CASPER: An Integrated Energy-Driven Approach for Task Graph Scheduling
on Distributed Embedded Systems

Vida Kianzad, Shuvra S. Bhattacharyya and Gang Qu
ECE Department and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742
{vida, ssb, gangqu} @eng.umd.edu

Abstract

For multiprocessor embedded systems, the dynamic volt-
age scaling (DVS) technique can be applied to scheduled
applications for energy reduction. DVS utilizes slack in the
schedule to slow down processes and save energy. There-
fore, it is generally believed that the maximal energy sav-
ing is achieved on a schedule with the minimum makespan
(maximal slack). Most current approaches treat task as-
signment, scheduling, and DVS separately. In this paper,
we present a framework called CASPER (Combined As-
signment, Scheduling, and PowER-management) that chal-
lenges this common belief by integrating task scheduling
and DVS under a single iterative optimization loop via ge-
netic algorithm. We have conducted extensive experiments
to validate the energy efficiency of CASPER. For homoge-
neous multiprocessor systems (in which all processors are
of the same type), we consider a recently proposed slack dis-
tribution algorithm (PDP-SPM) [3]: applying PDP-SPM
on the schedule with the minimal makespan gives an aver-
age of 53.8% energy saving; CASPER finds schedules with
slightly larger makespan but a 57.3% energy saving, a 7.8%
improvement. For heterogeneous systems, we consider the
power variation DVS (PV-DVS) algorithm [13], CASPER
improves its energy efficiency by 8.2%. Finally, our results
also show that the proposed single loop CASPER frame-
work saves 23.3% more energy over GMA+EE-GLSA [12],
the only other known integrated approach with a nested
loop that combines scheduling and power management in
the inner loop but leaves assignment in the outer loop.

1. Introduction

Energy consumption has become a major design issue
for modern real-time embedded systems, especially battery-
operated portable devices. Such systems also operate un-
der tight and hard deadlines. While the early task comple-
tion (before the deadline) may not bring the system extra

benefit, one can utilize the extra available time to improve
other valuable system performance parameters such as en-
ergy consumption. Energy consumption is a quadratic func-
tion of the supply voltage and processor speed, and reducing
the supply voltage and thus processing speed can save en-
ergy, but at the cost of increased execution time. Dynamic
voltage scaling (DVS) is a promising method for embed-
ded systems to exploit multiple supply voltage and clock
frequency levels and to achieve the highest possible energy
efficiency for time-varying computational loads while meet-
ing the deadline constraint.

A large number of papers devoted to the energy-aware
voltage-scheduling problem only consider single-processor
systems or independent tasks (e.g., see [7]). There are also
some research works that address dependent tasks on mul-
tiprocessors. However, in most of these works the authors
propose that their algorithms are to be used in the inner loop
of a system-level optimization tool and hence proceed with
the assumption that either the whole process of task assign-
ment to the processors and the ordering of tasks or one of
these steps (task assignment or task ordering) is determined
a priori and do not factor the effect of ordering or assign-
ment in the DVS results [6][9][11]. One serious drawback
to this assumption is that globally optimal voltage schedul-
ing may not be generated. We believe that the integration
of task assignment and ordering and voltage scheduling is
essential since different assignments and orderings provide
voltage schedulers with great flexibility and potential en-
ergy saving that can be achieved. In this paper, we address
such integration that simultaneously optimizes for task as-
signment, ordering and scheduling.

The idea of integrating scheduling into the power man-
agement process has been studied for heterogeneous mul-
tiprocessor systems. The work in [13] employs two nested
genetic algorithms (GAs) where the outer GA generates the
assignments and the inner one explores various orderings.
This algorithm is not however efficient in terms of run time.
Furthermore, little research has been done for such integra-
tion for the homogeneous multiprocessor case. Although

the homogeneous scenario can typically be handled as a
special case of techniques that address heterogeneous mul-
tiprocessor systems, one can expect that when we limit the
target architecture to homogeneous processors, the result
would better reflect the effect of ordering on DVS as the
effect of processor selection and assignment has been toned
down. Additionally, all the available compile time is spent
on optimizing the task ordering and scheduling rather than
being shared with allocation and assignment. In our ap-
proach, we present a GA framework that can be applied to
both heterogeneous and homogeneous multiprocessor sys-
tems. It thoroughly searches the solution space to find an
assignment and ordering of tasks on each processing ele-
ment (PE) and generates a schedule that meets the deadline
and minimizes the power consumption simultaneously. We
study the impact of i) integrating the scheduling process
into the power optimization framework for DVS-enabled
embedded multiprocessor systems and ii) combining task
mapping, ordering and scheduling and encoding them in the
form of a single chromosome in a GA framework.

2. Problem Statement and Assumptions

We consider an embedded application represented in
terms of an acyclic task graph G = (V, E) with |V tasks
{v1,v2,...,v;y|} and | E| communication edges. The multi-
ple processor system being used to implement the applica-
tion consists of np processing elements (PE) of the follow-
ing types: general-purpose processors, application-specific
integrated circuits, and FPGAs. A communication resource
(CR) is a hardware resource for communication messages.
In the case of homogeneous systems, we assume all the PEs
are general-purpose processors with identical CRs (links).

For the application, we further assume that there is a par-
tial order among the tasks (vertices) indicating the data de-
pendency. For example, v; < v; implies that v; has higher
scheduling priority than v;, which means that v; can not
start until v; finishes. Tasks can have hard or soft deadlines.
A hard deadline must be met at runtime to ensure the cor-
rectness and feasibility of the solution. We represent the set
of tasks with hard deadlines as V. In addition, we define
the following functions:

e weet : V x PE — R denotes a function that assigns
the worst case execution time (wcet(v;, pe;)) to task
v; of set V running on processing element pe;. In ho-
mogeneous multiprocessor systems this function is re-
duced to a one-dimensional function weet : V. — R
(i.e. weet(v;)). The execution of tasks is assumed to
be non-preemptive.

e C : VxVxCR — R" denotes a function that
gives the latency incurred on each communication
edge on a given communication resource (CR). That is

3"'c"""'""'""'"""""""""""'7 D
-\ PARSING :

| = :

N :

D= ALLOCATION

=

TASK ASSIGNMENT &
TASK ORDERING

SCHEDULING

[POWER MANAGEMENT]
k2
PERFORMANCE EVALUATION

1. Application Graphs
_—T

2. Technology Library
3. Constraints/

Optimization Goals

<
4
k
~
o
-

Power-Optimized
Solution

Figure 1. CASPER framework.

C(v;,vj, cry) is the cost of transferring data between
v; and vy on communication resource cry, if they are
assigned to different processing elements. This value
is zero if both tasks are running on the same processing
element. C(v;,v;,cry) is reduced to C'(v;,v;) when
we consider a homogeneous communication network.

We adopt the following models for the DVS-enabled
processor’s dynamic power consumption pg and operational
frequency f:

pa = Cef Vi, (1)
f o=k (Vaa—V2)*/Vaa,)

where C.y is the effective switching capacitance, Vg is the
supply voltage, k is a circuit dependent constant and V; is
the threshold voltage. The problem formulation remains the
same and our approach are still applicable for other models.
We use them mainly for the purpose of illustrating the idea
and comparison with existing results where these models
are used [3][12][13].

Given the application and multiprocessor system de-
scribed as above, we find (i) a mapping of tasks to PEs, (ii)
an ordering of the tasks and edges, and (iii) the voltage pro-
file for each task such that all the hard deadline constraints
are met and the total energy consumption is minimized.

3. Proposed Algorithmic Solution

Our proposed solution is an iterative improvement
framework that integrates task assignment, ordering and
scheduling, and static power management all in one phase.
We call this framework Combined Assignment, Schedul-
ing, and PowER-management or CASPER. A high-level
overview of CASPER is depicted in Fig. 1.

CASPER takes the application task graphs, the sets of
PEs and CRs, and the constraint/optimization requirements
as input. It first parses these inputs and creates the appro-
priate data structures. Next, it uses a simple standard algo-
rithm to allocate PEs and CRs such that every task and every
edge has at least one instance of PE or CR that it can exe-
cute on. It then uses a genetic algorithm that combines the

task assignment, ordering and scheduling, as well as power
management by DVS to find the most energy efficient so-
lution (see the loop in Fig. 1). Details on the genetic al-
gorithm is given below in Section 3.1. Section 3.2 briefly
describes the two power management techniques that we
have selected for homogeneous and heterogeneous multiple
processor systems. We mention that any slack distribution
based power management method can be integrated into the
CASPER framework. We selected these two because they
provide the best available results.

3.1. Combined Assignment and Scheduling

The core part of CASPER is a genetic-list scheduling
algorithm that encodes both assignment and ordering in a
single chromosome (similar representation has been used
for a multiprocessor scheduling algorithm called CGL [4]).
In this representation, each individual solution or chromo-
some is encoded as a list of np strings, with each string
corresponding to one allocated PE of the target system. The
strings maintain both the assignment and execution order
of the tasks on each PE. Fig. 2 illustrates the relationship
between an arbitrary schedule for a task graph and its cor-
responding string representation for a homogeneous multi-
processor system. The list of tasks within each PEs of the
schedule is ordered in ascending order of the task heights,
which guarantees that the precedence constraints are satis-
fied. The height height(v;) of a task v; is a random integer
whose value is such that: Vv; € Ry, AVuy, € Uy, :

maz(hinit(vi)) + 1 < height(v;) <
min(hinit(vk)) — 1, 3)

where R, (Uy,) is the set of immediate predecessors (suc-
cessors) of v; and h;p, is defined as,

0, Rvi = (Z)a
hinit(vi) =4 14+ max hinit(v;), otherwise. “4)

viERy,

A randomized version of list scheduling is used to gener-
ate the initial population as follows: For each height # per-
form the following steps: (1) Pick a random task v, from
V(R) (V(h) is defined as the set of tasks in G with height
h). (2) Pick a processing element pe,. that can execute v, at
random. (3) Assign v, to pe,.. (4) Repeat Steps (1)-(3) until
all remaining tasks from V' (k) are scheduled [4].

Once the population is generated, the chromosomes’ fit-
ness needs to be evaluated. The chromosome’s fitness or
performance measure consists of two parts: the first part
is a measure of constraint satisfaction (satisfying the dead-
line) and the second part is based on the schedule perfor-
mance with respect to energy E. This is because objec-
tive measures are, in practice, meaningless if the schedule

Task Graph

Schedule

0 Py [Vi] Va

[Ve | Ve ‘v‘

Py Vo

Vs ‘ Vg ‘ Vg

time — .

Vs 234
vy 3 String Representation
Vg 5
— s[v]
[

Figure 2. lllustration of the string representa-
tion of a schedule.

is infeasible (i.e., violates the constraints). Hence, the opti-
mization measures should not be considered until the given
constraint has been satisfied. The fitness value F'(I;, P;) for
this problem with (time) constraint performance measure 7
and (energy dissipation) optimization performance measure
E,,,; for each individual chromosome I; in population F; is
defined in (5):

A(.(Ii Pt) >0
AC(IZ Pt) S o,

Te(li, Pt)
Filli,) = 4 14Bpi.1) ©)
2

where

o 7.(I;, P,) is the constraint performance measure and is
defined as,

1 Ac(Iz Pt) > 0,

Tc(IuPt) { 1 AC(IZ Pt) <o ©

Here, A.(I;,P;) is a measure of time constraint
(deadline) violation and is defined as A.(I;, P;) =

> (Tend(v) —74(v)), where Tepq(v) is the finish time
veVy
of task v in the schedule and 74(v) is task v’s hard

deadline.

e Eop(I;, P,) represents the fitness of the individual
chromosome I; with respect to the energy and is de-
fined as

max(E(I;, P,)) — E(I;, P,)

Eopt(Ii, Pr) = max(E(I;, Ft)) -

Most research works give the most weight to the solutions
that have a larger global slack (the difference between the
deadline and the makespan and do not consider local slack
(gaps between the tasks) as important. Such techniques em-
ploy scheduling algorithms that find the minimum-length
makespan and feed their results to the associated power
management algorithms. However, we regard both global
and local slack as equally important, and consequently use
an integrated approach to find a solution that has an overall

slack distribution (global and local) that saves the most en-
ergy. This can also be seen from Equation (5). The second
condition of this equation shows that for all the solutions
that satisfy the time constraint (or meet the deadline) the ef-
fect of constraint satisfaction is a constant number and not
a function of the global slack.

It can also be observed from Equation (5) that infeasible
solutions are allowed in the solution. Considering infeasi-
ble solutions in the intermediate states of optimization is to
make the solution space as continuous as possible. In com-
plex systems we expect that most of the obtained schedules
are not feasible. If such schedules are not accepted as mem-
bers of the population then we cannot guarantee that starting
from any solution the entire solution space can be searched.

The selection process allows the algorithm to take bi-
ased decision favoring good solutions. We use the “roulette
wheel” principle to randomly select an individual in popu-
lation P;. The better the fitness of the individual the better
the odds of it being selected. The selected individuals are
then crossed to make new solutions (a cutting place is de-
cided based on a randomly chosen height). The mutation
randomly transforms a solution to a new solution with a sin-
gle exchange of two tasks in the scheduled solution. By use
of the height values, crossover and mutation always main-
tain the precedence constrains and hence never generate any
invalid solutions(see S6 and S7 in Fig. 3). Once the new in-
dividuals are generated, the genetic algorithm proceeds by
evaluating the new solutions and repeating the same steps of
selection, crossover and mutation until the termination con-
dition is met (such as the maximum number of generation is
reached or the energy saving in two consecutive generations
is less than 1%).

The outline of our algorithm is presented in Fig. 3. The
power management algorithms used in S3 are described in
the following section.

3.2. Power Management Techniques

In this part, we briefly introduce the power management
algorithms that we use in our experimentation. Specifically,
we use the Static Power Management with Proportional
Distribution and Parallelism Algorithm (PDP-SPM) for
homogeneous system and the Power Variation Dynamic
Voltage Scheduling (PV-DVS) algorithm for heterogeneous
systems. The only reason to use them (see S3 of Fig. 3) is
that they have been reported to outperform other techniques
in energy efficiency by a large margin. More details
about these two algorithms can be found in [3] and [13]
respectively. However, the proposed CASPER framework
can adopt any existing power management methods.

3.2.1. Static Power Management with Proportional Dis-
tribution and Parallelism Algorithm (PDP-SPM). PDP-
SPM algorithm is a static power management (SPM) tech-

INPUT: A task graph G, np PEs and time-constraint 7.
OUTPUT: An energy-optimized mapping of the task graph.
S1 Generate initial population P; (of size POP_SIZFE)
where each individual is a list of ordered strings of size P.
S2 Compute the finish times of tasks for each individual.
S3 Apply the power management algorithm to each indi-
vidual and compute the corresponding energy dissipation E.
S4 Calculate each individual’s fitness based on 7. and Ep;.
S5 Select k individuals from P; according to their fitness
values using a roulette wheel, where k = POP_SIZE.

S6 Perform the crossover % times: select 2 strings,

cut each string in 2 parts by randomly choosing a height i
and partitioning the tasks with heights larger and smaller than
h into right and left sets respectively. Keep the left sets and
exchange the right sets to get two new strings.

S7 Perform the mutation randomly: choose task v;, then
pick another task v; among all the tasks with the same height
as v; at random and exchange the position of the two tasks.
S8 If the maximum number of generations is reached stop,
otherwise go to S2.

Figure 3. Flow of CASPER

nique for homogeneous system to reduce energy consump-
tion by utilizing slack, both global and local, and paral-
lelism among the processors. For a scheduled task graph, it
applies the following two phases repetitively: 1) proportion-
ally distribute the slack among the tasks under the deadline
constraint; and 2) create new (local) slack based on paral-
lelism and return to the first phase to re-distribute it.

In the first phase, the algorithm distributes slack, both
the global and local static slack, to the tasks hierarchically.
First, the global slack is distributed to all vertices propor-
tionally to their execution time. Each vertex will have its
execution time scaled up by a factor of 5. However, this
does not guarantee that the new makespan will be increased
by the same factor & because the inter-processor communi-
cation cost does not scale. Therefore, this process is applied
repetitively until the new makespan violates the deadline 7.
Then the CPU time assigned to all the vertices along critical
paths will be scaled down to meet the deadline and marked
as final. There may still exist local slack and hence the al-
gorithm continues to scale up the execution time for those
vertices that have not been marked as final. At the end of
this phase, little or none slack is expected.

In the second phase, PDP-SPM re-allocates the CPU
time assigned to each task based on the system’s degree of
parallelism (that is, the number of PEs running at the same
time). The basic idea is to create new slack by reducing the
CPU time assigned to the tasks with the minimal degree
of parallelism. Such new slack will be redistributed using
the same procedure as in the first phase. If this results in
energy reduction, CPU time will be reduced from this same
task again until little or no energy saving can be achieved.
Then this process restarts with another task of the minimal

degree of parallelism until all the tasks are examined.

3.2.2. Power Variation (PV) DVS Algorithm. For hetero-
geneous system, we consider PV-DVS algorithm, which re-
ports significantly higher energy reduction than other DVS
scheduling approaches [13]. This algorithm is based on a
constructive heuristic using the energy difference (AE(v)):
the energy saving obtained by extending task v’s execution
time by a time quantum of At.

The algorithm first calculates the available slack times
of each hard deadline task to identify all extendable tasks.
Next, it calculates the slack time of all tasks and inserts all
the tasks with a slack time greater than a At,,,;,, into a prior-
ity queue. The energy difference AE(v) for all the extend-
able tasks in the priority queue are then calculated and the
queue is sorted in decreasing order of the energy differences
(or tasks energy saving potential). The algorithm iterates
until no extendable tasks are left in the priority queue.

In each iteration the algorithm picks the first element of
the priority queue and extends it by At and updates the
energy dissipation value of the selected task. The exten-
sion is then propagated through the mapped and scheduled
task graph. Next, the inextensible tasks are removed from
the extendable task priority queue. Taking into account the
tasks in the priority queue the time quantum At is recalcu-
lated, energy differences are updated and priority queue is
reordered. At this point, the algorithm either invokes a new
iteration or ends, based on the state of the extendable queue.

4. Experimental Results

The goal of our experiments is twofold: (i) to mea-
sure the effectiveness of an integrated framework versus
the one that separates task assignment, ordering, and power
management; (ii) to evaluate our integrated framework
CASPER against another synthesis approach [13], which
is the current state-of-the-art.

For the first goal, we compare CASPER with the Hetero-
geneous/Homogeneous Genetic List Scheduling (HGLS).
HGLS is the same as CASPER except that the power man-
agement phase is moved out from the optimization loop.
Therefore, the genetic algorithm finds a solution that is opti-
mized for makespan, on which the power management tech-
nique will be applied.

For the second goal, we mention that synthesis approach
proposed in [13] separates task mapping (assignment) and
scheduling into two nested optimization loops. The outer
loop (GMA) is a genetic algorithm optimizing for mapping,
and the inner loop (EE-GLSA) is an energy efficiency Ge-
netic List Scheduling Algorithm. We hereby refer to this
approach as GMA+EE-GLSA.

All algorithms were implemented using LEDA, a C++
class library of efficient graph-related data structures and

algorithms, on an Ultra SPARC-IIi/440MHz. The GA
parameters are set as follows: population size = 70 with
50% generation overlap, mutation rate = 0.2 and crossover
rate = 0.8. We used different sets of benchmarks for homo-
geneous/heterogeneous target architectures as follows:

I) The homogeneous set consists of two subsets:

e The first set is the Referenced Graph (RG) set that in-
cludes task graphs that have been used by different re-
searchers for a similar application. This set consists
of 10 task graphs that are represented as RG1-RG10.
RG1 and RG2 are taken from [1] and [2], respectively.
RG3 is a quadrature mirror filter bank, RG4 is based
on gaussian elimination for solving four equations in
four variables [10], RG5 and RG®6 are different imple-
mentations of the fast Fourier transform (FFT), RG7 is
an adaptation of a PDG of a physics algorithm [10],
RG8 is an implementation of the Laplace transform
[15], RGY is another implementation of FFT and RG10
is based on mean value analysis [8]. The deadline as-
signed to each graph was computed using a method
similar to that used in [5] based on the graph’s max-
imum length path and the average execution times of
the tasks.

e The second set is the TG set and consists of 5 large ran-
dom task graphs (50 ~ 100 nodes) that were generated
using TGFF [5].

II) The heterogeneous set consists of 25 TGFF generated
task graphs (tgffl - tgff25) used by Schmitz et al. [13].
The specification includes graphs of 8 to 100 task nodes
that are mapped to heterogeneous architectures containing
power managed DVS-PEs and non-DVS enabled PEs. Ac-
cordingly, the power dissipation varies among the executed
tasks (with maximal variation of 2.6 times on the same PEs).

4.1. Homogeneous System

To evaluate the effectiveness of the integration process,
we first ran HGLS, for a given number of generations (500
generations here). Once HGLS generates the final solution
(a schedule with minimum makespan), we apply the PDP-
SPM algorithm to this result and measure the energy sav-
ing for the schedule. Next we run CASPER for the same
number of generations, using the same PDP-SPM algorithm
as the power management method in S3 (Fig. 3) and find
a schedule that minimizes the energy consumption while
meeting the deadline. We then compare the results. It
should be noted that both algorithms indeed use the same
task assignment and scheduling scheme with the differ-
ence that HGLS generates the minimum-makespan sched-
ule with no regard to energy saving while CASPER finds a
schedule that consumes less energy. Scheduling and power

Table 1. Energy saving by CASPER and HGLS for RG and TG set.

Task HGLS + PDP-SPM Proposed (CASPER)
Graph || |V|/|E| Td m % saving m % saving | %improv.
RG1 16/24 65 44 574 45 60.7 7.8
RG2 17/28 50 37 49.1 38 54.3 10.2
RG3 14/15 130 102 41.0 102 44.0 5.1
RG4 20/39 2120 1596 50.4 1597 523 3.7
RG5 28/32 225 150 574 151 61.5 9.5
RG6 28/32 460 265 64.1 265 65.5 4.1
RG7 41/69 925 585 58.5 610 62.2 9
RG8 18/29 665 390 62.0 420 65.6 9.3
RG9 95/158 151 118 47.1 122 50.5 6.4
RG10 361/684 | 17154 | 11933 58.8 12818 62.2 8.1
TGI 43/74 1400 1014 47.1 1025 50.5 6.5
TG2 68/119 2000 1345 57.1 1353 59.3 5.3
TG3 93/170 3300 2462 49.3 2472 535 8.4
TG4 93/170 3300 2132 59.5 2172 67.3 19.3
TGS 113/216 5400 4325 47.8 4422 50.0 4.2
Average Energy Saving 53.8 - 57.3 7.8

management are performed at compile time and hence the
genetic algorithm run-time can be tolerated.

We assume all PEs are homogeneous and tasks have sim-
ilar worst case execution times on each PE. The PEs sup-
ports DVS with four different voltages and their correspond-
ing clock frequencies as below: ((1.75V,1000MHz), (1.40V,
800MHz), (1.20V, 600MHz) and (1.00V, 466MHz)).

The experimental results for RG and TG sets are given
in Table 1. The last column labelled %improv shows the
percent improvement (in energy reduction) that the inte-
grated CASPER has vs. the non-integrated approach of
HGLS + PDP-SPM. RG graphs are mapped to 4- and 6-PE
architectures (depending of the graph size) and TG graphs
are mapped to a 6-PE system, which is a reasonable scale
for a power/energy-sensitive embedded multiprocessor sys-
tem. As expected, the makespan-driven HGLS (usually)
finds better makespans than CASPER (the two columns la-
belled by p in Table 1). HGLS’s achieved energy consump-
tion, however, are consistently worse than that of CASPER.
Even in those instances where both algorithms find simi-
lar makespans (e.g. RG3), CASPER is capable of saving
more power. This shows that various task assignment and
ordering pairs may generate similar makespans, and a non-
integrated framework (where the schedule is used as an in-
put to the power-management algorithm) has no way of dis-
tinguishing among such solutions on the basis of their en-
ergy saving efficiency. On average, HGLS saves 53.8% en-
ergy and CASPER saves 57.8%, with a 7.8% improvement
over HGLS.

4.2. Heterogeneous System

First, to evaluate the effectiveness of the integration
process, we ran HGLS on the tgff task sets and applied the
PV-DVS technique to the results for energy optimization.
We then ran CASPER on the same task sets with the same
amount of run time. Results of these experiments are re-

ported in Table 2. Columns 3 and 4 show the energy re-
duction achieved by CASPER (with respect to a task ex-
ecution at nominal supply voltage) and its %improvement
over HGLS + PV-DVS’s results respectively. One can see
that CASPER outperforms HGLS + PV-DVS in energy ef-
ficiency by 8.2%. We mention that we give both algorithms
the same run time for a “fair” comparison. However, the
PV-DVS algorithm is very time consuming and thus the ge-
netic algorithm in CASPER stops before its stopping con-
dition (S8 in Fig. 3) is reached. We observe that the genetic
algorithm has not converged for most of cases, including all
the cases with negative results in the last column of Table 2.

Next, we compare CASPER framework against GMA
+ EE-GLSA algorithm using similar configuration (same
allocation and constraints). The results are also shown
in Table 2. Our results show that the proposed single
loop CASPER framework saves 23.3% more energy over
GMA+EE-GLSA that uses two nested optimization loops,
even when we restrict its run time as explained above. Po-
tentially, the elimination of one loop may also give us large
saving in run time.

In summary, we apply the same power management
technique (PV-DVS in this case) in all the three algorithms,
their difference in energy efficiency indicates that combin-
ing task mapping, ordering, scheduling, and power man-
agement in the same loop, rather than separate them, yields
better solution.

5. Conclusions

In this paper we presented an integrated approach for
task mapping and scheduling onto homogeneous and het-
erogeneous embedded multiprocessors using a genetic al-
gorithm. We employed a solution representation (for our
GA) that encodes both task assignment and ordering into
a single chromosome and hence significantly reduces the
search space and problem complexity. We employed two

Table 2. Energy saving by CASPER, HGLS
and GMA + EE-GLSA for benchmarks of [13].

Task |[V|/|E] | CASPER | %improv | %improv
Graph %Saving | vs. GMA | vs. HGLS
tgffl 8/9 82.84 41.64 18.53
tgff2 26/43 71.43 46.02 -0.24
tgff3 40/77 73.27 19.33 -32.71
tgff4 20/33 88.40 32.25 85.30
tgffs 40/77 87.46 72.74 31.44
tgft6 20/26 92.68 59.00 -44.01
tgff7 20/27 34.65 8.28 3.74
tgff8 18/26 74.46 7.32 69.33
tgff9 16/15 43.42 -5.33 -18.40
tgff10 16/21 38.48 19.49 -78.52
tgff11 30/29 17.85 -10.70 -4.22
tgff12 36/50 88.37 40.52 86.05
tgff13 37/36 51.75 -24.43 34.26
tgff14 24/33 22.99 7.12 2.48
tgff15 40/63 84.84 80.34 71.20
tgff16 31/56 22.29 -9.40 -0.59
tgff17 29/56 94.63 90.17 3.37
tgff18 12/15 8.04 -31.42 -28.51
tgff19 14/19 17.05 -56.93 -31.22
tgff20 19/25 83.40 29.59 -28.35
tgff21 70/99 85.80 78.67 55.62
tgff22 100/135 36.27 -21.34 -22.64
tgff23 84/151 86.72 65.08 6.08
tgff24 80/112 75.43 12.01 10.72
tgff25 49/92 51.07 33.49 15.85

Avg. Energy Saving 60.54 23.34 8.2

leading power management techniques (for homogeneous
and heterogeneous embedded systems) in the fitness func-
tion of our genetic algorithm and integrated framework.
We experimentally showed that this integrated framework
can save on average about 8% more energy compared to
a non-integrated technique using the same power manage-
ment techniques. Our results showed that a scheduling algo-
rithm (HGLS here) if employed in an integrated framework
with a power management algorithm, is capable of improv-
ing itself with respect to energy efficiency. More broadly,
we also showed that a task assignment and scheduling that
generate a better makespan do not necessarily save more
power, and hence, integrating task scheduling and slack dis-
tribution based power management methods is crucial for
fully exploiting the energy-saving potential of an embed-
ded multiprocessor implementation. We also evaluated our
synthesis framework and showed that it produces solutions
with higher energy efficiency than GMA + EE-GLSA, one
of the best known techniques.

6. Acknowledgments

A portion of this research was supported by the Ad-
vanced Sensors Collaborative Technology Alliance. The
Authors would like to thank Michael D. Rinehart (MIT)

for his help in programming the Genetic Algorithm, and
Shaoxiong Hua (Synopsys Inc.) for kindly providing his
PDP-SPM algorithm.

References

[11 A. Al-Maasarani, Priority-Based scheduling and evaluation of prece-
dence graphs with communication times,” M.Sc. Thesis, King Fahd
University of Petroleum and Minerals, Saudi Arabia, 1993.

[2] M. A. Al-Mouhamed, “Lower bound on the number of processors and
time for scheduling precedence graphs with communication costs,”
IEEE Trans. Software Engineering, Vol. 16, no. 12, pp. 1390-1401,
1990.

[3] S. Hua and G. Qu, “Power Minimization Techniques on Distrib-
uted Real-Time Systems by Global and Local Slack Management,”
IEEE/ACM Asia South Pacific Design Automation Conference, Jan-
uary 2005.

[4] R.C. Correa, A. Ferreira and P. Rebreyend, “Scheduling multiproces-
sor tasks with genetic algorithms,” IEEE Tran. on Parallel and Dis-
tributed Systems, Vol. 0, pp. 825-837, 1999.

[5] R. Dick, D. Rhodes, and W. Wolf, “TGFF: Task graphs for
free,” Proc. Int. Workshop Hardware/Software Codesign, pp. 97-101,
March 1998.

[6] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-
energy systems using variable supply voltage processors,” Proc. of
Asia and South Pacific Design Automation Conference, pp. 449-455,
Jan. 2001.

[71 N. K. Jha, “Low power system scheduling and synthesis,” Proc. of
Int. Conf. on Computer Aided Design, pp. 259-263, 2001.

[8] Y. Kwok and I. Ahmad, “Benchmarking and comparison of the task
graph scheduling algorithms,” Journal of Parallel and Distributed
Computing, Vol. 59, no. 3, pp. 381-422, Dec. 1999.

[9] J. Luo and N. K. Jha, “Power-profile driven variable voltage scal-
ing for heterogeneous distributed real-time embedded systems,” Int.
Conf. on VLSI Design, Jan. 2003.

[10] C.L.McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle, “A
comparison of heuristics for scheduling DAGS on multiprocessors,”
Proc. of the Int. Parallel Processing Symp., p 446-451, 1994.

[11] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy
aware scheduling for distributed real-time systems, ” Int. Parallel and
Distributed Processing Symp., pp. 243-248, April 2003.

[12] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping
and scheduling for DVS enabled distributed embedded systems,” De-
sign, Automation and Test in Europe Conference, March 2002.

[13] M. Schmitz, B. Al-Hashimi, and P. Eles, “Iterative Schedule Opti-
misation for Voltage scalable Distributed Embedded Systems,” ACM
Trans. on Embedded Computing Systems, vol. 3, pp. 182-217, 2004.

[14] D. Sylvester and H. Kaul, “Power-driven challenges in nanometer
design,” IEEE Design and Test of Computers, pp. 12-21, Nov. 2001.

[15] M. -Y. Wu and D. D. Gajski, “Hypertool: A programming aid for
message-passing systems,” IEEE Trans. on Parallel and Distributed
Systems, 1(7), pp. 330-343, July 1990.

