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Chapter 1: Introduction

To provide the background of the problems dealhwitthe current stud:
Chapter 1 reviews the individual differencesrating scalaise. Psychological aspe:
of those individual differences, methodologiesddrass the related psychome
issues, and the findings in previous empirical sidre detailed. The chap

continues to discuss the purpose and significahtigeccurrent study
1.1 Background of the Problem

1.1.1 Response styles.

While dichotomousl-scored item format is moprevalent in cognitivi
assessment, items with ordered polytomous respmaisgories have been routins
used in self-report, nooegnitive assessment including various psycholdgests anc
attitudinal survey questionnaires. Prototypicalregies of orered polytomous iter
format are Likerttype rating scales (Likert,1932), of which an ithasion is presente
in Figure1?

Indicate your degree of agreement with the followiag question by selecting the appropriate catego:y.

Question: In most ways, my life is close to my iceal.

0 : 2 3 4

| l l 1 ]

I T 1 1 1
Srongly Disagree Neither Disagree Agree Strongly
Disagree Nor Agree Agree

Figure 1 A Likert scale with five ordered response categ

! The question ‘In most ways, my life is close to igal’ is one of the five items of Satisfaction W
Life Scale (SWLS) by Diener, Emmons, Larse, & GniffL985). SWLS intends to measure glc
cognitive judgments of satisfaction with one’s liféhe criginal form of SWLS uses seven respo
categories and does not use the graphical repeggembf the continuum as presented in Figu



As seen in the illustrative item in Figure 1 adrikkscale item attempts to quantify the
individual differences in a continuous trait vat@based on a certain number of
response categories that are often associatednigtlfer scores. It is generally
assumed that if a respondent chooses a highermsspategory, he or she has more
of the latent trait being measured by the item thaerson who selects a lower
response category. The formal aspects of the ratiatp such as the number of
response categories, category-wording and item-wgrcan differ in various ways.

In order to utilize the Likert-scale measures dglvadicators of a latent trait
of interest and to further compare the trait lev@long (groups of) respondents,
certain necessary conditions must first be satisk®r example, it must be assumed
that respondents’ choice of a response categ@ylédy based on the substantive
meaning of the item. In other words, any contergiévant factor should not
systematically influence the respondent’s choiceesponse categories. Additionally,
all respondents in a sample interpret the meanitigeogprovided response categories
and use them in the same manner when they ansaleitem.

These assumptions, however, do not hold if respusdaesent different
response styles responding to a rating scale. A response gatko referred to as a
response set or response bias) can be definediadigdual’s tendency that causes a
person to consistently respond to test items basesbme formal aspects of the item
or item connotation rather than the underlying tts the item intends to measure

(Cronbach, 1946; Messick, 1991; Nunally, 1978; Rasll 1991). The prototypical



manifestations of the response styles in orderggguous response items are
respondents’ differential uses of response categori

Among many others (see e.g., Baumgartner & Steepka@01 and Paulhus,
1991 for a review of various response styles) glparticular patterns of response
category use that are well-documented in psychaoerdarature (e.g., Nunally, 1978:
Paulhus, 1991) are the primary focus in the cursardy. These are extreme response
style (ERS), middle-category response style (MRS8), acquiescent response style
(ARS). ERS is an individual tendency that leadgi@s@n to predominantly use
extreme response categories (e.g., categories 9 embigure 1) and avoid less
extreme choices (response categories in the maldhee scale). Conversely, MRS is a
tendency to select the middle category (e.g., cayeg in Figure 1) predominantly
while avoiding extreme responses. ARS is a tendemage only one side of the
response scale, i.e., agreemeyed-saying e.g., categories 3 or 4 in Figure 1) or

disagreement (fay-saying e.g., categories 0 and 1 in Figure 1).

1.1.2 Why response styles matter ?

The presence of response styles in a data setacse various psychometric
problems. These adverse effects may invalidatestese differences, obscure true
relations among traits of interest, impact tesabelity, and confound the results of
comparative studies at the group-level.

Response styles can invalidate the assessmemnteo$dores by inflating or
deflating observed item scores. Cronbach (1946)tpdiout that response styles

always reduce logical validity of a test becausy thermit people with equal



knowledge, identical attitude, or equal amounta pérsonality trait to have different
test scores. Suppose that there are two peopleahgeslevels of ‘satisfaction with
life’ are located around category 3 on the lateait tontinuum in Figure 1. However,
they are different in terms of their response style., one is an ERS respondent and
the other is a MRS respondent. If their differesgponse styles are operating during
the item response process, it is highly likely tiat two people’s choice of response
category will not end up with the same. Insteae thuthe confounding effects of their
different response styles, the ERS respondent msigjbtt category 4, for example,
while the MRS respondent might select categorydhséquently, the ERS respondent
would be regarded as being more satisfied withifeigshan the MRS respondent.

Using the observed test scores contaminated bpmespstyles can also cause
serious problems in clinical diagnostic setting=e(s.g., Gollwitzer, Eid, &
Jurgensen, 2005). In clinical symptom assessmiggs;ommon practice for the total
(sum) scores to be computed by adding up the categsponse scores and these sum
scores are compared to appropriate normative vatuasler to make diagnostic
decisions. Without considering individual differesdn response styles, this approach
for assessing clinical symptoms will lead to lowensitivity as well as lower
specificity of the diagnosis.

Response styles may also give rise to spuriousadgms among trait

domains of interest. Austin, Deary, Gibson, McGregod Dent (1998) assessed the
consistency of response styles over items andsaescales of the NEO-FFI (NEO-

Five Factor Inventory: Costa & McCrae, 1992) byngsa measure of response spread



on a rating scale. They found non-trivial, highigrsficant correlations between
unrelated, independent items. The observed spucmuslations may be attributed to
the effect of response styles operating acrosgdhes because it seems unlikely that
the items whose contents are not related with ettedr yielded such high levels of
correlation. Austin et al. (1998) also pointed that such spurious correlations could
cause erroneous extraction and interpretationtentdactors in multivariate data
analysis that were based on correlation matricesilé8ly, Austin et al. (2006) and
Baumgartner and Steenkamp (2001) provided empsigaport for the contribution of
response styles inflating scale-level correlations.

The impact of response styles on test reliabilay be found in a simulation
study by Liu, Wu, and Zumbo (2009). They generatgitying data, which
represented ERS responses under a mixture modedimgwork. Their results of the
bias and efficiency of Cronbach’s coefficient algm@wed that outliers severely
inflated the alpha coefficient as well as the stadcerror of the estimates of the
coefficient.

Another methodological issue is that response styed to be manifested
differentially across groups. That is, certain masge styles tend to be more prevalent
in a particular group than in another. This betwgesup variability in response styles
is likely to contribute to the violation of strucéllinvariance and, in turn, any
observed group differences may simply reflect mesment artifacts due to the
differences in response styles. Regarding the etwgeoup variability, Cheung and

Rensvold (2000) used multi-group confirmatory facoalysis and demonstrated that



certain types of measurement non-invariance werewatied to the manifestations of
ERS and ARS. Bolt and Johnson (2009) applied aidimiénsional item response
theory (IRT) model and found that ERS was an undeglsource of item differential
functioning (DIF).

In various areas of study such as marketing, orgdéional and industrial
psychology, education, and medicine there has aeemmulating empirical evidence
of between-group variability across nations, etlgnaups, and cultural regions (e.g.,
Baumgartner & Steenkamp, 2001; Buckley, 2009; CheuiRensvold, 2000;

Harzing, 2006; Yang, Harkness, Chin, & Villar, 202Bor example it has been shown
that ERS and ARS are more prevalent in among Hispdmatinos and African-
Americans than among Caucasians in the U.S. (Bacl&@'Malley, 1984; Clarke

[ll, 2000; Hui & Triandis. 1989; Marin, Gamba & Mar 1992; Ross & Mirowsky,
1984). Japanese and Chinese respondents in théedded to use extreme responses
less often than Americans in responding to posieeting (Lee, Jones, Mineyama, &
Shang, 2002). Japanese and Korean students temded middle categories more
often than their American counterparts (Chen, Be8tevenson, 1995; Lee & Green,
1991). In Europe, ERS has been shown to be movalerd in Mediterranean
countries (ltaly, Spain, and Greece) than in théddrKingdom, Germany, and

France (Van Herk, Poortinga, & Verhallen, 2004).

1.1.3 Response styles as meaningful constructs
Rather than perceiving response styles as a sofigystematic measurement

bias, one strand of research in psychology viewgarse styles as meaningful



reflectors of psychological constructs such asqelty traits and cognitive
processes, or some cultural values. In those resstudies, the relation between
some criteria variables and specific response sigle investigated. For examples,
ERS appeared to be positively related to traitetyxiBerg & Collier, 1953; Lewis &
Taylor, 1955; Norman 1969), extraversion (Austieay, & Egan, 2006), and
conscientiousness (Austin et al., 2006; Harzin@630

In cognitive process research area, Temple andr@eis(1990) and Kulas
and Stachowski (2008) found that middle categodoesements (e.g., ‘neither
disagree nor agree’, ‘no answer’, or ‘?’) exhibitedger response latencies than other
category endorsements and were more frequentiyeeliwzhen the given items were
unclear, personally intrusive, or asked introspectjuestions. The results of these
experimental studies have shown the evidence o¢@ased cognitive load in
processing information contained in the middle gatg. The implication is that
response styles, in some cases, could be assowitkethe respondent’s attempts to
reduce the cognitive demand required to procesmdaning of the item content and
the labels of the response categories.

In cross-cultural comparative studies, the typeesponse style and cultural
values are associated. For example, using the mesastiHofstede’s cultural
dimensions, several studies argued that ARS seemed to bavsbgitorrelated with

collectivism and femininity but negatively relatedpower distance and uncertainty

% The Hofstede’s cultural dimensions theory (HofstetP80) postulates four dimensions along which
cultural values can be analyzed. The four dimerssara individualism-collectivism; uncertainty
avoidance; power distance (strength of social hiksg and masculinity-femininity (task orientation
versus person-orientation).



avoidance. ERS appeared to be positively correlatddindividualism, power
distance, uncertainty avoidance, and masculindgg gsg., Chen, Lee, & Stevenson,
1995; de Jong, Steenkamp, Fox, & Baumgartner, 2888,ing, 2006; Johnson,

Kulesa, Cho, & Shavitt, 2005).

1.1.4 Methodology to deal with response styles

No matter how response styles are consideredireated as a statistical
nuisance that needs to be controlled for or asanmgful construct of interest, the
initial treatment of the data analysis should kedlstinction of the cases that are
influenced by certain response styles. FollowirgdIstinction, the identified cases
can be either controlled for (by eliminating theses from the data or applying a
correction method) or related with other varialiteseveal the nature of the response
styles and investigate their structural relatiom®ag latent variables.

Traditional strategies dealing with response stykssimple descriptive
statistics calculated for heterogeneous items afahbed scales, which are designed
as “built-in control” in an instrument. Relativelgcently, different latent variable
models have been proposed to aid in solving tlsisaese style problems.

Heterogeneous items. Heterogeneous items refer to the items whose ctaten
are psychologically diffused and theoretically ipdedent of each other. In practice, a
number of items that do not refer to substantiveganingful psychological construct
can be used as heterogeneous items in an assesatternatively, items varying
widely in content can be selected from diverseo§stales that have little in common

(see, e.g., Couch & Keniston, 1960). If a respohdensistently favors particular



response categories (e.g., extreme categoriesysasuch heterogeneous items, this
behavior can be taken as evidence of a responige(sty., ERS). Response style
measures for ERS, MRS, or ARS can then be deriyazhloulating the number or the
proportion of the heterogeneous items on whictspardent selects the most extreme
categories, middle category, or categories intjustupper or the lower extreme,
respectively. Instead of frequency or proporti@sponse range as measured by the
standard deviation of item scores within individulas also been used (Austin et al.,
1997; Greenleaf, 1992; Hui & Triandis, 1985).

The major weakness of using heterogeneous itethatisf the substantive
independence among heterogeneous items is notntedror a given sample of
respondents, which is not unusual in practiceréisalting response style measures are
confounded with the respondent’s trait level. lolsaases, clustering respondents into
different response-style groups may not be valliaferences based on these clusters
can hardly be justified. There is also a practicaitation. In the literature, it has been
pointed out that the number of heterogeneous isdmoald be large in order for a
response style to have sufficient opportunity tonitest itself by permeating the
responding pattern in a consistent way (Couch &igten, 1960; Greenleaf, 1992). If
a test is lengthened due to the inclusion of hg@meous items, it may raise some
psychometric problems of a test (e.g., an increasgeasurement error due to the
respondent’s fatigue and lowered face validitynaf test) as well as the issues of time

and cost needed for the administration of the itomgn



Balanced scales. A balanced scale consists of pairs of logicallyersed items,
i.e., one item of the pair states a construct p@atjt while the other of the pair states
the equivalent construct negatively (Couch & Kamstl960; Paulhus, 1991). In such
a way, the scale becomes semantically balancedel$pondent has a tendency to
acquiesce and respond to a pair of such logiceallgnsed item biyea-saying’or
‘nay-saying’to both, his or her responses are conceptuafiftficong. If this
conflicting endorsement is repeated, it can progileng evidence for ARS. Using a
balanced scale in an assessment per se does oloideréhe occurrence of ARS. A
well-constructed balanced scale, however, caniali@gcore distortion to some
degree. By “reverse coding” item responses (mosgponses to negatively worded
items) before summing up all item scores, highoar item scores obtained by simply
‘yea-saying’or ‘nay-saying'will cancel each other out and ARS respondents wil
receive a moderate test score.

Mirowsky and Ross (1991) showed that the ARS iaflahe variance and
reliability of the trait estimates when unbalanesedles were used, leading to either an
overestimation or an underestimation of the retabetween the construct measured
by the unbalanced scale and other constructs. W§t€92) showed that the
covariance due to ARS is extracted using structgahtion modeling when an
unbalanced scale is used.

M odel-based approaches. Besides utilizing heterogeneous items and balanced

scales in the test development stage, an increasimdper of studies have attempted a
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more rigorous solution to this problem by applyiatgnt variable models into which
response style effects are directly incorporated.

Within the structural equation modeling (SEM) framoek, response styles are
examined as group characteristics and group diftm®in the manifestation of
response styles are statistically tested. Cheuddr@msvold (2000) applied multiple-
group confirmatory factor analysis to test for gresence of ERS and ARS and
determine whether cultural groups can be meanilygfoimpared on the basis of
factor means. Group differences in ERS and AR®pegationalized as non-
invariance in the factor loadings and interceptas Btudy showed the utility of using
the SEM approach in this matter, but also highkgdhts limitations. The SEM
approach was not appropriate to use when no itertigeiscale were invariant across
groups with respect to the effects of responsestyllso, the SEM approach does not
provide individual level information.

Billiet and McClendon (2000) estimated a confirnmgtthree-factor model that
included ARS as a common “style” factor (i.e., noettiactor) in addition to two
“content” factors. By using two sets of balancedlss measuring two independent
constructs, they demonstrated that the effecttytd factor can be separated from the
content factors. Moors (2003, 2004, 2008) adagtedsame rationale as Billiet and
McClendon (2000) but within latent class factorlgsia (LCFA). Moors emphasized
the flexibility of this approach over multi-groud=& in that LCFA allowed response
styles to be manifested within an exploratory sgttn which no response style was

hypothesized in a given data set. In Moors emgigtadies, an ERS factor was
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identified. Billiet and McClendon and Moors’s apaoh commonly impose a
restriction that the factor loadings are equaldibitems. However, if the items are
actually influenced differentially by the resporség@le, assuming a constant factor
loading on the style factor would lead to a modedspecification.

Within an item response theory (IRT) framework, tBooid Johnson (2009)
developed a multidimensional model that extendskBatominal response model
(Bock, 1972) to investigate ERS. In this modelpmse styles were characterized as
continuous trait dimensions that influenced theaativeness of particular score
categories. The item response probabilities wefiaetkas a function of two trait
dimensions, i.e., an intended substantive traitEER® tendency. Based on the
estimates for these two dimensions, observed tests were rectified for the impact
of ERS. Although this approach has been shown tesk&ul to help understand how
both substantive and ERS traits are combined &xgitern response behaviors,
whether it can be successfully applied for othpesyof response styles (e.g., MRS
and ARS) and whether the condition in which moanttwo response styles are
presented in a sample can be handled have noegatdxplored.

De Jong, Steenkamp, Fox, and Baumgartner (2008ppeal a model that
extended a standard IRT model by integrating testtalels (e.g., Bradlow, Wainer,
& Wang, 1999) and a structural multilevel modeleTihclusion of the testlet
component in the model permits a control for sulitsta correlations that may exist
among heterogeneous items. This model allows #porese styles to have differential

impact across items. In addition, measurement iartanchor items are not required
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for group comparisons. This approach successfdéptifies ERS, but is arguably less
useful for correcting the effects of ERS on sultstartrait estimates (Bolt & Newton,
2010).

Lastly, mixture polytomous IRT models, which getiegmthe standard
polytomous IRT models to mixture distribution magjdlave been used by an
increasing number of researchers in various disgplcompared to the other model-
based approaches previously introduced. Simil&iBA, mixture polytomous IRT
models are useful for the study of response stgl@s exploratory manner, which is
not benefited from the SEM approach as well ae#ttended IRT models by Bolt and
Johnson (2009) and by De Jong et al. (2008). UnhkeBolt and Jonhson (2009)
approach where response styles were treated aswouns variables (quantitative
differences), mixture polytomous IRT models tresponse styles as discrete
variables (qualitative differences) and assign easpondent to a latent class
membership that represent his or her response 3tyie would allow for a more
flexible and effective modeling technique that ta@napplicable when multiple
response styles are present within a sample obnelgmts. Not only the classification
of respondents but also the individual-level esterd latent trait is obtained with
mixture polytomous IRT models, which is not avaidaimformation in the studies in
the SEM framework. More details of the mixture golpous IRT models are

followed in the subsequent section as well as iap@dr 2.
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1.2 MixturelRT Modelsin Empirical Studies

As mentioned earlier, the common manifestationgsonse styles,
regardless of the cause of the emergence of res@byiss, is respondents’
disproportionate usages of response categoriefer&it types of response styles can
be characterized by different category responskealitities. For example, a sample of
ERS respondents shows a high probability of endgrdie end-categories. Based on
the analysis of the unique patterns of categonyaese probabilities, mixture
polytomous IRT models provide the way that canimligtish latent groupings of
respondents with different response styles.

In general, mixture IRT models assume that theardent population can be
heterogeneous not only quantitatively but alsoitptalely. If respondents are
different with respect to how they use the respaasegories, this heterogeneity can
possibly be captured using mixture IRT models aspondents with different
response styles are classified into different latéasses. A latent trait estimate is
assigned to each respondent within the identifiasises and, hence, the response style
effects can be controlled when latent trait leaks compared.

Mixture polytomous Rasch models are special cakasxture IRT models
where the category response probabilities are giestiby one of the logistic functions
of the polytomous Rasch family such as the pactiadiit model (Masters, 1984),
rating scale model (Andrich, 1978), mixed disparsimodel (Andrich, 1982), and

successive interval model (Rost, 1988).
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The mixture partial credit model (MCPM) was propbdg Rost as an
extension of latent class analysis that takes ataafithe different usage of rating
scales within latent classes (Rost, 1991). Wheprbposed the MPCM, he suggested
this model as a method for classifying people atiogrto their item response profile,
independent of the location of the profile on lateontinuum. Because the MPCM is
the Rasch model in which no restriction on the iamameters is imposed, it is often
called the mixture (or mixed) polytomous Rasch m@Rest, 1991; von Davier &
Rost, 1995). In this dissertation, the mixture jpadredit model (MPCM) and the
mixture polytomous Rasch model are used intercharige

Mixture polytomous IRT models, especially the MP(Mve been
increasingly used in applied studies in personatitganizational, and clinical
psychology for the analysis of Likert-scale selbod data. (e.g., Austin, Deary, &
Egan, 2006; Egberink, Meijer, & Veldkamp, 2010; RidRauber, 2000; Gollwitzer et
al., 2005; Maij-de Meij, Kelderman, & van der Fli@005, 2008; Meiser &
Machunski, 2008; Rost, 1991; Rost, Carstensen, &Davier, 1997; Smith, Ying, &
Brown, 2012; Wu & Huang, 2010; Zickar, Gibby, & Reb2004). All these referred
studies used the MPCM except Maij-de Meij et aDO&, 2008), which used the
mixture nominal response model, Egberink et alL@0which used the mixture
graded response model, and Meiser and MachunsB82@hich used the mixture

rating scale model.
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1.3 The Current Study

As reviewed in this chapter, the MPCM has grea¢piial to provide solutions
to the long-standing psychometric problems cause@$ponse styles. Despite the
growing interest and need in practical settingdelevidence has been provided about
the accuracy of parameter estimation of the MPCMeWRost (1991) proposed the
MPCM, a one-replication simulation study was cortddaén which the quality of
MLE was evidenced. However, the simulation condgiavere very limited, which
made the results difficult to be generalized. e MPCM, the accuracy of parameter
estimates can vary depending on several factofs asithe estimation algorithm, the
number of items, the number of respondents, anduh&er and size of latent classes.

The current study, therefore, proposes to condlargar-scale simulation in
which the quality of MPCM parameter estimationvaleated especially under the
population where different response styles coeSigecifically, the recovery of latent
class membership, item thresholds, and personéxaats will be examined. The
effects of the type of mixture, mixing proportiosgmple size, and test length on the
parameter recovery are assessed. In addition foeitzeneter recovery study, the
simulation study will also examine how the MPCM raslan adjustment of the latent
trait estimates to compensate for the effects fiér@int response styles on test score.
The effectiveness of information criteria for thé®M model selection is also
assessed.

Given that there has been thus far no systematiglation study that

investigates the parameter recovery of the MPCH#Ictirrent study is expected to
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provide some evidence regarding the soundnes® @&fpplication of this model in
empirical data analysis. Especially, the varioustore conditions of response styles
simulated in this study will allow for the evaluati of the utility of the MPCM in

dealing with particular response styles problem®ai data analytic research.
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Chapter 2: Literature Review

Chapter 2 starts with an introduction of the comealpdevelopment of the
Rasch model (RM) and patrtial credit model (PCMjvadl as the unique features of
the Rasch family models. The chapter continuesttoduce the finite mixture
distribution before presenting the model formulatad the MPCM. Estimations of the
model parameters of the MPCM and the applicatioth@finformation criteria for
model selection are discussed. Finally, the desagidsresults of related empirical and

simulation studies are summarized.
2.1 The Rasch Modd for binary item responses

2.1.1 Presentation of the model

Item response theory (IRT) was built around there¢rdea that the
probability of a certain answer when a person igromted with an item ideally can be
described as a simple function of the person’stippson the latent trait scale and one
or more parameters characterizing the particutan if(Molenaar, 1995). The Rasch
model for dichotomously scored item responses (Rit&ch, 1960) is the simplest
IRT model in the sense that it only needs thediftfy of an item, which indicates the
location of the latent trait scale, in order tor@wderize an item. This simplicity allows
the RM to directly compare item and person pararedtedefine the item response
probability. The following introduces the essenitida of the Rasch measurement

model applied to the comparison of the difficulfyao itemi (o;) and persom’s trait

level (4) on the same latent continuum.
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Suppose that specifft and g, are located at position§, ands; on a latent
variable continuum, respectively. In additibhis the probability of observing an
eventT indicating that; exceedss, on the continuum. SimilarlyF, is the probability
of observing an eve indicating that, exceeds; . Considering the relative
locations ofg, and &, on the latent continuun®: would imply the probability of a
success on the item whereBswould imply the probability of a failure on therite
For dichotomous responseg, may be replaced a8, representing the probability of
persom scoring 1 on iten. Also, B, may be replaced &g, ,representing the

probability of persom scoring 0 on itenh. The RM then relates the distance between

g, and 5, on the continuum to the everit@indD as the natural logarithm of the odds

ratio presented in Equation 1.

b= =0-5, = n{%} - In(E—J )

As seen in Equation 1, the log odds of observisgaess rather than a failure on item
I is determined based on the distance betwtamd o, . From Equation 1, one can
easily verify that wherg, =6, , P,;;,=P,,= 0.5. Ifg, > ¢, , it implies that the
respondent’s ability surpasses the difficulty leskthe item, indicating a greater

chance of success because the o®Jg (P,,) must be greater than 1. Conversely, if
6, < o, , itimplies that the difficulty level of the itesurpasses the respondent’s

ability, indicating a greater chance of failure &ese the oddsH,/ P,,) must be
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smaller than 1. Using the inverse logistic, Equatidransforms with respect @, ,

as presented in Equation 2.

_exl,-5)
" 1rexpl, o)’ @

where P, is the probability that persancorrectly answers item or the probability
of scoring 1 on item, &, is the trait level for persom, and ¢, is the difficulty of item

i. This is the RM equation, which is the basic huatdgdblock shared by all models

within the Rasch family.

2.1.2 Item response function
Equation 2 provides a trace line that indicatespttodability of a correct item

response at all possible levels@ffor a given difficultyo, . This trace line is referred

to as an item response function (IRF) or item attarsstic curve (ICC). Figure 2

illustrates three ICCs that the RM produces fangawith 6, = -0.5, 0, and 0.5,

respectively. As can be seen in the plot, the RKad@iffer only with respect to the
locations on the continuum indicating differentdés/of item difficulty. The slopes of
the ICCs are parallel, which indicates that disamations of the items are the same for
the three items. As mentioned in the previous secthe direction of the response
probability changes at the point that correspondbé probability value of 0.5, which

is the point of inflexion of the ICC.
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Figure 2.CCs corresponding to Rasch model items with differiem difficulty

2.2 Partial Credit Modé€l

2.2.1 Presentation of model.

Masters (1984) proposed the partial credit modéMPby extending the RM
to polytomously-scored item responses. The fund#ahatea of the PCM is that the
multiple response categories are a series of phadjacent categories and the RM
can be applied for modeling each pair. The PCMpw@priate for the items that are
subject to partial credit scoring as well as thibse are obtained with a Likert-type

scale.
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Masters (1984) introduced the concepstepas he proposed the PCM.
depicted in Figure 3 step in an item represents the transition foom category t

the next. Thus, there akesteps in an item witk + 1 response categori

Questioa: In most ways, my life is closz to my idzal.

Category Scoe
C
|

2

4
|
! I

I |
‘r/}‘l — 1
SHOﬂUﬁWDU Uﬁngly

Disagree Nor Agrze Agree
[* Step 274 Step 3rd Step 4 Step

—— LY

it

¢

Figure 3 Five response categories and four correspondipg

On this Likert scale, passing tkth step means selecting response catek overk-1
in response to the item. If a person chose ‘Agfesponse category 3), for examy
he or she is regarded to have selected ‘Disagres’ ‘8trongly disagree’ (fir: step
passed), ‘Neither disagree nor agree’ over ‘Disgigisecond step passed), ¢
‘Agree’ over ‘Neither disagree nor agree’ (thirdsipassed), but to have failec
make a transition from ‘Agree’ to ‘Strongly Agredn this case, the person will n a
partial credit score of 3, i.e., the number of steps that he or she has pas

For dichotomousl-scored items, there is only one pair of adjacetagmaies
and, hence, only one step needs to be passedctotteahighest scc or 1. Let us

revisit Equation 2, which now can be considered asaiagpcase of the PCM whe
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the test items are one-step items. To make this paplicit in the model presentation,

Equation 2 may be rewritten using modified notadifwilowing Masters (1984):

P = ¢ni1 — eXpen — é‘|1)
" ¢ni0 + ¢ni1 1+ exp@n - §|1)

where @, +¢.,) is the probability of persomscoring 0 or 1 on itemandP,;, is the

probability of persom passing the first step to score 1 rather than ideomi

conditional on that only the two successive categare considered, is the first

(and the only in this case) step difficulty. Theailks of the step difficulty will be
shortly introduced in the subsequent section. Reisecond pair of categories, the RM
is again applied:

Pri _ expl, —9;,)
¢ni1 + Dz 1+ eXpGn _dz) ’

ni2

where P, is the probability of persom passing the second step to score 2 rather than

1 on itemi conditional on that only the two successive categare considered. The
general form of the step difficulty probability th@ersom passes thkth step to score

k rather thark-1 on itemi is then defined as:

P- — ¢nik — expen_é‘ik)
e Prika t Poix 1+expl, -3, )

k=1,2,...h. 3)

Here, note thal is used to indicate potentially varying numbestps in different

items. In the PCM, it is assumed that pemsonust select one of the givéil

categories. Therefore, the following restrictiorde to be applied:

¢ni0 + ¢ni1"" ’+¢nik = 1
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Finally, combining Equation 3 and the restrictidme PCM can be written as the
unconditional probability that persarscores< on itemi over all other possible

Scores.

exd >, —czk)J
i[ex >, —%)D

g=0

4 = x=0,1,2, .0, (4)

0
where Y (0, -5,)=0.
k=0

To show how Equation 4 determines a category respprobability, an
explicit expansion of Equation 4 is demonstratedweThe illustration is to calculate

the category response probability for the thircegaty (4,,,) when five response

categories are given.

b, = expl0+ (6, —5,) + (6, —3,,) + (6, — 5i5)]
" expP]+expP+ (6, — 5] +......

~ exp0+ (0, —8)+ (0, —8)] + e
(5)

" expl0+ (6, — 8,) + (6, = 6,2) + (6, — )] + oo

" expl0+ (6, = 8,) + (0, = 6,,) + (6, = 5) + (6, — 5, )] +-..n

" expO+ (0, —51) + (0, — 6,,) + (00— 5,5) + (6, —5.0) + (6, — 66)
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2.2.2 Threshold parametersin the PCM

Masters (1984) used the terstep difficulty to refer tod, . The step difficulty

is conceptually the same with the item difficuliythe RM. It indicates the location of
a particular step on the latent trait continuum tredlocation of each threshold can be
compared to the location of person. The probahditpassing a step to select a
particular response category is determined basetdeorelative locations of these two
locations (i.e., step and person) on the latenticonm. In the IRT literature, several
alternative terms have been used sucteéegory intersectiofsee, e.g., Embretson &
Reise, 2000)ategory transition locatiofde Ayala, 2009), anthreshold(Rost,
1991; von Davier & Rost, 1995). Hereafter the stéficulty 5, is referred to as the
threshold

The mean of the thresholds within an item is ofised to indicate the
global/general location of the given iténm the current study, this is referred to as the

item location The item locationg, is defined as follows:

B :Zh:é‘ik/h' k=1,2, ""h'

where J,, is thekth threshold for itenn and h is the number of thresholds of iteam

% The PCM can be reformulated so that the thresisadécomposed into item Iocatiom?l() and the

difference between threshold and item Iocatiofp((). Equation 2 can be rewritten as follow:
expbn - ﬁi ~Tik)

P. = .
nik 1+ exp@n —ﬂi —rik)
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Among a set ok steps within a PCM item, some steps may be etsjgass
than others. If a particular step is easier to plaas others, the threshold value
associated with that step will be lower than thassociated with more difficult steps.
One of the important features of the PCM is thatrtftodel does not assume that there
is an underlying sequential step process to acltaeertial score. Although the
response category scores (e.g., 0, 1, 2, 3, asdotild be ordered to reflect increasing

0 level, the estimated thresholds are not restritdddllow a specified order. When

the thresholds are disordered, for example, 0.45,6,= 0.74,6,=-0.74, and, = -
0.45, instead of being ordered as in the follonvewgmple,d,= -0.74,6,=-0.45,5,=

0.45, and,= 0.74, it is often called meversalof the thresholds.

2.2.3 Category characteristic curves and the presence of response styles

Understanding how the order of thresholds and nicets: between thresholds
are related to the category response probabilititse PCM is fundamental to
simulate item response patterns contaminated lgrdift types of response styles in
the current study. Continuing previous sectionis, skction further explains the
relations between thresholds and category resgmadabilities by introducing
graphical representations of the relations.

Similar to the ICCs in Figure 2, the category reseprobability of a

polytomous item §_. in Equation 4) can be depicted as a trace lineaal category

nix
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characteristic curve (CCC)A CCC relates the probability of choosing a paittic
response category given a spectiovalue. While only one ICC is needed for a
dichotomously-scored item, as many CCCs as the puofiresponse categories are
required to present probabilities for each categesponse for a polytomously-scored
item. Note that each category response probalsgitybe calculated by following
Equation 5. Figures 4 to 8 present different pagef CCCs that have hypothetical
threshold values estimated for the groups of dfieresponse-style respondents. In

these CCC plots, four trace lines representingstiolel probabilities P, in Equation

3) are overlaid. The black lines present the thoksprobabilities while the colored
lines present CCCs. In the plots, it is commonBrsthat the thresholds correspond to
the points of inflexion of threshold probabilitiaad those points are the intersections
of two adjacent CCCs. This indicates that whentima difficulty level is atkth
threshold, the probability of choosikgnd that ok-1 are the same at 0.5. As the item
difficulty increases fronk, the probability of choosinigbecomes higher while the
probability of choosing-1 becomes higher as the difficulty decrease fkamthis
group of respondents.

Ordered thresholds and the implication for response styles. In the following
Figure 4, the CCCs and threshold probabilitiesdactated by a set of four thresholds

0,=-1.7,06,,=-0.6,6,,=0.6, and,,=1.7. Apparently, the four thresholds are in a

strict order from low to high values on ti#econtinuum and the distances between

thresholds are fairly evenly spaced. The latert $pzace is divided into five segments

4 CCC is sometimes called as category response ,ctategory response function, option response
function, or operating characteristic curve.
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within each of which one of the five categories thesgreatest probability to be
selected than the others. For example, respondéifitshe lowest level of would be

most likely to choose the response category Otfee€CC in orange color) while
respondents within the next high@rrange, betwee@d, ando,, would choose

category 1 with the highest probability than anyestcategories (see the CCC in
brown color).

Figure 4 shows that every category is used properdgcordance with the
respondent’s® level. In this group of respondents, no respom$egory is avoided
and the item categories seem to function well ag #re designed to differentiate
individual’s trait level. Related to the issue esponse styles, this pattern of CCCs
and threshold probabilities is likely to be obserue a measurement situation where
respondents would not present a particular respstyesuch as ERS, MRS, or ARS
but respond to the item solely conditional on thilevel. This “normal” responding

pattern is referred to asdinary response styl@®©RS) in the current study.
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Probability of Response

5,=-170, §,=-0.60, 5,=060, &,=1.70
0

Figure 4 CCC and threshold probabilities for a PCM itenttmthresholds (-1.7, -0.6,

0.6, and 1.7)
Figure 5 also shows a set of ordered threshalgs {1.85,5,=-1.24,6,=
1.34, an®,=1.95) but compared to Figure 4, the distances éatvthresholds are

uneven. The distance between the second and theghold is longer than the
distances between other thresholds, which linkkeaelatively high probability for

category 2 to be selected within a wide range a@fesaon thed continuum. In this

plot, Category 1 and 3 are still the most favorataitegory within the ranges frof
to 0, and fromd, to J,, respectively. The pattern of CCCs in Figure 5 inay

observed in a sample of MRS respondents.
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If the distance betweed, and 6, becomes longer, in other words, if the
number of people in the sample who select the raiddtegory increases, then the
CCC for the middle category will peak more distinely and the order 0, and o,
as well as that o6, and §, can be reversed. An illustrative plot is showrrigure 6

in which a larger proportion of respondents respionithe middle category and

accordingly the reversals occur.

Probability of Response

T T 1 T T
3 01 021 0 1 03 04 3

5,=-1.85, 8,=-124 8,=1.34 5,=1.95
0

Figure 5 CCCs and threshold probabilities for a PCM iteithwhresholds (-1.85, -

1.24, 1.34, and 1.95)
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Probability of Response

Figure & CCCs and threshold probabilities for a PCM iteithwhresholds (-2.01, -
2.45, 2.45, and 2.01)
Reversed thresholds and the implication for response styles. The following

Figure 7 shows a dramatically different array of@Cand threshold probabilities

from the previous figures. In this case, a revevsalrs ¢,= 0.45,6,= 0.74,6,= -

0.74, and, = -0.45) and the latent trait space is predomiyaatten by the first and
the last CCCs. Category 1, 2, and 3 are neverdomtsst likely category to be
selected at any level. If a respondent in this sample has a higgnezl of ¢ than
zero (i.e., the point where the first and the flRCs intersect), category 4 has the
highest probability to be chosen. Conversely,réspondent has a lower level &f

than zero, category 0 has the highest probabifibemng selected. Category 1, 2, and
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3 will rarely be selected. If estimated CCCs shbis pattern of distortion, this may be
evidence that item responses from this samplespiardents are contaminated by

ERS.

Probability of Response

81 = 0.45, 82 = 0.74, 83 = '0.74, 84 = '045
0

Figure 7. CCCs and threshold probabilities for a PCM iteithvhresholds (0.45,
0.74, -0.74, and -0.45)

The last example presented in Figure 8 depicts G@ss, = -1.51,9,,= -
1.64,0,,=-2.42, and,, = -0.93 and corresponding threshold probabilities. this

item, reversals also occurs and category 1 andribtlbave the highest probability to
be selected at any level 6f. The extremely high response probability for catggt
results in all item thresholds being located atdo¥evels on the continuum. This

can happen when the item content is too easy érgbpondents and, therefore, most
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of the respondents pass the highest thresholdpletive of the difficulty of the
content of the item, however, if a group of respartd manifests acquiescent response
style (ARS) in response to the item, this pattdr@©GCs can also occur.

The CCCs plots illustrated above show that thresdatances contain
important information about response category Ase rule, if the threshold
parameters are ordered within an item, every respoategory is the most likely
option at least at on& level. In this case, each response categoryksdirio an area
on the latent continuum where it has a larger nrespgrobability than the other
categories. In contrast, disordered thresholdsa@tdithat certain response categories
are avoided or the relation between trait and @ateghoice is improperly specified.

In this case, there is no area in which the CCGmefor more categories are larger

than the CCC of the other items.
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Probability of Response

5,=-1.51, &,=-1.63, &3=-2.42, &,=-0.93
0

Figure 8 CCCs and threshold probabilities for a PCM iteithwhresholds (-1.51, -

1.63, -2.42, and -0.93)

2.3 Unique Features of the Rasch Models

The models in the Rasch family are distinguishrecthfother IRT models by a
fundamental statistical characteristic: separablsgn and item parameters and hence
sufficient statistics (Masters & Wright, 1984)idtsaid that a sufficient statistic exists
when no other information from the data is requiédstimate a parameter.

Suppose aix| data matrix N is the number of people ahds the number of

items) with elementx; being 0 or 1 for dichotomous Rasch model casegimgithe

number of thresholds passed for polytomous Rasalehuases. Then, the total score
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|
(i.e., the row sum of the data matux,= ani ) is a sufficient statistic for the
i=1

estimation of person trait parameteés X and the item score (i.e., the column sum,

N
& = ani ) is a sufficient statistic for the estimation t&fm difficulty parameters
n=1

(5).

Once the sufficiency of total scores is establishieel unknown parameter
can be eliminated by conditioning on the persootaltscore> during the course of
item parameter estimation. All different responsetars (patterns) that yield the same
total scorev have the same trait estimate. Therefore, increasingle size does not
increase the number of person parameters to baasti and item characteristics do
not have an impact on trait estimation. Consequgtité consistency of item
parameter estimates can be achieved.

Also, once the sufficiency of item scores is essilgld, by conditioning on the
observed vector of item scare the item parameters are eliminated. This meaats th
under the PCM, a simple count of respondents pgesioh threshold of an item

contains all information about the threshold diifig.

2.4 Mixture Distribution Models

The model of interest in the current study, thetom partial credit model,
(MPCM: Rost, 1991; von Davier & Rost, 1995) carnvimved as a generalization of
the PCM to a finite mixture distribution model.tims section, mixture distribution is

introduced followed by the latent class model (LCMhich is the simplest discrete
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mixture distribution model and closely relatedhie MPCM. Lastly, the general idea

of integrating the IRT and LC models is discussed.

2.4.1 Continuous and discrete mixture distribution

A mixture distribution refers to a composite of el subpopulation
distributions (see e.g., McLachlan & Peel, 200®)e bBasic assumption of the model
based on a mixture distribution is that the disttitin of an observed random variable
is not adequately described by a single probalilibction, but by a number of
conditional probability functions.

In a research setting where the observed samplbecaren as being drawn
from two or more subpopulations with distinctivatieres, a mixture distribution
model can possibly model this heterogeneity by damg conditional probability
functions across subpopulations. These subpopofatice alternatively called mixture
components or latent classes. A mixture distributian be either continuous or
discrete depending on the nature of the mixingakde on which the probability is
conditioned. In a general form, the continuous omtdistribution can be presented as

follow:

f(x):f f(x|6)do,
wheref (X) is the unconditional probability density of kdimensional random vector
x={x,...,x} and is obtained by integrating over the compouensities f (x | 6)

conditional on a continuous mixing varial#e The previously reviewed RM and

PCM can be viewed as continuous mixture models evhirelividual latent trait®) is
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a real-valued mixing variable and the componensities f (X | £) are defined as the
logistic function.

If the mixing variable is discrete, only a finitamber of component
distributions are produced (i.e., as many as tmeb®su of latent classes) and the

unconditional probability becomes a weighted suhe §eneral form is specified as:

f(x) = 7. F(x]0), ©)

c=1

wherec is a discrete mixing variable whose arbitrary ditgarc={1,....C} classifies
each respondent’s latent class membersh{,| C)is the component distribution

conditional on latent class membersbj@and 7, are the relative sizes of latent classes

C
called mixing proportions, which are constraineded < 7, < land Z”c =1.1In
c=1

most cases, the component distributions take oondhemon parametric form but have
their own sets of parameters.

When data is analyzed using a discrete mixtureiligton, the nature of a
mixing variable does not need to be specified arprit is a hidden structure, so that
the existence of valid latent classes is explorgihd the estimation process and each
respondent is assigned to one of the identifiezhlatlasses according to similarity
among respondents. This flexible, exploratory cdpglof discrete mixture
distribution models allows for a way to decomposehserved heterogeneity that

would not be detected and modeled within non-mi&iuaodels.
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2.4.2 Latent class model

The latent class model (LCM: Lazarsfeld & Henry6&Yis the simplest finite
mixture distribution model for item responses. Ti@n purpose of using a LCM is to
infer unobserved groups that differ in qualitatbéense. Individuals within the same
latent class are assumed to behave similarly @vaet behavior while members of
different classes are assumed to behave differently

Before presenting the model formulation of LCM,reebcomparison of the
LCMs to the IRT models is useful for a better urstinding of both models. First,
both IRT and LC models relate a set of item respsrd a latent trait variable. Also,
the manifest variables, i.e., item responses asddd as discrete variables in both
models. The major difference between the two modhelwever, revolves around the
conceptualization of the person trait distributidhe IRT models assume person trait
as continuous and provide measures of the tradt gingle latent continuum. In
addition, respondents in a sample are assumedne dom a qualitatively
homogeneous single distribution and, thus, theamdgnts are different in
guantitative sense. On the other hand, in the LB&réspondents are different in
gualitative sense. The LCMs treat the person & discrete variable and provide
mutually exclusive and exhaustive latent class megstbp. Within each latent class
there is no variation in the item response proligbil

The general LCM can be presented by specifyingtimeponent distribution
with the joint probability function of item respasunder the local independence

assumption:
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p(X) = Z”cH pé (1_ pic)17X 1

c=1 i=1

wherep(X) is the probability of a response pattern of itén{g,..., 1}, 7. are the
mixing proportions, andp;, and (1— pic)l‘x are the probability of a success and a

failure on itemi in classc, respectively. Bothr, and p,; are the model parameters to

be estimated.

243 Mixture|RT models

By integrating a standard IRT model with the LCMmiture IRT model is
obtained. The integration means that the respor®pility is now conditional on
both respondent’s continuous trait distributiorll@®aing the IRT models) as well as
discrete trait distribution (following the LC modgl Therefore, the unconditional

probability of an item response patterfor mixture IRT model is:

C |
p() = 7. [ [Tp (x 16,0 fo(0)d0, @
c=1 i=1
where f_(@ ) is the class-specific trait distribution, of whitte items have different

parameters.
This integration relaxes both models’ assumptiartgch can limit the utility
of the models in applications. Specifically, thellRodel assumption that respondents
in a sample belong to a qualitatively homogeneasisilution is relaxed. Mixture
IRT models accommodate heterogeneous subpopuldijoabowing item and/or

person parameters to vary across latent classesdiffarences observed in item and
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person parameter estimates across latent classegrmade the ground on which the
nature of population heterogeneity can be integareAlso, the LCM assumption that
the response probability within latent classefigsstame is relaxed. In mixture IRT
models, each respondent is assigned an estimaged teait level as well as a latent
class membership.

In sum, in mixture IRT models, an IRT model holdghwn different
subpopulations, but in each subpopulation a diffeset of item and person
parameters can be estimated. The mixture IRT mgueldde a statistical tool to
detect and simultaneously model two types of pdmridheterogeneity i.e.,
guantitative differences on a continuous latentalde as well as qualitative
differences on a discrete variable.

Exploration of qualitative individual differences. The major utility of mixture
IRT models has been found in their capability taidtaneously model quantitative
and qualitative differences among individuals. tayious studies employing different
mixture IRT models, researchers identified qualty distinguishable latent groups
in several realms of study. In cognitive assessmédast (1990) applied the mixture
Rasch model (MRM) and identified two latent classeshich the members differed
in their relative strength in subject contents phgsics test. A random guessing group
was detected in a low-stakes achievement test asmixture 2-PL model (Lau 2009),
in a mathematic proficiency test using the MRM (&dib2009), and in a reading
proficiency test using a mixture Rasch model (Migl& Verhelst, 1990). A latent

class in which the members present speededndss and-items of a test was
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separated using a mixture distribution versiorhefBock’s nominal response model
in the study by Bolt, Cohen, and Wollack (2002)sMvy and Verhelst (1990)
suggested a mixture Rasch model with theory-based parameter structures to
detect problem solving strategies. In non-cognidseessment, Reise and Gomel
(1995) applied the MRM to analyze a personalityesdata and found a structural
difference in the personality factors between tatent classes.

In the analysis of rating scale item responsescHharacteristics of latent
classes were interpreted in terms of differentrfgkendencies (Zickar et al., 2004),
self-disclosure patterns (Maij-de Meij, et al., 8D0structures of personality factor
(Egberink et al., 2010; Rost et al., 1997), angoese styles (Austin et al., 2006;
Gollwitzer et al., 2005; Meiser & Machunski, 2008yst, 1991; Rost et al., 1997;

Smith, et al., 2012).
2.5 Mixture Partial Credit Model

2.5.1 Presentation of model
As explained previously, by integrating the LCM &@M, the MPCM can be
derived. The model equation of the PCM definesttodability of an item response

patterrx specified as Equation 7:

] exd >0, —%)J
p(x) = 7,

|
c=1 i=1

: ,Xx=0,1,2, ...h, (7)

Zo(ex > 6. —%)D
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where p(X) is the unconditional probability of an item respematterrx, = is the

C 0
mixing proportion with constraint9)< z, < ahd » 7, =1, and Y (, - 5,.) =0.
k=0

c=1

Note thatd and J,, are now the class specific person trait and tlulesharameters,

| X
respectively. The threshold parametéjs are constrained to bp | > 6, = 0 for allc

i=1 k=0

for the model identification purpose.

2.5.2 Parameter estimation
In Section 2.3, the particular feature of Raschifiamodels i.e., the

sufficiency of the total scores for tlteestimation is explained. The total scores)(
obtained from a sample are simply used to elimipatson parameterg() in

estimating item parameters. The property of th&@eahnt statistic, however, cannot be
applied as straightforwardly for the mixture Rasubdels as it can for the RM and

PCM. That is because latent classes are not knadnhais the total scores in each

class are not directly observable. As a solutionestimated quantity far, ., namely

latent score probability, which is the probabilitiya total score appearing in a class,
needs to be introduced. This probability is treate@d model parameter and estimated
along with other model parameters. Given that tmaher of parameters needed to
estimate the latent score distribution grows easslyhe number of classes and items
increases, parsimonious ways to approximate it baea proposed. Softwamed|tm
(multidimensional discrete latent traits modelsn\@avier, 2005a), which is used for

the parameter estimation in the current study, aseparameter log-linear smoothing
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approach to parameterize this score distributiqeplidg this approach, the

distributional model-based score probabili&lg) can be obtained:

r{ v 4ok —v) J
ex U+ 5O
Umax Umax

= , (8)
Vrmax S 4S(Vay —S) j
> ex U, + o,
19

7

ric

s=0
max Unnax

wherev =0,...,0,., 4 1S the location parameter indicating the averagé efindo,

is the variability of that distribution. The obtaih score probabilities provide a
smoother distribution of expected score frequenaneswill be replicated in
approximately identical shape in different sammiesespondents. This distribution is
flexible in terms of the shape that it can takesmthat various shapes of score
distributions can be modeled.

One of the benefits of introducing this distribui@ approximation that uses
only two parameters is that it prevents a penalizattor of the information criteria
for model selection from unnecessarily increasifge details related to this issue of
model selection are further addressed in Sectivd 2More details about this logistic
model for score frequency can be found in RostamDavier (1995) and Rost
(1997).

In mdltm the Expectation-Maximization (EM) algorithm (Destgr, Laird, &
Rubin, 1977) is implemented to obtain marginal maxn likelihood (MML)

estimates. The MML method makes use of the follgwactorization:
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p(x|c) = p(x|c,v)- p(v]c), 9)

|
whereu:Zx is the total score and the conditional total sqfre| C) is replaced
i=1

with the estimatec;&uIc as explained above. By applying the property efdtfficient

statistic, the pattern probability conditional aall score instead of estimatédcan

be obtained as follows:

expE2, %0,.)
YUlc (eXp(—5 : c)) '

(10)

p(x|c,v) =

where the denominator, (expEo...)) is a class-specific symmetric function of the

thresholds. It makes the computation of all posst@imbinations of item parameters
that yield a total score and is also required enEhsteps of the item parameter
estimation for computing the expected pattern feegies. An illustration of this
computation for the RM difficulty parameters canfoend in Baker and Kim (2004,
Ch.5). Finally, the full formulation of the pattepnobability with person parameter
eliminated is as follows:

C exp(_zxié‘ic)

p(x) = czﬂ:ﬂcﬂulc Yu|c(eXp(_5' o)) .

E-steps. In the expectation steps, the expected pattequéncies in each
latent class are computed on the basis of the vbdgrattern frequencies and

preliminary estimates of the threshold parame#&rmandomly selected value can be
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used as a starting parameter values for the festtion. For the subsequent iterations,

the estimates of the previous M-step are usedeXpected class-specific pattern

frequencyn(x|c) is a proportion of the ratio of the pattern prabghbin a class

p(X | c) and the unconditional observed pattern probalji(ty) :

7. p(x|c)
p(x)
where n(x)is the observed frequency of response patkgrthe conditional pattern

n(x|c) =n(x)

frequency p(x | €) is defined by Equations 8, 9, and 18(X) is the unconditional

C
observed pattern probability i.eZﬂ'C p(x|c).

c=1
M-steps. The expected pattern frequencies for each latass obtained from

the E-step are used in the M-step for the compartaif the estimates of the model

parametersz, , 7,., andg,.. These parameters are estimated separately for eac

class by maximizing the log-likelihood functionaéssc. The log-likelihood function

of classc may be specified as follows:

InL, =2ﬁ(x|c)[lnnulc—fzém ~In(y, ,(expE-3, .c)))j.

Solving the first derivative to be zero with respiecthe threshold parameter yields

the (revised) estimate for threshé&ldn itemi in classc as follows:

A n
Sy =1In s

Yo-tilc

YUmax

v=0 Yole
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wheren,, is preliminary estimates of the number of indiatlwith a response to
categoryk on itemi in classc, M, is the number of individuals with scotein class

¢, andy, ;;are the symmetric functions of order-1 of all item parameters except

itemi in classc. This symmetric function is iteratively calculated means of
preliminary threshold parameter estimates and eevestimates in each M-step.

The estimates of the mixing proportiong. { and conditional score probability
(frulc) do not need to be calculated iteratively. They loa simply calculated as

follows:

wheren, is the number of respondents in class

0 estimation. During the item parameter estimation, trait pawné has been
eliminated from the equation. In the final stagehaf estimation, the unknown

parameterd can be estimated by solving iteratively the follogvestimation equation:

exp(enc - 5‘ikc)
1+expl,.—5,.)

|

U=,
i=1
where Sikc is the final estimate d&th threshold for item in classc. Respondem has

the trait estimate.@ncunder the condition that he or she belongs to dasgl hence

there are as man@nc as the number affor each respondent. However, these
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conditional trait estimates of a single individualally do not differ much from one

class to another because the estimates dependyroain|,, which is the same in alll

classes (Rost, 1997).

2.5.3 Assigning latent class member ship

As the outcomes of the simultaneous modeling afrdicuous and a discrete
latent variable, each respondent is assigned lahestimates as well as
probabilities for membership in each latent cld$ee probability of class membership

can be estimated using Bayes’ theorem:

oelx) = P10
> 7.p(x|c)

c=1

where p(c| X) is the posterior probability of class membershiiven the item
response pattesn. Note that the mixing proportion plays the rolepabr probability

in the Bayes’ theorem and the estimated conditipattern probabilityp(X | €)

replaces the likelihood and the denominator indisahe total probability. The actual
classification is carried out by first using theyBa’ theorem to compute the estimated
probability for class membership given each respgadtern. Then, respondents may
be assigned to the latent class for which the ¢mmail probability of their

membership is largest.

2.5.4 Determining the number of latent classes
In the MPCM formulation, the number of latent ces€) is not a model

parameter and, thus, must be specified beforaimg the parameter estimation
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process. Under conditions of uncertainty aboutthe” number of unknown
subpopulations, the commonly used technique taméte the number of latent
classes is to compare the likelihood function ahpeting models with increasing
numbers of latent classes and then choose a nfwtedn information criterion data-
model fit indicates as the best- fitting modelhe tlata. Although significance tests
are not possible with these indices, comparingriiex values for competing models
provides some degree of evidence for the natuteaibfvariable structure.

Information criteria. Many information criterion statistics have been
developed under the minimum complexity criteriaedtrently referred information
criteria include Akaike’s information criterion (&t Akaike, 1974), Bayesian
information criterion (BIC: Schwarz, 1978) and cigtent AIC (CAIC: Bozdogan,
1987). The three statistics are those providethtfm

The AIC index can be calculated based-bdifferent models being compared:

AIC, =-2In(L,) + 2Par,,
where L, is the maximum of the likelihood function of thth model andPar, is the
number of independent parameters that are estimdted fitting thehth model to the
data. In comparing competing models, the médblat shows the minimum AIC
value is chosen as the model that best fits thee @lad therefore is considered as the
preferred model. It is seen in the equation thagmiwo models have similar

maximum likelihood valuel(, ), a smaller value of AIC will be associated witie t

model based on fewer parameters. In this way, ABeps a model with less
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complexity, in other words, a more parsimonious etod criticism of the AIC is that
it lacks properties of asymptotic consistency beeate definition of the AIC does
not directly involve the sample size. Consequemitysample size increases a more
complex model would be more likely to be selectagda on the AIC.

Schwarz (1978) developed the BIC, which is an aggtigally consistent

measure. The computation of the BIC may be spekcégefollows:

BIC, =-2In(L,) +In(N) x Par, ,
whereN denotes the sample size. In the same way as esfdo’\IC, a modeh that
shows the minimum BIC value is chosen as the predanodel. Note that the penalty
term for the BIC is larger than for the AIC if teample siz& is 8 or greater, which
can be seen by the fact that the valuéng®) = 2.08. Therefore, for reasonable sized

samples, the BIC tends to select less complex mddel, the solution with a smaller
number of classes) than does the AIC.

Bozdogan (1987) extends the AIC to make it asyngaithy consistent and to
be penalized for over-parameterization more stritlgeThe CAIC index is computed
as follows:

CAIC, =-2In(L,) + (In(N) +2) x Par, .

Compared to the AIC and BIC, the penalty term f&iCis even larger, leading to
solutions that favor the selection of less compiedels than are obtained with the

AIC or BIC.
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Based on the specific penalty weights, it is exgpethat different information
criterion statistics may lead to different solugan mixture IRT models. The
preference of a more complex model by the AIC nesylt in over-identification
problems under certain conditions whereas the mrete of a less complex model by
the BIC and CAIC may cause under-identificationipeans. The relative
effectiveness of information criteria has been stigated via simulation studies,
where the true conditions are known and hencepibssible to monitor the behavior
of information criterion statistics in identifyirthe correct model.

Model selection in mixture |RT models. There are a limited number of
simulation studies on model selection indices irtare IRT models and all of those
studies examined only models for dichotomous respenNo study has thus far
investigated the problems of model selection intaorix polytomous IRT models. The
following presents the findings from the studidated to dichotomous models.

The first study appearing in literature was ond.hyCohen, Kim, & Cho
(2009), in which a Bayesian estimation approach wgzsl. Their study investigated
five different model selection indices includingtAIC and BIC, and compared the
relative effectiveness of them under 1-, 2-, arfeL3nodel with 1-, 2-, 3-, or 4-latent
classes. In general, the results showed that t8gpBiformed the best in terms of
detecting correct number of latent classes. Fo2-1-and 3-class simulated data, the
BIC was accurate in identifying the correct numbkclasses in every case. However,
when the simulated data had 4 classes, it appgieetme more difficult for the BIC

to distinguish the correct model for the 3PL modiethis case, the BIC tended to
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select the simpler model. The result for the AlGwéd that the AIC selects more
complicated models, particularly when the true nhaglthe 1PL model.

Cho, Jiao, and Macready (2012a, 2012b) investigdue relative effectiveness
of AIC and BIC in the context of mixture Rasch antckture 2-PL model with two
classes when marginal maximum likelihood estimatias applied. The studies
manipulated qualitative heterogeneity in variouysvay setting different sets of item
parameter profiles across latent classes and dedltize correct model selection rates.
When more distinctive heterogeneity was generagddden two classes causing class
separation to be large, the BIC selected the comedel almost perfectly. Under the
conditions where the heterogeneity manipulated smaall, the BIC under-extracted
latent classes while the AIC still tended to ovetr&ct latent classes.

Preinerstorfer and Formann (2012) reported simdaults within a conditional
maximum likelihood estimation context. They fouhdttthe BIC generally performed
more accurately than the AIC and that longer &sgth was positively associated

with the correct model selection rate.

2.6 Applications of the MPCM to Study of Response Styles

In Sections 1.2 and 2.4.3, previous empirical istaith which mixture IRT
models were employed were briefly introduced. lot®a 2.6.1, the findings in the
empirical studies related to the differences ipoese category use and the correction
of test score bias are reviewed. Section 2.6.2 sanaes the previous simulation

study that investigated the model performance e CM.
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2.6.1 Real data analysis

Rost et al. (1997) applied the MPCM to the analg$§iNEO-FFI scales and
reported the results for the Conscientiousn€¥s(d ExtraversionH) scales. For the
C scale, the item locations across two identifigdriiclasses were not significantly
different, which indicated that the items measuhedsame psychological construct
across the latent classes. However, when the thidsstvere examined, the larger
latent classd = 0.67) showed a set of ordered and relativegnbvspaced thresholds
for all items while the smaller latent clagsH 0.33) showed that the first threshold
distance was about four times larger than the skttmeshold distance. The threshold
distances in the smaller class indicated that & wexy easy to pass the first threshold
and very hard to pass the last threshold and, hemest people in this class responded
to the middle categories and avoided the extrertegodes. Integrating these findings
in item locations and thresholds distances, theasatconcluded that the difference
characterizing the two latent classes was noterctinscientiousness construct but in
the respondent’s differential use of response categ) When th& scale was
analyzed, however, a structural difference in thespnality construct as well as the
response style difference emerged. The comparistheatem locations based on a
two-class model solution revealed that the two fified latent classes reflected a
structural difference between sociability and ingputy. The subsequent MPCM
analyses were conducted for these two classesatelyaand the same pattern of

thresholds differences as was presented fo€Ctheale was manifested.
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Eid and Rauber (2000) applied the MPCM to anatata from an
organizational survey and demonstrated how mixtuseels could be used to detect
measurement invariance caused by response stylg®eit analysis, a two-class
solution was selected as the best-fitting mode¢tas the BIC. The item location
parameters did not differ much between the twantattasses. The differences were
observed with respect to the threshold paramdtethe larger latent class (Class 1
with = = 0.71), all thresholds were ordered indicatirgf the members of this class
used the rating scale in the expected way. Sirtol#ne case depicted in Figure 4,
each response category corresponded to an arée tateént continuum for which its
response probability was larger than the probasliof the other categories. In the
smaller latent class (Class2 with+ 0.29), the first two thresholds were disordeied
all items and the threshold distances were mucHlesnthan in Class 1. Therefore, the
members of Class 2 were characterized as extrespendents.

Eid and Rauber (2000) also investigated whettientaclasses differing in
their response styles could be characterized greait variables including age, sex,
length of service, length of service on the sanstppm, and leadership level. The
results showed that significantly larger proportafriemale employees belonged to
Class 2. In addition, relatively new employees bgtal significantly less frequently to
Class 1. People who had been working longer thayeaés in the same position had a
higher probability for belonging to Class 2. Figakmployees at different leadership

levels showed differences in the probability toongl to each latent class.
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Gollwitzer et al. (2005) applied the MPCM to arrdythe three anger
expression subscales (Anger-in, Anger-out, and Auggatrol) of the State-Trait
Anger Expression Inventory (STAXI; Spielberger, 898btained from patients
hospitalized in a psychosomatic clinic. They obsdreonsiderable differences in
response styles, which were similar to the diffee=nin non-clinical samples. The
largest latent class (Class 1) exhibited orderetdearenly spaced thresholds for both
gender group and for all scales, meaning an apiatepuse of response categories. It
was also shown that respondents who were assigrnélhss 1 on one scale were
likely to be assigned to Class 1 on the other scdlee second latent class (Class 2)
for the female sample presented partly disorderegsholds and narrower threshold
distances. The logistic regression analyses wearduwied to predict the latent class
membership using various personality variables oreaisby Freiburg Personality
Inventory (FPI-R; Fahrenberg, Hampel, & Selg, 198%e regression analysis results
provided some evidence that a social desirablestarydaccounted for the response
styles identified in Class 2.

Gollwitzer et al. (2005) argued that it was redsonable to compare all
individuals quantitatively with respect to theimsscores, which was the scoring
method instructed in the STAXI's handbook (Spietlaer 1988). They suggested a
more appropriate scoring strategy that requireglaagtep procedure. In the first step,
individuals would have to be assigned to a latéagscin order to qualify differential

response styles. They could then be compared wath ether within their latent class.
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In a second step, class-specific person paramateid be compared across latent
classes under the premise that the same traitrig beeasured in all classes.

Zickar et al. (2004) conducted an experimentadygin which respondents
were couched to respond honestly or faked posytioela personality inventory. They
analyzed the item responses from the experimeatapke with the MCPM and found
that honestly responding group exhibited the thokshthat were properly ordered and
much lower item-level scores than the “faking grodor the faking group, the
thresholds were disordered and the difference letlee first and second thresholds
was much smaller than the difference in the hopestponding group, indicating that
few individuals chose the first and second categon this group.

Zickar et al. (2004) also compared the item respsron the Personal
Preferences Inventory (PPI: Personnel Decisioresriational, 1997) between an
applicant group and an incumbent group in an omgdinn. Their MPCM analysis
results showed that 27.6% of the applicants wethdrextreme faking class whereas
13.7 % of the incumbents belonged to this clasaversely, 26.5% of the
applications were in the honestly responding clalsse findings provided some
insights that the typical applicant-incumbents camgon assuming that applicants
were faking and incumbents were responding honéstiybeen too restricted.

Smith et al. (2012) analyzed data from Bediefs and Attitudes About Memory
Survey(BAMS: Brown, Garry, Silver, & Loftus, 1997) witthe mixture Rasch models
to investigate the functioning of the “Neutral” egory (i.e., middle category) by

examining the threshold ordering. Smith et al1@Qpointed out that disordered
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thresholds occui) when the rating scale includes more categorias the
respondents can reliably distinguigh,when some rating categories are unlabeled, or
iii) when rating scale includes middle point labelediiadecided or neutral. The
analyses of the original 5-point Likert-scale BAM&ta showed that disordered
thresholds mainly occurred around the “Neutralegaty. They treated responses to
the “Neutral” category as missing data and reamalythe remaining data recoded to
an ordered 4-point scale. For each of the threeidt BAMS subscales, two latent
classes were identified based on the CAIC. FoBlkeading of Memories subscale
and the New Born, Womb, and Previous Lives Memasigsscale, respondents from
each of the latent classes used the items diffgrgesulting in an item difficulty
ordering that was not invariant across latent egs$his indicated that different
constructs related to the beliefs about memorigghtribe measured within each latent
class. For the Memory Storage subscale, howeweg\vhrall item difficulties were
approximately the same for both classes excepirferitem. This led the author to
reasonably assume that the same underlying cotstuece being measured across
the latent classes.

Adjustment of response style effects on test scores by applying the MPCM.
Rost et al. (1997) pointed out that the estimataid parameters of the MCPM are
automatically corrected for the effects of a reggostyle and this is the most practical
implication of employing the MPCM to the analysfsself-report data. Given that the
MPCM providesé estimates conditional on each response-style aladshe sum

score is the sufficient statistics férestimation, any differences observed in the class-
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specific & estimates for the same raw score can be viewad adjustment or
correction for the effects of response styles (Rbst, 1997).

Rost et al. (1997), Gollwitzer et al. (2005), &ith et al. (2012) graphically
showed the relation between sum scores@mdtimates in each latent class to
demonstrate how the class-specific person traiisiated for the same sum score
differ across the classes. The results of thosesicommonly showed that
respondents who responded to more extreme categgaiaed less extreme theta
estimates than the respondent with the same sura Babmoderate response styles.
These results implied that interpreting sum scdfferénce among individuals without
considering their response styles may lead to fafeeences concerning individual
differences in their latent trait level.

Although the potential of rectifying score biasdmploying the MPCM was
demonstrated in those empirical data analytic s&jdi has not been investigated how
the correction would operate for different typesesdponse styles when multiple kinds
of response styles are present.

Related to the correction of sum score bias, ggomant psychometric issue of
interest is whether theta estimates obtained withxéure IRT model may provide a
better prediction of an external criterion, compkt@ the theta estimates obtained with
its non-mixture counterpart. Maij-de-Meij et alO@B) applied the mixture nominal
response model and the MPCM to personality invgrgoales, Extraversiork) and
Neuroticism N), and investigated whether theta estimates pravigethe mixture

models resulted in a better prediction of relevextiernal criteria. The results of this
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study showed that fd¥ scale, the correlations between theta estimas@erion
measures were higher for the mixture models thathiBanon-mixture model.

However, this improvement was not observed forEiseale.

2.6.2. Simulated data analysis

As reviewed in previous sections, there have lheeeasing applications of
the MPCM. Unfortunately, however, little is knowbhaut model performance of the
MPCM in accurately estimating the model paramet@asly one simulation study
conducted by Rost (1991) demonstrated the capabflihe MPCM to “unmix”
heterogeneous item responses data. Rost (1991¢drbaece sets of data, each of
which was comparable with the PCM, and selectieelybined two of the three data
sets to generate several mixtures of two latesisela In generating the mixture data
sets, he manipulated sample size, threshold distamd the ranges @f, so that the
mixtures differed with respect to “degree of heggneity”. Specifically, the largest
first data setl = 1000) had a wide range of item locations (-2.#2d/), equal

threshold distancesy( — 6., = 0.5 ands,, — ., = 0.5), and a wide-range of values

(-2.5 to +1.0). The second data 9¢t600) had a smaller range of item locations (-

1.8 to +1.8), reversed thresholds with extremelgqual threshold distancesg (- o,
= 1.4 ands,, -0, = 0.2), and a narrow-range 6fvalues (-1.0 to +1.0). The third

data set|=800) had no variation of item locations (O foritdims), large and equal

threshold distancess( —¢,, = 1.0 ands,, —6,; = 1.0), and a narrow-range 6f

values (0 tol1.5). In this study, depending on tlamipulated degree of heterogeneity,
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the difficulty in detecting latent classes in mpdulistributions was anticipated. The
mixture of the first and second data sets was dgddo be easiest to unmix because
the item parameters and threshold distances diffengly while the mixture of the
second and third data sets was expected to bediffostlt to unmix.

The accuracy of thresholds recovery, mixing prapartecovery, and class-
specific mean score recovery from a single repboatesult was evaluated by
comparing the results for mixture data with thasenion-mixture data. Results
showed that the mean threshold distances anddks-specific score distributions
were recovered fairly well. Some large deviatiamsrf the simulated condition were
observed for the mixing proportions under certainditions. These deviations,
however, were interpreted as effects of the pddrdireshold sets manipulated not as
a bias of the estimation procedure. Rost (199D elsluated the quality of estimates
for the mixture with three-classes and found thatdccuracy of the parameter
recovery for the three-class model was comparalitetie estimates in the two-class
model. Regarding the model selection procedureAtecorrectly identified the

generated number of latent classes.
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Chapter 3: Methodology

3.1 Objectives and Resear ch Questions
The major objective of the current study is twofdijl to evaluate the quality
of the respondent classification as well as iteh @erson trait parameter recovery of
the MPCM when the population is a mixture of diffiet response-style respondents,
and (i) to investigate how the MPCM makes an adjustmétiielatent trait estimates
to compensate for the confounding effects of déiferesponse styles on test scores.
In addition to the major goals, the current stuldp &xplores the effectiveness of the
information criterion statistics in identifying tle®rrect number of latent classes in the
MPCM. These objectives were addressed via a siioalatudy. The manipulated
factors for which the effects were assessed were ¢f mixture of response styles,
mixing proportions, sample size, and test lengtie 3pecific research questions that
were addressed in this study are as follows:
1. What percentage of respondents does the MPCMatty classify
within their true response-style class under varicenditions?
2. What percentage of replications does the inftionariterion statistics
identify the correct number of latent classes?
3. What degree of the accuracy of thresholds paexrmecovery does the
MPCM provide under various simulation conditionsemtthe accuracy
is assessed by Pearsomoot mean square error, and standard error of

estimates?
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4, What degree of the accuracy of person traitrpatar recovery does
the MPCM provide under various simulation condiiavhen the
accuracy is assessed by bias, Pearsand root mean square error?

5. How are sum (total) scores and class-specifisquetrait parameters
estimated with the MPCM related to each other utitkesimulated

types of mixture distribution?
3.2 Overview of Simulation Study

3.2.1 Manipulated factors

The current simulation study selectively considetetifive different types of
response-style mixture distributiom) ORS and ERSjij ORS and MRS,ii{) ORS
and ARS, i) ORS, ERS, and MRS, as well @& ORS, ERS, MRS, and ARS.

The mixing proportions were manipulated to be egualnequal. The “equal”
condition represents the population where differeaponse-style respondents are
mixed with equal proportions and the “unequal” atind represents the population
where majority of the respondents are ORS respdsd@en very small proportion of
respondents presents distorted response stylele Tqibovides a summary of the

types of mixture and mixing proportions manipulaitethe current study.
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Table 1.Manipulated Simulation Conditions of Population efeigeneity

prg/lggrr;i%ns Classl@) Class2(,) Class3@;) Class4,)
ORS(1/2) ERS(1/2)
ORS(1/2) MRS(1/2)
Equal ORS(1/2) ARS(1/2)
ORS(1/3) ERS(1/3) MRS(1/3)
ORS(1/4) ERS(1/4) MRS(1/4) ARS(1/4)
ORS(9/10) ERS(1/10)
ORS(9/10) MRS(1/10)
Unequal ORS(9/10) ARS(1/10)
ORS(8/10) ERS(1/10) MRS(1/10)
ORS(7/10) ERS(1/10) MRS(1/10) ARS(1/10)
Note:7z,= mixing proportion for class, ORS = ordinary response style,

ERS = extreme response style, MRS = middle-categytg,
ARS = acquiescent response style

BQOOO\ICDU‘I-wa\)I—‘

Two other manipulated factors were sample sizetestdength. Sample sizes
were chosen at three levels, mediir1200), moderately larg&€3000), and large
(N=6000). As for test length, since it is common thasychological instrument has a
small number of items per subscale, as small &sd=4) was explored as well as
moderate number of itemb=00) and large number of items20). These four
manipulated factors were completely crossed regplti the total number of ninety

simulation conditions.

3.2.2 Fixed factors

Three factors, i.e., the number of response caegydatent trait distribution
within latent class, and item locations were fixedhe current study. First, the
number of response categories was fixed at fiveos the latent trait distribution

was generated to be a normal distribution withntiean of 0 and the standard
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deviation of 1 for each latent class. Third, tlemtlocation of item held invariant
across the ORS, ERS, and MRS class in order fdathet classes to differ only with
respect to the dispersion of item responses (Ra@dt £997). For the ARS class,
however, the generated item location for itewas not the same as that for the other
response-style classes. The high response prdigdbilithe category 3 and 4 of a
positively worded item resulted in a very low item location for that ite&imilarly,
very high item locations for the negatively wordesins were resulted. As this
simulated condition for the item parameters inAlRRS class indicates, if there is a
group of ARS respondents in a sample, non-invartant locations are likely to be

manifested in a latent class.

3.2.3 Response scale

The current study assumed that item responsesolta@ed with a five-
category Likert-scale that had a built-in balansedle. In the balanced scale, a pair of
items asked an equivalent construct in a posittveell as a negative statement. In
scoring the category responses, responses to welgatiorded items were reversely
coded before being analyzed. For example, an eaohanst of the category 4,
‘strongly agree’ on these items was scored as Gaarehdorsement of the category 1,
‘disagree’ as 3. Using reversely coded categormyarses, instead of raw responses,
affected the marginal distribution of category @sges for ARS class. The raw
response frequency distributions for the ARS classld be negatively skewed for all

items before recoding responses. After the recoplingess, however, the category
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response frequency distributions for negativelydearitems were positively skewed

as can be seen in Figure 9.

3.3 Data Generation

The rating scale item responses that were confalibgé¢he effects of
response styles were generated based on the reltefoveen threshold values and
response category probabilities defined in the PTi common method of
generating thresholds such as randomly selectieghiold values within certain range
of 0 distribution, would not produce the item resportbes characterize ERS, MRS,
or ARS. The subsequent section presents the defdilsw to determine the
population generating thresholds for each respshde-subpopulation. The

generation of item responses is then followed.

3.3.1 Population generating thresholds

The first step was to clearly delineate distingungifeatures of the four
response-style classes by presuming marginal frexyudistributions of category
responses for each response-style class. Figures@rmis the expected frequency
distributions of category responses marginalizesr @l items administered in four
different response-style classes. The specificahiity values are presented in Table
2. For example, assuming that theta distributicam®rmal distribution, 14% of ORS
respondents would choose ‘strongly disagree’, 2@%agree’, 28% ‘neither disagree
nor agree’, 22% ‘agree’, and 14% ‘strongly agreeagerage over all items. If a
group of people has ERS tendency, about 81% of theuild select ‘strongly

disagree’ or ‘strongly agree’. In determining th@sarginal probabilities, a rather
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arbitrary decision washade because there was neither theoretical ged nor
empiricallyreported category response frequencies relattheresponse style:
Since too sparse category response frequencies panlsiems in estimatio

extremely small category response frequency (iear zero percent) for any it was

avoided.

70 ORS 70 MR ERS
60 60 57 a0
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Figure 9 Expectednarginalfrequency distribtions of category responses

differentresponse styles (¢
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Table 2.Expected Marginal Category Probabilities for Diféeit Response-style

Classes
Category0 Categoryl Category2 Category3  Category4
ORS 0.14 0.22 0.28 0.22 0.14
ERS 0.40 0.08 0.04 0.08 0.40
MRS 0.08 0.16 0.52 0.16 0.08
ARS(positive)  0.05 0.05 0.05 0.23 0.62
ARS(negative) 0.62 0.23 0.05 0.05 0.05

Note: ORS = ordinary response style, ERS = extreesponse style, MRS = middle-category

response style, ARS = acquiescent response style.

The second step was to make variation of the cagggobabilities among

items. As shown in Table 3, while ensuring the nraigcategory probabilities

approximate the values initially specified in TaBlehe category probabilities for

each item were manipulated to be different amosmmst Table 3 shows the variations

created for ten items for the ORS class. The cayggobabilities for individual items

for the other response styles are presented iAppendix A.

Table 3.Category Probabilities for Individual Items for OR$ass

ltem Categoryl Category2 Category3 Category4 ©ayey
1 0.1478 0.2245 0.2556 0.2245 0.1478
2 0.1539 0.2061 0.2801 0.2061 0.1539
3 0.1244 0.2413 0.2685 0.2413 0.1244
4 0.1069 0.2412 0.3038 0.2412 0.1069
5 0.1233 0.2354 0.2825 0.2354 0.1233
6 0.1657 0.2071 0.2543 0.2071 0.1657
7 0.1332 0.2308 0.2721 0.2308 0.1332
8 0.1550 0.2124 0.2653 0.2124 0.1550
9 0.1501 0.2065 0.2867 0.2065 0.1501
10 0.1416 0.1904 0.3360 0.1904 0.1416

Mean 0.1402 0.2196 0.2805 0.2196 0.1402
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Note that the means of the category probabilitiab@ten items remain almost the
same as the marginal category probabilities spetifi Table 2. These variations
among items were manipulated to generate item rnsgsathat fit the PCM instead of
the rating scale model (RSM, Andrich, 1978), ThevRS restricted to have a
common set of thresholds across all items.

The next step was to compute threshold probalidityach step by applying
the simple Rasch logistic model to the series gd@aht categories. The computations
are demonstrated using an example of the first itefrable 3. As presented in

Equation 1, théth threshold for item (9, ) can be obtained by computing the natural

logarithm of the odds ratio and subtracting it frima person trait density:

0, =0y = |n[:¢J ,
ni, k-1

S, :-ln[i]wn. (11)

ni,k-1

Ignoring the trait density (of,= 0 ) in Equation 11, can be computed as follows:
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Category0| Categoryl Category2 Category3 Category4
Category 0.147 0.225 0.256 0.225 0.147
probability (¢, ) ' : - : :
Stepl Step2 Step3 Step4
¢ni1 ¢ni2 ¢ni3 ¢ni4
Threshold Prro + Poia Pras + G Pz + Pz Praz + Praa
prObab|I|ty _ 0.225 _ 0.256 _ 0.225 _ 0.147
0.147+ 0.225 0.225+0.256 0.256+0.225 0.225+ 0.147
(Pux) = 060 =053 =047 = 040
Odds ( 060 ) ( 053 j ( 047 j ( 040 )
[ Py j 1- 060 1- 053 1- 047 1- 040
1- P =1.53 =114 =0.88 =0.65
Ln(Odds) 0.426 0.129 -0.129 -0.426
Threshold ¢, ) -0.426 -0.129 0.129 0.426

During this thresholds computation, item locatiorese fixed to zero. For the

items to have different levels of difficulty, a pidge or negative constant was added to

each threshold. The varying item difficulties mangied are presented in Tables 4 to

Table 7.

In the computation presented above, the item tlotdsralues were computed

without considering? distribution. In IRT models, the probability of @am response

is determined as a function of both item and pepameters. Therefore, the person

trait density needed to be combined with the coebtitreshold values (Equation 11).

In order to achieve this combination, a histograat follows the normal distribution

was constructed under which the determined thrdshak., cut points on theta

continuum) were adjusted. The procedures of thissament were the following: theta

range from -2.5 to 2.5 was divided into nine ingswvith 0.5 increments and then a
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sample of 10000 respondents was allotted to edehval based on the cumulative
normal density function. Using this sample of reggents and the initially computed
threshold values for ten items, PCM item respoms&e generated. The generated
item responses were analyzed to check the margat@djory probabilities. While
monitoring the resulting category probabilitiesyex@l sets of four constants were
alternatively added to the initial threshold valuesil a set of thresholds that produced
the expected marginal category probabilities asechs possible. Tables 4 to 7 present
the threshold parameters that were obtained baséiese adjustments for the ORS,
ERS, MRS, and ARS class, respectively. Threshaldgeh items were first

determined and those ten items were used twiceeties 20-item test. Four items
among the ten, which are indicated in the Tables4 were selected to create 4-items
test. The corresponding plots for the determineestiolds for ten items are presented
in Figures 10 to 13. These threshold plots reptebenocations of each threshold on
the latent trait continuum on the y-axis. The cheeastics of the sets of threshold
parameters for each class are described in thegubst sections.

Thresholdsfor ORS class. The population generating thresholds for the ORS
class are presented in Figure 10. As seen in Fgumechapter 2, which presents
ordered and evenly spaced thresholds for a sitgie ithe threshold plot in Figure 10
shows those properties across all items. In tloggrit is seen that passing a higher

threshold requires more of the latent trit
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Table 4. Threshold dluesUsed for the Generation of the ORS Class

ltem Threshold: Threshold2 Threshold3 Threshold4 Locatior

12 1.518: -0.5998 0.4998 1.4181 -0.05
22 -1.292¢ -0.6768 0.7768 1.3924 0.05
3 -1.812: -0.6265 0.4265 1.6123 -0.10
4 -1.763: -0.5510 0.7510 1.9632 0.10
5 -1.846¢ -0.7522 0.4522 1.5469 -0.15
6 -1.123: -0.4750 0.7750 1.4232 0.15
7 -1.799¢ -0.7849 0.3849 1.3999 -0.20
8 -1.165¢ -0.4421 0.8421 1.5654 0.20
92 -1.619: -0.9980 0.4980 1.1191 -0.25
102 -1.096¢ -0.7379 1.2379 1.5966 0.25
Mean -1.503 -0.6644 0.6644 1.5037 0

Note: 2 Selected item fo-item test length condition

25
2 o
L5 WA‘*-W‘KVL
1
E 0'3 1 X - —&— ORS_thr1
E e —8— ORS_thr2
B M ORS_thr3
15 e Av/’\v —— ORS_thra
2 —*—¢
25

Item

Figure 1C. Thresholds plot for 10 items for ORS class

Thresholdsfor MRS class. The population generating thresholdsthe MRS

classare presented in Figull. As can be seen in Figurgtbe distances betwe
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second and third thresholds are large and therreversals betweed, and &, as well
as thresholdg, ando, .

Table 5Threshold luesUsed for the Generation of the MRS Class

Item Threshold: Threshold2 Threshold3 Threshold4 Locatior

18 -2.132¢ -2.8106 2.7106 2.0328 -0.05
22 -1.961¢ -2.3956 2.4956 2.0616 0.05
3 -1.151¢ -3.2403 3.0403 0.9515 -0.10
4 -0.865¢ -2.3722 2.5722 1.0654 0.10
5 -1.221¢ -3.1974 2.8974 0.9218 -0.15
6 -1.000: -2.7372 3.0372 1.3001 0.15
7 -2.0917 -2.7031 2.3031 1.6917 -0.20
8 -1.369¢ -2.2797 2.6797 1.7698 0.20
92 -1.952¢ -2.2618 1.7618 1.4528 -0.25
102 -1.190¢ -2.1591 2.6591 1.6903 0.25
Mean -1.493¢ -2.6157 2.6157 1.4938 0

Note: 2 Selected item foritem test length condition

—o—MRS_th1
—B—MRS_th2
MRS_th3

Threshold
o

—<—MRS_th4

Item

Figure 11.Thresholds plot for 10 items for the MRS class
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Thresholdsfor ERS class. The population generating thresholds for the ERS
are presented in Figure 12. As can be seen in &iguthe reversals occur and there
are items that have no area between thresholdsatimty very sparse expected
responses for some categories. Generally, thetlirsshold value is the greatest in
this class. It indicates that it is hard for peapléhis class to pass the first threshold
and, therefore, they end up with selecting the Gategory Kk = 0) rather than the
second categorkE 1). On the other hand, the last threshold istmest to pass,
indicating that respondents tend to pass thehasshold easily and select the last

category k= 4).

Table 6.Threshold Values Used for the Generation of the ERSs

ltem Threshold1 Threshold2 Threshold3 Threshold4 Location

18 0.4043 0.6851 -0.7851 -0.5043 -0.05
22 0.7207 0.2235 -0.1235 -0.6207 0.05
3 1.0029 -0.1963 -0.0037 -1.2029 -0.10
4 1.1222 0.6516 -0.4516 -0.9222 0.10
5 0.6489 0.1037 -0.4037 -0.9489 -0.15
6 0.8159 1.1774 -0.8774 -0.5159 0.15
7 1.1394 0.2912 -0.6912 -1.5394 -0.20
8 1.0474 0.7020 -0.3020 -0.6474 0.20
92 0.246 0.2106 -0.7106 -0.7460 -0.25
102 1.0952 0.9962 -0.4962 -0.5952 0.25
Mean 0.8243 0.4845 -0.4845 -0.8243 0

Note: 2 Selected item for 4-item test length caadit
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Figure 12 Thresholds plot for 10 items for the ERS class

Thresholdsfor ARS class. The population generating thresholdsthe ARS
classare presented in Figul3. The first five items are those that amttenin
positive statements whereas Item 6 to Item 10rareetthat are writtein negative
statement. Thaegativel stated items’ thresholds profile locates upper eanigthete
continuum whereas thgositively stated items’ thresholds profile locates lower s

of theta continuum.
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Table 7.Threshold \dluesUsed for the Generation of the ARS Class

ltem Threshold: Threshold2 Threshold3 Threshold4 location
12 -1.509: -1.6300 -2.4202 -0.9255 -1.6210
28 -1.632¢ -1.0445 -2.5418 -0.8828 -1.5250
3 -1.705¢ -1.6953 -2.1910 -1.2787 -1.7170
4 -1.381( -1.2554 -2.4918 -0.6646 -1.4480
5 -1.850: -1.5547 -2.3851 -1.2644 -1.7630
Mean -1.6157 -1.4360 -2.4060 -1.0032 -1.6148
62 0.825¢ 2.3202 1.5300 1.4092 1.5225
78 0.982¢ 2.6418 1.1445 1.7323 1.6235
8 1.078° 1.9910 1.4953 1.5054 1.5176
9 0.864¢ 2.6918 1.4554 1.5810 1.6482
10 0.964¢ 2.0851 1.2547 1.5507 1.4625
Mean 0.943: 2.3460 1.3760 1.5557 1.5549

Note: 2 Selected item fo-item test length condition

Threshold

—e—ARS_th1
——ARS_th2

ARS_th3

—— ARS_th4

Item

Figure 13 Thresholds plot for 10 items for the ARS class

(Items 1 to Gare jositively stated, Items 6 to 10 aregatively statel
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3.3.2 Item responses gener ation.

To generate item responses, person trait param@tesgre randomly drawn
for each replication from a standard normal distiim N ~(0,1). The tru@, and

population generating threshold parameters deteufior each response style were

substituted in the MPCM formula. Five category @oitities (¢, ) were computed for

each respondent as demonstrated in Equation 5eTiained category probabilities
became the success probability of a multinomiatithstion. Assuming that one

experiment was performed that yielded 5 possible outcomes with probabilitigs
..., &, , if thekth outcome was obtained, tkid entry of the multinomial random

vector took on a value of 1, while all other ergrieok on values of 0. The value 1
was scored as1, and finally category scores from 0 to 4 werg@g®ed. The item
responses data used in the simulation was genexéted® 2.14.1 (R Development
Core Team, 2011).

The following Figures 14 and 15 present the coaddl frequency
distributions of category responses obtained fgingle simulated data set. In the
plots, the data set is divided into four groupsoagimg to the respondentg’ level,
i.e., below 28 percentile, from 28to 50", from 50" to 75", and above 7%
percentile. Within each group, the frequency oégaty responses was counted.
Figure 14 is based on an item with lower item lmcatvhereas Figure 15 is based on
an item with higher item location. It is clearkgye from Figures 14 and 15 that the

category response probabilities are jointly infloeth by the respondent# level and
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a response style. For the ORS class with no regpstgke bias involved, high
response category frequencies gradually shift fiteerlower categories to higher
categories as the percentile becomes higher. Htierp of category probability shift
conditional oné level is commonly observed across all responde-stgsses. If ERS,
MRS, or ARS is involved, however, particular resp@rategories tend to produce the
largest frequency within across all levelsétvhile the gradual shift of the category

probability conditional or¢ levels remains.
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3.4 Analysisand Evaluation Criteria

The simulated data sets that represent differextum@s of response-style
respondents were estimated with the MCPM usiaiimsoftware mdltmallows the
analyses with a wide range of latent variable m®dath as uni-dimensional and
multi-dimensional IRT models, latent class modsissture IRT models and
diagnostic models (e.g., von Davier, 2005b). Itlenpents the EM algorithm
(Dempster, Laird, & Rubin, 1977) to obtain margineximum likelihood estimates
of parameters. The parameter estimates provideddiynwere collated and the

evaluation criteria were calculated using R 2.14.1.

3.4.1 Fitting competing models

Assuming that the true model was known as the MR@QMhe number of
latent classes in population was unknown, the atistidy fit simulated data with
three MPCMSs with increasing numbers of latent @as&or 2-class generated data
sets, 1-, 2-, and 3-class MPCM were fit to the data 3-class generated data sets, 2-,
3-, and 4-class MPCM were fit. Finally, for 4-clagmerated data sets, 3-, 4-, and 5-
class MPCM were fit. These three competing estiomatnodelsi) under-fitting
model, which had one class less than the data g&gm@modelji) correct-fitting
model, which had the same number of classes atathggeneration model, anid
over-fitting model, which had one class more tHeandata generation model, were
compared with respective to their information crde statistics, AIC, BIC, and

CAIC.
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3.4.2 Conver gence check

To ensure that the results of each simulationyaisivere grounded only on
well-estimated solutions, convergence checks wenewcted for each of the three
competing solutions for each simulated data setoff-convergence occurred for the
correct-fitting model, all three competing solusdinom that replication were
discarded. To make up for the simulation datatbetiswere discarded as a result of
non-convergent solutions, additional data set wereerated. This allowed for a total

of one hundred converged replication results feheamulation condition.

3.4.3 Model selection

To assess the relative effectiveness of the pedoom of the information
criterion statistics, AIC, BIC, and CAIC in identihg the correct number of latent
classes in the MPCM, the index values were obtaioedach of the three estimation
models. One among the three estimation modelgptoatded the smallest index value
was selected as being associated with the basgfittodel. For each index, the
proportions of replications in which the true models identified as the best-fitting
model were computed. In addition, the proportiohsraler-identification and over-
identification of latent classes were also examifdek results of the three indices
were compared to find their relative effectiveniesslentifying the correct number of

latent classes under the various simulation caorahti

3.4.4 Problem of label switching
Label switchingefers to the arbitrary mismatch between generaltess

membership and estimated class membership in daiorustudy of mixture
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modeling. In the current study, for a mixture dat® RS and ERS, for example, there
are two possible ways that the estimated latesselare labeled: ORS for the first
estimated class and ERS for the second estimadsd of conversely, ERS for the first
and ORS for the second estimated class. In a ddoeraulation, there are up ©! (C

x C-1 x ... x2x1,whereC is the number of latent classes) possible permontof
latent class membership assignments. Only oneegbdissible permutations is the
correct match and others indicate the occurrensmdus patterns of label switching.

In order to obtain correct measures for paranretmvery evaluation,
switched labels must be detected and mismatched ol@mbership must be corrected
before aggregating estimates across multiple r&gpbics. In a simulation study where
a large number of replication results need to lggeggated, it is practically impossible
to manually inspect individual output for each dsgato identify the occurrence of
label switching. The process of correcting latdasg labels needs to be automatized
in the course of analysis.

In the current study, a post-hoc technique wassdelby the author to detect
and correct switched latent class membership baisele information from the
threshold estimates. This algorithm takes advanbagjee distinctive order of
thresholds that characterize each response-sbds.cAs presented in Table 3, the
mean values of population generating thresholdssaaall items for each response-

style class show particular orders in terms ofrthegnitude. If the means of

estimated threshold®)(, J,, J;, ando,) for an estimated class satisfies the order of

{0, <0, <08, <9,}, that class is identified as an ORS class. Ifgaeof means
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satisfies the condition ofd; > 0 andd, < 0} in a class, that class is identified as an
ERS class. For MRS and ARS class, the conditio§syp& 0 andd, <0 ando, >0,}

and {9, <0 ando,>0 ando,<0 andd, >0} are applied, respectively.

Table 8. Means of Generated Threshold Parameters for Eadp&ese-style Class

Class Threshold1 Threshold2 Threshold3 Threshold4

ORS -1.5037 -0.6644 0.6644 1.5037
ERS 0.8243 0.4845 -0.4845 -0.8243
MRS -1.4938 -2.6157 2.6157 1.4938
ARS -0.3363 0.4550 -0.5150 0.2763

In addition to employing this algorithm using teinelds characteristics, a
different algorithm that is based on the informatitom respondent classification
developed by Tueller, Drotar, and Lubke (2011) w@slemented. The results of

employing these two different algorithms were corega

3.4.5 Classification accuracy

The classification accuracy was evaluated for threect-fitting model
solutions. The classification accuracy was compasethe proportion of respondents
who were assigned to their generated class mempdyaked on the magnitudes of
the posterior probabilities for the various classmberships. Not only the correct
classification rate but also the nature of miscafesdions was closely examined.
Misclassified individuals were cross-tabulateddtmpossible combinations of

misclassification to explore whether there was jgaxyicular misclassification pattern.
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3.4.6 Threshold parameter recovery

The accuracy of threshold parameter recovery wakiated in terms of
Pearson, root mean square error (RMSE), and standard efrestimates (SE).
Correlation and RMSE provide the measures of ovacauracy of parameter
estimates. The closer the generated and estimatadhpters are to each other, the
higher positive correlation and the smaller RMS& expected. For threshold
parameter recovery, SE was computed based onahéastl deviation of sample
estimates from their average value. This indicHtesstability of parameter estimates.
A great fluctuation of estimated parameter valuemfreplication to replication
increases the SE. For item parameter recoveryptireevaluation criteria were

calculated for each of four thresholds. They amamated as follows:

l W |
Corrgkfsk :szrgwik‘yik ' k= 1’ " 4

where s is the Pearsonbetweerkth true threshold &, )and its estimateoik ).

indicatedth item { = 1,...1), wiswth replication (v = 1,...W).
The mean bias, which is the measure of discrepancy between generated and

estimated parameters, was not considered as an evaluation critericegboptti
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parameter recovery in the current study. During the parameter estinmatimncurrent
study, the item constrain method was used for the purpose @ idedtification. As
introduced briefly in Section 2.5.1, either item parameter or persopar@meter
needs to be constrained to solve the indeterminacy problem imtRi€ls. The
softwaremdltmallows user to choose either of the two constrain methodenif it
constraints are used, the sum of the estimated thresholdsevediro in each latent
class while if person constraints are used, the sum of the estifhaisil be zero in
each latent class. The current study used the former method and,umortbedhe
mean bias across thresholds and items turned out to be zerosiordétion
conditions, which was illegitimate to be used as an evaluetitarion as was

originally proposed.

3.4.7 Person trait parameter recovery
The accuracy of person trait paramet@) (ecovery was evaluated in terms of
Pearsom, bias, and root mean square error (RMSE). For theta recovery, thatmralu

criteria were calculated for each class as follows:

l W N
Corrégzwzz% .
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where @, is persomth true trait ,én is its estimate ani is the sample size or total

number of respondents.

3.4.8 Model-based correction of score biasdueto response styles

The relation between sum scores and the MPLkttimates was investigated.
To explore how the relation differ across latent classes when tiee, tr four
different types of response style were mixed, plots in which tREM & estimates

were depicted as a function of sum scores were created.

3.4.9 Evaluation of effects of manipulated factors

One of the main interests of the current study was to investlgatafluence
of the four factors on the MPCM performanpetype of mixture at five levelsi)
mixing proportions at two levelg§j) sample size at three levels, andest length at
three levels.

Using the evaluation criteria measures (i.e., percentages, biasessRMSE
correlations, and SESs) as the dependent variables, several factorial ANGV&s
conducted. Four main effects of the manipulated factors and all twaatesiaction
effects were included in the ANOVA model. The higher order intenaetifects were
folded into the error term. In the current study, many cell means unavailable
because of the exclusions of the simulation conditions in vith&lproblems of
estimation and label switching occurred. Under this incompletgrggiere some
estimated cell means were missing, the interpretation of higher atdeadtion

effects was seen as being quite difficulty to properly interpretiaitd limited and,
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thus, would provide limited (possibly misleading) informatadrout the manipulated
factors in this study.
The influence of manipulated factors was determined to be statisticall

significant if the associatgavalue < .05. Practical significance was measured by the

S%ffect

otal

effect size indexp® = , defined as the variance accounted for by the

manipulated effect. According to Cohen (1988)of 0.06 and 0.14 represent medium

and large effect sizes for factorial ANOVA analysis, respectively. lctinent study,
the importance of the effects of the manipulated factors was evaluatedobatbed
combination of statistical significance and practical significancey Gwlse

manipulated factors for which thgirvalue was smaller than 0.05 and, at the same
time, n>was greater than 0.06 for medium effect or 0.14 for large effect was

interpreted for its importance.
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Chapter 4: Results

Chapter 4 presents results of the current simulation study sestions.
Before presenting the results to answer the main research questgfiist section
4.1 addresses how the current study treated problems related tokegence of the
program to provide reasonable model parameter estimates as welkss issu
surrounding label switching. Section 4.2 provides the restitteodel selection under
the MPCM based on information criterion statistics. Assessmeheaésults of
model performance in the recovery of latent class membership, item tlireshol
parameters, and person trait parameters are provided in Sectiom4&8)d14.5,
respectively. Finally, findings regarding the model-based correofiperson trait

estimates are discussed in Section 4.6.
4.1. Initial Treatment of Estimation Problems and L abel Switching Problems

4.1.1 Non-convergence and boundary estimates

The population models used to generate item response data finthiation
study were five different MPCM$) three 2-class MPCMs representing mixtures of
the ORS-ERS, ORS-MRS, and ORS-AR¥$a 3-class MPCM representing a mixture
of the ORS-ERS-MRS, ariill) a 4-class MPCM representing a mixture of the ORS-
ERS-MRS-ARS. These five data generation models were estimated undeiynibie
same MPCM maodel (i.e., correct-fitting), but also an under-fittmglel (i.e.,

estimation with the MPCM that has one class fewer than thegdataation model) as
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well as over-fitting (i.e., estimation with the MCPM that loag more latent classes
than the population generating model).

Two situations that may indicate problems in achieving comverg of
parameter estimates were checked for these three estimation soluti@fissT
situation could be characterized when estimation terminated witbowergence. The
second situation that prompted monitoring occurred when maxiikaehimood
estimates of item thresholds skirted the boundary of permissildengter values.
These two problems were reported separately. The softaditenprovides an
explicit warning message that indicates the occurrence of the fifstsé situations.
The percentage of replications in which this warning message appsaeported in
Table 9. For the second condition, threshold estimates thatweeseextreme than
9.0 or -9.0 were flagged and the percentage of the replicatiorts¢h wne or more
boundary estimates were flagged is reported in parentheses in Table 9.

Correct-parameterization. Under the correct-fitting, non-convergence as well
as boundary estimates did not occur across all levels of the OB3refures.
However, for the other types of mixtures, significant numbers ohdary estimates
appeared when the sample size was relatively siall{200). Specifically,
boundary estimates occurred for the MRS or ARS thresholds whexpected
response probabilities for the corresponding response categories vegrialigzero.
When the sample size whis= 1200 and the mixing proportions were: 0.9 versus
= 0.1, there were only 120 responses in the MRS or ARS clasallRhat the

expected category probability for th& dnd %' response categories for the MRS class
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was set up to be approximately 6% while that for the?¥, and ¥ categories for the
ARS class was approximately 5%. That means that as smallea02esponses
were assigned for those response categories. This data generatitiocoasiulted in
essentially zero expected frequencies in some randomly generated sampies/and
very well explain why the software converged to such extreme boyrdlues. It
appears that the sample sizeNof 1200 was not large enough to provide sufficient
information and subsequent maximum likelihood estimates ofteatféle boundary.

Under-parameterization. Under the under-fitting, neither non-convergence nor
boundary estimates occurred for any of the 2-response-style miasuvesll as for the
3-response-style mixtures. However, the 4-response-style mixtiréduwems and a
sample size dN = 6000 produced a non-convergence rate of 0.49 when it was fit with
an under-fitting model.

Over-parameterization. Expectedly, under the over-fitting, estimation
problems increased and almost all simulation conditions prochamettary threshold
estimates. The average rate of the occurrence of boundary estimatesprobe
0.46. The higher rate of boundary estimates were observediwhendata generation
model had three or four latent classgsthe sample size waé= 1200, oriii) the
mixing proportions were unequal. These findings may containmglications for
practitioners using these methods in real data analytic situafibasis, the
occurrence of infeasible extreme threshold values may be an indichtoeare
parameterization (estimating a model with too many latent classan)insufficient

sample size to estimate parameters of a given data set, or a combifaiie two.

89



Table 9.Percentages of the Occurrence of Non-convergence and Boundashold

Estimates
Type of ORS ORS ORS
Mixture ERS MRS ARS
Estimation 1class 2class 3class 1class 2class 3class 1class2class  3class
model
Pr'\cﬁlgg?t?ons ltem Sample
1200 0@©) 0(©) 0 () 0() 0() 0(67) 0( 0 (O 1(6)
4 3000 0() 0@ 0@ 0( 0(3) 0(10) 0( 0 (@O 0(1)
6000 0@© 0@© 0@ 0O 0@ O0@16) OO 9O 8(
1200 0 (0) 0 (0) 5(51) 0 (0) O (0) 0(96) 0 (0) O (0) O (56)
50:50 10 3000 0 (0)O0 (0 1(35) 0 0O (@O 0@ 0(@© 0 (@O 0(92
6000 0 (0) 0 (0) 2(27) 0 (0) O (0) 0(84) 0 (0) 0O (0) 0(87)
1200 0 () O0(@© 2(44) 0O 0@ 29 0(@© 0 (@O 233
20 3000 0 (0) 0 (0) 2(41) 0 (0) 0 (0) 1(87) 0 (0 0 (0) 0(26)
6000 0 (0 0 (© 2(32) 0 () O (0) 16(50) 0 (0) 0 (0) 0(60)
1200 0 (0) 0 (0) 0(19 0 (0 3 (1) 7(4) 0 (0 3(25) 13(42)
4 3000 0@ 0@ 0¢® 0O 1(3) 20(13) 0@ 0 (2 15()
6000 0 (0) 0 (0) 0 0@ 0() 0(1) 0 (© 8 () 7(5
1200 0 (0) O (0) 1(48) O (0) O(B5f 0(79) 0 (0) 1(48)* 0 (15)
90:10 10 3000 0 (0)0 (0) 0(34) O (0) O0(16) 0O(4) 0 (O) 0 (6) 0O(16)
6000 0(@© 0(@© 01 0O 0 (O 1(17) 0((Q) 0 (@© 0(0)
1200 0 (0) 0 (0) 0(25) O (0) O(75)" 0 (93) 0 (0) 0(58)* 0 (64)
20 3000 00 0@ 1(22) 0 0 (7) 0(37) 0(O) 0 (0 0(23)
6000 0 () 0@ 3(77) 0O O (O 75 0@ 0(@© 34
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Table 9 _continued

ORS
Type of ORS ERS
. ERS
Mixture MRS MRS
ARS
Estimation 2class  3class 4class 3class 4class 5class
model
Mixing
Proportions ltem  Sample

12000 0 (0) O (8 O (41) O (5 O (48)0 (67)
4 3000 0 (0) 0 (5 2 (1) 0 (0) 0(12) 41)
60000 0 (0) 1 (1) 0(12) 0 (0) 0 (0) 1Y

1200 0 (0) O (5) 4 (79) 0(13) 0(27) 389

50:50 10 3000 0 (0) O (0) 0(32) 0 (0) @) (0 (44)
60000 0 (0) 0 (0) 2 (51) O (0) O (0) 24

12000 0 (0) O (1) 0 (29) O (6) O0(10) 14)7
20 3000 0 (0) 0 (0) 0(82) 0 (0) 0 (0) (®)
6000 0 (0) 0 (0) 0(92) 0 (0) O (4 7Y

1200 0 (0) O0(15) 0 (61) 0 (29) 0 (46)0 (71)

4 3000 0 (0) O (7) 0 (42) 2 (11) 0(11) 3oy
6000 0 (0) 2 (3) 3 (14) 49 (0) 5 (3) 66

1200 0 (0) 0(69) 1 (93) 1 (51) 0(96) 2 (99)

90:10 10 3000 O (0) 0(19) 1 (90) 0 (18) 0 (3 (77)
6000 0 (0) O (0) 0 (44 O (1) O (3) ®HO)

1200 0 (0) 0(79) 1 (98) 0(78) 0(93) 0 (99)

20 3000 0 (©0) O (8 0 (79 0 (8 0(19) ()

6000 0 (0) 1 (9 0 (32 0 (0) 0 (9 4a3)

Note T Percentage of the occurrences of boundary essnmf@esented in parentheses
¥ Excluded from simulation summary due to high oceunce rate of boundary
estimates

Exclusion of estimation solutions with estimation problems. Ten conditions

out of ninety in the current simulation design presented bounlagsholds estimates
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in more than approximately half of the replications when the generatadelts were

parameterized with the correct model. These problematic conditiomswigh level

of estimation problems were excluded from the simulation summargranlisted in

Table 10. For other simulation conditions with a moderate Idwedtonation

problems, (i.e., either non-convergence or estimates at boundary betueen 1 %

and 30 %), the problematic results were discarded and new replidhtbrakd not

present these problems replaced the discarded replications.

Table 10Specifications of Simulation Conditions Excluded fromu&ition Summary

Due to Estimation Problems

Type of mixture Mixin_g Nu_mber Sample Occurrence_z rate of
proportions  of items size boundary estimates (%)

ORS-MRS 0.9:01 10 1200 65
ORS-MRS 0.9:01 20 1200 75
ORS-ARS 0.9:0.1 10 1200 48
ORS-ARS 09:0.1 20 1200 58
ORS-ERS-MRS 0.9:0.1 10 1200 69
ORS-ERS-MRS 09:0.1 20 1200 79
ORS-ERS-MRS-ARS 0.5:0.5 4 1200 48
ORS-ERS-MRS-ARS 0.9:0.1 4 1200 46
ORS-ERS-MRS-ARS 0.9:0.1 10 1200 96
ORS-ERS-MRS-ARS 0.9:0.1 20 1200 93

In general, parameter estimation in the MPCM achieved fairly high

convergence rates across various simulation conditions. Howevegrtipde size of
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N = 1200 appeared to be insufficient to provide well-estimated paranespesially

when a small proportion of the respondents in a sample preseng&edviEHS or ARS.

4.1.2 L abel switching problems

As is usual in any mixture modeling simulation study, laweatching
occurred. In the current study, label switching was detected wsindifferent
algorithmic approaches. The first algorithm was based on the infomfadm the
threshold estimates developed by the author while the secondlailgarés based on
the information from respondent classifications developed by TuBlletar, and
Lubke (2011).

Label switching correction algorithm based on thresholds information. As
explained in Section 3.4.4, to automate the correction of switdahed membership,
an algorithm was developed that exploited the distinctive ord&edhtesholds that
characterized each response style. To demonstrate how the algodths) &an
illustrative example in which threshold estimates from the 4-regpsiyte mixture
with 10-itmes and a sample sizeNdE 6000 was used in the following.

First, the mean thresholds for ten items were calculated for eactatapii
Instead of using individual item threshold estimates, the malaes over all items
were used because mean values were more consistent from replicagiplicstion
than individual item threshold estimates. The following math@ws the mean

thresholds for the first five replications.
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Class 1 Class 2 Class 3 Class 4
5, 6, o6, &6, 6, 6, 64 6, 6, 6, 64 6, &, 6, 65 6,
Repl 0.83 0.45 -0.47 -0.81 -1.46 -2.69 2.63 1.52 -0.25 0.39 -0.46 0.32 -1.47 -0.73 0.71 1.50
Rep2 0.86 0.39 -0.41 -0.85 -1.40 -2.71 2.66 1.46 -0.39 0.44 -0.42 0.38 -1.48 -0.70 0.78 1.41

Rep3 0.83 0.54 -0.52 -0.86 -1.45 -0.65 0.65 1.44 -0.19 0.45 -0.54 0.29 -1.44 -2.58 2.63 1.40
Rep4 -1.44 -0.68 0.62 1.50 0.83 0.51 -0.41 -0.93 -0.27 0.45 -0.48 0.30 -1.41 -2.59 2.55 145

Rep5 -1.48 -0.61 0.65 1.44 0.84 0.42 -0.48 -0.78 -0.38 0.70 -0.54 0.21 -1.47 -2.55 2.61 1.42

The first set of four thresholds from Replication 1 satisfies thditon of
{6, >0 ando, < 0}, which characterizes the ERS class. Note that any of the
remaining sets do not meet this condition. The second s&fiesathe condition of

{6,<0ands,<0 andg, >4, }, which characterizes the MRS class. The third set
satisfies the condition ofd; <0 andd,>0 ands,<0 ando, >0}, which characterizes
the ARS class and finally, the fourth set satisfies the condi¢@d, < 6, < 5, < J,

}, which characterizes the ORS class. Originally, the generated tdésstlabels were
ORS, ERS, MRS, and ARS for class 1, class 2, class 3, andiclaspectively. Thus,
the estimated class labels for Replication 1, i.e., ERS, MRS, ARBORS were
identified as switched labels.

There are 4! = 24 possible ways that four class labels can be swikawdd
replication was checked for all twenty-four possible mismatches anardper label
was labeled for each latent class. The switched class labels thatiergried for the

five replications in the illustration are as follows:
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Based on these identified class labels, the thresholds matrix wganeed as

presented below. Likewise, matrices of class membership assignnvegit as

Repl
Rep2
Rep3
Rep4
Rep5

Class 1
ERS
ERS
ERS
ORS
ORS

Class 2

MRS
MRS
ORS
ERS
ERS

Class 3
ARS
ARS
ARS
ARS
ARS

Class 4

ORS
ORS
MRS
MRS
MRS

person trait estimates (not presented in this document) were also gedrfanuse in

the subsequent analyses in the study.

Repl

Rep2

Rep3

Rep4

Rep5

-1.47 -0.73

-1.48 -0.70

-1.45 -0.65

-1.44 -0.68

-1.48 -0.61

0.71 1.50

0.78 141

0.65 1.44

0.62 1.50

0.65 1.44

0.83

0.86

0.83

0.83

0.84

0.45

0.39

0.54

0.51

0.42

-0.47

-0.41

-0.52

-0.41

-0.48

-0.81

-0.85

-0.86

-0.93

-0.78

-1.46

-1.40

-1.44

-1.41

-1.47

-2.69 2.63

-2.71 2.66

-2.58 2.63

-2.59 2.55

-2.55 2.61

1.52

1.46

1.40

1.45

1.42

-0.25

-0.39

-0.19

-0.27

-0.38

0.39

0.44

0.45

0.45

0.70

-0.46

-0.42

-0.54

-0.48

-0.54

labels when the quality of thresholds recovery was fairly googiever, this

algorithm seemed to be rather strict, so that some switched Vedred 10t

0.32

0.38

0.29

0.30

0.21

This label switching correction algorithm successfully identifedtched

automatically detected although they were discernible if inspecteddudlly by

looking at the whole picture of all items’ threshold estimatesliolasses.

Label switching correction algorithm based on classification information.

Tueller, Drotar, and Lubke (2011) developed a switched label detedgorithm that
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utilized respondent classification results after estimation was et@dpITheir

algorithm assumed that the frequency of correctly classified cases engigdier than
the frequencies of misclassified cases. Therefore, each column of the digmneasst
matrix must have one column maxima. To help in understandanglgorithm
developed by Tueller and his colleagues, three exemplar matrices afdbericies of
class membership assignment are presented below. The columnsnaittices
represent true class membership and the rows represent assigned classmembers
The first matrix shows a case where labels were not switched. The seatmnd

shows a case where the labels were switched and can be correctedrdlimatiix
shows a case where the labels were switched but cannot be correchedrvia t

algorithm because its column has more than one column maxima.

Labels not switched Labels Switched Cannot be corrected

True 1 True 2 True 3 Truel True 2 True 3 Truel True2 True3
Assignl 96 6 2 Assignl 9 60 9 Assignl 38 33 36
Assign2 1 91 5 Assign2 80 1 14 Assign2 38 31 35
Assign3 3 7 89 Assign3 11 39 77 Assign3 24 36 34

Tueller et al. (2011) pointed out that reliable use of this algarrgquires reasonably
high classification accuracy. They provided guidelines to presfnious correction
by setting up a level of class assignment criterion that allogveefearcher to decide
how much more respondents are required to be correctly assigned teatedxpy
chance.

Although drastic improvement was not anticipated from an achditki

application of the Tueller’s algorithm, it seemed to be a potealtainative to
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maximize the efficiency of automatic procedure to resolve the laballsigt
dilemma. Since Tueller’s algorithm uses different sources of informatamne
replications for which the algorithm based on thresholds washtetto detect
switched labels may find a solution via Tueller’s algorithm.

Results of detecting and correcting switched labels. When the two algorithms
were both able to solve switched labels, they yielded identicdtsebuerestingly,
switched labels in some replications were detected by only ahe afgorithms, but
not both. The two algorithms, therefore, were incorporated in tnseof the
analysis and, as a result, switched labels in more replicationsalgable in an
automated manner than when either of the two algorithms was used alon

There were thirteen simulation conditions in which label switcbmgd not
be detected for some of the replications despite applying the twidtlahge as well as
a more in-depth manual inspection carried out for individual ositfiite following
illustration presents a case of switched labels, which was notoalbéesolved by any
of the three methodsg) estimated thresholds did not hold the particular conditibns o
the order of thresholds) the class assignment matrix presented more than one
column maxima, anii ) the manual inspection of the thresholds of all four items was

not informative to separate three classes.
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Class 2

o, 04

0,

-0.82 0.17 0.84

Labels not switched

Class 1
5, 6, 05 &, O,
-1.87 -0.97 1.44 141 -0.19
True 1
Assignl 381
Assign2 347
Assign3 232
Class 1
51 52 53 54 51
lteml 328 -0.95 1.37 1.39 -0.77
ltem2 48 -0.91 1.57 1.74 -0.10
ltem3 _164 -1.05 0.81 1.12 -0.61
ltem4 108 -0.99 1.99 1.38 0.71

True 2
0

56
64

Class 2
5, O,
-0.28 -0.21
-0.52 0.04
-0.85 0.07

-1.62 0.80

5,

0.89
0.95
0.53
0.98

5,

Class 3

5, 04

-1.23 -0.53 0.72

True 3

95
18

51
-1.39
-1.17
-1.43
-0.94

Class 3
5, 0, 0,
-0.47 -0.33 -0.57
-0.27 2.22 3.26
-0.90 -0.34 -0.34

-0.46 1.32 1.82

5,

1.04

As implied in the above example, the fact that there were unsosalitthed

labels should not be regarded as an indication of any flameffectiveness of the

algorithms. Instead, it seemed to be a reflection of the natune gienerated data sets

and/or quality of the estimation. These thirteen conditions weodladsones for

which the model selection based on the information criteria failatemdify the

correct data generation model (The related results of model selectipreseated

subsequently in Section 4. 2). The specifications of the atimulconditions in which

unsolvable switched labels were observed and the occurrence rates agigethin

Table 11. For these thirteen conditions, unsolvable replicatvens discarded and

only the remaining solvable solutions were used to compateuhluation criteria.
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Table 11 Specifications of Simulation Conditions in which Switchaldels are

unsolvable
Percentage of the
Type of mixture Mixing Nu.mber Sample occurrences of
proportions  of items size unsolvable switched
labels
ORS-ERS 09:0.1 4 1200 41
ORS-MRS 09:0.1 4 1200 41
ORS-MRS 09:01 4 3000 40
ORS-ERS-MRS 0.5:05 4 1200 14
ORS-ERS-MRS 09:0.1 4 1200 45
ORS-ERS-MRS 09:01 4 3000 45
ORS-ERS-MRS 09:0.1 4 6000 42
ORS-ERS-MRS-ARS 0.5:05 4 3000 46
ORS-ERS-MRS-ARS 0.5:05 4 6000 56
ORS-ERS-MRS-ARS 05:05 10 1200 43
ORS-ERS-MRS-ARS 0.9:0.1 4 3000 67
ORS-ERS-MRS-ARS 09:0.1 4 6000 63
ORS-ERS-MRS-ARS 09:0.1 10 3000 54

4.2. Model selection

Once the replications that did not converge had been replacedGhBIE,
and CAIC values were collated from each of the three competing estinsalutions
for each replication. The percentage of the replications in whichfdhe competing
models being identified as the best-fitting model by each infeomatiterion index
was recorded. The following Tables 12-16 presented the results.

Generally, the BIC and CAIC performed nearly equally well withghty
higher accuracy rate for the BIC across many conditions. On teelwhd, the AIC

resulted in over-identification problem (choosing a model witlhenotasses) across all
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of the simulation conditions. In the current study, the 83 found to be the most
effective information criterion statistic to use for the identificatibthe correct
number of latent classes of the MPCM. The model selection resutadbrtype of
mixture are presented in the following sections in detail.

Model selection under the ORS-ERS mixtures. Table 12 presents the
selection results for the ORS-ERS mixtures. The ORS-ERS mixtereswell
recognized as 2-response-style mixtures based on the BIC andaCri€s all
simulation conditions. An exception was the condition oftfitems and a sample of
N = 1200 with unequal mixing proportions, which resulte@7#o of under-
identification problem (choosing a model with fewer classes)e Nwit this condition
presented 41% of unsolvable label switching problem as well. T&8kbpeesents the
results of the model selection under the ORS-MRS mixtures. GenéenallORS-
MRS mixtures were not identified as correctly as other types offidmes-style
mixtures.

As introduced in Section 2.6.2, “degree of heterogeneity” is retattoe
difficulty of detecting component distributions in the MCPWwas predicted that
when the item parameters and threshold distances differ stronghgix'uthe mixture
distribution will be easier in Rost (1991). Looking back at¢htegory characteristic
curves (CCCs) illustrated in Figure 4 - Figure 8, the differences batthe ORS and
MRS thresholds may be seen as being less distinctive thea letween the ORS and
ERS thresholds as well as the ORS and ARS thresholds. Cenflggthe ORS-MRS

mixtures were relatively more difficult to be identified as a mixtur&itistion.
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Table 12Model Selection under the ORS-ERS Mixtures

Information

L AIC BIC CAIC
Criterion
Number of
classes of the estimation model 1 2 3 1 2 3 1 2 3
Type of Mixin
M}i/fture Proport?ons ltem Sample
1200 0 89 11 0 100 0 0 100 0
4 3000 0 97 3 0 100 0 0 100 0
6000 0 92 8 0 100 0 0 100 0
1200 0 74 26 0 100 0 0 100 0
50:50 10 3000 0 85 15 0 100 0 0 100 0
6000 0 72 28 0 100 0 0 100 0
1200 0 78 22 0 100 0 0 100 0
20 3000 0 55 45 0 100 0 0 100 0
ORS 6000 0 52 48 0 100 0 0 100 0
ERS 1200 0 92 8 97 3 0 100 0 0
4 3000 0 87 13 1 99 0 6 94 0
6000 0 89 11 0 100 0 0 100 0
1200 0 71 29 0 100 0 0 100 0
90:10 10 3000 0 70 30 0 100 0 0 100 0
6000 0 38 62 0 100 0 0 100 0
1200 0 57 43 0 100 0 0 100 0
20 3000 0 52 48 0 100 0 0 100 0
6000 0 96 4 0 100 0 0 100 0

When the condition was the 4-items and a sample sike=0f200 with equal
mixing proportions, only 48% of the ORS-MRS data sets were chyrrdentified.
When the mixing proportions were unequal, the correct model seleatembased on
the BIC or CAIC became even lower and an increase in the sampfeosizi =
1200 toN = 6000 did not improve the rates significantly. Despite thesase in the
number of items up to ten, the correct selection rates wasesillow (5%) with a

sample size ol = 1200.
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Table 13Model Selection under the ORS-MRS Mixtures

Information
Criterion
Number of
classes of the estimation model ! 2 3 1 2 3 1 2 3
Type of  Mixing

AIC BIC CAIC

Mixture Proportions ltem Sample
1200 0 83 17 52 48 0 77 23 0
4 300 O 34 66 0 100 0 0 100 O
6000 0 11 89 0 100 0 0 100 0
1200 0 8 15 0 100 0 0 100 O
5050 10 3000 O 8 14 0 100 0 O 100 O
6000 0 8 12 0 100 0 0 100 0
1200 0 59 41 0 100 0 0 100 0
20 3000 0 78 22 0 100 0O O 100 O
ORS 6000 0 81 19 O 1200 0 0 100 O
MRS 1200 34 58 8 100 0 0 100 0 0
4 3000 1 94 5 100 0 O 100 0 O
6000 3 64 33 90 10 0 92 8 0
1200 0 65 3 95 5 0 100 0 0
90:10 10 3000 O 40 60 9 91 0 12 8 0
6000 0 5 95 0 100 0 0 100 O
1200 0 38 62 0 100 0 5 95 0
20 300 0 8 92 0 100 0 0 100 O
6000 0 52 48 0 100 0 0 100 0

Table 14 presents the results of model selection under the ORS-XRBes
All levels of ORS-ARS data sets were identified correctly as a 2-clessrenbased
on the BIC and the CAIC. It appeared that the highly pronouticedholds
characteristics in the ARS class i.e., all thresholds are positiealfoof items and all
thresholds are negative for the other half of items, made the idemificdtthis class

easier than the identification of either the ERS or MRS class.
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Table 14 Model Selection under the ORS-ARS Mixtures

Information

L AIC BIC CAIC
Criterion
Number of
classes of the estimation model 1 2 3 1 2 3 1 2 3
Type of  Mixin
M)ilfture Proport?ons Item Sample
1200 0 79 21 0O 100 O 0 100 0
4 3000 0 56 44 0O 100 O 0 100 0
6000 O 24 76 0O 100 O 0 100 0
12000 0 50 50 0O 100 O 0 100 0
50:50 10 3000 O 27 73 0O 100 O 0 100 0
6000 O 11 89 0O 100 O 0 100 0
1200 0 46 54 0O 100 O 0 100 0
20 3000 O 10 90 0O 100 O 0 100 0
ORS 6000 O 0O 100 O 100 O 0 100 0
ARS 1200 0 86 14 0O 100 O 0 100 0
4 3000 0 86 14 0O 100 O 0 100 0
6000 O 77 23 0O 100 O 0 100 0
1200 0 43 57 0O 100 O 0 100 0
90:10 10 3000 O 20 80 0O 100 O 0 100 0
6000 O 1 99 0O 100 O 0 100 0
1200 0 24 76 0O 100 O 0 100 0
20 3000 O 52 48 0O 100 O 0 100 0
6000 O 3 97 0O 100 O 0 100 0

Table 15 and Table 16 present the results of the model selectibe &+
response-style and 4-response-style mixtures. Given the resthissdfesponse style
mixtures, it was foreseen that the data generation model with thfeeraesponse
styles would have difficulties to be identified under the 4-itenmslitmns. The results
showed that if each response style constitutes an equal propmfrpopulation a
sample size dN = 1200 with 10-items seemed to be minimum condition irtkvB-
response-style or 4-response-style mixtures can be correctly idebtiSed on the
BIC or the CAIC. When the mixing proportions were unequal, gokasize ofN =

3000 with 10-items seemed to be necessary for the correct modebselect
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Table 15Model Selection under the ORS-ERS-MRS Mixtures

Information
Criterion
Number of
classes of the estimation model 2 3 4 2 3 4 2 3 4
Type of  Mixing

AIC BIC CAIC

Mixture Proportions ltem Sample
1200 12 74 14 99 1 0 100 O 0
4 3000 0 93 7 99 1 0 99 1 0
6000 0 87 13 38 62 0 57 43 0
1200 0 85 15 0 100 O 0 100 O
33:33:33 10 3000 O 96 4 0O 100 O 0 100 O
6000 0 87 13 0 100 O 0 100 O
1200 0 91 9 0 100 O 0 100 O
20 3000 0 84 16 0 100 O 0 100 O
ORS 6000 0 88 12 0 100 O 0 100 O
ERS 1200 67 29 4 100 O 0 100 O 0
MRS 4 3000 14 61 25 84 16 0 93 7 0
6000 3 57 40 96 4 0 97 3 0
1200 0 75 25 94 6 0 100 O 0
80:10:10 10 3000 O 75 25 0 100 O 0 100 O
6000 0 69 31 0 100 O 0 100 O
1200 0 91 9 0 100 O 5 95 0
20 3000 0 51 49 0 100 O 0 100 O
6000 0 71 29 0 100 O 0 100 O
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Table 16. Model Selection under the ORS-ERS-MRS-ARS Mixtures

Information

Criterion AIC BIC CAIC

Number of
classes of the estimation model
Type of  Mixing
Mixture Proportions

4 5 3 4 5 3 4 5

Iltem Sample

1200 33 65 2 99 1 0 99 1 0
4 3000 16 16 68 99 1 0 9 1 0

6000 O 88 12 94 6 0 99 1 0

1200 0 89 11 4 96 0 23 77 0

25:25:25:25 10 3000 O 84 16 O 100 O 0 100 O
6000 0 91 9 0 100 O 0 100 O

1200 0 96 4 0 100 O 0 100 O

ORS 20 3000 O 8 14 0 100 O 0 100 O
ERS 6000 O 71 29 0 100 O 0 100 O
MRS 1200 62 26 12 100 O 0 100 O 0
ARS 4 3000 24 41 35 9% 4 0 99 1 0
6000 1 67 32 46 54 0 48 52 0

1200 0 80 20 44 56 0 45 55 0

70:10:10:10 10 3000 O 78 22 7 93 0 7 93 0
6000 O 59 41 0 100 O 0 100 O

1200 0 92 8 0 100 O 6 94 0

20 3000 O 72 28 0 100 O 0 100 O

6000 0O 37 63 0 100 O 0 100 ©

4.3 Classification of Respondents

The simulation results regarding classification of respondetitsrespect to
their response style are presented in two parts sepaiatellycorrect classifications
andii) misclassifications. The mean percentage of respondents who were correctly
assigned to their true (generated) class membership was computed@vemdred
replications as an index of classification accuracy. Likewise, the peraantage of
respondents who were incorrectly assigned to a class other thamubeilass was

computed as an index of misclassification rate. In addition tédmelard error (SE) of
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the classification accuracy as well as the SE of the misclassifieaticnobtained by

computing the standard deviation of the one-hundred percerahgesy

4.3.1. Classification accuracy

Classification accuracy for each response class is presented in Talad.7 al
with the SE of the classification accuracy in parentheses. Thed#sakn the table
represent the conditions for which a high proportion of replicatesented
estimation problems and thus, the classification accuracy wasmeuted. The cells
marked with asterisks in the table are the conditions in whiaghepgercentage of
unsolvable label switching problems occurred. For those consljtthe classification
accuracy was computed with a fewer number of solutions, the onesliexcl
unsolvable replications.

The conditions marked with asterisks, however, presented an unexpeottd
in the simulation results. In these conditions, althoughstmulated testing
circumstances were relatively “poor” (e.g. smaller number of test itemsnaaid
sample size) the classification accuracy turned out to be better. Qlaaaton for
this aberrant trend could be that because the solutions that acte&atedly more
accurate estimates were selectively retained. It was also clearly dhaivihet
classification accuracies were accompanied with very high SE underdbioditions.
Taking all of this information into account, the conditionsrked with asterisks were
excluded from the ANOVA analysis along with the condition$veistimation

problems.
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Table 17 Percentages of Correct Classification and Standanebrs of Classification Accuracy

Type of mixture

and mixing ORS 0.5 ORS 0.9 ORS 0.5 ORS 0.9 ORS 0.5 ORS 0.9
. ERS 0.5 ERS 0.1 MRS 0.5 MRS 0.1 ARS 0.5 ARS 0.1
proportions
Assigned class ORS ERS ORS ERS ORS MRS ORS MRS ORSRS ORS ARS
ltem Sample size
1200 80.78 86.88 90.14 66.14 8060 7260 6537 7169 94.07 94.02 9845 86.27
(4.1) (5.3) (6.0) (11.5) (8.0) (7.2) (14.0) (22.4) (2.2 (2.1) (1.1) (4.1)
4 3000 81.46 87.77 93.73 6143 90.70 5832 91.72 50.02 9450 93.77 98.80 86.41
(2.5) (2.3) (2.8) (10.2) (2.4) (5.5 (3.4) (10.3) (1.8) (1.8) (0.7) (2.4)
6000 81.35 8826 9519 58.04 91.09 57.97 69.27 5822 9505 93.41 98.81 86.40
(2.2) (1.9) (1.3) (5.7) (1.8) (4.9) (3.0) (4.8) (1.2) (1.3) (0.6) (1.8)
1200 93.15 96.30 97.36 86.58 90.85 87.94 98.00 98.64
(1.2) (1.0) (0.7) (4.1) 1.9 (2.2 (0.5) (0.7)
10 3000 93.32 96.27 97.39 87.18 91.05 8824 97.45 69.15 9891 98.79 99.76 96.27
(0.9) (0.6) (0.4) (2.7) (1.1) (1.3 (0.9) (4.2) (0.4) (0.6) (0.2) (1.3)
6000 93.19 96.39 97.48 8750 91.38 88.06 98.04 67.88 98.93 98.88 99.84 96.18
(0.6) (0.5) (0.3) (1.5) (0.8)  (0.8) (0.4) (2.3) (0.2) (0.4) (0.1) (0.9)
1200 96.69 9893 9829 96.22 96.44 94.19 99.69 99.61
(0.6) (0.4) (0.5) (1.8) (1.0) (1.5 (0.3) (0.3)
20 3000 96.73 98.88 9838 96.31 96.49 9438 99.04 86.17 99.74 99.63 99.90 98.84
(0.5) (0.3) (0.3) (1.2) (0.5) (0.7 (0.2) (2.4) (0.2) (0.2) (0.1) (0.7)
6000 96.77 9894 9839 96.45 96.76 94.16 99.15 86.14 99.76 99.64 99.94 98.87
(0.4) (0.2) (0.2) (0.9) (0.4)  (0.5) (0.2) (1.5) (0.1) (0.2) (0.1) (0.5)
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Table 17 _continued.

Type of mixture and
mixing proportions

ORS 0.33 ERS0.33 MRS 0.33

ORS 0.8 ERS 0.1 MRS 0.1

Assigned class ORS ERS MRS ORS ERS MRS
ltem Sample size
1200 55.27 78.45 77.32 59.44 69.38 65.47
(11.1) (13.4) (8.4) (13.2) (13.7) (10.6)
4 3000 59.29 83.16 75.61 73.66 60.48 64.32
(9.5) (9.3) (8.7) (12.7) (11.5) (11.5)
6000 61.6 84.63 74.51 80.27 61.11 55.03
(10.0) (7.7) (9.8) (14.0) (9.5) (15.5)
1200 83.27 95.73 87.60
(3.4) (1.4) (2.9)
10 3000 83.98 96.06 88.65 94.76 87.43 70.49
(1.9) (0.9) (1.5) (0.7) (2.7) (3.7)
6000 84.26 96.14 88.74 95.32 87.56 69.01
(1.5) (0.6) (1.2) (0.6) (1.8) (2.6)
1200 93.06 98.80 94.14
(1.5) (0.7) (1.4)
20 3000 93.27 98.84 94.42 97.18 96.38 86.71
(0.9) (0.4) (1.0 (0.4) (1.1) (2.3)
6000 93.42 98.83 94.43 97.32 96.82 86.75
(0.8) (0.3) (0.7) (0.3) (0.9) (2.1)
Type of mixture and ORS 0.25 ERS 0.25 ORS 0.7 ERS 0.1
mixing proportions MRS 0.25 ARS 0.25 MRS 0.1ARS 0.1
Assigned class ORS ERS MRS ARS ORS ERS MRS ARS
Item Sample size
1200
4 3000
6000
1200
84.02 94.14 88.49 95.07
10 3000 (1.6) (0.8) (L4) (06)
6000 84.03 94.04 88.81 95.16 94.76 86.44 70.70 94.20
(1.2) (0.7) (1.00 (0.5 (0.6) (2.3) (2.8) (1.1)
92.66 98.26 94.21 97.37
1200 (18) (0.9) (18) (L1)
20 3000 93.24 98.24 94.03 97.53 97.16 9595 87.94 97.15
(1.1) (0.5 (1.0) (0.6) (0.4) (1.5) (2.1) (1.0
6000 93.42 98.37 94.49 97.52 97.25 96.13 87.47 97.19
(0.7) (0.3) (0.6) (0.4) (0.3) (0.8) (1.5) (0.6)

Note™ Calculated excluding some of replications for iahswvitched labels were unsolvable.
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In the following reports of the factorial ANOVA results, onheteffects that
were both statistically and practically significant are interpretech&r importance.

Overall classification accuracy. The percentages of correct classification
obtained for each class were averaged across latent classes withuethepiture as
an index of overall classification accuracy and used as a dependablevafithe
factorial ANOVA. Table 18 summarizes the results of the factorial AN@Y the
overall classification accuracy.

Table 18 Factorial ANOVA Results on Overall Classification Accuracy

Type 1l Sum 2

Source of Squares F P d
Mixture 1079.91 4 460.53 0.00 0.28
Proportion 104.35 1 178.00 0.00 0.03
Item 1635.07 2 1394.57 0.00 0.42
Sample 0.04 2 0.04 0.97 0.00
mixture * item 422.27 7 102.90 0.00 0.11
proportion * item 48.93 2 41.73 0.00 0.01
item * sample 0.34 4 0.15 0.96 0.00
mixture *
proportion 48.69 4 20.77 0.00 0.01
mixture * sample 0.57 8 0.12 0.99 0.00
proportion *
sample 1.14 2 0.97 0.39 0.00
Error 17.00 29
Corrected total 3908.84

The significant factors on the overall classification accuracy were e m

effect of the type of mixture~s,29)= 460.53p < .001;,* = 0.28) and test length
(F.209= 1394.57p < .001; % = 0.42), as well as the interaction effect between type

of mixture and test lengthr{ 29)= 102.90p < .001;,* = 0.11). The effect sizes of
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the two main effects were large whereas that of the interaction efisatmedium.
Table 19 presents the cell means of the classification accuracy at tiseoevel

independent variables of the test length and type of mixture.

Table 19Cell Means of the Overall Classification Accuracy

Mixture
OE OM OA OEM OEMA Total
4 81.49 7093 93.33 73.13 na 79.72
Mean 10 93.51 87.00 98.42 87.27 89.181.07
20 97.58 94.29 9956 94.69 95.286.28
Total 9141 86.10 96.87 88.00 92.98

ltem

For the significant main effects, post-hoc comparisons were condiitied.
results of the Tukey HSD (witdi-yy, = .05) tests showed that the overall classification
accuracy differ significantly among all five different types of mies as well as
among the three levels of test length. As expected in the earli@rsebtised on the
degrees of heterogeneity in the thresholds plots, the mixtureR®fadd ARS
respondents were most accurately classified (96.87 %) while the QRBRS
mixtures were most difficult to be correctly distinguished (884)0The 3-response-
style mixtures showed lower level of overall classification accuracyttieas-
response-style mixtures. It seems to be because of the contmibfithe low
classification accuracy of the MRS class to the overall classificitiche 3-
response-style mixtures and also the contribution of the higsifatation accuracy of
the ARS class for the 4-response-style mixtures. Regardlesstgpthef mixture, the

overall classification accuracy was higher than 94% when the tesht gl = 20.
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The interaction effect between the type of mixture and test lengtfuvthsr
investigated. In the interaction plot presented in Fi 16, itwas observethat the
increase in the classification accuracy betwthe test length df= 10 ancl = 20 for
the ORS-ARS mixturgvas relatively smaller than that increafee other types o
mixture. The pairwise comparisc of the three levels of test length for each typ
mixture showed that the increase betwl = 10 and = 20 for the ORSARS mixture
was significant at thp < .05 whereas that increase for the other four mixtures

significant at thep <.001

100.00 iiem
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8 / \
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& 60.00 N\ / =
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Figure 16 Interaction effect between type of mixture and test length onviilb
classification accuracy
Classification accuracy for each response style. In addition to the overa

classification accuracy, the classification accuracy for each resstyle clas was
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also evaluated. Table 20 summarizes the four factorial ANOVA resultprasents

only significant effects that met both the statistical and pradigalficance criteria.

Table 20 Effect size £?) for the Classification Accuracy Conditional on Statistica

Significance (p < 0.05)

Source ORS ERS MRS ARS
mixture 0.21
proportion 0.14
item 0.26 0.35 0.23 0.49
mixture * item 0.14

Test length was the common factor influencing the classification & GRS,
MRS, and ARS respondents. Regardless of the type of resporesastithe number
of items increased, the correct classification rate increased with a significant
difference:M, (86.51) <Myp (93.35) <My (96.93) for ORSM, (78.60) <My0 (91.98)
< M2 (97.65) for ERSM, (64.93) <M1 (81.06) <Mz (91.31) for MRS: ani,
(90.05) <M1 (96.65) <M (98.34) for ARS.

The results of the Tukey HSD (witlyy = .05) tests on the main effect of the
type of mixture showed that 98.38% of ORS respondents were cprkdsified in
the ORS-ARS mixtures whereas only 86.39% of them were correctlijfiddnn the
ORS-ERS-MRS mixtures. In the rest of the mixtures, 92.83 %IR8 @spondents on
average were correctly classified. These classification accuracy rates wetiealgti
significantly different p < .05). The interaction effect found for the ORS class was in

the same pattern as the interaction effect for the overall classification@ccura

112



The mixing proportions influenced the classification of ERS respots.
Under the equal proportions conditions, ERS respondents werdiethsginificantly
better than under the unequal proportions conditivRgequal(82.97) <Mequal (94.12)
(p <.001).

A noteworthy result in the classification accuracy analysis wadlbaample
size was not a significant factor. As may be noticed in Tahléhg#@ifferences in the
classification accuracy rates at the three sample sizes were neghgibst of the
conditions. If this model is used in empirical studies tecigbeople with different
response styles, the number of items of an instrument is thamystant factor to
be considered. As long as a sufficient number of items (at leagttes) is used, a
sample withN = 1200 would provide an equivalent level of classification accuaacy

a larger sample witN = 6000 would provide.

4.3.2. Misclassification

To investigate whether misclassification occurred particularly betweenrcertai
types of response styles, the 3-response-style mixtures and 4sestgle mixtures
were examined with respect to all possible mismatching between eneréged) and
assigned class. Since classification rates did not significafffity di different levels
of sample size, Table 21 summarizes the marginal misclassificatesover the

three levels of sample size.
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Table 21 Percentages of Misclassified Respondents

Type of mixture ORS - ERS — MRS

Trueclassand  opg  ors  ERS ERS MRS MRS ORS ORS ERS ERS MRS MRS

mixing 033 033 033 033 033 033 07 07 01 01 01 01
proportions
Assignedclass ERS MRS ORS MRS ORS ERS ERS MRS ORSRS ORS ERS
4 1750 23.78 1658 1.33 2153 265 69.819.00 3179 456 3659 2.20
ltem 10 662 953 392 011 1038 128 2.64 233235 016 29.68 0.58
20 313 360 117 001 496 072 237 229 238.020 890 0.55
Total 9.08 1230 7.22 048 1229 155 496 7.87 505 158 2506 1.11
Type of mixture ORS - ERS — MRS - ARS
Tr“emi‘;'i"’r‘fsa”d ORS ORS ORS ERS ERS ERS MRS MRS MRS ARS ARS ARS
g 025 025 025 025 025 025 025 025 025 025 025 025
proportions
Assigned class ERS MRS ARS ORS MRS ARS ORS ERS ARSRS ERS MRS
4
ltem 10 6.46 919 032 367 007 212 1017 1.30.04 040 452 001
20 317 385 004 119 001 056 501 087 100008 248  3.17

Total 4.82 6.52 0.18 2.43 0.04 1.34 7.59 1.30.870 0.03 0.08 0.40

Trueclassand oo Ors  ORS ERS ERS ERS MRS MRS MRS ARS ARS  ARS

prgnp')’c‘)'rr;i%ns 07 07 07 0.1 01 01 01 01 01 01 01 01

Assignedclass ERS MRS ARS ORS MRS ARS ORS ERS ARSRS ERS MRS
4

ltem 10 275 239 010 1147 023 1.85 2871 805001 165 414 001

20 172 107 001 347 000 050 1210 0.19010. 031 252  0.00

Total 224 173 006 747 012 118 2041 039 100098 333 001

For the 3-response-style mixtures, the most commonly occurring
misspecification was the misclassification of MRS respondentsnititiei ORS class
(MO) under unequal mixing proportions, followed by the misctasgion of ERS
respondents within the ORS class (EO) under unequal mixingpiams (hereafter a
misclassification of A” respondents within theB” class is referred to as AB while a
misclassification of B” respondents within theA” class is referred to as BA). On the
other hand, EM and ME rarely occurred. Especially, when the teshleas long
and, thus, overall classification accuracy was high, the chance oid&\ssentially

zero. This rare occurrence of EM was consistent regardless of the pigimgrtions.
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When the mixing proportions were equal, OE and EO as well asi@MO did not
differ significantly. However, when the mixing proportions were waédgi.e., 10 % of
population was MRS or ERS respondents while the majority ViR @spondents),
MO and EO significantly increased (25.06 % and 15.50 %, respBgtiit seems that
it was easier for the distorted response-style respondents to bassiiseti within the
normal response-style respondent if the distorted group was lssradlgroup.
However, this trend was not observed for the ARS class.

Under the 4-response-style mixture, the chance of MO and EO was also
significantly high (20.41% and 7.47 %, respectively) as welilsand ME again
rarely occurred (0.08 % and 0.85 %, respectively). In additi@metwere several
other misclassifications that were associated with essentially zeroecbanc

occurrence. They were OA (0.12 %), MA (0.44 %), AO (0.5%), and(BJ2%).

4.4 Threshold Parameter Recovery

Recovery of item thresholds was evaluated with respect to the RRESESON
correlation, and SE. Initially, these three evaluation measures werseasf®mseach
of the four thresholds. The evaluation measures were then averagediaefoss
thresholds for use in the ANOVA analysis. The averaged evaluagasures are
provided in the following sections. Sections 4.1.1, 4dn?l, 4.4.3 discuss the results

for each of the evaluation criteria based on the factorial ANOVA.

4.4.1. Evaluation of the RM SE.
The averaged RMSE is presented in Table 22 followed by the factorial

ANOVA results for each latent class in the subsequent section.
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Table 22 RMSE of Threshold Parameter Estimates

ORS
Type of mixture ORS ORS ORS CE)FF§§ ERS
ERS MRS ARS MRS MRS
ARS
Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ERRS MARS
Mixing Sample Item
Proportions 1200 4 194 238
10 144 201 153 281 137 .275 197 252  .348
20 140 195 144 230 .139 280 179 .238 29209 .283 .339 411
4 117 162 207 536  .095 222 305 .231  .438
Equal 3000 10 .092 125 102 .166 .090 .193 .12355. .196 .146 .185 .245 .270
20 .087 125 095 .144 090 .197 112 148 17731 173 .204 .249
4 .085 114 196 .434 .060 .172 212 166  .318
6000 10 .064 090 .078 .115 .066 .156 .089 .11341. .102 .130 .166 .190
20 .062 087 .072 .103 .066 .159 .080 .106 .124€98 .125 .146 .139
1200 4
10 104 518
20 103 461
Unequal 4 .091 511
3000 10 .067 315 .072 614 .068 445 077 .335L57.
20 066 285 070 .391 .068 403 .070 .287 .33D76 .287 .382 .420
4 .057 358 .196 455 .050 411
6000 10 .046 225 054 357 .051 .301 .053 .22®70. .060 .253 .343 351
20 .046 201 052 252 050 .283 .061 .206 .258057 .231 .260 .289
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ORS class. The factorial ANOVA results of the RMSE of threshold parameter
estimates for the ORS class (RMSE-threshold-ORS) are presenteder2Bab

Table 23 Factorial ANOVA Results on the RMSE of Threshold Egtisnfar ORS

Class
Type 1l Sum 2
Source of Squares F P n
Mixture 0.029 4 102.08 0.00 0.16
proportion 0.005 1 67.53 0.00 0.03
Sample 0.017 2 120.08 0.00 0.09
Item 0.024 2 168.67 0.00 0.13
mixture * item 0.032 7 65.02 0.00 0.18
proportion * item 0.000 2 0.61 0.55 0.00
sample * item 0.001 4 2.89 0.04 0.01
mixture *
proportion 0.001 4 418 0.01 0.01
mixture * sample 0.002 8 3.28 0.01 0.01
proportion *
sample 0.000 2 3.53 0.04 0.00
Error 0.002 27
Corrected total 0.182 63

The significant factors on the RMSE-threshold-ORS were the maict effe
the type of mixtureR »7)= 102.08p < .001;,* = 0.16), sample Siz&{,27)=
120.08,p < .001;7% = 0.09), test lengthH, 27)= 168.67p < .001;,* = 0.13), as well
as the interaction effect between type of mixture and test leRgty)(= 65.02,p <

.001; »* = 0.18). Table 24 presents the cell means of the RMSE at #ls t&fv

independent variables of the type of mixture, sample size, anenegsh.|
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Table 24Cell Means of the RMSE of Threshold Estimates for the Q&S

Sample ltem Mixture
P OE OM OA OEM OEMA
1200 4 0.194 na na na na

10 0.124 0.153 0.137 0.197 na
20 0.122 0.144 0.139 0.179 0.209
total 0.137 0.149 0.138 0.188 0.209
3000 4 0.104 0.207 0.082 0.305 na
10 0.080 0.087 0.079 0.100 0.146
20 0.077 0.083 0.079 0.091 0.104
total 0.087 0.109 0.080 0.137 0.118
6000 4 0.071 0.196 0.055 0.212 na
10 0.055 0.066 0.059 0.071 0.081
20 0.054 0.062 0.055 0.066 0.078
total 0.060 0.108 0.056 0.097 0.079

In general, the RMSE-threshold-ORS decreased consistently asrpkesize
and test length increased in each type of mixture. For the signifrain effects, the
post-hoc comparisons were conducted. The results of the Tukefwi8Dury = .05)
test showed that RMSE-threshold-ORS differed as followhfigg; (0.078) <Mog
(0.092) < Mogma (0.110) =Mopm (0.115) <Meem (0.129), where inequality sign
indicates a significant difference and equality sign indicates amifisant difference

Regarding the main effect of the sample size, the decrease in thE-RMS
threshold-ORS as sample size increased was significant betwéiereallevels based
on the Tukey HSD test (witt-wy = .05):M1200(0.154) > Mz3000(0.103) >Mgooo
(0.080). Regarding the main effect of the test length, the decretieeRMSE-
threshold-ORS was significant as the test length increased frofrtol = 10 but was
not significant as the test length increased ffal0 tol = 20: M4 (0.138) >Mso

(0.093) =Mz (0.093).
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The significant interaction effect between the type of mixture estdeéngth is
depicted in Figure 17. In the figure, clearly seen is the supedorery of the ORS
threshold parameters in the ORS-ARS mixture even dtthklevel. The pairwise
comparisons of the three levels of test length for each type ofmigtwwed that the
increase in the RMSE froin= 4 tol = 10 as well as that froin= 10 tol = 20 was not
statistically significant for the ORS-ARS mixture while the decréasiee RMSE

from | = 4 tol = 10 was significant for all other types of mixture.
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Figure 17 Interaction effect between type of mixture and test length oRMSE of

threshold estimates for the ORS class

ERS class. The factorial ANOVA results of the RMSE of threshold parameter

estimates for the ERS class (RMSE-threshold-ERS) are presentedenZbabl
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Table 25 Factorial ANOVA Results on the RMSE of Threshold Estisfar the ERS

Class
Type 1l Sum 2
Source of Squares Df F p n

Mixture 0.008 2 30.06 0.00 0.02
Proportion 0.133 1 995.61 0.00 0.32
Sample 0.074 2 275.62 0.00 0.18
Item 0.029 2 107.41 0.00 0.07
mixture * item 0.001 3 246 0.11 0.00
proportion * item 0.016 2 60.20 0.00 0.04
sample * item 0.002 4 2.93 0.07 0.00
mixture * proportion 0.001 2 1.99 0.18 0.00
mixture * sample 0.001 4 2.06 0.15 0.00
proportion * sample 0.018 2 66.68 0.00 0.04
Error 0.002 12

Corrected total 0.417 36

The significant factors on the RMSE-threshold-ERS were the migict eff
the mixing proportionsH(1,12)= 995.61p < .001;,* = 0.32), sample sizé( 12)=
275.62,p < .001;,* = 0.18), and test lengtk¢,12= 107.41p < .001;,* = 0.07).

Table 26 presents the cell means of the RMSE at the levels of indepenadables of

the mixing proportions, sample size, and test length.
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Table 26 Cell Means of the RMSE of Threshold Estimates for theE&S

Mixing Proportions

Sample Item

Equal Unequal
4 0.238 na
1200 10 0.227 0.518
20 0.239 0.461
total 0.235 0.490
3000 4 0.197 0.511
10 0.155 0.323
20 0.149 0.286
total 0.163 0.336
6000 4 0.140 0.358
10 0.111 0.236
20 0.106 0.213
total 0.116 0.243

The Tukey HSD (withuryw = .05) test showed the same patterns of significant
differences as those that were observed for the RMSE-threshold-ERS. iRgtjaed
main effect of the sample size, the decrease in the RMSE-thresholds=sasple
size increased was significant between all three leMelg, (0.298) > Mzggo (0.237)
> Meooo (0.176). Regarding the main effect of the test length, the decretse i
RMSE-threshold-ERS was significant as the test length increased fral tol = 10
but was not significant as the test length increased frorh0 tol = 20: M4 (0.254) >
M1g (0.223) =My (0.215).

The main effect of the mixing proportions showed a smaller RMS&hine
mixing proportions were equaMuynequal (0.313) >Mequa (0.166). The mixing
proportion was not a significant factor for the ORS class. It veagraficant factor for

the ERS class as well as the other two classes. It makes senselbedDRS class
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always took on the larger proportion of the generated samplés twbiERS, MRS,
and ARS took on only 10% of the respondents.
MRS class. The factorial ANOVA results of the RMSE of threshold parameter

estimates for the MRS class (RMSE-threshold-MRS) are presented in Table 2

Table 27Factorial ANOVA Results on the RMSE of Threshold Estienfar the MRS

Class
Type 1l Sum 2
Source of Squares f F p n

Mixture 0.005 2 3.97 0.05 0.01
Proportion 0.077 1 120.46 0.00 0.13
Sample 0.128 2 99.95 0.00 0.22
Item 0.096 2 74.69 0.00 0.17
mixture * item 0.012 3 6.32 0.01 0.02
proportion * item 0.039 2 30.22 0.00 0.07
sample * item 0.008 3 3.93 0.04 0.01
mixture * proportion 0.005 2 4.09 0.05 0.01
mixture * sample 0.002 4 0.76 0.58 0.00
proportion * sample 0.016 1 25.66 0.00 0.03
Error 0.006 10

Corrected total 0.573 32

As was found for the ERS class, the significant factors on th8RMreshod-
MRS were the main effect of the mixing proportioRg (o)= 120.46p < .001;7,° =
0.13), sample sizé~(, 19)= 99.95,p < .001;,* = 0.22), and test lengtl ¢ 10)= 74.69,
p <.001;7% =0.17). While the most influencing factor was the mixing propns

for the ERS class, the sample size was the most important factbe flRS class.
Table 28 presents the cell means of the RMSE at the levels of indepenadables of

the mixing proportions, sample size, and test length.
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Table 28 Cell Means of the RMSE of Threshold Estimates for the &/H2S

Mixing Proportions

Sample ftem Equal Unequal
4 na na
1200 10 0.31 na
20 0.29 na
total 0.30 na
3000 4 0.49 na
10 0.20 0.59
20 0.18 0.37
total 0.26 0.46
6000 4 0.38 0.46
10 0.14 0.36
20 0.12 0.26
total 0.19 0.33

The Tukey HSD (withury = .05) test showed the same patterns of significant
differences as those were observed for the previous two classes. Rg¢faedimain
effect of the sample size, the significant differences were as folloWingo (0.256)
> Ms3000(0.298) >Meooo (0.337). Regarding the main effect of the test length, the
significant differences were as followingls (0.436) >M1o (0.300) =M (0.242). In
addition, the main effect of the mixing proportions showed itp@fecant difference:
Munequal (0.381) >Megqua (0.193).

ARS class. The factorial ANOVA results of the RMSE of threshold parameter

estimates for the ARS class (RMSE-threshold-ARS) are presented & 2%bl
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Table 29 Factorial ANOVA Results on the RMSE of Threshold Estisfar the ARS

Class
Source Tg]f) gq”ulasrg? Df F p n?

Mixture 0.011 1 4347 0.00 0.06
Proportion 0.094 1 360.78 0.00 0.49
Sample 0.055 2 105.98 0.00 0.29
Item 0.008 2 16.29 0.01 0.04
mixture * item 0.001 1 5.65 0.08 0.01
proportion * item 0.004 2 7.65 0.04 0.02
sample * item 0.000 3 0.02 1.00 0.00
mixture * proportion 0.000 1 001 0.92 0.00
mixture * sample 0.006 2 10.76 0.03 0.03
proportion * sample 0.004 1 16.38 0.02 0.02
Error 0.001 4

Corrected total 0.190 20

The significant factors on the RMSE-threshold-ARS were the typexdtire
(Fa.4=43.47p<.001;,* = 0.06), mixing proportiong~;,4y=360.78,p < .001; ;2
= 0.49), and sample sizE{ 4)= 105.98p < .001;,* = 0.29). Unlike for the other
classes, test length was not significant for the ARS class. Talgee8ents the cell
means of the RMSE at the levels of independent variables of thegnpsaportions,
sample size, and test length.

The Tukey HSD (withuryw = .05) test showed the decrease in the RMSE-thr-
ARS fromN = 1200 toN = 3000 was not significant while the decrease fddm 3000
to N = 6000 was significanii200(0.336) =Mz3000(0.322) >Megooo (0.241).
Regarding the main effect of the test length, the significdfgrdnces were found
between =4 and = 10:M, (0.358) >M3( (0.273) =My, (0.279). In addition, the
main effect of the mixing proportions showed the significant diffee: Mynequal
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Table 30Cell Means of the RMSE of Threshold Estimates for thecdAd®S

Type of mixture

Proportion Sample

OA OEMA
Equal 1200 0.278 0.411
3000 0.204 0.260
6000 0.162 0.165
Total 0.207 0.252
Unequal 1200 na na
3000 0.492 0.420
6000 0.317 0.320
Total 0.405 0.353

4.4.2. Evaluation of the correlation

The second criterion used to evaluate the threshold parameter reaascitye
Pearson correlation coefficient between generated and estimated threGablds1
reports the correlations that were averaged across the four thresholds.

The factorial ANOVA conducted on the correlation measures showethéhat
significant factors for each response-style class considering latgtisal and
practical importance turned out to be the same as those that wereddend
significant on the RMSE measures. The factorial ANOVA resultshiacorrelation
measures are presented in a single table concisely in Table 31 wispeadiding

four analysis results in separate ANOVA tables.
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Table 31Correlations Between Generated and Estimated TlotddParameters

ORS
Type of mixture ORS ORS ORS CE)FF§§ ERS
ERS MRS ARS MRS MRS
ARS
Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ERRS MARS
Mixing Sample Item
Proportions 1200 4 794 694
10 .888 .858 .836  .852 .857  .986 760 .792  .808
20 .885 862 839 .880 .853 .986 .786 .802 .83I736 .748 .790 .966
4 910 .836 .832 .780 .930 .994 691 755 758
Equal 3000 10 932 933 925 937 935 .995 .883®05. .916 .870 .887  .986
20 951 930 .924 946 930 994 892 908 .928B64 .878 .903 .988
4 949 908 .882 .836  .967 .997 .840 855  .837
6000 10 966 965 959 971 965 .995 934  .94°B53. 931  .937  .993
20 963 964 960 .973 963  .997 943 949 96M20 935 939 .994
1200 4
10 911 546
20 909 587
Unequal 4 945 469 964 954
3000 10 961 705 961 .632 .963 .963 950 .69%53.
20 959 738 959 767 960 .968 954 741 75047 746 763 .965
4 980 .603 895 .780 .980 .985
6000 10 982 818 980 .840 .982 984 976 .827790. 790 .803 .978
20 979 843 979 .862 .980 .985 976 .848 .85375 .802 .820 .978

126



Table 32 Effect size £?) for Correlation for Thresholds Parameters Conditional

Statistical Significance (p < 0.05)

Factor ORS ERS MRS ARS
Mixture 0.15
Proportion 0.29 0.24 0.67
Sample 0.16 0.18 0.27 0.33
Item 0.09 0.14 0.11
mixture * item 0.08

ORS class. The factorial ANOVA results of the correlation of threshold
parameter estimates for the ORS class (Correlation-threshold-ORS) sthaivite
main effect of the type of mixtur&g 7y = 73.33p < .001;,* = 0.15), sample size
(Fe.2r= 154.60p < .001;,% = 0.16), test length,,27)= 82.97p < .001; 7> =
0.09), as well as the interaction effect between type of mixtureeahtehgth 7 27 =
22.98,p <.001;,* = 0.08) were significant. Table 33 presents the cell means of the
RMSE at the levels of independent variables of the type of mix@areple size, and
test length.

The main effect of the type of mixture differed from each other as following:
Moa (0.945) =Mok (0.933) >Mowm (0.918) >Mogwma (0.898) >Moew (0.882).
Regarding the main effect of the sample size, the increase in treafion-threshold-
ORS as sample size increased was significant between all three Misgég0.838)
< M3000(0.919) >Meo00 (0.954). Regarding the main effect of the test length, the

increase in the Correlation-threshold-ORS was significant as therigth increased
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from| =4 tol = 10 but was not significant as the test length increasedIfrofi® tol
= 20:My4 (0.897) <My (0.923) =M1 (0.954).

Table 33Cell Means of the RMSE of Threshold Estimates for the Q&S

Mixture
Sample ltem
OE oM OA OEM OEMA

1200 4 0.794 na na na na

10 0.900 0.836 0.857 0.760 npa

20 0.897 0.839 0.853 0.786 0.736

total 0.877 0.838 0.855 0.773 0.736
3000 4 0.928 0.832 0.947 0.691 na

10 0.947 0.943 0.949 0.917 0.848

20 0.955 0.942 0.945 0.923 0.906

total 0.943 0.920 0.947 0.874 0.886
6000 4 0.965 0.889 0.974 0.840 na

10 0.974 0.970 0.974  0.955 0.946

20 0.971 0.970 0.972 0.960 0.948

total 0.970 0.943 0.973 0.934 0.947

The significant interaction effect between the type of mixture estdéngth
showed the same pattern as the interaction effect found in the RM&Hald-ORS
evaluation. The interaction was basically due to the superior rectmrahe ORS
thresholds for even as the case in which only four items were used.

ERS class. The factorial ANOVA results of the Correlation-threshold-ERS
showed that the main effect of the mixing proportidfg )= 1210.70p < .001; 5>
= 0.29), sample sizép12)= 378.92p < .001;,* = 0.18), test lengthH(2,12) =
286.76,p < .001;,* = 0.14) were significant. Table 34 presents the cell means of the
correlation at the levels of independent variables of the mixing grops, sample

size, and test length.
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Table 34 Cell Means of the Correlation for the ERS Class
Mixing Proportions

Sample Item

Equal Unequal
4 0.694 na
1200 10 0.825 0.546
20 0.804 0.587
total 0.793 0.567
3000 4 0.796 0.469
10 0.903 0.702
20 0.905 0.742
total 0.877 0.683
6000 4 0.882 0.603
10 0.948 0.812
20 0.949 0.831
total 0.932 0.790

The main effect of the mixing proportions showed a higher correlafion
threshold parameters when the mixing proportions were eigkqua (0.717) <
Mequal (0.874). Regarding the main effect of the sample size, the incregdse in
Correlation-threshold-ERS as sample size increased was significartbedll three
levels:M1200 (0.736) < Maooo (0.794) <Meono (0.866). Regarding the main effect of the
test length, the increase in the Correlation-threshold-ERS waificagt as the test
length increased frorh= 4 tol = 10 but was not significant as the test length
increased from = 10 tol = 20: M, (0.731) <M1 (0.828) =My, (0.830).

MRS class. The factorial ANOVA on the Correlation-threshold-MRS showed

that the main effect of the mixing proportiof3i(10y= 140.08p < .001;,* = 0.24),
sample sizeR 2 10)= 79.03,p < .001;,2 = 0.27), test lengthF{(z,10)= 31.05p < .001;
n? = 0.11) were significant. Table 35 presents the cell means of ttedation at the

levels of independent variables of the mixing proportions, sasigde and test length.
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Table 35Cell Means of the RMSE of Threshold Estimates for the GIRS

Mixing Proportions

Sample Item

Equal Unequal
4 na na
1200 10 0.830 na
20 0.834 na
total 0.832 na
3000 4 0.769 na
10 0.913 0.643
20 0.924 0.760
total 0.881 0.713
6000 4 0.837 0.780
10 0.954 0.811
20 0.957 0.845
total 0.926 0.821

The main effect of the mixing proportions showed a higher correlatnamn
the mixing proportions were equalynequal (0.886) <Mequa (0.776). Regarding the
main effect of the sample size, the increase in the Corr-thr-MRS behNve&000
andN = 6000 was significant but not significant betwé&en 1200 andN = 3000:
M1200(0.832) =M3000(0.817) <Meooo (0.877). Regarding the main effect of the test
length, the increase in the Correlation-threshold-MRS was signtfas the test length
increased fronh = 4 tol = 10 but was not significant as the test length increased from
| = 10 tol = 20: M4 (0.798) <M1 (0.845) =My (0.864).

ARS class. The factorial ANOVA results of the Correlation-threshold-ARS

showed that the main effect of the mixing proportidagd = 125.59p < .001;7,* =

0.67) and sample siz€§ 5 = 35.56,p < .001;,° = 0.33) were significant. Table 36
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presents the cell means of the correlation at the levels of indepeadiafiies of the

mixing proportions and sample size.

Table 36 Cell Means of the RMSE of Threshold Estimates for the@Q&S

Proportions
Sample
Equal Unequal
1200 0.979 na
3000 0.991 0.963
6000 0.995 0.982
total 0.990 0.973

Regarding the main effect of the sample size, the increase in thredafion-
threshold-MRS betweelN = 3000 andN = 6000 was significant but not significant

betweerN = 1200 andN = 3000:M1200 (0979) =M 3000 (0979) <Msgoao (0989)

4.4.3. Evaluation of the standard error

The third criterion used to evaluate the threshold parameter recoasrhe
standard error of estimates (SE), which was the calculated standardbdevidhe
estimated thresholds provided from all replications. Table 37 reih@tSE that was
averaged across the four thresholds. The factorial ANOVA resultsd(SE measures
are present in a single table concisely in Table 38 instead of prg¥alr analysis

results in separate ANOVA tables.
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Table 37 SE of Threshold Parameter Estimates

ORS
Type of mixture ORS ORS ORS ggg ERS
ERS MRS ARS MRS MRS
ARS
Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ER8S MARS
Mixing Sample Item
Proportions 1200 4 118 .133
10 .053 .071 .056 .104 .047 .080 .078 .090 .135
20 .036 .046 .037 .060 .034 .062 .047 .057 .07854. .067 .093 .088
4 .069 .091 .060 .274 .055 .102 .268 .152 .327
3000 10 .032 .044 035 .063 .030 .053 .047 .05177.0.057 .065 .097 .089
20 027 029 025 .036 .021 .040 .029 .035 .04P33. .039 .054 .055
4 .052 .064 .042 199 .038 .073 .179 .114 .246
6000 10 .024 031 .024 .043 .021 .038 .035 .04057.0.041 .046 .064 .064
20 .015 021 .016 .027 .017 .027 .021 .024 .03423. .026 .044 .045
1200 4
10 .035 .180
20 .024 113
4 .064 .334 .043 .354
3000 10 .024 106 .029 .240 .024 .150 .047 .05177 .0
20 .016 .073 .016 .100 .016 .099 .029 .035 .04P19. .067 .106 .095
4 .033 .195 .045 211 .029 .221
6000 10 .016 .079 .017 .138 .017 .097 .035 .04057.0.021 .076 .137 .105
20 .011 047 011 .067 .011 .067 .021 .023 .03®12. .049 .070 .068
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Table 38 Effect size £?) for the SE Conditional on Statistical Significance (p.85)

Factor ORS ERS MRS ARS
mixture 0.22
proportion 0.14 0.32
item 0.23 0.31 0.34 0.36
Sample size 0.09 0.09 0.08
Mixture * item 0.28
Proportion * item 0.10 0.12

ORS class. The factorial ANOVA results of the SE-threshold-ORS showed
that the main effects of the type of mixtukgs(>7y= 80.03p < .001;,* = 0.22) and
test length . 27y= 173.73p < .001;,% = 0.23), as well as the interaction effect
between type of mixture and test lendty 67)= 59.30,p < .001;,° = 0.28) were

significant. Table 39 presents the cell means of the SE at the tiedependent

variables of the type of mixture and test length.

Table 39Cell Means of the SE of Threshold Estimates for the QRS C

tem Mixture
OE oM OA OEM OEMA
4 0.067 0.049 0.041 0.224 na
10 0.031 0.032 0.028 0.053 0.040
20 0.022 0.021 0.020 0.032 0.028
total 0.038 0.032 0.029 0.088 0.033

The main effect of the type of mixture differed from each other as following:
MOA (0029) :MOM (0032) :MOEMA (0033) :MOE (0038) <MOE|\/| (0038)
Regarding the main effect of the test length, the increase in thel&mwn-threshold-

ORS was significant at the three leves; = 0.078 >M19 = 0.035 >Myp = 0.024 in
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MRS class Mi200= 0.067 <Mz3q90= 0.116 <Mggoo= 0.232), and in ARS clasM{00=
0.080 <M3p00= 0.119 <Mggpgo = 0.276).

The significant interaction effect between the type of mixture estdéngth
was mainly due to the poor stability for the 4 short test to estimate ORS thresholds
in the mixture of more than two latent class parameters. The interabbibis present
in Figure 18. Pairwise comparison showed that the difference BEH®etween any

of the two mixtures was not significant for the 20 conditions.
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Figure 18 Interaction effect between type of mixture and test length o8 Ehef

threshold estimates for the ORS class

ERS class. The factorial ANOVA results of the SE-threshold-ERS showed that

the main effect of the mixing proportionS{12)= 79.18,p < .001;,* = 0.14), test

length E,12)= 88.07,p <.001;,* = 0.31), and sample sizE({ 12)= 25.89,p < .001;
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n? =0.09) as well as the interaction effect between mixing prapoaind test length
(Fe12= 29.18p <.001;,% = 0.10). Table 40 presents the cell means of the SE at the

levels of independent variables of the mixing proportion, tegtlemnd sample size.

Table 40Cell Means of the RMSE of Threshold Estimates for theE&S

Mixing Proportions

Sample ftem Equal Unequal

4 0.133 na

1200 10 0.081 0.180

20 0.057 0.113

total 0.077 0.147

3000 4 0.122 0.334

10 0.053 0.079

20 0.034 0.058

total 0.063 0.111

6000 4 0.089 0.195

10 0.039 0.065

20 0.024 0.040

total 0.046 0.073

The main effect of the mixing proportions showed a larger standarmddrem
the mixing proportions were unequa¥ynequal (0.098) >Mgquar (0.061). Regarding
the main effect of the sample size, the decrease in the SE wasaignifetweem =
3000 andN = 6000 and was not significant betweéér 3000 andN = 1200:M1200
(0.095) =M3000(0.084) >Ms000(0.058). Regarding the main effect of the test length,
the decrease was significant at all three lewMdls(0.155) >M3 (0.069) >Myg

(0.047).
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The significant interaction effect between mixing proportion and test leng
was also because of tdesproportionate increase in the SEI = 4 condition. The

interacton plot is presented in Figure.

item
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‘ —10
0.3000 20

0.2000-]

0.1000

Estimated Marginal Means

0.00004

T T
Unequal Equal

proportion

Figure 19.Interacton effect between type of mixing proportion and test lengtthe

SE of threshold estimates for the ERS ¢

MRS class. Thefactoria ANOVA results of the SE-thresholRS showec
that the main effect of the sample siF 10)= 22.35p < .001;,° = 009) and test
length E,10)= 85.26,p < .001;,* = 0.34). Table 4presents the cell means of |

SE at the levels of independent variables of the mixing propotasehlength, an

sample size.
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Table 41 Cell Means of the SE of Threshold Estimates for the MR& C

Sample Item
4 na
1200 10 0.120
20 0.077
total 0.094
3000 4 0.301
10 0.111
20 0.065
total 0.119
6000 4 0.219
10 0.083
20 0.046
total 0.095

Regarding the main effect of the test length, the decrease wdscaigmat all
three levelsM, (0.251) >M14 (0.099) >M,( (0.060). Based on the Tukey HSD (with
arw = .05) test any of the difference in the SE between the three léw@mple size
was significantM1200(0.094) =Mzp00 (0.095) >Megooo (0.119).

ARS class. The factorial ANOVA results of the SE-threshold-ARS showed
that the same effects on the ERS class were also significant #8SR®ielass. The
significant factors were the main effect of the mixing proportiéiss{= 128.61p <
.001; % = 0.32), test lengthH(2 5y = 73.97,p < .001;,* = 0.36), and sample size

(Fes=17.18p <.001;,° = 0.08) as well as the interaction effect between mixing

proportion and test lengtlFg sy =25.00,p < .001;7° = 0.12). Table 42 presents the
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cell means of the SE at the levels of independent variables of thegnppaportion,
test length, and sample size.

Table 42 Cell Means of the SE of Threshold Estimates for the ARS C

Mixing Proportions

Sample ftem Equal Unequal
4 Na 0.354

1200 10 0.080 0.150
20 0.075 0.097

total 0.077 0.175

3000 4 0.102 0.221
10 0.071 0.101

20 0.048 0.068

total 0.068 0.112

6000 4 0.073 0.288
10 0.051 0.117

20 0.036 0.082

total 0.049 0.140

4.5 Person Trait Parameter Recovery

Themdltmthat uses the marginal MLE method provides as many class-specific
person trait estimate®] as the number of classes specified in the model for each
respondent. The assign&d  estimate is the one that is assocthatdtbvalass for
which his or her posterior probability of class membershipesiphest. If a
respondent is incorrectly classified, he or she is given an imptbgstimate that is
estimated within those who may be qualitatively different fromskifror herself.

The current study analyzed the accuracy atcovery for the following
groups of respondenty:the whole group of respondents based on their assigned class
membership (i.e., all misclassified respondents were included})i)androup of

correctly classified respondents. In real world data analysis, respositrue latent
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class membership is unknown information, and, hence how inaccunetelyherd
is assessed due to incorrect classification is never known. TéEsate analyses of
@ recovery provided not only the results of the accuraay técovery but also the
guantification of the impact of misclassification @rrecovery. Recovery of person

trait parameters was evaluated with respect to Bias, RMSE, and Peansdation.

4.5.1. Evaluation of the bias

The factorial ANOVA results on bias of person trait estimatewstdhat any
of the main effects of the four manipulated factors and their twokwtasaction
effects were neither statistically nor practically significant. Tablee$8rts the
marginal bias for all respondents (whole group) and for the coridatygified
respondents (selected group) in each simulation condition. Alseca@en in Table 43,

the bias was very small and fluctuating around zero acrossnailagion conditions.
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Table 43Theta Recovery for All Respondents and Correctly ClassifiecbRéspts

Type of mixture and ORS 0.5 ORS 0.9
Mixing proportions ERS 0.5 ERS 0.1
Whole Group Selected Group Whole Group Selectenlisr
ORS ERS ORS ERS ORS ERS ORS ERS
ltem Sample
Bias -.001 .004 .005 .001
1200 RMSE .540 .559 497 487
Corr 776 .876 .805 .882
Bias -.001 .003 -.001 .002 -.002 .005 -.001 .009
4 3000 RMSE .507 .560 492 487 .503 .658 495 .530
Corr .785 .878 .807 .884 .839 .899 .846 .887
Bias .002 .003 .003 .002 .013 .009 -.002 -.006
6000 RMSE .503 .559 490 486 516 573 496 521
Corr .786 .879 .807 .885 .859 .861 .849 .888
Bias -.001 -.001 -.001 .000 .000 -.008 .000 -.009
1200 RMSE .368 .450 .343 .368 .358 .607 .347 .382
Corr 911 .916 .924 .932 .926 .908 .932 .933
Bias .003 .001 .002 .000 .001 .008 .001 .005
10 3000 RMSE .366 449 .340 .367 .355 .609 345 2 .37
Corr 912 917 925 933 .926 .909 932 .933
Bias .000 .000 .001 .000 .000 .000 .000 .003
6000 RMSE .365 450 341 .365 .356 .607 .346 .369
Corr 912 917 .924 .933 .926 910 931 .934
Bias -.002 .001 -.002 .000 .001 -.005 .001 -.001
1200 RMSE 270 .370 .252 .293 .262 .551 .255 .288
Corr .957 941 .962 .957 .962 917 .964 .958
Bias .001 .001 .001 .000 .001 .000 .001 .002
20 3000 RMSE 270 .368 .253 .289 262 .555 255 0.29
Corr .956 941 .962 .958 .962 917 .964 .958
Bias .000 .000 .000 .000 .001 .001 .001 .001
6000 RMSE .269 .367 .252 .290 .262 .554 .256 .289
Corr .957 .942 .962 .958 .962 919 .964 .958
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Table 43 _Continued

Type of mixture and ORS 0.5 ORS 0.9
Mixing proportions MRS 0.5 MRS 0.1

Whole Group Selected Group Whole Group Selectenisr

Assigned class ORS MRS ORS MRS ORS MRS ORS MRS
tem Sample
Bias
1200 RMSE
Corr
Bias .004 .008 .003 .006
4 3000 RMSE .576 .733 .510 757
Corr .857 .087 871 .080
Bias .000 -.010 .000 -.010 0.001 0.002 0.001 ®.00
6000 RMSE .575 731 .508 .755 0.576 0.732 0.566 754.
Corr .858 .032 871 .032 0.858 0.025 0.859 0.028
Bias .016 -.007 .000 .003
1200 RMSE 511 .733 .358 472
Corr .861 716 .938 .840
Bias -.001 .003 .001 .000 -0.001 -0.005 -0.001 000.
10 3000 RMSE 418 484 .358 .468 0.370 0.532 0.350.501
Corr .931 .827 .938 .844 0.933 0.779 0.936 0.768
Bias .000 -.001 .000 .002 0.000 0.014 0.000 0.014
6000 RMSE 418 AT77 .356 469 0.373 0.487 0.356 482D.
Corr .932 .830 .939 .844 0.933 0.746 0.936 0.776
Bias -.001 .002 .001 -.003
1200 RMSE 416 478 .268 .354
Corr .933 .830 .965 921
Bias -.001 -.004 .001 -.001 -0.001 0.000 -0.0010.0G62
20 3000 RMSE .319 .368 .268 .354 0.281 0.390 0.268.360
Corr .959 913 .965 .922 0.962 0.891 0.965 0.907
Bias .000 -.001 .000 .001 0.000 0.002 0.000 0.001
6000 RMSE 317 .367 .265 .353 0.281 0.383 0.268 358.
Corr .959 .914 .965 .922 0.962 0.888 0.964 0.905
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Table 43 _Continued

Type of mixture and ORS 0.5 ORS 0.9
Mixing proportions ARS 0.5 ARS 0.1
Whole Group Selected Group Whole Group Selectenisr
Assigned class ORS ARS ORS ARS ORS ARS ORS
ltem  Sample
Bias
1200 RMSE
Corr
Bias -0.005 -0.001 -0.003 -0.001 0.002 0.007 .00 0.000
4 3000 RMSE 0.508 0.585 0.498 0.585 0.503 0.632 0%0.5 0.654
Corr 0.876 0.788 0.859 0.771 0.863 0.686 0.865 74@.
Bias -0.003 0.008 0.000 -0.001 0.003 -0.001 0.002.000
6000 RMSE 0.505 0.590 0.501 0.586 0.504 0.612 60.500.615
Corr 0.864 0.812 0.860 0.765 0.863 0.706 0.866 76D.
Bias
1200 RMSE
Corr
Bias -0.002 0.025 -0.004  0.026 -0.001 0.037 D.000.036
10 3000 RMSE 0.357 0.428 0.353 0.425 0.354 0.428 3560. 0.431
Corr 0.936 0.905 0.934 0.902 0.935 0.889 0.936 89@.
Bias -0.001 0.024 -0.003 0.024 0.000 0.027  0.00®.027
6000 RMSE 0.356 0.429 0.352 0.426 0.356 0.423 8.350.426
Corr 0.936 0.905 0.934 0.902 0.935 0.889  0.936 892.
Bias 0.001 0.027 -0.002  0.026
1200 RMSE 0.264 0.879 0.266 0.328
Corr 0.964 0.978 0.964 0.946
Bias 0.001 0.028 0.000 0.028 0.001 0.027  0.001 027.
20 3000 RMSE 0.268 0.330 0.266 0.327 0.267 0.325 2680. 0.332
Corr 0.964 0.947 0.964 0.947 0.964 0.944  0.964 94@.
Bias 0.002 0.026 0.001 0.026 0.000 0.025  0.000 024.
6000 RMSE 0.267 0.329 0.264 0.326 0.267 0.321 8.260.326
Corr 0.965 0.947 0.965 0.947 0.964 0.945 0.964 94@.
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Table 43 _Continued

Type of mixture

and mixing proportions

ORS 0.33ERS 0.33MRS 0.33

ORS 0.8 ERS 0.1MRS 0.1

Whole Group Selected Group Whole Group SelectediGr
Assigned class ORS ERS MRS ORS ERS MRS ORS ERS MRIORS ERS MRS
Iltem  Sample
Bias
1200 RMSE
Corr
Bias -.016 .002 -.004 -.002 .001 -.012
4 3000 RMSE .701 .591 .681 .520 .483 .664
Corr .755 871 .610 .823 .883 .624
Bias .010 .001 .040 -.004 -.002 .014
6000 RMSE .633 .589 .664 .505 487 .657
Corr a77 .873 .584 .830 .883 .615
Bias .000 -.002 -.006 .003 -.001 -.013
1200 RMSE ..[429 .482 496 .345 .366 A75
Corr .900 .908 .824 .927 .932 .842
Bias -.001 .001 .001 .000 .000 .001 .000 .009 7 .00 .000 .003 .012
10 3000 RMSE 420 .483 .485 .343 .365 471 .680 4.82 .776 .666 .692 .705
Corr .905 .909 .830 .928 .933 .845 .733 772 .520 .738 .763 571
Bias .000 -.003 .001 .001 -.001 .001 .000 .001 06.0 .000 .003 .005
6000 RMSE 420 .480 .480 .343 .365 469 .375 .603 .491 .346 .365 481
Corr .906 .910 .830 .928 .933 .845 .922 .909 757 .932 .935 .785
Bias .002 -.001 .001 .002 -.001 .002
1200 RMSE .314 .397 .370 .254 .289 .355
Corr .949 .935 913 .962 .958 921
Bias .000 .000 .001 .001 -.001 .000 .000 -006 11.0 .000 .002 .002
20 3000 RMSE .310 .396 .369 .251 .290 .353 276 2 .55 .398 .255 291 .356
Corr .950 .935 914 .963 .958 .922 .959 916 .885 .964 .958 .910
Bias .000 -.002 .003 .000 -.001 -.002 -.008 -.004 .012 .000 -.001 .000
6000 RMSE 312 .394 .370 .252 .290 .352 311 .334 .436 .256 .287 .287
Corr .950 .936 913 .963 .958 .923 .951 .945 .907 .964 .959 .959
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Table 43 _Continued

Type of mixture

and mixing ORS 0.25ERS 0.25MRS 0.25 ARS 0.25 ORS 0.7 ERS 0.1MRS 0.1 ARS 0.1
proportions
Whole Group Selected Group Whole Group Selected Group
Assigned class ORS ERS MRS ARS ORS ERS MRS ARS ORERS MRS ARS ORS ERS MRS ARS
Item Sample
Bias
1200 RMSE
Corr
Bias
4 3000 RMSE
Corr
Bias
6000 RMSE
Corr
Bias
1200 RMSE
Corr
Bias .001 .000 .002 -.002 -.011 -.014 -.002 .006
10 3000 RMSE 334 .370 .465 418 .408 541 481 0 .44
Corr .908 901 .801 .865 915 .903 .815 .875
Bias -.011 -.014 -.002 .006 -.012 -.007 .006 .001.001 -.001 .000 .001 .001 -.001 .000 .001
6000 RMSE .338 371 .469 420 .408 541 481 440378 .632 .508 442 347 372 479 424
Corr 915 .903 .815 .875 915 .903 .815 .875 .921.905 .760 .868 931 .933 791 .879
Bias -.001 -.001 .001 -.003 -.001 -.001 .001 .003
1200 RMSE .254 291 .355 317 312 419 .399 324
Corr .950 .932 .905 .939 .950 .932 .905 .938
Bias .001 .000 .002 -.002 .000 .001 .002 -.00300:. .001 .005 -.005 -.001 .001 .005 -.005
20 3000 RMSE .252 .288 .358 313 313 419 399 4 .32 .278 .553 .405 .328 .255 .288 379 .318
Corr .950 .932 .905 .938 .950 .932 .905 .938 .959917 .886 .935 .964 .959 .902 .940
Bias .000 .002 -.002 .029 .000 .001 .002 -.003 01.0 .002 .000 .001 .001 .002 .000 .001
6000 RMSE .251 .289 .352 313 313 418 .396 .320278 .566 .381 .323 .255 .288 .357 .315
Corr .950 .932 .905 .938 .950 .932 .905 .938 .959916 .893 937 .964 .958 .908 941
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4.5.2. Evaluation of the RM SE

The factorial ANOVA was conducted on the RMSE measures for botlewho
group and selected group. Since the same factors were found toibieagigm these
two analyses, the factorial ANOVA results for the whole groepeweported in this
section. The results showed that the test length was the cosigmifitcant factor
across all four response-style classes and also was the onlycsigiiéictor for the
ORS, MRS, and ARS classes. The type of mixture was anothéicsighfactor for
the ERS class. These ANOVA results are presented in a singdectatitisely in Table

44,

Table 44 Effect size £?) for the RMSE of Theta Estimates Conditional on Siteais

Significance (p < 0.05)

Factor ORS ERS MRS ARS
mixture 0.11
item 0.39 0.10 0.39 0.53

The test length was the significant factor on the RMSE for peradn

parameters in the ORS cla$$(4)= 99.09,p < .001;7* = 0.39), ERS class$(z,10)=
8.66,p < .001;72 =0.10), MRS clask g = 33.05p < .001;5° = 0.39), and ARS
class F24)= 3234.06p < .001;,* = 0.53). In addition to the main effect of the test
length, the type of mixture was significant for the ERS clagsi{)= 10.24,p < .001;

n? =0.11).
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Based on the Tukey HSPw.=0.5)test, the RMSE difference betweken 4 and
| =10 as well as betweén= 10 and = 20 were significant in the ORS clab4;
(0.544) >M1 (0.395) >Myo (0.282), ERS clas$ds (0.584) >Mg (0.515) >Mag
(0.393), MRS clasdvl4 (0.708) >M1p (0.532) >My( (0.384), and ARS clasM,
(0.601) >M14 (0.425) >Myo ( 0.326). For the ERS class, the main effect of the type of
mixture differed from each other as followingogma (0.312) <Mogm (0.510) =Mowm

(0.510).

4.5.3. Evaluation of the Correlation

As was found in the factorial ANOVA on the RMSE in Sectidh 2.the test
length was the significant factor on the correlation between generatest@mndted
person trait parameters in the ORS cl&$s.6)= 52.36,0 < .001;,° = 0.35), ERS
class F(2,10= 5.28,p < .001;* =0.20), MRS clasE 9= 166.97p < .001;7? =

0.61), and ARS clas&{ 4)= 3859.53p < .001;,% = 0.72).

Table 45 Effect size £?) for the Correlation of Theta Estimates Conditional on

Statistical Significance (p < 0.05)

Factor ORS ERS MRS ARS

Item 0.35 0.20 0.61 0.72

Based on the Tukey HSPw.=o0.5)test, the correlation difference betwden4
andl = 10 as well as betweérn= 10 and = 20 were significant in the ORS clab;

(0.832) <My ( 0.911) <My (0.958), ERS clas$fls (0.877) =My ( 0.901) <Mao
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(0.935), MRS classMy (0.328) <Mjp ( 0.772) <My (0.899), and ARS classVi4

(0.757) <M1 ( 0.890) <My (0.946).

4.5.4. Impact of misclassification on person trait estimation

To test the impact of the misclassification on person trait parametareny,
the discrepancies in the RMSE and correlation measures between thamdole
selected group were tested. A paitédst was conducted for each latent class on the
marginal discrepancies over all manipulated factors. Table 46 and Tapteskent the
descriptive statistics of the RMSEs and the correlations for tloéevamd selected
groups, respectively. The results of the patreskt are presented in Table 48. The
effect size was evaluated using Cohah{d=mean difference / standard deviation of
mean differencelhich indicates a small effect sizedif> 0.2 , a medium effect size if
d > 0.5, or a large effect sizedf> 0.8. In table 48, Cohentis presented when the

mean difference is statistically significantpat .05

Table 46 Cell Means of the RMSE of theta estimates

Type of mixture Group N Mean SD
ORS Whole 60 0.386 0.119
Selected 60 0.361 0.105
ERS Whole 34 0.478 0.126
Selected 34 0.406 0.113
MRS Whole 31 0.495 0.136
Selected 31 0.472 0.135
ARS Whole 20 0.425 0.114
Selected 20 0.428 0.116
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Table 47 Cell Means of the Correlation of Theta Estimates

Type of mixture Group N Mean SD
ORS Whole 61 0.911 0.060
Selected 61 0.919 0.054

ERS Whole 34 0.911 0.035
Selected 34 0.923 0.039

MRS Whole 30 0.772 0.219
Selected 30 0.790 0.222

ARS Whole 20 0.882 0.083
Selected 20 0.882 0.074

Table 48 Paired t-test Results on the Impact of Misclassificatioff loeta Recovery

Evaluation

Type of mixture Measures t df p Cohen’sd
ORS RMSE 4.204 59 .000 0.54
Correlation -4.079 60 .000 0.49
ERS RMSE 2.838 33 .008 0.38
Correlation -3.522 33 .001 0.17
MRS RMSE 2.107 30 .044 0.52
Correlation -3.108 29 .004 0.60
ARS RMSE -0.755 19 460
Correlation 0.131 19 .897

As can be seen in Table 48, the impact of misclassification wastistdty
significant for all response-style classes except the ARS class. Tha teasthe
theta recovery was not impacted for the ARS class is because thead#ssifi
accuracy was high. The effect size was generally medium level excelpe for t

correlation for the ERS class.

148



4.6. Model-based Correction of Score Bias

Figure 20 depicts the relation between sum score and estimdtedach
class of the 3-response-style mixture. The data for this figur@mtaged from the
equal proportions, 10-items with a sample sizBl ef6000 condition. This figure
showed how th& estimates of the MPCM would provide a tool to correct the sum
score bias due to response styles. For example, if a respondédetsl is above the
mean (i.e.,¢ > 0) and belongs to ERS class his or her estimatesdower than when
he or she belongs to the ORS class. Since the sum score igdikelynflated by his
or her endorsement of a higher extreme category, his @@ Bbould be adjusted
downward to correct the inflated sum score. Conversely, if a respondelei®l is
below the mean (i.e4 < 0) and belongs to ERS class, the estim&tésihigher than
when he or she belongs to the ORS class. Because he or shéhaweikklected a
lower extreme response category more often, his or her estifiatieduld be
adjusted upward to compensate the deflated sum score.

If a respondent with & level that is higher than the mean belongs to MRS
class, his or her estimatedis higher than when he or she belongs to the ORS class.
His or her tendency to select middle categories would have deflatedcore, and,
therefore, the correction is made to compensate his or her score |tsthiee
response tendency. Conversely, if a respondéhtésvel is below the mean and
belongs to MRS class, the estimatds lower than when he or she belongs to the

ORS class. Because he would have selected the middle-categorg Hespither
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lower @ level, his or her estimate# should be adjusted downward to correct

inflated sum score.
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Figure 20.Thetaestimatesas a function of suracore for ORS, ERS, and MRS CI

Figure 21represents e relation between sustores and estimati@ under
the 4-responsetyle mixture.In this figure, a function for the ARS class was adde
appears that the correction for the ARS class is very much alike tleetoam for the
MRS class. This is understandable because the ARS responses wesieed
assuming a balanced scale thaended to cancel out ARS respondent’s directi
choice of response categories. Although ARS respondents endorseéxtyieme
categories only, the use of a balanced scale caussumscores to regress towe

the mean score.
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Figure 21 Theta estimat¢ as a function of surecore for ORS, ERS, MRS, and Al
Class

The plots in which the relation between C-ERS, ORSMRS, and OR-ARS
in the 2-response-styhaixtures because they the relations appeared the same a

were deprted in Figures 20 and 2

151



Chapter 5: Discussion

The primary goal of the current study was to investigate the perfoewdrihe
mixture distribution polytomous Rasch model in accurately recayeniodel
parameters under the heterogeneous population conditions in pduple differed in
their response styles, or individual tendencies in responditing tiormal aspects of
rating scales. The current study examined the mixture polytoRassh model with
two, three, and up to four latent classes within each of whilifiesent response style
was manifested. One of the latent classes was simulated to repregsantyaesponse
style (ORS), which did not manifest a distorted use of responggociat® of a rating
scale. The rest of the latent classes were characterized by one ofawnfypll
distorted response styles, i.e., extreme response style (ERSle oatiejory response
style (MRS), and acquiescent response style (ARS).

Response styles have been recognized as a source of systematic medsureme
bias. Ignoring or failing to adequately account for the impactefésponse styles in
latent trait measurement leads to various psychometric problems soehlakating
test score differences at both individual and group levels, inflstgeliability,
obscuring structural relations among psychological construdatsesést, and
confounding the interpretation of the findings in comparativeissu

As a model-based approach to control for these adverse effects, mixture
polytomous Rasch models, particularly the mixture partial creditel(MPCM) has
been increasingly applied in empirical research where ordered polytoreous i

responses were analyzed. The MCPM was suggested as a method ifigrngass
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people according to their response styles as the model was prdyyoRedt (Rost,
1991). Cumulative results from previous studies have evidencec#paindents who
share the ERS constitute a latent class while the other class(Bshisamposed of
respondents with a non-extreme response style. Once different respylas are
detected within different latent classes, the subsequent analysisydételogical
construct of interest can be conducted under the control of respylese ktis
promising that the application of the MCPM has potential foetter estimation of
person trait as well as a better prediction of relevant criteria.

In addition, the MPCM is a flexible modeling framework iattthe nature of
latent classes does not need to be known a priori. “What are #sedf/pesponse
styles manifested in this data set?” and “which response styl@stop®ople present
in this group?” are explored and answered during the course of the NiR&lysis.
Although previous empirical studies have detected relatively sistipletures of the
mixture of response styles, i.e., mostly a combination of &RSanother style
characterized as a rather moderate response style (perhaps MRS or @RS), th
flexibility of the MPCM extends the potential for identifyingone diverse response
styles that might exist in a data set.

There is a need for a simulation study to evaluate the performance of the
MPCM including accurate recovery of the model parameters, thereby agsbesi
soundness of the application of the MPCM to account for variges tgf response
style effects that may be presented in real world testing situdtittle information is

known thus far, however, regarding the accuracy of model parameter resothes
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MPCM and testing conditions that can exert an influence on tldelmparameter
recovery.

The current simulation study, therefore, focused on the evaluztiorthe
accuracy of recovering class membership, threshold parameters, andtpgtson
parameters in various testing conditions, ejpthe model-based correction of score
bias due to response styles. Of particular importance, the currdptistiuded more
complex and realistic, mixture structure where multiple classes of ERS, MRS,
and ARS coexist.

The following sections include a summary of the findings;udision of the
important issues surrounding interpretations of the MPCM resattemmendation
for applied researchers, as well as limitations of the current snalymplications for

future research.

5.1 Summary of Findings

Non-convergence and boundary threshold estimates. Estimation problems
were examined as a preliminary analysis of the simulation resulis. the rate of
non-convergence, which may very well be indicative of problemsadel
identifiability and instability of parameter estimates, was obtaifbis non-
convergence rate was 0 % for 80 out of 90 simulation conditibles the data sets
were correctly estimated with the data generation model. The othendlatson
conditions showed the non-convergence rate ranging between 1 %8%@nth@ ORS-
ERS mixture conditions never encountered non-convergence whhetnest rate of

non-convergence occurred under the ORS-ARS mixture conditions.
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When the generated data set was under parameterized, non-convergence
problems occurred only for two conditions of the 4-response-siiyeires.
Conversely, when the generated data was over parameterized, thirtytfivleninety
simulation conditions showed non-convergence ranging betw&earid 20 %. A
high percentage of these problems occurred with the ORS-MRS mixtures

Boundary threshold estimates were also monitored and screened. &xtrem
thresholds exceeding 9.0 or -9.0 in the provinettmoutputs were filtered out.
Boundary estimates never occurred when the 2-response-style datarsetsmder
parameterized. When the generated data was correctly parameterized, the @ecurren
of boundary estimates was closely related to the sample size, reoiicaly the
expected category frequencies. A high percentage of boundary eginolaiems
ranging between 48 % and 96 % occurred mostly for the respongerieden the
MRS and ARS class for which the expected response frequency wasatlysasit.
Nearly all of the simulation conditions presented boundary thigdgstimates when
the data sets were over parameterized.

As a result of checking non-convergence and boundary thresholdestim
problems, ten simulation conditions were removed from the deBigrse excluded
conditions were associated with a sample siz¢ 81200 and the unequal mixing
proportions condition (except one condition with four resp@tges and equal
mixing proportions). These results would seem to indicateathappearance of
implausible threshold values in an empirical data analytic studyla an indication

of over parameterization (i.e., estimating a model with too meteyt classes) or an
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insufficient sample size to estimate parameters for a given model, oranadion of
the two conditions.

Label Switching. The current study tackled the label switching problems by
jointly applying two different algorithmic approaches, each ativhutilizes different
source of information. The first algorithm developed by the authexd thee
characteristic features of the order of four thresholds in each respgleseats. The
second approach developed by Tueller et al. (2011) used the resakpafdent
classification results. By incorporating these two algorithrmesefficiency of the
automated process of detecting and correcting switched labels waseshhan

Thirteen simulation conditions turned out to have a large priopaot
replications in which switched labels were unresolved. It wasdolat there was a
great deal of overlap between the cases where switched labels were not candcted
the BIC and CAIC were unable to correctly identify the data geoeratbdel. A
close investigation of this overlap allowed the researchers to betterstend the
hidden structures of the subpopulation distributions as wétleasapabilities and
limitations of the MPCM in modeling those population hegerteities.

Model selection. Among the three information criterion statistics, AIC, BIC,
and CAIC, the BIC and CAIC performed nearly equally well in idging the data
generation model with a slightly higher accuracy for the BI€&08s all of the
simulation conditions, the AIC showed high rates of overtiieation of the latent
classes. Based on the current simulation results, the AIC shoulte recommended

for use in model selection under the MPCM.
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In general, the BIC was found to most accurately identify theecbnumber
of latent classes in the MPCM. Under the simulation condiiiomghich neither
estimation problems nor unresolved label switching problems occ¢tineedata
generation model was identified 100% of the time based on theTBECsimulation
conditions in which the BIC did not perform perfectly were assediaiith at least
one of the following conditions) the test length = 4,ii) the sample sizB = 1200,
andiii) the mixing proportions were unequal.

Classification accuracy. Generally, the ORS-ARS mixtures allowed for
accurate classification under all simulation conditions while th8- @RS mixtures
were the least accurate in providing correct classification of resporfdéatged by
the ORS-ERS mixtures. Misclassification of ERS respondentawiiie MRS class
(EM) and misclassification of MRS respondents within the ERS ¢ME) rarely
occurred. In addition to EM and ME, the chance of OA, MA, AQ@l AM was also
essentially zero.

The most important factor influencing respondent classification accwasy
test length. The effect size of test length was extraordinary Igrge (0.42). Under
the least complex, 2-response-style mixtures, when test length=/4sORS-ERS,
ORS-MRS, and ORS-ARS mixtures allowed for an average classificatioraagcu
rate of 81%, 70 %, and 93%, respectively. As the number of itareased td = 10,
the average classification accuracy increased to 94%, 87%, ande3g#ctively.
While for the test length,= 20, it reached 98%, 94%, and almost 100%, respectively.

Under the 3-response-style mixtures, as test length increased frdnol = 10 and
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then froml = 10 tol = 20, the corresponding average classification accuracy improved
from 73% to 87%, and then to 95%, respectively. Under the coogplex, 4-
response-style mixtures, classification accuracy was 89% and 98%d w10 and
20, respectively. Significant interaction effects were mainly dulkee®@utstanding
classification accuracy for the ARS class even undelr #h# condition.

Threshold recovery. Generally, as the sample size increased fkom1200 to
N = 3000, then ttN = 6000, threshold recovery tended to be more accurate. While the
increase in the test length frdns 4 tol = 10 improved threshold recovery
significantly, the increase froimn= 10 tol = 20 did not result in a significant
difference. Threshold recovery for the ARS class was quite accurately achredexd
evenl = 4 condition and, consequently, the test length was oatfto be an
influencing factor for this class. When the distorted response stge€RS, MRS,
and ARS presented with a small proportion in a sample of respisnttes threshold
recovery was significantly less accurate for those small laterst €4S thresholds
were most accurately recovered under the ORS-ARS mixtures and leaatelgcu
recovered under the ORS-ERS-MRS mixtures. Therefore, it may not éssaeity
true that thresholds of a more complex model are less accurately rec@&tarethrd
error of threshold estimates dramatically increased for the models vadp8nse-
style classes when the test length af4 was considered.

Person trait recovery. The factor that most affected the accuracy técovery
was the test length. The accuracydwecovery in each response-style class increased

as the test length increased.
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Overall, the person tra? was well recovered when the test length Wasl0
orl = 20. A sample size i = 1200 provided relatively lower correlations between
generated and estimaté&dparameters. Across the three levels of test length, the mean
RMSE ranged from 0.28 to 0.54 for the ORS class; 0.39 tof6rG8e ERS class;
0.38 to 0.53 for the MRS class; and 0.33 to 0.43 for th8 Aldss. The mean
correlations ranged from 0.83 to 0.96 for the ORS class, 0@84dor the ERS
class, and 0.77 to 0.90 for the MRS class, and 0.76 td@.9% ARS class.

When the accuracy & recovery was computed for those who were correctly
classified, there was always an increase in the level of accuracy cortpareen the
accuracy was computed for all respondents including misclassified tases
discrepancies in the accuracy level between all respondent group aradlgorre
classified respondent group were tested. The results of the péasitdshowed
statistically significant impact of misclassification on the petsaih estimation.

Correction of score bias. In an empirical rating scale data, respondent’s sum
scores may be biased if his or her particular response style opendtesesponding
to the response categories. The most practical benefits of empthgiMPCM is that
sum scores that might have been biased due to the compoeffeictg of the
response styles can be corrected through the class-specifically estémated

The current study showed that the MPCM providesstimates that were
corrected for the sum score bias caused by the different responselstyglaseral, the
inflated score bias that occurred for ERS respondents with a higleseel and for

MRS and ARS respondents with a lowgtevel were adjusted downward whereas the
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deflated score bias occurred for ERS respondents with a wed for MRS and

ARS respondents with a highérlevel were adjusted upward.

5.2 Discussion

The current study showed that the model parameters of the MPGM wer
recovered well and that classification accuracy was reasonably relatigielyOf
particular importance, rather complex mixture structure where up to fiberedit
response-style subpopulations were mixed appeared to be reaswakinhodeled by
the MPCM under the simulated testing conditions that were aenesidn this study.
This observed model performance support the potential utilityi@imodel in real
world data analysis situation where there is a possibilitytittesie exist hidden
subpopulations that differ from each other with respect to resptyiss. s

Previous empirical studies have shown the utility of thistumé modeling
approach in various researches in the fields of study including aditgon
organizational, and clinical psychology. The latent groupidgatified in those
studies could be attributed to social desirability, fakitgicsural differences, and
different response styles. By examining the thresholds plotsafdr estimated latent
class and analyzing the contents of the items for which lateneslapscifically show
differences, there seems to be the potential for new findings agttsim
psychological constructs that can be revealed beyond the presenqaofeestyles.

Testing conditions and MPCM performance. The preliminary examinations
of the estimation issues and label switching solutions, dsawéhe model selection

analysis provided coherent information regarding the structure oétpense-style
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mixture distributions and testing conditions that allowexNPCM to adequately
deal with the response style problems.

As more profound differences in response styles were manifested atevds |
classes, the easier for the MCPM to detect the differences. Thgg;utiral
differences in the thresholds between ORS and ARS class appeareddcebeasily
identified than those between ORS and ERS while the differencesdre®RS and
MRS were the most difficult to be distinguished. As the strattlifferences were
harder to detect, the higher rates of the occurrence of boundary estimatselved
label switching as well as the lower rates of the correct model seldzsed on the
BIC were observed. When the nature of the response-style mixstnieution
imposed a challenge on the parameter estimation, a larger sample sizeadarcyer
number of test items were required for reasonable parameter estimation.

The current simulation study showed that when the test levegh= 10 and
the sample size & = 3000, the MPCM performed fairly well in recovering model
parameters for the most complex 4-response-style mixtures with @opalrtions.
The MPCM performance shown under this nature of mixture distoibaind those
testing conditions are the followinD:the correct model selection rate based on BIC
was 100%ii) classification accuracies were 84%, 94%, 88%, and 9b6%the mean
RMSE of the four thresholds were 0.15, 0.19, 0.25, and e mean correlation
for the four thresholds were 0.85, 0.87, 0.89, and 0.99, vhédan SE of the four
thresholds were 0.06, 0.07, 0.10, and Ov&he biases ot estimates were -0.01, -

0.01. 0.00. 0.00yii) the RMSEs off were 0.41, 0.54, 0.48, and 0.44, a#id) the
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correlations ofd were 0.92, 0.90, 0.82, and 0.88, for the ORS, ERS, MR&ARS
class, respectively.

Based on the findings in the current study, some recommendat®ns
suggested for applied researchers. Regarding the common issues iremeasu
‘how large should the sample size be?’ and ‘how many itemddbe asked?’, 10
items with a 5-category Likert scale and the number of responofe3®0 was found
to warrant reasonably accurate parameter estimation and respondent classificat
when up to four different response styles among ORS, ERS, MRS, were
presented in a data set under equal proportions. If the data beingeahialgludes less
diverse types of response styles, the same level of parameter estiamation
respondent classification could be achieved with less than 3q@@nEnts. If the
relative sizes of different response-style group are unequal, mored@an 3
respondents may be needed to achieve the same level of accuracy.

Comparisons of person trait across latent classes. One of the arguments that
had been raised in the mixture IRT domain was whether persod éstimates
obtained from different classes could be legitimately compared bagsbdion
magnitudes. This argument revolves around the notion taafothtinuous variable
measured within each class is qualitatively different in mixteferhodels. As was
discussed by Rost et al. (1997), the comparisons could ceta&msoblematic if the
profiles of the item locations (i.e., the means of the thresholdg) substantially
different across latent classes. This would indicate that peopitdaredt classes

present different cognitive structures or psychological constructsete cases, since
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guestionnaires could not claim to be measuring the same traftaredi populations,
trait estimates obtained through the use of questionnaires cdué nged to compare
differences among respondents across the latent response-style classes.

When the item difficulties were very much the same across latent classes,
however, what distinguished latent classes was the disperstemafesponses, not
the difficulty of an item (Rost et al., 1997). When this canditeld, the comparison
of person trait across different classes could be justified because thepzagict
values only adjusts for the effects of the class-specific dispersresmonses.

In practice, item location profiles should be checked across lategéslas
before attempting any interpretation of latent class differences. If theédtetion
profiles from each class locate significantly different positioresdifference across
latent classes may better be characterized with respect to certainritemather
than response styles.

Correction of score bias and predictability. The current study showed that the
MPCM provided the corrected estimates that clearly differentiated the effects of
different response styles. Given that the model provided this altexngdurified”
score for each response style, an important issue to address isrwisé@tgehe
“purified” @ improves predictability of relevant criterion variable. This idea was
addressed by Maij-de-Meij et al. (2008). Improved predictabilisygsiestion that
awaits an answer from empirical research in various fields. The cuimanagon
provided results that help in building a foundation uporciviinis practical utility of

the MPCM can be further investigated among applied researchers.
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5.3 Limitations of the current study and implicationsfor futureresearch

The current study included extreme simulation conditions witint@mtion to
explore possible limitations of the MPCM performance. The combimafitest
length ofl = 4, sample size ¢i = 1200, and unequal mixing proportions that allows
only 10% of the respondents to be members of the smaller classebigldy
challenging conditions to achieve good parameter estimation in miexto@f mixture
distribution polytomous IRT modeling. While setting tnese extreme conditions
helped in revealing some limitations in the application efNPCM, it caused several
cell means to be unavailable, limiting the interpretations of theriatANOVA
results regarding the effects of the manipulated factors.

The interpretations of the current results that involved the acguies
responses should be limited to the testing situation wherel-@ovedtructed balanced
scale was used. From a methodological perspective, the current EBimudsults
were meaningful in that the aberrant response behavior could ydssibbntrolled
through the use of a balanced scale and the MPCM. The resultscstiat the ARS
respondents were almost perfectly differentiated from other typespafimésnts and
received a corrected similar to what MRS respondents would receive. However,
whether the corrected contains the same psychological meaning for this group of
respondents is evidently a question that calls for a degree of infguahgrdent
among experts in the content area where the psychological test vesuiltsbe

scrutinized.
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The generated item locations within each class had small variabittg
current study. In the MPCM, between-class variability not anthe order of
thresholds and threshold distances but also in the item logatinang test items may
contribute to the recovery accuracy of the parameters (e.g., R84), This small
between-group variability in item locations might have contetygositively or
negatively to the parameter recovery results of this study.drsthdy, polytomous
item responses obtained with a 5-category Likert scale items weteltithas been
previously investigated in the literature that the parameter recot/érg partial credit
model differed depending on the number of categories on the ratitggthat was
used. The simulation results could possibly be differenffiémdint numbers of
response categories were used. The effects of the variability inotations within
latent classes and the effects of different numbers of response categorees w
further studies.

Future studies can also explore the other mixture distribud®miodel than
the Rasch family models. Researchers have pointed out that the isqtiatidation
assumption of the Rasch models can be easily violated in real @itacasituations.
The extension of other polytomous IRT models to mixtureidigions would have
the potential for allowing researchers to have a more complete vieddgih
structural differences including personality or cognitive constructsydadnd social
desirability tendencies, non-invariant items, as well as respoyies. £Empirical

studies needs to be conducted to evaluate whether trait estimdteswokture IRT
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models corrected for the confounding effects of different response styl@sgave

predictability of criteria variables in various social behavioral research.
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Appendix A

Table A.1.Category probabilities for individual items for ERS class

Item Categoryl Category?2 Category3 Category 4  Category 5
1 0.3734 0.1065 0.0402 0.1065 0.3734
2 0.3829 0.0880 0.0582 0.0880 0.3829
3 0.4120 0.0614 0.0532 0.0614 0.4120
4 0.4173 0.0675 0.0306 0.0675 0.4173
5 0.3956 0.0800 0.0488 0.0800 0.3956
6 0.3958 0.0914 0.0257 0.0914 0.3958
7 0.4363 0.0514 0.0247 0.0514 0.4363
8 0.4037 0.0777 0.0370 0.0777 0.4037
9 0.3727 0.1020 0.0506 0.1020 0.3727
10 0.4069 0.0785 0.0293 0.0785 0.4069

Mean 0.3997 0.0804 0.0410 0.0804 0.3997

Table A.1.Category probabilities for individual items for MRS class

Item Categoryl Category?2 Category3 Category 4  Category 5
1 0.0254 0.0889 0.7713 0.0889 0.0254
2 0.0343 0.1118 0.7079 0.1118 0.0343
3 0.0492 0.0614 0.7788 0.0614 0.0492
4 0.0852 0.0976 0.6345 0.0976 0.0852
5 0.0519 0.0661 0.7640 0.0661 0.0519
6 0.0546 0.0752 0.7405 0.0752 0.0546
7 0.0368 0.1064 0.7136 0.1064 0.0368
8 0.0502 0.1052 0.6892 0.1052 0.0502
9 0.0602 0.1441 0.5913 0.1441 0.0602
10 0.0591 0.1088 0.6642 0.1088 0.0591

Mean 0.0507 0.0966 0.7055 0.0966 0.0507
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Table A.1.Category probabilities for individual items for ARS class

Item Categoryl Category?2 Category3 Category 4  Category 5
1 0.7136 0.1424 0.1270 0.0124 0.0046
2 0.0046 0.0124 0.1270 0.1424 0.7136
3 0.7669 0.1065 0.0758 0.0421 0.0087
4 0.0087 0.0421 0.0758 0.1065 0.7669
5 0.8269 0.1045 0.0313 0.0205 0.0170
6 0.0170 0.0205 0.0313 0.1045 0.8269
7 0.7102 0.1535 0.0906 0.0420 0.0036
8 0.0036 0.0420 0.0906 0.1535 0.7102
9 0.7338 0.2144 0.0356 0.0096 0.0066
10 0.0066 0.0096 0.0356 0.2144 0.7338

Mean 0.7503 0.1443 0.0721 0.0253 0.0081
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