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Abstract— In the context of wireless sensor networks, the [1, 4, 10, 13, 14] are concerned with zero-one laws for
pairwise key distribution scheme of Chan et al. has several connectivity. Although the assumption of full visibilityogs
advantages over other key distribution schemes including away with the wireless nature of the communication infras-
the original scheme of Eschenauer and Gligor. However, tructure supporting WSNSs, in return this simplification resk
this offline pairwise key distribution mechanism requires it possible to focus on how randomizing the key selections
that the network size be set in advance, and involves all affects the establishment of a secure network; the corvitgcti
sensor nodes simultaneously. Here, we address this issugesults for the underlying random key graph then provide
by describing an implementation of the pairwise scheme helpful (though optimistic) guidelines to dimension the EG
that supports the gradual deployment of sensor nodes in scheme.
several consecutive phases. We discuss the key ring size The work of Eschenauer and Gligor has spurred the de-
needed to maintain the secure connectivity throughout all velopment of other key distribution schemes which perform
the deployment phases. In particular we show that the better than the EG scheme in some aspects, e.g., [3, 5, 9, 11].
number of keys at each sensor node can be taken to beAlthough these schemes somewhat improve resiliency, they
O(logn) in order to achieve secure connectivity (with high fail to provideperfectresiliency against node capture attacks.

probability). More importantly, they do not provide a node with the ability
Keywords: Wireless sensor networks, Security, Key predige authenticate the identity of the neighbors with which it
tribution, Random key graphs, Connectivity. communicates. This is a major drawback in terms of network

security sincenode-to-node authenticatiomay help detect
. INTRODUCTION node misbehavior, and provides resistance against nodle rep

Wireless sensor networks (WSNs) are distributed collestiocation attacks [3].
of sensors with limited capabilities for computations arickew ~ To address this issue Chan et al. [3] have proposed the
less communications. Such networks will likely be deployefdllowing randompairwisekey predistribution scheme: Before
in hostile environments where cryptographic protectiofl wideployment, each of the sensor nodes is paired (offline) with
be needed to enable secure communications, sensor-capiirédistinct nodes which are randomly selected amongst all
detection, key revocation and sensor disabling. Howevar, tothern — 1 nodes. For each such pairing, a unique pairwise
ditional key exchange and distribution protocols based dey is generated and stored in the memory modules of each of
trusting third parties have been found inadequate for farge paired sensors along with the id of the other node. A secur
scale WSNs, e.g., see [6, 9, 11] for discussions of some of fivkk can then be established between two communicating
challenges. nodes if at least one of them has been assigned to the other,

Randomkey predistribution schemes were recently prd-e., if they have at least one key in common. See Section Il
posed to address some of these challenges. The ideafoofimplementation details.
randomly assigning secure keys to sensor nodes prior torhis scheme has the following advantages over the EG
network deployment was first proposed by Eschenauer ascheme (and others): (i) Even if some nodes are captured, the
Gligor [6]. The modeling and performance of the EG schemsecrecy of the remaining nodespsrfectlypreserved; and (ii)
as we refer to it hereafter, has been extensively invesitijatUnlike earlier schemes, this scheme enables both nodede-n
[1, 4,6, 10, 12, 13, 14], with most of the focus being onfille authentication and quorum-based revocation without irmg|
visibility case where nodes are all within communication rangebase station. Given these advantages, we found it of gttere
of each other. Under full visibility, the EG scheme induces sto model the pairwise scheme of Chan et al. and to assess its
called random key graph$12] (also known in the literature performance. In the companion paper [15] we began a formal
as uniform random intersection graphs [1]). Conditions oinvestigation along these lines. LE{n; K') denote the random
the graph parameters to ensure the absence of isolated nataph on the vertex s€tl, ..., n} where distinct nodes and
have been obtained independently in [1, 12] while the paperare adjacent if they have a pairwise key in common; as in



earlier work on the EG scheme this corresponds to modelipgirwise distribution scheme, and in Section Il we sumrzgari
the random pairwise distribution scheme under full vigipil the relevant work from the companion paper [15]. Section
In [15] we showed that the probability dfi(n; K) being IV presents the main results of the paper; proofs are given
connected approachés(resp.0) asn grows large if K > 2 in Section VI and Section VII. Section V contains some
(resp. ifK = 1), i.e.,H(n; K) is asymptotically almost surely simulation results.
(a.a.s.) connected whenevir > 2.

In the present paper, we continue our study of connectivity
properties but from a different perspective: We note that #. Implementing pairwise key distribution schemes
many applications, the sensor nodes are expected to be defhe random pairwise key predistribution scheme of Chan et
ployed gradually over time. Yet, the pairwise key distribnt 3|, is parametrized by two positive integersaind K such that
is anoffline pairing mechanism which simultaneously involveg¢ < . There aren nodes which are labelled= 1,...,n.
all n nodes. Thus, once the network sizes set, there is no with unique idslId,,...,Id,. Write N/ := {1,...n} and set
way to add more nodes to the network and seitursively Ar , .= A — {i} for eachi = 1,...,n. With nodei we
expand the pairwise distribution scheme (as is possible f&sociate a subsét, ; nodes selected aandomfrom N _;

the EG scheme). However, as explained in Section II-B, thewe say that each of the nodeslin ; is paired to node.
gradual deployment of a large number of sensor nodesTiRus, for any subsett C N_;, we require

nevertheless feasible from a practical viewpoint. In thoatext

Il. THE MODEL

11 .
we are interested in understanding how the parani€teeeds (”Kl) if Al =K
to scale withn large in order to ensure that connectivity Pl = Al = .
is maintaineda.a.s. throughout gradual deployment. We also 0 otherwise.

discuss the number of keys needed in the memory modulefe selection of,, ; is doneuniformly amongst all subsets of
each sensor to achieve secure connectivity at every stepypf. \hich are of size exactlyc. The rvsT,, ; I are
—1i . n,ly---slnmn

the gradual deployment. Since sensor nodes are expectedd®,med to be mutually independent so that
have very limited memory, it is crucial for a key distributio

scheme to haveow memory requirements [5].

The key contributions of the paper can be stated as follows:
Let H,(n; K) denote the subgraph &f(n; K') restricted to
the nodesl, ..., |yn|. We first present scaling laws for the’.
absence of isolated nodes in the form of a full zero-one IaWely' ) o B
and use these results to formulate conditions under whichOn the basis of thisfflinerandom pairing, we now construct

H, (n; K) is a.a.s.not connected. Then, with < v < 72 < the key rings¥,, 1, ..., s n, One for each node, as follows:
. < v < 1, we give conditions om, K and~; so that Assumed ayaﬂable is a collection of{ distinct cryptographic
H.,(n; K) is a.a.s. connected for each= 1,2,...,(. As keys {wij, i = 1,...,m; £ =1,...,K} — These keys are
with the EG scheme, such conditions can be helpful for dirawn from a very large pool of keys; in practice the pool
mensioning the pairwise key distribution in the case of gead SiZ€ iS assumed to be much larger theii, and can be safely

deployment. We show that connectivity can be achieved.a.d@ken to be infinite for the purpose of our discussion.

when the number of keys to be stored in the memory moduledVoW: fix @ = 1,....,n and letl,; : 'n; — {1,..., K}

is O(log n); this is a key ring size comparable to that of the EG€NOte a labeling of', ;. For each nodg in I, ; paired to

scheme (in realistic WSN scenarios [4]). Thus, if have kagri ¢+ the cryptographic ke, ;) is associated withy. For

sizes are somewhat larger than in the full deployment casellstance, if the random sét,; is realized as{ji, ..., jx’}

is feasible to gradually deploy an a.a.s. connected WSN. With 1 < ji < ... < jx < n, then an obvious labeling
These results may help dimension the pairwise scheffSIStS iNy;

(jr) = k for eachk = 1,..., K with key w;y,
when the network is deployed gradually over time. Howev

i=1

for arbitrary A,,..., A, subsets ofNV_;,...,N_,, respec-

gssociated with nodg;. Of course other labeling are possible.

as with the results in [15], the assumption of full visihilit €9~ according to decreasing labels or according to a rando

may vyield a dimensioning of the pairwise scheme which Rermutation. The pairwise key

too optimistic. This is due to the fact that the unreliableuna wh o = i1 |wije, (7))

of wireless links has not been incorporated in the models Thi _ _

issue could be addressed, as was done for the original gairwp constructed and inserted in the memory modules of both

scheme in [16], by considering a simplified communicatioRodes: ar_ldj. In_herent to tr_ns Construcn(_)n is the fact that the

model where unreliable wireless links are represented afonkey vy, ;; is assignedxclusivelyto the pair of nodes and;,

channels. The study of the corresponding model for graddignce the terminology pairwise distribution scheme. The ke

deployment would provide a better understanding of how tfi&g ¥,; of nodei is the set

vagaries of the channel affect the performance of the psérwi W AeT. o ‘

distribution scheme; this will be carried out elsewhere. Bni = Awn iy 7€ ik Ulwn g 1€ 0nsk (1)
The rest of the paper is organized as follows: In Sectiars we take into account the possibility that neaes paired to

Il we present the model introduced in [15] for the randoresome other nodg. As mentioned earlier, under full visibility,



two node, sayi and j, can establish a secure link if at least Theorem 3.1: With K a positive integer, it holds that
one of the events € I',, ; or j € I, ; is taking place. Note

that both events can take place, in which case the memory . 0 if K=1
modules of node andj each contain the distinct keys;, ,; Jim P(n; K) = _ ®)
and w}, ;. It is also plain that by construction this scheme 1 ifK =2

supports node-to-node authentication.
P Moreover, for anys > 2, we have

B. Gradual deployment - 27 A
n; >1-—
Initially » node identities were generated and the key rings ( ) 2n? “)
¥n1,.-., 20, Were constructed as indicated above — Here foralln — 2.3 sufficiently large

stands for the maximum possible network size and should beAS an immediate corollary of Theorem 3.1, Yagan and

selected large enough. This key selection procedure ddes (kowski also obtained the behavior of graph connectivity a

rquire the physical presence of the sensor entities and sl parametek is scaled withn [15]. First some terminology:
be implemented completely on the software level. We no hy mappingK : Ny — N, is called ascaling provided the

e o e i Paruise ey bl SEheme Cconiioni, < 1 hols o all— 1.2,
bport g ploy ges. Corollary 3.2: For any scalingk : Ny — Ny such that

the initial phase of deployment, with < 7 <1, let [y1n] K, > 2 for all n sufficiently large, we have the one-law
sensors be produced and given the labels ., |vin|. The lim Pln; K,) = 1

key ringsX, 1,..., %, |~ are theninserted into the memor )
y INgSn1 Lnn) y Theorem 3.1 and its Corollary 3.2 together show that

modules of the sensors, ..., [yin], respectively. Imagine . .
now that more sensors are needed, say:| — |71n| sensors very small values ofK suffice for a.a.s. connectivity of the
: ’ . random graplt(n; K). The mere fact thatl(n; K') becomes
with 0 < 71 < 72 < 1. Then, |y2n| — |y1n] additional q ith 4 val q ol th
sensors would be produced, this second batch of sensﬁ}?gneCte even W'F very small values does hot imp y_t_at
enumberof keys (i.e., the siz&:,, ;|) to achieve connectivity

. t
would be assigned labelgyn| +1,...,[12n], and the key . : o ) :
NGS Y0511 - S |oen) WoUId be inserted into their is necessarily small. This is because in contrast with the EG

memory modules. Once this is done, thésen | — |71n] new scheme and its variants, the pairwise scheme produces key

sensors are added to the network (which now comptises) rings of variable size betweefi and K + (n— 1). To explore

deployed sensors). This step may be repeated a number tirﬁ%@_:'ssue furtherh\(viflrst recallhmlnlrll”nall(con(_jltlonfs on alg!gah
In fact, for some finite integef, consider positive scalars* : No — No which ensure that the key ring of a node has

0 < < < 4 < 1 (with 4o = 0 by convention). We size roughly of the order (of its meag),, whenn is large

can then deploy the sensor network/rconsecutive phases,[15]' _ _
with the k*" phase adding,n| — [vx_17] new nodes to the Lemma 3.3: For any scaling< : Ny — Ny, we have
network for eachk =1,...,¢. 1 ()| 5 .

I1l. RELATED WORK 2Ky

The pairwise distribution scheme naturally gives rise t tHfiS S0ON @My oo Ky = 00.

following class of random graphs: With = 2,3,... and __'hus, whenn is large [, 1(K,)| fluctuates fromk., to

positive integerk with K < n, the distinct nodes andj #£»+ (n—1) with & propensity to hover aboat’, under the

are said to badjacent writteni ~ 7, if and only if they have conditions of Lemma 3.3. This result is sharpened with the

at least one key in common in their key rings, namely help of a concentration result for the maximal key ring size
under an appropriate class of scalings. We define the maximal

i~g iff X, n%,; #0. (2) key ring size by
LetH(n; K) denote the undirected random graph on the vertex o _ .
set{1,...,n} induced through the adjacency notion (2), To My = :max Enil |, n=23,

keep the notation simple we have omitted the dependence on _ _
K for most of the quantities introduced so far. In what follows Theorem 3.4: Consider a scaling : No — Ny of the form
we largely abide by this practice, although we shall make the
dependence ork” explicit in a few places when scalingy
with the numbem of users. . _

with A > 0. If A > \* := (2log2 —1)"" ~ 2.6, then there

Below we summarize results obtained in the companion . . ;
paper [15]. We set existsc(\) in the interval0, \) such that

K, ~ Xlogn (5)

P(n; K) :=P[H(n; K) is connecte(d lim B[ M (Kn) —2Ky| 2 clogn] =0 (6)

n—oo

In [15] we have shown the following zero-one law. whenever(\) < ¢ < \.



IV. THE RESULTS

With the network deployed gradually over time as desci
in Section II-B, we are interested in understanding how
parameterK needs to be scaled with largeto ensure thi 045} .
connectivity ismaintaineda.a.s. throughout gradual depl
ment. Consider positive integers = 2,3,... and K with

0.5

K < n. With ~ in the interval(0, 1), let H., (n; K') denote th 0k 1
subgraph ofH(n; K) restricted to the node$l, ..., |yn]}.
Given scalard) < v < ... < v < 1, we seek conditior 031 ]
on the parameters¢ and n such thatH,, (n; K) is a.as 5 | |
connected for each=1,2,...,¢. B
First we write 02r 8
P,(n; K) :=P[H,(n; K) is connectep= P [C,, ., (K)] 015
whereC,, - (K) denote the event that., (n; K) is connectet o1
The fact thatH(n; K) is connected doesot imply tha 005k
H, (n; K) is necessarily connected. Indeed, with distinct n
i,j = 1,...,|yn], the path that exists ifil(n; K) betwee| % o1 02 03 w4 o5 085 07 08 o0 1

these nodes (as a result of the assumed connectiv
H(n; K')) may comprise edges that are notHh (n; K). The

next result provides an analog of Corollary 3.2 in this new Fig. 1. 7(v) Vs 7.
setting.
Theorem 4.1: With ~ in the unit interval0, 1) andc > 0,
consider a scaling : No — No such that Corollary 4.3: With ~ in the unit interval0, 1), consider a
log n scalingK : Ny — Ny such that (7) holds for some> 0. Then,
Ky ~c S (") we have
Then, we havém,, .., P,(n; K,,) = 1 whenever: > 1. 0 if c<r(v)
The random graphBl(n; K) andH.,(n; K) have very dif- Jim P, (n; Kp) = _ (10)
ferent neighborhood structures. Indeed, any nodgl(n; K) 1 ife>1

has degree at lea#f, so that no node is isolated ifi(n; K).

However, there is a positive probability that isolated reodévherer(v) is given by (9).
exist inH, (n; K). In fact, with Corollary 4.3 does not provide a full zero-one law for the

connectivity of H,(n; K,,) as there is a gap between the
P7(n; K,) := P[H,(n; K) contains no isolated nodes  thresholdr(v) of the zero-law and the thresholdof the one-
) law. Yet, as can be seen from Figure 1, the gap between the
we have the following zero-one law. _ thresholds of the zero-law and the one-law is quite smath wit
Theorem 4.2: With ~ in the unit interval0, 1), consider a 1 < 1-1r(q) < 1. More importantly, Corollary 4.3 already
scalingK : Ny — Ny such that (7) holds for some> 0. Then 2 ; i~ i
0 0 '+ implies (via a monotonicity argument) that it is necessang

we have sufficient to keep the parametds,, on the order oflogn
0 if c<r(y) to ensure that the gragh, (n; K,,) is a.a.s. connected. It is
lim P;(n;Kn) - (8) worth pointing out that the simulation results in Section V
e 1 ife>r(y) suggest the existence of a full zero-one law foy(n; K,,)
with a threshold resembling~). This would not be surprising
where the thresholely) is given by since in many known classes of random graphs, the absence
1 of isolated nodes and graph connectivity are asymptogicall
r(y) = (1 _ M) . (9) equivalent properties, e.g., Erdos-Rényi graphs [2]random
v key graphs [10, 12], among others.

Finally we turn to gradual network deployment as discussed
As can be seen from Figure &(~) is decreasing on the jn Section II-A.

interval [0, 1] with lim,jor(y) = 5 andlimy17(7) = 0. Theorem 4.4: With0 < 71 < 7o < ... < 7 < 1, consider

Since a connected graph has no isolated nodes, Theoreméls%a/,-ng[{ - Ny — Ny such that

yieldslim,, ., PP [H,(n; K,,) is connected] = 0 if the scaling

K : Ny — Ny satisfies (7) withc < r(vy). The following K logn
n~C—

corollary is now immediate from Theorem 4.1. " (11)



for somec > 1. Then we have

lim P[Cpny (K)o .0 Crny(Kn) =1, (12)

ey M e e
o TR

The event[C,, ,(K,) N ... N Cy, »(K,)] corresponds i
the network ineachof its £ phases being connected as n
nodes get added — In other words, on that event the s¢
do form a connected network at each phase of deploy
As a result, we infer via Theorem 4.4 that the condition
(with ¢ > 1) is enough to ensure that the network rem
a.a.s. connected as more sensors are deployed over tinr

The main conclusions of the paper, obtained by comb
Theorem 3.4 and Theorem 4.4, can now be summariz
follows:

Corollary 4.5: With 0 < 71 < 7 < ... < 9 < 1,
consider a scalingC : Ny — Ny such thatK,, = O(logn)
with

f
= -y02
.

Prob. that H (niK) has no isolated nodes

- - y05
'
— 08 4

0.9

B
- - 0%

K, zmax{('yl)*l,)\*}-logn, n=23,... (13) \ | .\ | | ! ! ! |

Then, the following holds:

1) The maximum number of keys kept in the memory module
of each sensor will be a.a.s. less thdf,,; Fig. 2. Probability thaffl, (n; K) contains no isolated nodes estimated via
. . : ; logn
2) The network deployed gradually insteps (as in Section 500 experiments withn = 1,000 and K = ¢ - 5.
1I-B) will be a.a.s. connected in each of thehases of

deployment Similarly, Figure 4 shows the estimated probability

V. SIMULATION STUDY P, (n; K,) for various values ofy with n = 500 asc ranges

We now present experimental results in support of Theor e the interva(0, 1). For each specifie, we can conclude

4.1 and Theorem 4.2. In each set of experiments, wenfix y monotom(_:lty thatPy (n; Ky) = 1_Wheneverc =~ L, n
and~. Then, we generate random graghis(n; ) for each agreement with Theorem 4.1. As pointed out earlier, Figure 4

K =1,.... Kya, where the maximal valuk,,., is selected suggests that’, (n; K,,) exhibits a full zero-one law similar

large enough to ensure that the range: @omputed through to that of T_he_orem 4.2 with a Fhreshold behaving likey).
More work is in progress on this issue.

K:C'logn

(14) VI. A PROOF OFTHEOREM4.1

Y
Fix n = 2,3,... and~ in the interval(0, 1), and consider
exceedsl. In each case, we check whether the generatsd ositive integerk > 2. Throughout (the )discussiom is
random graph has isolated nodes and is connected. We re%ﬁ%ciently large so that the conditions

the process500 times for each pair of values and K in
order to estimate the probabilities of the events of interes 2(K +1)<n, K+1<n-—|[yn] and 2<yn (15)

Due to the integer constraint dii, the values of: cannot be e o) enforced: these conditions are made in order to avoid

varied arbitrarily and the number of data points that can bgyenerate situations which have no bearing on the finaltresu
obtained in the rang@), 1) is thereforelimited. Thus, to better rpere is no loss of generality in doing so as we eventually let
assess the dependencequ(n;Kn) and P, (n; K,) on ¢ in n go to infinity.

the figures, we make use of the curve-fitting tool of MATLAB. ., any non-empty subset contained in{1,..., [yn]}

For \_/arious values _(_)fy,*Figure 2 and Figure 3 display e define the graphil, (n; K)(R) (with vertex setR) as the
the estimated probability>7 (n; K,,) that H, (n; K) has no  g,pqgraph oflL, (n; K) restricted to the nodes iR. We say that
isolated nodes as a function afHere,n is taken to bel, 000  p is’isolatedin H., (n; K) if there are no edges (i, (n; K))
andc is computed through (14) for various valuesf The petween the nodes iR and the nodes in its complement

plots in Figure 2 clearly confirm the claims of Theorem 4.2pc| ._ {1,...,|yn]} — R. This is characterized by the event
In each case; (n; Kc,,) exhibits a threshold behavior andp (- R7) gi\;en by

. n,7y )
the transitions fromP; (n; K,,) = 0 to Py(n; K,,) = 1 take
place around: = r(v). Also, it is evident from Figure 3 that B, (K;R):= |i €T, ;,j ¢ Thi, 1€ R, j€ RC‘W} )
the value ofc at which the transition occurs decreasesyas
increases, while the rate of decrease is much faster foedar
values ofy. This is compatible with the behavior ef~) given

in Figure 1. A, (K;R) :=C, (K;R)N B, (K;R).

Iso, let C, (K; R) denote the event that the induced sub-
raphH, (n; K)(R) is itself connected. Finally, we set



.
. - -y02 |H
- -y04 .

.

Prob. that H (niK) is connected

- - w05
. i

Prob. that H (niK) has no isolated nodes

- -6 | ]
. — 08
- w7 |
— 097
— 0% .
. i - - 099 |
- - 099

0999 |

Fig. 3. Probability thafl, (n; K) contains no isolated nodes estimated viaFig. 4. Probability thafHl, (n; K') is connected estimated viz00 experi-

500 experiments withh, = 1,000 and K = c - 1°g n. ments withn = 500 and K = c - 1"%

The discussion starts with the following basic observationd the expression

If H,(n; K) is not connected, then there must exist a non- |yn]
empty subsetR of nodes contained i{1,...,|yn]}, such Z P[An (K R)] = ( ) PlAnq.r(K)]
that H, (n; K)(R) is itself connected whileR is isolated in RENy.r
H, (n; K). This is captured by the inclusion follows since [A;,...| = (1)), Substituting into (17) we
obtain the bounds
On.,'y(K)c - URGJ\fn,,Y An,'y(K;R) (16 12
. _ . P[Cp(K)] < > (”"J) P (B, (K)] (18)
with A/, ., denoting the collection of all non-empty subsets of " = e
{1,...,|yn]}. This union need only be taken over all non- B
empty subsets? of {1,...,[yn]} with 1 < |R| < LL’Y;JJ’ as we make use of the obvious inclusioh, - ,(K) C
and it is useful to note tha{t%J = [%*]. Then, a standard Bn..r(K). Under the enforced assumptions, we get
union bound argument immediately gives P[By . (K)] (19)
n—|yn|+r—1 r n—r—1 Lynl=r
P[Cor(K)] < S Pl KR - <%> . <( s )> |
REN - 1<IRI<| 3 ("x) ("x)
] To see why this last relation holds, recall that for the set
= Z Z P[A,~(K;R)] | (17) {1,...,7} to be isolatedn H.,(n; K) we need that (i) each of
r=1 \REN . r the nodes- + 1,..., |yn] are adjacent only to nodemtside
the set of node$1 .,r}; and (ii) none of the nodek . .
where N, ., denotes the collection of all subsets ofre adjacent with any of the nodes-1, ..., |yn| — This Iast
{1,.... [yn]} with exactlyr elements. requirement does not preclude adjacency with any of thesrode
For eachr = 1,...,|yn), whenR = {1,...,r}, we [vyn]|+1,...,n. Reporting (19) into (18), we conclude that
simplify the notatlon by writingA,, - -(K) = nW(K;R), .
Bunr(K) := Bn~(K;R) and C, -, (K) := C,~(K;R). ]P)[Cn,VL(KJ)] L (Jzo)
For r = |yn], the notationC,, . |.,|(K) coincides with 3 n=lynf+r=1y\ "/ (nor=1y\ T
Chn~(K) ag d(Jafined earlier. Undgrt¥hé(er2forced assumptions,< Z (H:J) <( nl_(l )> : <( ,f_(l )>
it is a simple matter to check by exchangeability that r=1 ( K ) ( K )

with conditions (15) ensuring that the binomial coefficeeate
PA,(K;R)] =P[A,,.(K)], RN, yr well defined.



;
The remainder of the proof consists in bounding each where for n sufficiently large the summability of the
the terms in (20). To do so we make use of several standgebmetric series is guaranteed by (22). The conclusion

bounds. First we recall the well-known bound lim,, .o P[Cy o (K)¢] = 0 is now a straightforward conse-

r uence of the last bound, again by virtue of (22).
(Wﬂ) < (HnJe> Crm1. |yl q gain by (22)

T r

VIl. A PROOF OFTHEOREM4.2

Next, for0 < K < a2 <y, we note that ) . . T
Fixn = 2,3, ...and considet in (0, 1) and positive integer

@:Ii:f(“’_é) < (x)K K such thatK < n. We write
-/
Y Xn,v,i(I) := 1[Node ¢ is isolated in H, (n; K)]

Y

(&)

smce— decreases asincreases fronf =0to /= K — 1. ; hi— 1 Th ber of isolated nodes i
Now pICkT —1,....|yn]. Under (15) we can apply theselOF €achi = 1,..., |yn|. The number of isolated nodes in

bounds to obtain Hy(n; K) is simply given by

|y ("‘”%*T_l))T,<("7<_1)>MT I (K) = S (K)
( ' >< (") (") A= 2

lynfe\" (n—lyn|+r—1\" whence the random grag#i, (n; K) has no isolated nodes if
- r n—1 I, ~(K) = 0. The method of first moment [8, Eqn (3.10), p.
n—r—1\XUml-r) 55] and second moment [8, Remark 3.1, p. 55] yield the useful
X <ﬁ> bounds
. K (Lyn)=r) E (L (K))*
yne |yn] — 1=E [l (K)] <P[l,,(K)=0] <1———20 "L (23)
() (- 125 > ( n_l) iy (BOF < Blina(R) = 0= 1= g7 0y
” K(Lan ) The rvsxn,4,1(K), ..., Xn,, 4o  (K) being exchangeable,
< (yne) '(1 ) we find
< (,yne)r . 6_( H"J T e~ (I_vnj T‘)K E [In77 (K)] = LV”JE [Xn,’y,l(K)] (24)
It is plain that and
%5 E [I(K)?]
. o _o(lml=ry, Yy
POy (K)] <Y (e e 255700 — A JE [ (K] (25)

ﬂ
I
A

+ [yn]([yn] = DE [Xnq,1(K)Xn,,2(K)]

Lyn)— 125 "
(We e ( " ) ) (21) by the binary nature of the rvs involved. It then follows ieth
usual manner that

IA

—
RNRE
= —

T

as we note that

E [In,(K)*] 1
—ry bel-1Y ’ = 26
s g By (F DB R (K (29)
Next, consider a scaling : Ny — Ny such that (7) holds n [yn] = 1E [Xnqa (K )xn,y,ng )
for somec > 1, and replacek by K, in (21) according to [yn] (E [Xn,y,1(K)])

this scaling. Using the form (7) of the scaling we get, From (23) and (24) we conclude that the one-law

M) K, 1,2%(M> limy, 00 P [I,,,(K,) = 0] = 1 holds if we show that
(ve)

n yn

i
an 1=1yne-e

for eachn = 1,2,..., with lim,, ., ¢, = c. It is a simple nlLH;o [y E [,y 1 (Kn)] = 0. (27)
matter to check that On the other hand, it is plain from (23) and (26) that the
. Ly = 7YY _ zero-lawlim,, .. P [I,, - (K,) = 0] = 0 will be established if
lim | 2¢, | ——=—= =, a
n—00 n
li E[xn1(Kn)] = 28
so that by virtue of the fact that> 1, we have s LynJE D1 (Kn)) = o0 (28)
lim a, =0. (22) and : (K.) (5]
n— o0 . EXnvl Kanrngn )
From (21) we conclude that lim sup — — <1l (29
D i ( (E [ 1 ()

[%5]

P[Crny(Kn)] < Z ) Z T1- An

r=1 r=1

The next two technical lemmas establish (27), (28) and (29)
under the appropriate conditions on the scalifig Ny — Np.




Lemma 7.1: Considery in (0,1) and a scaling< : Ny — and
Ng such that (7) holds for some> 0. We have (n — |yn])n—lm

0 if ¢> 7’(’}/) 577, (n — \_fynJ — Kn)n—l_an—Kn
lim nE [xn,.1(Kn)] = (30) K, —(n—lyn]) X
. oo ife<r(y) = (1— m) “(n—[yn] - K,)"".
with r(y) specified via (9). . In obtaining the asymptotic behavior of (33) we rely on the
Lemma 7.2: Considery in (0,1) and a scaling< : No —  following technical fact: For any sequenge: Ny — Ny with
Ny such that (7) holds for some> 0. We have my = O(n), we have
lim sup <E [Xn’%l(Kn)Xn’%z(QKn)]> <1. (31) (1 — &) ~ e En (34)
n—00 (E [Xn,v,l(Kn)]) Mn,

To see why (34) holds, recall the elementary decomposition
Proofs of Lemma 7.1 and Lemma 7.2 can be found in

Section VII-A and Section VII-B, respectively. To complete 1og(1 — z) = —z — U(z) with U (z) := /z _t dt
the proof of Theorem 4.2, pick a scaling : Ny — N o 1—t

such that (7) holds for some > 0. Under the condition valid for 0 < = < 1. Using this fact, we get

¢ > r(y) we get (27) from Lemma 7.1 and the one-law -

limy, oo P[I,,,(K,) =0] = 1 follows. Next, assume the (1 _ ﬁ) — e Kn  gmma¥ () (35)
conditionc < r(v). We obtain (28) and (29) with the help My

of Lemmas 7.1 and 7.2, respectively, and the conclusigsy all n = 1,2, .. ..

limy, o0 P [I(Ky) = 0] = 0 is now immediate. Under the enforced assumptions we havg = O(n) and
K, = O(logn), so that

A. A proof of Lemma 7.1
) g lim m, [ —
integer K such thatKX < n. Here as well there is no loss of n—o0 My, n—oo My,
generality in assuming — [yn] > K and |yn| > 1. Under | js now plain that
the enforced assumptions, we get K

lim m, ¥ (—n) =0

2
Fix n = 2,3,... and~ in (0,1), and consider a positive lim Kn _ 0 and (Kn) —0.

n—|yn] n—2 lyn]—1 n—00 My,
Exny1(K)] = ( = : <(nlfl)> w
( K ) ( K ) as we note thatim, o I(g”) = % This establishes (34) via
K [yn]-1 (35)
= a(n; K)- (1 - ﬁ) (32)  Using (34), first withr,, = n—1, then withm,, = n—|yn/|,
we obtain
with <1 K, >"‘1 _x
— ~ e n
(n— |yn])! (n—1-K)! n—1
a(n; K) := . .
N Iy ST T and
Now pick a scalingk : Ny — Ny such that (7) holds for K, —(n=lyn]) -l ok
somec > 0 and replaceX by K, in (32) with respect to this (1 T an> ~(eThfn) =t
scaling. Applying Stirling’s formula
whence «
m m n
m! ~2rm (| — (m — o) - n—|yn] - K,
( e ) o B <—TL " K, 1 . (36)
o the factorials appearing in (32), we readily get With the help of (32) and (33) we now conclude that
a(n: Ky) ~ (n—|ym))(n—-1-K,) o B nE [xn~1(Kn)] (37)
(n—|yn] - Kp)(n—1) Ko\ = yn] = Ko\
~ anfn (33) ~ n<1_n—1> ( n—K,—1 ) '
under the enforced assumptions on the scaling with A final application of (34), this time withn,, = n—1, gives
L (n B Kn B 1)n7Kn71 lyn]—1 n—1 %
e (n—1)nT (1— Ko ) = ((1— ol ) )
% 1 n—1 n—1
— — n . — — —Kn yn]—1
= (1 n—l) (n—K,—-1) ik, (38)
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sincelim,, .., ~—5— = . Reporting (38) into (37) we obtain VIIl. A PROOF OFTHEOREM4.4
Pick 0 < v1 < 72 < ... < <1 and consider a scaling
nE [Xn 1 (Kp)] ~ o (39) K :Ny — N, such that
with K, ~ o 1087
1
G = logn — <L7nJ —1 1 +1log <” - U]ZJ - {fn)) K, for somec > 1. It is plain that (12) will hold provided
" T lim P[Cpny (Kn) =1, k=1,....0.  (41)
for all n = 1,2,.... Finally, from the condition (7) on the For eachk — 1,2, ..., we note that
scaling, we see that
logn logn with Yk
_ c = Ck Cr = ¢ —
lim on = 1_C+6710g(1 ) =1- ¢ . n Tk o n )
n—oo logn Y () forall n = 1,2,.... Butc > 1 implies¢, > 1 sincey; <

... <. As aresultH,, (n; K,) will be a.a.s. connected by
virtue of Theorem 4.1 applied t,, (n; K), and (41) indeed
holds.

Thus,lim,, ., ¢, = —oo (resp.co) if 7(vy) > ¢ (resp.r(y) <
¢) and the desired result follows upon using (39).
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