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Population growth and economic development lead to increasing demand for 

travel and pose mobility challenges on capacity-limited air traffic networks. The U.S. 

National Airspace System (NAS) has been operated near the capacity, and air traffic 

congestion is expected to remain as a top concern for the related system operators, 

passengers and airlines. This dissertation develops a number of model reformulations 

and efficient solution algorithms to address resource allocation problems in air traffic 

flow management, while explicitly accounting for equitable objectives in order to 

encourage further collaborations by different stakeholders.  

This dissertation first develops a bi-criteria optimization model to offload 

excess demand from different competing airlines in the congested airspace when the 

predicted traffic demand is higher than available capacity. Computationally efficient 

network flow models with side constraints are developed and extensively tested using 



      

datasets obtained from the Enhanced Traffic Management System (ETMS) database 

(now known as the Traffic Flow Management System).  Representative Pareto-

optimal tradeoff frontiers are consequently generated to allow decision-makers to 

identify best-compromising solutions based on relative weights and systematical 

considerations of both efficiency and equity.  

This dissertation further models and solves an integrated flight re-routing 

problem on an airspace network. Given a network of airspace sectors with a set of 

waypoint entries and a set of flights belonging to different air carriers, the 

optimization model aims to minimize the total flight travel time subject to a set of 

flight routing equity, operational and safety requirements. A time-dependent network 

flow programming formulation is proposed with stochastic sector capacities and 

rerouting equity for each air carrier as side constraints. A Lagrangian relaxation based 

method is used to dualize these constraints and decompose the original complex 

problem into a sequence of single flight rerouting/scheduling problems.  

Finally, within a multi-objective utility maximization framework, the 

dissertation proposes several practically useful heuristic algorithms for the long-term 

airport slot assignment problem. Alternative models are constructed to decompose the 

complex model into a series of hourly assignment sub-problems. A new paired 

assignment heuristic algorithm is developed to adapt the round robin scheduling 

principle for improving fairness measures across different airlines. Computational 

results are presented to show the strength of each proposed modeling approach.   
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Chapter 1: Introduction 

Population growth and economic development lead to increasing demand for 

travel and pose mobility challenges on capacity-limited air traffic networks. As air 

traffic demand continues to increase, the U.S. National Airspace System (NAS) 

operates near its capacity. Air traffic congestion is expected to remain as a top 

concern for the related public agencies and private industry. According to the Bureau 

of Transportation Statistics (BTS), a flight is classified as delayed if it arrives 15 

minutes later than the published schedule. Reported by the airline on-time statistics 

website (BTS, 2011), from 2000 to 2010, the percentage of delayed flights has been 

remaining in a range of 17% to 22%, with a mean value of 20.70%. Specifically, in 

2009, 17.21% of flights have late departures and 19.46% of lights have late arrivals, 

while 1.85% of flights were canceled and 0.26% of flights were diverted.  

 

In a recently concluded Total Delay Impact Study (Ball et al. 2010), the total 

cost of US air traffic delays was estimated to be $32.9 billion dollars for calendar year 

2007. The largest component is a $16.7 billion cost associated with the  passenger 

time lost, in terms of schedule buffer, flight delays and cancellations, as well as 

missed connections. In a report prepared by Schumer and Maloney (2008) for the 

Senate Joint Economic Committee, the total direct costs to airlines and passengers 

were estimated to be $31 billion dollars. In 2009, the NAS delays were 30.6 percent 

of total delays, and 65.7% of NAS delays were due to weather.  
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1.1 Importance of Equitable Resource Allocation 

To alleviate the current air traffic congestion problem, a number of initiatives 

have been developed to improve the overall air transportation system efficiency by 

providing additional infrastructure and facilities, such as runways at airports. 

Additionally, several planning and management initiatives also focus on the efficient 

use of the existing airport and airspace resources, such as flights separation, 

integrated weather prediction, as well as dynamic resource allocation.  In particular, 

an air Traffic Flow Management (TFM) program aims to balance air traffic demand 

and ensure the maximum efficient utilization of the NAS within available capacity. 

The system-wide balance is accomplished by first predicting the impact of demand 

and capacity constraints and then responding as needed with flow management 

strategies. 

Essentially, planning and operating in a collaborative environment requires 

mutual understanding and acceptance of respective roles and responsibilities among 

the NAS users. As a result, Collaborative Decision Making (CDM), one of the above 

key initiatives and a joint government/industry partnership, seeks to create common 

situational awareness of traffic congestion and constraints in the NAS. The first major 

thrust of CDM in the United States, Ground Delay Program Enhancement (GDPE), 

which targets airport arrival slot control, has been operated since 1998. When airport 

arrival capacity is reduced and may not meet the demand placed by arriving aircrafts, 

the Federal Aviation Administration (FAA) enacts a Ground-Delay Program (GDP) 

to delay flights before they depart from their origin airports, keeping traffic at an 
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acceptable level for the affected arrival airport(s). Under GDPE, participating airlines 

send operational and schedule changes to the Air Traffic Control Systems Command 

Center (ATCSCC) on a continual basis. Using the flight schedule monitor (FSM) 

tool, the ATCSCC collects various types of information, monitors airport arrival 

demand and initiates GDPs at the major airports in the U.S. 

 

As a resource allocation mechanism, Ration by Schedule (RBS), in 

conjunction with a slot exchange procedure, namely “compression”, constitutes the 

arrival slot allocation process on which FSM is based. This procedure relies on the 

flight schedule to define an allocation standard to measure the degree of equity for 

each NAS user. Moreover, this procedure is implemented independent of flights’ 

current status, encouraging all users to provide and exchange up-to-date information. 

RBS and “compression” strategies have been reported to significantly reduce delays 

and improve the efficiency of air traffic flow into airports. For example, during the 

period between January 20, 1998 and July 15, 1999, the planned (ATCSCC assigned) 

delay reduction (at airports with 10 or more compression cycles) ranged from 7.5% at 

Atlanta’s Hartsfield Airport to 18.2% at Boston’s Logan Airport (Ball et al. 2000), 

with an average reduction over all GDP airports being 12.7%. Compared to the 

previous system, these two strategies reduced assigned ground delay by over 3.1 

million minutes. 

 

The success of the CDM program has underscored the need for TFM to 

allocate resources in a fair-handed manner. As a service provider, the FAA has a 
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strong commitment to an equitable allocation of the limited NAS resources. The 

equitable allocation is essentially an inherent responsibility of traffic flow 

management. More importantly, inequitable allocation could affect the active 

participation in the daily management of air traffic. Information being withhold or 

skewed could develop mistrust, and further jeopardize the quality and effectiveness of 

air traffic services, and the efficiency of the NAS as a whole. Thus, equitable 

allocation is critically needed to ensure successful deployment of existing or new 

TFM initiatives under the CDM paradigm, and it is also a key issue to be carefully 

examined and explored in this dissertation. 

1.2 Research Motivations for Air Traffic Flow Management 

 

To date, the potential benefits of utilizing advanced air traffic flow 

management strategies to consider both efficiency and equity objectives are still 

being explored. As shown below, many fundamental issues need to be addressed to 

fulfill the methodological capabilities required by the collaborative NAS decision 

making environment. These challenging questions place a greater need for systematic 

modeling methodologies for potentially competing objectives and efficient solution 

algorithms for real-world problems. 

The first part of this dissertation is motivated by the efficiency and fairness 

concerns that arise from the resource allocation procedure in the airspace. Different 

from the resource allocation problem at the airport such as a Ground Delay Program 

(GDP) as stated earlier, it is challenging to assign airspace resources efficiently and 

equitably with respect to competing airlines or origin-destination pairs. In a GDP, all 
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the flights have the same destination, and a flight schedule is used to define an 

allocation standard so as to measure the degree of equity for each NAS user. In the 

airspace congestion problem, however, there is no schedule which can be used to 

measure the degree of delay, leading to a number of modeling and operational 

difficulties.  First, flights do not have a fixed flight plan to define the path of the flight 

within a set of sectors, fixes and jet routes. Usually, a flight is required to file the 

flight plan 45 minutes before its departure. Furthermore, different airlines have 

different patterns of filing the flight plan, with some airlines filing flight plans at the 

last minute while waiting for the final weather forecast. As a result, it is extremely 

difficult to accurately predict flight plans to be filed in the near-term future (say 2 

hours ahead). Secondly, even assuming that a flight plan is fully predictable based on 

historical information, flights could intersect the congested airspace differently due to 

their own specific origin-destination geography.  

This dissertation will consider the following theoretically important issues and 

provide new reformulations to improve both system-wide efficiency and equity when 

a Flow Constrained Area (FCA) is issued. Rerouting options will be provided so as to 

reduce the traffic to capacity level:  

1. How to choose flights to be offloaded: Typically, flights between some 

specific city/center pairs are chosen to be rerouted. This practice might lead to a 

significant bias among airlines as some airlines might get exempted simply due to the 

fact that no flights were scheduled to arrive at the chosen destination airports.  
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2. More options than just rerouting: The ground holding option in which 

aircraft can be held at the departure airport is not provided as an alternative for 

rerouting in the current procedure. 

3. Real-time operation adjustment under uncertainty: The offloaded flights are 

chosen statically two or more hours before the events occur without getting adjusted 

according to the evolving actual conditions. It is very difficult to predict the exact 

value of downgraded sector capacity, especially under evolving weather conditions. 

1.3  Research Motivations for Airport Slot Assignment 

 

Airports subject to slot controls have a restricted number of scheduled 

operations per day, in which “slots” are defined as a reservation for a flight to takeoff 

or land within an assigned time interval. In addition, airports have operational 

constraints determined by runway size, the number of terminals, and air traffic control 

facilities. As the demand for an airport approaches and in some cases exceeds 

capacity, significant flight delays could result. Therefore, it is important to assure 

slots at congested airports are allocated among airlines in an economically efficient 

manner.  

One type of resource assignment problems arises in the long-term landing slot 

lease assignment practices, which aim to solve the demand/capacity imbalance by 

restricting schedules. Many slot control rules are designed and used to address 

increased congestion and delay that would likely occur in the absence of restrictions 

on the number of aircrafts scheduled to fly in and out of a major airport.  Recently, 
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the FAA and the DOT have also taken a number of steps to investigate market-based 

solutions in congestion management which aims to encourage competition and also 

allow the airports to operate at maximum efficiency and safety. 

This dissertation plans to mathematically formulate the above proposed 

problems and develop efficient solution algorithms to assign scarce resources in terms 

long-term airport slots. The primary objective of this dissertation is to develop 

efficient algorithms to solve the slot assignment problems with systematic 

consideration of airlines’ need and equity in the final assignment. 

  

1.4  Dissertation Outline  

 

The focus of this dissertation is on constructing theoretically rigorous models 

to effectively allocate scarce resources in the national airspace so as to balance the 

system capacity and airline economic tradeoff. We will formulate and develop 

mathematic models to describe different alternative approaches that address the flight 

offloading problem with special focuses on the problem complexity, capacity-demand 

interaction, and equity issues. The contents and contributions of each subsequent 

chapter are detailed below. 

The dissertation includes six chapters. Chapter 2 provides a comprehensive 

review and discussions on air traffic management. Several air traffic management 

initiatives are briefly reviewed, two of which are discussed in details. The last section 

of Chapter 2 reviews important literature on models for air traffic flow management 

and airport slot assignment. 
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Chapter 3 develops a sector-level integer programming model to 

systematically formulate the flight offloading problem. A bi-criteria optimization 

model is proposed to divert excess demand from different competing airlines in the 

congested airspace when the predicted traffic demand is higher than available 

capacity. Computationally efficient network flow models with side constraints are 

developed and extensively tested using datasets obtained from the Enhanced Traffic 

Management System database. 

Chapter 4 proposes an enhanced sector or space level model with ground 

holding and routing decisions. Given a network of airspace sectors with a set of 

waypoint entries and a set of flights belonging to different airlines, this study 

considers uncertain sector capacity using multiple scenarios. The proposed stochastic 

optimization model aims to minimize the total expected flight ground holding and 

rerouting cost subject to a set of flight routing equity, operational and safety 

requirements. A time-dependent network flow programming formulation is proposed 

with sector capacities and rerouting equity for each airline as side constraints. A 

Lagrangian relaxation based method is used to dualize these three side constraints and 

decompose the original complex problem into a sequence of single flight 

rerouting/scheduling subproblems.  

Within a multi-objective utility maximization framework, Chapter 5 proposes 

several practically useful heuristic algorithms for the long-term airport slot 

assignment problem. Alternative models are constructed to decompose the complex 

model into a series of hourly assignment subproblems. A new paired assignment 

heuristic algorithm is developed to adapt the round robin scheduling principle for 
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improving fairness measures across different airlines. Computational results are 

presented to show the strength of each proposed modeling approach.  

The dissertation is concluded in Chapter 6 by a summary of research 

contributions and discussions of future research needs. 

 



 

 10 
 

Chapter 2: Background Introduction and Literature Review 

 

This chapter reviews several Air Traffic Flow Management (ATFM) 

initiatives, as well as critical literature on the specific problems under consideration in 

this dissertation. The following briefly introduces commonly used ATFM strategies 

such as Ground Delay Program and Collaborative Routing in Section 2.1 and Flow 

Constrained Area and Airspace Flow Program in Section 2.2. We offer detailed 

discussions on the current practice from the perspectives of system efficiency and air 

carrier equity, which will be studied further in Chapter 3 and 4. In Sections 2.3, we 

review critical optimization literature in the Ground Delay Program and Air Traffic 

Flow Management in general, with a focus on various formulations that are relevant 

to the equitable air space and slot resource allocation. 

2.1 General Air Traffic Flow Management Strategies 

 
This section first introduces the administrative structure for the control and 

coordination of aircrafts in the NAS, which is provided by Air Traffic Control (ATC) 

and Air Traffic Flow Management. Specifically, ATC is responsible for ensuring safe 

separations between aircraft, and ATFM is responsible for balancing demand and 

capacity to ensure the efficient use of the airspace. In general, ATC is a service 

provided by ground-based controllers who direct aircraft on the ground and in the air. 

A controller's primary task is to separate aircraft sufficiently with the use of lateral, 

vertical and longitudinal separations. Secondary tasks include ensuring safe, orderly, 

and expeditious flow of traffic and providing information to pilots, such as weather 
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and navigation information. The Air Traffic Control system has limited capabilities 

due to many factors, such as the volume of traffic, frequency of congestion, quality of 

radar, controller workload, and higher priority duties. In contrast, ATFM focuses 

more on the system flow side of air traffic management by coordinating air traffic so 

that demands for various resources do not exceed capacities. ATFM is performed on a 

national level at the Air Traffic Control System Command Center (ATCSCC). The 

primary duty of the ATCSCC is to monitor the traffic situation in the NAS, and 

implement control measures when demand exceeding capacity. We will briefly 

review several ATFM strategies that are currently used in handling demand and 

capacity issues, and then focus on two major problems of Air Traffic Flow 

Management in section 2.2. 

Essentially, a Ground Delay Program aims to solve airport arrival capacity 

shortfalls by applying ground delays to flights at their origin airports when they are 

bound for a common destination airport with reduced capacity. Interested readers are 

referred to Ball et al. (2007), Hoffman et al. (2011), and Libby et al. (2005). For 

allocation purposes, the time horizon of reduced capacity is divided into contiguous 

time intervals known as arrival slots. Prior to departure, each flight receives a discrete 

arrival slot based on availability at the destination.  The Collaborative Decision 

Making (CDM) program has established a highly successful paradigm for allocation 

of airport arrival slots. The main allocation principle is “first-scheduled, first-served”, 

meaning that the earlier arrival slots are generally awarded to the flights that are 

scheduled to arrive earlier. The CDM experience has shown to be not only an 

equitable treatment of carriers advisable, but a necessary condition for efficient use of 
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resources. Prior to CDM, effective GDP initiatives were based on dated flight data 

that unfortunately did not reflect the airline’s intentions upon the day of operation.  

 

Collaborative Routing is an approach to apply CDM technology and concepts 

to the management of en route traffic. In contrast to the highly refined algorithms 

employed in GDPs, the resource allocation problem for en route traffic has been less 

studied. A number of initial Collaborative Routing tools and procedures were 

prototyped in 1999. A collaborative routing coordination tool, CRCT, developed by 

MITRE, provides FAA traffic flow specialists with automated features that support 

the identification of flights affected by congestion and aids in the development of 

alternative routes. Other tools have been developed to support Collaborative Routing 

such as, Collaborative Convective Forecast Product (CCFP) which represents a 

consensus based on information from AOC and ARTCC weather units, Low Altitude 

Arrival and Departure Routes (LAADR) which contain a set of procedures for 

allowing the use of low altitude alternative routes to avoid congestion, and Coded 

Departure Routes (CDR) which providing a set of procedures and database for 

creating and storing alternative routes 

Miles-in-Trail Restriction (MIT) aims to ensure that the traffic flow does not 

exceed the capacities in the en route sectors or congested regions in the NAS by 

imposing distance based metering or restrictions at different fixes. MIT restrictions 

keep the traffic flow below a certain level by specifying the minimum separation 

distance between two consecutive aircrafts flying across the same fix. MIT 
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restrictions often cause airborne delay, but it is still less expensive and disruptive than 

airborne holding. 

2.2 Flow Constrained Area and Airspace Flow Program 

 
To improve overall airspace system performance, recent attention has shifted 

to the en route airspace, with the desire to most significantly improve airborne delays 

and throughput enhancement. It is well known that the primary factors causing 

congestion in the airspace include severe weather (especially in the summer), heavy 

traffic volume, and special use restrictions such as military activities and space rocket 

departures. In practice, all the above cases are classified as “lost space”. When any of 

the above events occurs, a constrained airspace problem would arise and would need 

to be resolved in real-time to maintain the safety for passing flights. 

2.2.1 FCA in practice 

 
Prior to 1998, the FAA dealt with the air traffic flow management problem in 

a centrally controlled manner with little airline involvement. In recent years, the Flow 

Constrained Area system was designed to evaluate and alleviate potential adverse 

effects to air traffic during periods when events may have a significant impact on the 

NAS. It provides a mechanism of automated data transfer and enables a common 

situational awareness to air traffic personnel and NAS users, who can receive 

advanced notifications of problem areas and have a chance to take proactive actions 

to prevent congestion.  
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Compared with the traditional air traffic flow management model, which takes 

into account a large piece of the airspace or even the entire NAS, the FCA strategy is 

a type of local and constraint-targeting solution. Instead of considering the entire 

airspace, an FCA targets the congested area and removes a portion of flights to ensure 

that the total number of flights does not exceed the reduced capacity.  

The common NAS resources include airspace (sectors), fixes, and airports, 

each with limited capacity and subject to excess demand.  In general, the goal of the 

FCA operational policy is to solve the congestion problem locally by offloading 

excess flights from the problem area and achieve the demand-capacity balance. The 

offloaded flights can be canceled or re-routed to the surrounding areas that have spare 

capacity. Another overarching goal of FCA is to solve the problem promptly and 

efficiently because typically, only a few hours are available to make a strategic 

decision once the event occurs. Although the current FCA operation still needs to be 

modified to improve system performance and fairness among airlines, the approach of 

focusing on constraints and generating problem based on the system constraint offers 

more flexibility in practical applications. 

It should be remarked that, a Flow Evaluation Area (FEA) advisory is similar 

to FCA in that they both define the constrained area in a given time period with an 

attached flight list. More precisely however, the former only recommends actions for 

airlines, while the latter requires the airlines to comply with the issued advisory. 

 The current FCA operational procedure can be stated in details as the 

following with the corresponding flow chart is shown in Fig. 2.1 (Libby et al., 2005). 
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1) Situation monitoring. Traffic managers and NAS users monitor the 

situation to be aware of potential constraints and of potential responses to 

FAA Traffic Flow Management Unit personnel.  

2)  Publishing FEA. Traffic managers and NAS users send a request to the 

ATCSCC once they detect problems that might potentially become 

constraints.  

3) FEA reactions. If a public FEA is published, traffic managers at ATRCC 

and other NAS users react to the potential constraints.  

4) Publishing FCA. Once the ATCSCC recognizes that a constraint exists, it 

will declare it, e.g., by issuing an FCA advisory. At the same time or 

perhaps later, the ATCSCC will also provide route options around this 

FCA, but NAS users are left to implement them. 

 

 

Figure 2-1 FCA Operation Flow Chart (Source: FCA Operational Concept document 
prepared by Libby et al., 2005) 

 

Monitor 
 
TMUs 
monitor 
traffic flow 
& sector 
capacity 

FCA 
 
ATCSCC 
opens an 
FCA with 
TMI . 

Private FEA 
 
TMUs use 
Private FEAs 
to monitor 
potential 
congestion 

Public FEA 
 
TMUs work 
with ATCSCC 
to open a 
Public FEA 

Shared FEA 
 
TMUs use 
Shared FEAs to 
communicate 
with other TMUs 
and AOCs 

At any time the situation deteriorates quickly or voluntary 
operational adjustments fail to resolve a developing problem, the 
TMU may work directly with the ATCSCC and other parties to go 
directly to an FCA with a Traffic Management Initiative (TMI). 
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 Weather and traffic volume are currently the most significant reasons for 

defining FCAs. On a severe weather day, such as July 29th, 2003 shown in Figure 2.2, 

an FCA was defined as a 3-dimensional airspace filter with detailed coordinate 

information attached in a different file other than the advisory. Rather than being 

defined as the entire congestion area, where the true constraints exist, the FCA is 

currently used and defined as a small piece of airspace which is used to identify and 

filter out the flights that need to be offloaded or re-routed. As a general rule, a 

proportion of, or in some cases, all the flights scheduled to pass through this filter 

area during the FCA, need to be offloaded to maintain their en route safety.  

 

 
Figure 2-2 Illustration of Flow Constrained Area 

 

Currently, flight departures from some ARTCCs to some major destinations 

are often chosen to implement rerouting policies due to tactical considerations. Since 

the majority of the flow usually goes to major airport, targeting those flights for 

rerouting can easily solve the problem. Of course, other considerations are also 
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involved, such as wind direction and current time. For Example, most of the flights 

fly from east coast to west in the morning and from west coast to east in the 

afternoon. If the FCA is defined in the morning, offloading some east-west bound 

flights flow can solve the problem easily.  

In some cases, excess volume is the principal cause of capacity-demand 

imbalance. For these cases, FCA is defined as a 3-dimensional airspace filter with an 

associated time interval. Some of the flights will be restricted to pass through using 

certain routes, e.g. chokepoint routes. Similar to the case discussed earlier on weather 

FCAs, the flights are usually selected by taking departures from certain ARTCCs to 

some major airports to maintain the sector capacity/demand balance. 

  The above FCA scenarios summarize how the FCA is currently being used (as 

is envisioned to be used). Some important issues, however, remain unsolved in the 

current ad-hoc type of operations.  

(1) The current operational procedures typically use a filter area to show the set of 

flights to be offloaded or rerouted. However, the true congested or constrained area is 

not revealed in the published advisory. That is, only the solution determined by 

ATCSCC is shown to the traffic unit personnel. The airline operational control center 

personnel and the ARTCC personnel are unable to recognize the true constraints and 

may not respond or cooperate with the published advisory. This may affect the 

compliance rate and may introduce more workload to ensure the problem is solved.  

(2) Typically, flights between some specific city/center pairs are chosen to be 

rerouted. The current operational procedure introduces offload/reroute bias among the 

carriers. For instance, large carriers may have more flights going to a major airport, 
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while some smaller carriers may not have any flights heading to that airport. This 

may lead to a significant bias among airlines as some airlines might get exempted 

simply due to the fact that no flights were scheduled to arrive at the chosen 

destination airports.   

(3) The ground holding option in which aircraft can be held at the departure airport is 

not provided as an alternative for rerouting in the current procedure. For those flights 

that can be easily held on the ground for a short time to avoid the traffic jam, ground 

holding might be a much better option than being rerouted around the constraint area 

resulting in more fuel consumption and flying time.  

(4) The offloaded flights are chosen statically two or more hours before the events 

occur with no adjustment according to the real-time situation development. The issue 

here is that more or less flights than actually needed can be selected to be offloaded. 

If flights are not offloaded enough, should FAA adopt a more dynamic strategy to 

consider and implement real-time offloading and rerouting? If more flights are 

offloaded, and there is still remaining capacity left, what criterion can be taken to 

assign the rest of the resource to the airlines?  

In summary, the essential question is that how FCA strategy could be used to 

solve the demand/capacity imbalance more efficiently and fairly compared to the 

current implementation. In this dissertation, Chapters 3 and 4 proposed two models to 

address the above 4 issues in more details, aiming to offer possible improvement of 

the current process.  
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2.2.2 Airspace Flow Program 

 
The FAA has developed a number of tools to deal with different Traffic Flow 

Management problems.  When convective weather reduces capacity somewhere in 

the airspace, the FAA can define a portion of the airspace to be a Flow Constrained 

Area. TFM tools can then identify flights expected to pass through the FCA so some 

portion of the flights can be routed around the problem. Often though, rerouting 

flights is not sufficient to address extended capacity reductions in the airspace in an 

FCA advisory and the need for additional tools has long been recognized. Essentially, 

the Airspace Flow Program combines the power of GDPs and FCAs to allow more 

efficient, effective, equitable, and predictable management of airborne traffic in 

congested airspace, and it could be viewed as an extended FCA program with ground 

delay as major offloading option. 

When TFM specialists at the ATCSCC decide that the weather conditions are 

appropriate, they can plan and deploy an AFP. The first step is to use a tool, e.g. 

traffic situation display, to examine predicted weather and traffic patterns and identify 

the problem area by creating an FCA. Secondly, the Enhanced Traffic Management 

System takes the FCA description and produces a list of the flights that are expected 

to pass through the FCA and the time they are expected to enter.  This list, updated 

with fresh information every five minutes, is sent to the flight schedule monitor, 

which displays the projected demand in a number of formats designed to support 

effective planning. The TFM specialists at the ATCSCC can enter the capacity of the 

FCA, expressed as the number of flights that can be managed per hour or per certain 

time interval, and FSM will then assign each flight a controlled departure time that 
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will provide a smooth managed flow of traffic to the FCA. These departure times are 

sent to the customers for their planning and to the towers at the departure airports for 

enforcement.  

The principal goal for the initial deployment of the AFP program is to better 

manage en route traffic during severe weather events. Compared to current 

approaches such as GDP or FCA in certain scenarios, AFP will reduce unnecessary 

delays while providing better control of demand and more flexibility for customers. 

Furthermore, the AFP gives more flexible solutions than an FCA program. Although 

AFP improves FCA with more flexible options, there are certain limitations to the 

current procedure. Moreover, as the ‘slot’ in AFP is not the same as the regular slots 

in GDP, equity issues in allocating ground delay would arise. How to assign ground 

delay as well as reroute among the flights equitably is a big challenge in AFP. 

Chapter 4 will discuss some proposed models to resolve the two issues discussed 

here. 

 

2.3. Literature Review   

 

2.3.1 Deterministic and Stochastic Ground Holding Problems 

 
The airport congestion problem, which is caused by too many flights 

attempting to take off or land relative to airport capacity, has been extensively studied 

by many researchers in the last few decades. Odoni's (1987) systematically defined a 

Ground Holding Problem (GHP) in ATC which marked the start of a significant 

research effort on single-airport and multi-airport versions of the problem. Andreatta 
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and Romanin-Jacur (1987) addressed the one-airport congestion problem for a single 

time period, and their model aimed to optimize the total expected delay cost and a 

polynomial solution algorithm was derived. Terrab and Odoni (1993) presented an 

exact solution algorithm for problems involved with one airport, multiple time period 

and deterministic capacity. The static multi-airport ground-holding problem was 

studied by Vranas et al. (1994) through introducing generic integer programming 

models, which assign optimal ground holding delays in a general network of airports 

to minimize the both ground and airborne delay cost of all flights. Navazio and 

Romanin-Jacur (1998) presented integer programming models for a set of airports, 

taking into account the operations dependency of the star-shaped airport networks. 

Most of optimization models for GDP involve the construction of space-time 

networks. That is, the time horizon of interest is decomposed into a discrete set of 

time intervals, and various spatial components (such as airports, sectors, and 

waypoints in general) are modeled using a time-expanded structure. Typically, the 

basic flow variables ftex  in a standard space-time model represents flight f occupying 

spatial element e during time interval t, and these variables are subject to the 

fundamental flow balance and capacity constraints in the form of ( , )fte
f

x CAP t e≤∑ , 

where ( , )CAP t e  is the flow capacity of element e at time t.  Alternatively, Bertsimas 

and Stock's (1998) model introduce cumulative flow count variables  through a 

simple linear transformation 
1

t

fte f ew x τ
τ =

= ∑ , where 
 
represents if flight f arrives at 

spatial element e by time t. This cumulative flow count representation enables many 

additional modeling features, such as propagating travel times along routes.  Hoffman 

ftew

ftew
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and Ball (2000) constructed several models of the single-airport ground holding 

problem with banking constraints, accommodating the hubbing operations of major 

airlines. In particular, by examining the strength of different formulations, they 

offered the following important remarks. Both representations of using variables ftex  

vs. ftew
 
have the equivalent Linear Programming (LP) strength, but the cumulative 

flow count ftew -based representation requires an additional set of non-negative flow 

constraints in terms of ( 1) 0fte fte f t ex w w −= − ≥ , which requires more iterations in 

solving the LP relaxation than the flow variableftex based  representation. 

Focusing on GDP planning under uncertainty, Richetta and Odoni (1993) 

provided a linear programming reformulation to problems with one airport, multiple 

time periods and stochastic airport capacities. A set of coupling constraints are 

needed in this case to ensure unique flow assignment solutions across different 

scenarios, that is, 

( 1) ( 2) ( )fte fte ftex q x q x Q= = = = =L , (2.1) 

where scenario index 1,2,...,q Q= . This set of coupling constraints can be viewed 

as a special case of nonanticipativity (NAC) constraints for constructing deterministic 

equivalents to the scenario-based stochastic optimization models.  

Ball et al. (2003) developed a stochastic integer program with dual network 

structure and showed its application to the ground-holding problem. The dual network 

structure can be viewed as a special case of the compact representation approach for 

modeling NAC, while the resulting coefficient matrix in the dual network was shown 

to have a desirable total unimodularity feature that leads to efficient network flow 
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algorithms. To further effectively deploy stochastic programming methods in 

practice, Ball and Lulli (2004) proposed a simple exemption policy to help mitigate 

uncertainty for ground delay programs.  Mukherjee and Hansen (2007) introduced a 

scenario tree-based stochastic optimization model for the GDP, and each scenario 

corresponding different capacity conditions based on weather forecasts at sequential 

decision stages.  

Aiming to provide alternative resource allocation methods to widely accepted 

RBS method, Pourtaklo (2009) studied the problem of fair allocation of limited 

resources in the context of an Airspace Flow Program. To determine a fair share of 

available airspace resources among flight operators, a preference based proportional 

random allocation method is developed to ensure the slot assignment to each is close 

to their fair shares and expectations. In addition, she also presented new resource 

rationing principles to improve resource assignment fairness and efficiency, through 

considerations of slot values and dual pricing. Churchill and Lovell (2012) developed 

a two-stage stochastic integer programming model for  coordinated aviation network 

resource allocation under capacity uncertainty, and two types of consistency 

constraints were proposed to ensure the feasibility and compatibility between the first 

and second stages decisions of resource allocation.  

 

2.3.2 Air Flow Management and Flow Constrained Area 

 

Optimization in Air Traffic Flow Management has received significant 

attention in the past 30 years. Classifying by applications, there are two major 
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categories in this area: 1) optimization models that account for airport take-off and 

landing capacities only, 2) models that account for both airport arrival/departure and 

en route capacity constraints. Most research on Ground Holding Problem fall into the 

first category. In contrast, research in airspace congestion with arrival fix constraints 

will generally need to consider both airport and airspace/en route capacities, as both 

resources are subject to certain capacity reduction. In this section, an overview of the 

published literature on optimization models in ATFM will be discussed. 

To improve overall airspace system performance and reduce the congestion 

affecting en route airspace, optimization models involving en route capacity were 

developed by Lindsay et al. (1993) and Tosic et al. (1995). Deterministic optimization 

models considering both airport and en route capacity constraints were formulated as 

multi-commodity network flow problem by Helme (1992).  Using cumulative flow 

count variables ftew  to represent if flight f arrives at spatial element e by time t, 

Bertsimas and Stock (1998) formulated disaggregate deterministic integer 

programming models for deciding the departure time and route of individual flights. 

Using space-time flow variables ftex  to represent if flight f occupies spatial element e 

during time interval t, Bertsimas and Stock (2000) proposed a dynamic multi-

commodity network flow model to consider both routing and scheduling decisions, 

but it produces non-integer solutions for even small scale problems. Therefore, they 

suggested a number of heuristics (such as random rounding and solving an integer 

packing problem) to obtain integer solutions. Although both formulations produce 

non-integer solutions from LP relaxation, the latter model achieves integrality in 

many more instances compared to the former. 
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A number of studies have been conducted to extend the model proposed by 

Bertsimas and Stock (1998). Alonso, Escudero and Ortuno (2003) proposed a 

stochastic 0-1 program to consider random capacity at different scenarios, and a 

minmax function was introduced to reformulate the nonanticipativity constraint in the 

objective function. Along this line, Agustín et al. (2012) further developed a 

deterministic equivalent of the stochastic mixed 0-1 program with full recourse for 

the multi-stage ATFM problem, and a compact representation approach was used to 

handle NAC. A recent dissertation by Chang (2010) proposed a Lagrangian relaxation 

approach to dualize a number of equalities corresponding to NAC, such as  

( 1) ( ) 2,...,fte ftex q x q q Q= = ∀ = . (2.2) 

A subgradient method is used to adjust the Lagrangian multipliers associated with 

(2.2), and a very tight solution quality gap was reported between the Lagrangian-

based lower bounds and upper bounds generated from a rolling horizon method.  

Lulli and Odoni (2007) presented a deterministic multi-commodity 

optimization model for the European ATFM problem in a space-time network with en 

route sector and airport capacity constraints.   

Rios and Ross (2010) applied a parallel Dantzig–Wolfe decomposition 

technique to relax the capacity constraints in the Bertsimas and Stock (1998)’s model 

where flight trajectory-based subproblems were constructed and solved 

simultaneously.  Motivated by the hydrodynamic theory for highway traffic flow, a 

large-capacity Cell Transmission Model was proposed by Sun and Bayen (2008) in 

order to model high altitude air traffic flow. Sun et al. (2011) recently developed a 

dual decomposition method to relax the sector capacity constraints in their aggregated 
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traffic flow model, which leads to relaxed linear programming problems with better 

computational efficiency. 

Bertsimas, Lulli and Odoni (2011) extended the Bertsimas and Stock's (1998) 

model to consider additional re-routing options, speed control and airborne holding 

options, and three classes of valid inequalities were presented to strengthen the 

polyhedral structure of the underlying relaxation. Using a scenario-tree and 

cumulative flow count based representation, Mukherjee and Hansen (2009) developed 

a general stochastic programming model to allow dynamic flight rerouting decisions 

under stochastic capacity. Liu et al. (2008) examined several methods to classify 

capacity profiles into a small number of nominal scenarios for constructing 

representative scenario trees. Ganji et al. (2009) presented a two-stage stochastic 

program that aims to optimize the first-stage flight rerouting plan in a FCA while 

considering the time of capacity windfall as a random variable. 

 

2.3.3 General Scheduling Methods and Equity-related Models   

 
In airline industries, commercial airlines need to present their services to 

passengers through published schedules between select city-pairs, and each 

underlying flight schedules is comprised of flight legs between airport locations. Ball 

et al. (2007) provided a detailed survey on air transportation under irregular 

operations and related control strategies.  Beatty et al. (1998) analyze delay 

propagation, as a perturbation in the timing of one flight leg can have significant 

“downstream" effects leading to delays on several other legs.  Considering recurring 

and nonrecurring delay conditions, a number of research tools and commercial 
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packages (e.g. Niznik, 2001 and Yu, 1997) have been developed in response to the 

strong economic incentives to further improve the overall system performance. Over 

the past 15 years both in the U.S. and Europe, a growing range of CDM-based 

decision support systems have been prototyped and deployed to “optimize" the 

relationship between an air navigation service provider and the flight operator, e.g., 

Ball et al. (2001), Chang et al. (2001), Richetta and Odoni (1993).  

In addition to the studies focusing on network-wide scheduling and routing 

options in the previous section, there are a number of optimization models that 

consider the air traffic flow management problem at a more microscopic level.  ATC 

needs to ensure that flights crossing a sector are safely separated and the flights 

arriving or departing the runway of a certain airport also satisfy the separation 

standard. Bianco and Bielli (1993) proposed different network models for ATC that 

determine traffic flow measures for both before and after flight’s departure, including 

ground delays, queue at holding points, etc. Barbosa-Povoa et al. (2001) proposed a 

bipartite directed network model to address the grouping and scheduling of ATC 

sectors. Their model takes into account controller availability and sector capacities so 

as to minimize delay cost.  Vranas et al. (1994) proposed optimization models to 

allocate tactical ground delays for flights crossing different congested airspaces in 

Europe. Goodhart (2000) developed disaggregate deterministic models for ATFM, in 

which airline’s priorities on various flights are accommodated. Churchill, Lovell, and 

Ball (2010) studied the impact of flight delay propagation (due to degraded airport 

and airspace capacity) on strategic air traffic flow management. In order to further 

characterize the sensitivity of ATFM models to uncertainty in various capacity 
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parameters, Churchill and Lovell (2011) proposed a modified Monte Carlo 

framework to assess the impact of stochastic capacity variation on coordinated air 

traffic flow management. 

The notion of equity has been examined in a number of ATFM contexts. 

Vossen (2003) (See also Vossen (2002)) proposed an optimization model for 

mitigating bias of flight exemptions during a GDP and showed that it could reduce  

systematic biases that exist under current procedures.  To comprehensively consider 

and reduce the effect of uncertainty in weather forecasts, Ball, Hoffman and 

Mukherjee (2010) recently developed methods that tradeoff the efficiency benefits 

and the loss in equity. 

Vossen and Ball (2006) analyzed the ration-by-schedule (RBS) method, and 

showed it embodied certain fair allocation principles. Ball, Donohue and Hoffman 

(2005) provided a systematic discussion of different aviation-related market 

mechanisms, which allows better modeling of safe, efficient and equitable allocation 

of limited airspace system resources. Focusing on a real-time version of compression, 

Ball et al. (2005) presented various response mechanisms for dynamic air traffic flow 

management. Recently, a second transaction-oriented version of compression called 

adaptive compression has been implemented by Federal Aviation Administration in 

2008. Specifically, each slot credit substitution (SCS) transaction is initiated by an 

airline, adaptive compression transactions are initiated by FAA's Enhanced Traffic 

Management System.   

Through extensive experimental results for the European ATFM model, Lulli 

and Odoni (2007) also highlighted an important trade-off between efficiency and 
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fairness in the network case, where the solution with maximum efficiency might be 

disadvantageous to certain classes of users while solutions focusing on fairness may 

lead to system-wide inefficiency.  

By considering flight safety, air traffic control, and airline equity constraints, 

Sherali, Staats and Trani (2003) and (2006) developed a large-scale airspace-planning 

and collaborative decision-making (APCDM) model that aims to select a set of flight 

plans in an airspace region.  Their equity measure is expressed as a relative 

performance ratio. Sherali et al. (2011) further incorporated slot exchange 

mechanisms in their model and extended an on-time performance equity measure (for 

each flight plan) from Vossen and Ball (2006) to construct collaboration efficiency 

functions.  

  



 

 30 
 

Chapter 3: Flight Offloading Problem in Congested Airspace 

  
The common National Airspace System (NAS) resources include airspace 

(sectors), fixes, and airports, each with limited capacity and subject to excess demand. 

This chapter focuses on a fundamental problem of off-loading volume of airspace 

subject to capacity constraints. In a particular example of airspace flow management, 

once a Flow Constrained Area (FCA) is issued, the decision makers need to solve the 

congestion problem locally by offloading excessive flights from the problem area so 

as to achieve the demand-capacity balance. The offloaded flights can be canceled or 

rerouted to the surrounding areas with available spare capacity.  

In a typical centralized management procedure, the FAA sends out 

increasingly severe warnings and/or advisories, starting from recommended 

movements and ending with required offloads and reroutes. The recommended 

actions can be issued to the traffic managers in the Air Route Traffic Control Center 

(ARTCC) and Airline Operational Centers (AOC) using a Flow Evaluation Area 

(FEA) advisory. As previously mentioned in Chapter 2, the current FCA approach 

does not consider the entire congested area nor equity among air carriers when 

choosing offloaded flights. In this chapter, a model is proposed to address these two 

issues. 

This chapter is organized as follows. Section 3.1 presents several general 

integer programming formulations for the airspace flight offloading problem, 

followed by alternative network programming-based reformulations in sections 3.2 
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and 3.3. The related computational comparisons between different models are 

discussed in Section 3.4. 

 

3.1 Integer Programming Model for Airspace Offloading Problem 

  

The airspace offloading problem can be described as follows. When an FCA 

is issued, the 3-dimensional volume of congested airspace needs to be specified 

accordingly, along with an impacted time interval (defined in terms of start time TS 

and end time TE), in order to identify a list of flights subject to capacity constraints. 

For each airspace sector j, a flight f is defined as an involved flight when it has an 

entering time ,f je and a leaving time ,f jl  with TS ≤ ,f je < TE or/and TS < ,f jl ≤ TE. By 

definition, the involved flight set contains all such flights. The following model 

would take the involved flights as input and produce a list of flights to be rerouted 

and listed as attached flights for the FCA.  

 

Figure 3-1 Example of impacted flights in a congested airspace 

 

As shown in Figure 3.1, the entire impacted time period in a congested 

airspace is divided into small time intervals according to the flights’ entering/leaving 

Time
Ts =9:10am 9:15 9:21 Te =11:10am 

Flight 2 
Flight 1 

Flight 5 
Flight 4 
Flight 3 

9:18a 9:25 

Sector 1 

Sector 2 
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times for each sector. Take flight 4 for instance, it enters sector 1 at 9:10am and 

transfers to sector 2 at 9:21am. At 9:25am, it leaves this entire area. Time stamps of 

9:10am, 9:21am and 9:25am are recorded, corresponding to the events that involve 

entrance or exit of flights. For each time interval between these time instances, a 

constraint is imposed to guarantee that the total (simultaneous) number of flights does 

not exceed the capacity. It should be noted that the actual airspace sector capacity is 

quite complex in its own right, as it also depends on a number of highly dynamic 

factors, such as the route structure and controller’s capability. Interested readers are 

referred to discussions of the “dynamic density” in Masalonis et al. (2003) and 

Davison et al. (2003). Without loss of generality, this chapter considers sector 

capacity constraints only on the instantaneous number of flights. 

Another important consideration is equity among air carriers. To balance the 

demand capacity in the congested airspace, each air carrier needs to remove some 

flights. To avoid delay cost due to flight rerouting, an air carrier obviously wants to 

keep as many flights on their original routes as possible. Since these airlines have 

different numbers of flights to be considered for rerouting, it is desirable to allocate 

the rerouting requests evenly among those air carriers. Mathematically, each agent 

(i.e. airlines) in the collaborative decision-making problem likes to experience a 

similar offloading percentage. As a result, an equity constraint is introduced in this 

research for each air carrier, so as to control or minimize the deviation of each air 

carrier’s offloading percentage from the overall percentage for the entire congested 

airspace.  
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The notation, decision variables, and objective function of the proposed model 

are described as follows. 

Notation: 

TS starting time of impact time period; 

TE ending time of impact time period; 

I  total number of involved air carriers; 

J  total number of involved sectors; 

F total number of involved flights; 

 i air carrier index, where i =1, 2, …,I;  

 t time interval index, t = 1, 2, …T, where T = TE-TS;  

 j sector index, j = 1, 2, ..J;  

 f flight index, f = 1, 2, …F; 

A set of involved flights; 

Ai set of involved flights for air carrier i; 

ef,j originally scheduled entering time of flight f on sector j; 

l f,j originally scheduled leaving time of flight f on sector j; 

( , )U j t set of impacted flights at sector j at time t, where a flight belongs to 

( , )U j t when  

TS ≤ ,f je < TE or TS < ,f jl ≤ TE; 
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 cj reduced capacity of sector j during the FCA time interval; 

qf total flying/travel time in the congested airspace during specified time 

interval for each flight f; 

δf extra distance for flight f if it is rerouted; 

 

Decision variables: 

xf  binary variable, xf  = 1, if flight f passes through the FCA using original 

schedule, 0 otherwise. 

r i  rerouted flight percentage for air carrier i, 

(1 )

| |
i

f
f A

i
i

x

Ar
∈

−

=
∑

 

r   average offloading percentage across all airlines, 

(1 )f
f A

x

r
F

∈

−

=
∑

  

 

With decision variable xf representing the routing decision for each flight, 

variable r i is introduced as an air carrier-based index for capturing its overall 

offloaded percentage. Below are a number of possible objective functional forms 

available to take into account the equity consideration. 

Possible objective functions: 

Max ( )∑
f

ff xw   (3.1) 

Min 
1

I

i
i

r r
=

−∑  (3.2) 
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Min 2( )i
i

r r−∑  (3.3) 

Min Maxi ( )ir r−  (3.4) 

The first objective function (3.1) focuses on the system-wide efficiency, and 

the weights fw in Eq. (3.1) can be determined according to specific traffic 

management goals. For example, by setting an equal weight of wf =1, the resulting 

objective function is intended to maximize the total number of flights that go through 

the FCA using their original schedules. Alternatively, an objective function of Max

( )f f
f

q x∑  aims to maximize the planned amount of flight time left undisturbed. In 

comparison, a function of Min (1 )f f
f

x δ − × ∑   can minimize the total rerouting 

delay for the entire congested airspace, where fδ  is the extra distance for flight f if it 

is rerouted and (1 ) 1fx− =  when flight f uses alternative schedule.   Nonetheless, 

there are two major practical issues when implementing the objective function (3.1). 

First, the rerouting delay can be difficult to estimate a priori, because air carriers may 

not provide multiple route options when filing the flight plans. Additionally, this 

efficiency-oriented objective function does not take equity issues into consideration, 

which might lead to significant offloading imbalance among different air carriers.  

 The equity-oriented objectives shown in functions (3.2), (3.3) and (3.4) are 

intended to distribute the rescheduling and rerouting workload among air carriers as 

evenly as possible. Specifically, Objective function (3.2), Min i
i

r r−∑ , aims to 

minimize the absolute deviation of offloading percentage from the average value r
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among the air carriers. Objective function (3.3), on the other hand, seeks to minimize 

the squared deviation of the offloaded ratio among all the carriers. Comparing 

functions (3.2) and (3.3), the latter places greater penalties on large deviations from 

the mean value r . Focusing on the worst-case scenario for individual carriers, 

Objective function (3.4) aims to minimize the maximum deviation across different air 

carriers. 

Based on the above discussions, the following mathematical program can be 

constructed so as to (1) balance achieving equity among air carriers and (2) reducing 

the number of rerouted flights. Essentially, the final goals are to efficiently utilize the 

FCA and to distribute offloaded flights fairly among airlines. One natural way of 

dealing with this problem is to adopt the following two-objective optimization 

formulation. 

Model 1: Multi-objective Integer Programming Model 

1z =  Max f
f

x∑  (3.5) 

2z =  Min Maxi r (3.6) 

Subject to:  

( , )

,f j
f U j t

x c j t
∈

≤ ∀∑
 

(3.7) 

 

In this formulation, the defined FCA involves F flights and J sectors. At most, 

J×T constraints are required to keep the sector capacity/demand balance, where T is 

the number of time periods in the study horizon. There are two different types of 
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objective functions, the 1st maximizing the number of non-offloaded flights and the 

2nd minimizing the maximum positive deviation from the average offloaded ratio for 

all air carriers. To investigate the tradeoff between these two criteria, one can 

formulate a single objective function as the weighted summation of the two objectives 

to generate a set of Pareto optimal solutions. An alternative approach incorporates the 

equity measure into the constraint set and then uses the ε-constraint method, which 

generates multiple solutions by varying the value of the parameter ε: 

Model 2: εεεε-constraint model: 

1z =  Max f
f

x∑  (3.8) 

Subject to:  

( , )

,f j
f U j t

x c j t
∈

≤ ∀∑
 

  

(1 )ir r iε≤ × + ∀
 

 (3.9) 

 

According to the definitions of r i and r , inequality (3.9) can be rewritten as 

the following function in terms of decision variable fx . 

| |
(1 ) (1 ) (1 )

i

i
f f

f A f A

A
x x i

F
ε

∈ ∈

− ≤ − × × + ∀∑ ∑  (3.10) 

1+ε  is a coefficient to control the percentage of allowable offloading 

deviation from the proposed flight routing ratio r . Another way of controlling the 
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overall allowable deviation is to add an upper bound, and the constraint (3.10) can be 

expressed as  

| |
(1 ) (1 )

i

i
f f

f A f A

A
x x i

F
ε

∈ ∈

− ≤ − × + ∀∑ ∑  (3.11) 

where ε is the overall deviation upper bound. 

Goodhart (2002) discussed a similar equity constraint with an upper bound for 

a related traffic flow management problem. Her formulation used the amount of 

weighted delays as a measure of deviation and did not consider the impact of the 

carrier sizes. A general discussion on equity-related reformulations can be also found 

in Young (1994). Computational comparisons between the above bi-objective model 

and the ε-constraint model with two types of the equity constraints will be discussed 

in Section 3.6. 

 

3.2 Alternative Network with Side Constraints Models: Circulation Model 

Section 3.1 discusses the details of the general integer programming models, 

which typically require computationally intensive branch-and-bound search 

techniques to implicitly enumerate binary variables of xf, especially for a large-sized 

problem involving many flights. In practice, initial FCA advisories are usually 

declared about 2 to 5 hours before the events occur, and the rerouting decisions can 

be revised as the event situation changes. As a result, the flight offloading problem 

needs to be solved in a timely manner, and a computationally efficient solution 
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Flight 4 (1,-1) 

Forward arcs 
(CAP=cj,  COST=0) 

Flight 2 

Backward arcs 
(CAP=1,COST=-1) 

algorithm is critically needed in real-world applications as it would allow the 

involved air carriers to rapidly respond and request alternative actions.  

In order to achieve better computational performance and utilize the special 

structure of this problem, this section is focused on developing alternative 

formulations using a network flow optimization model with side constraints. In 

particular, two network flow formulations with side constraints are examined and 

possible variants of the problem are discussed accordingly.  

3.2.1 Single-sector case 

 

                     

 

  

 

 

Figure 3-2 Network flow model for single-sector case 

 
Let us consider a time-expanded network over node set N = {1,2,…,T}  and 

arc set V. Each node represents a time instance when there are flights entering or 

leaving the area. The arc set consists of two classes of arcs: (1) a forward arc (t, t+1) 

represents the time interval between time instance t and t+1; (2) a backward arc, (l f, 

ef), corresponding to a flight circulation arc that moves from time index of l f to ef, 

Time

Sector j 

9:10 9:15 9:18 9:21 9:25 11:10 

Ts =9:10am 9:15 9:21 Te =11:10am 

Flight 2 
Flight 1 

Flight 5 
Flight 4 
Flight 3 

9:18 9:25 

Flight 
trajectory  
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where ef is the index of the flight’s entry time and l f is the index of the flight’s exit 

time from the area.  

For each arc (t, t'), let us denote CAPt,t’ as the arc capacity and COST t,t’ as the 

unit flow cost. In particular, on each forward arc (t,t+1), COSTt, t+1 = 0 and CAPt,t+1 = 

sector capacity cj for sector j, which is the maximum simultaneous number of flights 

that a controller can handle during that time period. For simplicity, cj is considered as 

a constant over time. For each backward arc, (t=l f , t'=ef ), CAP t, t' = 1 and COST t, t' = 

-1. As shown in Figure 3.2, the label on each arc (CAPt,t+1, COSTt,t+1) represents 

(capacity, cost). In a solution to the min-cost flow problem, if there is one unit flow 

on the backward arc, there is a corresponding flow on the forward arcs, which forms a 

closed flow-conserving cycle. Note that, in practice and as assumed in this model, 

usually a flight can enter and leave a sector at most once. For the case where a flight 

enters and leaves the same sector more than once, additional side constraints are 

needed. 

Through the above circulation network model reformulation in Figure 3.2, it is 

easy to show the corresponding node-arc incidence coefficient matrix is totally 

unimodular. A general discussion on Total Unimodularity (TU) for network matrices 

can be found in Wolsey (1998), and the corresponding linear programming relaxation 

(if feasible and finite) always has an integral optimal solution. Based on this unique 

structural property, the problem can be reformulated as a min-cost network flow 

model. This basic circulation network model is well-known; an early reference is 

Segal (1974), where it was widely applied to telephone operator scheduling. 
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3.2.2. Multiple sector case 

 
In this section, we further extend the model in the single-sector case to the 

multi-sector case, where multiple layers of time-staged sector sub-networks are used 

to represent multiple sectors. As shown in Figure 3.3, each node in a layer for sector j 

corresponds to a time instance t, t=1, 2, …, T, the congested airspace time period 

covers from Ts to Te. Accordingly, each sector includes a sequence of forward arcs 

that flow from node t to t+1 on sector j. Recall that, for the single-sector case, a 

backward arc can be used to represent each flight. In this complex multi-sector case, 

for flights that pass through more than one sector, the backward arcs need to cross at 

different layers. Thus, a new variable of xf,(j,t),(j’ ,t’ ) is introduced to represent a 

backward arc flow for each flight, from the ending sector j'  at FCA leaving time t = 

l f,j’ , to starting sector j at FCA entering time t= ef,j’ . In addition, as illustrated in Figure 

3.3, vertical transition arcs are used to represent the transition of a flight from one 

sector j to another sector j'  at time t. We need the following additional notation for the 

multi-sector problem.  

Notation: 

of originally scheduled starting sector of flight f in FCA; 

df originally scheduled ending sector index of flight f in FCA; 

ef originally scheduled entering time of flight f in FCA; 

l f originally scheduled leaving time of flight f in FCA; 

xf,(j,t),(j’ ,t’) : backward arc flow for each flight, from sector j at time t to sector j ' at 

time t' 
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wj,j’ ,t : transition arc flow from sector j to j' at time t 

yj,t,t+1 : forward arc flow from node t to t+1 on sector j 

( , ', )j j tΦ : set of flights transfer from sector j to sector j'  at time t. 

 

 

 

Figure 3-3 Network flow model for multiple-sector case 

 
 
 Side constraints are needed here to avoid the problem of non-unique tours 

since multiple vertical transition arcs might form multiple flow cycles for a particular 

flight. In Figure 3.3, both flight 4 and flight 1 enter sector j’ from sector j but with 

different time stamps, 9:21 and 9:15, through the dashed arcs. If no side constraints 

are given, flight 4 can use the dashed arc at time 9:15 to enter sector j’, and flight 1 

can also use the dashed arc to transfer sector j to j’ at time 9:21 (without following the 

original schedule). To restrict those possible non-unique cycles in the network model, 

a side constraint is proposed as the following: 

, ', ,( ', ),( , )f f fj j e f j l j ew x=  where flight f transfer from sector j to sector j'  at time t.  
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If more than one flight transfers from one sector to another sector at the same 

time, the flow of vertical arcs can be set equal to the total flow of backward arcs, 

which use the same vertical arc for transition.  

 , ', ,( ', ),( , )f f fj j e f j l j e
f

w x= ∑ , where flight f transfer from origin sector j to 

destination sector j'  at time ef . 

With the above formulation, the model can be extended from the single-sector 

case with extra side constraints, which is shown as follows. 

Model 3: Network circulation formulation with side constraints 

Max ,( ', ),( , )f ff j l j e
f

x∑  (3.12) 

Subject to:  

Flow balance constraint at each sector-time node (j,t), 

,( ', '),( , )
', '

f j t j t
j t

x∑ − ,( , ),( ', ')
', '

f j t j t
j t

x∑ + , 1,j t ty − − , , 1j t ty + + ', ,
'

j j t
j

w∑ − , ',
'

j j t
j

w∑ =0  ,j t∀ (3.13) 

Sector capacity constraint: 

, , 1j t t jy c+ ≤ ,j t∀  (3.14) 

Side constraints for each flight transition arc (j,j' ,t), 

 , ', ,( ', ),( , )
( , ', )

f fj j t f j l j e t
f j j t

w x =
∈Φ

= ∑ , ( , ', )j j t∀   (3.15) 

Equity constants or fairness objective. 
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− ≤ − × × + ∀∑ ∑  (3.17) 

Nonnegative and integer constraints for variables x, y and w.  

In the above model, constraint set (3.13) represents the flow balance 

constraint for arc-based variables x, y and w imposed at each sector-time node (j,t), 

where the variable x corresponds to the flow on the backward arcs for each flight. 

Variable w corresponds to the flight transition between two sectors, and variable y 

carries the flow on sector j from time t to time t+1. For the constraint matrix B 

corresponding to this set of flow balance constraint, each column of B (that is, each 

variable, x, y, or w) only contains exactly two non-zero entries, +1 and -1, 

respectively, from the upstream sector-time node, or to the downstream sector-time 

node. The rest of the coefficients are zero for each variable. As a result, we can show 

that the incidence matrix A is totally unimodular.  

Constraint set (3.14) imposes the sector capacity constraint on variable y at 

each time interval. Side constraints (3.15) are needed to ensure each flight transition 

arc w carries flow only if the corresponding flights are allowed to use the sector 

through backward arcs x.  

3.3 “Flight on the Node” Model 

 
The above network flow model uses a circulation network structure where 

nodes correspond to time instances and arcs correspond to flights. On the other hand, 
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based on the special problem characteristics, an alternative formulation can be 

obtained using an “activity on node” network, where the arcs imply the precedence 

relations between any two flights’ trip within a sector. A similar tanker scheduling 

problem was first developed by Dantzig and Fulkerson (1954). The problem of 

determining the minimum number of oil tankers required to meet a fixed 

transportation schedule was formulated as a linear programming problem and solved 

with the simplex algorithm. The same scheduling problem is discussed by Ahuja et al. 

(1993) with a different solution approach by constructing an equivalent network 

structure that can be solved by efficient maximum flow algorithms. In this study, a 

similar network structure is adapted, but the sector capacity is given and the objective 

is to keep as many flights as possible. 

 

3.3.1 Single-sector case 

First, let us consider a network over node set N = { S, 1, 2,…,n, T}  and arc set 

V. Each node, n∈ N\{ S, T}, represents a flight’s trip activity in the sector. Nodes S 

and T represent the source node and sink node, respectively, in the network. For each 

arc (n1, n2), CAP(n1, n2) represents the capacity of arc(n1, n2), COST(n1, n2) is the unit 

flow cost of (n1, n2) .  

 Each activity node is associated with flight index f(n), and its entering time 

and exit time ef(n) and l f(n). In order to restrict flow through a node, this study uses a 

node-splitting technique, which replaces a node n with two nodes n' and n''. Each 

inflow node n' accepts all the inflow to the standard activity node n, and outflow node 

n'' handles all the outflow from the standard activity node n. A single node-splitting 
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arc connects split nodes n' and n''. A capacity of 1 is imposed on the node-splitting arc 

in order to limit the flow through activity node n.  

There are two additional sets of arcs. For n1∈ N\{ S}, n2∈ N\{ T}, forward arc, 

(n1, n2) ∈V if and only if the sector exit time of n1 is less than or equal to the sector 

entry time of n2, that is, l f(n1'')≤ef(n2'). This means, these two activities n1 and n2, can 

be scheduled sequentially if the sector capacity allows. The backward arc (T, S) has 

flow capacity that corresponds to the sector capacity. The cost -1 is assigned to this 

arc to ensure that the objective value changes by -1 if a trip is chosen to remain.  

In summary, for each node-splitting arc of node between node (n1', n1''), 

CAP()= 1, corresponding to a single flight trip, and COST() = -1. For each forward 

arc (n1'', n2'), CAP() = 1 corresponding to a feasible flight-to-flight connection, 

COST() = 0 . For backward arc (T,S), CAP() = sector capacity in terms of the 

maximum number of flights can be handled simultaneously in the sector, and COST() 

= 0. If the sector capacity varies by time, the study time period can be divided into 

several intervals.  

As shown in the example in Figure 3.4, there are 4 flights in a sector, and each 

flight has a standard activity node. Each standard activity node is split into an inflow 

and an outflow activity node, say n1' and n1''. In this example, it is feasible to 

schedule flight 2, flight 3 or flight 4 after flight 1, as the leaving time of flight 1 

(9:10) is earlier than the other flights’ entering times (9:12, 9:15 or 9:12, ). The 

occupancy time duration of flight 2 is very short (9:12-9:15), so it is also possible to 

schedule flight 2 before flight 3 (entering the sector at 9:15). For the node-splitting 
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arc from node n1' to node n1'' (corresponding to the activity of flight 1), we need to 

place a capacity constraint of 1 so that the arc is used only once, although this node 

n1 has three outgoing forward arcs to nodes n2, n3 and n4. 

 

  
 

  
 
Flight number Entering time ef Leaving time l f 
1 9:00 9:10 
2 9:12 9:15 
3 9:15 9:20 
4 9:12 9:17 

Figure 3-4 Network model for single-sector case 

 
The solution algorithm needs to find the minimum-cost flow path through this 

network. From the optimum path passes through the nodes, we can identify the flight 

trips associated with these nodes can remain in the original route with original 
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schedule. Note that, usually the flight could enter and leave the sector (on the 

scheduled route/sector list) once. If the flight needs to enter and leave the same sector 

more than once, a side constraint is needed.  

3.3.2 Multiple-sector case 

In the multi-sector case, multiple layers of sub-networks are needed to 

construct for the “flight on the node” model, while each sub-network corresponds to 

one sector. It is worth noting that, there are no arcs across the different sector 

networks, and additional side constraints are introduced to keep the consistency of the 

solution for the same flight due to the existence of the multiple trips in different 

sector networks. One way of adding the side constraints to the corresponding network 

structure is to set costs on the split arcs to be -1/m, where m is the number of sectors 

one flight traverses. As a result, when the flight is chosen in the solution, the total 

cost from all the flow in arcs corresponding to this flight becomes -1/m × m = -1. The 

final solution of this model yields a number of parallel flow strings, while the flow 

through each string indicates which flights can stay with their original route and 

schedule. 

The corresponding min-cost flow model is depicted below. 

Additional Notation: 

xn1', n1'': flow on the node-splitting arcs; 

wT,S : backward arc flow from node T to S 

yn1'',n2 : forward arc flow from node n1
'' to n2

’
 

ANS: set of node-splitting arcs  
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NI: set of inflow activity nodes 

NO: set of outflow activity nodes 

Nu(n): set of upstream nodes to node n 

Nd(n): set of downstream nodes to node n 

Model 4: Flight on the node model without arc elimination 

Min ( )1', 1'' 1', 1''
( 1', 1'') NS

n n n n
n n A

c x
∈

∑  (3.18) 

Subject to:  

Flow conservation constraint at each node: 

For each inflow activity node:  

1'', 2 ' 2 ', 2 '' ( 2 ')
1' ( 2')

2 '
d

u

n n n n N n I
n N n

y x n N=
∈
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(3.19) 

For each outflow activity node 

1' ( 1''), 1'' 1'', 2 '
2 ' ( 1'')

1''
u

d

n N n n n n O
n N n

x y n N=
∈

= ∀ ∈∑  (3.20) 

Side constraints for all nodes nk’s that correspond to the same flight f 

1 1'( ), ( ) '' ( ) ', ( ) ''k kn f n f n f n fx x f= ⋅⋅⋅ = ∀
  

(3.21) 

Equity constraint:  
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Nonnegative and integer constraints for variables x and y.  

3.4 Analysis of Alternative Formulations 

  

The preceding sections present four formulations, and we now want to prove 

that the feasible region of the integer programming Model 1 is in fact a projection to 

the other models. We will further evaluate the actual computational time of the 

different models in the previous sections. 

 

Lemma 1: The feasible region of Model 1(integer programming model) P1 is a 

projection of the feasible region P3 of Model 3 (circulation network with side 

constraints model). 

Proof: 

We want to show that  

i) when solution variables x is feasible to P1, there exists w and z which 

make (x,y,w) feasible to P3 , 

ii)  ii) when solution (x,y,w) is feasible to P3, x is feasible to P1. 

 

The outline of proof is given as follows.  

i) Consider xf ∈P1, which represents if flight f passes through the FCA using 

its original schedule. Clearly, xf corresponds to the flow xf,(j,t),(j’ ,t’) on the backward 
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arcs for flight f, from sector j at time t to sector j ' at time t', in the circulation network 

in Model 3. Through the flow conservation constraints (3.13) at sector-time node (j,t), 

one can express variables on the forward arc yj,t,t+1 (from node t to t+1 on sector j) in 

terms of a summation of incoming flow x to time t , that is, , , 1 ,( ', '),( , )
', '

j t t f j t j t
j t

y x+ = ∑ , as 

there is flow on the corresponding transition arc and wj,j’ ,t =0. Similarly, side 

constraints for each flight transition arc (j,j' ,t) at (3.15) allows us to construct 

, ', ,( ', ),( , )
( , ', )

f fj j t f j l j e
f j j t

w x
∈Φ

= ∑ . If the capacity constraint (3.7) holds, that is, 

( , )
f j

f U j t

x c
∈

≤∑ , in Model 1, we can also establish constraint (3.14) , , 1j t t jy c+ ≤ in 

Model 3. Therefore, if solution x is feasible to P1, then we can always construct 

another set of feasible solution (x,y,w) to P3. 

ii) Let v=(x,y,w) ∈P3, because v satisfies every constraints in Model 3. We can 

first express xf in Model 1 in terms of the value xf,(j,t),(j’ ,t’) on the corresponding arc in 

the circulation network. If the capacity constraint in Model 3 holds,, , 1j t t jy c+ ≤ . 

Because the flow on each forward arc , , 1j t ty +  
is the total number of flights 

simultaneously occupying the specific sector during time period (t,t+1), then the 

corresponding xf satisfies the constraints 
( , )

f j
f U j t

x c
∈

≤∑ in Model 1.  

 

Lemma 2: The feasible region of Model 1(integer programming model) P1 is a 

projection of the feasible region P4 of Model 4 (flight on the node with side 

constraints model). 
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Proof: 

Similar to the proof of Lemma 1, it is easy to substitute the side constraints to 

the flow conservation constraints and easily express y, w variables in terms of x. As a 

result, it can be shown that i) when x is feasible to P1, there exist w and z which make 

(x, y, w) feasible to P4 ii) when (x, y, w) is feasible to P4, x is feasible to P1.  

 

3.5 Computational Results 

 

This section applies the proposed models in two scenarios generated using 

real-world data. This section is organized as follows: the four models are first 

evaluated, and Model 1 is used to conduct the multiple-objective case study. The bi-

criteria formulations in Model 2 are then tested with respect to different weights. 

Specifically, two different approaches of handling the multiple objectives, linear 

weighting and ε-constraint method are discussed in detail. Finally, we evaluate 

different models and approaches for solving the multiple-objective formulation. 

3.5.1 Alternative formulation comparison 

 
The following computational experiments are conducted based on datasets 

obtained from the Enhanced Traffic Management System (ETMS) database. The 

datasets are chosen from good weather days. Severe weather scenarios are created so 

that the demand could exceed the reduced capacity due to the weather. Specifically, 

the dataset consists of 33 and 19 sectors, 283 and 859 flights respectively.  
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Table 3-1 Problem size comparison of alternative formulations 

 Model 1: Multi-
objective Integer 
programming 
model 

Model 3: Circulation 
model 

Model 4: Flight on 
the node model 

# of 
variables  

859  2289 (corresponding to 
arcs ) 

>5000 (corresponding 
to arcs)  
 

# of 
constraints 
 

1573  2314 (flow balance 
constraints + sector 
capacity constraints+ 
equity side constraints 
) 
 

2578 (flow balance 
constraints + sector 
capacity constraints+ 
equity side constraints 
) 
 

 

The experiment uses 4 hours as an FCA time period. All experiments are 

performed on a Pentium IV 1.6GHz PC with 482 MB RAM. The program is coded in 

C with Callable Library, and CPLEXMIP 8.1 is used as the solver. Taking a case of 

859 flights, Table 3.1 compares the size of the problem in alternative formulations. 

The basic integer programming model has the least number of variables and 

constraints. In the “flight on the node” model, for each pair of flight trip, which have 

a strict sequential order of using the airspace, there is an arc between the 

corresponding nodes. Thus, Model 4 has the largest number of arcs and variables.  

In terms of computational efficiency, Model 1 (IP) and Model 3 (circulation) 

have similar computational running time, and in particular the LP relaxation problem 

for Model 1 with the single-efficiency-oriented objective problem is solved within a 

few seconds. In our experiments, only the 5 closest arcs are kept for Model 4. The 

computational study indicates that, with a limited number of sequencing arcs, Model 

4 has similar performance compared to the other two alternative network models. 
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3.5.2 Computational comparisons between different multi-objective approaches 

 

Multi-objective programming generally involves conflicting objectives, which 

cannot simultaneously arrive at the corresponding optimal levels. If there is an 

assumed utility function that could combine different objectives, one can accordingly 

choose appropriate (compromising) solutions by constructing a single objective 

maximizing solution. However, that is not the case here as it is generally difficult to 

predetermine the weights on the two types of metrics. As a result, the following 

section employs methods for generating representative Pareto optimal solutions.  

By systematically changing the weights for different objective functions, one 

can obtain a set of solutions with different tradeoffs among the objective functions. 

As a result, considerable running time is required in order to obtain a subset of the 

frontier of Pareto optimal solutions. To obtain the tradeoffs of the multiple criteria 

and fully utilize the simple network structure of the problem under consideration, this 

study uses the following modified approximate ε-constraint method. Specifically, in 

the equity constraint (3.11), the average offloading ratio r  is replaced by Z1/P, where 

Z1 is a constant number which can be estimated by solving the single objective model 

involving the system efficiency objective function only. Secondly, the equity 

constraints are added in the model and the average offloading ratio is replaced by 

Z1/P from the first iteration. As a result, the equity constraints are simplified from 

general coefficient constraints to generalized upper bound constraints, and varying 

the value of ε yields a set of non-inferior solutions. The new equity constraints 

become: 
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where Z1 is the objective value obtained from the first iteration. 
 

Table 3.2 summarizes running time statistics for different models, where the 

results shown are obtained based on a dataset with 859 flights. The approximate ε-

constraint method solves the problem using the least time compared to the other two 

methods, requiring around 14 seconds for 2 iterations that include the computation 

time of solving the Z1 model and the second approximate ε-constraint model. The 

linear weighting method and the ε-constraint method have similar levels of 

performance efficiency. Both methods solve the problem relatively fast when the 

weights or the bounds are set to close to the extreme limit. 

To further investigate how the proposed methods handle multiple objectives, 

the following analysis compares the tradeoff curves and the shading areas formed by 

the non-inferior points. Figures 3.5, 3.6 and 3.7 show the tradeoff curves from 

different methods.  

Overall, the linear weighting method obtained 4 solution points, the ε-

constraint method and approximate method obtained 6 points each. Theoretically, the 

approximate ε-constraint method can obtain the solution point which has first 

objective function value of 745. It should be noted that, the ε-coefficient needs to be 

chosen carefully. If it is set too big or too small, the method might not obtain a 

different solution or can make the problem infeasible. In this study, a standard step 

size rule is used for both ε-constraint methods. Comparing the solution points from 

the first two methods and combining all the points into a new figure, Figure 3.7 
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shows that some of the solution points obtained from ε-constraint methods coincide 

with or are dominated by the linear weighting method.  

Table 3-2 Running time comparison among linear weighting and ε-constraint methods 

 Obj. 1 Value 
(number of 
offloaded flights) 

Obj. 2 Value Running time 
(sec) 

Linear weighting 765 (94) 0.2239 12.4 
 759 (100) 0.0503 3.0 
 756 (103) 0.0134 >20,000 
 745 (114) 0.00003 718.6 
ε-constraint 765 (94) 0.5 1.5 
 765 (94) 0.4 1.8 
 765 (94) 0.25 1.3 
 761 (98) 0.2 1.1 
 758 (101) 0.0491 >20,000 
 757 (102) 0.0192 >20,000 
 748 (111)  0.005 >20,000 
 745 (114) 0.001 >20,000 
Approximate e-constraint 765 (94) 0.2239 14 
 761 (98) 0.1359 14 
 759 (100) 0.0503 13.9 
 757 (102) 0.0228 14 
 756 (103) 0.0128 14 
 745 (114) 0.001 14 
 

 

Figure 3-5 Tradeoff curve from linear weighting method 
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Figure 3-6 Tradeoff curve from εεεε-constraint method 

Warburton (1987) proposed an ε-approximate algorithm to quantify the 

degree of accuracy in approximating trade-off curves and surfaces in a multiple 

criteria space. To compare the three methods’ performance in terms of covering the 

non-inferior solutions, we use the following multi-objective solution quality measure 

in terms of the possible area of non-dominance solution space formed by the existing 

non-dominated solutions. 

 

Figure 3-7 Combined tradeoff curve from all three methods 
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Figure 3-8 Example tradeoff curve showing non-dominated domain and 
approximation error  

 
As illustrated in Figure 3.8, there are currently 5 existing non-dominated 

solutions on the tradeoff curve for two minimization objective functions. The area 

formed by the solid lines represents the domain that is not dominated by the existing 

non-inferior points. Within this area, no feasible solutions can be found inside the 

shaded area. We can simply verify the above statement by contradiction. If there 

exists a solution (say, a, with better objective function values Z1 and Z2) in the shaded 

area, then exiting solution 3 will be dominated, which contradicts with the fact that 

those five points correspond to non-dominated solutions. On the other hand, it is still 

possible to have solutions b, c, d and e, as none of them are dominated by existing 

solutions 1 to 5. As a result, the blank blocks sounding points b, c, d and e can be 

viewed as the region with possible non-dominated solutions. In this study, the total 

area of blank blocks can be viewed as an approximation measure of solution errors. 

To quantify the multi-objective solution quality, we want a smaller blank area or, 

equivalently, a larger shaded area. In the following discussion, let us compare the 

blank areas formed by points obtained from different solution approaches.  
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First, both efficiency and equity objective functions are converted to 

minimization functions. Particularly, the blank areas of possible non-dominated 

solutions obtained from the linear weighting, exact ε-constraint and approximate ε-

constraint methods are 1.299, 0.822, and 0.718, respectively. Not surprisingly, the 

linear weighting method obtains the least number of non-dominated solution points, 

corresponding to a larger approximation error. For the other two methods, although 

the exact ε-constraint method obtained 6 points, the area containing possible non-

dominated solutions is still bigger than that of the approximate method. Overall, this 

limited experiment shows that the approximate ε-constraint method produced a good 

quality tradeoff curve with the least computational effort. Moreover, if all the 

solutions points are combined together, the area of blank blocks, i.e. solution 

approximation error, is further reduced to 0.642. 

Figure 3.9 further shows air carriers’ absolute offloaded percentage difference 

compared with the average ratio across all the airlines. Four series of solutions, 

generated from the linear weighting method, are selected to illustrate the changes 

made by different weights of the coefficients. The horizontal axis sorts the air carriers 

by the total number of involved flights in this FCA advisory. The vertical axis shows 

the absolute offloaded percentage difference for each carrier. For this example, the 

total number of involved flights is 859.  
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Figure 3-9 Difference of offloaded percentage among air carriers 

 
 

In the different scenarios shown in Figure 3.9, the average offloading 

percentage is about 11%-13%. Overall, an increase of the weight on the equity 

objective function reduces individual deviations from the average offloading 

percentage. The total number of fights offloaded increases from 94 to 114 when the 

weight is set to be a very large value. As a result, the positive deviation is 

approaching to 0 for all air carriers.  

It should be remarked that, some individual flights or airlines with very few 

flights are not considered well in this percentage equity function in terms of 
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dramatically. On the other hand, ignoring airlines with few flights does not violate the 

overall fairness standard, although the change of a single flight for a single-involved-

flight airline will only have two possible values for the offloading percentage 

calculation: 0% or 100%. In order to minimize deviations for all airlines, including 

small airlines, the flights (belonging to the small airlines) have to be left in the FCA, 

which could degrade the overall system efficiency due to the limitation of this 

particular percentage equity functional form. 
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Chapter 4 Equitable Stochastic Airspace Routing Models and 

Algorithms 

 

This chapter will develop models and algorithms to support efficient and 

equitable resource allocation of Airspace Flow Programs (AFP). When an AFP is 

issued, a 2-dimensional or 3-dimensional volume of airspace is specified with a time 

interval, corresponding to a period of reduced capacity. Under the AFP procedure, 

similar to holding an aircraft at the departure airport in a GDP program, the air traffic 

control center can adjust and optimize flight arrival times to the congested area, e.g., 

through a rationing algorithm that aims to offload the excess demand. In order to 

support real-time operation adjustment, the proposed model adopts a dynamic and 

stochastic optimization approach, where the offloaded flights are chosen and notified 

a few hours before the events occur, based on predicted adverse weather conditions. 

To balance the equity considerations for offloaded flights across different airlines, we 

incorporate an additional criterion to assign the airspace resources to the airlines in a 

fair manner. 

This chapter first formulates a multi-commodity network flow with side 

constraints model for the AFP planning problem. The proposed model will consider 

the following two important modeling requirements: 1) time-dependent and stochastic 

airspace capacity and 2) equity considerations for ground-holding and rerouting 

flights across airlines. To jointly evaluate two major airspace congestion mitigation 

options, namely ground holding or rerouting excess flights from the problem area, we 
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construct our model based on a space-time network that includes a set of airspace 

waypoint entries and airports. 

To enable the equitable ground holding and rerouting decisions, this research 

considers multiple airline companies that own different numbers of flights, and the 

objective is to minimize the total weighted flight delay while enforcing equity of 

allocation, operational consistency and safety requirements. As a result, a time-

dependent multi-commodity network flow formulation is developed, with airspace 

capacity and rerouting equity for each airline as side constraints. Moreover, to 

consider stochastic airspace capacity under severe weather conditions, we use 

multiple scenarios to represent random realizations of predicted capacities, and 

further integrate non-anticipatory constraints to ensure the first-stage solutions across 

different scenarios have the same values. A Lagrangian relaxation based method is 

used to dualize these three sets of side constraints so that the original complex 

problem can be decomposed into a sequence of linear programming problems with 

total unimodularity properties. Under a special case of deterministic capacity 

conditions, the original problem can be further decoupled into a sequence of space-

time shortest path problems with very efficient solution algorithms. 

Recall that, Chapter 3 proposes a model to use the entire congested/affected 

airspace and offload flights equitably among air carriers when minimizing total delay 

cost. The offloaded flights could be assigned to some alternative routes. This chapter 

further develops the model from Chapter 3 to include ground holding options, as well 

as stochastic capacity.  
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4.1 Space-Time Network Flow Model 

This section aims to formulate the network flow optimization problem with a 

time-space expanded network structure. The notation of parameters and variables are 

shown below.  

Index: 
f flight index,  � � �, F is the set of flights 
u airline index, � � �, U is the set of airlines 
F(u) Set of flights belonging to airline u 
t index of scheduling time interval, t= 1,…, T, T is the length of planning 

horizon 
k index of stochastic scenarios, k=1, …, K, K is the number of scenarios 
i,j  node index �, 	 � 
 in airspace routing network 
A arc index � � � in space-time network 

 
 
Input Parameters: 
o(f) origin node of flight f  
d(f) destination node of flight f 
EDT(f) Earliest departure time of flight f from its origin airport 
LDT(f) Latest departure time of flight f from its origin airport 
PDT(f) Planned departure time of flight f from its origin airport 
EAT(f) Earliest arrival time of flight f at its destination airport 
PAT(f) Planned arrival time of flight f at its destination airport 
LAT(f) Latest arrival time of flight f at its destination airport 
α Cost of holding one flight in the origin airport for one time interval 
β Cost associated with one time period of delay at the destination 

airport, compared to planned arrival time 

�,�

�  sector travel time of flight f on link (i,j) 

����,���, �� capacity constraint on link (i,j) at time t  under scenario k. 

θ(u) Threshold for average routing and ground holding cost per flight for 
airline company u 

�� The ending time of first planning stage that requires the unique 
solution across different scenarios.  

 
Variables: 

��,�
� ��, �, ��� = 1 represents flight f uses link from node i to node j with departure 

time t and arrival time t' under scenario k, =0 otherwise 
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A set of flights � � � belongs to different air carriers and an air carrier � � � 

has a set of flights F(u). Each flight f is assumed to have a planned departure time 

PDT(f) at origin airport o(f) and a planned arrival time PAT(f) at destination airport 

d(f). The flight f needs to leave from the origin airport between a feasible range of 

Earliest Departure Time EDT(f) and Latest departure time LDT(f), and arrives at the 

destination airport before latest arrival time of flight LAT(f).   

Consider an airspace sector network G=(N,L), where node set N includes a set 

of waypoints and airports n∈N, and the set of links L corresponding to airspace 

sectors, l∈L. Without loss of generality, for a network N under consideration, a flight 

might originate from a boundary waypoint, rather than its origin airport. In this case, 

we will model delaying options at the inbound waypoint at the boundary of the 

subarea to allow the ground holding decisions. That is, according to the delayed 

arrival time at the inbound waypoint, the actual departure time at the originating 

airport of a flight can be consequently adjusted to avoid adverse weather conditions.  

Each link l can be denoted as a directed link (i,j) with upstream node i and 

downstream node j. The deterministic travel time for flight f on link (i,j) is  
�,�
�  .  

We then construct a space-time network to further develop a dynamic network 

flow model formulation. Let STG(V, A) represent the space-time network, where V is 

the set of vertices and A is the set of arcs (including sector traveling arcs and airport 

waiting arcs). A node n is extended to a set of vertices (n,t) at each time interval t in 

the study horizon, t=1,2, …,T, where T is the length of the optimization horizon. In 

the proposed space-time network representation, there are two types of nodes: 

airspace waypoints and airports. We also consider three types of arcs as follows. 
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(1) Sector traveling arcs are extended from a link (i,j) and each arc traverses 

from vertex (i,t) to vertex (j,t+
�,�
�  ).   

(2) Ground holding (i.e. airport waiting) arcs from (o(f),t) to (o(f),t+1) at the 

origin airport/waypoint. The feasible time window at the node o(f) covers from the 

earliest departure time EDT(f) to the latest departure time LDT(f). By introducing the 

ground holding arcs, we can construct a single source vertex at the origin airport o(f) 

and at the time instance of EDT(f). 

(3) Dummy waiting arcs from (d(f), t) to (d(f),t+1) at the destination airport, 

from the earliest arrival time EAT(f), to the latest arrival time LAT(f). By introducing 

the dummy waiting arcs, we can construct a single sink vertex at the destination 

airport d(f) and at the time instance of LAT(f). 

This special single-origin, single destination network structure (for each 

flight) allows us to establish the totally-unimodular coefficient matrix for all the flow 

balance constraints around vertices V in the time-expanded network.  

 

 

Figure 4-1 Physical airspace network and space-time extended network 



 

 67 
 

 

The left portion of Figure 4.1 shows a simple airspace network with two 

airports 1 and 4, and two waypoints 2 and 3 that connect airspace sectors, and the 

labels on arcs correspond to link travel times for the associated flight. The right-hand-

side of Figure 4.1 illustrates the space-time expanded network with possible fight 

trajectories starting from departure time t=0, 1, and 2 along ground holding arcs and 

sector traveling arcs.  

Based on a weather prediction model or historical capacity reduction profiles, 

we can obtain predicted time-dependent capacity ����,���, �� under different 

scenarios k. Let us consider binary variable ��,�
� ��, �, ��� that indicates the selection of 

link (i,j) in the space-time network. Within a two-stage stochastic optimization 

framework, the air traffic controller needs to make the re-routing and ground holding 

decisions for flight schedule variables ��,�
� ��, �, ��� before time ��. Each airline u has a 

threshold θ(u) for the maximum average routing and ground holding cost per flight 

for a set of flights � � ����. The subsequent multi-commodity network flow model is 

formulated to minimize the total expected weighted cost over the entire planning 

horizon, subject to the given sector capacity, airline total routing cost constraints, and 

non-anticipatory constraints. The stochastic integer programming formulation for the 

dynamic and equitable airspace routing and ground holding model can be described 

as follows.  

Problem P4.1: Dynamic airspace routing and ground holding model 
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� � ��� ∑ !∑ ∑ "# $ %�&���,&���
� ��, �, � ' 1�)*+,-./���� ' ∑ ∑ ∑ "0 $�+,-1/����2

�$��,3�����,�−
�,3����,�−������ (4.1) 

Subject to  

Flow balance constraints at origin airport vertex (at earliest departure time): 

∑ ��,�
�

�:���1 6�, �, � ' 
�,�
� 7  '  ��,�

� ��, �, � ' 1� � 1, 8�, �, � � 9��� ��3 � �

:;����  (4.2) 

Flow balance constraints at origin airport vertex after earliest departure time: 

−��,�
� ��, � − 1, �� '   ��,�

� ��, �, � ' 1� '  ∑ ��,�
�

�:���1 6�, �, � ' 
�,�
� 7 �

0, 8�, �,� � 9���, :;���� = � = >;����  (4.3) 

Flow balance constraints at airspace waypoints: 

∑ ��,�
�

�:���1 6�, �, � − 
�,�
� 7 − ∑ ��,�

�
�:���1 6�, �, � ' 
�,�

� 7 � 0, 8�, �,�, � � ? −

@9���, 3���A  (4.4) 

Flow balance constraints at destination airport vertex 

��,�
� ��, � − 1, �� ' ∑ ��,�

�
�:���1 6�, �, � − 
�,�

� 7 − ��,�
� ��, �, � ' 1� � 0, 8�, �, 	 �

3��� , :����� = � = >�����  (4.5) 

Flow balance constraints at destination airport vertex and at the last time stamp T 

∑ ��,�
�

�:���1 6�, �, � − 
�,�
� 7   '   ��,�

� ��, � − 1, �� � 1, 8�, �, 	 � 3��� ��3 � �

>�����  (4.6) 

Sector capacity constraints on link (i,j):  

∑ B∑ ��,�
�

�:���1 6�, �, � ' 
�,�
� 7C� D ����,���, ��  ∀k,i,j ,t =1, 2, ..., T (4.7) 

Total routing and ground holding cost for airline company u: 
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∑ !∑ ∑ "# $ %�&���,&���
� ��, �, � ' 1�)*+,-./�����E�F� ' ∑ ∑ ∑ "0 $�+,-1/�����E�F�2

�$��,3�����,�−
�,3����,�−������−����$G$H���D0 ∀u (4.8) 

Nonanticipativity constraints: 

��,�
� ��, �, ��� � ��,�

� �1, �, ��� 8� I 1, �, �, 	, � = ��, �� (4.9) 

Binary constraints for ��,�
� ��, �, ���={0,1} 

The objective function in Eq. (4.1) aims to minimize a weighted combination 

of expected cost of ground-holding delay and arrival delay at the destination airport. 

The first term scans through the ground-holding arcs starting from PDT(f).  

�&���,&���
� ��, �, � ' 1� =1 represents that the ground holding arc (t,t+1) is used at the 

origin airport o(f) under scenario k. # is the cost of holding one flight in the origin 

airport for one time period, thus the term of ∑ "# $ %�&���,&���
� ��, �, � ' 1�)*+,-./���  

in Eq. (4.1) captures the total ground holding cost for a flight f.   

The second term in Eq. (4.1) scans through all incoming nodes i to the 

destination airport d(f), and the link flow selection variable ��,J���
� K�, � − 
�,J���

� , �L is 

set to 1 if flight f arrives at the destination airport before time �. Therefore, � $

��,J���
� K�, � − 
�,J���

� , �L represents the actual arrival time of flight f at the destination. 

Without loss of generality, the other cost factors for route adjustment can be also 

included in the objective function, such as fuel usage, en-route turbulence as well as 

safety considerations.  
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Eqs. (4.2)-(4.6) represent the flow balance constraints at the single source and 

single sink vertices in the space-time network, respectively. Eq. (4.3) and (4.5) 

maintain the flow conservation relations at each time instance t at the origin and 

destination airports, and those time-expanded nodes can be viewed as intermediate 

vertices in the space-time network. The flow balance constraints around the airspace 

waypoints at each time stamp are ensured by Eq. (4.4). Because the flow balance 

constraints (4.2-4.6) are established for each space-time vertex in the time-expanded 

network, it is clear that, a linear programming problem with this group of flow 

balance constraints is totally unimodular and its relaxation leads to integer solutions.  

The time-dependent airspace sector capacity constraint is enforced in (4.7) 

under each scenario k. Air carrier-specific equity constraint (4.8) incorporates a 

ground delay and routing cost term per flight, which is similar to the cost in objective 

function (4.1).  

Nonanticipativity constraints NAC (4.9) are used to construct deterministic 

equivalents to the scenario-based stochastic optimization models. In this two-stage 

problem, this set of NAC constraints implies that, the scenario-based variables 

��,�
� ��, �, ��� have the same values across different scenario k in the first stage � = ��.  

In the case of a two-stage problem, this set of NAC constraints implies that, 

the scenario-based variables ��,�
� ��, �, ��� have the same values in the first stage. Two 

modeling approaches have been developed in the literature to consider NAC: a 

splitting variable approach and a compact representation approach. The first method 

requires adding explicit coupling constraints, such as (4.9), across different scenarios 

in the first stage. The NAC constraints can be dualized into the objective function 
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through a Lagrangian relaxation technique so that the scenario-based subproblems 

can be solved in parallel. The second method uses the single set of variables, say 

�M,N
�������, ���, directly for all scenario-based subproblems in the first stage, which leads to 

a tight model with fewer variables and constraints.  

Ball et al. (2003) developed a stochastic integer program with dual network 

structure and showed its application to the ground-holding problem. The dual network 

structure can be viewed as a special case of the compact representation approach for 

modeling NAC, while the resulting coefficient matrix in the dual network was shown 

to have a desirable total unimodularity feature that leads to efficient network flow 

algorithms. In our proposed space-time network-based formulation, if only the ground 

holding arcs are considered (i.e., without considering the airspace sectors), then the 

corresponding model can be further simplified to the dual network structure 

investigated by Ball et al. (2003). 

Regarding scenario-based stochastic optimization methods, interested readers 

are referred to papers by Wets (1974), Birge (1995) and Shapiro et al. (2009) for 

more modeling details. Several techniques have been proposed to reformulate NAC 

constraints, including progressive hedging by Rockafellar and Wets (1991), 

augmented Lagrangian decomposition by Ruszczynski (1989) and the diagonal 

quadratic approximation algorithm of Mulvey and Ruszczynski (1992) to name a few.  

4.2 Lagrangian Relaxation-based Solution Algorithm 

 

With three sets of side constraints, the proposed multi-commodity network 

flow model is still very complex to solve by standard integer programming solvers, 
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especially for real-world problems with a large number of flights and a long planning 

horizon. The proposed solution algorithmic framework addresses the following two 

questions: (1) how to find a valid Lagrangian relaxation procedure to provide tight 

lower bounds; (2) how to construct decomposed subproblems with efficient solution 

algorithm.  

The constraints in the above airspace flight scheduling formulation can be 

classified as two groups. The first group directly relates to the flow balance 

constraints (4.2-4.6), which are all embedded in the space-time network characterized 

by a general inequality OP D Q, and the network matrix M is totally unimodular. The 

second group includes link capacity constraints, air carrier equity constraints and the 

NAC constraints. Those three sets of coupling constraints cover either a set of 

different flights belonging to the same carrier u, a set of flights passing through the 

same arc from vertex (i,t) to vertex (j,t+
�,�
�  ), or equations across different scenarios 

k. In this research, we plan to relax those complicating constraints, and accordingly 

decompose the large-scale airspace flight rerouting problem into multi-commodity 

network flow subproblems that are easier to solve. In general, network flow 

subproblems are desirable because they can be solved by many algorithms that are 

more computationally efficient than the standard simplex algorithm for linear 

programming problems.  

By introducing a set of nonnegative Lagrangian multipliers RF, S�,���, �� and 

T�,�
� ��, �, ���, we incorporate the coupling capacity, carrier equity and NAC constraints 

in the following objective function with penalty term. 

Problem P4.2: Dualized dynamic airspace routing and ground holding model 
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��� ∑ U� ��� '�,2 ∑ BS�,���, �� $�,�,+,2

��:�	����,	��,�,�'
�,	�−����,	�,�' 

∑ BRF $ V∑ BU� ��� − |����| $ G $ H���C2,��E�F� XCF ' ∑ BT�,�
� ��, �, ��� $�,�,�,2,+,+YZ/�

��,	��,�,��−��,	�1,�,��  (4.10) where the generalized cost for each flight f under scenario k is denoted as 

U� ��� � ∑ "# $ %�&���,&���
� ��, �, � ' 1�)*+,-./��� ' ∑ ∑ "0 $�+,-1/���

�$��,3�����,�−
�,3����,�−������ (4.11) 

Subject to the flow balance constraints (4.2-4.6) and nonnegativity constraints of 

��,�
� ��, �, ��� [ 0. 

 

The positive multiplier vector  ρ   can be interpreted as the cost of S�,���, �� 

charged for utilizing a link resource (i,j) at arrival time t under scenario k with the 

sector capacity constraint ����,���, ��. The multiplier RF represents the penalty for 

exceeding average fight routing and ground holding cost threshold H��� for each 

individual airline, and T�,�
� ��, �, ���  corresponds to the penalty for not having the 

unique solution in the first stage. Essentially, the major goal of the Lagrangian 

function is to balance the total flight routing and ground holding cost, and the cost for 

utilizing limited facility resources through choosing appropriate resource prices. To 

obtain the largest possible bound values, we need to solve the following Lagrangian 

dual problem for variable ��,�
� ��, given  multipliers S�,���, ��, RF and T�,�

� ��, �, ���. 

Clearly, the dualized problem with only flow balance constraints is totally 

unimodular, so its linear relaxation produces integer solutions directly.  
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Since the dual cost function (4.10) is not differentiable everywhere, we solve 

the dual problem by updating {π, ρ, λ} using the following subgradient method, 

which is intended to iteratively adjust the resource prices. 

RF
]^_ � ��� B0, RF

] ' `] $ V∑ BU� ��� − |����| $ G $ H���C2,��E�F� XC,  (4.12) 

S�,�
]^_��, �� � ���B0, Sa,+

] ' `] $ V∑ ∑ ��,�
�

�:���1 6�, �, � ' 
�,�
� 7� − ����,���, ��XC (4.13) 

T�,�
�,]^_ � T�,�

�,] ' `] $ V��,�
� ��, �, ��� − ��,�

� �1, �, ���X (4.14) 

where superscript q is the iteration index used in the dual updating procedure, and πq, 

ρq, λ
q , `q denote iteration-specific multiplier values, and step size at iteration q, 

respectively.  To overcome “zip-zag” courses in the optimum search process, the step 

size parameter is updated as 

q

q
qq LL

∆

−
=

)(
µθ , (4.15) 

where L is the objective function value of the optimal solution, which can be 

approximated by a feasible solution generated from the heuristic method, Lq is the 

value of Lagrangian relaxation   at iteration q, ∆ is the deviation vector associated 

with V∑ BU� ��� − |����| $ G $ H���C2,��E�F� X, V∑ ∑ ��,�
�

�:���1 6�, �, � ' 
�,�
� 7� −

����,���, ��X and V��,�
� ��, �, ��� − ��,�

� �1, �, ���X. Note that, 0<µq<2 is required to ensure 

theoretical convergence. Another modeling issue associated with Equation (4.15) is 

that there are a large number of constraints to be dualized, which leads to a large 

value of q∆ , a negligible step size and a potentially slow convergence rate. For 

simplicity, this research uses a step size updating rule of 
1

1

+
=

q
qγ  in our numerical 



 

 75 
 

study. Recognizing that most of the capacity constraints are non-binding in the 

optimal flight re-routing solution, the relax-and-cut logic described in Caprara et al. 

(2002) is adapted here to dynamically relax resource capacity constraints by only 

dualizing a subset of constraints at every iteration. Specifically, if a sector has not 

reached its capacity within several recent iterations, the algorithm automatically 

resets the multiplier S�,���, �� for the under-utilized link capacity resource on link (i,j) 

at time t back to zero. With this dynamic constraint generation scheme, the set of 

Lagrangian multipliers S�,���, ��  varies along the iterative process.  

The uncapacitated multi-commodity flow optimization problem P4.2 can be 

further separated into a set of subproblems, and each problem corresponds to a time-

dependent flight-based network programming problem for flight f under scenario k, 

with the objective function associated with the weighted cost for ��,�
� 6�, �, � ' 
�,�

� 7. 

That is, given a set of resource prices S�,���, �� associated with arcs (i,j) from time t to 

� ' 
�,�
� , we can now compute the optimal cost of a flight f for each possible 

entering/departure time at its inbound waypoint or origin airport, and possible routes 

in the airspace. The flight-based subproblems are then formulated as a sequence of 

time-dependent shortest path problems in the space-time network STG(V, A), for 

given values of Lagrangian multipliers. For a comprehensive description of the 

shortest path algorithm in a space-time expanded network, we refer the readers to 

Ahuja et al. (1993). 

4.3 Numerical Experiment  
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This section aims to test the computational efficiency and effectiveness of the 

proposed Lagrangian relaxation algorithm, as well as the impact of incorporating 

equity constraints under stochastic capacity conditions.  

The first case study uses a network similar to the hypothetical subarea around 

Dallas-Fort Worth International Airport (DFW). This network has a total of 7 major 

airports. We consider 15 minute intervals and 20 time periods for a planning horizon 

of 5 hours. There are 6 major origin airports, DEN, LAS, RZC, LIT, EIC and AEX, 

and one destination DFW. We consider 144 flights belonging to 4 airlines, and those 

airlines own about 40%, 30%, 20% and 10% of total flights in the area. Those four air 

carriers operate on all origin-destination pairs. Two capacity scenarios are considered. 

The first scenario functions under a normal capacity of 12 aircraft per 15 minutes, 

which allows all flights to use primary routes. The second scenario has FCA in the 

shaded area in Figure 4.2, with a reduced capacity of 6 aircraft per 15 minutes, so that 

some flights need to take alternative routes. The cost of ground hold is set as 50% of 

arrival cost, that is, α=0.5β in Eq. (4.1). Related to the equity constraint (4.8), the air 

carrier-specific threshold of average routing and ground holding cost per flight θ(u) is 

set to 105% of the overall average value for all air flights.  

The proposed two models are implemented in GAMS (Rosenthal, 2008), 

which is a high-level modeling system for mathematical programming and 

optimization. An open-source COINGLPK solver is used to solve the binary integer 

problem and the relaxed problem. In particular, the integer programming problem is 

solved through linear programming relaxation and branch and bound algorithm. Table 
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4.1 shows the size of the problem for different formulations. Each model has been 

solved to the optimal solution.  

The problem instances in Mukherjee and Hansen’s study (2009) have a 

relatively large number of flights and time intervals, and they use an 

AMPL/CPLEX solver to obtain integer solutions from LP relaxation of their 

proposed model. In their study, the reported computational time required by the LP 

relaxation for all cases was within 5 seconds, on a computer with 1.2 GHz processor 

speed and 16 GB RAM, while they also acknowledged that it was possible the LP 

relaxation might not yield integer solutions in some instances. In our study, it takes 

about 122 seconds to obtain the integer solutions through a complex branch-and-

bound search process. The following discussion is not intended to compare the 

computational efficiency for different solution algorithms of the IP model (e.g., 

branch-and-bound vs. a simple round-off heuristics). Instead, we will focus on the 

problem size and solution quality associated with different model reformulations and 

relaxation techniques discussed in this dissertation.  
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Figure 4-2 Hypothetical airspace network around DFW, extended from the test 
network from Mukherjee and Hansen (2009) 

 

For different first-stage length, obviously, the relaxed formulation has the 

same number of variables as the original IP model. While the relaxed problems still 

keep about 80%-90% of the original (flow balance constraints), the overall solution 

times per iteration are reduced to about 2%-5% compared to the original IP model 

P4.1. For the relaxed problem P4.2, different lengths of the first stage (45 min vs. 15 

min) have the same number of variables and constraints, as the NAC constraints (for 

the first stage variables) in both models are dualized. The length of the first stage 

decision does not significantly change the solution time, as both problem instances 

have similar computational times of 2-3 seconds.  
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Table 4-1 Problem size and solution time of reformulated problems under different first-stage 
lengths 

 

 Complete 
Model 4-1 

(first stage 45 
min) 

Relaxed 
subproblem 
model 4-2,  

(first 
stage=45 
min) 

Complete Model 
4-1 (first stage 15 
min) 

Relaxed 
subproblem 
model 4-2  

(first stage=15 
min) 

# of 
variables 

165,601 165,601 165,601 165,601 

# of 
equations 

85,971 68,833 75,315 68,833 

# of non-
zero 
elements 

859,393 496,225 3,451 496,225 

Solution 
time 
(seconds) 

122.507 2.844 (per 
iteration) 

16.094 2.438 (per 
iteration) 

 

 

Table 4-2 Size of side constraints 

 Size of constraints  Value in the test problem 
with 45 min- first stage 
interval 

stochastic sector 
capacity 

# of scenarios K× # of links 
(i,j)× # of time intervals T 

2×46×20 = 1840 

airline total routing 
cost constraints  

# of airlines |�| 4 

non-anticipatory 
constraints 

# of flights |�|× # of time 
intervals in the first time 
interval �� 

144×3 = 432 
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Table 4-3 Computing time and solution quality for different types of relaxation (first stage 45 
min)  

Model Computing time, unit: 
second (percentage of 
time compared to original 
IP formulation) 

Solution quality in terms 
of percentage of 
ZLB(x)/Z(x*) 

A. Original IP formation 122.507 (100%) 100% 

B. IP with NAC + Equity 
constraint 

6.234 (5.09%) 90.73% 

C. IP with Capacity + 
Equity constraint 

14.343 (11.71%) 93.43% 

D. IP with Capacity+ NAC 
constraint 

13.063 (10.66%) 95.05% 

E. IP with all three-side 
constraints being relaxed 

3.000 (2.45%) 92.68% 

F. LP with all three-side 
constraints being relaxed 

2.844 (2.32%) 90.73% 

 

Table 4.2 shows the number of constraints for each set of side constraints. In 

general, the airline-specific routing cost equity requirement corresponds to the 

smallest number of constraints. On the other hand, the size of stochastic capacity 

constraints is relatively large, but it can be dramatically increased when more 

scenarios are needed to enable a realistic stochastic capacity representation. The size 

of nonanticipativity constraints is highly dependent on the number of total flights and 

the length of the first-stage decision time horizon.  

Table 4.3 aims to systematically examine the computing time and solution 

quality of different relaxation models. The quality of lower bounds or relaxations, in 

this research, is measured by the percentage gap between a lower bound estimate 

ZLB(x) and the corresponding optimal value Z(x*) for the total system-wide cost, 

where x* is the optimal solution. With the flow balance constraints, all the relaxations 
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only need about 2% to 10% of the execution time for the original IP model (Model 

A), but provide approximation solutions within 10% of the optimality gap.  

For three sets of side constraints, an interesting question is which set of 

constraints is the “hard” constraint to be dualized in order to enable effective model 

reformulation. By relaxing each group of side constraints individually, relaxed 

models B, C and D in Table 4.3 take less time to find their own optimal solutions. 

Overall, the capacity constraints are still dominating “hard” constraints, as Model B 

(with the capacity constraint being relaxed) uses the least time to solve. For 

nonanticipativity constraints and equity constraints (considered respectively in 

Models C and D), both models take about similar CPU time and generate similar 

solution quality gaps around 93%-95%. In particular, Model D with capacity and 

NAC constraints provides the tightest lower bound estimator (95.05%), while taking 

about 10% of the solution time compared to the original IP Model A. To investigate 

why the limited 4 equity constraints in Mode D still lead to a significant solution gap, 

we vary the values of θ(u), which is an air carrier-specific threshold of average 

routing and ground holding cost per flight. The current setting of 105% of the system-

wide average routing and ground holding cost is indeed very difficult to satisfy, 

which requires seamless corrodination and reassignment among different airlines. 

When increasing θ(u) to 120% of the system-wide average, these 4 constraints 

become much easier to solve, and the relaxed Model D also reaches less than 2% of 

solution quality gaps.  

The linear program relaxation in Model F shows a marginal advantage over 

integer programming Model E, as both models reach similar solution gaps with 
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comparable computational time. This might be explained by the total unimodularity 

properties associated with the network flow balance constraint, which leads to many 

integral solutions from the linear program reformulation and limited steps for the 

branch and bound algorithm to solve the fractional solutions to meet the integer 

constraints. 

Among all the possible relaxation models, we select Model D: IP with 

Capacity+ NAC constraint, and Model F: LP with all three-side constraints being 

relaxed, for further examination in an iterative Lagrangian relaxation solution 

process. Figure 4.3 shows the estimation quality of our proposed lower bounds 

compared to the optimal solution obtained by solving the IP model P4.1. As expected, 

the Lagrangian relaxation-based lower bound rule iteratively increases the estimation 

value, and, in general, marginal improvements become insignificant after 4 iterations 

for Model D as the relaxed subproblem, and 12 iterations for Model F as the relaxed 

subproblem.  The maximum achievable Lagrangian lower bounds from these two 

reformulations are within 5% of the optimal objective function value. By considering 

the average computational time per iteration, using computationally efficient Model F 

as the relaxed subproblem is more beneficial overall, as it takes about only 65% of 

total CPU time to reach the same level of solution quality.  
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Figure 4-3 Estimation quality of proposed lower bounds compared to the optimal 
solution obtained by solving the model P4.1 

 

4.4 Feasible Solution to Original IP 

Another practical issue is how to generate feasible solutions based on the final 

solution from the relaxed model. For example, in Model F with all three side 

constraints being relaxed, there are still a few time slots where the number of flights 

exceeds the reduced capacity on FCA, the first-stage solutions at two different 

scenarios could have different values, and some airlines have routing and ground 

holding costs which are significantly larger than the system-wide average. 

To quickly generate a solution that satisfies the relaxed capacity constraints, 

we start with the resulting Lagrangian multipliers ρc,d
e �k, t� from the last iteration q, 

and further increase the penalty for using over-capacity sectors. To construct the 

unique solution for the first stage decision, we use the first-stage solution from the 

worst case scenario directly for each flight so that NAC constraints can be 

automatically satisfied. By fixing the first-stage solution to the worst case decision, 
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we can solve optimally for each scenario and obtain the feasible solutions for each 

flight. It should be noticed, that worst case solution in the first stage might lead to too 

much freedom in terms of sector space satisfaction in most likely cases (or in non-

worst case scenarios), and this heuristics might be ineffective, especially when the 

time horizon in the first stage is extremely long.  

When Model B, C or D can be used for a given problem size, the issue 

becomes easier as the solution can be only infeasible to one set of constraints. In 

Model D, the resulting solution from relaxation model offers a feasible solution with 

respect to the NAC and capacity constraints. By increasing penalty on equity 

constrains, an upper bound of the optimal total system-wide cost can be obtained with 

a very small relative solution quality of 2.49%. 

Overall, under tight equity constraints, it can be challenging to use a heuristic 

method to construct a feasible solution, as the tight equity constraints themselves 

might not ensure the existence of feasible solutions. We should also recognize that the 

equity constraints are soft constraints, and it is relatively easy to modify or relax the 

equity constraints to correct the infeasible solutions.  In practice, one can first 

measure the degree of equity constraint violation in the current solution, and 

accordingly relax the equity constraints iteratively to obtain compromising solutions. 

In this chapter, we do not consider complicated heuristics to enforce the equity 

constraints, and various related heuristic rules will be discussed in Chapter 5.  

In practice, it is not straightforward to consider the equity constraint for 

airlines with a single flight, especially when the proposed optimization model is 

applied for a single day or short optimization horizon. In this case, one can apply a 
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randomization scheme or provide an exemption policy to reduce possible adjustment 

bias. On the other hand, an extended optimization model can be developed to take 

into account the rerouting and ground holding decisions from individual days, and 

evaluate the equity measure across multiple days in a cumulative fashion. By doing 

so, we can also smooth the penalty function on airlines with limited number of flights 

and avoid the adjustment bias.  

4.5. Conclusions 

 

This chapter models and solves an integrated flight re-routing and scheduling 

problem on an airspace network. Specifically, the optimization problem is concerned 

with a network of airspace sectors with a set of waypoint entries and a set of flights 

belonging to different airline companies. The goal of the optimization model is to 

minimize the total flight travel time subject to a set of flight routing equity, stochastic 

and assignment equity requirements. A time-dependent network flow programming 

formulation is proposed with airspace capacities and rerouting equity for each airline 

company as side constraints. A Lagrangian relaxation based method is used to dualize 

these side constraints and decompose the original complex problem into a sequence 

of flight rerouting/scheduling problems.  
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Chapter 5: Assignment Problem in Long-term Airport Slot 
Allocation 

This chapter aims to study the long-term airport slot assignment problem, with 

a special focus on the equity issue across different air carriers. We first review the 

background information using an example at LaGuardia Airport, and then present a 

multi-objective integer programming model in sections 5.2 and 5.3 to optimize both 

system efficiency and air carrier equity. Alternative models and heuristic algorithms 

are developed in sections 5.4 and 5.5. The chapter is concluded with computational 

results. 

 

5.1 Background Information on Slot Allocation 

 
How to allocate airport landing slots to competing airlines has historically 

been a controversial issue at many airports. For example, at LaGuardia Airport 

(LGA), a High Density Rule (HDR) first went into effect in 1968, in which the 

incumbent operators are the “owners” of slots. On the other hand, a “use it or lose it” 

rule was established so that returned slots can be put into a pool for reallocation if the 

slots were not used 80% of the time. Since 1985, under the HDR, airlines have been 

able to trade slots in a secondary market, but such activity has declined over the years 

(Gleimer 1996). Between 2000 and 2010, the “use it or lose it” rule ceased to apply to 

the N.Y. area airport, and it was replaced with single caps on operations.  

In 2000, the U.S. Congress enacted the Wendell H. Ford Aviation Investment 

and Reform Act of the 21st Century (AIR–21). Prior to AIR-21, LGA handled about 

1,050 operations per day (spread over about 16 hours). Within seven months after 
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AIR-21, the number of scheduled operations had climbed to about 1,350 per day (i.e. 

a 28.5% increase). Because of the resulting levels of delays and cancellations, the 

FAA limited the number of slot exemptions using the “slot lottery” mechanism to 

bring the number of scheduled operations per hour down to 75. When planning a 

phase-out of the HDR, different authorities, including the FAA and the Office of the 

Secretary of Transportation (OST), recognized the possibility that there could be an 

increase in congestion and delay at the affected airports. Over the past several years, 

various market-based mechanisms have been proposed to allocate limited capacity at 

LaGuardia. Several new ideas had been suggested to alleviate the current problem in 

particular, expansion of airport infrastructure, confiscating a percentage of each 

airline’s slots, mandatory use of larger aircraft, a ‘congestion fee’ for arrivals or 

departures during high traffic times, as well as slot auctions. However, LaGuardia 

cannot realistically expand its runway infrastructure because it borders on Bowery 

Bay and Flushing Bay.  

In November 2004, the National Center of Excellence (NEXTOR) conducted 

a 2-day strategic simulation experiment to measure airline responses to a variety of 

congestion pricing fees and administrative rules. In February 2005, NEXTOR 

conducted a second strategic simulation to examine how an auction model could be 

used to allocate capacity. There are many issues to be addressed prior to 

implementing an auction of take-off or landing authorizations at LaGuardia. To name 

a few, the notion of incumbency; associated property rights and their duration, if any; 

the impact that auctions may have on airport revenues; predictability of the auction 

outcome; the impact on small communities; and the financial impact on the airlines 
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and their customers. On the other hand, several advantages to the auction mechanism 

were also explicitly recognized in the discussion. For example, auctions rely on 

markets, which are more robust and responsive to industry changes than 

administrative regulations and seem to allocate scarce resources less arbitrarily than 

allocating slots under an administrative solution (such as a lottery). 

Recently, under a proposed rulemaking, the FAA proposed to attach finite 

lifetimes to existing slots authorized. Additionally, expired landing slots would be 

subject to reassignment, using a marketing mechanism, such as auction. Interested 

readers are referred to a recent report prepared by Ball et al. (2005) on an overview of 

auction use and auction design, as well as various options for controlling congestion at 

LaGuardia Airport after December of 2006. The expiration and reallocation of slots 

should drive airlines to put slots they hold to the best possible use because the slots 

would no longer represent an indefinite investment interest. The revolving allocation 

process also would provide new entrant airlines and incumbent airlines wishing to 

expand service at a particular airport the opportunity to acquire landing slots. 

5.2 Problem Statement for Long-term slot allocation 

 

We first start with the formal problem statement and key assumptions of the 

long-term landing slot assignment problem. In this special case of the resource 

reallocation problem, the FAA would limit the number of scheduled flight arrivals 

and departures at a major airport. For instance, Monday through Friday from 6:30 

a.m. to 9:59 p.m. (peak hour) and Sunday from noon to 9:59 pm would have a ceiling 

on hourly operations. In general, slots are created according to the hourly limit on 
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operations in terms of the number of scheduled arrivals and departures, so that these 

slots would be allocated to carriers at the airport based on historic usage. A few slots 

can also be reserved for general aviation. 

Assumption 1: The assignment problem under consideration only addresses 

arrival slot allocation. ,If an airline obtains an arrival slot, say at 8:30am, that airline 

can schedule a paired departure without any restriction. However, this pairing 

assumption has certain limitations and can be studied in the future research. For 

example, flights are most likely to be scheduled compactly to maximize equipment 

and crew efficiency, and a departure slot from the flight originating airport is heavily 

dependent on its demand for an arrival  slot at the flight’s destination airport.  

Assumption 2: If the departure arrangement by an airline causes any potential 

capacity issue in a certain hour, a departure time window can be assigned to each 

landing slot to ensure the balance. The above example can be modified to allow the 

carrier to schedule a departure between 9:15am and 10:15am.  

The problem could be illustrated in the following three-dimensional 

assignment plot in Figure 5.1. During each hour (along the x time axis), the current 

number of slots that are operating needs to be controlled under the capacity level (in 

the vertical z axis), and each slot should be assigned to an airline with a determined 

slot lease term (along the y axis, e.g., 1 yr-10 yrs, only counting from the fourth year 

when reallocation takes effect). 
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Figure 5-1 Illustration of long-term airport slot allocation p roblem as a three-
dimensional assignment problem. 

 

Overall, in the proposed assignment, each carrier's holdings of slots would 

satisfy two conditions/constraints: (1) the average “life” and value of the slots would 

be approximately the same for all airlines; and (2) expiration of slots would be 

staggered so that no airline would lose a disproportionate number of slots in a given 

time period.  

It should be noted that, landing slots in different hours have different values. 

In general, landing slots in early morning and late afternoon, i.e., peak hours, have 

higher values than the slots in the middle of the day. In other words, the expiration 

dates of the regular authorizations in each hour would be assigned as follows.  
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(1) Capacity limitation: the number of slots is equal to the average number of 

“slot” operations held under the HDR or subject to a predetermined capacity in each 

hour time period;  

(2) Equity among carriers: the average remaining life for all slots is roughly 

5.5 years or a similar value if a time discount factor is applied;  

(3) Minimal service interruption (evenly distributed reallocation annually): the 

total years of the remaining life among all slots would be distributed so that 10 

percent of the total slots at the airport expire each year. 

5.3 Integer Programming Formulation 

In this section, we present several integer programming models that assign 

“life” or lease to landing slots at a major airport to achieve the system optimal 

capacity utilization, equity among air carriers and minimal service interruption as 

much as possible. Generally, multi-objective programming involves conflicting 

objectives, so it is possible that not all objectives can simultaneously reach their 

optimal levels. Recall that multiple solutions are generated in Chapter 3 so as to 

construct Pareto optimal tradeoff curves. Alternatively, within a single utility 

maximizing framework, this section focuses on how to combine different objective 

functions together, and then compare different resulting models and possible heuristic 

algorithms. 

The notation and decision variables are defined as the following. The time of 

day is divided into a finite set of time periods of equal duration (for example, 1 hour, 

denoted by T). This formulation considers the slot lease assignment time window 

from 7AM to 10PM. The time interval can be one hour without loss of generality.  
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Subscripts: 

i index of air carrier, 

k slot lease length, k=1…10 years, 

t time period of day, t = 1,2, ...,T (e.g. 7am-10pm during a day). 

Parameters: 

Sit number of slots carrier i owns in time period t, 

Ht target average lease (slot years/slot) for time period t, 

Ckt number of available slots with lease length k in time period t, 

Ni number of slots carrier i owns in all time periods, 

Vt value of a slot in time t, 

TAi target average slot value for carrier i, 

TTi target total value for carrier i, 

α weight coefficient for max slot lease percentage deviation,  

β weight coefficient for air carrier slot value deviation percentage. 

Decision Variables: 

xikt number of k-year slots assigned to airline i in time period t, 

pit average slot lease percentage deviation for airline i in time period t, 

yt max average slot lease percentage deviation in time period t, 

γ maximum allowable deviations from target. 

 
 

As described earlier in this section, there are several possible objectives in this 

problem. We start by definition for each airline i.  
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Average Slot Value (ASVi) is 
( )

,
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N

×∑
, we can now define several 

equity metrics.  

1. Overall average slot value deviation from target:           
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2. Overall total slot value deviation from target: 
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 Air carrier performance equity metrics: 

1. Equity metric weighting air carriers equally  

max(0, )i
i

EMA ADG= ∑  

2. Equity metric weighting by air carrier size  
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3. Equity metric weighting by squared root of air carrier size: 
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To assign slot lease equitably in terms of both slot lifetime length and total 

value for each airline, one objective could be defined as the weighted sum of an 

hourly metric and EMA, as described in the following model. 

Model: Slot Assignment Problem (SAP): 

( )
,

min

max(0, )

max(0, )

t
t

t i i
t i

t ikt
k t

t i
t i i

y EMA

y ASV TA

k V x

y TA
N

α β

α β

α β

+ ×

= + × −

×
= + −

∑

∑ ∑

∑
∑ ∑

 (5.1) 

 
Subject to: 
 
Capacity constraint: 

   ,ikt kt
i

x C k t≤ ∀∑  (5.2) 

 
Supply constraint: 

   ,ikt it
k

x S i t≤ ∀∑  (5.3) 

 
Min-max definitional constraint: 

  ,t ity p i t≥ ∀  (5.4) 

( ) ( )
1- =   ,

ikt it t ikt
k k

it
it t it t

k x S H k x
p i t

S H S H

× − ×
≥ ∀

∑ ∑
 (5.5) 

 
In objective function (5.1), the first term t

t

yα∑ is the summation of the 

maximum slot lease percentage deviation over different time periods. Essentially, this 

single-hour metric aims to ensure slot life equitably among air carriers in each time 

period. The second term 
( )

,max(0, )
t ikt

k t
i

i i

k V x

TA
N

β
×

−
∑

∑  is the summation of overall 

airline slot value deviation percentage (i.e., equity metric EMA). For a typical multi-
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objective optimization program, coefficients α and β are the weights that can be 

adjusted depending on the importance of the two metrics. Depending on the decision 

makers’ specific consideration and the other available alternative metrics, the 

problem could focus on air carrier performance, e.g., air carrier slot lease percentage 

deviation and air carrier slot value percentage deviation, or on hourly metric. Without 

loss of generality, the following section will illustrate algorithms and model 

improvement based on Eq. (5.1). 

 
There are several challenging issues in solving the above model: 
 

1. Symmetry in time values: One symmetry problem comes from the coefficients 

if no time discount is applied for the lease type. For example, if airline a has 2 

slots in hour 7, given the target average lease term = 5.5, leases of 5 and 6 

years and leases of 4 and 7 years have equal values. To find the optimal 

solutions, a typical integer programming solver needs to maintain symmetric 

nodes in the branch-and-bound tree, leading to large solution times. To break 

the symmetry in the model, a time discount factor could be applied. This will 

be further discussed in the following section. 

2. Complicated constraints Eqs. (5.4) and (5.5): With only constraints (5.2) and 

(5.3), the problem is a simple transportation problem, however, with 

constraints (5.4) and (5.5), the problem becomes more general (profoundly  

difficult IP). 

The above issues make the problem difficult to solve optimally within 

reasonable computational time. In the following section, an alternative way of solving 

the problem to near optimality will be described. 
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5.4 Sequential Optimization Models 
 

Considering the complexity of solving the above model with multiple time 

periods, this section proposes to decompose the problem into multiple single-hour 

optimization subproblems, as shown in Figure 5.2. Essentially, this sequential model 

iteratively applies the single period model to each time window and then adjusts 

targets after each iteration to achieve global balance (2nd objective function). The 

single-hour optimization problem considers an hour at a time, so the decision 

variables xikt are reduced from a three-dimensional vector (air carrier i, lease length k 

and time period t) to a two-dimensional vector (air carrier i, lease length k) for a 

specific time t. The assignment results from the previous time periods to the current 

time t is provided as a result of solving the same subproblems at the previous time 

periods, say, τ =7, 8, …, t-1. That is, for the single-hour subproblem at subject hour t, 

assignment results ikx τ  are given for τ=1, 2, …, t-1, and we can use a new variable 

vector ikx  to represent the number of k-year slots assigned to airline i in time period t.  

Single-Hour Slot Assignment Problem SHSAPt : 

min ty  (5.6) 

 
Subject to: 
 
Capacity constraint: 

   ik kt
i

x C k≤ ∀∑  (5.7) 

 
Supply constraint: 

   ik it
k

x S i≤ ∀∑  (5.8) 

 
MinMax definitional constraint: 

  t ity p i≥ ∀  (5.9) 
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( )   it t it ik it t
k

S H p k x S H i× + × ≥ ∀∑  (5.10) 

Constraints representing maximum allowable deviations from target: 

( )
( )

t ikt ik
k t k

i
i i

k v x v x
TA

N

τ τ
τ γ<

× +
− ≤

∑ ∑∑
∑  (5.11) 

 
It is easy to observe that the new constraints (5.7) and (5.8) can be viewed as 

the supply and demand constraints in a standard assignment problem, and the min-

max definitional constraint can be handled in the post-checking stage. The second and 

third terms in Eq. (5.11) are constants since the other sub-problem solutions are fixed 

except for the subject hour that is solved. In Eq. (5.11), γ is the threshold used in the 

airline metric, e.g., 5% meaning the maximum allowed air carrier deviation 

percentage. After determining this threshold and obtaining the list of airlines with the 

metric exceeding the threshold, Eq. (5.11) is dynamically added to the improvement 

problem. For air carriers with more deficits from their targets, the threshold could be 

slightly altered so that the air carrier could be compensated more in the improvement 

procedure. The scheme used here is similar to the ε-constraint method discussed in 

Chapter 3. The new single-hour sub-problem becomes much smaller in size, e.g, 

when the time period includes 16 hrs, the sub-problem is 1/16 size of the original 

problem, which dramatically reduces the computational time.  
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Figure 5-2 Sequential optimization models illustration 

 

Essentially, there are two ways of implementing the Sequential optimization 

procedure.  

1. Solve each hour chronologically using equity measure 1 as the objective 

and adjust air carriers’ target after solving each single hour problem. 

2. Obtain an initial feasible solution, and update chronologically by adjusting 

airlines’ target hour by hour. 

Accordingly, we propose the following two heuristic algorithms to the slot 

assignment problem.  

Algorithm 1: 

For iteration n=1 to M 

Step 1: Solve a single-hour problem SHSAPt with the hourly metric objective (5.6) 

subject to the air carrier metric threshold (maximum allowable deviations from target, 

Calculate deviation 
from target slot year 
values TAi for each 
airline i. 

If airline i 's loss  
exceed threshold,  
compared to target 
 value? 

Increase the target 
value TAi for this 
airline in next hour 

Yes 

No 

Solve single-hour 
problem SHSAPt=8 

Hour 7 Hour t+1 Hour 8 

Solve single hour 
problem SHSAPt+1  

Solve single-hour problem 
SHSAPt=7 
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i.e. γ) constraints (5.11), and then calculate the deviation from the target slot year 

value and other equity metrics for each air carrier i. 

Step 2: Compare each air carrier’s loss or deviation with respect to the threshold (a 

constant set at the beginning, e.g., 5%). Adjust air carrier’s target TAi in the next hour 

if the threshold is reached. 

Step 3: Repeat step 1 for the following hour until all hours have been calculated at 

least once and no air carrier’s loss or deviation exceeds the threshold.  

End for  

Stop and output final solution. 

 

  Another way of utilizing the characteristics of the hourly problem can be 

described in the following algorithm.  

Algorithm 2: 

Step 1: Obtain an initial feasible solution by solving a single-objective (hourly metric) 

problem SAP without considering the air carrier performance objective function. 

Step 2: Starting from the first hour t, calculate air carrier deviations ADGi or TDGi in 

the current solution.  

Step 3: Choose the max air carrier deviation as maxi{ ADGi}, and compare it to the 

deviation threshold γ. If no air carrier metric exceeds the threshold, continue for the 

next hour t+1. Otherwise, hold the solutions in the other hours to be constant, add air 

carrier deviations exceeding threshold as additional constraints and solve the resulting 

single-hour problem SHSAPt to obtain improved solutions. 
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5.5 Priority-Based Paired Allocation Heuristic Algorithms  

 
To achieve reasonable fair slot assignment results, this section aims to explore 

alternative heuristic methods by enhancing the commonly used round-robin method 

in the field of computer resource scheduling. In general, the round-robin procedure 

alternately allows claimants to choose among resources left, and it is considered to 

embody the fundamental fairness principle. In our study, we view the round-robin 

method as a heuristic for solving Integer Programming, and further enhance it to 

allow interactive participation by air carrier representatives.  

There are a wide range of scheduling algorithms available for allocating 

scarce resources, such as first-come first-served scheduling, shortest job first 

scheduling, priority scheduling and round-robin scheduling. In particular, the round-

robin scheduling method has been widely used in time sharing CPU systems, in 

which a small unit of CPU time resource, called “time quantum”, is defined. Each 

process/user only obtains a small slice of time quantum (typically 10-100 million 

seconds), and time slices are assigned to each process/user in equal portions and in 

circular order.  

Let us consider the slot selection for a particular subject hour, where air 

carriers can be viewed as slot users and the assets to be assigned are slots with 

different lease lengths. We can assign each air carrier to one slot at a time from the 

pool of available slots. By doing so, all air carriers are handled without priority in this 

round-robin scheduling method, which can lead to the following key properties 

related to max-min fairness, as illustrated in Figure 5.3.  
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(1) Slot resources are allocated to air carriers in order of increasing demand, 

such that no users receive more than requested. 

(2) Users with low demand will receive all of their requests, and users with 

high demands will not have all their demand satisfied but will evenly split the 

remaining slot resources. 

 

Figure 5-3 Illustration of round-robin scheduling method 

 

If a simple round-robin mechanism is used, each air carrier has a chance to 

select one preferred slot in a cyclic order, but it may not be desirable if the value of 

slots (with different lease lengths) varies widely from one to another. The remaining 

challenge is how to create more balanced “slot request quantum” to ensure fair 

assignment across different air carriers, because the long-term slot assignment 

problem under consideration also involves an additional dimension of slot lease 

lengths (e.g. 1 year vs. 10 years). For example, a long-term lease (e.g., 10-year lease) 

would be favored over other short-term leases (1 or 2 year lease). In this case, the air 

carriers which can select slots early will always select favored slots with higher value 

first, and the leftover slots will have low values. To further ensure fairness, the 
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proposed enhanced round-robin algorithm first creates a number of bundles (i.e. 

resource quantum), and each bundle includes one or two slots and the corresponding 

average lease length is closer to the average lease length for all of the slots available. 

By doing so, each bundle will have similar or equal value. In another words, each 

time an air carrier A chooses, if A is “owed” 2 or more slots then A chooses a pair of 

slots from among a specific list of “balanced” pairs, otherwise a single slot is chosen. 

For example, if an air carrier needs to request 7 slots, then it has 4 time quantum 

which can select 2, 2, 2 and 1 slot(s), respectively. If the available slot leases are 1-10 

years, without time discount factor, the average target slot lease should be close to 5.5 

years. Depending on the size of request in a quantum (one slot vs. two slots), a single-

slot request quantum will be assigned a slot with a lease length of 5 years or 6 years, 

while a two-slot request quantum will be assigned to a two-slot combination of (1 

year + 10 year) or (2 year + 9 year). 

 

Algorithm 3: Enhanced round-robin assignment algorithm  

Step 1: (Initialization) For subject hour t, for each air carrier i, calculate the target slot 

value TAi and actual average slot values 
( )t ikt t ikt

k t k
i

i

k v x v x
AA

N
τ <

× +
=
∑ ∑∑

 for the 

beginning of assignment t=1 to the current hour t. Calculate the difference between 

TAi and AAi as max{0, AAi-TAi}, according to Eq. (5.11).  

Step 2: (Creating time quantum for slot selection) Divide air carriers’ requests into 

selection time quantum. At each time quantum, an air carrier can select at most 2 slots 

as a bundle. 
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Step 3: (pre-sorting time quantum) Use one of the following priority rules to sort the 

selection time quantum in the queues.  

1. If an air carrier only has one slot request, the associated time quantum will 

be placed first.  

2. Else if an air carrier has a large slot value deviation as abs(AAi-TAi), then 

this air carrier will be placed in the beginning of quantum queue.  

 

Step 4: (assign slots to quantum) For each time quantum in the queue, select available 

slot(s) sequentially. If two slots are requested from a time quantum (as a bundle), then 

a combination of two slots with the average target lease length close to the overall 

average target lease length will be selected.  

 
Step 5: (Update) Update the actual assigned slot values in each slot and total assigned 

slot values. If t =T, stop, otherwise advance time clock t= t+1 and go back to step 1.  

 
To further improve the performance of heuristic methods, the following rules 

are proposed. The growing deviation metrics will be introduced first.  

The growing deviation value (GDV) metric is defined as:  

( )
1

1
,

t

ik
k

i t i
i

k v x
GDV TA

N

τ τ
τ

−

=

× ×
= −
∑∑

 

The growing deviation slot year metric is defined as if 5.5 is the target slot 

lease 

( )
1

1
, 5.5

t

ik
k

i t
i

k x
GDY

N

τ
τ

−

=

×
= −
∑∑
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Heuristic Rule 1: After running each hour t sequentially, calculate target 

value per slot based on past assignment for each air carrier; use this target value per 

slot in the following hour, deviation metrics are based on the GDV, eg, if one air 

carrier got lower than target assignment for the already assigned hours, the new 

calculated target value per slot will be adjusted higher to make up for the deficit. 

Heuristic Rule 2: Slightly different from Rule 1, adjust target value after each 

subgroup assignment instead of each hour.  

Heuristic Rule 3: Slightly different from Rule 1, use GDY instead of GDV 

Heuristic Rule 4: Slightly different from Rule 2, use GDY instead of GDV 

 

5.6 Computational Comparisons among Different Models and Approaches 

 

We first explain the experimental and computational settings, followed by 

comparisons of the performance of different models. Since daily slot numbers vary 

slightly from day to day, the test data set in this study is constructed from a single day 

(March 15th 2005) of LGA’s Aviation System Performance Metrics Official Airline 

Guide data, which contains departure/arrival slot information for each airline. As 

discussed earlier, departure slots and arrival slots are assumed to be properly paired, 

so the following experiments only focus on assignment of arrival slots, for simplicity. 

It is assumed that available slot leases are 1-10 years in length and every year the 

discount factor is 0.97, i.e. a 2-year slot lease will be worth 2i.jk � 1.9592. 

All the optimization experiments are conducted on CPLEX 9.1 from SUN 

workstations, and the paired-assignment heuristic algorithm (algorithm 3) is coded in 
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C++. CPLEX cannot solve the complete formulation of the Slot Assignment Problem 

(SAP) with an analysis horizon of 16 hours, 21 airlines and 35 – 40 slots per time 

window (hour), and an “out of memory” error message was encountered after several 

days of execution. The sequential optimization model, presented in section 5.4, 

obtains results within a reasonable amount of time, and the paired-assignment 

heuristic algorithm finishes in a few seconds. 

Figure 5.4 shows the number of slots in each hour for the given day, when the 

reduced capacity is set to 36 per hour.  

 

Figure 5-4 Slot schedule in each hour and reduced capacity of 36 flights per hour 

 

 

Results of single-objective (hourly metric) optimization model 

The single-objective optimization model aims to minimize the maximum air 

carrier slot year percentage deviation in each hour: t
t

min  y∑ . Figure 5.5 shows the 

percentage of deviation for hour t: 
( )

t iy =max 1-
ikt

k

it t

k x

S H

 ×
 
 
  

∑
 , corresponding to 

constraints (5.4) and (5.5), is less than 7% from hour 7 to hour 22. If all airlines’ 
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performance is measured in terms of 
( )

,
t ikt

t k
i i i i

i

k V x

ADG ASV TA TA
N

×
= − = −

∑
, that is, 

the ratio of each airline’s actual slot year values ASVi, and target slot year values TAi, 

Figure 5.5 shows that air carrier slot year value deviation from the target could be as 

large as 15%. 

 

  

Figure 5-5 Air carrier specific fairness measure from single-objective optimization model 

 

We then examine the results from the sequential solution procedure. Starting 

from the feasible solution obtained by solving the individual hourly problem to solve 

the min-max problem, the sequential optimization procedure aims to improve the 

initial feasible solution and adjust each airline’s goal slightly. The results in figures 

5.6 and 5.7 show the hourly metric change and air carrier performance change after a 

single round of improvement.  
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Figure 5-6 Hourly deviation changes from initial feasible solution to improved solution 

 

Figure 5-7 Air carrier performance change from initial feasible solution to improved solution 

 

In terms of hourly metric yt, which is the maximum of deviation between the 

goal and each air carrier’s total number of assigned slot year percentage, the 

improved solution should be no better than the initial solution, as the latter has been 

optimized for each single hour t. However, as shown in Figure 5.6, the improved 

solution can reduce the range of deviations across different hours without 

dramatically affecting air carrier specific fairness measures in Figure 5.7. 
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Figure 5-8 Airline deviations from target value per slot for heuristic methods 

We now further compare the proposed heuristics. Figure 5.8 depicts the 

deviation from the target average value per slot of each air carrier among three 

heuristic methods using different rules. Figure 5.9 shows the deviation from the target 

total slot year values among these heuristics methods. Obviously, all three heuristic 

methods have similar performance based on the above fairness measures. Moreover, 

heuristics 1 and 3 tend to relieve the target value per slot deficit for airlines with more 

slots. Both heuristics 1 and 3 use a balanced start rule, so the following section will 

add additional rules and further compare the heuristic methods with the sequential 

optimization method.  

 By comparing the sequential optimization model and the proposed four 

heuristic rules through Figures 5.10- 5.12, we observe that the sequential procedure 

outperforms heuristics methods in terms of both the slot year hourly metric and slot 

value hourly metric. This can be explained by the fact that the sequential method has 

an improved solution based on the optimal solutions for each single hour. In terms of 

individual air carrier performance, Figure 5.12 also demonstrates that the sequential 
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model produces a smoother air carrier deviation series, which implies more equitable 

resource assignment. 

 

Figure 5-9 Air carrier deviations from target total slot year values for heuristic methods 

 

Figure 5-10 Hourly max deviations from target (using slot values percentage) from heuristic 

methods and sequential optimization models. 
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Figure 5-11 Hourly max total deviation plot (target total slot year valuesa – assigned total slot 

year valuesa) 

 

 

Figure 5-12 Air carrier performances in heuristic methods and sequential optimization models 

5.7 Conclusion and Future Research 

 

This chapter developed a long term slot lease assignment model. Several 

models and algorithms are developed to solve the slot assignment problem with 

Hourly max total deviation from the target slot values

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hours

M
ax

 t
o

ta
l 

d
ev

ia
ti

o
n

 f
ro

m
 t

h
e 

ta
rg

et
 s

lo
t 

va
lu

es

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Sequential Model

Air Carrier Performance

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

USA
DAL

AAL
EGF

UAL
COM

W
LSFG

O

PENBFT ALO

CALA
IR

CJC
NKS

AM
T

TR
S

M
EP

YXPROP
CHQ

FT
A

EJA
ACA

NW
A

Air Carriers

N
eg

 d
ev

ia
ti

o
n

 f
ro

m
 t

ar
g

et
 

to
ta

l 
sl

o
t 

ye
ar

 v
al

u
es

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Sequential



 

 111 
 

equity consideration. The models and algorithms have been numerically evaluated 

extensively on hourly metric and air carrier specific metrics. Using the data from the 

LGA airport, experiment results show that the proposed sequential model solves the 

problem with very good solution quality with reasonable running time and resource. 

 The proposed models can be improved further with greater flexibility and 

different needs. The slot assignment can take into account air carriers’ input as they 

are the parties that are influenced by the final decision. Although the proposed round-

robin heuristic algorithms do not outperform the sequential optimization model based 

on experiment results, they still provide an option of adding flexibility in the 

assignment. For example, instead of making centralized assignment based on the 

values that we measure, a round-robin or a different interactive procedure could be 

adapted. After calculating the deviation and determining the assignment order, air 

carrier could select their own preferred subgroup bundle subject to certain 

restrictions. Furthermore, the paired assignment could be extended to 3-in-subgroup 

cases to enable more choices to further improve solution quality. Last, the models 

could be further extended to multi-day scenario, and each day’s deviation could be 

compensated by the following day and so on. The models and methods discussed in 

this chapter in fact provide a starting point and possible directions for the long term 

slot lease assignment. 
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Chapter 6: Conclusions and Future Research Directions 
 
 

Economic development leads to increasing air traffic demand which in turn 

poses increasingly stress to the National Airspace System (NAS). As a result, air 

traffic congestion is expected to remain as a top concern for the related public 

agencies and private corporations.  

Table 6-1 Summary of modeling elements and contributions 

Chapter 3 4 5 
Topic Airspace sector-level 

optimization 
Airspace rerouting 
and ground holding 
decisions 

Airport long-term 
slot assignment  

Decisions to 
be made  

Offload excess 
demand from 
different competing 
airlines in the 
congested airspace 

Make flight-specific 
routing and ground 
holding decisions  

Assign airport long-
term slots to 
different air carriers 

Models Bi-criteria and ε-
constraint integer 
programming models,  
network flow models 
with side constraints 

Dynamic multi-
commodity flow 
optimization model  

Alternative models 
for incorporating 
equity metrics into 
assignment 

Algorithms Integer programming 
solution methods, 
efficient network 
flow solution 
algorithms with side 
constraints 

Lagrangian 
relaxation to dualize 
stochastic capacity, 
non-anticipatory and 
equity assignment 
constraints  

Sequential paired 
assignment heuristic 
algorithm that 
considers airline-
specific equity 
metrics 

Key 
Contributions  

Construct and tested 
alterative network 
flow programming 
models for the 
resource allocation 
problem with equity 
considerations 

Enable equitable 
assignment in flight 
rerouting and ground 
holding decision in a 
stochastic capacity 
environment  

Adapt round robin 
scheduling principle 
for improving 
fairness measures 
across different 
airlines 

 
As summarized in Table 6.1, this dissertation develops a number of model 

reformulations and efficient solution algorithms to address resource allocation 

problems in air traffic flow management, while explicitly accounting for equitability 
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objectives in order to encourage further collaborations by different stakeholders, 

specifically air carriers with competing objectives when using capacity-limited 

airspace networks. 

6.1 Sector-level Formulation with Equity Considerations 

 

In Chapter 3, we discuss how to model the Flow Constraint Area (FCA) 

decisions and how to solve the corresponding airspace congestion problem in a real-

time application (with a relatively short time period (one to several hours)). FCA/AFP 

is currently being used as a strategic approach to solve the airspace congestion 

problem due to demand/capacity imbalance or severe weather situation, but the 

current FCA/AFP approach does not consider the entire congested area or equity 

among air carriers when choosing offloaded flights.  

After discussing some important modeling issues, e.g., exemption rules and 

offloading bias among airlines, Chapter 3 first develops a bi-criteria optimization 

model and a ε-constraint model to offload excess demand from different competing 

airlines in the congested airspace when the predicted traffic demand is higher than 

available capacity. Additional network flow-based reformulations, such as circulation 

models and the “flight on the node” model, are also developed for both single-sector 

and multi-sector cases. Computationally efficient network flow models with side 

constraints are developed and extensively tested using datasets obtained from the 

Traffic Flow Management Systems (TFMS) database. Representative Pareto-optimal 

tradeoff frontiers are consequently generated to allow decision-makers to identify 
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best-compromising solutions based on relative weights and systematic considerations 

of both efficiency and equity. 

The contributions of this chapter is to develop several integer programming 

and network flow programming models to solve the resource allocation problem with 

equity consideration, in particular for airspace single-sector and multiple-sector cases. 

Both computational running time and solution quality of those models are 

systematically evaluated.  

6.2 Integrated Airspace Flight Rerouting and Ground Holding Problem 

 
In Chapter 4, we further model and solve an integrated flight re-routing and 

ground holding problem on an airspace network. Given a network of airspace sectors 

with a set of waypoint entries and a set of flights belonging to different airline 

companies, the optimization model aims to minimize the total flight travel time 

subject to a set of flight routing equity, operational and safety requirements. A time-

dependent network flow programming formulation is proposed with sector capacities 

and rerouting equity for each airline company as side constraints. Moreover, to 

consider stochastic airspace capacity under severe weather conditions, we use 

multiple scenarios to represent random realizations of predicted capacities, and 

further integrate non-anticipatory constraints to ensure the first-stage solutions across 

different scenarios have the same values. The routing equity is defined through an 

average travel cost threshold (per flight) for individual air carriers with a number of 

flights competing for the congested airspace.  
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A Lagrangian relaxation based method is used to dualize these side constraints 

and decompose the original complex problem into a sequence of simpler integer 

programming problems. If all three sets of side constraints are dualized, then the 

relaxed problems reduce into a sequence of linear programming problems with total 

unimodularity properties. By relaxing the coupling constraints between flights, the 

proposed Lagrangian relaxation-based solution method can separate the original 

problem into individual flight scheduling subproblems that can be efficiently solved 

by the shortest path algorithm in an expanded time-space network. The experiments 

investigate the computational time and solution quality gaps of different possible 

relaxations in the Lagrangian relaxation framework.  

6.3 Airport Long-term Slot Assignment Problem 

 

In Chapter 5, we develop an initial slot lease assignment model. In phasing 

out the High Density Rule, the FAA recognized the possibility that there could be an 

increase in congestion and delay at the affected airports. After exploring all 

possibilities, including do nothing, assigning based on a market mechanism, slot 

auctions, etc., the FAA proposed to assign the current landing slots finite lives with 

possible capacity reduction. Moreover, the expired landing slots are subject to 

reassignment, and flexible marketing mechanisms, such as auctions or congestion 

pricing.  

Within a multi-objective utility maximization framework, this chapter 

proposes several practically useful heuristic algorithms for the long-term airport slot 

assignment problem. Alternative models are constructed to decompose the complex 
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model into a series of hourly assignment sub-problems. A new paired assignment 

heuristic algorithm is developed to adapt the round robin scheduling principle for 

improving fairness measures across different airlines. Computational results are 

presented to show the strength of each proposed modeling approach.   

6.4 Future Research 

Equity in Air Traffic Flow Management 

To ensure the fair allocation of en-route airspace resource, the flight operators 

and FAA should agree upon equity standards related to constrained airspace.  In a 

real-time decision environment, future research needs to be conducted to 

systematically quantify the expectation of airlines on the fair slot and route 

assignment, as well as to dynamic calibration of the behavior model related to 

competing agents. With well-defined equity measures, it will pave the way for rapidly 

adapting the equity-oriented resource allocation mechanism in Air Traffic Flow 

Management applications.  

 
Sector-level rerouting decisions with equity considerations  

The models can be extended to incorporate the airlines’ preference 

information. The proposed models are formulated in a centralized way, which mainly 

highlights the system efficiency side with equitable offloading assignment among 

airlines. It should be noted that, the relative importance of the flights for each airline 

is not modeled and a bi-level structure model can be explored to offer more control to 

the airlines.  Moreover, the computational efficiency of the proposed models can be 

improved in order to meet the requirement arising in the context of real-time decision 
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making where the decision should be rapidly modified if the congestion situation 

changes.  

Integrated-routing and ground holding decisions with equity constraints 

This study assumes stochastic sector capacity, but deterministic sector travel 

times, so a natural extension is to allow variable travel times and stochastic capacity 

for more realistic applications. However, because introducing any new problem 

dimensions typically increases the computational complexity quite steeply, it is 

undoubtedly vital to develop efficient and effective approximation and heuristic 

schemes. Further research will focus on  how to extend a two-stage optimization 

model to multiple stages for emerging real-time adaptive routing applications. To 

search for high-quality solutions under tight equity constraints, we might need to 

propose alternative reformulations or solution methods to enforce the equity 

constraints, while allowing exceptions or compromises which should be 

systematically considered in a multi-objective decision-making framework with 

multiple agents. As the numerical experiment only tests the proposed algorithm on a 

small network, successful applications call for an extension and an adaptation of the 

current Lagrangian relaxation framework for producing optimal solutions for 

medium-sized or large-scale networks.  

Equitable long-term airport slot assignment  

 The proposed models can be improved further regarding flexibility for 

meeting different modeling needs. The slot assignment will take into account airline’s 

input as they are the parties that are influenced by the final decision. Although, 

according to the numerical experiments, the proposed heuristic algorithms do not 
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outperform the sequential optimization model, they still provide a possibility of 

adding flexibility in the assignment. For example, instead of making the assignment 

according to the values that we measure, a more interactive procedure could be 

adapted. After sorting the deviation and determining the assignment order, airlines 

could select their own preferred subgroup assignment subject to certain restrictions. 

Furthermore, the paired assignment could be extended to 3-in-subgroup cases, where 

there will more choices and the solution quality could be further improved. Lastly, the 

models could be further extended to multi-day scenarios, and each day’s deviation 

could be compensated by the following day and so on. The proposed models and 

methods provide a starting point and possible directions for the initial slot lease 

assignment. 
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