401 .008806374937738 

HK_M .0 8 .994510932826376 .016386586255399 .005793533130910 
1.0 8 .993249656528409 .012372882052486 .004374474401132 

HSL_M 
.0 8 .994151662718090 .014657703580344 .005182280799207 
1.0 8 .987638164268174 .008006691252768 .002830792839914 

 

a. Generation = 2.0, Sex = .0 
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Independent Samples Testa 
 Levene's Test 

for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean Difference Std. Error 
Difference 

Bactin_F 

Equal 
variances 
assumed 

.980 .342 .166 12 .871 .006468651465303 .038933034870899 

Equal 
variances 
not assumed 

  .172 11.891 .867 .006468651465303 .037673456253785 

ATGL_B_F 

Equal 
variances 
assumed 

.174 .684 .773 12 .454 .009566159940630 .012372417631957 

Equal 
variances 
not assumed 

  .771 10.805 .457 .009566159940630 .012408422481121 

DGAT_B_F 

Equal 
variances 
assumed 

.651 .436 -.308 12 .763 -
.002143537529453 

.006959577524000 

Equal 
variances 
not assumed 

  -.316 11.745 .758 -
.002143537529453 

.006785743798872 

HSL_B_F 

Equal 
variances 
assumed 

2.836 .118 -.388 12 .705 -
.002815098751874 

.007251304025369 

Equal 
variances 
not assumed 

  -.413 11.853 .687 -
.002815098751874 

.006813894417225 

Bactin_L 

Equal 
variances 
assumed 

5.232 .038 .042 14 .967 .001175107330359 .028233315283312 

Equal 
variances 
not assumed 

  .042 10.833 .968 .001175107330359 .028233315283312 

ATGL_L 

Equal 
variances 
assumed 

1.267 .279 .362 14 .723 .006952292800352 .019223234096984 

Equal 
variances 
not assumed 

  .362 13.060 .723 .006952292800352 .019223234096984 

DGAT_L 

Equal 
variances 
assumed 

4.981 .042 -.230 14 .821 -
.002413170568819 

.010480268086350 

Equal 
variances 
not assumed 

  -.230 10.058 .823 -
.002413170568819 

.010480268086350 

GCK_L 

Equal 
variances 
assumed 

.894 .360 -.140 14 .891 -
.002693349950713 

.019234289175500 

Equal 
variances 
not assumed 

  -.140 13.590 .891 -
.002693349950713 

.019234289175500 

GYS_L 

Equal 
variances 
assumed 

.427 .524 -.196 14 .847 -
.003014973006847 

.015389495745006 

Equal 
variances 
not assumed 

  -.196 13.647 .848 -
.003014973006847 

.015389495745006 

HSL_L 

Equal 
variances 
assumed 

1.732 .209 -.273 14 .789 -
.005723995315221 

.021001748367776 

Equal 
variances 
not assumed 

  -.273 13.431 .789 -
.005723995315221 

.021001748367776 

PEPCK_L 
Equal 
variances 
assumed 

1.336 .267 .041 14 .968 .000477272955609 .011768870072265 
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Equal 
variances 
not assumed 

  .041 12.330 .968 .000477272955609 .011768870072265 

PYGL_L 

Equal 
variances 
assumed 

1.502 .241 .058 14 .955 .001055214807536 .018197514361621 

Equal 
variances 
not assumed 

  .058 13.397 .955 .001055214807536 .018197514361621 

Bactin_M 

Equal 
variances 
assumed 

.360 .558 1.667 14 .118 .027093511611665 .016250996958523 

Equal 
variances 
not assumed 

  1.667 13.447 .119 .027093511611665 .016250996958523 

ATGL_M 

Equal 
variances 
assumed 

2.975 .107 .308 14 .763 .005677514898285 .018456395861810 

Equal 
variances 
not assumed 

  .308 13.314 .763 .005677514898285 .018456395861810 

DGAT_M 

Equal 
variances 
assumed 

1.259 .281 .959 14 .354 .011072912982892 .011545016392357 

Equal 
variances 
not assumed 

  .959 13.635 .354 .011072912982892 .011545016392357 

HK_M 

Equal 
variances 
assumed 

1.667 .218 .174 14 .865 .001261276298067 .007259549051045 

Equal 
variances 
not assumed 

  .174 13.024 .865 .001261276298067 .007259549051045 

HSL_M 

Equal 
variances 
assumed 

.389 .543 1.103 14 .289 .006513498450016 .005905033647992 

Equal 
variances 
not assumed 

  1.103 10.836 .294 .006513498450016 .005905033647992 

 

a. Generation = 2.0, Sex = .0 

 

 
 
  



 

 175 

Generation = 2.0, Sex = 1.0 

 

 
Group Statisticsa 

 Condition N Mean Std. Deviation Std. Error Mean 

Bactin_F 
.0 6 1.078192405137686 .085470752794388 .034893288713027 
1.0 7 1.068933773437087 .098147319312739 .037096199821370 

ATGL_B_F .0 6 1.038051121158411 .027758008532666 .011332159530201 
1.0 7 1.025734452935959 .016096666769139 .006083968172665 

DGAT_B_F .0 6 1.047249700784456 .015168882773683 .006192670460662 
1.0 7 1.052581731889449 .007327763230741 .002769634167906 

HSL_B_F .0 6 1.021251400079305 .013358547763253 .005453604287487 
1.0 7 1.015998535056647 .020823141041205 .007870407530098 

Bactin_L .0 8 .844263833677950 .042075545878379 .014875951906428 
1.0 7 .848620766417655 .045368798187672 .017147793898128 

ATGL_L .0 8 .985411631608985 .045217951992477 .015986960242689 
1.0 7 .999933171303813 .046711643374241 .017655341671402 

DGAT_L .0 8 .978392846271543 .022486860896215 .007950305913721 
1.0 7 .983882518207711 .009381774361515 .003545977402504 

GCK_L .0 8 .954058609983800 .048143471310848 .017021287516945 
1.0 7 .947719975755863 .053627458089369 .020269273935635 

GYS_L .0 8 .946586014246090 .029508301930956 .010432760198404 
1.0 7 .956284175102703 .033098305085559 .012509983439224 

HSL_L .0 8 .956949435588711 .048594948085329 .017180908661337 
1.0 7 .962960972173394 .051039999138144 .019291306376702 

PEPCK_L .0 8 1.002580029382289 .019754246116744 .006984180693254 
1.0 7 1.012693447055715 .019320176230839 .007302340227597 

PYGL_L .0 8 .972027008528020 .041540200029995 .014686678566592 
1.0 7 .980346389391121 .044978658437832 .017000334933179 

Bactin_M .0 8 1.011041111905017 .046466472419400 .016428378872853 
1.0 8 1.028636647070024 .051286365168399 .018132468296557 

ATGL_M .0 8 1.016414931092114 .035188504491547 .012441015072958 
1.0 8 1.013841175632985 .035758265379806 .012642455966829 

DGAT_M .0 8 1.002354040975030 .023904195203136 .008451409263537 
1.0 8 1.010792279359233 .028507451387654 .010078906095343 

HK_M .0 8 .989347918067758 .010628012143611 .003757569728705 
1.0 8 .987531000319498 .013524304866751 .004781563841121 

HSL_M 
.0 8 1.008520547925025 .014320139738795 .005062933958485 
1.0 8 1.009069524894072 .013648536290185 .004825486282095 

 

a. Generation = 2.0, Sex = 1.0 
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Independent Samples Testa 
 Levene's Test 

for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean Difference Std. Error 
Difference 

Bactin_F 

Equal 
variances 
assumed 

.052 .823 .180 11 .861 .009258631700699 .051518229728597 

Equal 
variances 
not assumed 

  .182 10.990 .859 .009258631700699 .050928083003324 

ATGL_B_F 

Equal 
variances 
assumed 

2.220 .164 .999 11 .339 .012316668222552 .012334880554786 

Equal 
variances 
not assumed 

  .958 7.760 .367 .012316668222552 .012862056925042 

DGAT_B_F 

Equal 
variances 
assumed 

.894 .365 -.828 11 .425 -
.005332031105093 

.006437254965492 

Equal 
variances 
not assumed 

  -.786 6.968 .458 -
.005332031105093 

.006783807253892 

HSL_B_F 

Equal 
variances 
assumed 

.338 .573 .530 11 .607 .005252865022758 .009915263465732 

Equal 
variances 
not assumed 

  .549 10.296 .595 .005252865022758 .009575234431259 

Bactin_L 

Equal 
variances 
assumed 

.640 .438 -.193 13 .850 -
.004356932739804 

.022578812527547 

Equal 
variances 
not assumed 

  -.192 12.406 .851 -
.004356932739804 

.022701118489915 

ATGL_L 

Equal 
variances 
assumed 

.284 .603 -.611 13 .552 -
.014521539694928 

.023762435164401 

Equal 
variances 
not assumed 

  -.610 12.608 .553 -
.014521539694928 

.023817934153349 

DGAT_L 

Equal 
variances 
assumed 

4.396 .056 -.600 13 .559 -
.005489671936269 

.009154937565987 

Equal 
variances 
not assumed 

  -.631 9.618 .543 -
.005489671936269 

.008705246685778 

GCK_L 

Equal 
variances 
assumed 

.349 .565 .241 13 .813 .006338634228038 .026264706389014 

Equal 
variances 
not assumed 

  .239 12.232 .815 .006338634228038 .026468239356069 

GYS_L 

Equal 
variances 
assumed 

.091 .767 -.600 13 .559 -
.009698160856713 

.016156110403717 

Equal 
variances 
not assumed 

  -.595 12.193 .562 -
.009698160856713 

.016289326904625 

HSL_L 

Equal 
variances 
assumed 

.621 .445 -.234 13 .819 -
.006011536584783 

.025742052516273 

Equal 
variances 
not assumed 

  -.233 12.534 .820 -
.006011536584783 

.025832888420516 

PEPCK_L 
Equal 
variances 
assumed 

.088 .772 -.999 13 .336 -
.010113417673527 

.010120727563252 
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Equal 
variances 
not assumed 

  -
1.001 

12.810 .335 -
.010113417673527 

.010104600573736 

PYGL_L 

Equal 
variances 
assumed 

.285 .602 -.372 13 .716 -
.008319380863201 

.022338060006247 

Equal 
variances 
not assumed 

  -.370 12.385 .717 -
.008319380863201 

.022465749824051 

Bactin_M 

Equal 
variances 
assumed 

.031 .864 -.719 14 .484 -
.017595535165108 

.024467898130277 

Equal 
variances 
not assumed 

  -.719 13.866 .484 -
.017595535165108 

.024467898130277 

ATGL_M 

Equal 
variances 
assumed 

.064 .803 .145 14 .887 .002573755459229 .017737264414709 

Equal 
variances 
not assumed 

  .145 13.996 .887 .002573755459229 .017737264414709 

DGAT_M 

Equal 
variances 
assumed 

.569 .463 -.642 14 .532 -
.008438238384303 

.013153351915670 

Equal 
variances 
not assumed 

  -.642 13.587 .532 -
.008438238384303 

.013153351915670 

HK_M 

Equal 
variances 
assumed 

.099 .757 .299 14 .770 .001816917748360 .006081338917731 

Equal 
variances 
not assumed 

  .299 13.259 .770 .001816917748360 .006081338917731 

HSL_M 

Equal 
variances 
assumed 

.027 .871 -.078 14 .939 -
.000548976969146 

.006994184593367 

Equal 
variances 
not assumed 

  -.078 13.968 .939 -
.000548976969146 

.006994184593367 

 

a. Generation = 2.0, Sex = 1.0 
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ANOVA 

 
Tests of Between-Subjects Effects 

Dependent Variable:   Bactin_F   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .054a 7 .008 1.468 .201 
Intercept 59.404 1 59.404 11236.692 .000 
Generation .018 1 .018 3.417 .071 
Sex .000 1 .000 .036 .851 
Condition .004 1 .004 .725 .399 
Generation * Sex .019 1 .019 3.540 .066 
Generation * Condition .008 1 .008 1.572 .216 
Sex * Condition .003 1 .003 .507 .480 
Generation * Sex * Condition .002 1 .002 .410 .525 
Error .254 48 .005   
Total 60.142 56    
Corrected Total .308 55    

 

a. R Squared = .176 (Adjusted R Squared = .056) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   ATGL_B_F   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .014a 7 .002 2.716 .019 
Intercept 56.949 1 56.949 79991.992 .000 
Generation .000 1 .000 .356 .553 
Sex .012 1 .012 16.703 .000 
Condition .000 1 .000 .186 .668 
Generation * Sex .000 1 .000 .160 .691 
Generation * Condition .001 1 .001 1.200 .279 
Sex * Condition .000 1 .000 .222 .640 
Generation * Sex * Condition .000 1 .000 .439 .511 
Error .034 48 .001   
Total 57.530 56    
Corrected Total .048 55    

 

a. R Squared = .284 (Adjusted R Squared = .179) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   DGAT_B_F   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .016a 7 .002 8.517 .000 
Intercept 58.567 1 58.567 217165.844 .000 
Generation .002 1 .002 6.885 .012 
Sex .014 1 .014 50.227 .000 
Condition .000 1 .000 1.357 .250 
Generation * Sex 1.511E-005 1 1.511E-005 .056 .814 
Generation * Condition 2.720E-005 1 2.720E-005 .101 .752 
Sex * Condition .000 1 .000 .464 .499 
Generation * Sex * Condition .000 1 .000 1.087 .302 
Error .013 48 .000   
Total 59.191 56    
Corrected Total .029 55    

 

a. R Squared = .554 (Adjusted R Squared = .489) 
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Tests of Between-Subjects Effects 

Dependent Variable:   HSL_B_F   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .003a 7 .000 1.241 .300 
Intercept 56.591 1 56.591 166127.874 .000 
Generation 9.952E-006 1 9.952E-006 .029 .865 
Sex .002 1 .002 6.043 .018 
Condition .000 1 .000 .847 .362 
Generation * Sex .000 1 .000 .429 .515 
Generation * Condition .000 1 .000 1.360 .249 
Sex * Condition 8.198E-005 1 8.198E-005 .241 .626 
Generation * Sex * Condition 3.554E-005 1 3.554E-005 .104 .748 
Error .016 48 .000   
Total 57.182 56    
Corrected Total .019 55    

 

a. R Squared = .153 (Adjusted R Squared = .030) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   Bactin_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .201a 7 .029 10.108 .000 
Intercept 49.676 1 49.676 17458.754 .000 
Generation .129 1 .129 45.302 .000 
Sex .060 1 .060 21.041 .000 
Condition 6.420E-005 1 6.420E-005 .023 .881 
Generation * Sex .023 1 .023 8.199 .006 
Generation * Condition 3.287E-006 1 3.287E-006 .001 .973 
Sex * Condition 2.510E-005 1 2.510E-005 .009 .926 
Generation * Sex * Condition 3.328E-005 1 3.328E-005 .012 .914 
Error .151 53 .003   
Total 49.986 61    
Corrected Total .352 60    

 

a. R Squared = .572 (Adjusted R Squared = .515) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   ATGL_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .005a 7 .001 .484 .842 
Intercept 60.896 1 60.896 42446.032 .000 
Generation .000 1 .000 .106 .746 
Sex 1.732E-006 1 1.732E-006 .001 .972 
Condition 6.086E-005 1 6.086E-005 .042 .838 
Generation * Sex .003 1 .003 2.166 .147 
Generation * Condition .001 1 .001 .354 .554 
Sex * Condition .001 1 .001 .378 .541 
Generation * Sex * Condition .000 1 .000 .240 .626 
Error .076 53 .001   
Total 61.257 61    
Corrected Total .081 60    

 

a. R Squared = .060 (Adjusted R Squared = -.064) 
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Tests of Between-Subjects Effects 
Dependent Variable:   DGAT_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .021a 7 .003 9.437 .000 
Intercept 60.078 1 60.078 192924.048 .000 
Generation .018 1 .018 57.160 .000 
Sex .001 1 .001 4.585 .037 
Condition .000 1 .000 .976 .328 
Generation * Sex 7.134E-005 1 7.134E-005 .229 .634 
Generation * Condition 4.138E-006 1 4.138E-006 .013 .909 
Sex * Condition 8.826E-005 1 8.826E-005 .283 .597 
Generation * Sex * Condition .000 1 .000 .761 .387 
Error .017 53 .000   
Total 60.343 61    
Corrected Total .037 60    

 

a. R Squared = .555 (Adjusted R Squared = .496) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   GCK_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .028a 7 .004 1.825 .102 
Intercept 58.360 1 58.360 26630.908 .000 
Generation .026 1 .026 11.775 .001 
Sex .002 1 .002 .820 .369 
Condition 2.399E-005 1 2.399E-005 .011 .917 
Generation * Sex .001 1 .001 .288 .594 
Generation * Condition .000 1 .000 .066 .799 
Sex * Condition .000 1 .000 .066 .799 
Generation * Sex * Condition 3.124E-005 1 3.124E-005 .014 .905 
Error .116 53 .002   
Total 58.722 61    
Corrected Total .144 60    

 

a. R Squared = .194 (Adjusted R Squared = .088) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   GYS_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .022a 7 .003 4.014 .001 
Intercept 57.439 1 57.439 73773.699 .000 
Generation .020 1 .020 26.243 .000 
Sex .001 1 .001 1.177 .283 
Condition 3.443E-005 1 3.443E-005 .044 .834 
Generation * Sex 9.560E-005 1 9.560E-005 .123 .727 
Generation * Condition .000 1 .000 .459 .501 
Sex * Condition .000 1 .000 .330 .568 
Generation * Sex * Condition 9.094E-006 1 9.094E-006 .012 .914 
Error .041 53 .001   
Total 57.683 61    
Corrected Total .063 60    

 

a. R Squared = .346 (Adjusted R Squared = .260) 
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Tests of Between-Subjects Effects 
Dependent Variable:   HSL_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .022a 7 .003 1.907 .087 
Intercept 57.778 1 57.778 34465.338 .000 
Generation .020 1 .020 11.910 .001 
Sex .000 1 .000 .296 .589 
Condition .000 1 .000 .089 .766 
Generation * Sex .002 1 .002 1.167 .285 
Generation * Condition .000 1 .000 .068 .796 
Sex * Condition 4.169E-005 1 4.169E-005 .025 .875 
Generation * Sex * Condition 4.924E-005 1 4.924E-005 .029 .865 
Error .089 53 .002   
Total 58.051 61    
Corrected Total .111 60    

 

a. R Squared = .201 (Adjusted R Squared = .096) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   PEPCK_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .014a 7 .002 4.698 .000 
Intercept 60.977 1 60.977 142832.239 .000 
Generation .004 1 .004 8.522 .005 
Sex .008 1 .008 19.257 .000 
Condition .001 1 .001 1.443 .235 
Generation * Sex .000 1 .000 .482 .490 
Generation * Condition 3.653E-005 1 3.653E-005 .086 .771 
Sex * Condition .001 1 .001 1.625 .208 
Generation * Sex * Condition 3.256E-005 1 3.256E-005 .076 .783 
Error .023 53 .000   
Total 61.255 61    
Corrected Total .037 60    

 

a. R Squared = .383 (Adjusted R Squared = .301) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   PYGL_L   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .009a 7 .001 .974 .460 
Intercept 58.948 1 58.948 44944.994 .000 
Generation .008 1 .008 6.200 .016 
Sex 6.764E-005 1 6.764E-005 .052 .821 
Condition 5.425E-006 1 5.425E-006 .004 .949 
Generation * Sex .000 1 .000 .120 .730 
Generation * Condition .000 1 .000 .207 .651 
Sex * Condition .000 1 .000 .085 .771 
Generation * Sex * Condition 5.910E-005 1 5.910E-005 .045 .833 
Error .070 53 .001   
Total 59.235 61    
Corrected Total .078 60    

 

a. R Squared = .114 (Adjusted R Squared = -.003) 
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Tests of Between-Subjects Effects 

Dependent Variable:   Bactin_M   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .014a 7 .002 1.375 .234 
Intercept 64.616 1 64.616 45284.699 .000 
Generation 3.342E-005 1 3.342E-005 .023 .879 
Sex .006 1 .006 4.103 .048 
Condition .000 1 .000 .343 .561 
Generation * Sex .002 1 .002 1.720 .195 
Generation * Condition 9.717E-006 1 9.717E-006 .007 .935 
Sex * Condition .001 1 .001 .385 .537 
Generation * Sex * Condition .004 1 .004 3.046 .086 
Error .080 56 .001   
Total 64.710 64    
Corrected Total .094 63    

 

a. R Squared = .147 (Adjusted R Squared = .040) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   ATGL_M   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .002a 7 .000 .290 .955 
Intercept 65.016 1 65.016 59292.086 .000 
Generation .002 1 .002 1.716 .196 
Sex 8.442E-005 1 8.442E-005 .077 .782 
Condition 3.862E-005 1 3.862E-005 .035 .852 
Generation * Sex 2.689E-005 1 2.689E-005 .025 .876 
Generation * Condition .000 1 .000 .097 .757 
Sex * Condition 7.848E-006 1 7.848E-006 .007 .933 
Generation * Sex * Condition 8.116E-005 1 8.116E-005 .074 .787 
Error .061 56 .001   
Total 65.080 64    
Corrected Total .064 63    

 

a. R Squared = .035 (Adjusted R Squared = -.086) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   DGAT_M   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .002a 7 .000 .600 .753 
Intercept 64.197 1 64.197 115816.837 .000 
Generation .000 1 .000 .191 .663 
Sex .001 1 .001 1.910 .172 
Condition 1.573E-005 1 1.573E-005 .028 .867 
Generation * Sex .000 1 .000 .588 .446 
Generation * Condition 1.700E-006 1 1.700E-006 .003 .956 
Sex * Condition .000 1 .000 .360 .551 
Generation * Sex * Condition .001 1 .001 1.119 .295 
Error .031 56 .001   
Total 64.230 64    
Corrected Total .033 63    

 

a. R Squared = .070 (Adjusted R Squared = -.047) 

 



 

 183 

Tests of Between-Subjects Effects 
Dependent Variable:   HSL_M   
Source Type III Sum of Squares df Mean Square F Sig. 
Corrected Model .004a 7 .001 3.822 .002 
Intercept 64.184 1 64.184 392933.666 .000 
Generation .000 1 .000 .989 .324 
Sex .003 1 .003 19.943 .000 
Condition .000 1 .000 2.846 .097 
Generation * Sex .000 1 .000 1.292 .261 
Generation * Condition 9.278E-005 1 9.278E-005 .568 .454 
Sex * Condition 4.234E-007 1 4.234E-007 .003 .960 
Generation * Sex * Condition .000 1 .000 1.111 .296 
Error .009 56 .000   
Total 64.197 64    
Corrected Total .014 63    

 

a. R Squared = .323 (Adjusted R Squared = .239) 
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carbohydrate$ supplementation$ on$ anaerobic$ exercise$ performance$ in$ adolescent$ males.$

Oral$ presentation,$ 24th$ Pediatric$ Work$ Physiology$ Meeting,$ Tallinn$ (Laulasmaa),$ Estonia,$

2007.$$

!
Regional!and!Local!Meetings!
Bradshaw$T,!LM!Guth,$JM$Hagberg.$Genetic$variants$in$SLC30A8$gene$had$no$effect$on$Type$

2$ Diabetes$ related$ phenotypes$ in$ response$ to$ exercise$ training.$ Poster$ presentation,$

University$ of$ Maryland$ School$ of$ Public$ Health$ Summer$ Training$ and$ Research$ program$
poster$session.$August$2012.$
$

McKinney$M,! LM!Guth,$ JM$Hagberg.$ Genetic$ variation$ in$ PPAR$ gamma$will$ affect$ obesity$

related$ phenotype$ in$ response$ to$ exercise$ training.$ Poster$ presentation,$ University$ of$
Maryland$ School$ of$ Public$ Health$ Summer$ Training$ and$ Research$ program$poster$ session.$
August$2012.$

$

Beltran$ EP,$ LM!Guth,$ AC$Venezia,$MP$Marini,$ EE$ Spangenburg,$ SM$Roth.$ The$Potential$ of$

Exercise$Ancestry$to$have$Transgenerational$effects$on$body$composition,$glucose$tolerance,$

and$ gene$ expression$ in$ mouse$ liver.$ Howard$ Hughes$ Medical$ Institute$ Undergraduate$
Research$Symposium.$University$of$Maryland,$February$2012.$

$

*Guth!LM,$AT$Ludlow,$S$Witkowski,$MR$Marshall,$L$Lima,$AC$Venezia,$T$Xiao,$MHLT$Lee,$EE$

Spangenburg,$and$SM$Roth.$Exercise$ancestry$decreases$lipogenesisHrelated$gene$expression$

in$skeletal$muscle$of$male$offspring.$Poster$presentation,$University$of$Maryland$School$of$
Public$Health$Research$Interaction$Day,$September$2011.$

$

Guth!LM,$AT$Ludlow,$S$Witkowski,$MR$Marshall,$ L$ Lima,$AC$Venezia,$T$Xiao,$MHLT$Lee,$EE$

Spangenburg,$and$SM$Roth.$Exercise$ancestry$decreases$lipogenesisHrelated$gene$expression$

in$skeletal$muscle$of$male$offspring.$Poster$presentation,$University$of$Maryland$Graduate$
Research$Interaction$Day,$April$2011.$

$

Guth!LM,$AT$Ludlow,$S$Witkowski,$MR$Marshall,$L$Lima,$K$Perret,$N$Caffes,$AC$Venezia,$EE$

Spangenburg,$and$SM$Roth.$Transgenerational$effects$of$physical$activity$ancestry$on$mouse$

body$ composition,$ glucose$ metabolism,$ and$ gene$ expression.$ Poster$ presentation,$

University$of$Maryland$Bioscience$Day,$November$2010.$

$

! !



 

 

Guth!LM,$AT$Ludlow,$S$Witkowski,$MR$Marshall,$L$Lima,$K$Perret,$N$Caffes,$AC$Venezia,$EE$

Spangenburg,$and$SM$Roth.$Transgenerational$effects$of$physical$activity$ancestry$on$mouse$

body$ composition,$ glucose$ metabolism,$ and$ gene$ expression.$ Poster$ presentation,$
University$of$Maryland$School$of$Public$Health$Research$Interaction$Day,$October$2010.$

$

*Guth!LM,$LE$Hanna,$JD$Lee,$and$AD$Mahon.$The$effects$of$carbohydrate$supplementation$

on$fatigue$during$intermittent$cycling.$Poster$presentation,$2007$Midwest$Regional$Chapter$
American$College$of$Sports$Medicine$Annual$Meeting,$Columbus,$OH,$2007.$

$

*Honor/Award$received$

$

GRANTS!
Effects$ of$ Exercise$ Ancestry$ on$ Mouse$ Offspring$ Glycemia.$ Graduate$ Research$ Initiative$

Fund$(GRIF),$Department$of$Kinesiology,$University$of$Maryland.$$2500.$2012.$$

$

The$effects$of$chronic$exercise$on$metabolic$gene$expression$and$DNA$methylation$patterns$

in$CAST/Ei$mouse$skeletal$muscle.$$Graduate$Research$Initiative$Fund$(GRIF),$Department$of$

Kinesiology,$University$of$Maryland.$$2500.$2010.$

!
TEACHING!
$

2013$ EXSC$340,!Exercise!Prescription!and!Testing!for!General!Populations,!
Trinity!Washington!University,!Adjunct!Faculty!
$ The$ course$ provides$ students$ with$ theoretical$ principles$ and$
practical$ experiences$ in$ exercise$ prescription$ and$ assessment$ in$ lowXrisk$
health$ populations.$ HealthXrelated$ fitness,$ rather$ than$ performance$ based$
fitness$is$emphasized.$The$course$content$is$based$upon$guidelines$published$
by$ the$ American$ College$ of$ Sports$ Medicine$ (ACSM)$ and$ provides$ a$
foundation$for$future$ACSM$certification$as$a$Health/Fitness$instructor.$

$

2012$ KNES!497,!Independent!Studies!Seminar!(Physical!activity!and!the!obesity!
and!diabetes!epidemic),!University!of!Maryland,!Co=Instructor$with$James$

M.$Hagberg,$Ph.D.$

$ $ Seminar$ discussions$ of$ contemporary$ issues$ vital$ to$ the$ discipline,$
critiques$ of$ research$ in$ the$ student’s$ area/areas$ of$ special$ interest,$ and$
completion$ of$ a$ major$ project$ where$ the$ students$ will$ be$ asked$ to$
demonstrate$ the$ ability$ to$ carry$ out$ the$ investigative$ process$ in$ terms$ of$
problem$solving$and$critical$writing$under$faculty$direction.$

$

2008H2009$$ PEP!493L,!Advanced!Concepts!in!Exercise!Physiology!Laboratory,!Ball!State!
University,!Instructor$
$ The$ effect$ of$ exercise$ on$ the$ anatomical$ structures$ and$ the$
physiological$functions$in$humans$during$acute$and$chronic$activity.$

$

!
! !



 

 

SERVICE!
2008H2009$ Undergraduate$Curriculum$Committee,$School$of$Physical$Education,$Sport$

&$Exercise$Science,$Ball$State$University$

2010H2013$ Functional$Genomics$Laboratory$Manager$

2010H2011$ University$of$Maryland$Kinesiology$Graduate$Committee$$

2010H2012$ University$ of$Maryland$ School$ of$ Public$ Health$ Orientation$ Student$ Panel$

$ (Panel$Member)$

2011H2012$ University$of$Maryland$Kinesiology$Graduate$Student$Council$

2012$ $ Kinesiology$Orientation$Student$Panel$(Panel$Member)$

2012H2013$ School$of$Public$Health$Dean’s$Student$Advisory$Committee$

$

Mentoring:!
2009H2010$ Kat$Perret$(Undergraduate$Kinesiology$Honors$Student)$

2010H2011$ Nick$Caffes$(Undergraduate$Kinesiology$Honors$Student)$

2010H2012$ Michael$Marini$(Exercise$Physiology$Master$of$Arts$Student)$

2010H2013$ Estefan$Beltran$(Undergraduate$Research$Assistant,$MarylandHHHMI$$

$ $ Research$Fellow)$

2011$ $ Elizabeth$Antman$(Undergraduate$Research$Assistant)$

2011H2012$$ Erika$Olney$(Undergraduate$Research$Assistant)$

2011H2012$ Angel$Baez$(University$of$Maryland$STAR)$

2011H2012$ Tancia$Bradshaw$(University$of$Maryland$STAR)$

2012H2013$ Tripti$Soni$(University$of$Maryland$STAR)$

2012H2013$ Martell$McKinney$(University$of$Maryland$STAR)$

2012H2013$ Kelsey$Corrigan$(Exercise$Physiology$Master$of$Arts$Student)$

2012H2013$ Craig$Foote$(Undergraduate$Research$Assistant)$

2013$ $ Nigell$Essix$(University$of$Maryland$STAR)$

2013$ $ Yolanda$Pine$(University$of$Maryland$STAR)$

2013$ $ Chris$Leon$(Undergraduate$Research$Assistant)$

$

Assisted$with$Manuscript$ Peer$ Review$ for$ Journal$ of$ Applied$ Physiology,$ Sports$Medicine,$
Medicine$and$Science$in$Sports$and$Exercise.$
$

MEMBERSHIP! IN!PROFESSIONAL!ORGANIZATIONS!
2007H2008$$ Midwest$Chapter$of$the$American$College$of$Sports$Medicine$

2008Hpresent$$ American$College$of$Sports$Medicine$

2012Hpresent$ Delta$Omega$(Honorary$Society$in$Public$Health)$

$

HONORS!AND!AWARDS!
2007$$ Outstanding$Poster$Presentation,$Undergraduate$(Midwest$ACSM,$Columbus,$OH)$

2008$ Internal$Travel$Award,$Ball$State$University$(North$American$Society$of$Pediatric$$

Exercise$Medicine$Annual$Meeting,$Colorado$Springs,$CO)$

2011$ 2
nd
$ Place$ in$ Communication$ (University$ of$ Maryland$ School$ of$ Public$ Health$

Research$Interaction$Day,$College$Park,$MD)$

2012$ Inducted$ into$ Delta$ Omega$ (Honorary$ Society$ in$ Public$ Health),$ University$ of$

Maryland$Gamma$Zeta$Chapter$

$

$


