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Response styles presented in rating scale use have been recognized as an 

important source of systematic measurement bias in self-report assessment. People 

with the same amount of a latent trait may in some cases be victims of biased test 

scores due to the construct’s irrelevant effect of response styles. The mixture 

polytomous Rasch model has been proposed as a tool to deal with the response style 

problems. This model can be used to classify respondents with different response 

styles into different latent classes and provides person trait estimates that have been 

corrected for the effect of a response style.  

This study investigated how well the mixture partial credit model (MPCM) 

recovered model parameters under various testing conditions. Item responses that 

characterized extreme response style (ERS), middle-category response style (MRS), 



  

and acquiescent response style (ARS) on a 5-category Likert scale as well as ordinary 

response style (ORS), which does not involve distorted rating scale use, were 

generated. 

The study results suggested that ARS respondents could be almost perfectly 

differentiated from other response-style respondents while the correct differentiation 

between MRS and ORS respondents was most difficult to attain followed by the 

differentiation between ERS and ORS respondents. The classifications were more 

difficult when the distorted response styles were presented in small proportions 

within the sample. Under the simulated conditions where ten-items and a sample size 

of 3000 were used there were reasonable item thresholds and person parameter 

estimates that were obtained. As the structure of mixture of response styles became 

more complex, increased sample size, test length, and balanced mixing proportion 

were needed in order to achieve the same level of recovery accuracy. 

Misclassification impacted the overall accuracy of person trait estimation. BIC was 

found to be the most effective data-model fit statistic in identifying the correct 

number of latent classes under this modeling approach.  

The model-based correction of score bias was explored with up to four 

different response-style latent classes. Problems with the estimation of the model 

including non-convergence, boundary threshold estimates, and label switching were 

discussed. 
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To provide the background of the problems dealt with in the current study, 

Chapter 1 reviews the individual differences in 

of those individual differences, methodologies to address the related psychometric

issues, and the findings in previous empirical studies are detailed. The chapter 

continues to discuss the purpose and significance of the current study. 

1.1 Background of the Problem

1.1.1 Response styles

While dichotomously

assessment, items with ordered polytomous response categories have been routinely 

used in self-report, non-cognitive assessment including various psychological tests and 

attitudinal survey questionnaires. Prototypical examples of ord

format are Likert-type rating scales (Likert,1932), of which an illustration is presented 

in Figure1.1  

Figure 1. A Likert scale with five ordered response categories

                                                
1 The question ‘In most ways, my life is close to my ideal’ is one of the five items of Satisfaction With 
Life Scale (SWLS) by Diener, Emmons, Larse, & Griffin (1985). SWLS intends to measure global 
cognitive judgments of satisfaction with one’s life. The o
categories and does not use the graphical representation of the continuum as presented in Figure 1.
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. 
As seen in the illustrative item in Figure 1, a Likert-scale item attempts to quantify the 

individual differences in a continuous trait variable based on a certain number of 

response categories that are often associated with integer scores. It is generally 

assumed that if a respondent chooses a higher response category, he or she has more 

of the latent trait being measured by the item than a person who selects a lower 

response category. The formal aspects of the rating scale such as the number of 

response categories, category-wording and item-wording can differ in various ways.  

In order to utilize the Likert-scale measures as valid indicators of a latent trait 

of interest and to further compare the trait level among (groups of) respondents, 

certain necessary conditions must first be satisfied. For example, it must be assumed 

that respondents’ choice of a response category is solely based on the substantive 

meaning of the item. In other words, any content-irrelevant factor should not 

systematically influence the respondent’s choice of response categories. Additionally, 

all respondents in a sample interpret the meaning of the provided response categories 

and use them in the same manner when they answer each item.  

These assumptions, however, do not hold if respondents present different 

response styles in responding to a rating scale. A response style (also referred to as a 

response set or response bias) can be defined as an individual’s tendency that causes a 

person to consistently respond to test items based on some formal aspects of the item 

or item connotation rather than the underlying construct the item intends to measure 

(Cronbach, 1946; Messick, 1991; Nunally, 1978; Paulhus, 1991). The prototypical 



 

3 
 

manifestations of the response styles in ordered polytomous response items are 

respondents’ differential uses of response categories.  

Among many others (see e.g., Baumgartner & Steenkamp, 2001 and Paulhus, 

1991 for a review of various response styles), three particular patterns of response 

category use that are well-documented in psychometric literature (e.g., Nunally, 1978: 

Paulhus, 1991) are the primary focus in the current study. These are extreme response 

style (ERS), middle-category response style (MRS), and acquiescent response style 

(ARS). ERS is an individual tendency that leads a person to predominantly use 

extreme response categories (e.g., categories 0 and 4 in Figure 1) and avoid less 

extreme choices (response categories in the middle of the scale). Conversely, MRS is a 

tendency to select the middle category (e.g., category 2 in Figure 1) predominantly 

while avoiding extreme responses. ARS is a tendency to use only one side of the 

response scale, i.e., agreement (‘yea-saying’, e.g., categories 3 or 4 in Figure 1) or 

disagreement (‘nay-saying’, e.g., categories 0 and 1 in Figure 1). 

1.1.2 Why response styles matter?  

The presence of response styles in a data set can cause various psychometric 

problems. These adverse effects may invalidate test score differences, obscure true 

relations among traits of interest, impact test reliability, and confound the results of 

comparative studies at the group-level. 

Response styles can invalidate the assessment of true scores by inflating or 

deflating observed item scores. Cronbach (1946) pointed out that response styles 

always reduce logical validity of a test because they permit people with equal 
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knowledge, identical attitude, or equal amounts of a personality trait to have different 

test scores. Suppose that there are two people whose true levels of ‘satisfaction with 

life’ are located around category 3 on the latent trait continuum in Figure 1. However, 

they are different in terms of their response styles, i.e., one is an ERS respondent and 

the other is a MRS respondent. If their different response styles are operating during 

the item response process, it is highly likely that the two people’s choice of response 

category will not end up with the same. Instead, due to the confounding effects of their 

different response styles, the ERS respondent might select category 4, for example, 

while the MRS respondent might select category 2. Consequently, the ERS respondent 

would be regarded as being more satisfied with his life than the MRS respondent.  

Using the observed test scores contaminated by response styles can also cause 

serious problems in clinical diagnostic settings (see, e.g., Gollwitzer, Eid, & 

Jürgensen, 2005). In clinical symptom assessments, it is common practice for the total 

(sum) scores to be computed by adding up the category response scores and these sum 

scores are compared to appropriate normative values in order to make diagnostic 

decisions. Without considering individual differences in response styles, this approach 

for assessing clinical symptoms will lead to lower sensitivity as well as lower 

specificity of the diagnosis.  

Response styles may also give rise to spurious associations among trait 

domains of interest. Austin, Deary, Gibson, McGregor, and Dent (1998) assessed the 

consistency of response styles over items and over subscales of the NEO-FFI (NEO-

Five Factor Inventory: Costa & McCrae, 1992) by using a measure of response spread 
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on a rating scale. They found non-trivial, highly significant correlations between 

unrelated, independent items. The observed spurious correlations may be attributed to 

the effect of response styles operating across the items because it seems unlikely that 

the items whose contents are not related with each other yielded such high levels of 

correlation. Austin et al. (1998) also pointed out that such spurious correlations could 

cause erroneous extraction and interpretation of latent factors in multivariate data 

analysis that were based on correlation matrices. Similarly, Austin et al. (2006) and 

Baumgartner and Steenkamp (2001) provided empirical support for the contribution of 

response styles inflating scale-level correlations.  

The impact of response styles on test reliability can be found in a simulation 

study by Liu, Wu, and Zumbo (2009). They generated outlying data, which 

represented ERS responses under a mixture modeling framework. Their results of the 

bias and efficiency of Cronbach’s coefficient alpha showed that outliers severely 

inflated the alpha coefficient as well as the standard error of the estimates of the 

coefficient. 

Another methodological issue is that response styles tend to be manifested 

differentially across groups. That is, certain response styles tend to be more prevalent 

in a particular group than in another. This between-group variability in response styles 

is likely to contribute to the violation of structural invariance and, in turn, any 

observed group differences may simply reflect measurement artifacts due to the 

differences in response styles. Regarding the between-group variability, Cheung and 

Rensvold (2000) used multi-group confirmatory factor analysis and demonstrated that 
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certain types of measurement non-invariance were attributed to the manifestations of 

ERS and ARS. Bolt and Johnson (2009) applied a multidimensional item response 

theory (IRT) model and found that ERS was an underlying source of item differential 

functioning (DIF). 

In various areas of study such as marketing, organizational and industrial 

psychology, education, and medicine there has been accumulating empirical evidence 

of between-group variability across nations, ethnic groups, and cultural regions (e.g., 

Baumgartner & Steenkamp, 2001; Buckley, 2009; Cheung & Rensvold, 2000; 

Harzing, 2006; Yang, Harkness, Chin, & Villar, 2010). For example it has been shown 

that ERS and ARS are more prevalent in among Hispanics/Latinos and African-

Americans than among Caucasians in the U.S. (Bachman & O’Malley, 1984; Clarke 

III, 2000; Hui & Triandis. 1989; Marin, Gamba & Marin, 1992; Ross & Mirowsky, 

1984). Japanese and Chinese respondents in the U.S. tended to use extreme responses 

less often than Americans in responding to positive feeling (Lee, Jones, Mineyama, & 

Shang, 2002). Japanese and Korean students tended to use middle categories more 

often than their American counterparts (Chen, Lee, & Stevenson, 1995; Lee & Green, 

1991). In Europe, ERS has been shown to be more prevalent in Mediterranean 

countries (Italy, Spain, and Greece) than in the United Kingdom, Germany, and 

France (Van Herk, Poortinga, & Verhallen, 2004).  

1.1.3 Response styles as meaningful constructs  

Rather than perceiving response styles as a source of systematic measurement 

bias, one strand of research in psychology views response styles as meaningful 
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reflectors of psychological constructs such as personality traits and cognitive 

processes, or some cultural values. In those research studies, the relation between 

some criteria variables and specific response style were investigated. For examples, 

ERS appeared to be positively related to trait anxiety (Berg & Collier, 1953; Lewis & 

Taylor, 1955; Norman 1969), extraversion (Austin, Deary, & Egan, 2006), and 

conscientiousness (Austin et al., 2006; Harzing, 2006).  

In cognitive process research area, Temple and Geisinger (1990) and Kulas 

and  Stachowski (2008) found that middle category endorsements (e.g., ‘neither 

disagree nor agree’, ‘no answer’, or ‘?’) exhibited longer response latencies than other 

category endorsements and were more frequently elicited when the given items were 

unclear, personally intrusive, or asked introspective questions. The results of these 

experimental studies have shown the evidence of increased cognitive load in 

processing information contained in the middle category. The implication is that 

response styles, in some cases, could be associated with the respondent’s attempts to 

reduce the cognitive demand required to process the meaning of the item content and 

the labels of the response categories.  

In cross-cultural comparative studies, the types of response style and cultural 

values are associated. For example, using the measures of Hofstede’s cultural 

dimensions,2 several studies argued that ARS seemed to be positively correlated with 

collectivism and femininity but negatively related to power distance and uncertainty 

                                                 
2 The Hofstede’s cultural dimensions theory (Hofstede, 1980) postulates four dimensions along which 
cultural values can be analyzed. The four dimensions are individualism-collectivism; uncertainty 
avoidance; power distance (strength of social hierarchy) and masculinity-femininity (task orientation 
versus person-orientation). 
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avoidance. ERS appeared to be positively correlated with individualism, power 

distance, uncertainty avoidance, and masculinity (see e.g., Chen, Lee, & Stevenson, 

1995; de Jong, Steenkamp, Fox, & Baumgartner, 2008; Harzing, 2006; Johnson, 

Kulesa, Cho, & Shavitt, 2005). 

1.1.4 Methodology to deal with response styles  

No matter how response styles are considered, i.e., treated as a statistical 

nuisance that needs to be controlled for or as a meaningful construct of interest, the 

initial treatment of the data analysis should be the distinction of the cases that are 

influenced by certain response styles. Following the distinction, the identified cases 

can be either controlled for (by eliminating the cases from the data or applying a 

correction method) or related with other variables to reveal the nature of the response 

styles and investigate their structural relations among latent variables. 

Traditional strategies dealing with response styles use simple descriptive 

statistics calculated for heterogeneous items and balanced scales, which are designed 

as “built-in control” in an instrument. Relatively recently, different latent variable 

models have been proposed to aid in solving this response style problems.  

Heterogeneous items. Heterogeneous items refer to the items whose contents 

are psychologically diffused and theoretically independent of each other. In practice, a 

number of items that do not refer to substantively meaningful psychological construct 

can be used as heterogeneous items in an assessment. Alternatively, items varying 

widely in content can be selected from diverse set of scales that have little in common 

(see, e.g., Couch & Keniston, 1960). If a respondent consistently favors particular 
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response categories (e.g., extreme categories) across such heterogeneous items, this 

behavior can be taken as evidence of a response style (e.g., ERS). Response style 

measures for ERS, MRS, or ARS can then be derived by calculating the number or the 

proportion of the heterogeneous items on which a respondent selects the most extreme 

categories, middle category, or categories in just the upper or the lower extreme, 

respectively. Instead of frequency or proportion, response range as measured by the 

standard deviation of item scores within individuals has also been used (Austin et al., 

1997; Greenleaf, 1992; Hui & Triandis, 1985).  

The major weakness of using heterogeneous items is that if the substantive 

independence among heterogeneous items is not warranted for a given sample of 

respondents, which is not unusual in practice, the resulting response style measures are 

confounded with the respondent’s trait level. In such cases, clustering respondents into 

different response-style groups may not be valid and inferences based on these clusters 

can hardly be justified. There is also a practical limitation. In the literature, it has been 

pointed out that the number of heterogeneous items should be large in order for a 

response style to have sufficient opportunity to manifest itself by permeating the 

responding pattern in a consistent way (Couch & Keniston, 1960; Greenleaf, 1992). If 

a test is lengthened due to the inclusion of heterogeneous items, it may raise some 

psychometric problems of a test (e.g., an increase in measurement error due to the 

respondent’s fatigue and lowered face validity of the test) as well as the issues of time 

and cost needed for the administration of the inventory. 
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Balanced scales. A balanced scale consists of pairs of logically reversed items, 

i.e., one item of the pair states a construct positively while the other of the pair states 

the equivalent construct negatively (Couch & Keniston, 1960; Paulhus, 1991). In such 

a way, the scale becomes semantically balanced. If a respondent has a tendency to 

acquiesce and respond to a pair of such logically reversed item by ‘yea-saying’ or 

‘nay-saying’ to both,  his or her responses are conceptually conflicting. If this 

conflicting endorsement is repeated, it can provide strong evidence for ARS. Using a 

balanced scale in an assessment per se does not preclude the occurrence of ARS. A 

well-constructed balanced scale, however, can alleviate score distortion to some 

degree. By “reverse coding” item responses (mostly, responses to negatively worded 

items) before summing up all item scores, high or low item scores obtained by simply 

‘yea-saying’ or ‘nay-saying’ will cancel each other out and ARS respondents will 

receive a moderate test score.  

Mirowsky and Ross (1991) showed that the ARS inflated the variance and 

reliability of the trait estimates when unbalanced scales were used, leading to either an 

overestimation or an underestimation of the relation between the construct measured 

by the unbalanced scale and other constructs. Watson (1992) showed that the 

covariance due to ARS is extracted using structural equation modeling when an 

unbalanced scale is used.  

Model-based approaches. Besides utilizing heterogeneous items and balanced 

scales in the test development stage, an increasing number of studies have attempted a 
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more rigorous solution to this problem by applying latent variable models into which 

response style effects are directly incorporated.  

Within the structural equation modeling (SEM) framework, response styles are 

examined as group characteristics and group differences in the manifestation of 

response styles are statistically tested. Cheung and Rensvold (2000) applied multiple-

group confirmatory factor analysis to test for the presence of ERS and ARS and 

determine whether cultural groups can be meaningfully compared on the basis of 

factor means. Group differences in ERS and ARS are operationalized as non-

invariance in the factor loadings and intercepts. This study showed the utility of using 

the SEM approach in this matter, but also highlighted its limitations. The SEM 

approach was not appropriate to use when no items in the scale were invariant across 

groups with respect to the effects of response styles. Also, the SEM approach does not 

provide individual level information.  

Billiet and McClendon (2000) estimated a confirmatory three-factor model that 

included ARS as a common “style” factor (i.e., method factor) in addition to two 

“content” factors. By using two sets of balanced scales measuring two independent 

constructs, they demonstrated that the effects of style factor can be separated from the 

content factors. Moors (2003, 2004, 2008) adapted the same rationale as Billiet and 

McClendon (2000) but within latent class factor analysis (LCFA). Moors emphasized 

the flexibility of this approach over multi-group CFA in that LCFA allowed response 

styles to be manifested within an exploratory setting in which no response style was 

hypothesized in a given data set. In Moors empirical studies, an ERS factor was 
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identified. Billiet and McClendon and Moors’s approach commonly impose a 

restriction that the factor loadings are equal for all items. However, if the items are 

actually influenced differentially by the response style, assuming a constant factor 

loading on the style factor would lead to a model misspecification.  

Within an item response theory (IRT) framework, Bolt and Johnson (2009) 

developed a multidimensional model that extends Bock’s nominal response model 

(Bock, 1972) to investigate ERS. In this model, response styles were characterized as 

continuous trait dimensions that influenced the attractiveness of particular score 

categories. The item response probabilities were defined as a function of two trait 

dimensions, i.e., an intended substantive trait and ERS tendency. Based on the 

estimates for these two dimensions, observed test scores were rectified for the impact 

of ERS. Although this approach has been shown to be useful to help understand how 

both substantive and ERS traits are combined to affect item response behaviors, 

whether it can be successfully applied for other types of response styles (e.g., MRS 

and ARS) and whether the condition in which more than two response styles are 

presented in a sample can be handled have not yet been explored.  

De Jong, Steenkamp, Fox, and Baumgartner (2008) proposed a model that 

extended a standard IRT model by integrating testlet models (e.g., Bradlow, Wainer, 

& Wang, 1999) and a structural multilevel model. The inclusion of the testlet 

component in the model permits a control for substantive correlations that may exist 

among heterogeneous items. This model allows the response styles to have differential 

impact across items. In addition, measurement invariant anchor items are not required 
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for group comparisons. This approach successfully identifies ERS, but is arguably less 

useful for correcting the effects of ERS on substantive trait estimates (Bolt & Newton, 

2010).  

Lastly, mixture polytomous IRT models, which generalize the standard 

polytomous IRT models to mixture distribution models, have been used by an 

increasing number of researchers in various disciplines compared to the other model-

based approaches previously introduced. Similar to LCFA, mixture polytomous IRT 

models are useful for the study of response styles in an exploratory manner, which is 

not benefited from the SEM approach as well as the extended IRT models by Bolt and 

Johnson (2009) and by De Jong et al. (2008). Unlike the Bolt and Jonhson (2009) 

approach where response styles were treated as continuous variables (quantitative 

differences), mixture polytomous IRT models treat response styles as discrete 

variables (qualitative differences) and assign each respondent to a latent class 

membership that represent his or her response style. This would allow for a more 

flexible and effective modeling technique that can be applicable when multiple 

response styles are present within a sample of respondents. Not only the classification 

of respondents but also the individual-level estimate of latent trait is obtained with 

mixture polytomous IRT models, which is not available information in the studies in 

the SEM framework. More details of the mixture polytomous IRT models are 

followed in the subsequent section as well as in Chapter 2.  
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1.2 Mixture IRT Models in Empirical Studies 

As mentioned earlier, the common manifestations of response styles, 

regardless of the cause of the emergence of response styles, is respondents’ 

disproportionate usages of response categories. Different types of response styles can 

be characterized by different category response probabilities. For example, a sample of 

ERS respondents shows a high probability of endorsing the end-categories. Based on 

the analysis of the unique patterns of category response probabilities, mixture 

polytomous IRT models provide the way that can distinguish latent groupings of 

respondents with different response styles. 

In general, mixture IRT models assume that the respondent population can be 

heterogeneous not only quantitatively but also qualitatively. If respondents are 

different with respect to how they use the response categories, this heterogeneity can 

possibly be captured using mixture IRT models and respondents with different 

response styles are classified into different latent classes. A latent trait estimate is 

assigned to each respondent within the identified classes and, hence, the response style 

effects can be controlled when latent trait levels are compared.  

Mixture polytomous Rasch models are special cases of mixture IRT models 

where the category response probabilities are predicted by one of the logistic functions 

of the polytomous Rasch family such as the partial credit model (Masters, 1984), 

rating scale model (Andrich, 1978), mixed dispersion model (Andrich, 1982), and 

successive interval model (Rost, 1988).  
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The mixture partial credit model (MCPM) was proposed by Rost as an 

extension of latent class analysis that takes account of the different usage of rating 

scales within latent classes (Rost, 1991). When he proposed the MPCM, he suggested 

this model as a method for classifying people according to their item response profile, 

independent of the location of the profile on latent continuum. Because the MPCM is 

the Rasch model in which no restriction on the item parameters is imposed, it is often 

called the mixture (or mixed) polytomous Rasch model (Rost, 1991; von Davier & 

Rost, 1995). In this dissertation, the mixture partial credit model (MPCM) and the 

mixture polytomous Rasch model are used interchangeably.   

 Mixture polytomous IRT models, especially the MPCM, have been 

increasingly used in applied studies in personality, organizational, and clinical 

psychology for the analysis of Likert-scale self-report data. (e.g., Austin, Deary, & 

Egan, 2006; Egberink, Meijer, & Veldkamp, 2010; Eid & Rauber, 2000; Gollwitzer et 

al., 2005; Maij-de Meij, Kelderman, & van der Flier, 2005, 2008; Meiser & 

Machunski, 2008; Rost, 1991; Rost, Carstensen, & von Davier, 1997; Smith, Ying, & 

Brown, 2012; Wu & Huang, 2010; Zickar, Gibby, & Robie, 2004). All these referred 

studies used the MPCM except Maij-de Meij et al. (2005, 2008), which used the 

mixture nominal response model, Egberink et al. (2010), which used the mixture 

graded response model, and Meiser and Machunski (2008), which used the mixture 

rating scale model.  
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 1.3 The Current Study  

As reviewed in this chapter, the MPCM has great potential to provide solutions 

to the long-standing psychometric problems caused by response styles. Despite the 

growing interest and need in practical settings, little evidence has been provided about 

the accuracy of parameter estimation of the MPCM. When Rost (1991) proposed the 

MPCM, a one-replication simulation study was conducted in which the quality of 

MLE was evidenced. However, the simulation conditions were very limited, which 

made the results difficult to be generalized. In the MPCM, the accuracy of parameter 

estimates can vary depending on several factors such as the estimation algorithm, the 

number of items, the number of respondents, and the number and size of latent classes. 

The current study, therefore, proposes to conduct a larger-scale simulation in 

which the quality of MPCM parameter estimation is evaluated especially under the 

population where different response styles coexist. Specifically, the recovery of latent 

class membership, item thresholds, and person trait levels will be examined. The 

effects of the type of mixture, mixing proportions, sample size, and test length on the 

parameter recovery are assessed. In addition to the parameter recovery study, the 

simulation study will also examine how the MPCM makes an adjustment of the latent 

trait estimates to compensate for the effects of different response styles on test score. 

The effectiveness of information criteria for the MPCM model selection is also 

assessed.  

Given that there has been thus far no systematic simulation study that 

investigates the parameter recovery of the MPCM, the current study is expected to 
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provide some evidence regarding the soundness of the application of this model in 

empirical data analysis. Especially, the various mixture conditions of response styles 

simulated in this study will allow for the evaluation of the utility of the MPCM in 

dealing with particular response styles problems in real data analytic research.  
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Chapter 2: Literature Review 

 

Chapter 2 starts with an introduction of the conceptual development of the 

Rasch model (RM) and partial credit model (PCM) as well as the unique features of 

the Rasch family models. The chapter continues to introduce the finite mixture 

distribution before presenting the model formulation of the MPCM. Estimations of the 

model parameters of the MPCM and the application of the information criteria for 

model selection are discussed. Finally, the designs and results of related empirical and 

simulation studies are summarized.  

2.1 The Rasch Model for binary item responses 

2.1.1 Presentation of the model  

Item response theory (IRT) was built around the central idea that the 

probability of a certain answer when a person is confronted with an item ideally can be 

described as a simple function of the person’s position on the latent trait scale and one 

or more parameters characterizing the particular item (Molenaar, 1995). The Rasch 

model for dichotomously scored item responses (RM: Rasch, 1960) is the simplest 

IRT model in the sense that it only needs the difficulty of an item, which indicates the 

location of the latent trait scale, in order to characterize an item. This simplicity allows 

the RM to directly compare item and person parameters to define the item response 

probability. The following introduces the essential idea of the Rasch measurement 

model applied to the comparison of the difficulty of an item i ( iδ ) and person n’s trait 

level ( nθ ) on the same latent continuum. 
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Suppose that specificiδ  and nθ  are located at positions Dξ  and Tξ  on a latent 

variable continuum, respectively. In addition,TP is the probability of observing an 

event T indicating that Tξ exceeds Dξ on the continuum. Similarly, DP is the probability 

of observing an event D indicating that Dξ exceedsTξ . Considering the relative 

locations of nθ  and iδ  on the latent continuum, TP  would imply the probability of a 

success on the item whereas DP would imply the probability of a failure on the item. 

For dichotomous responses, TP  may be replaced as 1niP representing the probability of 

person n scoring 1 on item i. Also, DP  may be replaced as 0niP representing the 

probability of person n scoring 0 on item i. The RM then relates the distance between 

nθ  and iδ  on the continuum to the events T and D as the natural logarithm of the odds 

ratio presented in Equation 1.  
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
=−=−

0

1lnln
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D

T
inDT P

P

P

P
δθξξ . (1) 

As seen in Equation 1, the log odds of observing a success rather than a failure on item 

i is determined based on the distance between nθ  and iδ . From Equation 1, one can 

easily verify that when in δθ = , 1niP = 0niP = 0.5. If in δθ > , it implies that the 

respondent’s ability surpasses the difficulty level of the item, indicating a greater 

chance of success because the odds (1niP / 0niP ) must be greater than 1. Conversely, if 

in δθ < , it implies that the difficulty level of the item surpasses the respondent’s 

ability, indicating a greater chance of failure because the odds ( 1niP / 0niP ) must be 
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smaller than 1. Using the inverse logistic, Equation 1 transforms with respect to 1niP  

as presented in Equation 2. 

)exp(1

)exp(
1

in

in
niP

δθ
δθ
−+

−
= , (2) 

where 1niP  is the probability that person n correctly answers item i, or the probability 

of scoring 1 on item i, nθ is the trait level for person n, and iδ  is the difficulty of item 

i. This is the RM equation, which is the basic building block shared by all models 

within the Rasch family.  

2.1.2 Item response function  

Equation 2 provides a trace line that indicates the probability of a correct item 

response at all possible levels of θ  for a given difficulty iδ . This trace line is referred 

to as an item response function (IRF) or item characteristic curve (ICC). Figure 2 

illustrates three ICCs that the RM produces for items with iδ  = -0.5, 0, and 0.5, 

respectively. As can be seen in the plot, the RM ICCs differ only with respect to the 

locations on the continuum indicating different levels of item difficulty. The slopes of 

the ICCs are parallel, which indicates that discriminations of the items are the same for 

the three items. As mentioned in the previous section, the direction of the response 

probability changes at the point that corresponds to the probability value of 0.5, which 

is the point of inflexion of the ICC.  
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Figure 2. CCs corresponding to Rasch model items with different item difficulty 

 

2.2 Partial Credit Model  

2.2.1 Presentation of model.  

Masters (1984) proposed the partial credit model (PCM) by extending the RM 

to polytomously-scored item responses. The fundamental idea of the PCM is that the 

multiple response categories are a series of pairs of adjacent categories and the RM 

can be applied for modeling each pair. The PCM is appropriate for the items that are 

subject to partial credit scoring as well as those that are obtained with a Likert-type 

scale.  
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Masters (1984) introduced the concept of 

depicted in Figure 3, a step in an item represents the transition from one category to 

the next. Thus, there are k

  

Figure 3. Five response categories and four corresponding steps

 

On this Likert scale, passing the 

in response to the item. If a person chose ‘Agree’ (response category 3), for example, 

he or she is regarded to have selected ‘Disagree’ over ‘Strongly disagree’ (first

passed), ‘Neither disagree nor agree’ over ‘Disagree’ (second step passed), and 

‘Agree’ over ‘Neither disagree nor agree’ (third step passed), but to have failed to 

make a transition from ‘Agree’ to ‘Strongly Agree’. In this case, the person will ear

partial credit score of 3, i.e., the number of the steps that he or she has passed. 

For dichotomously

and, hence, only one step needs to be passed to reach the highest score

revisit Equation 2, which now can be considered as a special case of the PCM where 
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Masters (1984) introduced the concept of step as he proposed the PCM. As 

, a step in an item represents the transition from one category to 

k steps in an item with k + 1 response categories.

Five response categories and four corresponding steps

On this Likert scale, passing the kth step means selecting response category 

in response to the item. If a person chose ‘Agree’ (response category 3), for example, 

he or she is regarded to have selected ‘Disagree’ over ‘Strongly disagree’ (first

passed), ‘Neither disagree nor agree’ over ‘Disagree’ (second step passed), and 

‘Agree’ over ‘Neither disagree nor agree’ (third step passed), but to have failed to 

make a transition from ‘Agree’ to ‘Strongly Agree’. In this case, the person will ear

partial credit score of 3, i.e., the number of the steps that he or she has passed. 

For dichotomously-scored items, there is only one pair of adjacent categories 

and, hence, only one step needs to be passed to reach the highest score or 1

sit Equation 2, which now can be considered as a special case of the PCM where 

as he proposed the PCM. As 

, a step in an item represents the transition from one category to 

+ 1 response categories. 

 

Five response categories and four corresponding steps 

th step means selecting response category k over k-1 

in response to the item. If a person chose ‘Agree’ (response category 3), for example, 

he or she is regarded to have selected ‘Disagree’ over ‘Strongly disagree’ (first step 

passed), ‘Neither disagree nor agree’ over ‘Disagree’ (second step passed), and 

‘Agree’ over ‘Neither disagree nor agree’ (third step passed), but to have failed to 

make a transition from ‘Agree’ to ‘Strongly Agree’. In this case, the person will earn a 

partial credit score of 3, i.e., the number of the steps that he or she has passed.  

scored items, there is only one pair of adjacent categories 

or 1. Let us 

sit Equation 2, which now can be considered as a special case of the PCM where 
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the test items are one-step items. To make this point explicit in the model presentation, 

Equation 2 may be rewritten using modified notations following Masters (1984):  
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where ( 0niφ + 1niφ ) is the probability of person n scoring 0 or 1 on item i and 1niP  is the 

probability of person n passing the first step to score 1 rather than 0 on item i 

conditional on that only the two successive categories are considered. 1iδ  is the first 

(and the only in this case) step difficulty. The details of the step difficulty will be 

shortly introduced in the subsequent section. For the second pair of categories, the RM 

is again applied:  
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where 2niP  is the probability of person n passing the second step to score 2 rather than 

1 on item i conditional on that only the two successive categories are considered. The 

general form of the step difficulty probability that person n passes the kth step to score 

k rather than k-1 on item i is then defined as:  
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, k = 1, 2, …, ih . (3) 

Here, note that ih  is used to indicate potentially varying number of steps in different 

items. In the PCM, it is assumed that person n must select one of the given k+1 

categories. Therefore, the following restriction needs to be applied:  

1,...,10 =++ niknini φφφ .  
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Finally, combining Equation 3 and the restriction, the PCM can be written as the 

unconditional probability that person n scores x on item i over all other possible 

scores. 
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To show how Equation 4 determines a category response probability, an 

explicit expansion of Equation 4 is demonstrated below. The illustration is to calculate 

the category response probability for the third category ( 3niφ ) when five response 

categories are given.  
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2.2.2 Threshold parameters in the PCM   

Masters (1984) used the term ‘step difficulty’ to refer to ikδ . The step difficulty 

is conceptually the same with the item difficulty in the RM. It indicates the location of 

a particular step on the latent trait continuum and the location of each threshold can be 

compared to the location of person. The probability of passing a step to select a 

particular response category is determined based on the relative locations of these two 

locations (i.e., step and person) on the latent continuum. In the IRT literature, several 

alternative terms have been used such as category intersection (see, e.g., Embretson & 

Reise, 2000), category transition location (de Ayala, 2009), and threshold (Rost, 

1991; von Davier & Rost, 1995). Hereafter the step difficulty ikδ is referred to as the 

threshold. 

The mean of the thresholds within an item is often used to indicate the 

global/general location of the given item.3 In the current study, this is referred to as the 

item location.  The item location iβ  is defined as follows: 

i

h

k
iki h/

1
∑
=

= δβ ,    k = 1, 2, …, ih ,  

where ikδ  is the kth threshold for item i and ih is the number of thresholds of item i. 

                                                 
3 The PCM can be reformulated so that the threshold is decomposed into item location (

i
β ) and the 

difference between threshold and item location (ikτ ). Equation 2 can be rewritten as follow: 
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Among a set of k steps within a PCM item, some steps may be easier to pass 

than others. If a particular step is easier to pass than others, the threshold value 

associated with that step will be lower than those associated with more difficult steps. 

One of the important features of the PCM is that the model does not assume that there 

is an underlying sequential step process to achieve a partial score. Although the 

response category scores (e.g., 0, 1, 2, 3, and 4) should be ordered to reflect increasing 

θ level, the estimated thresholds are not restricted to follow a specified order. When 

the thresholds are disordered, for example, 1δ = 0.45, 2δ = 0.74, 3δ = -0.74, and 4δ = -

0.45, instead of being ordered as in the following example, 1δ = -0.74, 2δ = -0.45, 3δ = 

0.45, and 4δ = 0.74, it is often called a reversal of the thresholds.  

2.2.3 Category characteristic curves and the presence of response styles 

Understanding how the order of thresholds and distances between thresholds 

are related to the category response probabilities in the PCM is fundamental to 

simulate item response patterns contaminated by different types of response styles in 

the current study. Continuing previous sections, this section further explains the 

relations between thresholds and category response probabilities by introducing 

graphical representations of the relations.   

Similar to the ICCs in Figure 2, the category response probability of a 

polytomous item ( nixφ  in Equation 4) can be depicted as a trace line called a category 
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characteristic curve (CCC).4 A CCC relates the probability of choosing a particular 

response category given a specific θ  value. While only one ICC is needed for a 

dichotomously-scored item, as many CCCs as the number of response categories are 

required to present probabilities for each category response for a polytomously-scored 

item. Note that each category response probability can be calculated by following 

Equation 5. Figures 4 to 8 present different patterns of CCCs that have hypothetical 

threshold values estimated for the groups of different response-style respondents. In 

these CCC plots, four trace lines representing threshold probabilities ( nikP  in Equation 

3) are overlaid. The black lines present the threshold probabilities while the colored 

lines present CCCs. In the plots, it is commonly seen that the thresholds correspond to 

the points of inflexion of threshold probabilities and those points are the intersections 

of two adjacent CCCs. This indicates that when the item difficulty level is at kth 

threshold, the probability of choosing k and that of k-1 are the same at 0.5. As the item 

difficulty increases from k, the probability of choosing k becomes higher while the 

probability of choosing k-1 becomes higher as the difficulty decrease from k in this 

group of respondents.  

Ordered thresholds and the implication for response styles. In the following 

Figure 4, the CCCs and threshold probabilities are dictated by a set of four thresholds 

1iδ = -1.7, 2iδ = -0.6, 3iδ = 0.6, and 4iδ =1.7.  Apparently, the four thresholds are in a 

strict order from low to high values on the θ continuum and the distances between 

thresholds are fairly evenly spaced. The latent trait space is divided into five segments 
                                                 
4 CCC is sometimes called as category response curve, category response function, option response 
function, or operating characteristic curve.  
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within each of which one of the five categories has the greatest probability to be 

selected than the others. For example, respondents with the lowest level ofθ  would be 

most likely to choose the response category 0 (see the CCC in orange color) while 

respondents within the next higher θ  range, between 1δ  and 2δ , would choose 

category 1 with the highest probability than any other categories (see the CCC in 

brown color).  

Figure 4 shows that every category is used properly in accordance with the 

respondent’s θ  level. In this group of respondents, no response category is avoided 

and the item categories seem to function well as they are designed to differentiate 

individual’s trait level. Related to the issue of response styles, this pattern of CCCs 

and threshold probabilities is likely to be observed in a measurement situation where 

respondents would not present a particular response style such as ERS, MRS, or ARS 

but respond to the item solely conditional on their θ  level. This “normal” responding 

pattern is referred to as ordinary response style (ORS) in the current study. 
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Figure 4. CCC and threshold probabilities for a PCM item with thresholds (-1.7, -0.6, 

0.6, and 1.7) 

Figure 5 also shows a set of ordered thresholds (1δ = -1.85, 2δ = -1.24, 3δ = 

1.34, and 4δ =1.95) but compared to Figure 4, the distances between thresholds are 

uneven. The distance between the second and third threshold is longer than the 

distances between other thresholds, which links to the relatively high probability for 

category 2 to be selected within a wide range of values on the θ continuum.  In this 

plot, Category 1 and 3 are still the most favorable category within the ranges from 1δ  

to 2δ  and from 3δ  to 4δ , respectively. The pattern of CCCs in Figure 5 may be 

observed in a sample of MRS respondents. 
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If the distance between 2δ  and 3δ  becomes longer, in other words, if the 

number of people in the sample who select the middle category increases, then the 

CCC for the middle category will peak more distinctively and the order of 1δ  and 2δ  

as well as that of 3δ  and 4δ  can be reversed. An illustrative plot is shown in Figure 6 

in which a larger proportion of respondents respond to the middle category and 

accordingly the reversals occur.  

 

Figure 5. CCCs and threshold probabilities for a PCM item with thresholds (-1.85, -

1.24, 1.34, and 1.95) 
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Figure 6. CCCs and threshold probabilities for a PCM item with thresholds (-2.01, -

2.45, 2.45, and 2.01) 

Reversed thresholds and the implication for response styles. The following 

Figure 7 shows a dramatically different array of CCCs and threshold probabilities 

from the previous figures. In this case, a reversal occurs ( 1δ = 0.45, 2δ = 0.74, 3δ = -

0.74, and 4δ = -0.45) and the latent trait space is predominantly taken by the first and 

the last CCCs. Category 1, 2, and 3 are never be the most likely category to be 

selected at any θ  level. If a respondent in this sample has a higher level of θ  than 

zero (i.e., the point where the first and the fifth CRCs intersect), category 4 has the 

highest probability to be chosen. Conversely, if a respondent has a lower level of θ  

than zero, category 0 has the highest probability of being selected. Category 1, 2, and 
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3 will rarely be selected. If estimated CCCs show this pattern of distortion, this may be 

evidence that item responses from this sample of respondents are contaminated by 

ERS. 

 

Figure 7. CCCs and threshold probabilities for a PCM item with thresholds (0.45, 

0.74, -0.74, and -0.45) 
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of the respondents pass the highest threshold. Irrespective of the difficulty of the 

content of the item, however, if a group of respondents manifests acquiescent response 

style (ARS) in response to the item, this pattern of CCCs can also occur.  

The CCCs plots illustrated above show that threshold distances contain 

important information about response category use. As a rule, if the threshold 

parameters are ordered within an item, every response category is the most likely 

option at least at one θ  level. In this case, each response category is linked to an area 

on the latent continuum where it has a larger response probability than the other 

categories. In contrast, disordered thresholds indicate that certain response categories 

are avoided or the relation between trait and category choice is improperly specified. 

In this case, there is no area in which the CCCs of one or more categories are larger 

than the CCC of the other items.  
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Figure 8. CCCs and threshold probabilities for a PCM item with thresholds (-1.51, -

1.63, -2.42, and -0.93) 
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(i.e., the row sum of the data matrix, ∑
=

=
I

i
nin x

1

υ ) is a sufficient statistic for the 

estimation of person trait parameters (nθ ) and the item score (i.e., the column sum,

∑
=

=
N

n
nii x

1

ε ) is a sufficient statistic for the estimation of item difficulty parameters  

( iδ ).   

Once the sufficiency of total scores is established, the unknown parameterθ  

can be eliminated by conditioning on the person’s total scoreυ  during the course of 

item parameter estimation. All different response vectors (patterns) that yield the same 

total score υ have the same trait estimate. Therefore, increasing sample size does not 

increase the number of person parameters to be estimated and item characteristics do 

not have an impact on trait estimation. Consequently, the consistency of item 

parameter estimates can be achieved.  

Also, once the sufficiency of item scores is established, by conditioning on the 

observed vector of item scoreε , the item parameters are eliminated. This means that 

under the PCM, a simple count of respondents passing each threshold of an item 

contains all information about the threshold difficulty.   

2.4 Mixture Distribution Models 

The model of interest in the current study, the mixture partial credit model, 

(MPCM: Rost, 1991; von Davier & Rost, 1995) can be viewed as a generalization of 

the PCM to a finite mixture distribution model. In this section, mixture distribution is 

introduced followed by the latent class model (LCM), which is the simplest discrete 
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mixture distribution model and closely related to the MPCM. Lastly, the general idea 

of integrating the IRT and LC models is discussed. 

2.4.1 Continuous and discrete mixture distribution  

A mixture distribution refers to a composite of several subpopulation 

distributions (see e.g., McLachlan & Peel, 2000). The basic assumption of the model 

based on a mixture distribution is that the distribution of an observed random variable 

is not adequately described by a single probability function, but by a number of 

conditional probability functions.  

In a research setting where the observed sample can be seen as being drawn 

from two or more subpopulations with distinctive features, a mixture distribution 

model can possibly model this heterogeneity by combining conditional probability 

functions across subpopulations. These subpopulations are alternatively called mixture 

components or latent classes. A mixture distribution can be either continuous or 

discrete depending on the nature of the mixing variable on which the probability is 

conditioned. In a general form, the continuous mixture distribution can be presented as 

follow:  

θθ dff ∫
∞

∞−
= )|()( xx ,  

where )(xf is the unconditional probability density of an I-dimensional random vector 

},...,{ 1 Ixx=x  and is obtained by integrating over the component densities )|( θxf  

conditional on a continuous mixing variable θ . The previously reviewed RM and 

PCM can be viewed as continuous mixture models where individual latent trait (θ ) is 
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a real-valued mixing variable and the component densities )|( θxf are defined as the 

logistic function.   

If the mixing variable is discrete, only a finite number of component 

distributions are produced (i.e., as many as the number of latent classes) and the 

unconditional probability becomes a weighted sum. The general form is specified as:    

)|()(
1

cff
C

c
c∑

=

= xx π , (6) 

 where c is a discrete mixing variable whose arbitrary quantity },...,1{ Cc=  classifies 

each respondent’s latent class membership, )|( cf x is the component distribution 

conditional on latent class membership c, and cπ are the relative sizes of latent classes 

called mixing proportions, which are constrained to be 10 ≤≤ cπ and 1
1

=∑
=

C

c
cπ . In 

most cases, the component distributions take on the common parametric form but have 

their own sets of parameters.  

When data is analyzed using a discrete mixture distribution, the nature of a 

mixing variable does not need to be specified a priori. It is a hidden structure, so that 

the existence of valid latent classes is explored during the estimation process and each 

respondent is assigned to one of the identified latent classes according to similarity 

among respondents. This flexible, exploratory capability of discrete mixture 

distribution models allows for a way to decompose unobserved heterogeneity that 

would not be detected and modeled within non-mixture models.  
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2.4.2 Latent class model  

The latent class model (LCM: Lazarsfeld & Henry, 1968) is the simplest finite 

mixture distribution model for item responses. The main purpose of using a LCM is to 

infer unobserved groups that differ in qualitative sense. Individuals within the same 

latent class are assumed to behave similarly on relevant behavior while members of 

different classes are assumed to behave differently.  

Before presenting the model formulation of LCM, a brief comparison of the 

LCMs to the IRT models is useful for a better understanding of both models. First, 

both IRT and LC models relate a set of item responses and a latent trait variable. Also, 

the manifest variables, i.e., item responses are treated as discrete variables in both 

models. The major difference between the two models, however, revolves around the 

conceptualization of the person trait distribution. The IRT models assume person trait 

as continuous and provide measures of the trait on a single latent continuum. In 

addition, respondents in a sample are assumed to come from a qualitatively 

homogeneous single distribution and, thus, the respondents are different in 

quantitative sense. On the other hand, in the LCM the respondents are different in 

qualitative sense. The LCMs treat the person trait as a discrete variable and provide 

mutually exclusive and exhaustive latent class membership. Within each latent class 

there is no variation in the item response probability. 

The general LCM can be presented by specifying the component distribution 

with the joint probability function of item responses under the local independence 

assumption:    
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∑ ∏
= =

−−=
C

c

I

i

x
ic

x
icc ppp

1 1

1)1()( πx ,  

 

where )(xp  is the probability of a response pattern of items i={1,..., I}, cπ are the 

mixing proportions, and x
icp  and x

icp −− 1)1(  are the probability of a success and a 

failure on item i in class c, respectively. Both cπ  and x
icp are the model parameters to 

be estimated.  

2.4.3 Mixture IRT models  

By integrating a standard IRT model with the LCM, a mixture IRT model is 

obtained. The integration means that the response probability is now conditional on 

both respondent’s continuous trait distribution (following the IRT models) as well as 

discrete trait distribution (following the LC models). Therefore, the unconditional 

probability of an item response pattern x for mixture IRT model is:  

∑ ∫ ∏
= =

=
C

c

I

i
ciic dfcxpp

1 1

)(),|()( θθθπ
θ

x , (7) 

where )(θcf  is the class-specific trait distribution, of which the items have different 

parameters.  

This integration relaxes both models’ assumptions, which can limit the utility 

of the models in applications. Specifically, the IRT model assumption that respondents 

in a sample belong to a qualitatively homogeneous distribution is relaxed. Mixture 

IRT models accommodate heterogeneous subpopulations by allowing item and/or 

person parameters to vary across latent classes. The differences observed in item and 
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person parameter estimates across latent classes may provide the ground on which the 

nature of population heterogeneity can be interpreted. Also, the LCM assumption that 

the response probability within latent classes is the same is relaxed. In mixture IRT 

models, each respondent is assigned an estimated latent trait level as well as a latent 

class membership.  

In sum, in mixture IRT models, an IRT model holds within different 

subpopulations, but in each subpopulation a different set of item and person 

parameters can be estimated. The mixture IRT models provide a statistical tool to 

detect and simultaneously model two types of population heterogeneity i.e., 

quantitative differences on a continuous latent variable as well as qualitative 

differences on a discrete variable. 

 Exploration of qualitative individual differences. The major utility of mixture 

IRT models has been found in their capability to simultaneously model quantitative 

and qualitative differences among individuals. In previous studies employing different 

mixture IRT models, researchers identified qualitatively distinguishable latent groups 

in several realms of study. In cognitive assessments, Rost (1990) applied the mixture 

Rasch model (MRM) and identified two latent classes in which the members differed 

in their relative strength in subject contents of a physics test. A random guessing group 

was detected in a low-stakes achievement test using a mixture 2-PL model (Lau 2009), 

in a mathematic proficiency test using the MRM (Subedi, 2009), and in a reading 

proficiency test using a mixture Rasch model (Mislevy & Verhelst, 1990). A latent 

class in which the members present speededness at the end-items of a test was 
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separated using a mixture distribution version of the Bock’s nominal response model 

in the study by Bolt, Cohen, and Wollack (2002). Mislevy and Verhelst (1990) 

suggested a mixture Rasch model with theory-based item parameter structures to 

detect problem solving strategies. In non-cognitive assessment, Reise and Gomel 

(1995) applied the MRM to analyze a personality scale data and found a structural 

difference in the personality factors between two latent classes.  

 In the analysis of rating scale item responses, the characteristics of latent 

classes were interpreted in terms of different faking tendencies (Zickar et al., 2004),  

self-disclosure patterns (Maij-de Meij, et al., 2005), structures of personality factor 

(Egberink et al., 2010; Rost et al., 1997), and response styles (Austin et al., 2006; 

Gollwitzer et al., 2005; Meiser & Machunski, 2008; Rost, 1991; Rost et al., 1997; 

Smith, et al., 2012). 

2.5 Mixture Partial Credit Model 

2.5.1 Presentation of model  

As explained previously, by integrating the LCM and PCM, the MPCM can be 

derived. The model equation of the PCM defines the probability of an item response 

patternx  specified as Equation 7:   

∑ ∏
∑ ∑
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= =

= =
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)(
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πx , x = 0, 1, 2, …, ih , (7) 
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where )(xp  is the unconditional probability of an item response pattern x, cπ is the 

mixing proportion with constraints, 10 ≤≤ cπ and 1
1

=∑
=

C

c
cπ , and 0)(

0

0

≡−∑
=k

ikcc δθ .  

Note that cθ and  ikcδ  are now the class specific person trait and threshold parameters, 

respectively. The threshold parameters ikcδ are constrained to be ∑∑
= =

I

i

x

k
ikc

1 0

δ = 0 for all c 

for the model identification purpose.  

2.5.2 Parameter estimation  

In Section 2.3, the particular feature of Rasch family models i.e., the 

sufficiency of the total scores for the θ estimation is explained. The total scores (nυ ) 

obtained from a sample are simply used to eliminate person parameters (nθ ) in 

estimating item parameters. The property of the sufficient statistic, however, cannot be 

applied as straightforwardly for the mixture Rasch models as it can for the RM and 

PCM. That is because latent classes are not known and thus the total scores in each 

class are not directly observable. As a solution, an estimated quantity for c|υπ , namely 

latent score probability, which is the probability of a total score appearing in a class, 

needs to be introduced. This probability is treated as a model parameter and estimated 

along with other model parameters. Given that the number of parameters needed to 

estimate the latent score distribution grows easily as the number of classes and items 

increases, parsimonious ways to approximate it have been proposed. Software mdltm 

(multidimensional discrete latent traits models: von Davier, 2005a), which is used for 

the parameter estimation in the current study, uses a 2-parameter log-linear smoothing 
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approach to parameterize this score distribution. Appling this approach, the 

distributional model-based score probability (c|ˆυπ ) can be obtained:  

  

,
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 (8) 

 

where max,...,0 υυ = , cµ is the location parameter indicating the average of θ s and cσ

is the variability of that distribution. The obtained score probabilities provide a 

smoother distribution of expected score frequencies and will be replicated in 

approximately identical shape in different samples of respondents. This distribution is 

flexible in terms of the shape that it can take on, so that various shapes of score 

distributions can be modeled.  

One of the benefits of introducing this distributional approximation that uses 

only two parameters is that it prevents a penalizing factor of the information criteria 

for model selection from unnecessarily increasing. The details related to this issue of 

model selection are further addressed in Section 2.5.4. More details about this logistic 

model for score frequency can be found in Rost and von Davier (1995) and Rost 

(1997). 

In mdltm, the Expectation-Maximization (EM) algorithm (Dempster, Laird, & 

Rubin, 1977) is implemented to obtain marginal maximum likelihood (MML) 

estimates. The MML method makes use of the following factorization: 
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)|(),|()|( cpcpcp υυ ⋅= xx , (9) 

where ∑
=

=
I

i
ix

1

υ is the total score and  the conditional total score )|( cpυ  is replaced 

with the estimated c|ˆυπ  as explained above. By applying the property of the sufficient 

statistic, the pattern probability conditional on total score instead of estimated θ  can 

be obtained as follows:  

))(exp(γ

)exp(
),|(

|

1

cc

I

i
ciix

cp
⋅⋅−

−
=

∑
=

δ

δ
υ

υ

x , (10) 

 

where the denominator ))(exp(γ | cc ⋅⋅−δυ  is a class-specific symmetric function of the 

thresholds. It makes the computation of all possible combinations of item parameters 

that yield a total score and is also required in the E-steps of the item parameter 

estimation for computing the expected pattern frequencies. An illustration of this 

computation for the RM difficulty parameters can be found in Baker and Kim (2004, 

Ch.5). Finally, the full formulation of the pattern probability with person parameter 

eliminated is as follows:  

∑
∑

=
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⋅⋅−

−
=
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1 |

1
| ))(exp(γ
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ˆ)(

δ

δ
ππ

υ
υx .  

  

E-steps. In the expectation steps, the expected pattern frequencies in each 

latent class are computed on the basis of the observed pattern frequencies and 

preliminary estimates of the threshold parameters. A randomly selected value can be 
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used as a starting parameter values for the first iteration. For the subsequent iterations, 

the estimates of the previous M-step are used. The expected class-specific pattern 

frequency )|(ˆ cn x  is a proportion of the ratio of the pattern probability in a class 

)|( cp x and the unconditional observed pattern probability)(xp : 

)(

)|(
)()|(ˆ

x
x

xx
p

cp
ncn cπ= ,  

where )(xn is the observed frequency of response pattern x , the conditional pattern 

frequency )|( cp x  is defined by Equations 8, 9, and 10. )(xp  is the unconditional 

observed pattern probability i.e., ∑
=

C

c
c cp

1

)|(xπ .   

M-steps. The expected pattern frequencies for each latent class obtained from 

the E-step are used in the M-step for the computation of the estimates of the model 

parameters,cπ , c|υπ , and ikcδ . These parameters are estimated separately for each 

class by maximizing the log-likelihood function of class c. The log-likelihood function 

of class c may be specified as follows:  

∑ ∑ 







−−−= ⋅⋅

x

x
I

i
cccc cixi

cnL )))(exp(ln(γln)|(ˆln || δδπ υυ .  

Solving the first derivative to be zero with respect to the threshold parameter yields 

the (revised) estimate for threshold k on item i in class c as follows:  
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where ikcn  is preliminary estimates of the number of individual with a response to 

category k on item i in class c, cm |υ  is the number of individuals with score υ  in class 

c, and ci |,1γ −υ are the symmetric functions of order 1−υ  of all item parameters except 

item i in class c. This symmetric function is iteratively calculated by means of 

preliminary threshold parameter estimates and revised estimates in each M-step. 

The estimates of the mixing proportions (cπ̂ ) and conditional score probability 

( c|ˆυπ ) do not need to be calculated iteratively. They can be simply calculated as 

follows: 

N

nc
c =π̂ ,  

c

c
c n

m |
|ˆ υ

υπ = ,  

where cn  is the number of respondents in class c. 

 θ estimation. During the item parameter estimation, trait parameter θ  has been 

eliminated from the equation. In the final stage of the estimation, the unknown 

parameter θ  can be estimated by solving iteratively the following estimation equation: 

∑
= −+

−
=

I

i ckicn

ckicn
n

1 )ˆexp(1

)ˆexp(

δθ

δθ
υ ,  

where ckiδ̂  is the final estimate of kth threshold for item i in class c. Respondent n has 

the trait estimate cnθ̂ under the condition that he or she belongs to class c and hence 

there are as many cnθ̂  as the number of c for each respondent.  However, these 
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conditional trait estimates of a single individual usually do not differ much from one 

class to another because the estimates depend mainly on nυ , which is the same in all 

classes (Rost, 1997).    

2.5.3 Assigning latent class membership  

As the outcomes of the simultaneous modeling of a continuous and a discrete 

latent variable, each respondent is assigned latent trait estimates as well as 

probabilities for membership in each latent class. The probability of class membership 

can be estimated using Bayes’ theorem:  

∑
=

=
C

c
c

c

cp

cp
cp

1

)|(

)|(
)|(

x

x
x

π

π
. 

 

where )|( xcp is the posterior probability of class membership c given the item 

response patternx . Note that the mixing proportion plays the role of prior probability 

in the Bayes’ theorem and the estimated conditional pattern probability )|( cp x  

replaces the likelihood and the denominator indicates the total probability. The actual 

classification is carried out by first using the Bayes’ theorem to compute the estimated 

probability for class membership given each response pattern. Then, respondents may 

be assigned to the latent class for which the conditional probability of their 

membership is largest.  

2.5.4 Determining the number of latent classes 

In the MPCM formulation, the number of latent classes (C) is not a model 

parameter and, thus, must be specified before initiating the parameter estimation 
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process. Under conditions of uncertainty about the “true” number of unknown 

subpopulations, the commonly used technique to determine the number of latent 

classes is to compare the likelihood function of competing models with increasing 

numbers of latent classes and then choose a model that an information criterion data-

model fit indicates as the best- fitting model to the data. Although significance tests 

are not possible with these indices, comparing the index values for competing models 

provides some degree of evidence for the nature of trait variable structure. 

Information criteria. Many information criterion statistics have been 

developed under the minimum complexity criteria. Frequently referred information 

criteria include Akaike’s information criterion (AIC: Akaike, 1974), Bayesian 

information criterion (BIC: Schwarz, 1978) and consistent AIC (CAIC: Bozdogan, 

1987). The three statistics are those provided by mdltm.  

The AIC index can be calculated based on H different models being compared:  

hhh ParLAIC 2)ln(2 +−= ,  

where hL is the maximum of the likelihood function of the hth model and hPar is the 

number of independent parameters that are estimated when fitting the hth model to the 

data. In comparing competing models, the model h that shows the minimum AIC 

value is chosen as the model that best fits the data and therefore is considered as the 

preferred model. It is seen in the equation that when two models have similar 

maximum likelihood value (hL ), a smaller value of AIC will be associated with the 

model based on fewer parameters. In this way, AIC prefers a model with less 
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complexity, in other words, a more parsimonious model. A criticism of the AIC is that 

it lacks properties of asymptotic consistency because the definition of the AIC does 

not directly involve the sample size. Consequently, as sample size increases a more 

complex model would be more likely to be selected based on the AIC.  

Schwarz (1978) developed the BIC, which is an asymptotically consistent 

measure. The computation of the BIC may be specified as follows:  

hhh ParNLBIC ×+−= )ln()ln(2 ,  

where N denotes the sample size. In the same way as is done for AIC, a model h that 

shows the minimum BIC value is chosen as the preferred model. Note that the penalty 

term for the BIC is larger than for the AIC if the sample size N is 8 or greater, which 

can be seen by the fact that the value of )8ln(  = 2.08. Therefore, for reasonable sized 

samples, the BIC tends to select less complex models (i.e., the solution with a smaller 

number of classes) than does the AIC. 

Bozdogan (1987) extends the AIC to make it asymptotically consistent and to 

be penalized for over-parameterization more stringently. The CAIC index is computed 

as follows: 

hhh ParNLCAIC ×++−= )1)(ln()ln(2 .  
 

Compared to the AIC and BIC, the penalty term for CAIC is even larger, leading to 

solutions that favor the selection of less complex models than are obtained with the 

AIC or BIC.  



 

50 
 

 Based on the specific penalty weights, it is expected that different information 

criterion statistics may lead to different solutions in mixture IRT models. The 

preference of a more complex model by the AIC may result in over-identification 

problems under certain conditions whereas the preference of a less complex model by 

the BIC and CAIC may cause under-identification problems. The relative 

effectiveness of information criteria has been investigated via simulation studies, 

where the true conditions are known and hence it is possible to monitor the behavior 

of information criterion statistics in identifying the correct model.  

Model selection in mixture IRT models. There are a limited number of 

simulation studies on model selection indices in mixture IRT models and all of those 

studies examined only models for dichotomous responses. No study has thus far 

investigated the problems of model selection in mixture polytomous IRT models. The 

following presents the findings from the studies related to dichotomous models. 

The first study appearing in literature was one by Li, Cohen, Kim, & Cho 

(2009), in which a Bayesian estimation approach was used. Their study investigated 

five different model selection indices including the AIC and BIC, and compared the 

relative effectiveness of them under 1-, 2-, and 3-PL model with 1-, 2-, 3-, or 4-latent 

classes. In general, the results showed that the BIC performed the best in terms of 

detecting correct number of latent classes. For 1-, 2-, and 3-class simulated data, the 

BIC was accurate in identifying the correct number of classes in every case. However, 

when the simulated data had 4 classes, it apparently became more difficult for the BIC 

to distinguish the correct model for the 3PL model. In this case, the BIC tended to 
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select the simpler model. The result for the AIC showed that the AIC selects more 

complicated models, particularly when the true model is the 1PL model.  

 Cho, Jiao, and Macready (2012a, 2012b) investigated the relative effectiveness 

of AIC and BIC in the context of mixture Rasch and mixture 2-PL model with two 

classes when marginal maximum likelihood estimation was applied. The studies 

manipulated qualitative heterogeneity in various ways by setting different sets of item 

parameter profiles across latent classes and evaluated the correct model selection rates. 

When more distinctive heterogeneity was generated between two classes causing class 

separation to be large, the BIC selected the correct model almost perfectly. Under the 

conditions where the heterogeneity manipulated was small, the BIC under-extracted 

latent classes while the AIC still tended to over-extract latent classes.  

Preinerstorfer and Formann (2012) reported similar results within a conditional 

maximum likelihood estimation context. They found that the BIC generally performed 

more accurately than the AIC and that longer test length was positively associated 

with the correct model selection rate. 

2.6 Applications of the MPCM to Study of Response Styles  

 In Sections 1.2 and 2.4.3, previous empirical studies in which mixture IRT 

models were employed were briefly introduced. In Section 2.6.1, the findings in the 

empirical studies related to the differences in response category use and the correction 

of test score bias are reviewed. Section 2.6.2 summarizes the previous simulation 

study that investigated the model performance of the MPCM. 
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2.6.1 Real data analysis  

 Rost et al. (1997) applied the MPCM to the analysis of NEO-FFI scales and 

reported the results for the Conscientiousness (C) and Extraversion (E) scales. For the 

C scale, the item locations across two identified latent classes were not significantly 

different, which indicated that the items measured the same psychological construct 

across the latent classes. However, when the thresholds were examined, the larger 

latent class (π =  0.67) showed a set of ordered and relatively evenly spaced thresholds 

for all items while the smaller latent class (π =  0.33) showed that the first threshold 

distance was about four times larger than the second threshold distance. The threshold 

distances in the smaller class indicated that it was very easy to pass the first threshold 

and very hard to pass the last threshold and, hence, most people in this class responded 

to the middle categories and avoided the extreme categories. Integrating these findings 

in item locations and thresholds distances, the authors concluded that the difference 

characterizing the two latent classes was not in the conscientiousness construct but in 

the respondent’s differential use of response categories. When the E scale was 

analyzed, however, a structural difference in the personality construct as well as the 

response style difference emerged. The comparison of the item locations based on a 

two-class model solution revealed that the two identified latent classes reflected a 

structural difference between sociability and impulsivity. The subsequent MPCM 

analyses were conducted for these two classes separately and the same pattern of 

thresholds differences as was presented for the C scale was manifested.      
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 Eid and Rauber (2000) applied the MPCM to analyze data from an 

organizational survey and demonstrated how mixture models could be used to detect 

measurement invariance caused by response styles. In their analysis, a two-class 

solution was selected as the best-fitting model based on the BIC. The item location 

parameters did not differ much between the two latent classes. The differences were 

observed with respect to the threshold parameters. In the larger latent class (Class 1 

with π = 0.71), all thresholds were ordered indicating that the members of this class 

used the rating scale in the expected way. Similar to the case depicted in Figure 4, 

each response category corresponded to an area on the latent continuum for which its 

response probability was larger than the probabilities of the other categories. In the 

smaller latent class (Class2 with π = 0.29), the first two thresholds were disordered for 

all items and the threshold distances were much smaller than in Class 1. Therefore, the 

members of Class 2 were characterized as extreme respondents.  

 Eid and Rauber (2000) also investigated whether latent classes differing in 

their response styles could be characterized by external variables including age, sex, 

length of service, length of service on the same position, and leadership level. The 

results showed that significantly larger proportion of female employees belonged to 

Class 2. In addition, relatively new employees belonged significantly less frequently to 

Class 1. People who had been working longer than 10 years in the same position had a 

higher probability for belonging to Class 2. Finally, employees at different leadership 

levels showed differences in the probability to belong to each latent class.  
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 Gollwitzer et al. (2005) applied the MPCM to analyze the three anger 

expression subscales (Anger-in, Anger-out, and Anger-control) of the State-Trait 

Anger Expression Inventory (STAXI; Spielberger, 1988) obtained from patients 

hospitalized in a psychosomatic clinic. They observed considerable differences in 

response styles, which were similar to the differences in non-clinical samples. The 

largest latent class (Class 1) exhibited ordered and evenly spaced thresholds for both 

gender group and for all scales, meaning an appropriate use of response categories. It 

was also shown that respondents who were assigned to Class 1 on one scale were 

likely to be assigned to Class 1 on the other scales. The second latent class (Class 2) 

for the female sample presented partly disordered thresholds and narrower threshold 

distances. The logistic regression analyses were conducted to predict the latent class 

membership using various personality variables measured by Freiburg Personality 

Inventory (FPI-R; Fahrenberg, Hampel, & Selg, 1989). The regression analysis results 

provided some evidence that a social desirable tendency accounted for the response 

styles identified in Class 2. 

  Gollwitzer et al. (2005) argued that it was not reasonable to compare all 

individuals quantitatively with respect to their sum scores, which was the scoring 

method instructed in the STAXI’s handbook (Spielberger, 1988). They suggested a 

more appropriate scoring strategy that required a two-step procedure. In the first step, 

individuals would have to be assigned to a latent class in order to qualify differential 

response styles. They could then be compared with each other within their latent class. 
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In a second step, class-specific person parameters could be compared across latent 

classes under the premise that the same trait is being measured in all classes.  

 Zickar et al. (2004) conducted an experimental study in which respondents 

were couched to respond honestly or faked positively on a personality inventory. They 

analyzed the item responses from the experimental sample with the MCPM and found 

that honestly responding group exhibited the thresholds that were properly ordered and 

much lower item-level scores than the “faking group”. For the faking group, the 

thresholds were disordered and the difference between the first and second thresholds 

was much smaller than the difference in the honestly responding group, indicating that 

few individuals chose the first and second categories in this group.  

 Zickar et al. (2004) also compared the item responses on the Personal 

Preferences Inventory (PPI: Personnel Decisions International, 1997) between an 

applicant group and an incumbent group in an organization. Their MPCM analysis 

results showed that 27.6% of the applicants were in the extreme faking class whereas 

13.7 % of the incumbents belonged to this class. Conversely, 26.5% of the 

applications were in the honestly responding class. These findings provided some 

insights that the typical applicant-incumbents comparison assuming that applicants 

were faking and incumbents were responding honestly had been too restricted.  

 Smith et al. (2012) analyzed data from the Beliefs and Attitudes About Memory 

Survey (BAMS: Brown, Garry, Silver, & Loftus, 1997) with the mixture Rasch models 

to investigate the functioning of the “Neutral” category (i.e., middle category) by 

examining the threshold ordering.  Smith et al. (2012) pointed out that disordered 
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thresholds occur: i) when the rating scale includes more categories than the 

respondents can reliably distinguish, ii ) when some rating categories are unlabeled, or 

iii ) when rating scale includes middle point labeled as undecided or neutral. The 

analyses of the original 5-point Likert-scale BAMS data showed that disordered 

thresholds mainly occurred around the “Neutral” category. They treated responses to 

the “Neutral” category as missing data and reanalyzed the remaining data recoded to 

an ordered 4-point scale. For each of the three 4-point BAMS subscales, two latent 

classes were identified based on the CAIC. For the Blending of Memories subscale 

and the New Born, Womb, and Previous Lives Memories subscale, respondents from 

each of the latent classes used the items differently, resulting in an item difficulty 

ordering that was not invariant across latent classes. This indicated that different 

constructs related to the beliefs about memories might be measured within each latent 

class. For the Memory Storage subscale, however, the overall item difficulties were 

approximately the same for both classes except for one item. This led the author to 

reasonably assume that the same underlying constructs were being measured across 

the latent classes.  

 Adjustment of response style effects on test scores by applying the MPCM. 

Rost et al. (1997) pointed out that the estimated trait parameters of the MCPM are 

automatically corrected for the effects of a response style and this is the most practical 

implication of employing the MPCM to the analysis of self-report data. Given that the 

MPCM provides θ  estimates conditional on each response-style class and the sum 

score is the sufficient statistics for θ  estimation, any differences observed in the class-
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specific θ  estimates for the same raw score can be viewed as an adjustment or 

correction for the effects of response styles (Rost et al, 1997).  

 Rost et al. (1997), Gollwitzer et al. (2005), and Smith et al. (2012) graphically 

showed the relation between sum scores and θ  estimates in each latent class to 

demonstrate how the class-specific person traits estimated for the same sum score 

differ across the classes. The results of those studies commonly showed that 

respondents who responded to more extreme categories earned less extreme theta 

estimates than the respondent with the same sum score but moderate response styles. 

These results implied that interpreting sum score difference among individuals without 

considering their response styles may lead to false inferences concerning individual 

differences in their latent trait level. 

 Although the potential of rectifying score bias by employing the MPCM was 

demonstrated in those empirical data analytic studies, it has not been investigated how 

the correction would operate for different types of response styles when multiple kinds 

of response styles are present.  

 Related to the correction of sum score bias, an important psychometric issue of 

interest is whether theta estimates obtained with a mixture IRT model may provide a 

better prediction of an external criterion, compared to the theta estimates obtained with 

its non-mixture counterpart. Maij-de-Meij et al. (2008) applied the mixture nominal 

response model and the MPCM to personality inventory scales, Extraversion (E) and 

Neuroticism (N), and investigated whether theta estimates provided by the mixture 

models resulted in a better prediction of relevant external criteria. The results of this 
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study showed that for N scale, the correlations between theta estimates and criterion 

measures were higher for the mixture models than for the non-mixture model. 

However, this improvement was not observed for the E scale.  

2.6.2. Simulated data analysis  

 As reviewed in previous sections, there have been increasing applications of 

the MPCM. Unfortunately, however, little is known about model performance of the 

MPCM in accurately estimating the model parameters.  Only one simulation study 

conducted by Rost (1991) demonstrated the capability of the MPCM to “unmix” 

heterogeneous item responses data. Rost (1991) created three sets of data, each of 

which was comparable with the PCM, and selectively combined two of the three data 

sets to generate several mixtures of two latent classes. In generating the mixture data 

sets, he manipulated sample size, threshold distance, and the ranges of θ , so that the 

mixtures differed with respect to “degree of heterogeneity”. Specifically, the largest 

first data set (N = 1000) had a wide range of item locations (-2.7 to +2.7), equal 

threshold distances ( 21 ii δδ −  = 0.5 and 32 ii δδ −  = 0.5), and a wide-range of θ  values 

(-2.5 to +1.0). The second data set (N = 600) had a smaller range of item locations (-

1.8 to +1.8), reversed thresholds with extremely unequal threshold distances ( 21 ii δδ −  

= 1.4 and 32 ii δδ −  = 0.2), and a narrow-range of θ  values (-1.0 to +1.0). The third 

data set (N=800) had no variation of item locations (0 for all items), large and equal 

threshold distances ( 21 ii δδ −  = 1.0 and 32 ii δδ −  = 1.0), and a narrow-range of θ  

values (0 to1.5). In this study, depending on the manipulated degree of heterogeneity, 
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the difficulty in detecting latent classes in mixture distributions was anticipated. The 

mixture of the first and second data sets was expected to be easiest to unmix because 

the item parameters and threshold distances differ strongly while the mixture of the 

second and third data sets was expected to be most difficult to unmix.  

The accuracy of thresholds recovery, mixing proportion recovery, and class-

specific mean score recovery from a single replication result was evaluated by 

comparing the results for mixture data with those for non-mixture data. Results 

showed that the mean threshold distances and the class-specific score distributions 

were recovered fairly well. Some large deviations from the simulated condition were 

observed for the mixing proportions under certain conditions. These deviations, 

however, were interpreted as effects of the particular threshold sets manipulated not as 

a bias of the estimation procedure. Rost (1991) also evaluated the quality of estimates 

for the mixture with three-classes and found that the accuracy of the parameter 

recovery for the three-class model was comparable with the estimates in the two-class 

model. Regarding the model selection procedure, the AIC correctly identified the 

generated number of latent classes.  
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Chapter 3: Methodology 

 

3.1 Objectives and Research Questions 

The major objective of the current study is twofold: (i) to evaluate the quality 

of the respondent classification as well as item and person trait parameter recovery of 

the MPCM when the population is a mixture of different response-style respondents, 

and (ii ) to investigate how the MPCM makes an adjustment of the latent trait estimates 

to compensate for the confounding effects of different response styles on test scores. 

In addition to the major goals, the current study also explores the effectiveness of the 

information criterion statistics in identifying the correct number of latent classes in the 

MPCM. These objectives were addressed via a simulation study. The manipulated 

factors for which the effects were assessed were type of mixture of response styles, 

mixing proportions, sample size, and test length. The specific research questions that 

were addressed in this study are as follows:  

1. What percentage of respondents does the MPCM correctly classify 

within their true response-style class under various conditions? 

2. What percentage of replications does the information criterion statistics 

identify the correct number of latent classes? 

3. What degree of the accuracy of thresholds parameter recovery does the 

MPCM provide under various simulation conditions when the accuracy 

is assessed by Pearson r, root mean square error, and standard error of 

estimates?  
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4. What degree of the accuracy of person trait parameter recovery does 

the MPCM provide under various simulation conditions when the 

accuracy is assessed by bias, Pearson r, and root mean square error?  

5. How are sum (total) scores and class-specific person trait parameters 

estimated with the MPCM related to each other under the simulated 

types of mixture distribution?  

3.2 Overview of Simulation Study 

3.2.1 Manipulated factors 

The current simulation study selectively considered the five different types of 

response-style mixture distribution: (i) ORS and ERS, (ii ) ORS and MRS, (iii ) ORS 

and ARS, (iv) ORS, ERS, and MRS, as well as (v) ORS, ERS, MRS, and ARS.  

The mixing proportions were manipulated to be equal or unequal. The “equal” 

condition represents the population where different response-style respondents are 

mixed with equal proportions and the “unequal” condition represents the population 

where majority of the respondents are ORS respondents and very small proportion of 

respondents presents distorted response styles. Table 1 provides a summary of the 

types of mixture and mixing proportions manipulated in the current study.  
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Table 1. Manipulated Simulation Conditions of Population Heterogeneity 

 
Mixing 

proportions 
Class1( 1π ) Class2( 2π ) Class3( 3π ) Class4( 4π ) 

1 

Equal 

ORS(1/2) ERS(1/2)   
2 ORS(1/2) MRS(1/2)   
3 ORS(1/2) ARS(1/2)   
4 ORS(1/3) ERS(1/3) MRS(1/3)  
5 ORS(1/4) ERS(1/4) MRS(1/4) ARS(1/4) 
6 

Unequal 

ORS(9/10) ERS(1/10)   
7 ORS(9/10) MRS(1/10)   
8 ORS(9/10) ARS(1/10)   
9 ORS(8/10) ERS(1/10) MRS(1/10)  
10 ORS(7/10) ERS(1/10) MRS(1/10) ARS(1/10) 
Note: cπ = mixing proportion for class c, ORS = ordinary response style,  

ERS = extreme response style, MRS = middle-category style,  
ARS = acquiescent response style 
 

Two other manipulated factors were sample size and test length. Sample sizes 

were chosen at three levels, medium (N=1200), moderately large (N=3000), and large 

(N=6000). As for test length, since it is common that a psychological instrument has a 

small number of items per subscale, as small as 4-item (I=4) was explored as well as 

moderate number of items (I=10) and large number of items (I=20). These four 

manipulated factors were completely crossed resulting in the total number of ninety 

simulation conditions.  

3.2.2 Fixed factors  

Three factors, i.e., the number of response categories, latent trait distribution 

within latent class, and item locations were fixed in the current study. First, the 

number of response categories was fixed at five. Second, the latent trait distribution 

was generated to be a normal distribution with the mean of 0 and the standard 
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deviation of 1 for each latent class. Third, the item location of item i held invariant 

across the ORS, ERS, and MRS class in order for the latent classes to differ only with 

respect to the dispersion of item responses (Rost et al, 1997). For the ARS class, 

however, the generated item location for item i was not the same as that for the other 

response-style classes. The high response probability for the category 3 and 4 of a 

positively worded item i resulted in a very low item location for that item. Similarly, 

very high item locations for the negatively worded items were resulted. As this 

simulated condition for the item parameters in the ARS class indicates, if there is a 

group of ARS respondents in a sample, non-invariant item locations are likely to be 

manifested in a latent class.  

3.2.3 Response scale  

The current study assumed that item responses were obtained with a five-

category Likert-scale that had a built-in balanced scale. In the balanced scale, a pair of 

items asked an equivalent construct in a positive as well as a negative statement. In 

scoring the category responses, responses to negatively worded items were reversely 

coded before being analyzed. For example, an endorsement of the category 4, 

‘strongly agree’ on these items was scored as 0 and an endorsement of the category 1, 

‘disagree’ as 3. Using reversely coded category responses, instead of raw responses, 

affected the marginal distribution of category responses for ARS class. The raw 

response frequency distributions for the ARS class would be negatively skewed for all 

items before recoding responses. After the recoding process, however, the category 
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response frequency distributions for negatively worded items were positively skewed 

as can be seen in Figure 9.  

3.3 Data Generation 

The rating scale item responses that were confounded by the effects of 

response styles were generated based on the relation between threshold values and 

response category probabilities defined in the PCM. The common method of 

generating thresholds such as randomly selecting threshold values within certain range 

of θ distribution, would not produce the item responses that characterize ERS, MRS, 

or ARS. The subsequent section presents the details of how to determine the 

population generating thresholds for each response-style subpopulation. The 

generation of item responses is then followed. 

3.3.1 Population generating thresholds  

The first step was to clearly delineate distinguishing features of the four 

response-style classes by presuming marginal frequency distributions of category 

responses for each response-style class. Figure 9 presents the expected frequency 

distributions of category responses marginalized over all items administered in four 

different response-style classes. The specific probability values are presented in Table 

2. For example, assuming that theta distribution is a normal distribution, 14% of ORS 

respondents would choose ‘strongly disagree’, 22% ‘disagree’, 28% ‘neither disagree 

nor agree’, 22% ‘agree’, and 14% ‘strongly agree’ on average over all items. If a 

group of people has ERS tendency, about 81% of them would select ‘strongly 

disagree’ or ‘strongly agree’.  In determining these marginal probabilities, a rather 



 

 

arbitrary decision was made because there was neither theoretical ground

empirically reported category response frequencies related to 

Since too sparse category response frequencies cause problems in estimation, 

extremely small category response frequency (i.e., near zero percent) for any item

avoided.

Figure 9. Expected marginal 

different response styles (%)
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made because there was neither theoretical ground

reported category response frequencies related to the response styles. 

Since too sparse category response frequencies cause problems in estimation, 

extremely small category response frequency (i.e., near zero percent) for any item

marginal frequency distributions of category responses for

response styles (%) 

 

made because there was neither theoretical grounded nor 

response styles. 

Since too sparse category response frequencies cause problems in estimation, 

extremely small category response frequency (i.e., near zero percent) for any item was 

 

tions of category responses for 
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Table 2. Expected Marginal Category Probabilities for Different Response-style 

Classes  

 Category0 Category1 Category2 Category3 Category4 

ORS 0.14 0.22 0.28 0.22 0.14 
ERS 0.40 0.08 0.04 0.08 0.40 

MRS 0.08 0.16 0.52 0.16 0.08 
ARS(positive) 0.05 0.05 0.05 0.23 0.62 
ARS(negative) 0.62 0.23 0.05 0.05 0.05 
Note: ORS = ordinary response style, ERS = extreme response style, MRS = middle-category 
response style, ARS = acquiescent response style. 

 

The second step was to make variation of the category probabilities among 

items. As shown in Table 3, while ensuring the marginal category probabilities 

approximate the values initially specified in Table 2, the category probabilities for 

each item were manipulated to be different among items. Table 3 shows the variations 

created for ten items for the ORS class. The category probabilities for individual items 

for the other response styles are presented in the Appendix A. 

Table 3. Category Probabilities for Individual Items for ORS Class 

Item Category1 Category2 Category3 Category 4 Category 5 

1 0.1478 0.2245 0.2556 0.2245 0.1478 
2 0.1539 0.2061 0.2801 0.2061 0.1539 
3 0.1244 0.2413 0.2685 0.2413 0.1244 
4 0.1069 0.2412 0.3038 0.2412 0.1069 
5 0.1233 0.2354 0.2825 0.2354 0.1233 
6 0.1657 0.2071 0.2543 0.2071 0.1657 
7 0.1332 0.2308 0.2721 0.2308 0.1332 
8 0.1550 0.2124 0.2653 0.2124 0.1550 
9 0.1501 0.2065 0.2867 0.2065 0.1501 
10 0.1416 0.1904 0.3360 0.1904 0.1416 

Mean 0.1402 0.2196 0.2805 0.2196 0.1402 
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Note that the means of the category probabilities of the ten items remain almost the 

same as the marginal category probabilities specified in Table 2. These variations 

among items were manipulated to generate item responses that fit the PCM instead of 

the rating scale model (RSM, Andrich, 1978), The RSM is restricted to have a 

common set of thresholds across all items.  

The next step was to compute threshold probability for each step by applying 

the simple Rasch logistic model to the series of adjacent categories. The computations 

are demonstrated using an example of the first item in Table 3. As presented in 

Equation 1, the kth threshold for item i ( ikδ ) can be obtained by computing the natural 

logarithm of the odds ratio and subtracting it from the person trait density: 
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Ignoring the trait density (or nθ = 0 ) in Equation 11, ikδ can be computed as follows: 
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 Category0 Category1 Category2 Category3 Category4 

Category 
probability ( ikφ ) 0.147 0.225 0.256 0.225 0.147 

  Step1 Step2 Step3 Step4  
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Ln(Odds) 0.426 0.129 -0.129 -0.426  

Threshold ( ikδ ) -0.426 -0.129 0.129 0.426  

 

During this thresholds computation, item locations were fixed to zero. For the 

items to have different levels of difficulty, a positive or negative constant was added to 

each threshold. The varying item difficulties manipulated are presented in Tables 4 to 

Table 7.  

In the computation presented above, the item threshold values were computed 

without considering θ distribution. In IRT models, the probability of an item response 

is determined as a function of both item and person parameters. Therefore, the person 

trait density needed to be combined with the computed threshold values (Equation 11). 

In order to achieve this combination, a histogram that follows the normal distribution 

was constructed under which the determined thresholds (i.e., cut points on theta 

continuum) were adjusted. The procedures of this adjustment were the following: theta 

range from -2.5 to 2.5 was divided into nine intervals with 0.5 increments and then a 
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sample of 10000 respondents was allotted to each interval based on the cumulative 

normal density function. Using this sample of respondents and the initially computed 

threshold values for ten items, PCM item responses were generated. The generated 

item responses were analyzed to check the marginal category probabilities. While 

monitoring the resulting category probabilities, several sets of four constants were 

alternatively added to the initial threshold values until a set of thresholds that produced 

the expected marginal category probabilities as close as possible. Tables 4 to 7 present 

the threshold parameters that were obtained based on these adjustments for the ORS, 

ERS, MRS, and ARS class, respectively. Thresholds for ten items were first 

determined and those ten items were used twice to create 20-item test. Four items 

among the ten, which are indicated in the Tables 4 to 7, were selected to create 4-items 

test. The corresponding plots for the determined thresholds for ten items are presented 

in Figures 10 to 13. These threshold plots represent the locations of each threshold on 

the latent trait continuum on the y-axis. The characteristics of the sets of threshold 

parameters for each class are described in the subsequent sections. 

Thresholds for ORS class. The population generating thresholds for the ORS 

class are presented in Figure 10. As seen in Figure 4 in chapter 2, which presents 

ordered and evenly spaced thresholds for a single item, the threshold plot in Figure 10 

shows those properties across all items. In this group, it is seen that passing a higher 

threshold requires more of the latent trait θ .   



 

 

Table 4. Threshold Values 

Item Threshold1

1ª -1.5181
2ª -1.2924
3 -1.8123
4 -1.7632
5 -1.8469
6 -1.1232
7 -1.7999
8 -1.1654
9ª -1.6191
10ª -1.0966

Mean -1.5037
Note: ª Selected item for 4

Figure 10
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alues Used for the Generation of the ORS Class 

Threshold1 Threshold2 Threshold3 Threshold4 Location

1.5181 -0.5998 0.4998 1.4181 
1.2924 -0.6768 0.7768 1.3924 
1.8123 -0.6265 0.4265 1.6123 
1.7632 -0.5510 0.7510 1.9632 
1.8469 -0.7522 0.4522 1.5469 
1.1232 -0.4750 0.7750 1.4232 
1.7999 -0.7849 0.3849 1.3999 
1.1654 -0.4421 0.8421 1.5654 
1.6191 -0.9980 0.4980 1.1191 
1.0966 -0.7379 1.2379 1.5966 
1.5037 -0.6644 0.6644 1.5037 

Note: ª Selected item for 4-item test length condition  

 

 

10. Thresholds plot for 10 items for ORS class 

Thresholds for MRS class. The population generating thresholds for 

are presented in Figure 11. As can be seen in Figure 5, the distances between 

Location 
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The population generating thresholds for the MRS 

, the distances between 



 

 

second and third thresholds are large and there are 

as thresholds 3δ  and 4δ .  

Table 5.Threshold Values 

Item Threshold1

1ª -2.1328
2ª -1.9616
3 -1.1515
4 -0.8654
5 -1.2218
6 -1.0001
7 -2.0917
8 -1.3698
9ª -1.9528
10ª -1.1903

Mean -1.4938
Note: ª Selected item for 4

Figure 11. 
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second and third thresholds are large and there are reversals between 1δ  and 

 

alues Used for the Generation of the MRS Class 

Threshold1 Threshold2 Threshold3 Threshold4 Location

2.1328 -2.8106 2.7106 2.0328 
1.9616 -2.3956 2.4956 2.0616 
1.1515 -3.2403 3.0403 0.9515 
0.8654 -2.3722 2.5722 1.0654 
1.2218 -3.1974 2.8974 0.9218 
1.0001 -2.7372 3.0372 1.3001 
2.0917 -2.7031 2.3031 1.6917 
1.3698 -2.2797 2.6797 1.7698 
1.9528 -2.2618 1.7618 1.4528 
1.1903 -2.1591 2.6591 1.6903 
1.4938 -2.6157 2.6157 1.4938 

Note: ª Selected item for 4-item test length condition  

 

 Thresholds plot for 10 items for the MRS class 

and 2δ as well 

Location 

-0.05 
0.05 
-0.10 
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Thresholds for ERS class. The population generating thresholds for the ERS 

are presented in Figure 12. As can be seen in Figure 7, the reversals occur and there 

are items that have no area between thresholds, indicating very sparse expected 

responses for some categories. Generally, the first threshold value is the greatest in 

this class. It indicates that it is hard for people in this class to pass the first threshold 

and, therefore, they end up with selecting the first category (k = 0) rather than the 

second category (k = 1). On the other hand, the last threshold is the easiest to pass, 

indicating that respondents tend to pass the last threshold easily and select the last 

category (k = 4).  

 

Table 6. Threshold Values Used for the Generation of the ERS Class 

Item Threshold1 Threshold2 Threshold3 Threshold4 Location 

1ª 0.4043 0.6851 -0.7851 -0.5043 -0.05 
2ª 0.7207 0.2235 -0.1235 -0.6207 0.05 
3 1.0029 -0.1963 -0.0037 -1.2029 -0.10 
4 1.1222 0.6516 -0.4516 -0.9222 0.10 
5 0.6489 0.1037 -0.4037 -0.9489 -0.15 
6 0.8159 1.1774 -0.8774 -0.5159 0.15 
7 1.1394 0.2912 -0.6912 -1.5394 -0.20 
8 1.0474 0.7020 -0.3020 -0.6474 0.20 
9ª 0.246 0.2106 -0.7106 -0.7460 -0.25 
10ª 1.0952 0.9962 -0.4962 -0.5952 0.25 

Mean 0.8243 0.4845 -0.4845 -0.8243 0 
Note: ª Selected item for 4-item test length condition  
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. Thresholds plot for 10 items for the ERS class 

Thresholds for ARS class. The population generating thresholds for 

are presented in Figure 13. The first five items are those that are written 

positive statements whereas Item 6 to Item 10 are those that are written in 

negatively stated items’ thresholds profile locates upper range of theta 

positively stated items’ thresholds profile locates lower range 

 

 

 

The population generating thresholds for the ARS 

written in 

in negative 

stated items’ thresholds profile locates upper range of theta 

stated items’ thresholds profile locates lower range 



 

 

Table 7. Threshold Values 

Item Threshold1

1ª -1.5092
2ª  -1.6323
3 -1.7054
4 -1.3810
5 -1.8507

Mean -1.6157
6ª  0.8255
7ª  0.9828
8 1.0787
9 0.8646
10 0.9644

Mean 0.9432
Note: ª Selected item for 4

 

Figure 13.
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alues Used for the Generation of the ARS Class 

Threshold1 Threshold2 Threshold3 Threshold4 

1.5092 -1.6300 -2.4202 -0.9255 
1.6323 -1.0445 -2.5418 -0.8828 
1.7054 -1.6953 -2.1910 -1.2787 
1.3810 -1.2554 -2.4918 -0.6646 
1.8507 -1.5547 -2.3851 -1.2644 
1.6157 -1.4360 -2.4060 -1.0032 
0.8255 2.3202 1.5300 1.4092 
0.9828 2.6418 1.1445 1.7323 
1.0787 1.9910 1.4953 1.5054 
0.8646 2.6918 1.4554 1.5810 
0.9644 2.0851 1.2547 1.5507 
0.9432 2.3460 1.3760 1.5557 

Note: ª Selected item for 4-item test length condition 

. Thresholds plot for 10 items for the ARS class 

are positively stated, Items 6 to 10 are negatively stated)

location 

-1.6210 
-1.5250 
-1.7170 
-1.4480 
-1.7630 
-1.6148 
1.5225 
1.6235 
1.5176 
1.6482 
1.4625 
1.5549 
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3.3.2 Item responses generation.  

To generate item responses, person trait parameters nθ  were randomly drawn 

for each replication from a standard normal distribution N ~ (0,1). The true nθ and 

population generating threshold parameters determined for each response style were 

substituted in the MPCM formula. Five category probabilities ( ikφ ) were computed for 

each respondent as demonstrated in Equation 5. These obtained category probabilities 

became the success probability of a multinomial distribution.  Assuming that one 

experiment was performed that yielded k = 5 possible outcomes with probabilities 1iφ

…, ikφ , if the kth outcome was obtained, the kth entry of the multinomial random 

vector took on a value of 1, while all other entries took on values of 0. The value 1 

was scored as k-1, and finally category scores from 0 to 4 were assigned. The item 

responses data used in the simulation was generated with R 2.14.1 (R Development 

Core Team, 2011).  

The following Figures 14 and 15 present the conditional frequency 

distributions of category responses obtained for a single simulated data set. In the 

plots, the data set is divided into four groups according to the respondents’ θ  level, 

i.e., below 25th percentile, from 25th to 50th, from 50th to 75th, and above 75th 

percentile. Within each group, the frequency of category responses was counted. 

Figure 14 is based on an item with lower item location whereas Figure 15 is based on 

an item with higher item location.  It is clearly seen from Figures 14 and 15 that the 

category response probabilities are jointly influenced by the respondent’s θ  level and 
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a response style. For the ORS class with no response style bias involved, high 

response category frequencies gradually shift from the lower categories to higher 

categories as the percentile becomes higher. This pattern of category probability shift 

conditional on θ  level is commonly observed across all response-style classes. If ERS, 

MRS, or ARS is involved, however, particular response categories tend to produce the 

largest frequency within across all levels of θ  while the gradual shift of the category 

probability conditional on θ  levels remains.  
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Figure 14. Conditional frequency distributions of category responses for an item with 

lower item location 
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Figure 15. Conditional frequency distributions of category responses for an item with  

higher item location 
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3.4 Analysis and Evaluation Criteria 

The simulated data sets that represent different mixtures of response-style 

respondents were estimated with the MCPM using mdltm software. mdltm allows the 

analyses with a wide range of latent variable models such as uni-dimensional and 

multi-dimensional IRT models, latent class models, mixture IRT models and 

diagnostic models (e.g., von Davier, 2005b). It implements the EM algorithm 

(Dempster, Laird, & Rubin, 1977) to obtain marginal maximum likelihood estimates 

of parameters. The parameter estimates provided by mdltm were collated and the 

evaluation criteria were calculated using R 2.14.1. 

3.4.1 Fitting competing models  

 Assuming that the true model was known as the MPCM but the number of 

latent classes in population was unknown, the current study fit simulated data with 

three MPCMs with increasing numbers of latent classes. For 2-class generated data 

sets, 1-, 2-, and 3-class MPCM were fit to the data. For 3-class generated data sets, 2-, 

3-, and 4-class MPCM were fit. Finally, for 4-class generated data sets, 3-, 4-, and 5-

class MPCM were fit. These three competing estimation models: i) under-fitting 

model, which had one class less than the data generation model, ii ) correct-fitting 

model, which had the same number of classes as the data generation model, and iii ) 

over-fitting model, which had one class more than the data generation model, were 

compared with respective to their information criterion statistics, AIC, BIC, and 

CAIC.  
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3.4.2 Convergence check  

 To ensure that the results of each simulation analysis were grounded only on 

well-estimated solutions, convergence checks were conducted for each of the three 

competing solutions for each simulated data set. If non-convergence occurred for the 

correct-fitting model, all three competing solutions from that replication were 

discarded. To make up for the simulation data sets that were discarded as a result of 

non-convergent solutions, additional data set were generated. This allowed for a total 

of one hundred converged replication results for each simulation condition.   

3.4.3 Model selection  

To assess the relative effectiveness of the performance of the information 

criterion statistics, AIC, BIC, and CAIC in identifying the correct number of latent 

classes in the MPCM, the index values were obtained for each of the three estimation 

models. One among the three estimation models that provided the smallest index value 

was selected as being associated with the best-fitting model. For each index, the 

proportions of replications in which the true model was identified as the best-fitting 

model were computed. In addition, the proportions of under-identification and over-

identification of latent classes were also examined. The results of the three indices 

were compared to find their relative effectiveness in identifying the correct number of 

latent classes under the various simulation conditions. 

3.4.4 Problem of label switching  

 Label switching refers to the arbitrary mismatch between generated class 

membership and estimated class membership in a simulation study of mixture 
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modeling. In the current study, for a mixture data of ORS and ERS, for example, there 

are two possible ways that the estimated latent classes are labeled: ORS for the first 

estimated class and ERS for the second estimated class or conversely, ERS for the first 

and ORS for the second estimated class. In a general formulation, there are up to C! (C 

× C-1 × … ×2×1, where C is the number of latent classes) possible permutations of 

latent class membership assignments. Only one of the possible permutations is the 

correct match and others indicate the occurrence of various patterns of label switching.  

 In order to obtain correct measures for parameter recovery evaluation, 

switched labels must be detected and mismatched class membership must be corrected 

before aggregating estimates across multiple replications. In a simulation study where 

a large number of replication results need to be aggregated, it is practically impossible 

to manually inspect individual output for each data set to identify the occurrence of 

label switching. The process of correcting latent class labels needs to be automatized 

in the course of analysis. 

 In the current study, a post-hoc technique was devised by the author to detect 

and correct switched latent class membership based on the information from the 

threshold estimates. This algorithm takes advantage of the distinctive order of 

thresholds that characterize each response-style class. As presented in Table 3, the 

mean values of population generating thresholds across all items for each response-

style class show particular orders in terms of their magnitude. If the means of 

estimated thresholds (1δ , 2δ , 3δ , and 4δ ) for an estimated class satisfies the order of 

{ 1δ  < 2δ  < 3δ  < 4δ }, that class is identified as an ORS class. If the set of means 
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satisfies the condition of {1δ  > 0 and 4δ  < 0} in a class, that class is identified as an 

ERS class. For MRS and ARS class, the conditions of { 1δ < 0 and 2δ <0 and 1δ > 2δ } 

and { 1δ <0 and 2δ >0 and 3δ <0 and 4δ >0} are applied, respectively.  

 
Table 8. Means of Generated Threshold Parameters for Each Response-style Class 

Class Threshold1 Threshold2 Threshold3 Threshold4 
ORS -1.5037 -0.6644 0.6644 1.5037 
ERS 0.8243 0.4845 -0.4845 -0.8243 
MRS -1.4938 -2.6157 2.6157 1.4938 
ARS -0.3363 0.4550 -0.5150 0.2763 

 

 In addition to employing this algorithm using thresholds characteristics, a 

different algorithm that is based on the information from respondent classification 

developed by Tueller, Drotar, and Lubke (2011) was implemented. The results of 

employing these two different algorithms were compared. 

3.4.5 Classification accuracy  

 The classification accuracy was evaluated for the correct-fitting model 

solutions. The classification accuracy was computed as the proportion of respondents 

who were assigned to their generated class membership based on the magnitudes of 

the posterior probabilities for the various class memberships. Not only the correct 

classification rate but also the nature of misclassifications was closely examined. 

Misclassified individuals were cross-tabulated for all possible combinations of 

misclassification to explore whether there was any particular misclassification pattern.  
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3.4.6 Threshold parameter recovery  

 The accuracy of threshold parameter recovery was evaluated in terms of 

Pearson r, root mean square error (RMSE), and standard error of estimates (SE). 

Correlation and RMSE provide the measures of overall accuracy of parameter 

estimates. The closer the generated and estimated parameters are to each other, the 

higher positive correlation and the smaller RMSE are expected. For threshold 

parameter recovery, SE was computed based on the standard deviation of sample 

estimates from their average value. This indicates the stability of parameter estimates. 

A great fluctuation of estimated parameter values from replication to replication 

increases the SE. For item parameter recovery, the four evaluation criteria were 

calculated for each of four thresholds. They are computed as follows: 
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is the Pearson r between kth true threshold (ikδ )and its estimate (ikδ̂ ). i 

indicates ith item (i = 1,…I), w is wth replication (w = 1,…W).  

The mean bias, which is the measure of discrepancy between generated and 

estimated parameters, was not considered as an evaluation criterion for threshold 
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parameter recovery in the current study. During the parameter estimation in the current 

study, the item constrain method was used for the purpose of model identification. As 

introduced briefly in Section 2.5.1, either item parameter or person trait parameter 

needs to be constrained to solve the indeterminacy problem in IRT models. The 

software mdltm allows user to choose either of the two constrain methods. If item 

constraints are used, the sum of the estimated thresholds will be zero in each latent 

class while if person constraints are used, the sum of the estimated θ s will be zero in 

each latent class. The current study used the former method and, consequently, the 

mean bias across thresholds and items turned out to be zero for all simulation 

conditions, which was illegitimate to be used as an evaluation criterion as was 

originally proposed.  

3.4.7 Person trait parameter recovery  

 The accuracy of person trait parameter (θ ) recovery was evaluated in terms of 

Pearson r, bias, and root mean square error (RMSE). For theta recovery, the evaluation 

criteria were calculated for each class as follows: 
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where nθ  is person nth true trait , nθ̂  is its estimate and N is the sample size or total 

number of respondents. 

3.4.8 Model-based correction of score bias due to response styles  

 The relation between sum scores and the MPCM θ  estimates was investigated. 

To explore how the relation differ across latent classes when two, three, or four 

different types of response style were mixed, plots in which the MPCM θ  estimates 

were depicted as a function of sum scores were created.  

3.4.9 Evaluation of effects of manipulated factors  

 One of the main interests of the current study was to investigate the influence 

of the four factors on the MPCM performance: i) type of mixture at five levels, ii ) 

mixing proportions at two levels, iii ) sample size at three levels, and ii ) test length at 

three levels. 

 Using the evaluation criteria measures (i.e., percentages, biases, RMSEs, 

correlations, and SEs) as the dependent variables, several factorial ANOVAs were 

conducted. Four main effects of the manipulated factors and all two-way interaction 

effects were included in the ANOVA model. The higher order interaction effects were 

folded into the error term. In the current study, many cell means were unavailable 

because of the exclusions of the simulation conditions in which the problems of 

estimation and label switching occurred. Under this incomplete design where some 

estimated cell means were missing, the interpretation of higher order interaction 

effects was seen as being quite difficulty to properly interpret and quite limited and, 
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thus, would provide limited (possibly misleading) information about the manipulated 

factors in this study.  

 The influence of manipulated factors was determined to be statistically 

significant if the associated p-value < .05. Practical significance was measured by the 

effect size index, 
total

effect

SS

SS
=2η , defined as the variance accounted for by the 

manipulated effect. According to Cohen (1988), 2η of 0.06 and 0.14 represent medium 

and large effect sizes for factorial ANOVA analysis, respectively. In the current study, 

the importance of the effects of the manipulated factors was evaluated based on the 

combination of statistical significance and practical significance. Only those 

manipulated factors for which their p-value was smaller than 0.05 and, at the same 

time, 2η was greater than 0.06 for medium effect or 0.14 for large effect was 

interpreted for its importance.   
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Chapter 4: Results 

 
Chapter 4 presents results of the current simulation study in six sections. 

Before presenting the results to answer the main research questions, the first section 

4.1 addresses how the current study treated problems related to the convergence of the 

program to provide reasonable model parameter estimates as well as issues 

surrounding label switching. Section 4.2 provides the results of model selection under 

the MPCM based on information criterion statistics. Assessment of the results of 

model performance in the recovery of latent class membership, item threshold 

parameters, and person trait parameters are provided in Section 4.3, 4.4, and 4.5, 

respectively. Finally, findings regarding the model-based correction of person trait 

estimates are discussed in Section 4.6.  

4.1. Initial Treatment of Estimation Problems and Label Switching Problems 

4.1.1 Non-convergence and boundary estimates  

The population models used to generate item response data for this simulation 

study were five different MPCMs: i) three 2-class MPCMs representing mixtures of 

the ORS-ERS, ORS-MRS, and ORS-ARS, ii ) a 3-class MPCM representing a mixture 

of the ORS-ERS-MRS, and iii ) a 4-class MPCM representing a mixture of the ORS-

ERS-MRS-ARS. These five data generation models were estimated under not only the 

same MPCM model (i.e., correct-fitting), but also an under-fitting model (i.e., 

estimation with the MPCM that has one class fewer than the data generation model) as 
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well as over-fitting (i.e., estimation with the MCPM that has one more latent classes 

than the population generating model).  

Two situations that may indicate problems in achieving convergence of 

parameter estimates were checked for these three estimation solutions. The first 

situation could be characterized when estimation terminated without convergence. The 

second situation that prompted monitoring occurred when maximum likelihood 

estimates of item thresholds skirted the boundary of permissible parameter values. 

These two problems were reported separately. The software mdltm provides an 

explicit warning message that indicates the occurrence of the first of these situations. 

The percentage of replications in which this warning message appeared is reported in 

Table 9. For the second condition, threshold estimates that were more extreme than 

9.0 or -9.0 were flagged and the percentage of the replications in which one or more 

boundary estimates were flagged is reported in parentheses in Table 9. 

 Correct-parameterization. Under the correct-fitting, non-convergence as well 

as boundary estimates did not occur across all levels of the ORS-ERS mixtures. 

However, for the other types of mixtures, significant numbers of boundary estimates 

appeared when the sample size was relatively small (N = 1200). Specifically, 

boundary estimates occurred for the MRS or ARS thresholds when the expected 

response probabilities for the corresponding response categories were essentially zero. 

When the sample size was N = 1200 and the mixing proportions were π = 0.9 versus π 

= 0.1, there were only 120 responses in the MRS or ARS class. Recall that the 

expected category probability for the 1st and 5th response categories for the MRS class 
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was set up to be approximately 6% while that for the 1st, 2nd, and 3rd categories for the 

ARS class was approximately 5%. That means that as small as 72 or 60 responses 

were assigned for those response categories. This data generation condition resulted in 

essentially zero expected frequencies in some randomly generated samples and may 

very well explain why the software converged to such extreme boundary values. It 

appears that the sample size of N = 1200 was not large enough to provide sufficient 

information and subsequent maximum likelihood estimates often fell at the boundary.  

Under-parameterization. Under the under-fitting, neither non-convergence nor 

boundary estimates occurred for any of the 2-response-style mixtures as well as for the 

3-response-style mixtures. However, the 4-response-style mixture with 4-items and a 

sample size of N = 6000 produced a non-convergence rate of 0.49 when it was fit with 

an under-fitting model. 

Over-parameterization. Expectedly, under the over-fitting, estimation 

problems increased and almost all simulation conditions produced boundary threshold 

estimates. The average rate of the occurrence of boundary estimates problems was 

0.46. The higher rate of boundary estimates were observed when i) the data generation 

model had three or four latent classes, ii ) the sample size was N = 1200, or iii ) the 

mixing proportions were unequal. These findings may contain real implications for 

practitioners using these methods in real data analytic situations. That is, the 

occurrence of infeasible extreme threshold values may be an indication of over-

parameterization (estimating a model with too many latent classes) or an insufficient 

sample size to estimate parameters of a given data set, or a combination of the two.   
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Table 9. Percentages of the Occurrence of Non-convergence and Boundary Threshold 

Estimates 

 Type of  
Mixture 

ORS  
ERS 

ORS 
MRS 

ORS 
ARS 

 
Estimation 

model 
1class 2class 3class 1class 2class 3class 1class 2class 3class 

Mixing 
Proportions 

Item Sample            

  1200  0 (0)† 0  (0) 0  (6) 0  (0) 0  (9) 0 (67) 0  (0) 0  (0) 1 (6) 

 4 3000 0  (0) 0  (0) 0  (0) 0  (0) 0  (3) 0 (10) 0  (0) 0  (0) 0 (1) 

  6000 0  (0) 0  (0) 0  (1) 0  (0) 0  (0) 0 (16) 0  (0) 9  (0) 8 (1) 

  1200 0  (0) 0  (0) 5 (51) 0  (0) 0  (0) 0 (96) 0  (0) 0  (0) 0 (56) 

50:50 10 3000 0  (0) 0  (0) 1 (35) 0  (0) 0  (0) 0 (82) 0  (0) 0  (0) 0 (92) 

  6000 0  (0) 0  (0) 2 (27) 0  (0) 0  (0) 0 (84) 0  (0) 0  (0) 0 (87) 

  1200 0  (0) 0  (0) 2 (44) 0  (0) 0  (0) 2 (99) 0  (0) 0  (0) 2 (33) 

 20 3000 0  (0) 0  (0) 2 (41) 0  (0) 0  (0) 1 (87) 0  (0) 0  (0) 0 (26) 

  6000 0  (0) 0  (0) 2 (32) 0  (0) 0  (0) 16(50) 0  (0) 0  (0) 0 (60) 

  1200 0  (0) 0  (0) 0 (19) 0  (0) 3  (1) 7 (24) 0  (0) 3(25) 13(42) 

 4 3000 0  (0) 0  (0) 0  (6) 0  (0) 1  (3) 20(13) 0  (0) 0  (2) 15 (8) 

  6000 0  (0) 0  (0) 0  (0) 0  (0) 0  (0) 0 (21) 0  (0) 8  (0)   7 (5) 

  1200 0  (0) 0  (0) 1 (48) 0  (0)  0(65)‡ 0 (79) 0  (0)  1(48) ‡ 0 (15) 

90:10 10 3000 0  (0) 0  (0) 0 (34) 0  (0) 0 (16) 0 (54) 0  (0) 0  (6) 0 (16) 

  6000 0  (0) 0  (0) 0 (31) 0  (0) 0   (0) 1 (17) 0  (0) 0  (0) 0 (0) 

  1200 0  (0) 0  (0) 0 (25) 0  (0)  0(75) ‡ 0  (93) 0  (0) 0(58) ‡ 0 (64) 

 20 3000 0  (0) 0  (0) 1 (22) 0  (0) 0   (7) 0 (37) 0  (0) 0  (0)  0 (23) 

  6000 0  (0) 0  (0) 3 (77) 0  (0) 0   (0) 7 (45) 0  (0) 0  (0) 3  (4) 
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Table 9_continued  

 
Type of 
Mixture 

ORS  
ERS 
MRS 

ORS 
ERS 
MRS 
ARS 

 
Estimation 

model 
2class 3class 4class 3class 4class 5class 

Mixing 
Proportions 

Item Sample        

  1200 0   (0) 0   (8) 0  (41) 0   (5) 0 (48) ‡ 0  (67) 

 4 3000 0   (0) 0   (5) 2  (21) 0   (0) 0 (12) 0  (41) 

  6000 0   (0) 1   (1) 0  (12) 0   (0) 0   (0) 0  (21) 

  1200 0   (0) 0   (5) 4  (79) 0 (13) 0 (27) 3  (89) 

50:50 10 3000 0   (0) 0   (0) 0  (32) 0   (0) 0   (1) 0  (44) 

  6000 0   (0) 0   (0) 2  (51) 0   (0) 0   (0) 2  (44) 

  1200 0   (0) 0   (1) 0  (29) 0   (6) 0 (10) 1  (74) 

 20 3000 0   (0) 0   (0) 0  (82) 0   (0) 0   (0) 0  (51) 

  6000 0   (0) 0   (0) 0  (92) 0   (0) 0   (4) 0  (77) 

  1200 0   (0) 0 (15) 0  (61) 0  (29) 0 (46) ‡ 0  (71) 

 4 3000 0   (0) 0   (7) 0  (42) 2  (11) 0 (11) 1  (30) 

  6000 0   (0) 2   (3) 3  (14) 49  (0) 5   (3) 5  (66) 

  1200 0   (0) 0 (69) ‡ 1  (93) 1  (51) 0 (96) ‡ 2  (99) 

90:10 10 3000 0   (0) 0 (19) 1  (90) 0  (18) 0 (32) 0  (77) 

  6000 0   (0) 0   (0) 0  (44) 0   (1) 0   (3) 0  (50) 

  1200 0   (0) 0 (79) ‡ 1  (98) 0 (78) 0 (93) ‡ 0  (99) 

 20 3000 0   (0) 0   (8) 0  (79) 0   (8) 0 (19) 0  (83) 

  6000 0   (0) 1   (9) 0  (32) 0   (0) 0   (9) 0  (43) 

Note. † Percentage of the occurrences of boundary estimates is presented in parentheses 
‡ Excluded from simulation summary due to high occurrence rate of boundary 

estimates 
 

 

Exclusion of estimation solutions with estimation problems. Ten conditions 

out of ninety in the current simulation design presented boundary thresholds estimates 
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in more than approximately half of the replications when the generated data sets were 

parameterized with the correct model. These problematic conditions with a high level 

of estimation problems were excluded from the simulation summary and are listed in 

Table 10. For other simulation conditions with a moderate level of estimation 

problems, (i.e., either non-convergence or estimates at boundary values between 1 % 

and 30 %), the problematic results were discarded and new replications that did not 

present these problems replaced the discarded replications.  

 

Table 10.Specifications of Simulation Conditions Excluded from Simulation Summary 

Due to Estimation Problems  

Type of mixture 
Mixing 

proportions 
Number 
of items 

Sample 
size 

Occurrence rate of 
boundary estimates (%) 

ORS-MRS 0.9 : 0.1 10 1200 65 

ORS-MRS 0.9 : 0.1 20 1200 75 

ORS-ARS 0.9 : 0.1 10 1200 48 

ORS-ARS 0.9 : 0.1 20 1200 58 

ORS-ERS-MRS 0.9 : 0.1 10 1200 69 

ORS-ERS-MRS 0.9 : 0.1 20 1200 79 

ORS-ERS-MRS-ARS 0.5 : 0.5 4 1200 48 

ORS-ERS-MRS-ARS 0.9 : 0.1 4 1200 46 

ORS-ERS-MRS-ARS 0.9 : 0.1 10 1200 96 

ORS-ERS-MRS-ARS 0.9 : 0.1 20 1200 93 

 

In general, parameter estimation in the MPCM achieved fairly high 

convergence rates across various simulation conditions. However, the sample size of  
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N = 1200 appeared to be insufficient to provide well-estimated parameters especially 

when a small proportion of the respondents in a sample presented ERS, MRS or ARS.  

4.1.2 Label switching problems  

As is usual in any mixture modeling simulation study, label switching 

occurred. In the current study, label switching was detected using two different 

algorithmic approaches. The first algorithm was based on the information from the 

threshold estimates developed by the author while the second algorithm was based on 

the information from respondent classifications developed by Tueller, Drotar, and 

Lubke (2011).  

Label switching correction algorithm based on thresholds information. As 

explained in Section 3.4.4, to automate the correction of switched class membership, 

an algorithm was developed that exploited the distinctive order of the thresholds that 

characterized each response style. To demonstrate how the algorithm works, an 

illustrative example in which threshold estimates from the 4-response-style mixture 

with 10-itmes and a sample size of N = 6000 was used in the following.  

First, the mean thresholds for ten items were calculated for each replication. 

Instead of using individual item threshold estimates, the mean values over all items 

were used because mean values were more consistent from replication to replication 

than individual item threshold estimates. The following matrix shows the mean 

thresholds for the first five replications. 
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 Class 1 Class 2 Class 3 Class 4 

 1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

Rep1 0.83 0.45 -0.47 -0.81 -1.46 -2.69 2.63 1.52 -0.25 0.39 -0.46 0.32 -1.47 -0.73 0.71 1.50 

Rep2 0.86 0.39 -0.41 -0.85 -1.40 -2.71 2.66 1.46 -0.39 0.44 -0.42 0.38 -1.48 -0.70 0.78 1.41 

Rep3 0.83 0.54 -0.52 -0.86 -1.45 -0.65 0.65 1.44 -0.19 0.45 -0.54 0.29 -1.44 -2.58 2.63 1.40 

Rep4 -1.44 -0.68 0.62 1.50 0.83 0.51 -0.41 -0.93 -0.27 0.45 -0.48 0.30 -1.41 -2.59 2.55 1.45 

Rep5 -1.48 -0.61 0.65 1.44 0.84 0.42 -0.48 -0.78 -0.38 0.70 -0.54 0.21 -1.47 -2.55 2.61 1.42 

 

 The first set of four thresholds from Replication 1 satisfies the condition of  

{ 1δ  > 0 and 4δ  < 0}, which characterizes the ERS class. Note that any of the 

remaining sets do not meet this condition. The second set satisfies the condition of  

{ 1δ < 0 and 2δ <0 and 1δ > 2δ }, which characterizes the MRS class. The third set 

satisfies the condition of {1δ <0 and 2δ >0 and 3δ <0 and 4δ >0}, which characterizes 

the ARS class and finally, the fourth set satisfies the condition of { 1δ  < 2δ  < 3δ  < 4δ

}, which characterizes the ORS class. Originally, the generated latent class labels were 

ORS, ERS, MRS, and ARS for class 1, class 2, class 3, and class 4, respectively. Thus, 

the estimated class labels for Replication 1, i.e., ERS, MRS, ARS, and ORS were 

identified as switched labels.  

 There are 4! = 24 possible ways that four class labels can be switched. Each 

replication was checked for all twenty-four possible mismatches and the proper label 

was labeled for each latent class. The switched class labels that were identified for the 

five replications in the illustration are as follows:  

  



 

95 
 

 Class 1 Class 2 Class 3 Class 4 

Rep1 ERS MRS ARS ORS 

Rep2 ERS MRS ARS ORS 

Rep3 ERS ORS ARS MRS 

Rep4 ORS ERS ARS MRS 

Rep5 ORS ERS ARS MRS 

  

Based on these identified class labels, the thresholds matrix was reorganized as 

presented below. Likewise, matrices of class membership assignment as well as 

person trait estimates (not presented in this document) were also rearranged for use in 

the subsequent analyses in the study.  

 ORS ERS MRS ARS 

 1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

Rep1 -1.47 -0.73 0.71 1.50 0.83 0.45 -0.47 -0.81 -1.46 -2.69 2.63 1.52 -0.25 0.39 -0.46 0.32 

Rep2 -1.48 -0.70 0.78 1.41 0.86 0.39 -0.41 -0.85 -1.40 -2.71 2.66 1.46 -0.39 0.44 -0.42 0.38 

Rep3 -1.45 -0.65 0.65 1.44 0.83 0.54 -0.52 -0.86 -1.44 -2.58 2.63 1.40 -0.19 0.45 -0.54 0.29 

Rep4 -1.44 -0.68 0.62 1.50 0.83 0.51 -0.41 -0.93 -1.41 -2.59 2.55 1.45 -0.27 0.45 -0.48 0.30 

Rep5 -1.48 -0.61 0.65 1.44 0.84 0.42 -0.48 -0.78 -1.47 -2.55 2.61 1.42 -0.38 0.70 -0.54 0.21 

 

This label switching correction algorithm successfully identified switched 

labels when the quality of thresholds recovery was fairly good. However, this 

algorithm seemed to be rather strict, so that some switched labels were not 

automatically detected although they were discernible if inspected individually by 

looking at the whole picture of all items’ threshold estimates in all classes.  

Label switching correction algorithm based on classification information. 

Tueller, Drotar, and Lubke (2011) developed a switched label detection algorithm that 
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utilized respondent classification results after estimation was completed. Their 

algorithm assumed that the frequency of correctly classified cases must be greater than 

the frequencies of misclassified cases. Therefore, each column of the class assignment 

matrix must have one column maxima. To help in understanding the algorithm 

developed by Tueller and his colleagues, three exemplar matrices of the frequencies of 

class membership assignment are presented below. The columns of the matrices 

represent true class membership and the rows represent assigned class membership. 

The first matrix shows a case where labels were not switched. The second matrix 

shows a case where the labels were switched and can be corrected. The third matrix 

shows a case where the labels were switched but cannot be corrected via their 

algorithm because its column has more than one column maxima.  

 Labels not switched   Labels Switched  Cannot be corrected 

       

 True 1 True 2 True 3   True 1 True 2 True 3  True 1 True 2 True 3 

Assign1 96 6 2  Assign1 9 60 9 Assign1 38 33 36 

Assign2 1 91 5  Assign2 80 1 14 Assign2 38 31 35 

Assign3 3 7 89  Assign3 11 39 77 Assign3 24 36 34 

 

Tueller et al. (2011) pointed out that reliable use of this algorithm requires reasonably 

high classification accuracy. They provided guidelines to prevent spurious correction 

by setting up a level of class assignment criterion that allows the researcher to decide 

how much more respondents are required to be correctly assigned than expected by 

chance.      

Although drastic improvement was not anticipated from an additional 

application of the Tueller’s algorithm, it seemed to be a potential alternative to 
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maximize the efficiency of automatic procedure to resolve the label switching 

dilemma. Since Tueller’s algorithm uses different sources of information, some 

replications for which the algorithm based on thresholds was not able to detect 

switched labels may find a solution via Tueller’s algorithm.  

Results of detecting and correcting switched labels. When the two algorithms 

were both able to solve switched labels, they yielded identical results. Interestingly, 

switched labels in some replications were detected by only one of the algorithms, but 

not both. The two algorithms, therefore, were incorporated in the course of the 

analysis and, as a result, switched labels in more replications were solvable in an 

automated manner than when either of the two algorithms was used alone.  

There were thirteen simulation conditions in which label switching could not 

be detected for some of the replications despite applying the two algorithms as well as 

a more in-depth manual inspection carried out for individual outputs. The following 

illustration presents a case of switched labels, which was not able to be solved by any 

of the three methods: i) estimated thresholds did not hold the particular conditions of 

the order of thresholds, ii ) the class assignment matrix presented more than one 

column maxima, and iii ) the manual inspection of the thresholds of all four items was 

not informative to separate three classes.  
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 Class 1 Class 2 Class 3 

 1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

 -1.87 -0.97 1.44 1.41 -0.19 -0.82 0.17 0.84 -1.23 -0.53 0.72 1.04 

 
 Labels not switched 

  

 True 1 True 2 True 3 

Assign1 381 0 95 

Assign2 347 56 18 

Assign3 232 64 7 

 
 Class 1 Class 2 Class 3 

 1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

1δ  
2δ  

3δ  
4δ  

Item1 -2.28 -0.95 1.37 1.39 -0.77 -0.28 -0.21 0.89 -1.39 -0.47 -0.33 -0.57 

Item2 -2.48 -0.91 1.57 1.74 -0.10 -0.52 0.04 0.95 -1.17 -0.27 2.22 3.26 

Item3 -1.64 -1.05 0.81 1.12 -0.61 -0.85 0.07 0.53 -1.43 -0.90 -0.34 -0.34 

Item4 -1.08 -0.99 1.99 1.38 0.71 -1.62 0.80 0.98 -0.94 -0.46 1.32 1.82 

 

As implied in the above example, the fact that there were unsolvable switched 

labels should not be regarded as an indication of any flaw or ineffectiveness of the 

algorithms. Instead, it seemed to be a reflection of the nature of the generated data sets 

and/or quality of the estimation. These thirteen conditions were also the ones for 

which the model selection based on the information criteria failed to identify the 

correct data generation model (The related results of model selection are presented 

subsequently in Section 4. 2). The specifications of the simulation conditions in which 

unsolvable switched labels were observed and the occurrence rates are summarized in 

Table 11. For these thirteen conditions, unsolvable replications were discarded and 

only the remaining solvable solutions were used to compute the evaluation criteria. 
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Table 11. Specifications of Simulation Conditions in which Switched Labels are 

unsolvable 

Type of mixture 
Mixing 

proportions 
Number 
of items 

Sample 
size 

Percentage of the 
occurrences of 

unsolvable switched 
labels 

ORS-ERS 0.9 : 0.1 4 1200 41 

ORS-MRS 0.9 : 0.1 4 1200 41 

ORS-MRS 0.9 : 0.1 4 3000 40 

ORS-ERS-MRS 0.5 : 0.5 4 1200 14 

ORS-ERS-MRS 0.9 : 0.1 4 1200 45 

ORS-ERS-MRS 0.9 : 0.1 4 3000 45 

ORS-ERS-MRS 0.9 : 0.1 4 6000 42 

ORS-ERS-MRS-ARS 0.5 : 0.5 4 3000 46 

ORS-ERS-MRS-ARS 0.5 : 0.5 4 6000 56 

ORS-ERS-MRS-ARS 0.5 : 0.5 10 1200 43 

ORS-ERS-MRS-ARS 0.9 : 0.1 4 3000 67 

ORS-ERS-MRS-ARS 0.9 : 0.1 4 6000 63 

ORS-ERS-MRS-ARS 0.9 : 0.1 10 3000 54 

 

4.2. Model selection 

Once the replications that did not converge had been replaced, the AIC, BIC, 

and CAIC values were collated from each of the three competing estimation solutions 

for each replication. The percentage of the replications in which one of the competing 

models being identified as the best-fitting model by each information criterion index 

was recorded. The following Tables 12-16 presented the results.    

Generally, the BIC and CAIC performed nearly equally well with a slightly 

higher accuracy rate for the BIC across many conditions. On the other hand, the AIC 

resulted in over-identification problem (choosing a model with more classes) across all 
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of the simulation conditions. In the current study, the BIC was found to be the most 

effective information criterion statistic to use for the identification of the correct 

number of latent classes of the MPCM. The model selection results for each type of 

mixture are presented in the following sections in detail.  

Model selection under the ORS-ERS mixtures. Table 12 presents the 

selection results for the ORS-ERS mixtures. The ORS-ERS mixtures were well 

recognized as 2-response-style mixtures based on the BIC and CAIC across all 

simulation conditions. An exception was the condition of the 4-items and a sample of 

N = 1200 with unequal mixing proportions, which resulted in 97% of under-

identification problem (choosing a model with fewer classes). Note that this condition 

presented 41% of unsolvable label switching problem as well. Table 13 presents the 

results of the model selection under the ORS-MRS mixtures. Generally, the ORS-

MRS mixtures were not identified as correctly as other types of 2-response-style 

mixtures.  

As introduced in Section 2.6.2, “degree of heterogeneity” is related to the 

difficulty of detecting component distributions in the MCPM. It was predicted that 

when the item parameters and threshold distances differ strongly, “unmix” the mixture 

distribution will be easier in Rost (1991). Looking back at the category characteristic 

curves (CCCs) illustrated in Figure 4 - Figure 8, the differences between the ORS and 

MRS thresholds may be seen as being less distinctive than those between the ORS and 

ERS thresholds as well as the ORS and ARS thresholds. Consequently, the ORS-MRS 

mixtures were relatively more difficult to be identified as a mixture distribution.  
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Table 12.Model Selection under the ORS-ERS Mixtures 

Information 
Criterion 

AIC BIC CAIC 

Number of  
classes of the estimation model 

1 2 3 1 2 3 1 2 3 

Type of 
Mixture 

Mixing 
Proportions 

Item Sample           

   1200 0 89 11 0 100 0 0 100 0 
  4 3000 0 97 3 0 100 0 0 100 0 
   6000 0 92 8 0 100 0 0 100 0 
   1200 0 74 26 0 100 0 0 100 0 
 50:50 10 3000 0 85 15 0 100 0 0 100 0 
   6000 0 72 28 0 100 0 0 100 0 
   1200 0 78 22 0 100 0 0 100 0 
  20 3000 0 55 45 0 100 0 0 100 0 

ORS   6000 0 52 48 0 100 0 0 100 0 
ERS   1200 0 92 8 97 3 0 100 0 0 

  4 3000 0 87 13 1 99 0 6 94 0 
   6000 0 89 11 0 100 0 0 100 0 
   1200 0 71 29 0 100 0 0 100 0 
 90:10 10 3000 0 70 30 0 100 0 0 100 0 
   6000 0 38 62 0 100 0 0 100 0 
   1200 0 57 43 0 100 0 0 100 0 
  20 3000 0 52 48 0 100 0 0 100 0 
   6000 0 96 4 0 100 0 0 100 0 
             

When the condition was the 4-items and a sample size of N = 1200 with equal 

mixing proportions, only 48% of the ORS-MRS data sets were correctly identified. 

When the mixing proportions were unequal, the correct model selection rates based on 

the BIC or CAIC became even lower and an increase in the sample size from N = 

1200 to N = 6000 did not improve the rates significantly. Despite the increase in the 

number of items up to ten, the correct selection rates was still very low (5%) with a 

sample size of N = 1200.  
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Table 13.Model Selection under the ORS-MRS Mixtures  

Information 
Criterion 

AIC BIC CAIC 

Number of  
classes of the estimation model 

1 2 3 1 2 3 1 2 3 

Type of 
Mixture 

Mixing 
Proportions 

Item Sample           

   1200 0 83 17 52 48 0 77 23 0 
  4 3000 0 34 66 0 100 0 0 100 0 
   6000 0 11 89 0 100 0 0 100 0 
   1200 0 85 15 0 100 0 0 100 0 
 50:50 10 3000 0 86 14 0 100 0 0 100 0 
   6000 0 88 12 0 100 0 0 100 0 
   1200 0 59 41 0 100 0 0 100 0 
  20 3000 0 78 22 0 100 0 0 100 0 

ORS   6000 0 81 19 0 100 0 0 100 0 

MRS   1200 34 58 8 100 0 0 100 0 0 
  4 3000 1 94 5 100 0 0 100 0 0 
   6000 3 64 33 90 10 0 92 8 0 
   1200 0 65 35 95 5 0 100 0 0 
 90:10 10 3000 0 40 60 9 91 0 12 88 0 
   6000 0 5 95 0 100 0 0 100 0 
   1200 0 38 62 0 100 0 5 95 0 
  20 3000 0 8 92 0 100 0 0 100 0 
   6000 0 52 48 0 100 0 0 100 0 
             

Table 14 presents the results of model selection under the ORS-ARS mixtures. 

All levels of ORS-ARS data sets were identified correctly as a 2-class mixture based 

on the BIC and the CAIC. It appeared that the highly pronounced thresholds 

characteristics in the ARS class i.e., all thresholds are positive for half of items and all 

thresholds are negative for the other half of items, made the identification of this class 

easier than the identification of either the ERS or MRS class. 
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Table 14. Model Selection under the ORS-ARS Mixtures  

Information 
Criterion 

AIC BIC CAIC 

Number of  
classes of the estimation model 

1 2 3 1 2 3 1 2 3 

Type of 
Mixture 

Mixing 
Proportions 

Item Sample           

   1200 0 79 21 0 100 0 0 100 0 
  4 3000 0 56 44 0 100 0 0 100 0 
   6000 0 24 76 0 100 0 0 100 0 
   1200 0 50 50 0 100 0 0 100 0 
 50:50 10 3000 0 27 73 0 100 0 0 100 0 
   6000 0 11 89 0 100 0 0 100 0 
   1200 0 46 54 0 100 0 0 100 0 
  20 3000 0 10 90 0 100 0 0 100 0 

ORS   6000 0 0 100 0 100 0 0 100 0 
ARS   1200 0 86 14 0 100 0 0 100 0 

  4 3000 0 86 14 0 100 0 0 100 0 
   6000 0 77 23 0 100 0 0 100 0 
   1200 0 43 57 0 100 0 0 100 0 
 90:10 10 3000 0 20 80 0 100 0 0 100 0 
   6000 0 1 99 0 100 0 0 100 0 
   1200 0 24 76 0 100 0 0 100 0 
  20 3000 0 52 48 0 100 0 0 100 0 
   6000 0 3 97 0 100 0 0 100 0 
             

Table 15 and Table 16 present the results of the model selection for the 3-

response-style and 4-response-style mixtures. Given the results of the 2-response style 

mixtures, it was foreseen that the data generation model with three or four response 

styles would have difficulties to be identified under the 4-items conditions. The results 

showed that if each response style constitutes an equal proportion of population a 

sample size of N = 1200 with 10-items seemed to be minimum condition in which 3-

response-style or 4-response-style mixtures can be correctly identified based on the 

BIC or the CAIC. When the mixing proportions were unequal, a sample size of N = 

3000 with 10-items seemed to be necessary for the correct model selection.  
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Table 15. Model Selection under the ORS-ERS-MRS Mixtures  

Information 
Criterion 

AIC BIC CAIC 

Number of  
classes of the estimation model 

2 3 4 2 3 4 2 3 4 

Type of 
Mixture 

Mixing 
Proportions 

Item Sample           

   1200 12 74 14 99 1 0 100 0 0 
  4 3000 0 93 7 99 1 0 99 1 0 
   6000 0 87 13 38 62 0 57 43 0 
   1200 0 85 15 0 100 0 0 100 0 
 33:33:33 10 3000 0 96 4 0 100 0 0 100 0 
   6000 0 87 13 0 100 0 0 100 0 
   1200 0 91 9 0 100 0 0 100 0 
  20 3000 0 84 16 0 100 0 0 100 0 

ORS   6000 0 88 12 0 100 0 0 100 0 
ERS   1200 67 29 4 100 0 0 100 0 0 
MRS  4 3000 14 61 25 84 16 0 93 7 0 

   6000 3 57 40 96 4 0 97 3 0 
   1200 0 75 25 94 6 0 100 0 0 
 80:10:10 10 3000 0 75 25 0 100 0 0 100 0 
   6000 0 69 31 0 100 0 0 100 0 
   1200 0 91 9 0 100 0 5 95 0 
  20 3000 0 51 49 0 100 0 0 100 0 
   6000 0 71 29 0 100 0 0 100 0 
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Table 16.  Model Selection under the ORS-ERS-MRS-ARS Mixtures  

Information 
Criterion 

AIC BIC CAIC 

Number of  
classes of the estimation model 

3 4 5 3 4 5 3 4 5 

Type of 
Mixture 

Mixing 
Proportions 

Item Sample           

   1200 33 65 2 99 1 0 99 1 0 
  4 3000 16 16 68 99 1 0 99 1 0 
   6000 0 88 12 94 6 0 99 1 0 
   1200 0 89 11 4 96 0 23 77 0 
 25:25:25:25 10 3000 0 84 16 0 100 0 0 100 0 
   6000 0 91 9 0 100 0 0 100 0 

   1200 0 96 4 0 100 0 0 100 0 
ORS  20 3000 0 86 14 0 100 0 0 100 0 
ERS   6000 0 71 29 0 100 0 0 100 0 
MRS   1200 62 26 12 100 0 0 100 0 0 
ARS  4 3000 24 41 35 96 4 0 99 1 0 

   6000 1 67 32 46 54 0 48 52 0 

   1200 0 80 20 44 56 0 45 55 0 
 70:10:10:10 10 3000 0 78 22 7 93 0 7 93 0 
   6000 0 59 41 0 100 0 0 100 0 

   1200 0 92 8 0 100 0 6 94 0 
  20 3000 0 72 28 0 100 0 0 100 0 
   6000 0 37 63 0 100 0 0 100 0 

 

4.3 Classification of Respondents 

The simulation results regarding classification of respondents with respect to 

their response style are presented in two parts separately: i) for correct classifications 

and ii ) misclassifications. The mean percentage of respondents who were correctly 

assigned to their true (generated) class membership was computed over one hundred 

replications as an index of classification accuracy. Likewise, the mean percentage of 

respondents who were incorrectly assigned to a class other than their true class was 

computed as an index of misclassification rate. In addition, the standard error (SE) of 
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the classification accuracy as well as the SE of the misclassification were obtained by 

computing the standard deviation of the one-hundred percentage values.   

4.3.1. Classification accuracy  

Classification accuracy for each response class is presented in Table 17 along 

with the SE of the classification accuracy in parentheses.  The blank cells in the table 

represent the conditions for which a high proportion of replications presented 

estimation problems and thus, the classification accuracy was not computed. The cells 

marked with asterisks in the table are the conditions in which a high percentage of 

unsolvable label switching problems occurred. For those conditions, the classification 

accuracy was computed with a fewer number of solutions, the ones excluding 

unsolvable replications.  

The conditions marked with asterisks, however, presented an unexpected trend 

in the simulation results. In these conditions, although the simulated testing 

circumstances were relatively “poor” (e.g. smaller number of test items and small 

sample size) the classification accuracy turned out to be better. One explanation for 

this aberrant trend could be that because the solutions that achieved relatively more 

accurate estimates were selectively retained. It was also clearly shown that the 

classification accuracies were accompanied with very high SE under those conditions. 

Taking all of this information into account, the conditions marked with asterisks were 

excluded from the ANOVA analysis along with the conditions with estimation 

problems. 
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Table 17. Percentages of Correct Classification and Standard Errors of Classification Accuracy 

Type of mixture 
and mixing 
proportions 

ORS 0.5 
ERS 0.5 

ORS 0.9 
ERS 0.1 

ORS 0.5 
MRS 0.5 

ORS 0.9 
MRS 0.1 

ORS 0.5 
ARS 0.5 

ORS 0.9 
ARS 0.1 

Assigned class ORS ERS ORS ERS ORS MRS ORS MRS ORS ARS ORS ARS 

Item Sample size             

 
1200 80.78 

(4.1) 
86.88 
(5.3) 

90.14* 

(6.0) 
66.14* 

(11.5) 
80.60* 

(8.0) 
72.60* 

(7.2) 
65.32* 

(14.0) 
71.69* 

(22.4) 
94.07 
(2.2) 

94.02 
(2.1) 

98.45 
(1.1) 

86.27 
(4.1) 

4 
3000 81.46 

(2.5) 
87.77 
(2.3) 

93.73 
(2.8) 

61.43 
(10.2) 

90.70 

(2.4) 
58.32 

(5.5) 
91.72* 

(3.4) 
50.02* 

(10.3) 
94.50 
(1.8) 

93.77 
(1.8) 

98.80 
(0.7) 

86.41 
(2.4) 

 
6000 81.35 

(2.2) 
88.26 
(1.9) 

95.19 
(1.3) 

58.04 
(5.7) 

91.09 
(1.8) 

57.97 
(4.9) 

69.27 
(3.0) 

58.22 
(4.8) 

95.05 
(1.2) 

93.41 
(1.3) 

98.81 
(0.6) 

86.40 
(1.8) 

 
1200 93.15 

(1.2) 
96.30 
(1.0) 

97.36 
(0.7) 

86.58 
(4.1) 

90.85 
(1.9) 

87.94 
(2.2) 

 
 

 
98.00 
(0.5) 

98.64 
(0.7) 

 
 

 

10 
3000 93.32 

(0.9) 
96.27 
(0.6) 

97.39 
(0.4) 

87.18 
(2.7) 

91.05 
(1.1) 

88.24 
(1.3) 

97.45 
(0.9) 

69.15 
(4.2) 

98.91 
(0.4) 

98.79 
(0.6) 

99.76 
(0.2) 

96.27 
(1.3) 

 
6000 93.19 

(0.6) 
96.39 
(0.5) 

97.48 
(0.3) 

87.50 
(1.5) 

91.38 
(0.8) 

88.06 
(0.8) 

98.04 
(0.4) 

67.88 
(2.3) 

98.93 
(0.2) 

98.88 
(0.4) 

99.84 
(0.1) 

96.18 
(0.9) 

 
1200 96.69 

(0.6) 
98.93 
(0.4) 

98.29 
(0.5) 

96.22 
(1.8) 

96.44 
(1.0) 

94.19 
(1.5) 

  
99.69 
(0.3) 

99.61 
(0.3) 

  

20 
3000 96.73 

(0.5) 
98.88 
(0.3) 

98.38 
(0.3) 

96.31 
(1.2) 

96.49 
(0.5) 

94.38 
(0.7) 

99.04 
(0.2) 

86.17 
(2.4) 

99.74 
(0.2) 

99.63 
(0.2) 

99.90 
(0.1) 

98.84 
(0.7) 

 
6000 96.77 

(0.4) 
98.94 
(0.2) 

98.39 
(0.2) 

96.45 
(0.9) 

96.76 
(0.4) 

94.16 
(0.5) 

99.15 
(0.2) 

86.14 
(1.5) 

99.76 
(0.1) 

99.64 
(0.2) 

99.94 
(0.1) 

98.87 
(0.5) 
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Table 17_continued.  

Type of mixture and 
 mixing proportions 

ORS 0.33 ERS0.33 MRS 0.33 ORS 0.8 ERS 0.1 MRS 0.1 

Assigned class ORS ERS MRS ORS ERS MRS 

Item Sample size       

 
1200 55.27* 

(11.1) 
78.45* 

(13.4) 
77.32* 

(8.4) 
59.44* 

(13.2) 
69.38* 

(13.7) 
65.47* 

(10.6) 

4 
3000 59.29 

(9.5) 
83.16 

(9.3) 
75.61 

(8.7) 
73.66* 

(12.7) 
60.48* 

(11.5) 
64.32* 

(11.5) 

 
6000 61.6 

(10.0) 
84.63 
(7.7) 

74.51 
(9.8) 

80.27* 

(14.0) 
61.11* 

(9.5) 
55.03* 

(15.5) 

 
1200 83.27 

(3.4) 
95.73 
(1.4) 

87.60 
(2.9) 

   

10 
3000 83.98 

(1.9) 
96.06 
(0.9) 

88.65 
(1.5) 

94.76 
(0.7) 

87.43 
(2.7) 

70.49 
(3.7) 

 
6000 84.26 

(1.5) 
96.14 
(0.6) 

88.74 
(1.2) 

95.32 
(0.6) 

87.56 
(1.8) 

69.01 
(2.6) 

 
1200 93.06 

(1.5) 
98.80 
(0.7) 

94.14 
(1.4) 

   

20 
3000 93.27 

(0.9) 
98.84 
(0.4) 

94.42 
(1.0) 

97.18 
(0.4) 

96.38 
(1.1) 

86.71 
(2.3) 

 
6000 93.42 

(0.8) 
98.83 
(0.3) 

94.43 
(0.7) 

97.32 
(0.3) 

96.82 
(0.9) 

86.75 
(2.1) 

Type of mixture and 
mixing proportions 

ORS 0.25 ERS 0.25  
MRS 0.25 ARS 0.25 

ORS 0.7 ERS 0.1 
MRS 0.1ARS 0.1 

Assigned class ORS ERS MRS ARS ORS ERS MRS ARS 

Item Sample size         
 1200         
4 3000         
 6000         
 1200         

10 3000 
84.02 
(1.6) 

94.14 
(0.8) 

88.49 
(1.4) 

95.07 
(0.6) 

    

 6000 
84.03 
(1.2) 

94.04 
(0.7) 

88.81 
(1.0) 

95.16 
(0.5) 

94.76 
(0.6) 

86.44 
(2.3) 

70.70 
(2.8) 

94.20 
(1.1) 

 1200 
92.66 
(1.8) 

98.26 
(0.9) 

94.21 
(1.8) 

97.37 
(1.1) 

    

20 3000 
93.24 
(1.1) 

98.24 
(0.5) 

94.03 
(1.0) 

97.53 
(0.6) 

97.16 
(0.4) 

95.95 
(1.5) 

87.94 
(2.1) 

97.15 
(1.0) 

 6000 
93.42 
(0.7) 

98.37 
(0.3) 

94.49 
(0.6) 

97.52 
(0.4) 

97.25 
(0.3) 

96.13 
(0.8) 

87.47 
(1.5) 

97.19 
(0.6) 

Note.* Calculated excluding some of replications for which switched labels were unsolvable. 
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In the following reports of the factorial ANOVA results, only the effects that 

were both statistically and practically significant are interpreted for their importance.  

Overall classification accuracy. The percentages of correct classification 

obtained for each class were averaged across latent classes within the given mixture as 

an index of overall classification accuracy and used as a dependent variable of the 

factorial ANOVA. Table 18 summarizes the results of the factorial ANOVA on the 

overall classification accuracy.   

Table 18. Factorial ANOVA Results on Overall Classification Accuracy  

 Source 
Type III Sum 
of Squares 

Df            F p 2η  

 Mixture 1079.91 4 460.53 0.00 0.28 
 Proportion 104.35 1 178.00 0.00 0.03 
 Item 1635.07 2 1394.57 0.00 0.42 
 Sample 0.04 2 0.04 0.97 0.00 
 mixture * item 422.27 7 102.90 0.00 0.11 
 proportion * item 48.93 2 41.73 0.00 0.01 
 item * sample 0.34 4 0.15 0.96 0.00 
 mixture * 

proportion 
48.69 4 20.77 0.00 

0.01 
 mixture * sample 0.57 8 0.12 0.99 0.00 
 proportion * 

sample 
1.14 2 0.97 0.39 

0.00 
 Error 17.00 29     
 Corrected total 3908.84     

 

The significant factors on the overall classification accuracy were the main 

effect of the type of mixture (F(4,29) = 460.53, p < .001; 2η  = 0.28) and test length 

(F(3,29) = 1394.57, p < .001; 2η  = 0.42), as well as the interaction effect between type 

of mixture and test length (F(7,29) = 102.90, p < .001; 2η  = 0.11). The effect sizes of 
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the two main effects were large whereas that of the interaction effect was medium. 

Table 19 presents the cell means of the classification accuracy at the levels of 

independent variables of the test length and type of mixture.  

 

Table 19.Cell Means of the Overall Classification Accuracy   

  
Item 

Mixture  
  OE OM OA OEM OEMA Total 
  4 81.49 70.93 93.33 73.13 na 79.72 
 Mean 10 93.51 87.00 98.42 87.27 89.16 91.07 
  20 97.58 94.29 99.56 94.69 95.28 96.28 
  Total 91.41 86.10 96.87 88.00 92.98  

 

For the significant main effects, post-hoc comparisons were conducted. The 

results of the Tukey HSD (with αFW  = .05) tests showed that the overall classification 

accuracy differ significantly among all five different types of mixtures  as well as 

among the three levels of test length. As expected in the earlier sections based on the 

degrees of heterogeneity in the thresholds plots, the mixtures of ORS and ARS 

respondents were most accurately classified (96.87 %) while the ORS and MRS 

mixtures were most difficult to be correctly distinguished (86.10 %). The 3-response-

style mixtures showed lower level of overall classification accuracy than the 4-

response-style mixtures. It seems to be because of the contribution of the low 

classification accuracy of the MRS class to the overall classification for the 3-

response-style mixtures and also the contribution of the high classification accuracy of 

the ARS class for the 4-response-style mixtures. Regardless of the type of mixture, the 

overall classification accuracy was higher than 94% when the test length was I = 20.   



 

 

The interaction effect between the type of mixture and test length was further 

investigated. In the interaction plot presented in Figure

increase in the classification accuracy between 

the ORS-ARS mixture was

mixture. The pairwise comparisons

mixture showed that the increase between 

was significant at the p < .05 whereas that increase for the other four mixtures was 

significant at the p <.001.

Figure 16. Interaction effect between type of mixture and test length on the overall 

classification accuracy 

Classification accuracy for each response style. 

classification accuracy, the classification accuracy for each response
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The interaction effect between the type of mixture and test length was further 

investigated. In the interaction plot presented in Figure 16, it was observed 

increase in the classification accuracy between the test length of I = 10 and 

was relatively smaller than that increase for other types of 

mixture. The pairwise comparisons of the three levels of test length for each type of 

mixture showed that the increase between I = 10 and I = 20 for the ORS-

< .05 whereas that increase for the other four mixtures was 

<.001.  

Interaction effect between type of mixture and test length on the overall 

Classification accuracy for each response style. In addition to the overall 

classification accuracy, the classification accuracy for each response-style clas

The interaction effect between the type of mixture and test length was further 

was observed that the 

= 10 and I = 20 for 

for other types of 

of the three levels of test length for each type of 

-ARS mixture 

< .05 whereas that increase for the other four mixtures was 

 

Interaction effect between type of mixture and test length on the overall 

In addition to the overall 

style class was 
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also evaluated. Table 20 summarizes the four factorial ANOVA results and presents 

only significant effects that met both the statistical and practical significance criteria.  

 

Table 20. Effect size ( 2η ) for the Classification Accuracy Conditional on Statistical 

Significance (p < 0.05) 

 Source ORS ERS MRS ARS  

 mixture 0.21     
 proportion  0.14    
 item 0.26 0.35 0.23 0.49  
 mixture * item 0.14     

 

Test length was the common factor influencing the classification of ORS, ERS, 

MRS, and ARS respondents. Regardless of the type of response style, as the number 

of items increased, the correct classification rate increased with a significant 

difference: M4 (86.51) < M10 (93.35) < M20 (96.93) for ORS: M4 (78.60) < M10 (91.98) 

< M20 (97.65) for ERS: M4 (64.93) < M10 (81.06) < M20 (91.31) for MRS: and M4 

(90.05) < M10 (96.65) < M20 (98.34) for ARS.  

The results of the Tukey HSD (with αFW  = .05) tests on the main effect of the 

type of mixture showed that 98.38% of ORS respondents were correctly classified in 

the ORS-ARS mixtures whereas only 86.39% of them were correctly identified in the 

ORS-ERS-MRS mixtures. In the rest of the mixtures, 92.83 % of ORS respondents on 

average were correctly classified. These classification accuracy rates were statistically 

significantly different (p < .05). The interaction effect found for the ORS class was in 

the same pattern as the interaction effect for the overall classification accuracy.  
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The mixing proportions influenced the classification of ERS respondents. 

Under the equal proportions conditions, ERS respondents were classified significantly 

better than under the unequal proportions conditions: Munequal (82.97)  <  Mequal (94.12)  

(p < .001).  

A noteworthy result in the classification accuracy analysis was that the sample 

size was not a significant factor. As may be noticed in Table 17, the differences in the 

classification accuracy rates at the three sample sizes were negligible in most of the 

conditions. If this model is used in empirical studies to detect people with different 

response styles, the number of items of an instrument is the most important factor to 

be considered. As long as a sufficient number of items (at least ten items) is used, a 

sample with N = 1200 would provide an equivalent level of classification accuracy as 

a larger sample with N = 6000 would provide.  

4.3.2. Misclassification  

To investigate whether misclassification occurred particularly between certain 

types of response styles, the 3-response-style mixtures and 4-response-style mixtures 

were examined with respect to all possible mismatching between true (generated) and 

assigned class. Since classification rates did not significantly differ at different levels 

of sample size, Table 21 summarizes the marginal misclassification rates over the 

three levels of sample size. 
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Table 21. Percentages of Misclassified Respondents 

Type of mixture ORS – ERS – MRS 

True class and 
mixing 

proportions 

ORS 
0.33 

ORS 
0.33 

ERS 
0.33 

ERS 
0.33 

MRS 
0.33 

MRS 
0.33 

ORS 
0.7 

ORS 
0.7 

ERS 
0.1 

ERS 
0.1 

MRS 
0.1 

MRS 
0.1 

Assigned class ERS MRS ORS MRS ORS ERS ERS MRS ORS MRS ORS ERS 

            4 17.50 23.78 16.58 1.33 21.53 2.65 9.86 19.00 31.79 4.56 36.59 2.20 
Item    10 6.62 9.53 3.92 0.11 10.38 1.28 2.64 2.33 12.35 0.16 29.68 0.58 

  20 3.13 3.60 1.17 0.01 4.96 0.72 2.37 2.29 2.38 0.02 8.90 0.55 
 Total 9.08 12.30 7.22 0.48 12.29 1.55 4.96 7.87 15.50 1.58 25.06 1.11 

Type of mixture ORS – ERS – MRS – ARS 

True class and 
mixing 

proportions 

ORS 
0.25 

ORS 
0.25 

ORS 
0.25 

ERS 
0.25 

ERS 
0.25 

ERS 
0.25 

MRS 
0.25 

MRS 
0.25 

MRS 
0.25 

ARS 
0.25 

ARS 
0.25 

ARS 
0.25 

Assigned class ERS MRS ARS ORS MRS ARS ORS ERS ARS ORS ERS MRS 

            4             

Item    10 6.46 9.19 0.32 3.67 0.07 2.12 10.17 1.30 0.04 0.40 4.52 0.01 
     20 3.17 3.85 0.04 1.19 0.01 0.56 5.01 0.87 0.01 0.08 2.48 3.17 
    Total 4.82 6.52 0.18 2.43 0.04 1.34 7.59 1.30 0.87 0.03 0.08 0.40 
True class and 

mixing 
proportions 

ORS 
0.7 

ORS 
0.7 

ORS 
0.7 

ERS 
0.1 

ERS 
0.1 

ERS 
0.1 

MRS 
0.1 

MRS 
0.1 

MRS 
0.1 

ARS 
0.1 

ARS 
0.1 

ARS 
0.1 

Assigned class ERS MRS ARS ORS MRS ARS ORS ERS ARS ORS ERS MRS 

           4             

Item    10 2.75 2.39 0.10 11.47 0.23 1.85 28.71 0.58 0.01 1.65 4.14 0.01 
     20 1.72 1.07 0.01 3.47 0.00 0.50 12.10 0.19 0.01 0.31 2.52 0.00 
 Total 2.24 1.73 0.06 7.47 0.12 1.18 20.41 0.39 0.01 0.98 3.33 0.01 

 

For the 3-response-style mixtures, the most commonly occurring 

misspecification was the misclassification of MRS respondents within the ORS class 

(MO) under unequal mixing proportions, followed by the misclassification of ERS 

respondents within the ORS class (EO) under unequal mixing proportions (hereafter a 

misclassification of “A” respondents within the “B” class is referred to as AB while a 

misclassification of “B” respondents within the “A” class is referred to as BA). On the 

other hand, EM and ME rarely occurred. Especially, when the test length was long 

and, thus, overall classification accuracy was high, the chance of EM was essentially 

zero. This rare occurrence of EM was consistent regardless of the mixing proportions. 
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When the mixing proportions were equal, OE and EO as well as OM and MO did not 

differ significantly. However, when the mixing proportions were unequal (i.e., 10 % of 

population was MRS or ERS respondents while the majority was ORS respondents), 

MO and EO significantly increased (25.06 % and 15.50 %, respectively). It seems that 

it was easier for the distorted response-style respondents to be misclassified within the 

normal response-style respondent if the distorted group was a small sized group. 

However, this trend was not observed for the ARS class.  

Under the 4-response-style mixture, the chance of MO and EO was also 

significantly high (20.41% and 7.47 %, respectively) as well as EM and ME again 

rarely occurred (0.08 % and 0.85 %, respectively). In addition, there were several 

other misclassifications that were associated with essentially zero chance of 

occurrence. They were OA (0.12 %), MA (0.44 %), AO (0.5%), and AM (0.2%).   

4.4 Threshold Parameter Recovery 

Recovery of item thresholds was evaluated with respect to the RMSE, Pearson 

correlation, and SE. Initially, these three evaluation measures were assessed for each 

of the four thresholds. The evaluation measures were then averaged across the four 

thresholds for use in the ANOVA analysis. The averaged evaluation measures are 

provided in the following sections. Sections 4.1.1, 4.4.2, and 4.4.3 discuss the results 

for each of the evaluation criteria based on the factorial ANOVA.  

4.4.1. Evaluation of the RMSE.  

The averaged RMSE is presented in Table 22 followed by the factorial 

ANOVA results for each latent class in the subsequent section.  
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Table 22. RMSE of Threshold Parameter Estimates 

Type of mixture 
ORS 
ERS 

ORS 
MRS 

ORS 
ARS 

ORS 
ERS 
MRS 

ORS 
ERS 
MRS 
ARS 

 

Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ERS MRS ARS  

Mixing Sample Item               

Proportions 1200 4  .194 .238             
  10  .144 .201 .153 .281 .137 .275 .197 .252 .348      
  20  .140 .195 .144 .230 .139 .280 .179 .238 .291 .209 .283 .339 .411  
  4  .117 .162 .207 .536 .095 .222 .305 .231 .438      

Equal 3000 10  .092 .125 .102 .166 .090 .193 .123 .155 .196 .146 .185 .245 .270  
  20  .087 .125 .095 .144 .090 .197 .112 .148 .177 .131 .173 .204 .249  
  4  .085 .114 .196 .434 .060 .172 .212 .166 .318      
 6000 10  .064 .090 .078 .115 .066 .156 .089 .113 .141 .102 .130 .166 .190  
  20  .062 .087 .072 .103 .066 .159 .080 .106 .124 .098 .125 .146 .139  
 1200 4                
  10  .104 .518             
  20  .103 .461             

Unequal  4  .091 .511             
 3000 10  .067 .315 .072 .614 .068 .445 .077 .331 .557      
  20  .066 .285 .070 .391 .068 .403 .070 .287 .332 .076 .287 .382 .420  
  4  .057 .358 .196 .455 .050 .411         
 6000 10  .046 .225 .054 .357 .051 .301 .053 .229 .370 .060 .253 .343 .351  
  20  .046 .201 .052 .252 .050 .283 .051 .206 .258 .057 .231 .260 .289  
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ORS class. The factorial ANOVA results of the RMSE of threshold parameter 

estimates for the ORS class (RMSE-threshold-ORS) are presented in Table 23.  

Table 23. Factorial ANOVA Results on the RMSE of Threshold Estimates for ORS 

Class  

 
Source 

Type III Sum 
of Squares 

Df            F P 2η  

 Mixture 0.029 4 102.08 0.00 0.16 
 proportion 0.005 1 67.53 0.00 0.03 
 Sample 0.017 2 120.08 0.00 0.09 
 Item 0.024 2 168.67 0.00 0.13 
 mixture * item 0.032 7 65.02 0.00 0.18 
 proportion * item 0.000 2 0.61 0.55 0.00 
 sample * item 0.001 4 2.89 0.04 0.01 
 mixture * 

proportion 
0.001 4 4.18 0.01 

0.01 
 mixture * sample 0.002 8 3.28 0.01 0.01 
 proportion * 

sample 
0.000 2 3.53 0.04 

0.00 
 Error 0.002 27     
 Corrected total   0.182 63    

 

The significant factors on the RMSE-threshold-ORS were the main effect of 

the type of mixture (F(4,27) = 102.08, p < .001; 2η  = 0.16), sample size (F(2,27) = 

120.08, p < .001; 2η  = 0.09), test length (F(2,27) = 168.67, p < .001; 2η  = 0.13), as well 

as the interaction effect between type of mixture and test length (F(7,27) = 65.02, p < 

.001; 2η  = 0.18). Table 24 presents the cell means of the RMSE at the levels of 

independent variables of the type of mixture, sample size, and test length.  
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Table 24.Cell Means of the RMSE of Threshold Estimates for the ORS Class    

 
Sample Item 

Mixture  
 OE OM OA OEM OEMA  
 1200 4 0.194 na na na na  
  10 0.124 0.153 0.137 0.197 na  
  20 0.122 0.144 0.139 0.179 0.209  
  total 0.137 0.149 0.138 0.188 0.209  
 3000 4 0.104 0.207 0.082 0.305 na  
  10 0.080 0.087 0.079 0.100 0.146  
  20 0.077 0.083 0.079 0.091 0.104  
  total 0.087 0.109 0.080 0.137 0.118  
 6000 4 0.071 0.196 0.055 0.212 na  
  10 0.055 0.066 0.059 0.071 0.081  
  20 0.054 0.062 0.055 0.066 0.078  
  total 0.060 0.108 0.056 0.097 0.079  

 

In general, the RMSE-threshold-ORS decreased consistently as the sample size 

and test length increased in each type of mixture. For the significant main effects, the 

post-hoc comparisons were conducted. The results of the Tukey HSD (with αFW  = .05) 

test showed that RMSE-threshold-ORS differed as following: MOA (0.078) < MOE 

(0.092) <  MOEMA (0.110) = MOM  (0.115) < MOEM  (0.129), where inequality sign 

indicates a significant difference and equality sign indicates an insignificant difference 

Regarding the main effect of the sample size, the decrease in the RMSE-

threshold-ORS as sample size increased was significant between all three levels based 

on the Tukey HSD test (with αFW  = .05): M1200 (0.154)  >  M3000 (0.103) > M6000 

(0.080). Regarding the main effect of the test length, the decrease in the RMSE-

threshold-ORS was significant as the test length increased from I = 4 to I = 10 but was 

not significant as the test length increased from I = 10 to I = 20: M4 (0.138) > M10 

(0.093) = M20 (0.093).  
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The significant interaction effect between the type of mixture and test length is 

depicted in Figure 17. In the figure, clearly seen is the superior recovery of the ORS 

threshold parameters in the ORS-ARS mixture even at the I = 4 level. The pairwise 

comparisons of the three levels of test length for each type of mixture showed that the 

increase in the RMSE from I = 4 to I = 10 as well as that from I = 10 to I = 20 was not 

statistically significant for the ORS-ARS mixture while the decrease in the RMSE 

from I = 4 to I = 10 was significant for all other types of mixture.  

 

Figure 17. Interaction effect between type of mixture and test length on the RMSE of 

threshold estimates for the ORS class 

 

ERS class. The factorial ANOVA results of the RMSE of threshold parameter 

estimates for the ERS class (RMSE-threshold-ERS) are presented in Table 25.  
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Table 25. Factorial ANOVA Results on the RMSE of Threshold Estimates for the ERS 

Class  

 
Source 

Type III Sum 
of Squares 

Df            F p 2η  

 Mixture 0.008 2 30.06 0.00 0.02 
 Proportion 0.133 1 995.61 0.00 0.32 
 Sample 0.074 2 275.62 0.00 0.18 
 Item 0.029 2 107.41 0.00 0.07 
 mixture * item 0.001 3 2.46 0.11 0.00 
 proportion * item 0.016 2 60.20 0.00 0.04 
 sample * item 0.002 4 2.93 0.07 0.00 
 mixture * proportion 0.001 2 1.99 0.18 0.00 
 mixture * sample 0.001 4 2.06 0.15 0.00 
 proportion * sample 0.018 2 66.68 0.00 0.04 
 Error 0.002 12     
 Corrected total 0.417 36    
 

The significant factors on the RMSE-threshold-ERS were the main effect of 

the mixing proportions (F(1,12) = 995.61, p < .001; 2η  = 0.32), sample size (F(2,12) = 

275.62, p < .001; 2η  = 0.18), and test length (F(2,12) = 107.41, p < .001; 2η  = 0.07). 

Table 26 presents the cell means of the RMSE at the levels of independent variables of 

the mixing proportions, sample size, and test length.  
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Table 26. Cell Means of the RMSE of Threshold Estimates for the ERS Class    

 
Sample Item 

Mixing Proportions 
 Equal Unequal  
  4 0.238 na  
 1200 10 0.227 0.518  
  20 0.239 0.461  
  total 0.235 0.490  
 3000 4 0.197 0.511  
  10 0.155 0.323  
  20 0.149 0.286  
  total 0.163 0.336  
 6000 4 0.140 0.358  
  10 0.111 0.236  
  20 0.106 0.213  
  total 0.116 0.243  

 

The Tukey HSD (with αFW  = .05) test showed the same patterns of significant 

differences as those that were observed for the RMSE-threshold-ERS. Regarding the 

main effect of the sample size, the decrease in the RMSE-threshold-ERS as sample 

size increased was significant between all three levels: M1200 (0.298)  >  M3000 (0.237) 

> M6000 (0.176). Regarding the main effect of the test length, the decrease in the 

RMSE-threshold-ERS was significant as the test length increased from I = 4 to I = 10 

but was not significant as the test length increased from I = 10 to I = 20: M4 (0.254) > 

M10 (0.223) = M20 (0.215).  

The main effect of the mixing proportions showed a smaller RMSE when the 

mixing proportions were equal: MUnequal  (0.313)  > MEqual  (0.166).  The mixing 

proportion was not a significant factor for the ORS class. It was a significant factor for 

the ERS class as well as the other two classes. It makes sense because the ORS class 
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always took on the larger proportion of the generated samples while the ERS, MRS, 

and ARS took on only 10% of the respondents.  

MRS class. The factorial ANOVA results of the RMSE of threshold parameter 

estimates for the MRS class (RMSE-threshold-MRS) are presented in Table 27. 

 

Table 27.Factorial ANOVA Results on the RMSE of Threshold Estimates for the MRS 

Class  

 
Source 

Type III Sum 
of Squares 

Df            F p 2η  

 Mixture 0.005 2 3.97 0.05 0.01 
 Proportion 0.077 1 120.46 0.00 0.13 
 Sample 0.128 2 99.95 0.00 0.22 
 Item 0.096 2 74.69 0.00 0.17 
 mixture * item 0.012 3 6.32 0.01 0.02 
 proportion * item 0.039 2 30.22 0.00 0.07 
 sample * item 0.008 3 3.93 0.04 0.01 
 mixture * proportion 0.005 2 4.09 0.05 0.01 
 mixture * sample 0.002 4 0.76 0.58 0.00 
 proportion * sample 0.016 1 25.66 0.00 0.03 
 Error 0.006 10     
 Corrected total 0.573 32    
 

As was found for the ERS class, the significant factors on the RMSE-threshod-

MRS were the main effect of the mixing proportions (F(1,10) = 120.46, p < .001; 2η  = 

0.13), sample size (F(2,10) = 99.95, p < .001; 2η  = 0.22), and test length (F(2,10) = 74.69, 

p < .001; 2η  = 0.17). While the most influencing factor was the mixing proportions 

for the ERS class, the sample size was the most important factor for the MRS class. 

Table 28 presents the cell means of the RMSE at the levels of independent variables of 

the mixing proportions, sample size, and test length.  
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Table 28. Cell Means of the RMSE of Threshold Estimates for the MRS class    

 
Sample Item 

Mixing Proportions 
 Equal Unequal  
  4 na na  
 1200 10 0.31 na  
  20 0.29 na  
  total 0.30 na  
 3000 4 0.49 na  
  10 0.20 0.59  
  20 0.18 0.37  
  total 0.26 0.46  
 6000 4 0.38 0.46  
  10 0.14 0.36  
  20 0.12 0.26  
  total 0.19 0.33  

 

The Tukey HSD (with αFW  = .05) test showed the same patterns of significant 

differences as those were observed for the previous two classes. Regarding the main 

effect of the sample size, the significant differences were as following: M1200 (0.256)  

>  M3000 (0.298) > M6000 (0.337). Regarding the main effect of the test length, the 

significant differences were as following: M4 (0.436) > M10 (0.300) = M20 (0.242). In 

addition, the main effect of the mixing proportions showed the significant difference:  

MUnequal  (0.381)  > MEqual  (0.193).  

ARS class. The factorial ANOVA results of the RMSE of threshold parameter 

estimates for the ARS class (RMSE-threshold-ARS) are presented in Table 29.  
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Table 29. Factorial ANOVA Results on the RMSE of Threshold Estimates for the ARS 

Class  

 Source 
Type III Sum 
of Squares 

Df F p 2η  

 Mixture 0.011 1 43.47 0.00 0.06 
 Proportion 0.094 1 360.78 0.00 0.49 
 Sample 0.055 2 105.98 0.00 0.29 
 Item 0.008 2 16.29 0.01 0.04 
 mixture * item 0.001 1 5.65 0.08 0.01 
 proportion * item 0.004 2 7.65 0.04 0.02 
 sample * item 0.000 3 0.02 1.00 0.00 
 mixture * proportion 0.000 1 0.01 0.92 0.00 
 mixture * sample 0.006 2 10.76 0.03 0.03 
 proportion * sample 0.004 1 16.38 0.02 0.02 
 Error 0.001 4    
 Corrected total 0.190 20    

 

The significant factors on the RMSE-threshold-ARS were the type of mixture 

(F(1,4) = 43.47, p < .001; 2η  = 0.06), mixing proportions (F(1,4) =360.78, p < .001; 2η  

= 0.49), and sample size (F(2,4) = 105.98, p < .001; 2η  = 0.29). Unlike for the other 

classes, test length was not significant for the ARS class. Table 30 presents the cell 

means of the RMSE at the levels of independent variables of the mixing proportions, 

sample size, and test length.  

The Tukey HSD (with αFW  = .05) test showed the decrease in the RMSE-thr-

ARS from N = 1200 to N = 3000 was not significant while the decrease from N = 3000 

to N = 6000 was significant: M1200 (0.336)  =  M3000 (0.322) > M6000 (0.241). 

Regarding the main effect of the test length, the significant differences were found 

between I = 4 and I = 10: M4 (0.358) > M10 (0.273) = M20 (0.279). In addition, the 

main effect of the mixing proportions showed the significant difference:  MUnequal  

(0.387)  > MEqual  (0.163).  
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Table 30.Cell Means of the RMSE of Threshold Estimates for the ARS class    

Proportion Sample 
Type of mixture  

OA OEMA  

Equal 1200 0.278 0.411  

 3000 0.204 0.260  

 6000 0.162 0.165  

 Total 0.207 0.252  

Unequal 1200 na na  

 3000 0.492 0.420  

 6000 0.317 0.320  

 Total 0.405 0.353  

 

4.4.2. Evaluation of the correlation 

The second criterion used to evaluate the threshold parameter recovery was the 

Pearson correlation coefficient between generated and estimated thresholds. Table 31 

reports the correlations that were averaged across the four thresholds.   

The factorial ANOVA conducted on the correlation measures showed that the 

significant factors for each response-style class considering both statistical and 

practical importance turned out to be the same as those that were found to be 

significant on the RMSE measures. The factorial ANOVA results for the correlation 

measures are presented in a single table concisely in Table 31 instead of providing 

four analysis results in separate ANOVA tables.   
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Table 31.Correlations Between Generated and Estimated Threshold Parameters 

Type of mixture 
ORS 
ERS 

ORS 
MRS 

ORS 
ARS 

ORS 
ERS 
MRS 

ORS 
ERS 
MRS 
ARS 

 

Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ERS MRS ARS  

Mixing Sample Item               

Proportions 1200 4  .794 .694             
  10  .888 .858 .836 .852 .857 .986 .760 .792 .808      
  20  .885 .862 .839 .880 .853 .986 .786 .802 .831 .736 .748 .790 .966  
  4  .910 .836 .832 .780 .930 .994 .691 .755 .758      

Equal 3000 10  .932 .933 .925 .937 .935 .995 .883 .905 .916 .848 .870 .887 .986  
  20  .951 .930 .924 .946 .930 .994 .892 .908 .922 .864 .878 .903 .988  
  4  .949 .908 .882 .836 .967 .997 .840 .855 .837      
 6000 10  .966 .965 .959 .971 .965 .995 .934 .947 .953 .919 .931 .937 .993  
  20  .963 .964 .960 .973 .963 .997 .943 .949 .960 .920 .935 .939 .994  
 1200 4                
  10  .911 .546             
  20  .909 .587             

Unequal  4  .945 .469   .964 .954         
 3000 10  .961 .705 .961 .632 .963 .963 .950 .699 .653      
  20  .959 .738 .959 .767 .960 .968 .954 .741 .751 .947 .746 .763 .965  
  4  .980 .603 .895 .780 .980 .985         
 6000 10  .982 .818 .980 .840 .982 .984 .976 .827 .790 .973 .790 .803 .978  
  20  .979 .843 .979 .862 .980 .985 .976 .848 .853 .975 .802 .820 .978  
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Table 32. Effect size ( 2η ) for Correlation for Thresholds Parameters Conditional on 

Statistical Significance (p < 0.05) 

Factor ORS ERS MRS ARS 

Mixture 0.15    

Proportion  0.29 0.24 0.67 

Sample 0.16 0.18 0.27 0.33 

Item 0.09 0.14 0.11  

mixture * item 0.08    

 

ORS class. The factorial ANOVA results of the correlation of threshold 

parameter estimates for the ORS class (Correlation-threshold-ORS) showed that the 

main effect of the type of mixture (F(4,27) = 73.33, p < .001; 2η  = 0.15), sample size 

(F(2,27) = 154.60, p < .001; 2η  = 0.16), test length (F(2,27) = 82.97, p < .001; 2η  = 

0.09), as well as the interaction effect between type of mixture and test length (F(7,27) = 

22.98, p < .001; 2η  = 0.08) were significant. Table 33 presents the cell means of the 

RMSE at the levels of independent variables of the type of mixture, sample size, and 

test length.   

The main effect of the type of mixture differed from each other as following: 

MOA (0.945) = MOE (0.933)  > MOM (0.918)  > MOEMA  (0.898)  > MOEM  (0.882). 

Regarding the main effect of the sample size, the increase in the Correlation-threshold-

ORS as sample size increased was significant between all three levels: M1200 (0.838)  

<  M3000 (0.919) > M6000 (0.954). Regarding the main effect of the test length, the 

increase in the Correlation-threshold-ORS was significant as the test length increased 
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from I = 4 to I = 10 but was not significant as the test length increased from I = 10 to I 

= 20: M4 (0.897) < M20 (0.923) = M10 (0.954).   

Table 33.Cell Means of the RMSE of Threshold Estimates for the ORS Class    

 
Sample Item 

Mixture  

 OE OM OA OEM OEMA  

 1200 4 0.794 na na na na  

  10 0.900 0.836 0.857 0.760 na  

  20 0.897 0.839 0.853 0.786 0.736  

  total 0.877 0.838 0.855 0.773 0.736  

 3000 4 0.928 0.832 0.947 0.691 na  

  10 0.947 0.943 0.949 0.917 0.848  

  20 0.955 0.942 0.945 0.923 0.906  

  total 0.943 0.920 0.947 0.874 0.886  

 6000 4 0.965 0.889 0.974 0.840 na  

  10 0.974 0.970 0.974 0.955 0.946  

  20 0.971 0.970 0.972 0.960 0.948  

  total 0.970 0.943 0.973 0.934 0.947  

 

The significant interaction effect between the type of mixture and test length 

showed the same pattern as the interaction effect found in the RMSE-threshold-ORS 

evaluation. The interaction was basically due to the superior recovery for the ORS 

thresholds for even as the case in which only four items were used.  

ERS class. The factorial ANOVA results of the Correlation-threshold-ERS 

showed that the main effect of the mixing proportions (F(1,12) = 1210.70, p < .001; 2η  

= 0.29), sample size (F(2,12) = 378.92, p < .001; 2η  = 0.18), test length (F(2,12) = 

286.76, p < .001; 2η  = 0.14) were significant. Table 34 presents the cell means of the 

correlation at the levels of independent variables of the mixing proportions, sample 

size, and test length.  
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Table 34. Cell Means of the Correlation for the ERS Class    
 

Sample Item 
Mixing Proportions 

 Equal Unequal  
  4 0.694 na  
 1200 10 0.825 0.546  
  20 0.804 0.587  
  total 0.793 0.567  
 3000 4 0.796 0.469  
  10 0.903 0.702  
  20 0.905 0.742  
  total 0.877 0.683  
 6000 4 0.882 0.603  
  10 0.948 0.812  
  20 0.949 0.831  
  total 0.932 0.790  

 

The main effect of the mixing proportions showed a higher correlation of 

threshold parameters when the mixing proportions were equal:  MUnequal  (0.717)  < 

MEqual  (0.874). Regarding the main effect of the sample size, the increase in the 

Correlation-threshold-ERS as sample size increased was significant between all three 

levels: M1200 (0.736) <  M3000 (0.794) < M6000 (0.866). Regarding the main effect of the 

test length, the increase in the Correlation-threshold-ERS was significant as the test 

length increased from I = 4 to I = 10 but was not significant as the test length 

increased from I = 10 to I = 20: M4 (0.731) < M10 (0.828) = M20 (0.830).   

MRS class. The factorial ANOVA on the Correlation-threshold-MRS showed 

that the main effect of the mixing proportions (F(1,10) = 140.08, p < .001; 2η  = 0.24), 

sample size (F(2,10) = 79.03, p < .001; 2η  = 0.27), test length (F(2,10) = 31.05, p < .001; 

2η  = 0.11) were significant. Table 35 presents the cell means of the correlation at the 

levels of independent variables of the mixing proportions, sample size, and test length.  
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Table 35.Cell Means of the RMSE of Threshold Estimates for the MRS Class    

 
Sample Item 

Mixing Proportions 
 Equal Unequal  
  4 na na  
 1200 10 0.830 na  
  20 0.834 na  
  total 0.832 na  
 3000 4 0.769 na  
  10 0.913 0.643  
  20 0.924 0.760  
  total 0.881 0.713  
 6000 4 0.837 0.780  
  10 0.954 0.811  
  20 0.957 0.845  
  total 0.926 0.821  

 

The main effect of the mixing proportions showed a higher correlation when 

the mixing proportions were equal:  MUnequal  (0.886)  < MEqual  (0.776). Regarding the 

main effect of the sample size, the increase in the Corr-thr-MRS between N = 3000 

and N = 6000 was significant but not significant between N = 1200 and N = 3000: 

M1200 (0.832) =  M3000 (0.817) < M6000 (0.877). Regarding the main effect of the test 

length, the increase in the Correlation-threshold-MRS was significant as the test length 

increased from I = 4 to I = 10 but was not significant as the test length increased from 

I = 10 to I = 20: M4 (0.798) < M10 (0.845) = M20 (0.864).   

ARS class. The factorial ANOVA results of the Correlation-threshold-ARS 

showed that the main effect of the mixing proportions (F(1,5) = 125.59, p < .001; 2η  = 

0.67) and sample size (F(2,5) = 35.56, p < .001; 2η  = 0.33) were significant. Table 36 
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presents the cell means of the correlation at the levels of independent variables of the 

mixing proportions and sample size.  

 

Table 36. Cell Means of the RMSE of Threshold Estimates for the ARS Class    

Sample 
Proportions  

Equal Unequal  

1200 0.979 na  

3000 0.991 0.963  

6000 0.995 0.982  

total 0.990 0.973  

 

Regarding the main effect of the sample size, the increase in the Correlation-

threshold-MRS between N = 3000 and N = 6000 was significant but not significant 

between N = 1200 and N = 3000: M1200 (0.979) = M3000 (0.979) < M6000 (0.989). 

4.4.3. Evaluation of the standard error  

The third criterion used to evaluate the threshold parameter recovery was the 

standard error of estimates (SE), which was the calculated standard deviation of the 

estimated thresholds provided from all replications. Table 37 reports the SE that was 

averaged across the four thresholds. The factorial ANOVA results for the SE measures 

are present in a single table concisely in Table 38 instead of providing four analysis 

results in separate ANOVA tables.
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Table 37. SE of Threshold Parameter Estimates 

Type of mixture 
ORS 
ERS 

ORS 
MRS 

ORS 
ARS 

ORS 
ERS 
MRS 

ORS 
ERS 
MRS 
ARS 

 

Class ORS ERS ORS MRS ORS ARS ORS ERS MRS ORS ERS MRS ARS  

Mixing Sample Item               

Proportions 1200 4 .118 .133             
  10 .053 .071 .056 .104 .047 .080 .078 .090 .135      
  20 .036 .046 .037 .060 .034 .062 .047 .057 .078 .054 .067 .093 .088  
  4 .069 .091 .060 .274 .055 .102 .268 .152 .327      
 3000 10 .032 .044 .035 .063 .030 .053 .047 .051 .077 .057 .065 .097 .089  
  20 .027 .029 .025 .036 .021 .040 .029 .035 .047 .033 .039 .054 .055  
  4 .052 .064 .042 .199 .038 .073 .179 .114 .246      
 6000 10 .024 .031 .024 .043 .021 .038 .035 .040 .057 .041 .046 .064 .064  
  20 .015 .021 .016 .027 .017 .027 .021 .024 .034 .023 .026 .044 .045  
 1200 4               
  10 .035 .180             
  20 .024 .113             
  4 .064 .334   .043 .354         
 3000 10 .024 .106 .029 .240 .024 .150 .047 .051 .077      
  20 .016 .073 .016 .100 .016 .099 .029 .035 .047 .019 .067 .106 .095  
  4 .033 .195 .045 .211 .029 .221         
 6000 10 .016 .079 .017 .138 .017 .097 .035 .040 .057 .021 .076 .137 .105  
  20 .011 .047 .011 .067 .011 .067 .021 .023 .033 .012 .049 .070 .068  
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Table 38. Effect size ( 2η ) for the SE Conditional on Statistical Significance (p < 0.05) 

Factor ORS ERS MRS ARS 

mixture 0.22    
proportion  0.14  0.32 

item 0.23 0.31 0.34 0.36 
Sample size  0.09 0.09 0.08 

Mixture * item 0.28    
Proportion * item  0.10  0.12 

 

ORS class. The factorial ANOVA results of the SE-threshold-ORS showed 

that the main effects of the type of mixture (F(4,27) = 80.03, p < .001; 2η  = 0.22) and 

test length (F(2,27) = 173.73, p < .001; 2η  = 0.23), as well as the interaction effect 

between type of mixture and test length (F(7,27) = 59.30, p < .001; 2η  = 0.28) were 

significant. Table 39 presents the cell means of the SE at the levels of independent 

variables of the type of mixture and test length.   

 

Table 39. Cell Means of the SE of Threshold Estimates for the ORS Class    

 
Item 

Mixture  
 OE OM OA OEM OEMA  
 4 0.067 0.049 0.041 0.224 na  
 10 0.031 0.032 0.028 0.053 0.040  
 20 0.022 0.021 0.020 0.032 0.028  
 total 0.038 0.032 0.029 0.088 0.033  

 

The main effect of the type of mixture differed from each other as following: 

MOA (0.029) = MOM (0.032) = MOEMA (0.033) = MOE  (0.038)  < MOEM  (0.038). 

Regarding the main effect of the test length, the increase in the Correlation-threshold-

ORS was significant at the three levels: M4 = 0.078 > M10 = 0.035 > M20 = 0.024 in 
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MRS class (M1200 = 0.067 < M3000 = 0.116 < M6000 = 0.232), and in ARS class (M1200 = 

0.080 < M3000 = 0.119 < M6000 = 0.276).  

The significant interaction effect between the type of mixture and test length 

was mainly due to the poor stability for the I = 4 short test to estimate ORS thresholds 

in the mixture of more than two latent class parameters. The interaction plot is present 

in Figure 18. Pairwise comparison showed that the difference in the SE between any 

of the two mixtures was not significant for the I = 20 conditions.   

 

Figure 18. Interaction effect between type of mixture and test length on the SE of 

threshold estimates for the ORS class 

 

ERS class. The factorial ANOVA results of the SE-threshold-ERS showed that 

the main effect of the mixing proportions (F(1,12) = 79.18, p < .001; 2η  = 0.14), test 

length (F(2,12) = 88.07, p < .001; 2η  = 0.31), and sample size (F(1,12) = 25.89, p < .001; 
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2η  = 0.09) as well as the interaction effect between mixing proportion and test length 

(F(2,12) = 29.18, p < .001; 2η  = 0.10). Table 40 presents the cell means of the SE at the 

levels of independent variables of the mixing proportion, test length, and sample size.   

 

Table 40. Cell Means of the RMSE of Threshold Estimates for the ERS Class    

 
Sample Item 

Mixing Proportions 
 Equal Unequal  
  4 0.133 na  
 1200 10 0.081 0.180  
  20 0.057 0.113  
  total 0.077 0.147  
 3000 4 0.122 0.334  
  10 0.053 0.079  
  20 0.034 0.058  
  total 0.063 0.111  
 6000 4 0.089 0.195  
  10 0.039 0.065  
  20 0.024 0.040  
  total 0.046 0.073  

 

The main effect of the mixing proportions showed a larger standard error when 

the mixing proportions were unequal:  MUnequal  (0.098)  > MEqual  (0.061). Regarding 

the main effect of the sample size, the decrease in the SE was significant between N = 

3000 and N = 6000 and was not significant between N = 3000 and N = 1200: M1200 

(0.095)  =  M3000 (0.084)  > M6000 (0.058). Regarding the main effect of the test length, 

the decrease was significant at all three levels: M4 (0.155) > M10 (0.069) > M20 

(0.047).   



 

 

The significant interaction effect between the 

was also because of the disproportionate increase in the SE for 

interaction plot is presented in Figure 19

Figure 19. Interaction effect between type of mixing proportion and test length on the 

SE of threshold estimates for the ERS class

 

MRS class. The factorial

that the main effect of the sample size (

length (F(2,10) = 85.26, p < .001; 

SE at the levels of independent variables of the mixing proportion, test length, and 

sample size.   
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The significant interaction effect between the mixing proportion and test length 

disproportionate increase in the SE for I = 4 condition. The 

on plot is presented in Figure 19. 

ion effect between type of mixing proportion and test length on the 

SE of threshold estimates for the ERS class 

factorial ANOVA results of the SE-threshold-MRS showed 

that the main effect of the sample size (F(2,10) = 22.35, p < .001; 2η  = 0.09

< .001; 2η  = 0.34). Table 41 presents the cell means of the 

SE at the levels of independent variables of the mixing proportion, test length, and 

mixing proportion and test length 

condition. The 

 

ion effect between type of mixing proportion and test length on the 

MRS showed 

09) and test 

presents the cell means of the 

SE at the levels of independent variables of the mixing proportion, test length, and 
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Table 41. Cell Means of the SE of Threshold Estimates for the MRS Class    

 
Sample Item  

 
  4 na 
 1200 10 0.120 
  20 0.077 
  total 0.094 
 3000 4 0.301 
  10 0.111 
  20 0.065 
  total 0.119 
 6000 4 0.219 
  10 0.083 
  20 0.046 
  total 0.095 

 

Regarding the main effect of the test length, the decrease was significant at all 

three levels: M4 (0.251) > M10 (0.099) > M20 (0.060).  Based on the Tukey HSD (with 

αFW  = .05) test any of the difference in the SE between the three levels of sample size 

was significant: M1200 (0.094)  =  M3000 (0.095)  > M6000 (0.119). 

ARS class. The factorial ANOVA results of the SE-threshold-ARS showed 

that the same effects on the ERS class were also significant for the ARS class. The 

significant factors were the main effect of the mixing proportions (F(1,5) = 128.61, p < 

.001; 2η  = 0.32), test length (F(2,5) = 73.97, p < .001; 2η  = 0.36), and sample size 

(F(2,5) = 17.18, p < .001; 2η  = 0.08) as well as the interaction effect between mixing 

proportion and test length (F(2,5) =25.00, p < .001; 2η  = 0.12). Table 42 presents the 
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cell means of the SE at the levels of independent variables of the mixing proportion, 

test length, and sample size.   

Table 42. Cell Means of the SE of Threshold Estimates for the ARS Class    

 
Sample Item 

Mixing Proportions 
 Equal Unequal  
  4 Na 0.354  
 1200 10 0.080 0.150  
  20 0.075 0.097  
  total 0.077 0.175  
 3000 4 0.102 0.221  
  10 0.071 0.101  
  20 0.048 0.068  
  total 0.068 0.112  
 6000 4 0.073 0.288  
  10 0.051 0.117  
  20 0.036 0.082  
  total 0.049 0.140  

 

4.5 Person Trait Parameter Recovery 

The mdltm that uses the marginal MLE method provides as many class-specific 

person trait estimates (θ ) as the number of classes specified in the model for each 

respondent. The assigned  estimate is the one that is associated with the class for 

which his or her posterior probability of class membership is the highest. If a 

respondent is incorrectly classified, he or she is given an improper  estimate that is 

estimated within those who may be qualitatively different from himself or herself.  

The current study analyzed the accuracy of θ  recovery for the following 

groups of respondents: i) the whole group of respondents based on their assigned class 

membership (i.e., all misclassified respondents were included), and ii ) a group of 

correctly classified respondents. In real world data analysis, respondent’s true latent 

θ

θ
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class membership is unknown information, and, hence how inaccurately his or her θ  

is assessed due to incorrect classification is never known. These separate analyses of 

θ  recovery provided not only the results of the accuracy of θ  recovery but also the 

quantification of the impact of misclassification on θ  recovery. Recovery of person 

trait parameters was evaluated with respect to Bias, RMSE, and Pearson correlation.  

4.5.1. Evaluation of the bias  

The factorial ANOVA results on bias of person trait estimates showed that any 

of the main effects of the four manipulated factors and their two-way interaction 

effects were neither statistically nor practically significant. Table 43 reports the 

marginal bias for all respondents (whole group) and for the correctly classified 

respondents (selected group) in each simulation condition. As can be seen in Table 43, 

the bias was very small and fluctuating around zero across all simulation conditions.  
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Table 43. Theta Recovery for All Respondents and Correctly Classified Respondents  

 Type of mixture and 
Mixing proportions 

ORS 0.5 
ERS 0.5 

ORS 0.9 
ERS 0.1 

  Whole Group Selected Group Whole Group Selected Group 

  ORS ERS ORS ERS ORS ERS ORS ERS 

Item Sample           
  Bias -.001 .004 .005 .001     
 1200 RMSE .540 .559 .497 .487     
  Corr .776 .876 .805 .882     
  Bias -.001 .003 -.001 .002 -.002 .005 -.001 .009 
4 3000 RMSE .507 .560 .492 .487 .503 .658 .495 .530 
  Corr .785 .878 .807 .884 .839 .899 .846 .887 
  Bias .002 .003 .003 .002 .013 .009 -.002 -.006 
 6000 RMSE .503 .559 .490 .486 .516 .573 .496 .521 
  Corr .786 .879 .807 .885 .859 .861 .849 .888 
  Bias -.001 -.001 -.001 .000 .000 -.008 .000 -.009 
 1200 RMSE .368 .450 .343 .368 .358 .607 .347 .382 
  Corr .911 .916 .924 .932 .926 .908 .932 .933 
  Bias .003 .001 .002 .000 .001 .008 .001 .005 

10 3000 RMSE .366 .449 .340 .367 .355 .609 .345 .372 
  Corr .912 .917 .925 .933 .926 .909 .932 .933 
  Bias .000 .000 .001 .000 .000 .000 .000 .003 
 6000 RMSE .365 .450 .341 .365 .356 .607 .346 .369 
  Corr .912 .917 .924 .933 .926 .910 .931 .934 
  Bias -.002 .001 -.002 .000 .001 -.005 .001 -.001 
 1200 RMSE .270 .370 .252 .293 .262 .551 .255 .288 
  Corr .957 .941 .962 .957 .962 .917 .964 .958 
  Bias .001 .001 .001 .000 .001 .000 .001 .002 

20 3000 RMSE .270 .368 .253 .289 .262 .555 .255 .290 
  Corr .956 .941 .962 .958 .962 .917 .964 .958 
  Bias .000 .000 .000 .000 .001 .001 .001 .001 
 6000 RMSE .269 .367 .252 .290 .262 .554 .256 .289 
  Corr .957 .942 .962 .958 .962 .919 .964 .958 
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Table 43_Continued 

 Type of mixture and 
Mixing proportions 

ORS 0.5 
MRS 0.5 

ORS 0.9 
MRS 0.1 

 
 Whole Group Selected Group Whole Group Selected Group 

 
Assigned class ORS MRS ORS MRS ORS MRS ORS MRS 

Item Sample           
  Bias         
 1200 RMSE         
  Corr         
  Bias .004 .008 .003 .006     
4 3000 RMSE .576 .733 .510 .757     
  Corr .857 .087 .871 .080     
  Bias .000 -.010 .000 -.010 0.001 0.002 0.001 0.000 
 6000 RMSE .575 .731 .508 .755 0.576 0.732 0.566 0.754 
  Corr .858 .032 .871 .032 0.858 0.025 0.859 0.028 
  Bias .016 -.007 .000 .003     
 1200 RMSE .511 .733 .358 .472     
  Corr .861 .716 .938 .840         
  Bias -.001 .003 .001 .000 -0.001 -0.005 -0.001 0.000 

10 3000 RMSE .418 .484 .358 .468 0.370 0.532 0.354 0.501 
  Corr .931 .827 .938 .844 0.933 0.779 0.936 0.768 
  Bias .000 -.001 .000 .002 0.000 0.014 0.000 0.014 
 6000 RMSE .418 .477 .356 .469 0.373 0.487 0.356 0.482 
  Corr .932 .830 .939 .844 0.933 0.746 0.936 0.776 
  Bias -.001 .002 .001 -.003     
 1200 RMSE .416 .478 .268 .354     
  Corr .933 .830 .965 .921         
  Bias -.001 -.004 .001 -.001 -0.001 0.000 -0.001 -0.002 

20 3000 RMSE .319 .368 .268 .354 0.281 0.390 0.268 0.360 
  Corr .959 .913 .965 .922 0.962 0.891 0.965 0.907 
  Bias .000 -.001 .000 .001 0.000 0.002 0.000 0.001 
 6000 RMSE .317 .367 .265 .353 0.281 0.383 0.268 0.358 
  Corr .959 .914 .965 .922 0.962 0.888 0.964 0.905 
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Table 43_Continued 

 Type of mixture and 
Mixing proportions 

ORS 0.5 
ARS 0.5 

ORS 0.9 
ARS 0.1 

  Whole Group Selected Group Whole Group Selected Group 

 Assigned class ORS ARS ORS ARS ORS ARS ORS ARS 

Item Sample           
  Bias         
 1200 RMSE         
  Corr             
  Bias -0.005 -0.001 -0.003 -0.001 0.002 0.007 0.002 0.000 
4 3000 RMSE 0.508 0.585 0.498 0.585 0.503 0.632 0.505 0.654 
  Corr 0.876 0.788 0.859 0.771 0.863 0.686 0.865 0.746 
  Bias -0.003 0.008 0.000 -0.001 0.003 -0.001 0.002 0.000 
 6000 RMSE 0.505 0.590 0.501 0.586 0.504 0.612 0.506 0.615 
  Corr 0.864 0.812 0.860 0.765 0.863 0.706 0.866 0.761 
  Bias         
 1200 RMSE         
  Corr             
  Bias -0.002 0.025 -0.004 0.026 -0.001 0.037 -0.001 0.036 

10 3000 RMSE 0.357 0.428 0.353 0.425 0.354 0.428 0.356 0.431 
  Corr 0.936 0.905 0.934 0.902 0.935 0.889 0.936 0.896 
  Bias -0.001 0.024 -0.003 0.024 0.000 0.027 0.000 0.027 
 6000 RMSE 0.356 0.429 0.352 0.426 0.356 0.423 0.358 0.426 
  Corr 0.936 0.905 0.934 0.902 0.935 0.889 0.936 0.892 
  Bias 0.001 0.027 -0.002 0.026     
 1200 RMSE 0.264 0.879 0.266 0.328     
  Corr 0.964 0.978 0.964 0.946     
  Bias 0.001 0.028 0.000 0.028 0.001 0.027 0.001 0.027 

20 3000 RMSE 0.268 0.330 0.266 0.327 0.267 0.325 0.268 0.332 
  Corr 0.964 0.947 0.964 0.947 0.964 0.944 0.964 0.946 
  Bias 0.002 0.026 0.001 0.026 0.000 0.025 0.000 0.024 
 6000 RMSE 0.267 0.329 0.264 0.326 0.267 0.321 0.268 0.326 
  Corr 0.965 0.947 0.965 0.947 0.964 0.945 0.964 0.946 
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Table 43_Continued 

 Type of mixture 
and mixing proportions 

ORS 0.33ERS 0.33MRS 0.33 
ORS 0.8 ERS 0.1MRS 0.1 

  Whole Group Selected Group Whole Group Selected Group 

 Assigned class ORS ERS MRS ORS ERS MRS ORS ERS MRS ORS ERS MRS 

Item Sample              
  Bias             
 1200 RMSE             
  Corr             
  Bias -.016 .002 -.004 -.002 .001 -.012       
4 3000 RMSE .701 .591 .681 .520 .483 .664       
  Corr .755 .871 .610 .823 .883 .624       
  Bias .010 .001 .040 -.004 -.002 .014       
 6000 RMSE .633 .589 .664 .505 .487 .657       
  Corr .777 .873 .584 .830 .883 .615       
  Bias .000 -.002 -.006 .003 -.001 -.013       
 1200 RMSE ..429 .482 .496 .345 .366 .475       
  Corr .900 .908 .824 .927 .932 .842       
  Bias -.001 .001 .001 .000 .000 .001 .000 .009 .007 .000 .003 .012 

10 3000 RMSE .420 .483 .485 .343 .365 .471 .680 .824 .776 .666 .692 .705 
  Corr .905 .909 .830 .928 .933 .845 .733 .772 .520 .738 .763 .571 
  Bias .000 -.003 .001 .001 -.001 .001 .000 .001 .006 .000 .003 .005 
 6000 RMSE .420 .480 .480 .343 .365 .469 .375 .603 .491 .346 .365 .481 
  Corr .906 .910 .830 .928 .933 .845 .922 .909 .757 .932 .935 .785 
  Bias .002 -.001 .001 .002 -.001 .002       
 1200 RMSE .314 .397 .370 .254 .289 .355       
  Corr .949 .935 .913 .962 .958 .921       
  Bias .000 .000 .001 .001 -.001 .000 .000 -.006 .011 .000 .002 .002 

20 3000 RMSE .310 .396 .369 .251 .290 .353 .276 .552 .398 .255 .291 .356 
  Corr .950 .935 .914 .963 .958 .922 .959 .916 .885 .964 .958 .910 
  Bias .000 -.002 .003 .000 -.001 -.002 -.008 -.004 .012 .000 -.001 .000 
 6000 RMSE .312 .394 .370 .252 .290 .352 .311 .334 .436 .256 .287 .287 
  Corr .950 .936 .913 .963 .958 .923 .951 .945 .907 .964 .959 .959 
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Table 43_Continued 

 Type of mixture 
and mixing 
proportions 

 
ORS 0.25ERS 0.25MRS 0.25 ARS 0.25 

   
ORS 0.7 ERS 0.1MRS 0.1 ARS 0.1 

 

  Whole Group  Selected Group  Whole Group  Selected Group  

 Assigned class ORS ERS MRS ARS ORS ERS MRS ARS ORS ERS MRS ARS ORS ERS MRS ARS 

Item Sample                  

  Bias                 

 1200 RMSE                 

  Corr                 

  Bias                 

4 3000 RMSE                 

  Corr                 

  Bias                 

 6000 RMSE                 

  Corr                 

  Bias                 

 1200 RMSE                 

  Corr                 

  Bias .001 .000 .002 -.002 -.011 -.014 -.002 .006         
10 3000 RMSE .334 .370 .465 .418 .408 .541 .481 .440         
  Corr .908 .901 .801 .865 .915 .903 .815 .875         
  Bias -.011 -.014 -.002 .006 -.012 -.007 .006 .001 .001 -.001 .000 .001 .001 -.001 .000 .001 
 6000 RMSE .338 .371 .469 .420 .408 .541 .481 .440 .378 .632 .508 .442 .347 .372 .479 .424 
  Corr .915 .903 .815 .875 .915 .903 .815 .875 .921 .905 .760 .868 .931 .933 .791 .879 
  Bias -.001 -.001 .001 -.003 -.001 -.001 .001 .003         
 1200 RMSE .254 .291 .355 .317 .312 .419 .399 .324         
  Corr .950 .932 .905 .939 .950 .932 .905 .938         
  Bias .001 .000 .002 -.002 .000 .001 .002 -.003 -.001 .001 .005 -.005 -.001 .001 .005 -.005 

20 3000 RMSE .252 .288 .358 .313 .313 .419 .399 .324 .278 .553 .405 .328 .255 .288 .379 .318 
  Corr .950 .932 .905 .938 .950 .932 .905 .938 .959 .917 .886 .935 .964 .959 .902 .940 
  Bias .000 .002 -.002 .029 .000 .001 .002 -.003 .001 .002 .000 .001 .001 .002 .000 .001 
 6000 RMSE .251 .289 .352 .313 .313 .418 .396 .320 .278 .566 .381 .323 .255 .288 .357 .315 
  Corr .950 .932 .905 .938 .950 .932 .905 .938 .959 .916 .893 .937 .964 .958 .908 .941 
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4.5.2. Evaluation of the RMSE  

The factorial ANOVA was conducted on the RMSE measures for both whole 

group and selected group. Since the same factors were found to be significant in these 

two analyses, the factorial ANOVA results for the whole group were reported in this 

section. The results showed that the test length was the common significant factor 

across all four response-style classes and also was the only significant factor for the 

ORS, MRS, and ARS classes. The type of mixture was another significant factor for 

the ERS class. These ANOVA results are presented in a single table concisely in Table 

44. 

   

Table 44. Effect size ( 2η ) for the RMSE of Theta Estimates Conditional on Statistical 

Significance (p < 0.05) 

Factor ORS ERS MRS ARS 
mixture  0.11   

item 0.39 0.10 0.39 0.53 
 

The test length was the significant factor on the RMSE for person trait 

parameters in the ORS class (F(2,24) = 99.09, p < .001; 2η  = 0.39), ERS class (F(2,10) = 

8.66, p < .001;  = 0.10), MRS class (F(2,9) = 33.05, p < .001; 2η  = 0.39), and ARS 

class (F(2,4) = 3234.06, p < .001; 2η  = 0.53). In addition to the main effect of the test 

length, the type of mixture was significant for the ERS class (F(2,10) = 10.24, p < .001; 

 = 0.11).  

2η

2η
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Based on the Tukey HSD (FWα=0.5) test, the RMSE difference between I = 4 and 

I = 10 as well as between I = 10 and I = 20 were significant in the ORS class: M4 

(0.544) > M10 (0.395) > M20 (0.282), ERS class: M4 (0.584) > M10 (0.515) > M20 

(0.393), MRS class: M4 (0.708) > M10 (0.532) > M20 (0.384), and ARS class: M4 

(0.601) > M10 (0.425) > M20 ( 0.326). For the ERS class, the main effect of the type of 

mixture differed from each other as following: MOEMA (0.312) < MOEM  (0.510) = MOM  

(0.510).  

4.5.3. Evaluation of the Correlation  

As was found in the factorial ANOVA on the RMSE in Section 4.5.2, the test 

length was the significant factor on the correlation between generated and estimated 

person trait parameters in the ORS class (F(2,25) = 52.36, p < .001; 2η  = 0.35), ERS 

class (F(2,10) = 5.28, p < .001;  = 0.20), MRS class (F(2,9) = 166.97, p < .001; 2η  = 

0.61), and ARS class (F(2,4) = 3859.53, p < .001; 2η  = 0.72).  

 

Table 45. Effect size ( 2η ) for the Correlation of Theta Estimates Conditional on 

Statistical Significance (p < 0.05) 

Factor ORS ERS MRS ARS 

Item 0.35 0.20 0.61 0.72 

 

Based on the Tukey HSD (FWα=0.5) test, the correlation difference between I = 4 

and I = 10 as well as between I = 10 and I = 20 were significant in the ORS class: M4 

(0.832) < M10 ( 0.911) < M20 (0.958), ERS class: M4 (0.877) = M10 ( 0.901) < M20 

2η
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(0.935), MRS class : M4 (0.328) < M10 ( 0.772) < M20 (0.899), and ARS class : M4 

(0.757) < M10 ( 0.890) < M20 (0.946).  

4.5.4. Impact of misclassification on person trait estimation  

To test the impact of the misclassification on person trait parameter recovery, 

the discrepancies in the RMSE and correlation measures between the whole and 

selected group were tested. A paired t-test was conducted for each latent class on the 

marginal discrepancies over all manipulated factors. Table 46 and Table 47 present the 

descriptive statistics of the RMSEs and the correlations for the whole and selected 

groups, respectively. The results of the paired t-test are presented in Table 48. The 

effect size was evaluated using Cohen’s d (d=mean difference / standard deviation of 

mean difference),which indicates a small effect size if d > 0.2 , a medium effect size if 

d > 0.5, or a large effect size if d > 0.8. In table 48, Cohen’s d is presented when the 

mean difference is statistically significant at p < .05 

 

Table 46. Cell Means of the RMSE of theta estimates    

Type of mixture Group N Mean SD 

ORS Whole 60 0.386 0.119 

 Selected 60 0.361 0.105 

ERS Whole 34 0.478 0.126 

 Selected 34 0.406 0.113 

MRS Whole 31 0.495 0.136 

 Selected 31 0.472 0.135 

ARS Whole 20 0.425 0.114 

 Selected 20 0.428 0.116 
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Table 47. Cell Means of the Correlation of Theta Estimates    
Type of mixture Group N Mean SD 

ORS Whole 61 0.911 0.060 

 Selected 61 0.919 0.054 

ERS Whole 34 0.911 0.035 

 Selected 34 0.923 0.039 

MRS Whole 30 0.772 0.219 

 Selected 30 0.790 0.222 

ARS Whole 20 0.882 0.083 

 Selected 20 0.882 0.074 

 

Table 48. Paired t-test Results on the Impact of Misclassification on Theta Recovery    

Type of mixture 
Evaluation 
measures 

t df p Cohen’s d 

ORS RMSE 4.204 59 .000 0.54 

 Correlation -4.079 60 .000 0.49 

ERS RMSE 2.838 33 .008 0.38 

 Correlation -3.522 33 .001 0.17 

MRS RMSE 2.107 30 .044 0.52 

 Correlation -3.108 29 .004 0.60 

ARS RMSE -0.755 19 .460  

 Correlation 0.131 19 .897  

 

As can be seen in Table 48, the impact of misclassification was statistically 

significant for all response-style classes except the ARS class. The reason that the 

theta recovery was not impacted for the ARS class is because the classification 

accuracy was high. The effect size was generally medium level except for the 

correlation for the ERS class. 
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4.6. Model-based Correction of Score Bias  

Figure 20 depicts the relation between sum score and estimated θ  for each 

class of the 3-response-style mixture. The data for this figure was obtained from the 

equal proportions, 10-items with a sample size of N = 6000 condition. This figure 

showed how the θ  estimates of the MPCM would provide a tool to correct the sum 

score bias due to response styles. For example, if a respondent’s θ  level is above the 

mean (i.e., θ  > 0) and belongs to ERS class his or her estimated θ  is lower than when 

he or she belongs to the ORS class. Since the sum score is likely to be inflated by his 

or her endorsement of a higher extreme category, his or her θ  should be adjusted 

downward to correct the inflated sum score. Conversely, if a respondent’s θ  level is 

below the mean (i.e., θ  < 0) and belongs to ERS class, the estimated θ  is higher than 

when he or she belongs to the ORS class. Because he or she would have selected a 

lower extreme response category more often, his or her estimated θ  should be 

adjusted upward to compensate the deflated sum score. 

If a respondent with a θ  level that is higher than the mean belongs to MRS 

class, his or her estimated θ  is higher than when he or she belongs to the ORS class. 

His or her tendency to select middle categories would have deflated sum score, and, 

therefore, the correction is made to compensate his or her score lost due to the 

response tendency. Conversely, if a respondent’s θ  level is below the mean and 

belongs to MRS class, the estimated θ  is lower than when he or she belongs to the 

ORS class. Because he would have selected the middle-category despite his or her 



 

 

lower θ  level, his or her estimated 

inflated sum score.   

Figure 20. Theta estimates 

 
Figure 21 represents th

the 4-response-style mixture. 

appears that the correction for the ARS class is very much alike the correction for the 

MRS class. This is understandable because the ARS responses were generated 

assuming a balanced scale that int

choice of response categories. Although ARS respondents endorse higher extreme 

categories only, the use of a balanced scale causes the 

the mean score.  
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level, his or her estimated θ  should be adjusted downward to correct the 

estimates as a function of sum score for ORS, ERS, and MRS Class

represents the relation between sum scores and estimated 

style mixture.  In this figure, a function for the ARS class was added. It 

appears that the correction for the ARS class is very much alike the correction for the 

MRS class. This is understandable because the ARS responses were generated 

assuming a balanced scale that intended to cancel out ARS respondent’s directional 

choice of response categories. Although ARS respondents endorse higher extreme 

categories only, the use of a balanced scale causes the sum scores to regress toward 

should be adjusted downward to correct the 

 

score for ORS, ERS, and MRS Class 

scores and estimated θ  under 

In this figure, a function for the ARS class was added. It 

appears that the correction for the ARS class is very much alike the correction for the 

MRS class. This is understandable because the ARS responses were generated 

ended to cancel out ARS respondent’s directional 

choice of response categories. Although ARS respondents endorse higher extreme 

scores to regress toward 



 

 

 

 

Figure 21. Theta estimates

Class 

The plots in which the relation between ORS

in the 2-response-style mixtures because they the relations appeared the same as those 

were depicted in Figures 20 and 21. 
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Theta estimates as a function of sum score for ORS, ERS, MRS, and ARS 

The plots in which the relation between ORS-ERS, ORS-MRS, and ORS

mixtures because they the relations appeared the same as those 

icted in Figures 20 and 21.  

 

 

score for ORS, ERS, MRS, and ARS 

MRS, and ORS-ARS 

mixtures because they the relations appeared the same as those 
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Chapter 5: Discussion 

 
The primary goal of the current study was to investigate the performance of the 

mixture distribution polytomous Rasch model in accurately recovering model 

parameters under the heterogeneous population conditions in which people differed in 

their response styles, or individual tendencies in responding to the formal aspects of 

rating scales. The current study examined the mixture polytomous Rasch model with 

two, three, and up to four latent classes within each of which a different response style 

was manifested. One of the latent classes was simulated to represent ordinary response 

style (ORS), which did not manifest a distorted use of response categories of a rating 

scale. The rest of the latent classes were characterized by one of the following 

distorted response styles, i.e., extreme response style (ERS), middle category response 

style (MRS), and acquiescent response style (ARS).  

Response styles have been recognized as a source of systematic measurement 

bias. Ignoring or failing to adequately account for the impact of the response styles in 

latent trait measurement leads to various psychometric problems such as invalidating 

test score differences at both individual and group levels, inflating test reliability, 

obscuring structural relations among psychological constructs of interest, and 

confounding the interpretation of the findings in comparative studies.  

As a model-based approach to control for these adverse effects, mixture 

polytomous Rasch models, particularly the mixture partial credit model (MPCM) has 

been increasingly applied in empirical research where ordered polytomous item 

responses were analyzed. The MCPM was suggested as a method for classifying 
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people according to their response styles as the model was proposed by Rost (Rost, 

1991). Cumulative results from previous studies have evidenced that respondents who 

share the ERS constitute a latent class while the other class(es) is often composed of 

respondents with a non-extreme response style. Once different response styles are 

detected within different latent classes, the subsequent analysis of a psychological 

construct of interest can be conducted under the control of response styles. It is 

promising that the application of the MCPM has potential for a better estimation of 

person trait as well as a better prediction of relevant criteria.   

 In addition, the MPCM is a flexible modeling framework in that the nature of 

latent classes does not need to be known a priori. “What are the types of response 

styles manifested in this data set?” and “which response style do most people present 

in this group?” are explored and answered during the course of the MPCM analysis. 

Although previous empirical studies have detected relatively simple structures of the 

mixture of response styles, i.e., mostly a combination of ERS and another style 

characterized as a rather moderate response style (perhaps MRS or ORS), this 

flexibility of the MPCM extends the potential for identifying more diverse response 

styles that might exist in a data set.  

There is a need for a simulation study to evaluate the performance of the 

MPCM including accurate recovery of the model parameters, thereby assessing the 

soundness of the application of the MPCM to account for various types of response 

style effects that may be presented in real world testing situation. Little information is 

known thus far, however, regarding the accuracy of model parameter recovery in the 
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MPCM and testing conditions that can exert an influence on the model parameter 

recovery. 

The current simulation study, therefore, focused on the evaluation of: i) the 

accuracy of recovering class membership, threshold parameters, and person trait 

parameters in various testing conditions, and ii ) the model-based correction of score 

bias due to response styles. Of particular importance, the current study included more 

complex and realistic, mixture structure where multiple classes of ORS, ERS, MRS, 

and ARS coexist. 

The following sections include a summary of the findings, discussion of the 

important issues surrounding interpretations of the MPCM results, recommendation 

for applied researchers, as well as limitations of the current study and implications for 

future research.  

5.1 Summary of Findings 

 Non-convergence and boundary threshold estimates. Estimation problems 

were examined as a preliminary analysis of the simulation results. First, the rate of 

non-convergence, which may very well be indicative of problems in model 

identifiability and instability of parameter estimates, was obtained. This non-

convergence rate was 0 % for 80 out of 90 simulation conditions when the data sets 

were correctly estimated with the data generation model. The other 10 simulation 

conditions showed the non-convergence rate ranging between 1 % and 9 %. The ORS-

ERS mixture conditions never encountered non-convergence while the highest rate of 

non-convergence occurred under the ORS-ARS mixture conditions.  
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When the generated data set was under parameterized, non-convergence 

problems occurred only for two conditions of the 4-response-style mixtures. 

Conversely, when the generated data was over parameterized, thirty-five out of ninety 

simulation conditions showed non-convergence ranging between 1 % and 20 %. A 

high percentage of these problems occurred with the ORS-MRS mixtures.  

Boundary threshold estimates were also monitored and screened. Extreme 

thresholds exceeding 9.0 or -9.0 in the provided mdltm outputs were filtered out. 

Boundary estimates never occurred when the 2-response-style data sets were under 

parameterized. When the generated data was correctly parameterized, the occurrence 

of boundary estimates was closely related to the sample size, more specifically the 

expected category frequencies. A high percentage of boundary estimate problems 

ranging between 48 % and 96 % occurred mostly for the response categories in the 

MRS and ARS class for which the expected response frequency was essentially zero. 

Nearly all of the simulation conditions presented boundary threshold estimates when 

the data sets were over parameterized.  

As a result of checking non-convergence and boundary threshold estimates 

problems, ten simulation conditions were removed from the design. These excluded 

conditions were associated with a sample size of N = 1200 and the unequal mixing 

proportions condition (except one condition with four response styles and equal 

mixing proportions). These results would seem to indicate that an appearance of 

implausible threshold values in an empirical data analytic study may be an indication 

of over parameterization (i.e., estimating a model with too many latent classes) or an 
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insufficient sample size to estimate parameters for a given model, or a combination of 

the two conditions.  

    Label Switching. The current study tackled the label switching problems by 

jointly applying two different algorithmic approaches, each of which utilizes different 

source of information. The first algorithm developed by the author used the 

characteristic features of the order of four thresholds in each response style class. The 

second approach developed by Tueller et al. (2011) used the results of respondent 

classification results. By incorporating these two algorithms, the efficiency of the 

automated process of detecting and correcting switched labels was enhanced.  

Thirteen simulation conditions turned out to have a large proportion of 

replications in which switched labels were unresolved. It was found that there was a 

great deal of overlap between the cases where switched labels were not corrected and 

the BIC and CAIC were unable to correctly identify the data generation model. A 

close investigation of this overlap allowed the researchers to better understand the 

hidden structures of the subpopulation distributions as well as the capabilities and 

limitations of the MPCM in modeling those population heterogeneities.  

Model selection. Among the three information criterion statistics, AIC, BIC, 

and CAIC, the BIC and CAIC performed nearly equally well in identifying the data 

generation model with a slightly higher accuracy for the BIC. Across all of the 

simulation conditions, the AIC showed high rates of over-identification of the latent 

classes. Based on the current simulation results, the AIC should not be recommended 

for use in model selection under the MPCM.  
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In general, the BIC was found to most accurately identify the correct number 

of latent classes in the MPCM. Under the simulation conditions in which neither 

estimation problems nor unresolved label switching problems occurred, the data 

generation model was identified 100% of the time based on the BIC. The simulation 

conditions in which the BIC did not perform perfectly were associated with at least 

one of the following conditions: i) the test length I = 4, ii ) the sample size N = 1200, 

and iii ) the mixing proportions were unequal.  

Classification accuracy. Generally, the ORS-ARS mixtures allowed for 

accurate classification under all simulation conditions while the ORS-MRS mixtures 

were the least accurate in providing correct classification of respondents followed by 

the ORS-ERS mixtures. Misclassification of ERS respondents within the MRS class 

(EM) and misclassification of MRS respondents within the ERS class (ME) rarely 

occurred. In addition to EM and ME, the chance of OA, MA, AO, and AM was also 

essentially zero.   

The most important factor influencing respondent classification accuracy was 

test length. The effect size of test length was extraordinary large (2η  =  0.42). Under 

the least complex, 2-response-style mixtures, when test length was I = 4, ORS-ERS, 

ORS-MRS, and ORS-ARS mixtures allowed for an average classification accuracy 

rate of 81%, 70 %, and 93%, respectively. As the number of items increased to I = 10, 

the average classification accuracy increased to 94%, 87%, and 98%, respectively. 

While for the test length, I = 20, it reached 98%, 94%, and almost 100%, respectively. 

Under the 3-response-style mixtures, as test length increased from I = 4 to I = 10 and 



 

158 
 

then from I = 10 to I = 20, the corresponding average classification accuracy improved 

from 73% to 87%, and then to 95%, respectively. Under the most complex, 4-

response-style mixtures, classification accuracy was 89% and 95% when I = 10 and 

20, respectively. Significant interaction effects were mainly due to the outstanding 

classification accuracy for the ARS class even under the I = 4 condition.    

Threshold recovery. Generally, as the sample size increased from N = 1200 to 

N = 3000, then to N = 6000, threshold recovery tended to be more accurate. While the 

increase in the test length from I = 4 to I = 10 improved threshold recovery 

significantly, the increase from I = 10 to I = 20 did not result in a significant 

difference. Threshold recovery for the ARS class was quite accurately achieved under 

even I = 4 condition and, consequently, the test length was not found to be an 

influencing factor for this class. When the distorted response styles, i.e., ERS, MRS, 

and ARS presented with a small proportion in a sample of respondents, the threshold 

recovery was significantly less accurate for those small latent class. ORS thresholds 

were most accurately recovered under the ORS-ARS mixtures and least accurately 

recovered under the ORS-ERS-MRS mixtures. Therefore, it may not be necessarily 

true that thresholds of a more complex model are less accurately recovered. Standard 

error of threshold estimates dramatically increased for the models with 3 response-

style classes when the test length of I = 4 was considered.  

 Person trait recovery. The factor that most affected the accuracy of θ recovery 

was the test length. The accuracy of θ recovery in each response-style class increased 

as the test length increased.  



 

159 
 

Overall, the person trait θ  was well recovered when the test length was I = 10 

or I = 20. A sample size of N = 1200 provided relatively lower correlations between 

generated and estimated θ  parameters. Across the three levels of test length, the mean 

RMSE ranged from 0.28 to 0.54 for the ORS class; 0.39 to 0.58 for the ERS class; 

0.38 to 0.53 for the MRS class; and 0.33 to 0.43 for the ARS class.  The mean 

correlations ranged from 0.83 to 0.96 for the ORS class, 0.88 to 0.94 for the ERS 

class, and 0.77 to 0.90 for the MRS class, and 0.76 to 0.95 for the ARS class.   

When the accuracy of θ  recovery was computed for those who were correctly 

classified, there was always an increase in the level of accuracy compared to when the 

accuracy was computed for all respondents including misclassified cases. The 

discrepancies in the accuracy level between all respondent group and correctly 

classified respondent group were tested. The results of the paired t-test showed 

statistically significant impact of misclassification on the person trait estimation.  

Correction of score bias. In an empirical rating scale data, respondent’s sum 

scores may be biased if his or her particular response style operates while responding 

to the response categories. The most practical benefits of employing the MPCM is that 

sum scores that might have been biased due to the compounding effects of the 

response styles can be corrected through the class-specifically estimated θ .  

The current study showed that the MPCM provides θ  estimates that were 

corrected for the sum score bias caused by the different response styles. In general, the 

inflated score bias that occurred for ERS respondents with a higher θ  level and for 

MRS and ARS respondents with a lower θ  level were adjusted downward whereas the 
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deflated score bias occurred for ERS respondents with a lower θ  and for MRS and 

ARS respondents with a higher θ  level were adjusted upward.  

5.2 Discussion 

 The current study showed that the model parameters of the MPCM were 

recovered well and that classification accuracy was reasonably relatively high. Of 

particular importance, rather complex mixture structure where up to four different 

response-style subpopulations were mixed appeared to be reasonably well modeled by 

the MPCM under the simulated testing conditions that were considered in this study. 

This observed model performance support the potential utility of this model in real 

world data analysis situation where there is a possibility that there exist hidden 

subpopulations that differ from each other with respect to response styles.   

 Previous empirical studies have shown the utility of this mixture modeling 

approach in various researches in the fields of study including personality, 

organizational, and clinical psychology. The latent groupings identified in those 

studies could be attributed to social desirability, faking, structural differences, and 

different response styles. By examining the thresholds plots for each estimated latent 

class and analyzing the contents of the items for which latent classes specifically show 

differences, there seems to be the potential for new findings and insights in 

psychological constructs that can be revealed beyond the presence of response styles.  

 Testing conditions and MPCM performance. The preliminary examinations 

of the estimation issues and label switching solutions, as well as the model selection 

analysis provided coherent information regarding the structure of the response-style 
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mixture distributions and testing conditions that allowed the MPCM to adequately 

deal with the response style problems.  

As more profound differences in response styles were manifested across latent 

classes, the easier for the MCPM to detect the differences. Thus, the structural 

differences in the thresholds between ORS and ARS class appeared to be more easily 

identified than those between ORS and ERS while the differences between ORS and 

MRS were the most difficult to be distinguished. As the structural differences were 

harder to detect, the higher rates of the occurrence of boundary estimates, unresolved 

label switching as well as the lower rates of the correct model selection based on the 

BIC were observed. When the nature of the response-style mixture distribution 

imposed a challenge on the parameter estimation, a larger sample size and/or a larger 

number of test items were required for reasonable parameter estimation.  

The current simulation study showed that when the test length was I = 10 and 

the sample size of N = 3000, the MPCM performed fairly well in recovering model 

parameters for the most complex 4-response-style mixtures with equal proportions. 

The MPCM performance shown under this nature of mixture distribution and those 

testing conditions are the following: i) the correct model selection rate based on BIC 

was 100%, ii ) classification accuracies were 84%, 94%, 88%, and 95% , iii ) the mean 

RMSE of the four thresholds were 0.15, 0.19, 0.25, and 0.25, iv) the mean correlation 

for the four thresholds were 0.85, 0.87, 0.89, and 0.99, v) the mean SE of the four 

thresholds were 0.06, 0.07, 0.10, and 0.09, vi) the biases of θ estimates were -0.01, -

0.01. 0.00. 0.00, vii) the RMSEs of θ were 0.41, 0.54, 0.48, and 0.44, and viii ) the 
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correlations of θ  were 0.92, 0.90, 0.82, and 0.88, for the ORS, ERS, MRS, and ARS 

class, respectively. 

Based on the findings  in the current study, some recommendations are 

suggested for applied researchers. Regarding the common issues in measurement, 

‘how large should the sample size be?’ and ‘how many items should be asked?’, 10 

items with a 5-category Likert scale and the number of respondents of 3000 was found 

to warrant reasonably accurate parameter estimation and respondent classification 

when up to four different response styles among ORS, ERS, ARS, MRS were 

presented in a data set under equal proportions. If the data being analyzed includes less 

diverse types of response styles, the same level of parameter estimation and 

respondent classification could be achieved with less than 3000 respondents. If the 

relative sizes of different response-style group are unequal, more than 3000 

respondents may be needed to achieve the same level of accuracy.  

Comparisons of person trait across latent classes. One of the arguments that 

had been raised in the mixture IRT domain was whether person trait θ estimates 

obtained from different classes could be legitimately compared based on their 

magnitudes. This argument revolves around the notion that the continuous variable 

measured within each class is qualitatively different in mixture IRT models. As was 

discussed by Rost et al. (1997), the comparisons could certainly be problematic if the 

profiles of the item locations (i.e., the means of the thresholds) were substantially 

different across latent classes. This would indicate that people in different classes 

present different cognitive structures or psychological constructs. In these cases, since 



 

163 
 

questionnaires could not claim to be measuring the same trait in different populations, 

trait estimates obtained through the use of questionnaires could not be used to compare 

differences among respondents across the latent response-style classes.  

When the item difficulties were very much the same across latent classes, 

however, what distinguished latent classes was the dispersion of item responses, not 

the difficulty of an item (Rost et al., 1997). When this condition held, the comparison 

of person trait across different classes could be justified because the class specific θ

values only adjusts for the effects of the class-specific dispersion of responses.  

In practice, item location profiles should be checked across latent classes 

before attempting any interpretation of latent class differences. If the item location 

profiles from each class locate significantly different positions, the difference across 

latent classes may better be characterized with respect to certain latent traits rather 

than response styles.  

Correction of score bias and predictability. The current study showed that the 

MPCM provided the corrected θ  estimates that clearly differentiated the effects of 

different response styles. Given that the model provided this alternative, “purified” 

score for each response style, an important issue to address is whether using the 

“purified” θ  improves predictability of relevant criterion variable. This idea was 

addressed by Maij-de-Meij et al. (2008). Improved predictability is a question that 

awaits an answer from empirical research in various fields. The current simulation 

provided results that help in building a foundation upon which this practical utility of 

the MPCM can be further investigated among applied researchers.  
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5.3 Limitations of the current study and implications for future research 

The current study included extreme simulation conditions with an intention to 

explore possible limitations of the MPCM performance. The combination of test 

length of I = 4, sample size of N = 1200, and unequal mixing proportions that allows 

only 10% of the respondents to be members of the smaller classes were highly 

challenging conditions to achieve good parameter estimation in the context of mixture 

distribution polytomous IRT modeling. While setting up these extreme conditions 

helped in revealing some limitations in the application of the MPCM, it caused several 

cell means to be unavailable, limiting the interpretations of the factorial ANOVA 

results regarding the effects of the manipulated factors.  

 The interpretations of the current results that involved the acquiescent 

responses should be limited to the testing situation where a well-constructed balanced 

scale was used. From a methodological perspective, the current simulation results 

were meaningful in that the aberrant response behavior could possibly be controlled 

through the use of a balanced scale and the MPCM. The results showed that the ARS 

respondents were almost perfectly differentiated from other types of respondents and 

received a corrected θ  similar to what MRS respondents would receive. However, 

whether the corrected θ  contains the same psychological meaning for this group of 

respondents is evidently a question that calls for a degree of informed judgment 

among experts in the content area where the psychological test results would be 

scrutinized.  
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 The generated item locations within each class had small variability in the 

current study. In the MPCM, between-class variability not only in the order of 

thresholds and threshold distances but also in the item locations among test items may 

contribute to the recovery accuracy of the parameters (e.g., Rost, 1991). This small 

between-group variability in item locations might have contributed positively or 

negatively to the parameter recovery results of this study. In this study, polytomous 

item responses obtained with a 5-category Likert scale items were used. It has been 

previously investigated in the literature that the parameter recovery of the partial credit 

model differed depending on the number of categories on the rating scale that was 

used. The simulation results could possibly be different if different numbers of 

response categories were used. The effects of the variability in item locations within 

latent classes and the effects of different numbers of response categories warrant 

further studies.  

Future studies can also explore the other mixture distribution IRT model than 

the Rasch family models. Researchers have pointed out that the equal discrimination 

assumption of the Rasch models can be easily violated in real data analytic situations. 

The extension of other polytomous IRT models to mixture distributions would have 

the potential for allowing researchers to have a more complete view of hidden 

structural differences including personality or cognitive constructs, faking and social 

desirability tendencies, non-invariant items, as well as response styles. Empirical 

studies needs to be conducted to evaluate whether trait estimates of the mixture IRT 
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models corrected for the confounding effects of different response styles can improve 

predictability of criteria variables in various social behavioral research.  
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Appendix A 

Table A.1. Category probabilities for individual items for ERS class 

Item Category1 Category2 Category3 Category 4 Category 5 

1 0.3734 0.1065 0.0402 0.1065 0.3734 
2 0.3829 0.0880 0.0582 0.0880 0.3829 
3 0.4120 0.0614 0.0532 0.0614 0.4120 
4 0.4173 0.0675 0.0306 0.0675 0.4173 
5 0.3956 0.0800 0.0488 0.0800 0.3956 
6 0.3958 0.0914 0.0257 0.0914 0.3958 
7 0.4363 0.0514 0.0247 0.0514 0.4363 
8 0.4037 0.0777 0.0370 0.0777 0.4037 
9 0.3727 0.1020 0.0506 0.1020 0.3727 
10 0.4069 0.0785 0.0293 0.0785 0.4069 

Mean 0.3997 0.0804 0.0410 0.0804 0.3997 
  

 
Table A.1. Category probabilities for individual items for MRS class 

Item Category1 Category2 Category3 Category 4 Category 5 

1 0.0254 0.0889 0.7713 0.0889 0.0254 
2 0.0343 0.1118 0.7079 0.1118 0.0343 
3 0.0492 0.0614 0.7788 0.0614 0.0492 
4 0.0852 0.0976 0.6345 0.0976 0.0852 
5 0.0519 0.0661 0.7640 0.0661 0.0519 
6 0.0546 0.0752 0.7405 0.0752 0.0546 
7 0.0368 0.1064 0.7136 0.1064 0.0368 
8 0.0502 0.1052 0.6892 0.1052 0.0502 
9 0.0602 0.1441 0.5913 0.1441 0.0602 
10 0.0591 0.1088 0.6642 0.1088 0.0591 

Mean 0.0507 0.0966 0.7055 0.0966 0.0507 
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Table A.1. Category probabilities for individual items for ARS class 

Item Category1 Category2 Category3 Category 4 Category 5 

1 0.7136 0.1424 0.1270 0.0124 0.0046 
2 0.0046 0.0124 0.1270 0.1424 0.7136 
3 0.7669 0.1065 0.0758 0.0421 0.0087 
4 0.0087 0.0421 0.0758 0.1065 0.7669 
5 0.8269 0.1045 0.0313 0.0205 0.0170 
6 0.0170 0.0205 0.0313 0.1045 0.8269 
7 0.7102 0.1535 0.0906 0.0420 0.0036 
8 0.0036 0.0420 0.0906 0.1535 0.7102 
9 0.7338 0.2144 0.0356 0.0096 0.0066 
10 0.0066 0.0096 0.0356 0.2144 0.7338 

Mean 0.7503 0.1443 0.0721 0.0253 0.0081 
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