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Population growth and economic development lead to increasing demand for
travel and pose mobility challenges on capacity-limited affitrnetworks. The U.S.
National Airspace System (NAS) has been operated near theitya@and air traffic
congestion is expected to remain as a top concern for the relatethsyperators,
passengers and airlines. This dissertation develops a number ofrefodelulations
and efficient solution algorithms to address resource allocation prslheair traffic
flow management, while explicitly accounting for equitable objestive order to
encourage further collaborations by different stakeholders.
This dissertation first develops a bi-criteria optimization maddebffload
excess demand from different competing airlines in the congesspad@e when the

predicted traffic demand is higher than available capacity. Catpoally efficient

network flow models with side constraints are developed and extgntaseed using



datasets obtained from the Enhanced Traffic Management SysteviSjEdatabase
(now known as the Traffic Flow Management System). RepresentBareto-
optimal tradeoff frontiers are consequently generated to allesisidn-makers to
identify best-compromising solutions based on relative weights gsignsatical
considerations of both efficiency and equity.

This dissertation further models and solves an integrated flteghouting
problem on an airspace network. Given a network of airspace segtbra set of
waypoint entries and a set of flights belonging to different carriers, the
optimization model aims to minimize the total flight travehdi subject to a set of
flight routing equity, operational and safety requirements. A tinpeiggent network
flow programming formulation is proposed with stochastic sectpaates and
rerouting equity for each air carrier as side constraintsagkangian relaxation based
method is used to dualize these constraints and decompose the omgiEéeC

problem into a sequence of single flight rerouting/scheduling problems.

Finally, within a multi-objective utility maximization framesk, the
dissertation proposes several practically useful heuristaritigns for the long-term
airport slot assignment problem. Alternative models are constrtectlgtompose the
complex model into a series of hourly assignment sub-problems. A pa#ed
assignment heuristic algorithm is developed to adapt the round robin sogeduli
principle for improving fairness measures across differentnagli Computational

results are presented to show the strength of each proposed modeling approach.
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Chapter 1: Introduction

Population growth and economic development lead to increasing demand for
travel and pose mobility challenges on capacity-limited airi¢raiétworks. As air
traffic demand continues to increase, the U.S. National Airsgastem (NAS)
operates near its capacity. Air traffic congestion is exgetd remain as a top
concern for the related public agencies and private industry.réiogoto the Bureau
of Transportation Statistics (BTS), a flight is classified delayed if it arrives 15
minutes later than the published schedule. Reported by the airktmestatistics
website (BTS, 2011), from 2000 to 2010, the percentage of delagbtsfhas been
remaining in a range of 17% to 22%, with a mean value of 20.70%. Spkgifica
2009, 17.21% of flights have late departures and 19.46% of lights have ieddsarr

while 1.85% of flights were canceled and 0.26% of flights were diverted.

In a recently concluded Total Delay Impact Study (Ball e2@1.0), the total
cost of US air traffic delays was estimated to be $32.9 billion dollars fordzalgear
2007. The largest component is a $16.7 billion cost associated with tlsengers
time lost, in terms of schedule buffer, flight delays and caatomtls, as well as
missed connections. In a report prepared by Schumer and Maloney {@0@i8¢
Senate Joint Economic Committee, the total direct costs foesirand passengers
were estimated to be $31 billion dollars. In 2009, the NAS delays 8@&6 percent

of total delays, and 65.7% of NAS delays were due to weather.



1.1 Importance of Equitable Resource Allocation

To alleviate the current air traffic congestion problem, a nurabanitiatives
have been developed to improve the overall air transportatiomsysteiency by
providing additional infrastructure and facilities, such as runwaysaimggorts.
Additionally, several planning and management initiatives also fooube efficient
use of the existing airport and airspace resources, suchigass flseparation,
integrated weather prediction, as well as dynamic resourmeattin. In particular,
an air Traffic Flow Management (TFM) program aims to balaicéraffic demand
and ensure the maximum efficient utilization of the NAS withmailable capacity.
The system-wide balance is accomplished by first predictiagrpact of demand
and capacity constraints and then responding as needed with flow mmamage
strategies.

Essentially, planning and operating in a collaborative environmejoiires
mutual understanding and acceptance of respective roles and regpiessdmong
the NAS users. As a result, Collaborative Decision Making (CLag, of the above
key initiatives and a joint government/industry partnership, seekieédeccommon
situational awareness of traffic congestion and constrainteiNAS. The first major
thrust of CDM in the United States, Ground Delay Program Emmaect (GDPE),
which targets airport arrival slot control, has been operated $88&% When airport
arrival capacity is reduced and may not meet the demand plaged\iyg aircrafts,
the Federal Aviation Administration (FAA) enacts a Ground-Pé&eogram (GDP)

to delay flights before they depart from their origin airpokesgping traffic at an



acceptable level for the affected arrival airport(s). UndePB, participating airlines
send operational and schedule changes to the Air Traffic C@ystéms Command
Center (ATCSCC) on a continual basis. Using the flight schedoleitan (FSM)
tool, the ATCSCC collects various types of information, monitorpoai arrival

demand and initiates GDPs at the major airports in the U.S.

As a resource allocation mechanism, Ration by Schedule (RBS),
conjunction with a slot exchange procedure, namely “compression”, ichestthe
arrival slot allocation process on which FSM is based. This guveerelies on the
flight schedule to define an allocation standard to measure the d&geegity for
each NAS user. Moreover, this procedure is implemented independdinghts’
current status, encouraging all users to provide and exchange up-tofdatetion.
RBS and “compression” strategies have been reported to sigtlficaduce delays
and improve the efficiency of air traffic flow into airports. Fetample, during the
period between January 20, 1998 and July 15, 1999, the planned (ATCSCC assigned)
delay reduction (at airports with 10 or more compression cy@egped from 7.5% at
Atlanta’s Hartsfield Airport to 18.2% at Boston’s Logan Airpdsall et al. 2000),
with an average reduction over all GDP airports being 12.7%. Compartt to
previous system, these two strategies reduced assigned groundovedagr 3.1

million minutes.

The success of the CDM program has underscored the need for 3FM t

allocate resources in a fair-handed manner. As a servicedprpthe FAA has a



strong commitment to an equitable allocation of the limited NASures. The
equitable allocation is essentially an inherent responsibility traffic flow
management. More importantly, inequitable allocation could affect atteve
participation in the daily management of air traffic. Informatiomdpevithhold or
skewed could develop mistrust, and further jeopardize the quality aautiethess of
air traffic services, and the efficiency of the NAS aswvlole. Thus, equitable
allocation is critically needed to ensure successful deploymeekisting or new
TFM initiatives under the CDM paradigm, and it is also a keyasto be carefully

examined and explored in this dissertation.

1.2 Research Motivations for Air Traffic Flow Management

To date, the potential benefits of utilizing advanced air traffmw f
management strategies to consider both efficiency and equitytioegeare still
being explored. As shown below, many fundamental issues need to lessadidto
fulfill the methodological capabilities required by the collabeatNAS decision
making environment. These challenging questions place a greatefanesystematic
modeling methodologies for potentially competing objectives and effigolution

algorithms for real-world problems.

The first part of this dissertation is motivated by the &fficy and fairness
concerns that arise from the resource allocation procedure inrgspace. Different
from the resource allocation problem at the airport such as a Gixlag Program
(GDP) as stated earlier, it is challenging to assign aiespasources efficiently and

equitably with respect to competing airlines or origin-destingtairs. In a GDP, all



the flights have the same destination, and a flight schedulsed to define an
allocation standard so as to measure the degree of equitgdiorNAS user. In the
airspace congestion problem, however, there is no schedule which cmeddeo
measure the degree of delay, leading to a number of modeldhgoperational
difficulties. First, flights do not have a fixed flight plan to define the patheflight
within a set of sectors, fixes and jet routes. Usuallyjghtflis required to file the
flight plan 45 minutes before its departure. Furthermore, diffeagihes have
different patterns of filing the flight plan, with some airlirfdsg flight plans at the
last minute while waiting for the final weather forecast. aAgesult, it is extremely
difficult to accurately predict flight plans to be filed in thear-term future (say 2
hours ahead). Secondly, even assuming that a flight plan is fully {aedi®ased on
historical information, flights could intersect the congestegagas differently due to
their own specific origin-destination geography.

This dissertation will consider the following theoretically impot issues and
provide new reformulations to improve both system-wide efficiemclyezjuity when
a Flow Constrained Area (FCA) is issued. Rerouting optionsheifprovided so as to
reduce the traffic to capacity level:

1. How to choose flights to be offloaded: Typically, flights betweome
specific city/center pairs are chosen to be rerouted. Thigiggamight lead to a
significant bias among airlines as some airlines mightxganpted simply due to the

fact that no flights were scheduled to arrive at the chosen destination airports.



2. More options than just rerouting: The ground holding option in which
aircraft can be held at the departure airport is not provided adternative for

rerouting in the current procedure.

3. Real-time operation adjustment under uncertainty: The offloaiggdsflare
chosen statically two or more hours before the events occur withibmggadjusted
according to the evolving actual conditions. It is very difficoltpredict the exact

value of downgraded sector capacity, especially under evolving weatheiaandit

1.3 Research Motivations for Airport Slot Assignment

Airports subject to slot controls have a restricted number of skdtedu
operations per day, in which “slots” are defined as a resenvior a flight to takeoff
or land within an assigned time interval. In addition, airports haveatpeal
constraints determined by runway size, the number of terminals, and &rdoefrol
facilities. As the demand for an airport approaches and in sones eaceeds
capacity, significant flight delays could result. Therefords itmportant to assure
slots at congested airports are allocated among airlines écaromically efficient

manner.

One type of resource assignment problems arises in the londaeding slot
lease assignment practices, which aim to solve the demand/gajpaloitlance by
restricting schedules. Many slot control rules are designed ar taseddress
increased congestion and delay that would likely occur in the abeémestrictions

on the number of aircrafts scheduled to fly in and out of a majoorairRecently,



the FAA and the DOT have also taken a number of steps to intestigaket-based
solutions in congestion management which aims to encourage compatiticisa
allow the airports to operate at maximum efficiency and safety.

This dissertation plans to mathematically formulate the aboveogedp
problems and develop efficient solution algorithms to assign scarce resoutesns
long-term airport slots. The primary objective of this dissematis to develop
efficient algorithms to solve the slot assignment problems withtematic

consideration of airlines’ need and equity in the final assignment.

1.4 Dissertation Outline

The focus of this dissertation is on constructing theoreticalbraoigs models
to effectively allocate scarce resources in the nationgbaesso as to balance the
system capacity and airline economic tradeoff. We will formeuland develop
mathematic models to describe different alternative approachesdr@ss the flight
offloading problem with special focuses on the problem complexityatigdemand
interaction, and equity issues. The contents and contributions of eaclysriise
chapter are detailed below.

The dissertation includes six chapters. Chapter 2 provides a compvehens
review and discussions on air traffic management. Severdtaffic management
initiatives are briefly reviewed, two of which are discussedeitails. The last section
of Chapter 2 reviews important literature on models for airierfiffw management

and airport slot assignment.



Chapter 3 develops a sector-level integer programming model to
systematically formulate the flight offloading problem. A chiteria optimization
model is proposed to divert excess demand from different competimgsin the
congested airspace when the predicted traffic demand is higher vadable
capacity. Computationally efficient network flow models with sadbmstraints are
developed and extensively tested using datasets obtained from thecé&thRaaffic
Management System database.

Chapter 4 proposes an enhanced sector or space level model with ground
holding and routing decisions. Given a network of airspace sectors vaét af
waypoint entries and a set of flights belonging to differentinas| this study
considers uncertain sector capacity using multiple scendin@sproposed stochastic
optimization model aims to minimize the total expected fligliugd holding and
rerouting cost subject to a set of flight routing equity, opamati and safety
requirements. A time-dependent network flow programming formulasigomaposed
with sector capacities and rerouting equity for each airlinsi@s constraints. A
Lagrangian relaxation based method is used to dualize theseitle@eesstraints and
decompose the original complex problem into a sequence of singlbt fli
rerouting/scheduling subproblems.

Within a multi-objective utility maximization framework, Chapgeproposes
several practically useful heuristic algorithms for the Ilterga airport slot
assignment problem. Alternative models are constructed to decorfsemplex
model into a series of hourly assignment subproblems. A new paisgghragnt

heuristic algorithm is developed to adapt the round robin scheduling pbeirfor



improving fairness measures across different airlines. Compuatiresults are
presented to show the strength of each proposed modeling approach.
The dissertation is concluded in Chapter 6 by a summary of research

contributions and discussions of future research needs.



Chapter 2: Background Introduction and Literatusyiew

This chapter reviews several Air Traffic Flow ManagementlTKM)
initiatives, as well as critical literature on the specific problemsuecmigsideration in
this dissertation. The following briefly introduces commonly used MTdtrategies
such as Ground Delay Program and Collaborative Routing in Section 2.1cand F
Constrained Area and Airspace Flow Program in Section 2.2. We adtailed
discussions on the current practice from the perspectives efswsticiency and air
carrier equity, which will be studied further in Chapter 3 and 4. bii@e 2.3, we
review critical optimization literature in the Ground Delapdtam and Air Traffic
Flow Management in general, with a focus on various formulationsatbarelevant

to the equitable air space and slot resource allocation.

2.1 General Air Traffic Flow Management Strategies

This section first introduces the administrative structure Her dontrol and
coordination of aircrafts in the NAS, which is provided by Air Tim@ontrol (ATC)
and Air Traffic Flow Management. Specifically, ATC is resporesiior ensuring safe
separations between aircraft, and ATFM is responsible fontialja demand and
capacity to ensure the efficient use of the airspace. Inrgler®€TC is a service
provided by ground-based controllers who direct aircraft on the grounich &mel air.
A controller's primary task is to separate aircraft sudfidy with the use of lateral,
vertical and longitudinal separations. Secondary tasks include mypsafie, orderly,

and expeditious flow of traffic and providing information to pilots, sushwaather

10



and navigation information. The Air Traffic Control system hastéd capabilities
due to many factors, such as the volume of traffic, frequencyrafestion, quality of
radar, controller workload, and higher priority duties. In contrast-MTocuses
more on the system flow side of air traffic management bydooating air traffic so
that demands for various resources do not exceed capacities. ATFM is pdréorame
national level at the Air Traffic Control System Command Ce(AdiCSCC). The
primary duty of the ATCSCC is to monitor the traffic situationthe NAS, and
implement control measures when demand exceeding capacity. Wérefly
review several ATFM strategies that are currently usethaindling demand and
capacity issues, and then focus on two major problems of Air Tr&ifoev

Management in section 2.2.

Essentially, a Ground Delay Prograaims to solve airport arrival capacity
shortfalls by applying ground delays to flights at their origrpaats when they are
bound for a common destination airport with reduced capacity. Inténesaders are
referred to Ball et al. (2007), Hoffman et al. (2011), &rsby et al. (2005). For
allocation purposes, the time horizon of reduced capacity is dividedontaguous
time intervals known as arrival slots. Prior to departure, dagttt feceives a discrete
arrival slot based on availability at the destination. ThelaBotative Decision
Making (CDM) program has established a highly successful mpmaftir allocation
of airport arrival slots. The main allocation principle is “fissheduled, first-served”,
meaning that the earlier arrival slots are generallyrdedhto the flights that are
scheduled to arrive earlier. The CDM experience has shown to tbenho an

equitable treatment of carriers advisable, but a necessary oarfdttiefficient use of

11



resources. Prior to CDM, effective GDP Initiatives were basedlated flight data

that unfortunately did not reflect the airline’s intentions upon the day of operation.

Collaborative Routings an approach to apply CDM technology and concepts

to the management of en route traffic. In contrast to the higfilyeck algorithms
employed in GDPs, the resource allocation problem for en routie thak been less
studied. A number of initial Collaborative Routing tools and procedurese w
prototyped in 1999. A collaborative routing coordination tool, CRCT, developed by
MITRE, provides FAA traffic flow specialists with automateshtfures that support
the identification of flights affected by congestion and aids e dbvelopment of
alternative routes. Other tools have been developed to support Collab&atiting
such as, Collaborative Convective Forecast Product (CCFP) whichseafgea
consensus based on information from AOC and ARTCC weather units, ltimdé
Arrival and Departure Routes (LAADR) which contain a set of @doces for
allowing the use of low altitude alternative routes to avoid cdinggsand Coded
Departure Routes (CDR) which providing a set of procedures and satéta
creating and storing alternative routes

Miles-in-Trail Restriction(MIT) aims to ensure that the traffic flow does not

exceed the capacities in the en route sectors or congestedsray the NAS by
imposing distance based metering or restrictions at diffenees.fMIT restrictions
keep the traffic flow below a certain level by specifyilng tminimum separation

distance between two consecutive aircrafts flying across smae fix. MIT

12



restrictions often cause airborne delay, but it is still lepgm@sive and disruptive than

airborne holding.

2.2 Flow Constrained Area and Airspace Flow Program

To improve overall airspace system performance, recent attdrasshifted
to the en route airspace, with the desire to most significanflyave airborne delays
and throughput enhancement. It is well known that the primarpriaaausing
congestion in the airspace include severe weather (especidilg sutnmer), heavy
traffic volume, and special use restrictions such as militatryises and space rocket
departures. In practice, all the above cases are classifistaspace”. When any of
the above events occurs, a constrained airspace problem would anseudmdheed

to be resolved in real-time to maintain the safety for passing flights.

2.2.1 FCA in practice

Prior to 1998, the FAA dealt with the air traffic flow managatm@oblem in
a centrally controlled manner with little airline involvementrdoent years, the Flow
Constrained Area system was designed to evaluate and al@atdntial adverse
effects to air traffic during periods when events may havgréfisant impact on the
NAS. It provides a mechanism of automated data transfer and emab®amon
situational awareness to air traffic personnel and NAS usdns, ean receive
advanced notifications of problem areas and have a chance tprtaative actions

to prevent congestion.

13



Compared with the traditional air traffic flow management model, which takes
into account a large piece of the airspace or even the entige th& FCA strategy is
a type of local and constraint-targeting solution. Instead of cansidéhe entire
airspace, an FCA targets the congested area and removes a pditgirisofo ensure

that the total number of flights does not exceed the reduced capacity.

The common NAS resources include airspace (sectors), fixesaigouits,
each with limited capacity and subject to excess demand. In fehergoal of the
FCA operational policy is to solve the congestion problem locallyoffipading
excess flights from the problem area and achieve the demaadigapalance. The
offloaded flights can be canceled or re-routed to the surrounding thigehave spare
capacity. Another overarching goal of FCA is to solve the problem gitprand
efficiently because typically, only a few hours are avadlatd make a strategic
decision once the event occurs. Although the current FCA operationesdk to be
modified to improve system performance and fairness among airlines, the appiroac
focusing on constraints and generating problem based on the syststraint offers

more flexibility in practical applications.

It should be remarked that, a Flow Evaluation Area (FEA) advisosymilar
to FCA in that they both define the constrained area in a giwengeriod with an
attached flight list. More precisely however, the former saommends actions for

airlines, while the latter requires the airlines to comply with the issiMday.

The current FCA operational procedure can be stated in details as the

following with the corresponding flow chart is shown in Fig. 2.1 (Libby et al., 2005).
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1) Situation monitoring Traffic managers and NAS users monitor the

situation to be aware of potential constraints and of potential resptms
FAA Traffic Flow Management Unit personnel.

2) Publishing FEA Traffic managers and NAS users send a request to the

ATCSCC once they detect problems that might potentially become
constraints.

3) EEA reactions|f a public FEA is published, traffic managers at ATRCC
and other NAS users react to the potential constraints.

4) Publishing FCA Once the ATCSCC recognizes that a constraint exists, it

will declare it, e.g., by issuing an FCA advisory. At the sdme or
perhaps later, the ATCSCC will also provide route options around this

FCA, but NAS users are left to implement them.

Monitor Private FEA Shared FEA Public FEA FCA
TMUs » TMUsuse | | TMUs use TMUs work » ATCSCC
monitor Private FEAs Shared FEAs to with ATCSCC opens an
traffic flow to monitor communicate to open a FCA with
& sector potential with other TMUs Public FEA T™I .
capacity congestion and AOCs

| | i : A

| v v v !

________ »| At any time the situation deteriorates quickly or voluntary

operational adjustments fail to resolve a developing problem, the
TMU may work directly with the ATCSCC and other parties to go
directly to an FCA with a Traffic Management Initiative (TMI).

Figure 2-1 FCA Operation Flow Chart (Source: FCA Operational Concept document

prepared by Libby et al., 2005)
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Weather and traffic volume are currently the most sigmfia®@asons for
defining FCAs. On a severe weather day, such as Jtiy22®3 shown in Figure 2.2,
an FCA was defined as a 3-dimensional airspace filter withilebtaoordinate
information attached in a different file other than the advisoryhé&athan being
defined as the entire congestion area, where the true constaisiisthe FCA is
currently used and defined as a small piece of airspace wghitded to identify and
filter out the flights that need to be offloaded or re-routed. Agemaeral rule, a
proportion of, or in some cases, all the flights scheduled to pasgythtbis filter

area during the FCA, need to be offloaded to maintain their en route safety.

‘ Scenar/iQ*"I'fCA
I

| A
yd V'
P a4 i d ,1\%
~ - N .
-l \ .‘. /,‘;"/; ! T \\.
\ L

Figure 2-2 lllustration of FIoW Constrained Area

Currently, flight departures from some ARTCCs to some majoind¢isins
are often chosen to implement rerouting policies due to tacbocaiderations. Since
the majority of the flow usually goes to major airport, édirtgg those flights for

rerouting can easily solve the problem. Of course, other constmeratre also
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involved, such as wind direction and current time. For Example, madkedfights
fly from east coast to west in the morning and from west ctiagtast in the
afternoon. If the FCA is defined in the morning, offloading some wast-bound

flights flow can solve the problem easily.

In some cases, excess volume is the principal cause of cagpeacignd
imbalance. For these cases, FCA is defined as a 3-dimensi@paica filter with an
associated time interval. Some of the flights will be resico pass through using
certain routes, e.g. chokepoint routes. Similar to the case didemsdier on weather
FCAs, the flights are usually selected by taking departures ¢ertain ARTCCs to

some major airports to maintain the sector capacity/demand balance.

The above FCA scenarios summarize how the FCA is currently beed (as
is envisioned to be used). Some important issues, however, remain urigollied

current ad-hoc type of operations.

(1) The current operational procedures typically use a filees & show the set of
flights to be offloaded or rerouted. However, the true congested draioes area is
not revealed in the published advisory. That is, only the solution deterrbye
ATCSCC is shown to the traffic unit personnel. The airline operal control center
personnel and the ARTCC personnel are unable to recognize theotsteaints and
may not respond or cooperate with the published advisory. This mast #ife

compliance rate and may introduce more workload to ensure the problem is solved.

(2) Typically, flights between some specific city/center pa@re chosen to be
rerouted. The current operational procedure introduces offload/rerostarbang the

carriers. For instance, large carriers may have moretdligoing to a major airport,
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while some smaller carriers may not have any flights heaingat airport. This
may lead to a significant bias among airlines as someesrimight get exempted
simply due to the fact that no flights were scheduled to arrivéhatchosen

destination airports.

(3) The ground holding option in which aircraft can be held at therepairport is
not provided as an alternative for rerouting in the current procedur¢hds® flights
that can be easily held on the ground for a short time to avotdaffie jam, ground
holding might be a much better option than being rerouted around theaaunstea

resulting in more fuel consumption and flying time.

(4) The offloaded flights are chosen statically two or more hbafsre the events
occur with no adjustment according to the real-time situation develapmhe issue
here is that more or less flights than actually needed caeléstes] to be offloaded.
If flights are not offloaded enough, should FAA adopt a more dynatrategy to
consider and implement real-time offloading and rerouting? If nilights are
offloaded, and there is still remaining capacity left, whategah can be taken to

assign the rest of the resource to the airlines?

In summary, the essential question is that how FCA strategy beulded to
solve the demand/capacity imbalance more efficiently and faoiypared to the
current implementation. In this dissertation, Chapters 3 and 4 propesedaddels to
address the above 4 issues in more details, aiming to offer passgte/ement of

the current process.
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2.2.2 Airspace Flow Program

The FAA has developed a number of tools to deal with differenti@ rialidw
Management problems. When convective weather reduces capauigyviere in
the airspace, the FAA can define a portion of the airspace td-tmvaConstrained
Area. TFM tools can then identify flights expected to pass thraugFr€CA so some
portion of the flights can be routed around the problem. Often though, ngrouti
flights is not sufficient to address extended capacity reduciiotige airspace in an
FCA advisory and the need for additional tools has long been reedgiigsentially,
the Airspace Flow Program combines the power of GDPs and RCAkotv more
efficient, effective, equitable, and predictable management of agbtaffic in
congested airspace, and it could be viewed as an extended FCA pratragrownd

delay as major offloading option.

When TFM specialists at the ATCSCC decide that the weatimelitions are
appropriate, they can plan and deploy an AFP. The first step ista tol, e.g.
traffic situation display, to examine predicted weather anddnaditterns and identify
the problem area by creating an FCA. Secondly, the Enhancdit TMiaihagement
System takes the FCA description and produces a list of thesflight are expected
to pass through the FCA and the time they are expected to drter list, updated
with fresh information every five minutes, is sent to the flighhedule monitor,
which displays the projected demand in a number of formats designgapport
effective planning. The TFM specialists at the ATCSCC carr ¢éimeecapacity of the
FCA, expressed as the number of flights that can be managaduyeor per certain

time interval, and FSM will then assign each flight a controflegarture time that
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will provide a smooth managed flow of traffic to the FCA. Theseadape times are
sent to the customers for their planning and to the towers at thewteparports for

enforcement.

The principal goal for the initial deployment of the AFP progrartoibetter
manage en route traffic during severe weather events. Comparezlrrent
approaches such as GDP or FCA in certain scenarios, AFPedilte unnecessary
delays while providing better control of demand and more flexibititycustomers.
Furthermore, the AFP gives more flexible solutions than an FG4ram. Although
AFP improves FCA with more flexible options, there are certamtdtions to the
current procedure. Moreover, as the ‘slot’ in AFP is not the sentbe regular slots
in GDP, equity issues in allocating ground delay would arise. Howsigraground
delay as well as reroute among the flights equitably is acbalenge in AFP.
Chapter 4 will discuss some proposed models to resolve the two thsuassed

here.

2.3. Literature Review

2.3.1 Deterministic and Stochastic Ground Holding Problems

The airport congestion problem, which is caused by too many flights
attempting to take off or land relative to airport capacity,ldesen extensively studied
by many researchers in the last few decades. Odoni's (198&@nayisally defined a
Ground Holding Problem (GHP) in ATC which marked the start aigaificant

research effort on single-airport and multi-airport versions optbblem. Andreatta
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and Romanin-Jacur (1987) addressed the one-airport congestion probkemsirigle
time period, and their model aimed to optimize the total expectey dekt and a
polynomial solution algorithm was derived. Terrab and Odoni (1993) presented
exact solution algorithm for problems involved with one airport, multipte period
and deterministic capacity. The static multi-airport ground-hgldamoblem was
studied by Vranas et al. (1994) through introducing generic inte@grgmming
models, which assign optimal ground holding delays in a general tebivairports
to minimize the both ground and airborne delay cost of all flighesvazio and
Romanin-Jacur (1998) presented integer programming models farch aeports,
taking into account the operations dependency of the star-shaped airport networks.
Most of optimization models for GDP involve the construction of spiace-
networks That is, the time horizon of interest is decomposed into a dissettof
time intervals, and various spatial components (such as airport®rsseand
waypoints in general) are modeled using a time-expanded strucymeally, the

basic flow variablesx,, in a standard space-time model represents flightupying
spatial elemente during time intervalt, and these variables are subject to the

fundamental flow balance and capacity constraints in the forﬁoltte <CARt 9,
f

where CAF(t, @ is the flow capacity of elemeetat timet. Alternatively, Bertsimas

and Stock's (1998) model introduce cumulative flow count variat)es through a

t
simple linear transformatiow, = z X, Where w, represents if flight arrives at
r=1

spatial elemeng by timet. This cumulative flow count representation enables many

additional modeling features, such as propagating travel tirneg abutes. Hoffman
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and Ball (2000) constructed several models of the single-airpoundrdolding
problem with banking constraints, accommodating the hubbing operationajof
airlines. In particular, by examining the strength of differesrimulations, they

offered the following important remarks. Both representations of wsingblesk,,

vs. w,, have the equivalent Linear Programming (LP) strength, butuhrilative

flow count w,_-based representation requires an additional set of non-negative flow
constraints in terms ofx,, = w,, - w;,.>0, which requires more iterations in
solving the LP relaxation than the flow variak]gbased representation.

Focusing on_GDP planning under uncertginBichetta and Odoni (1993)

provided a linear programming reformulation to problems with one ajrpuitiple
time periods and stochastic airport capacities. A set of couglmgtraints are
needed in this case to ensure unique flow assignment solutions ddfessnt

scenarios, that is,
Xfte(qzl): Xfte(q= 2):L = Xfte((g)’ (21)
where scenario indeg =1, 2,...Q. This set of coupling constraints can be viewed

as a special case of nonanticipativity (NAC) constraints fortamisg deterministic
equivalents to the scenario-based stochastic optimization models.

Ball et al. (2003) developed a stochastic integer program with duabrket
structure and showed its application to the ground-holding problem. The dual network
structure can be viewed as a special case of the compaeseatation approach for
modeling NAC, while the resulting coefficient matrix in the doetwork was shown

to have a desirable total unimodularity feature that leads tciezffi network flow
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algorithms. To further effectively deploy stochastic prograngmmethods in
practice, Ball and Lulli (2004) proposed a simple exemption polidyetp mitigate
uncertainty for ground delay programs. Mukherjee and Hansen (B@fdfuced a
scenario tree-based stochastic optimization model for the Gi@Peach scenario
corresponding different capacity conditions based on weather foratastguential
decision stages.

Aiming to provide alternative resource allocation methods to wigetgpted
RBS method, Pourtaklo (2009) studied the problem of fair allocationnmifed
resources in the context of an Airspace Flow Program. Tondieera fair share of
available airspace resources among flight operators, a predebased proportional
random allocation method is developed to ensure the slot assignmeci is ebbse
to their fair shares and expectations. In addition, she also preseuedesource
rationing principles to improve resource assignment fairness &oerty, through
considerations of slot values and dual pricing. Churchill and Lovell (2012)ogede
a two-stage stochastic integer programming model for coordiaatation network
resource allocation under capacity uncertainty, and two types of stentsy
constraints were proposed to ensure the feasibility and compwgtid@tiveen the first

and second stages decisions of resource allocation.

2.3.2 Air Flow Management and Flow Constrained Area

Optimization in Air Traffic Flow Management has receive@ngicant

attention in the past 30 years. Classifying by applicationsge thee two major
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categories in this area: 1) optimization models that accourdirport take-off and
landing capacities only, 2) models that account for both airport Bdeyarture and
en route capacity constraints. Most research on Ground Holding Prédilento the
first category. In contrast, research in airspace congestibnawival fix constraints
will generally need to consider both airport and airspace/en capicities, as both
resources are subject to certain capacity reduction. In tttisrsean overview of the
published literature on optimization models in ATFM will be discussed.

To improve overall airspace system performance and reduce thestiong
affecting en route airspace, optimization models involving en rouyiacitg were
developed by Lindsay et al. (1993) and Tosic et al. (1995). Deterministic optomizat
models considering both airport and en route capacity constraansfarmulated as
multi-commodity network flow problem by Helme (1992). Using cunnsatlow

count variablesw,, to represent if flightf arrives at spatial elemeetby timet,

Bertsimas and Stock (1998) formulated disaggregate deterministager
programming models for deciding the departure time and route of indiviidirab.

Using space-time flow variables,, to represent if flight occupies spatial elemeat

during time intervalt, Bertsimas and Stock (2000) proposed a dynamic multi-
commodity network flow model to consider both routing and scheduling degisions
but it produces non-integer solutions for even small scale problemefdiee they
suggested a number of heuristics (such as random rounding and solvimgger
packing problem) to obtain integer solutions. Although both formulations produce
non-integer solutions from LP relaxation, the latter model achievegrality in

many more instances compared to the former.
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A number of studies have been conducted to extend the model proposed by
Bertsimas and Stock (1998). Alonso, Escudero and Ortuno (2003) proposed a
stochastic 0-1 program to consider random capacity at diffes@enarios, and a
minmax function was introduced to reformulate the nonanticipatiemgicaint in the
objective function. Along this line, Agustin et al. (2012) furtheveligped a
deterministic equivalent of the stochastic mixed 0-1 prograrh fuit recourse for
the multi-stage ATFM problem, and a compact representation appn@eschsed to
handle NAC. A recent dissertation by Chang (2010) proposed a Lagrangiatiosla
approach to dualize a number of equalities corresponding to NAC, such as

Xpe(A=1)= Xpe(d)  VO=2,...,C. (2.2)

A subgradient method is used to adjust the Lagrangian multiptiscsiated with
(2.2), and a very tight solution quality gap was reported between ageangian-
based lower bounds and upper bounds generated from a rolling horizon method.

Lulli and Odoni (2007) presented a deterministic multi-commodity
optimization model for the European ATFM problem in a space-timeonktwith en
route sector and airport capacity constraints.

Rios and Ross (2010) applied a parallel Dantzig—Wolfe decomposition
technique to relax the capacity constraints in the BertsimaStaa# (1998)’'s model
where flight trajectory-based subproblems were constructed aoldeds
simultaneously. Motivated by the hydrodynamic theory for highwafyi¢ flow, a
large-capacity Cell Transmission Model was proposed by Sun arehB2908) in
order to model high altitude air traffic flow. Sun et al. (20l€dently developed a

dual decomposition method to relax the sector capacity constraimsii aggregated
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traffic flow model, which leads to relaxed linear programmpngblems with better
computational efficiency.

Bertsimas, Lulli and Odoni (2011) extended the Bertsimas and S{a6K8)
model to consider additional re-routing options, speed control and airborne holding
options, and three classes of valid inequalities were presentedetmteen the
polyhedral structure of the underlying relaxation. Using a soetrae and
cumulative flow count based representation, Mukherjee and Hansen (2009) developed
a general stochastic programming model to allow dynanghbtflierouting decisions
under stochastic capacity. Liu et al. (2008) examined several methoclassify
capacity profiles into a small number of nominal scenarios for ticatsg
representative scenario trees. Ganji et al. (2009) presented-stage stochastic
program that aims to optimize the first-stage flight rerauiphan in a FCA while

considering the time of capacity windfall as a random variable.

2.3.3 General Scheduling Methods and Equity-related Models

In airline industries, commercial airlines need to present g®vices to
passengers through published schedules between select city-pads each
underlying flight schedules is comprised of flight legs betwegroi locations. Ball
et al. (2007) provided a detailed survey on air transportation uincegular
operations and related control strategies. Beatty et al. (19088lyze delay
propagation, as a perturbation in the timing of one flight leg can higwéficant
“downstream” effects leading to delays on several other I€gsisidering recurring

and nonrecurring delay conditions, a number of research tools and coaimerci
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packages (e.g. Niznik, 2001 and Yu, 1997) have been developed in response to the
strong economic incentives to further improve the overall systefarpemce. Over

the past 15 years both in the U.S. and Europe, a growing range Mfb@ged
decision support systems have been prototyped and deployed to “optimeze
relationship between an air navigation service provider and the @mgrator, e.g.,

Ball et al. (2001), Chang et al. (2001), Richetta and Odoni (1993).

In addition to the studies focusing on network-wide scheduling and routing
options in the previous section, there are a number of optimization mibdels
consider the air traffic flow management problem at a moreostopic level. ATC
needs to ensure that flights crossing a sector are safedyasegh and the flights
arriving or departing the runway of a certain airport alsdsfyathe separation
standard. Bianco and Bielli (1993) proposed different network model&TiGr that
determine traffic flow measures for both before and aftentfBgdeparture, including
ground delays, queue at holding points, etc. Barbosa-Povoa et al. (20043qud a
bipartite directed network model to address the grouping and scheddliAgC
sectors. Their model takes into account controller availability ectbiscapacities so
as to minimize delay cost. Vranas et al. (1994) proposed optiomzaodels to
allocate tactical ground delays for flights crossing diffei@rigested airspaces in
Europe. Goodhart (2000) developed disaggregate deterministic models fiot, ATF
which airline’s priorities on various flights are accommodated. €HillirLovell, and
Ball (2010) studied the impact of flight delay propagation (due toadegr airport
and airspace capacity) on strategic air traffic floanagement. In order to further

characterize the sensitivity of ATFM models to uncertainty inous capacity
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parameters, Churchill and Lovell (2011) proposed a modified Monte Carlo
framework to assess the impact of stochastic capacitytiearian coordinated air
traffic flow management.

The notion of equity has been examined in a number of ATFM contexts.
Vossen (2003) (See also Vossen (2002)) proposed an optimization model for
mitigating bias of flight exemptions during a GDP and showed thaduld reduce
systematic biases that exist under current procedures. To dwmpreely consider
and reduce the effect of uncertainty in weather forecastdi, Bloffman and
Mukherjee (2010) recently developed methods that tradeoff the efficieenefits
and the loss in equity.

Vossen and Ball (2006) analyzed the ration-by-schedule (RBS$)omheand
showed it embodied certain fair allocation principles. Ball, DonohueHuoitinan
(2005) provided a systematic discussion of different aviation-relatedket
mechanisms, which allows better modeling of safe, efficientegitable allocation
of limited airspace system resources. Focusing on a realveémsion of compression,
Ball et al. (2005) presented various response mechanisms for dyaiannaffic flow
management. Recently, a second transaction-oriented version of ssioprealled
adaptive compression has been implemented by Federal Aviation Adatiarstin
2008. Specifically, each slot credit substitution (SCS) transactiamtiated by an
airline, adaptive compression transactions are initiated by $&Ahanced Traffic
Management System.

Through extensive experimental results for the European ATFM maodlél, L

and Odoni (2007) also highlighted an important trade-off between efficiand
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fairness in the network case, where the solution with maximumesfig might be
disadvantageous to certain classes of users while solutions foonsiagness may
lead to system-wide inefficiency.

By considering flight safety, air traffic control, and airlinrguity constraints,
Sherali, Staats and Trani (2003) and (2006) developed a large-sspiraiplanning
and collaborative decision-making (APCDM) model that aims to tsalset of flight
plans in an airspace region. Their equity measure is expressed ralative
performance ratio. Sherali et al. (2011) further incorporated slahagge
mechanisms in their model and extended an on-time performance egqagynm (for
each flight plan) from Vossen and Ball (2006) to construct collaborafiziency

functions.
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Chapter 3: Flight Offloading Problem in Congestespace

The common National Airspace System (NAS) resources includpaaie
(sectors), fixes, and airports, each with limited capacity and subjegtess demand.
This chapter focuses on a fundamental problem of off-loading volumeaspaae
subject to capacity constraints. In a particular example gdaaiesflow management,
once a Flow Constrained Area (FCA) is issued, the decision maked to solve the
congestion problem locally by offloading excessive flights frbe ggroblem area so
as to achieve the demand-capacity balance. The offloadeds fightbe canceled or

rerouted to the surrounding areas with available spare capacity.

In a typical centralized management procedure, the FAA sends out
increasingly severe warnings and/or advisories, starting fre@ontmended
movements and ending with required offloads and reroutes. The recommended
actions can be issued to the traffic managers in the Air Raaféc Control Center
(ARTCC) and Airline Operational Centers (AOC) using a Flow |&aton Area
(FEA) advisory. As previously mentioned in Chapter 2, the curr@# Bpproach
does not consider the entire congested area nor equity among #&rscarnen
choosing offloaded flights. In this chapter, a model is proposeddess these two

issues.

This chapter is organized as follows. Section 3.1 presents sewrataj
integer programming formulations for the airspace flight offlog problem,

followed by alternative network programming-based reformulationsections 3.2
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and 3.3. The related computational comparisons between different smadkel

discussed in Section 3.4.

3.1 Integer Programming Model for Airspace Offloading Problem

The airspace offloading problem can be described as follows. WhEA
is issued, the 3-dimensional volume of congested airspace needssfedied
accordingly, along with an impacted time interval (defined imseof start timeT>
and end timé™), in order to identify a list of flights subject to capaaitnstraints.
For each airspace sectjpra flight f is defined as an involved flight when it has an

entering timee, ; and a leaving time, , with T°<e, , < T% or/andT® <I < T=. By

definition, the involved flight set contains all such flights. Theofelhg model
would take the involved flights as input and produce a list of flightise rerouted

and listed as attached flights for the FCA.

Flight 5

Flight4 | | 1] Sector :
Flight3 | | ___| AR S A

Flight 2 : Sector :
Flight 1 1 -

) T°=9:10an 9:15 9:18: 9:21 9:2¢ T¢=11:10an
Time

Figure 3-1 Example of impacted flights in a congest airspace

As shown in Figure 3.1, the entire impacted time period in a ctatyes

airspace is divided into small time intervals according to igatf’ entering/leaving
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times for each sector. Take flight 4 for instance, it entectos 1 at 9:10am and
transfers to sector 2 at 9:21am. At 9:25am, it leaves this eméee Time stamps of
9:10am, 9:21am and 9:25am are recorded, corresponding to the events that involve
entrance or exit of flights. For each time interval betweesethigne instances, a
constraint is imposed to guarantee that the total (simultaneous) nahflights does
not exceed the capacity. It should be noted that the actual aispetoe capacity is
quite complex in its own right, as it also depends on a number ofyhdyhnlamic
factors, such as the route structure and controller’'s capalhiligrested readers are
referred to discussions of the “dynamic density” in Masalatisal. (2003) and
Davison et al. (2003). Without loss of generality, this chapter iderss sector
capacity constraints only on the instantaneous number of flights.

Another important consideration is equity among air carriers. Totalthe
demand capacity in the congested airspace, each air carrds toeeemove some
flights. To avoid delay cost due to flight rerouting, an air caslariously wants to
keep as many flights on their original routes as possible. Sz tairlines have
different numbers of flights to be considered for rerouting, it ig@lde to allocate
the rerouting requests evenly among those air carriers. Mativatty, each agent
(i.e. airlines) in the collaborative decision-making problem likeexperience a
similar offloading percentage. As a result, an equity constraimtrsduced in this
research for each air carrier, so as to control or minimizeléietion of each air
carrier's offloading percentage from the overall percentagéhe entire congested

airspace.
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The notation, decision variables, and objective function of the proposed model

are described as follows.
Notation:
T starting time of impact time period;
T= ending time of impact time period;
total number of involved air carriers;
J total number of involved sectors;
F total number of involved flights;
i air carrier indexwherei =1, 2, ...1;
t time interval indext = 1, 2, ..T, whereT = T5- T,
] sector index =1, 2, .J;

f flight index,f=1, 2, ..F;

A set of involved flights;

A set of involved flights for air carriey

& originally scheduled entering time of flightn sectoy;
It originally scheduled leaving time of flighbn sectof;

U (j,t) set of impacted flights at sectoat timet, where a flight belongs to

U(j,t) when

T°<e,  <TorT°<|, <T5
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G reduced capacity of sectoduring the FCA time interval,

O total flying/travel time in the congested airspace during specifresl t

interval for each flight;

Ot extra distance for flightif it is rerouted,;

Decision variables:

X binary variablex; = 1, if flight f passes through the FCA using original

schedule, 0 otherwise.

>, @A-x)
feA
IA

Z(l_ Xf)

feA

ri rerouted flight percentage for air carigy , =
r average offloading percentage across all airlines;

With decision variablex representing the routing decision for each flight,
variable r; is introduced as an air carrier-based index for capturing itsalbver
offloaded percentage. Below are a number of possible objective furctoynes
available to take into account the equity consideration.

Possible objective functions:

Max > (w, x, ) (3.1)

Min 3|r -7 (3.2)
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Minz (r,—r)? (3.3)

Min Max; (fi —f_) (3.4)
The first objective function (3.1) focuses on the system-wideiafity, and
the weights w,in Eq. (3.1) can be determined according to specific traffic

management goals. For example, by setting an equal weight=df, the resulting
objective function is intended to maximize the total number of fligrds go through

the FCA using their original schedules. Alternatively, an objedtinetion of Max

Z(qf Xf) aims to maximize the planned amount of flight time left undisturbe
f

comparison, a function of MiE[(l— Xf)><5f] can minimize the total rerouting
f

delay for the entire congested airspace, wligrés the extra distance for flightf it
is rerouted and1-x;)=1 when flightf uses alternative schedule. Nonetheless,
there are two major practical issues when implementing thetmgjdanction (3.1).
First, the rerouting delay can be difficult to estimatgriori, because air carriers may
not provide multiple route options when filing the flight plans. Additignahis
efficiency-oriented objective function does not take equity issuescomsideration,
which might lead to significant offloading imbalance among differentaaiess.

The equity-oriented objectives shown in functions (3.2), (3.3) and (3.4) are

intended to distribute the rescheduling and rerouting workload amowgreaers as

evenly as possible. Specifically, Objective function (3.2), l@‘{ri —r_‘, aims to

minimize the absolute deviation of offloading percentage fromateeage valug
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among the air carriers. Objective function (3.3), on the other hagkk @ minimize
the squared deviation of the offloaded ratio among all the carriemaip&ring

functions (3.2) and (3.3), the latter places greater penalties ga daviations from
the mean valuer . Focusing on the worst-case scenario for individual carriers,

Objective function (3.4) aims to minimize the maximum deviationsecdifferent air
carriers.

Based on the above discussions, the following mathematical prograbreca
constructed so as to (1) balance achieving equity among agrsaarid (2) reducing
the number of rerouted flights. Essentially, the final goaldaedficiently utilize the
FCA and to distribute offloaded flights fairly among airlines. Ow¢ural way of
dealing with this problem is to adopt the following two-objective ropation

formulation.

Model 1: Multi-objective Integer Programming Model

z = Max ZXf (3.5)
f

z, = Min Max; r (3.6)
Subject to:

X, <C V|t (3.7)

J
feu(jt)

In this formulation, the defined FCA involvésflights andJ sectors. At most,
JxT constraints are required to keep the sector capacity/demanddyaldrerer is

the number of time periods in the study horizon. There are twaatitfeypes of
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objective functions, the*lmaximizing the number of non-offloaded flights and the
2" minimizing the maximum positive deviation from the averagadfed ratio for
all air carriers. To investigate the tradeoff between these driteria, one can
formulate a single objective function as the weighted summation of the twoidgect
to generate a set of Pareto optimal solutions. An alternativeagpmcorporates the

equity measure into the constraint set and then usesdbestraint method, which

generates multiple solutions by varying the value of the parameter

Model 2: ge-constraint model:
z, = Max ZXf (3.8)
f

Subject to:

> X <¢ Vit

feU(jt)

r<rx(@+s) W (3.9)

According to the definitions af andr, inequality (3.9) can be rewritten as

the following function in terms of decision variabte.

Z(l—xf)sZ(l-xf)x%'x(lw) Vi (3.10)

feA feA

1+¢ is a coefficient to control the percentage of allowable offloading

deviation from the proposed flight routing ratia Another way of controlling the
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overall allowable deviation is to add an upper bound, and the constraint @x16¢ c
expressed as

Y a-x)< Y - x <A

e wi (3.11)
feh feA F

whereg is the overall deviation upper bound.

Goodhart (2002) discussed a similar equity constraint with an upper brund
a related traffic flow management problem. Her formulation ukedaimount of
weighted delays as a measure of deviation and did not consider ghet iof the
carrier sizes. A general discussion on equity-related reforimigatan be also found
in Young (1994). Computational comparisons between the above bi-objective model
and thee-constraint model with two types of the equity constraints lvélidiscussed

in Section 3.6.

3.2 Alternative Network with Side Constraints Models: Circulation Model

Section 3.1 discusses the details of the general integer progrgrmodels,
which typically require computationally intensive branch-and-bound clsear
techniques to implicitly enumerate binary variablextp&specially for a large-sized
problem involving many flights. In practice, initial FCA advisoriaee usually
declared about 2 to 5 hours before the events occur, and the reedisipns can
be revised as the event situation changes. As a result, thedfiigiatding problem

needs to be solved in a timely manner, and a computationallyeetfisolution
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algorithm is critically needed in real-world applications aswiauld allow the

involved air carriers to rapidly respond and request alternative actions.

In order to achieve better computational performance and utileepgecial
structure of this problem, this section is focused on developingrnative
formulations using a network flow optimization model with side cainsts. In
particular, two network flow formulations with side constraints eaxamined and

possible variants of the problem are discussed accordingly.

3.2.1 Single-sector case

Sector
Flight 5
Flight 4
Flight 3 Fiight
Flight2 | L trajectory
Flight 1

»
|

] T°=9:10an 9:1F 9:1€ 9:21 9:2F T¢=11:10an
Time

Forward arcs
(CAP=cj, COST=0)

ight 4 ~S~——" - - - 1,-1
Flight 4 Backward arcs ( )

(CAP=1,COST=-1)
Figure 3-2 Network flow model for single-sector cas
Let us consider a time-expanded network over nod&set{1,2,...,T} and
arc setV. Each node represents a time instance when there are fligetsngndr
leaving the area. The arc set consists of two classesf(dja forward arct,(t+1)
represents the time interval between time instarenedt+1; (2) a backward arcls (

&), corresponding to a flight circulation arc that moves from tingex ofl; to &,
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whereg is the index of the flight's entry timendl; is the index of the flight's exit

time from the area.

For each arct(t'), let us denot€AR,; as the arc capacity a@DST;; as the
unit flow cost. In particular, on each forward a¢Hl), COST +1 = 0 andCAR, 141 =
sector capacity; for sectorj, which is the maximum simultaneous number of flights
that a controller can handle during that time period. For siityli is considered as
a constant over time. For each backward &rt; (t'=e; ), CAP+ = 1 andCOST; ¢ =
-1. As shown in Figure 3.2, the label on each &AR 1, COST1) represents
(capacity, cost). In a solution to the min-cost flow problenhefé¢ is one unit flow
on the backward arc, there is a corresponding flow on the forward arcs, which forms a
closed flow-conserving cycle. Note that, in practice and as aslsinmis model,
usually a flight can enter and leave a sector at most oncehd-oase where a flight
enters and leaves the same sector more than once, additdealosstraints are

needed.

Through the above circulation network model reformulation in Figure 3.2, it is
easy to show the corresponding node-arc incidence coefficient msttistally
unimodular. A general discussion on Total Unimodularity (TU) for netwnatrices
can be found in Wolsey (1998), and the corresponding linear programmixaticaa
(if feasible and finite) always has an integral optimal solutBased on this unique
structural property, the problem can be reformulated as a mimebsork flow
model. This basic circulation network model is well-known; an eafgrence is

Segal (1974), where it was widely applied to telephone operator scheduling.
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3.2.2. Multiple sector case

In this section, we further extend the model in the single-secise to the
multi-sector case, where multiple layers of time-stagetbssab-networks are used
to represent multiple sectors. As shown in Figure 3.3, each nodeyerddasectoy
corresponds to a time instanget=1, 2, ..., T, the congested airspace time period
covers fromT® to T°. Accordingly, each sector includes a sequence of forward arcs
that flow from nodet to t+1 on sectorj. Recall that, for the single-sector case, a
backward arc can be used to represent each flight. In this compléxsector case,
for flights that pass through more than one sector, the backwardesddo cross at
different layers. Thus, a new variable xf;y ) IS introduced to represent a
backward arc flow for each flight, from the ending se¢tat FCA leaving time =
ls;, to starting sectgrat FCA entering timé= ;. In addition, as illustrated in Figure
3.3, vertical transition arcs are used to represent the traneitiarflight from one
sectorj to another sectqr at timet. We need the following additional notation for the

multi-sector problem.
Notation:
Of originally scheduled starting sector of flightt FCA,
ok originally scheduled ending sector index of fligit FCA;
& originally scheduled entering time of flighin FCA;
l¢ originally scheduled leaving time of flighin FCA;
Xe,G.0.6't) - backward arc flow for each flight, from secjat timet to sectoy' at

timet'
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w;; +: transition arc flow from sectgrtoj' at timet
Yitt+1 - forward arc flow from nodéto t+1 on sectoy

@(j,jt): set of flights transfer from sectpto sectoj' at timet.

Flight1 o~ \

-

/ i \:

i'C 0) ~ e
Q_’Q}' @—M Sector | Side

constraints

_ Flight 4
Flig K

Figure 3-3 Network flow model for multiple-sector case

Side constraints are needed here to avoid the problem of non-unique tours
since multiple vertical transition arcs might form multiplewlcycles for a particular
flight. In Figure 3.3, both flight 4 and flight 1 enter segtoirom sectorj but with
different time stamps, 9:21 and 9:15, through the dashed arcs. If noosisieaints
are given, flight 4 can use the dashed arc at time 9:15 ¢o s&ttolj’, and flight 1
can also use the dashed arc to transfer sptigrat time 9:21 (without following the
original schedule). To restrict those possible non-unique cyclég inetwork model,

a side constraint is proposed as the following:

Wiie, =% (1,)0e, ) Where flightf transfer from sectgrto sectoj' at timet.
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If more than one flight transfers from one sector to another sector at the same
time, the flow of vertical arcs can be set equal to the total flow of backwartd arcs

which use the same vertical arc for transition.

w

e, = Z‘ Xi (106 e, ) » Where flightf transfer from origin sectgrto

destination sectqgr at timee; .

With the above formulation, the model can be extended from the single-sector

case with extra side constraints, which is shown as follows.

Model 3: Network circulation formulation with side constraints

Max fo,(r,lf),(j &) (3.12)

Subject to:

Flow balance constraint at each sector-time npte (

; Xt GG _; Xt oGy T Yiea ™ Yt ;Wi:n _;Wi,i ;=0 V]t (3.13)
Sector capacity constraint:

Yiern S G Vit (3.14)

Side constraints for each flight transition gtg,{),

Wiy = Z XeGonGe ), Y(j,j't) (3.15)

fed(j.j't)

Equity constants or fairness objective.
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D (- X Guden)

r=- A Vi (3.16)
Z(l—xf)SZ(l—xf)x%lx Q+e) Vi (3.17)
feA feA

Nonnegative and integer constraints for variaklgsandw.

In the above model, constraint set (3.13) represents the flow balance
constraint for arc-based variablesy andw imposed at each sector-time nogl§,(
where the variable corresponds to the flow on the backward arcs for each flight.
Variable w corresponds to the flight transition between two sectors, andleyia
carries the flow on sector | from tinteto time t+1. For the constraint matriig
corresponding to this set of flow balance constraint, each colurBn(tbfat is, each
variable, x, y, or w) only contains exactly two non-zero entries, +1 and -1,
respectively, from the upstream sector-time node, or to the doamsgector-time
node. The rest of the coefficients are zero for each varidbla.result, we can show

that the incidence matrix A is totally unimodular.

Constraint set (3.14) imposes the sector capacity constraint @blegriat
each time interval. Side constraints (3.15) are needed to erardlight transition
arc w carries flow only if the corresponding flights are allowedus® the sector

through backward arcs

3.3 “Flight on the Node” Model

The above network flow model uses a circulation network structureewhe

nodes correspond to time instances and arcs correspond to flights. @hethkand,
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based on the special problem characteristics, an alternativeul&tion can be
obtained using an “activity on node” network, where the arcs implyptbeedence
relations between any two flights’ trip within a sector. A iamtanker scheduling
problem was first developed by Dantzig and Fulkerson (1954). The probie
determining the minimum number of oil tankers required to meet ad fix
transportation schedule was formulated as a linear programmingmpreioid solved
with the simplex algorithm. The same scheduling problem is discussed by éthalj
(1993) with a different solution approach by constructing an equivalentoriet
structure that can be solved by efficient maximum flow algors. In this study, a
similar network structure is adapted, but the sector capadiyas and the objective

is to keep as many flights as possible.

3.3.1 Single-sector case
First, let us consider a network over nodeNet{S 1, 2,...,n, |} and arc set

V. Each nodene NS, T}, represents a flight's trip activity in the sector. Nodes
andT represent the source node and sink node, respectively, in the netwoslcRor
arc (, np), CAR(ny, np) represents the capacity of arg(np), COSTny, np) is the unit

flow cost of (g, np) .

Each activity node is associated with flight indéx, and its entering time
and exit timeeyn, andlyy). In order to restrict flow through a node, this study uses a
node-splitting technique, which replaces a nodeith two nodesn' andn”. Each
inflow noden' accepts all the inflow to the standard activity nodend outflow node

n" handles all the outflow from the standard activity nndé single node-splitting
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arc connects split nodesandn". A capacity of 1 is imposed on the node-splitting arc

in order to limit the flow through activity node

There are two additional sets of arcs. kot N\{S}, n,e N{ T}, forward arc,
(n1, np) €V if and only if the sector exit time of is less than or equal to the sector
entry time ofny, that is,limy<em2). This means, these two activitissandny, can

be scheduled sequentially if the sector capacity allows. TtleMaad arc [, S has
flow capacity that corresponds to the sector capacity. The tastassigned to this

arc to ensure that the objective value changes by -1 if a trip is chosen to remain.

In summary, for each node-splitting arc of node between noden{"),
CAR()= 1, corresponding to a single flight trip, a@®ST) = -1. For each forward
arc (", nu'), CAR) = 1 corresponding to a feasible flight-to-flight connection,
COST) = 0 . For backward arcT(§, CAR) = sector capacity in terms of the
maximum number of flights can be handled simultaneously in thersactdCOST)
= 0. If the sector capacity varies by time, the study fr@eod can be divided into

several intervals.

As shown in the example in Figure 3.4, there are 4 flights ictars@nd each
flight has a standard activity node. Each standard activity rsogiglit into an inflow
and an outflow activity node, sayl' andnl". In this example, it is feasible to
schedule flight 2, flight 3 or flight 4 after flight 1, as thevieg time of flight 1
(9:10) is earlier than the other flights’ entering times (9:125%r 9:12, ). The
occupancy time duration of flight 2 is very short (9:12-9:15), se aiso possible to

schedule flight 2 before flight 3 (entering the sector at 9:15) tl@mode-splitting
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arc from node nl1' to node nl1" (corresponding to the activity of flighvd need to
place a capacity constraint of 1 so that the arc is used oo&; although this node

nl has three outgoing forward arcs to noa2sn3 andn4.

Node-splitting arc

flight f1

flight f1

Entrance time en1/  CAP =1, COST=-1 leaving time 1,

Node splitting arc

Inflow activity
node Outflow activity
node

Forward arc

Backward arc, CAP= sector capacity, COST=0

Flight number Entering timeg Leaving timel
1 9:00 9:10
2 9:12 9:15
3 9:15 9:20
4 9:12 9:17

Figure 3-4 Network model for single-sector case

The solution algorithm needs to find the minimum-cost flow path tirdhis
network. From the optimum path passes through the nodes, we can idenfifgtit

trips associated with these nodes can remain in the original vattieoriginal
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schedule. Note that, usually the flight could enter and leave ther d@tt the
scheduled route/sector list) once. If the flight needs to entdeand the same sector

more than once, a side constraint is needed.

3.3.2 Multiple-sector case

In the multi-sector case, multiple layers of sub-networks areleaedo
construct for the “flight on the node” model, while each sub-networlesponds to
one sector. It is worth noting that, there are no arcs acrossdiffeeent sector
networks, and additional side constraints are introduced to keep the@onsisf the
solution for the same flight due to the existence of the multijghs tn different
sector networks. One way of adding the side constraints t@thesponding network
structure is to set costs on the split arcs to ke, dherem is the number of sectors
one flight traverses. As a result, when the flight is chosehansolution, the total
cost from all the flow in arcs corresponding to this flight beesaim x m=-1. The
final solution of this model yields a number of parallel flowngs, while the flow
through each string indicates which flights can stay with tbheginal route and
schedule.

The corresponding min-cost flow model is depicted below.

Additional Notation:

Xn1', n1t flow on the node-splitting arcs;
wr s: backward arc flow from nodgto S
Y2 : forward arc flow from node; ton,

Ans set of node-splitting arcs
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N;: set of inflow activity nodes

No: set of outflow activity nodes

Ny(n): set of upstream nodes to node n
Ng(n): set of downstream nodes to node n

Model 4: Flight on the node model without arc elimination

Min z (Cnl',nl"xnl',nl") (3.18)
(n1',n1"% Agg

Subject to:
Flow conservation constraint at each node:

For each inflow activity node:

Z Ynrnz = Xa2maw N, (n29) Vn2'e N, (3.19)

nl'eN, (n2

For each outflow activity node

Xor=nN, (n1),n1* = Z Yniin2: Ve Ng (3.20)

n2'eNy (nl")

Side constraints for all nodegs that correspond to the same flight

X (== Xy oy VT (3.21)

Equity constraint:

z A= X rynry)
r=- A Vi (3.22)

49



Z(l—xf)S{Z(l—Xf)}xl%lxaw) Vi (3.23)

feA feA

Nonnegative and integer constraints for variaklaady.

3.4 Analysis of Alternative Formulations

The preceding sections present four formulations, and we now avanbve
that the feasible region of the integer programming Modslith fact a projection to
the other models. We will further evaluate the actual computatiima of the

different models in the previous sections.

Lemma 1 The feasible region of Model 1(integer programming modgi$ B
projection of the feasible region Bf Model 3 (circulation network with side
constraints model).
Proof:
We want to show that
i) when solution variablesis feasible to B there existsv andz which
make k,y,w) feasible to P,

i) i) when solution X,y,w) is feasible to B x is feasible to P

The outline of proof is given as follows.

i) Considerx; P1, which represents if flight passes through the FCA using

its original schedule. Clearly; corresponds to the flow g ¢ ) on the backward
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arcs for flightf, from sectoyf at timet to sectoy' at timet', in the circulation network
in Model 3. Through the flow conservation constraints (3.13) at secterrinde jt),

one can express variables on the forwardyage: (from nodet to t+1 on sectoy) in

terms of a summation of incoming flawto timet, that is, y,, .., = > X 2ty @s
v

there is flow on the corresponding transition arc awpg; =0. Similarly, side

constraints for each flight transition argj'(t) at (3.15) allows us to construct

Wj‘j'lzf @;'I)xf‘(j.,f)‘qef). If the capacity constraint (3.7) holds, that is,
e®(j,j’

Z X; <¢;, in Model 1, we can also establish constraint (3.34),,<¢ in
feU(jt)

Model 3. Therefore, if solutiox is feasible to B then we can always construct

another set of feasible solution (x,y,w) to P
i) Let v=(x,y,w) € Ps, because v satisfies every constraints in Model 3. We can
first express in Model 1 in terms of the valug ¢ r) on the corresponding arc in

the circulation network. If the capacity constraint in Model 3 haglds,, <, .

Because the flow on each forward asg,,, is the total number of flights

simultaneously occupying the specific sector during time peftipell), then the

correspondings satisfies the constraintsz X; < ¢ in Model 1.7
feU(jt)

Lemma 2 The feasible region of Model 1(integer programming modei$ B

projection of the feasible region Bf Model 4 (flight on the node with side

constraints model).
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Proof:

Similar to the proof of Lemma 1, it is easy to substitute ithe sonstraints to
the flow conservation constraints and easily expyessvariables in terms of. As a
result, it can be shown that i) wheis feasible to B there existv andz which make

(x, y, W feasible to Rii) when , y, W is feasible to B x is feasible to P [

3.5 Computational Results

This section applies the proposed models in two scenarios genesatgd u
real-world data. This section is organized as follows: the four Imoae first
evaluated, and Model 1 is used to conduct the multiple-objectivestahe The bi-
criteria formulations in Model 2 are then tested with respedtifferent weights.
Specifically, two different approaches of handling the multiple obges linear
weighting ande-constraint method are discussed in detail. Finally, we evaluate

different models and approaches for solving the multiple-objective formulation.

3.5.1 Alternative formulation comparison

The following computational experiments are conducted based on datasets
obtained from the Enhanced Traffic Management System (ETMSpatsta The
datasets are chosen from good weather days. Severe weatlagioscare created so
that the demand could exceed the reduced capacity due to the w8atdwmfically,

the dataset consists of 33 and 19 sectors, 283 and 859 flights respectively.
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Table 3-1 Problem size comparison of alternative fonulations

Model 1: Multi-
objective Integer
programming
model

Model 3: Circulation
model

Model 4: Flight on
the node model

# of 859 2289 (corresponding ta>5000 (corresponding
variables arcs) to arcs)
# of 1573 2314 (flow balance | 2578 (flow balance

constraints

constraints + sector
capacity constraints+
equity side constraints

)

constraints + sector
capacity constraints+
equity side constraints

)

The experiment uses 4 hours as an FCA time period. All expesnage
performed on a Pentium IV 1.6GHz PC with 482 MB RAM. The prograrnded in
C with Callable Library, and CPLEXMIP 8.1 is used as the solv&king a case of
859 flights, Table 3.1 compares the size of the problem in alteenfmimulations.
The basic integer programming model has the least number @blesr and
constraints. In the “flight on the node” model, for each pair of flight which have
a strict sequential order of using the airspace, there isaranbetween the
corresponding nodes. Thus, Model 4 has the largest number of arcs and variables.

In terms of computational efficiency, Model 1 (IP) and Model &(dation)
have similar computational running time, and in particular the Ldaé&bn problem
for Model 1 with the single-efficiency-oriented objective problensalved within a
few seconds. In our experiments, only the 5 closest arcs ptddteModel 4. The
computational study indicates that, with a limited number of sequgrecs, Model

4 has similar performance compared to the other two alternative network models
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3.5.2 Computational comparisons between different multi-objective approaches

Multi-objective programming generally involves conflicting objeesi, which
cannot simultaneously arrive at the corresponding optimal levelghete is an
assumed utility function that could combine different objectives, ona@aordingly
choose appropriate (compromising) solutions by constructing aesiolgjective
maximizing solution. However, that is not the case here agénsrally difficult to
predetermine the weights on the two types of metrics. Assatrehe following
section employs methods for generating representative Pareto opiotadns.

By systematically changing the weights for different obyecfunctions, one
can obtain a set of solutions with different tradeoffs among thecig functions.
As a result, considerable running time is required in order to obtairbset of the
frontier of Pareto optimal solutions. To obtain the tradeoffs ofnthd#iple criteria
and fully utilize the simple network structure of the problem urdesideration, this

study uses the following modified approximateonstraint method. Specifically, in

the equity constraint (3.11), the average offloading rEti'[s replaced by ZP, where
Zy is a constant number which can be estimated by solving the singtdivdjmodel
involving the system efficiency objective function only. Secondly, duiity
constraints are added in the model and the average offloadiagsraeplaced by
Z1/P from the first iteration. As a result, the equity constsaare simplified from
general coefficient constraints to generalized upper bound constiaats;arying
the value ofe¢ yields a set of non-inferior solutions. The new equity constraints

become:
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feZA:(l—xf)s leliplx(hg) Vi (3.24)
where Z is the objective value obtained from the first iteration.

Table 3.2 summarizes running time statistics for different nspaehere the
results shown are obtained based on a dataset with 859 flightappheximates-
constraint method solves the problem using the least time compaiteel dther two
methods, requiring around 14 seconds for 2 iterations that include the atiorput
time of solving the £ model and the second approximateonstraint model. The
linear weighting method and the-constraint method have similar levels of
performance efficiency. Both methods solve the problem relatiadly Wwhen the
weights or the bounds are set to close to the extreme limit.

To further investigate how the proposed methods handle multiple obgctive
the following analysis compares the tradeoff curves and thdirglp areas formed by
the non-inferior points. Figures 3.5, 3.6 and 3.7 show the tradeoff cumwes fr
different methods.

Overall, the linear weighting method obtained 4 solution points, sthe
constraint method and approximate method obtained 6 points each. Tladgrehe
approximate-constraint method can obtain the solution point which has first
objective function value of 745. It should be noted thatgtbeefficient needs to be
chosen carefully. If it is set too big or too small, the methoghmnot obtain a
different solution or can make the problem infeasible. In this studiaradard step

size rule is used for botirconstraint methods. Comparing the solution points from

the first two methods and combining all the points into a new figeigyre 3.7
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shows that some of the solution points obtained fseconstraint methods coincide

with or are dominated by the linear weighting method.

Table 3-2 Running time comparison among linear weltgfing and e-constraint methods

Obj. 1 Value Obj. 2 Value | Running time
(number of (sec)
offloaded flights)
Linear weighting 765 (94) 0.2239 12.4
759 (100) 0.0503 3.0
756 (103) 0.0134 >20,000
745 (114) 0.00003 718.6
g-constraint 765 (94) 0.5 1.5
765 (94) 0.4 1.8
765 (94) 0.25 1.3
761 (98) 0.2 1.1
758 (101) 0.0491 >20,000
757 (102) 0.0192 >20,000
748 (111) 0.005 >20,000
745 (114) 0.001 >20,000
Approximate e-constraint 765 (94) 0.2239 14
761 (98) 0.1359 14
759 (100) 0.0503 13.9
757 (102) 0.0228 14
756 (103) 0.0128 14
745 (114) 0.001 14
Tradeoff frontier from linear weighting method
% 25.00%
$¢  20.00%
28 1500%
E;‘; 10.00% \\
22 500%
2 g \
y 0.00% ; ; : - .
= 94 98 102 106 110 114 118
Total Number of Offloaded Flights

Figure 3-5 Tradeoff curve from linear weighting method
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Tradeoff frontier from g-constraint method

25.00%

20.00% \

15.00% \

10.00% \\
5.00%

among all the carriers

N~

0.00% . \ \

94 98 102 106 110
Total number of offloaded flights

Max over-offloaded percentage

114 118

Figure 3-6 Tradeoff curve frome-constraint method

Warburton (1987) proposed astapproximate

algorithm to quantify the

degree of accuracy in approximating trade-off curves and surfacasmultiple

criteria spaceTo compare the three methods’ performance in terms of covering the

non-inferior solutions, we use the following multi-objective solution quatieasure

in terms of the possible area of non-dominance solution space forntbd byisting

non-dominated solutions.

Tradeoff frontier

25.00%

4
20.00% .\\

15.00% \\
10.00%

5.00% \

*
.
b

0.00% T T T
a4 95 102 106

Max over-offloaded percentage among
allthe camiers

Total number of offloaded flights

L 2

110 114 113

Figure 3-7 Combined tradeoff curve from all three methods
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Figure 3-8 Example tradeoff curve showing non-dominated domin and
approximation error

As illustrated in Figure 3.8, there are currently 5 existing nonhulied
solutions on the tradeoff curve for two minimization objective functidine area
formed by the solid lines represents the domain that is not domimatihe existing
non-inferior points. Within this area, no feasible solutions can be fomgide the
shaded area. We can simply verify the above statement by diochtwa. If there
exists a solution (saw, with better objective function values and 2) in the shaded
area, then exiting solution 3 will be dominated, which contradicts thi¢ fact that
those five points correspond to non-dominated solutions. On the other harsdillit is
possible to have solutiorts ¢, dande, as none of them are dominated by existing
solutions 1 to 5. As a result, the blank blocks sounding pbintsd ande can be
viewed as the region with possible non-dominated solutions. In this shedyoptal
area of blank blocks can be viewed as an approximation measure airselubrs.
To quantify the multi-objective solution quality, we want a smdblenk area or,
equivalently, a larger shaded area. In the following discussiomslebmpare the

blank areas formed by points obtained from different solution approaches.
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First, both efficiency and equity objective functions are converted t
minimization functions. Particularly, the blank areas of possible-doomnated
solutions obtained from the linear weighting, exacbnstraint and approximate
constraint methods are 1.299, 0.822, and 0.718, respectively. Not surprisingly, the
linear weighting method obtains the least number of non-dominatedosopdints,
corresponding to a larger approximation error. For the other twbouahe although
the exacts-constraint method obtained 6 points, the area containing possible non-
dominated solutions is still bigger than that of the approximataodeOverall, this
limited experiment shows that the approximamonstraint method produced a good
quality tradeoff curve with the least computational effort. Moreovk all the
solutions points are combined together, the area of blank blocks, igiosol
approximation error, is further reduced to 0.642.

Figure 3.9 further shows air carriers’ absolute offloaded percewnliffgrence
compared with the average ratio across all the airlines. Foigs sefr solutions,
generated from the linear weighting method, are selecteliustrate the changes
made by different weights of the coefficients. The horizontal sorts the air carriers
by the total number of involved flights in this FCA advisory. Theivar axis shows
the absolute offloaded percentage difference for each cardaethis example, the

total number of involved flights is 859.
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Difference of offloaded percentage among air carriers

25.00% 94 flights offloaded
—=—100 flights offloaded |
——103 flights offloaded
e=114 flights offloaded |

20.00%

15.00%

10.00%

5.00%

0.00%

-5.00%

-10.00%

Average Offloaded Ratio

-15.00%

-20.00%

Difference Between Assigned Offloaded Ratio and

Air Carrier (sorted by the total number of involved flights per airline)

Figure 3-9 Difference of offloaded percentage among air carriers

In the different scenarios shown in Figure 3.9, the average offloading
percentage is about 11%-13%. Overall, an increase of the weight ocequlity
objective function reduces individual deviations from the average offlgadin
percentage. The total number of fights offloaded increases 3o 114 when the
weight is set to be a very large value. As a result, the positexeation is
approaching to O for all air carriers.

It should be remarked that, some individual flights or airlingt wery few

flights are not considered well in this percentage equity functiorterms of

z (1_ Xf)

feA

VY

. It is possible that the offloaded flights are mostly chosen from

these airlines with fewer flights when the penalty coedfits for equity increase
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dramatically. On the other hand, ignoring airlines with few figihdes not violate the
overall fairness standard, although the change of a single fitighatsingle-involved-
flight airline will only have two possible values for the offloadipgrcentage
calculation: 0% or 100%. In order to minimize deviations for allngs, including
small airlines, the flights (belonging to the small airlineaye to be left in the FCA,
which could degrade the overall system efficiency due to ithéation of this

particular percentage equity functional form.
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Chapter 4 Equitable Stochastic Airspace Routing &fodnd

Algorithms

This chapter will develop models and algorithms to support effickeak
equitable resource allocation of Airspace Flow Programs (A®PEen an AFP is
issued, a 2-dimensional or 3-dimensional volume of airspace isisdewith a time
interval, corresponding to a period of reduced capacity. Under thepfdgedure,
similar to holding an aircraft at the departure airport @GP program, the air traffic
control center can adjust and optimize flight arrival timegh&congested area, e.g.,
through a rationing algorithm that aims to offload the excessadémin order to
support real-time operation adjustment, the proposed model adopts aidamaim
stochastic optimization approach, where the offloaded flightshargea and notified
a few hours before the events occur, based on predicted adverse weatheons.
To balance the equity considerations for offloaded flights acroesetit airlines, we
incorporate an additional criterion to assign the airspace resdortes airlines in a

fair manner.

This chapter first formulates a multi-commodity network flomthwside
constraints model for the AFP planning problem. The proposed modelongider
the following two important modeling requirements: 1) time-dependent and stochastic
airspace capacity and 2) equity considerations for ground-holdingreandting
flights across airlines. To jointly evaluate two major airgpasngestion mitigation

options, namely ground holding or rerouting excess flights from the pradoiea) we
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construct our model based on a space-time network that includesoh aetpace

waypoint entries and airports.

To enable the equitable ground holding and rerouting decisions, thisctesea
considers multiple airline companies that own different numberdgbitl and the
objective is to minimize the total weighted flight delay whilgoecing equity of
allocation, operational consistency and safety requirements. Asudt,ra time-
dependent multi-commodity network flow formulation is developed, witbpatce
capacity and rerouting equity for each airline as side constraifiseover, to
consider stochastic airspace capacity under severe weather awdive use
multiple scenarios to represent random realizations of predi@pdciies, and
further integrate non-anticipatory constraints to ensure thestaige solutions across
different scenarios have the same values. A Lagrangian lielaxaased method is
used to dualize these three sets of side constraints so thatigheal complex
problem can be decomposed into a sequence of linear programming prablems
total unimodularity properties. Under a special case of matestic capacity
conditions, the original problem can be further decoupled into a seqaespace-

time shortest path problems with very efficient solution algorithms.

Recall that, Chapter 3 proposes a model to use the entire congisteeld
airspace and offload flights equitably among air carriersnwhmimizing total delay
cost. The offloaded flights could be assigned to some alternativesrdttis chapter
further develops the model from Chapter 3 to include ground holding optsonglla

as stochastic capacity.

63



4.1 Space-Time Network Flow Model

This section aims to formulate the network flow optimization probieth a

time-space expanded network structure. The notation of parametevareides are

shown below.

Index:

f flight index, f € F, F is the set of flights

u airline index,u € U, U is the set of airlines

F(u) Set of flights belonging to airline

t index of scheduling time interval, t= 1,.T,, T is the length of planning

horizon

k index of stochastic scenarids;l, ...,K, K is the number of scenarios
I node index, j € V in airspace routing network

A arc indexa € A in space-time network

Input Parameters:

o(f)
d(f)
EDT()
LDT(f)
PDT(f)
EAT(H)
PAT(f)
LAT(f)
o

B

f
s/,
CAP,;(k,t)
Au)

T

Variables:
x] (k£ t)

origin node of flightf

destination node of flight

Earliest departure time of fligtiftrom its origin airport

Latest departure time of fligtitfrom its origin airport

Planned departure time of flighfrom its origin airport

Earliest arrival time of flight at its destination airport

Planned arrival time of flighitat its destination airport

Latest arrival time of flight at its destination airport

Cost of holding one flight in the origin airport for one time interval
Cost associated with one time period of delay at the destination
airport, compared to planned arrival time

sector travel time of flightton link (i ,j)

capacity constraint on link,j) at timet under scenari&.

Threshold for average routing and ground holding cost per flight for
airline company

The ending time of first planning stage that requires the unique
solution across different scenarios.

= 1 represents flightusedink from nodei to nodej with departure
timet and arrival time' under scenari, =0 otherwise
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A set of flightsf € F belongs to different air carriers and an air caniex U
has a set of flight&(u). Each flightf is assumed to have a planned departure time
PDT(f) at origin airporto(f) and a planned arrival timeAT(f) at destination airport
d(f). The flightf needs to leave from the origin airport between a feasible m@inge
Earliest Departure TimeDT(f) and Latest departure timéDT(f), and arrives at the

destination airport before latest arrival time of flidAT(f).

Consider an airspace sector network £f, where node séd includes a set
of waypoints and airportaeN, and the set of linkg corresponding to airspace
sectors] eL. Without loss of generality, for a networkunder consideration, a flight
might originate from a boundary waypoint, rather than its origipoatr In this case,
we will model delaying options at the inbound waypoint at the boundarheof
subarea to allow the ground holding decisions. That is, according tdethged
arrival time at the inbound waypoint, the actual departure timéeabriginating
airport of a flight can be consequently adjusted to avoid adverse weatiditions.

Each link | can be denoted as a directed link) (with upstream node and

downstream nodge The deterministic travel time for flighion link (,j) is S{j .

We then construct a space-time network to further develop a dynatwork
flow model formulation. LeSTQV, A) represent the space-time network, whéiis
the set of vertices amdl is the set of arcs (including sector traveling arcs and airpor
waiting arcs). A noda is extended to a set of verticest) at each time intervdlin
the study horizont=1,2, ...T, whereT is the length of the optimization horizon. In
the proposed space-time network representation, there are twe dypeodes:

airspace waypoints and airports. We also consider three types of arcs as.follow
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(1) Sector traveling arcs are extended from a lipk &nd each arc traverses
from vertex {,t) to vertex K,t+S{ i ).

(2) Ground holding (i.e. airport waiting) arcs frono(f],t) to (o(f),t+1) at the
origin airport/waypoint. The feasible time window at the no(f¢ covers from the
earliest departure timeDT(f) to the latest departure til@®T(f). By introducing the
ground holding arcs, we can construct a single source vertex atdieairporto(f)
and at the time instance BDT(f).

(3) Dummy waiting arcs fromd(f), t) to (d(f),t+1) at the destination airport,
from the earliest arrival timEAT(f), to the latest arrival timeAT(f). By introducing
the dummy waiting arcs, we can construct a single sink verteikeatlestination
airportd(f) and at the time instance IOAT(f).

This special single-origin, single destination network structdoe €ach
flight) allows us to establish the totally-unimodular coefiitimatrix for all the flow

balance constraints around vertiteim thetime-expanded network.

Physical airspace network Space-time extended network for flight rerouting and scheduling
: @ o
©
Q
n /
: 0 6 Time Axis
O 0O —
Waypoint Airport  Airspace sector (link) Sector traveling arc Ground holding arc Dummy arc

at origin airport at destination airport

Figure 4-1Physical airspace network and space-time extended network
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The left portion of Figure 4.1 shows a simple airspace network with tw
airports 1 and 4, and two waypoints 2 and 3 that connect airspaocesseactd the
labels on arcs correspond to link travel times for the assddbght. The right-hand-
side of Figure 4.1 illustrates the space-time expanded netwonk pegsible fight
trajectories starting from departure tit¥®, 1, and 2 along ground holding arcs and
sector traveling arcs.

Based on a weather prediction model or historical capacityctieduprofiles,

we can obtain predicted time-dependent capadfp; ;(k,t) under different

scenariok. Let us consider binary variabh;‘fj(k, t,t") that indicates the selection of
link (i,j) in the space-time network. Within a two-stage stochastic @attion
framework, the air traffic controller needs to make the reirguind ground holding

decisions for flight schedule variableéj(k, t,t") before timel'. Each airlineu has a

threshold&u) for the maximum average routing and ground holding cost per flight
for a set of flightsf € F(u). The subsequent multi-commodity network flow model is
formulated to minimize the total expected weighted cost overethiee planning
horizon, subject to the given sector capacity, airline total roatsg) constraints, and
non-anticipatory constraints. The stochastic integer programmingufation for the
dynamic and equitable airspace routing and ground holding modélecdascribed

as follows.

Problem P4.1: Dynamic airspace routing and ground holding model
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Z =min)y {Zf Xt>PDT(f) [a X (xg(f),o(f)(k’ t,t+ 1))] + X XtsPaT(f) i [,3 X
txxnd(f)f/t—=Sud(f)),t—PAT(S) 4.1)

Subject to

Flow balance constraints at origin airport vertex (at earliest deparhel t

Z]-:l-jeAx{j (k,t,t +S{j) + x{i(k, t,t+1) =1, Vk,f,i=0(f)andt =
EDT(f) (4.2)

Flow balance constraints at origin airport vertex after earliest depairtug:
[ t—1L0+ [ (t,t + D+ Tjeax] (kt,t+5)) =
0, Vkf,i=o0(f),EDT(f) <t <LDT(f) (4.3)
Flow balance constraints at airspace waypoints:
Sjijeaxt; (o t,t = S[) = Sigjeax! (.t +5[) =0,  VkftieN-
{o(f),d()} (4.4)
Flow balance constraints at destination airport vertex
xl (et — 1,0 + Yigeax! (kt,t —S) —xl (b t,t +1) =0 vk, f,j =
j.J )] ] i:ijJEA i,j L i,j j,J g ] ’ 1]
d(f) ,EAT(f) <t < LAT(f) (4.5)
Flow balance constraints at destination airport vertex and at the lastamgTst
Zl':l'jEAx{j (k) t,t— Slf:]) + xjf’:j(krt - 1; t) = 1; Vk,f,] = d(f) andt =
LAT(f) (4.6)
Sector capacity constraints on liril)
YA Ziijea x{j (k,t,t + S{J.)} < CAP;(k,t) Vkijt=1,2,..T (4.7)

Total routing and ground holding cost for airline company
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Xk {ZfEF(u)Zt>PDT(f) [a X (xg(f),o(f)(k, t,t+ 1))] + X feru) Le>PAT(f) 2i [.3 X
XL d(f)f o t=SLd()) [, 6—PAT(f)—F (1) XA xE(1)<0Vu (4.8)
Nonanticipativity constraints:
x ikt t) =x] (L, 6t)  Vk>1,fijt<Tt (4.9)
Binary constraints fox{ ; (k,t,t")={0,1}
The objective function in Eq. (4.1) aims to minimize a weighted combmat

of expected cost of ground-holding delay and arrival delay at theatést airport.

The first term scans through the ground-holding arcs starting fRIA(f).
x(’:(f)'o(f)(k, t,t + 1) =1 represents that the ground holding ajte-X) is used at the
origin airporto(f) under scenarit. « is the cost of holding one flight in the origin

airport for one time period, thus the termQf ppr(r) [a X (x{:(f),o(f)(k, t,t+ 1))]

in EQ. (4.1) captures the total ground holding cost for a ffight

The second term in Eg. (4.1) scans through all incoming nbdesthe
destination airportl [ i i —s/ i
port(f), and the link flow selection variablg ;- |k, t = S; 45y t) IS
set to 1 if flightf arrives at the destination airport before timeTherefore,t X
x{d(f) (k, t— Si’fd(f), t) represents the actual arrival time of fligtet the destination.

Without loss of generality, the other cost factors for route adgrdtroan be also
included in the objective function, such as fuel usage, en-route turbukenesl as

safety considerations.
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Egs. (4.2)-(4.6) represent the flow balance constraints at the siogitce and
single sink vertices in the space-time network, respectivety. (4.3) and (4.5)
maintain the flow conservation relations at each time instaratethe origin and
destination airports, and those time-expanded nodes can be viewddrasediate
vertices in the space-time network. The flow balance constramisc the airspace
waypoints at each time stamp are ensured by Eqg. (4.4). BecauBewthealance
constraints (4.2-4.6) are established for each space-time werties time-expanded
network, it is clear that, a linear programming problem with tisup of flow
balance constraints is totally unimodular and its relaxation leads to intégeorss.

The time-dependent airspace sector capacity constraint is eshforg(4.7)
under each scenarik. Air carrier-specific equity constraint (4.8) incorporates a
ground delay and routing cost term per flight, which is simdahé cost in objective
function (4.1).

Nonanticipativity constraints NAC (4.9) are used to construct detestici
equivalents to the scenario-based stochastic optimization modélsis Itwo-stage

problem, this set of NAC constraints implies that, the scetased variables
x{ j(k, t,t") have the same values across different scekamiohe first stage < T.

In the case of a two-stage problem, this set of NAC congdranplies that,
the scenario-based variabbq%(k, t,t") have the same values in the first stage. Two

modeling approaches have been developed in the literature to cohNg\dera
splitting variable approach and a compact representation approachistimeethod
requires adding explicit coupling constraints, such as (4.9), acréssedifscenarios

in the first stage. The NAC constraints can be dualizedth@oobjective function
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through a Lagrangian relaxation technique so that the scenaed-kabproblems

can be solved in parallel. The second method uses the single satatfles, say

xf](t, t"), directly for all scenario-based subproblems in the firgfestahich leads to

a tight model with fewer variables and constraints.

Ball et al. (2003) developed a stochastic integer program with duabrhket
structure and showed its application to the ground-holding problem. The dual network
structure can be viewed as a special case of the compaeseatation approach for
modeling NAC, while the resulting coefficient matrix in the doetwork was shown
to have a desirable total unimodularity feature that leads toesftinetwork flow
algorithms. In our proposed space-time network-based formulation, if only the ground
holding arcs are considered (i.e., without considering the airspat@'s, then the
corresponding model can be further simplified to the dual network tsteuc
investigated by Ball et al. (2003).

Regarding scenario-based stochastic optimization methods stetémreaders
are referred to papers by Wets (1974), Birge (1995) and Shapaio @009) for
more modeling details. Several techniques have been proposed toutaterdMAC
constraints, including progressive hedging by Rockafellar and WE291),
augmented Lagrangian decomposition by Ruszczynski (1989) and the diagonal

guadratic approximation algorithm of Mulvey and Ruszczynski (1992) to name a few

4.2 Lagrangian Relaxation-based Solution Algorithm

With three sets of side constraints, the proposed multi-commodiyoriet

flow model is still very complex to solve by standard integeig@mming solvers,
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especially for real-world problems with a large number of figirid a long planning
horizon. The proposed solution algorithmic framework addresses the ifadlawo
guestions: (1) how to find a valid Lagrangian relaxation procedureotoder tight
lower bounds; (2) how to construct decomposed subproblems with efficienbisolut
algorithm.

The constraints in the above airspace flight scheduling formulaaonbe
classified as two groups. The first group directly relatesthi® flow balance
constraints (4.2-4.6), which are all embedded in the space-time nethandcterized
by a general inequality X < b, and the network matrii is totally unimodular. The
second group includes link capacity constraints, air carrier egoiitgtraints and the
NAC constraints. Those three sets of coupling constraints cover atlset of
different flights belonging to the same carngra set of flights passing through the
same arc from vertex,{) to vertex K,t+S{ i ), or equations across different scenarios
k. In this research, we plan to relax those complicating constrant accordingly
decompose the large-scale airspace flight rerouting problemmaott--commodity
network flow subproblems that are easier to solve. In geneedlyork flow
subproblems are desirable because they can be solved by mamthralgdahat are
more computationally efficient than the standard simplex algurifor linear
programming problems.

By introducing a set of nonnegative Lagrangian multipligysp; ;(k, t) and
f ’ . . . . . .
A j(k, t,t’), we incorporate the coupling capacity, carrier equity and NAC constraints

in the following objective function with penalty term.

Problem P4.2: Dualized dynamic airspace routing and ground holding modie
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min Yy’ (k) + X jeifpi (K, £) X

SUJEAXL [ 6t +S50 )/ —CAPL fe 2 +

Sudmu X [Zk reraofc” () = IF)I x K x 0@} + S jreer<rfd] (ot ) X

”;/)'M%éfe/_tﬁé/éféﬁé‘rﬁlized cost for each flighnder scenaritis denoted as (4-10)
¢/ () = Zesrorp [ X (%o (ot t + )] + esparcry Zi [ x

EXTLA(F) ot —SEd(F)ft—PAT(F) (4.11)

Subject to the flow balance constraints (4.2-4.6) and nonnegativity corsiaint

x];(k, t,t") > 0.

The positive multiplier vectorp can be interpreted as the cosipgf(k, t)
charged for utilizing a link resourcgjf at arrival timet under scenarié with the
sector capacity constrai@P; ;(k,t). The multiplierr, represents the penalty for
exceeding average fight routing and ground holding cost thregh{afyl for each
individual airline, andxllf’j(k, t,t') corresponds to the penalty for not having the
unique solution in the first stage. Essentially, the major goahefliagrangian
function is to balance the total flight routing and ground holding codtitee cost for
utilizing limited facility resources through choosing appropri@wource prices. To
obtain the largest possible bound values, we need to solve the folloagngngian
dual problem for variablefj(), given multipliersp; ;(k,t), m, and/l{fj(k, t,t).

Clearly, the dualized problem with only flow balance constraint®telly

unimodular, so its linear relaxation produces integer solutions directly.
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Since the dual cost function (4.10) is not differentiable everywheresolve
the dual problem by updatingz{ p, A} using the following subgradient method,
which is intended to iteratively adjust the resource prices.
md™ = max {0,m + y9 x [Zk,fep(u){cf (k) — IFw| x K x 6(w)}]}, (4.12)
p{ (k, ¢) = max{0, pf, + y9 x [Ls Tiijeax!, (kot,t +SI) — CAP, ;(k, )]} (4.13)
AL = 2L 4y [x] (ke t) — 2], 8)] (4.14)
where superscriggj is the iteration index used in the dual updating procedurezand
p%,29, v denote iteration-specific multiplier values, and step size at itemgtion

respectively. To overcome “zip-zag” courses in the optimum search prdeessep

size parameter is updated as

o (L—L%)

0% = uf ~———=,
N

(4.15)

where L is the objective function value of the optimal solution, which can be
approximated by a feasible solution generated from the heumsticod,L? is the

value of Lagrangian relaxation at iteratign Ais the deviation vector associated
with  [Seseraolc’ () = IF@)I x K x 0w}, [SfZueax]; (bt +S];) -
CAP, ;(k,t)] and[x! (k,t,t") — x].(1,¢,t")]. Note that, 0%*<2 is required to ensure

theoretical convergence. Another modeling issue associated withideg(@15) is

that there are a large number of constraints to be dualizedh W¢@ds to a large

value of “Aqu a negligible step size and a potentially slow convergenee Fair

simplicity, this research uses a step size updating rujé ea‘il in our numerical
+
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study. Recognizing that most of the capacity constraints arebindmg in the
optimal flight re-routing solution, the relax-and-cut logic desctibbeCaprara et al.
(2002) is adapted here to dynamically relax resource capamiistraints by only
dualizing a subset of constraints at every iteration. Spedyfigla sector has not
reached its capacity within several recent iterations, tgeritim automatically
resets the multipliep; ;(k, t) for the under-utilized link capacity resource on ling (
at timet back to zero. With this dynamic constraint generation schemegthef s
Lagrangian multiplierg; ;(k,t) varies along the iterative process.

The uncapacitated multi-commodity flow optimization problBm2 can be
further separated into a set of subproblems, and each problem corregparidad-

dependent flight-based network programming problem for fligimder scenarid,
with the objective function associated with the weighted coskf;(rk, t,t+ S{ i)
That is, given a set of resource priges(k, t) associated with arcs)j from timet to

f
t+5s7/,

we can now compute the optimal cost of a flightor each possible
entering/departure time at its inbound waypoint or origin airord, possible routes
in the airspace. The flight-based subproblems are then formuladeguence of
time-dependent shortest path problems in the space-time neSiI@y/, A), for
given values of Lagrangian multipliers. For a comprehensive dasaripf the

shortest path algorithm in a space-time expanded network, wethefeeaders to

Ahuja et al. (1993).

4.3 Numerical Experiment
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This section aims to test the computational efficiency andteféeess of the
proposed Lagrangian relaxation algorithm, as well as the ingdaictcorporating

equity constraints under stochastic capacity conditions.

The first case study uses a network similar to the hypothstibarea around
Dallas-Fort Worth International Airport (DFW). This network lzatotal of 7 major
airports. We consider 15 minute intervals and 20 time periods fonaiptahorizon
of 5 hours. There are 6 major origin airports, DEN, LAS, RZC, HIC and AEX,
and one destination DFW. We consider 144 flights belonging to 4 airlinéghase
airlines own about 40%, 30%, 20% and 10% of total flights in the area. itwosar
carriers operate on all origin-destination pairs. Two capacgyasms are considered.
The first scenario functions under a normal capacity of 12 #ingeat 15 minutes,
which allows all flights to use primary routes. The second saehas FCA in the
shaded area in Figure 4.2, with a reduced capacity of 6 &iperal5 minutes, so that
some flights need to take alternative routes. The cost of gtoaidds set as 50% of
arrival cost, that ispg=0.53 in Eq. (4.1). Related to the equity constraint (4.8), the air
carrier-specific threshold of average routing and ground holdingpeoslight &u) is

set to 105% of the overall average value for all air flights.

The proposed two models are implemented in GAMS (Rosenthal, 2008),
which is a high-level modeling system for mathematical prograghmand
optimization. An open-source COINGLPK solver is used to solve theybingeger
problem and the relaxed problem. In particular, the integer progranprtdem is

solved through linear programming relaxation and branch and bound algorithm. Table
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4.1 shows the size of the problem for different formulations. Each nhadgebeen

solved to the optimal solution.

The problem instances in Mukherjee and Hansen’s study (2009) have a
relatively large number of flights and time intervals, and thaese an
AMPL/CPLEX solver to obtain integer solutions from LP relaxation tbéir
proposed model. In their study, the reported computational time reduwrédee LP
relaxation for all cases was within 5 seconds, on a computer witBHz2processor
speed and 16 GB RAM, while they also acknowledged that it was podsbleP
relaxation might not yield integer solutions in some instancesuilrstudy, it takes
about 122 seconds to obtain the integer solutions through a complex branch-and
bound search process. The following discussion is not intended to cothgare
computational efficiency for different solution algorithms of e model (e.g.,
branch-and-bound vs. a simple round-off heuristics). Instead, wdoesik on the
problem size and solution quality associated with different medefmulations and

relaxation techniques discussed in this dissertation.
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O Arrival fix/airport

O Waypoint

D FCA

LFK

Figure 4-2 Hypothetical airspace network around DFW, extended rbm the test
network from Mukherjee and Hansen (2009)

For different first-stage length, obviously, the relaxed formulaties the
same number of variables as the original IP model. While thged problems still
keep about 80%-90% of the original (flow balance constraints), thalbgelution
times per iteration are reduced to about 2%-5% compared to theabiigimodel
P4.1. For the relaxed problem P4.2, different lengths of the fige ¢ min vs. 15
min) have the same number of variables and constraints, as thed®s@aints (for
the first stage variables) in both models are dualized. The lengtie dirst stage
decision does not significantly change the solution time, as both prob&tances

have similar computational times of 2-3 seconds.
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Table 4-1 Problem size and solution time of reformlated problems under different first-stage

lengths
Complete Relaxed Complete Model | Relaxed
Model 4-1 subproblem | 4-1 (first stage 1% subproblem
(first stage 45 model 4-2, | min) model 4-2
min) (first (first stage=15
stage=45 min)
min)
# of 165,601 165,601 165,601 165,601
variables
# of 85,971 68,833 75,315 68,833
equations
# of non- 859,393 496,225 3,451 496,225
zero
elements
Solution 122.507 2.844 (per | 16.094 2.438 (per
time iteration) iteration)
(seconds)

Table 4-2 Size of side constraints

Size of constraints

Value in the test proble
with 45 min- first stage
interval

m

stochastic sector
capacity

# of scenario&x # of links
(i,))x # of time intervald

2x46x20 = 1840

airline total routing | # of airlines|U| 4
cost constraints
non-anticipatory # of flights|F|x # of time 144x3 = 432

constraints

intervals in the first time
interval T
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Table 4-3 Computing time and solution quality for dfferent types of relaxation (first stage 45
min)

Model Computing time, unit: Solution quality in terms
second (percentage of | of percentage of
time compared to original Z"%(x)/Z(x*)

IP formulation)

A. Original IP formation 122.507 (100%) 100%

B. IP with NAC + Equity | 6.234 (5.09%) 90.73%

constraint

C. IP with Capacity + 14.343 (11.71%) 93.43%

Equity constraint

D. IP with Capacity+ NAC| 13.063 (10.66%) 95.05%

constraint

E. IP with all three-side 3.000 (2.45%) 92.68%

constraints being relaxed

F. LP with all three-side | 2.844 (2.32%) 90.73%

constraints being relaxed

Table 4.2 shows the number of constraints for each set of sideatotsstm
general, the airline-specific routing cost equity requiremsmtesponds to the
smallest number of constraints. On the other hand, the size of fioctapacity
constraints is relatively large, but it can be dramaticallgreased when more
scenarios are needed to enable a realistic stochastic gaggcesentation. The size
of nonanticipativity constraints is highly dependent on the number offligtats and

the length of the first-stage decision time horizon.

Table 4.3 aims to systematically examine the computing tinoke salution
quality of different relaxation models. The quality of lower boundselaxations, in
this research, is measured by the percentage gap betweererablound estimate
Z'B(x) and the corresponding optimal value Z(x*) for the total sysiéde cost,

where x* is the optimal solution. With the flow balance constraintshalrelaxations
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only need about 2% to 10% of the execution time for the original Iteeh{®odel

A), but provide approximation solutions within 10% of the optimality gap.

For three sets of side constraints, an interesting question is \gbic of
constraints is the “hard” constraint to be dualized in order to emdialetive model
reformulation. By relaxing each group of side constraints indiviuaklaxed
models B, C and D in Table 4.3 take less time to find their own olpsatations.
Overall, the capacity constraints are still dominating “hawtistraints, as Model B
(with the capacity constraint being relaxed) uses the least to solve. For
nonanticipativity constraints and equity constraints (considered tesggcin
Models C and D), both models take about similar CPU time and ajengimilar
solution quality gaps around 93%-95%. In particular, Model D with capacity
NAC constraints provides the tightest lower bound estimator (95.05%g taking
about 10% of the solution time compared to the original IP Model Anvestigate
why the limited 4 equity constraints in Mode D still lead togaiicant solution gap,
we vary the values of u), which is an air carrier-specific threshold of average
routing and ground holding cost per flight. The current setting of 105%e cfytstem-
wide average routing and ground holding cost is indeed very difficuatisfy,
which requires seamless corrodination and reassignment amongprdifearlines.
When increasingd(u) to 120% of the system-wide average, these 4 constraints
become much easier to solve, and the relaxed Model D also rdesti¢san 2% of

solution quality gaps.

The linear program relaxation in Model F shows a marginal advarcaer

integer programming Model E, as both models reach similar solutipa géh
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comparable computational time. This might be explained by theuoiadodularity
properties associated with the network flow balance constrainthvdmecls to many
integral solutions from the linear program reformulation and longeeps for the
branch and bound algorithm to solve the fractional solutions to meet #geiint

constraints.

Among all the possible relaxation models, we select Model Dwil
Capacity+ NAC constraint, and Model F: LP with all three-sidastraints being
relaxed, for further examination in an iterative Lagrangiaraxeglon solution
process. Figure 4.3 shows the estimation quality of our proposed lmywerds
compared to the optimal solution obtained by solving the IP model P4.1. As expected,
the Lagrangian relaxation-based lower bound rule iterativelgases the estimation
value, and, in general, marginal improvements become insignificantdaiterations
for Model D as the relaxed subproblem, and 12 iterations for ModeltRkearelaxed
subproblem. The maximum achievable Lagrangian lower bounds from tthese
reformulations are within 5% of the optimal objective function valyec@sidering
the average computational time per iteration, using computatiefétlient Model F
as the relaxed subproblem is more beneficial overall, as i$ t@keut only 65% of

total CPU time to reach the same level of solution quality.
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Figure 4-3 Estimation quality of proposed lower bounds comparéd to the optimal
solution obtained by solving the model P4.1

4.4 Feasible Solution to Original IP

Another practical issue is how to generate feasible solutions bagée final
solution from the relaxed model. For example, in Model F with akethside
constraints being relaxed, there are still a few time sWisre the number of flights
exceeds the reduced capacity on FCA, the first-stage solutibmao different
scenarios could have different values, and some airlines have ramthground

holding costs which are significantly larger than the system-wide average

To quickly generate a solution that satisfies the relaxedcitgp@onstraints,
we start with the resulting Lagrangian muItipIiexfg,(k, t) from the last iteratiom,
and further increase the penalty for using over-capacity rseci@ construct the
unique solution for the first stage decision, we use the fagiessolution from the
worst case scenario directly for each flight so that NA@hstraints can be

automatically satisfied. By fixing the first-stage soluttonthe worst case decision,
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we can solve optimally for each scenario and obtain the feashléons for each
flight. It should be noticed, that worst case solution in the fiegjesmight lead to too
much freedom in terms of sector space satisfaction in mo$y klses (or in non-
worst case scenarios), and this heuristics might be ineffee@specially when the

time horizon in the first stage is extremely long.

When Model B, C or D can be used for a given problem size, the issue
becomes easier as the solution can be only infeasible to one c@tsbfaints. In
Model D, the resulting solution from relaxation model offersasitde solution with
respect to the NAC and capacity constraints. By increasing tpeoal equity
constrains, an upper bound of the optimal total system-wide cost cdotdieed with

a very small relative solution quality of 2.49%.

Overall, under tight equity constraints, it can be challenging#oa heuristic
method to construct a feasible solution, as the tight equity constta@mselves
might not ensure the existence of feasible solutions. We should also rectigtithe
equity constraints are soft constraints, and it is relativedy &amodify or relax the
equity constraints to correct the infeasible solutions. In practine can first
measure the degree of equity constraint violation in the currdatiosy and
accordingly relax the equity constraints iteratively to obtampromising solutions.
In this chapter, we do not consider complicated heuristics to enfbecequity

constraints, and various related heuristic rules will be discussed in Chapter 5.

In practice, it is not straightforward to consider the equity caimgtrfor
airlines with a single flight, especially when the proposed op#tiun model is

applied for a single day or short optimization horizon. In this case,can apply a
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randomization scheme or provide an exemption policy to reduce possitnaeint
bias. On the other hand, an extended optimization model can be develdjodé t
into account the rerouting and ground holding decisions from individual days, an
evaluate the equity measure across multiple days in a cumuiagiven. By doing

so, we can also smooth the penalty function on airlines with limitedauaf flights

and avoid the adjustment bias.

4.5. Conclusions

This chapter models and solves an integrated flight re-routing aeddtiy
problem on an airspace network. Specifically, the optimization proisl@oncerned
with a network of airspace sectors with a set of waypointeenamnd a set of flights
belonging to different airline companies. The goal of the optimzanodel is to
minimize the total flight travel time subject to a set @t routing equity, stochastic
and assignment equity requirements. A time-dependent network flowaprogng
formulation is proposed with airspace capacities and rerouting dquigach airline
company as side constraints. A Lagrangian relaxation based methsetl to dualize
these side constraints and decompose the original complex protitem $sequence

of flight rerouting/scheduling problems.
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Chapter 5: Assignment Problem in Long-term Airffixit
Allocation

This chapter aims to study the long-term airport slot assighpreblem, with
a special focus on the equity issue across different airecariiVe first review the
background information using an example at LaGuardia Airport, amdpiesent a
multi-objective integer programming model in sections 5.2 and 5.3 to optinoith
system efficiency and air carrier equity. Alternative miedad heuristic algorithms
are developed in sections 5.4 and 5.5. The chapter is concluded with camnpltat

results.

5.1 Background Information on Slot Allocation

How to allocate airport landing slots to competing airlines ha®rkdally
been a controversial issue at many airports. For example, atakdi@ Airport
(LGA), a High Density Rule (HDR) first went into effect 968, in which the
incumbent operators are the “owners” of slots. On the other hande & ‘uslose it”
rule was established so that returned slots can be put into a poedlifocation if the
slots were not used 80% of the time. Since 1985, under the HDR, alréimeseen
able to trade slots in a secondary market, but such activitydwdised over the years
(Gleimer 1996). Between 2000 and 2010, the “use it or lose it” ruszdda apply to
the N.Y. area airport, and it was replaced with single caps on operations.

In 2000, the U.S. Congress enacted the Wendell H. Ford Aviation Invgstme
and Reform Act of the 21st Century (AIR-2RJior to AIR-21, LGA handled about

1,050 operations per day (spread over about 16 hours). Within seven months after
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AIR-21, the number of scheduled operations had climbed to about 1,350 per day (i.e
a 28.5% increase). Because of the resulting levels of delays andlladons, the
FAA limited the number of slot exemptions using the “slot lottengchanism to
bring the number of scheduled operations per hour down to 75. When planning a
phase-out of the HDR, different authorities, including the FAA andDifiee of the
Secretary of Transportation (OST), recognized the possikilgly there could be an
increase in congestion and delay at the affected airports. /@ast several years,
various market-based mechanisms have been proposed to alloctee tapacity at
LaGuardia. Several new ideas had been suggested to alleviatardat problem in
particular, expansion of airport infrastructure, confiscatingescentage of each
airline’s slots, mandatory use of larger aircraft, a ‘cotigesfee’ for arrivals or
departures during high traffic times, as well as slot auctionsveier, LaGuardia
cannot realistically expand its runway infrastructure bec#@uberders on Bowery
Bay and Flushing Bay.

In November 2004, the National Center of Excellence (NEXTOR) coeduct
a 2-day strategic simulation experiment to measure airisponses to a variety of
congestion pricing fees and administrative rules. In February 200XTQE
conducted a second strategic simulation to examine how an auction coattelbe
used to allocate capacity. There are many issues to be addrpese to
implementing an auction of take-off or landing authorizations &uaadia. To name
a few, the notion of incumbency; associated property rights anddiinaition, if any;
the impact that auctions may have on airport revenues; predigtaifiihe auction

outcome; the impact on small communities; and the financial ingrathe airlines
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and their customers. On the other hand, several advantages to tbe methanism
were also explicitly recognized in the discussion. For exampldjoascrely on
markets, which are more robust and responsive to industry changes than
administrative regulations and seem to allocate scarce resdassearbitrarily than

allocating slots under an administrative solution (such as a lottery).

Recently, under a proposed rulemaking, the FAA proposed to attath f
lifetimes to existing slots authorized. Additionally, expired landshgfs would be
subject to reassignment, using a marketing mechanism, such tes).atrterested
readers are referred to a recent report prepared by Bdll(@005) on an overview of
auction use and auction design, as well as vaogtiens for controlling congestion at
LaGuardia Airport after December of 200Bhe expiration and reallocation of slots
should drive airlines to put slots they hold to the best possible gaeidgethe slots
would no longer represent an indefinite investment interest. The regallotation
process also would provide new entrant airlines and incumbent awisbsg to

expand service at a particular airport the opportunity to acquire landing slots.

5.2 Problem Statement for Long-term slot allocation

We first start with the formal problem statement and key agsons of the
long-term landing slot assignment problem. In this special castheofresource
reallocation problem, the FAA would limit the number of schedulaeghfflarrivals
and departures at a major airport. For instance, Monday througty Frata 6:30
a.m. to 9:59 p.m. (peak hour) and Sunday from noon to 9:59 pm would have a ceiling

on hourly operations. In general, slots are created according toothly limit on
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operations in terms of the number of scheduled arrivals and degasarthat these
slots would be allocated to carriers at the airport based on bisgage. A few slots

can also be reserved for general aviation.

Assumption 1: The assignment problem under consideration only addresses
arrival slot allocation. ,If an airline obtains an arrival séaty at 8:30am, that airline
can schedule a paired departure without any restriction. Howe\usr,p#iring
assumption has certain limitations and can be studied in the fusearch. For
example, flights are most likely to be scheduled compactly tamize equipment
and crew efficiency, and a departure slot from the flight ortgigaairport is heavily

dependent on its demand for an arrival slot at the flight's destination airport.

Assumption 2: If the departure arrangement by an airline caumsegotential
capacity issue in a certain hour, a departure time window cansigmes to each
landing slot to ensure the balance. The above example can bigechéaliallow the

carrier to schedule a departure between 9:15am and 10:15am.

The problem could be illustrated in the following three-dimensional
assignment plot in Figure 5.1. During each hour (along the x tinsg #xe current
number of slots that are operating needs to be controlled undeapaeity level (in
the vertical z axis), and each slot should be assigned to areaauith a determined
slot lease term (along the y axis, e.g., 1 yr-10 yrs, only cauftom the fourth year

when reallocation takes effect).
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X axis: hour assignment: t=1, ...,
Y axis: length of lease: years 1-10
Z axis: total number of slots

Figure 5-1 lllustration of long-term airport slot allocation problem as a three-
dimensional assignment problem.

Overall, in the proposed assignment, each carrier's holdingetefvgould
satisfy two conditions/constraints: (1) the average “life” andevaif the slots would
be approximately the same for all airlines; and (2) expiratibslots would be
staggered so that no airline would lose a disproportionate number oinskbotsiven

time period.

It should be noted that, landing slots in different hours have differem¢sal
In general, landing slots in early morning and late afternoon, i.e., lpmak, have
higher values than the slots in the middle of the day. In other wiw®xpiration

dates of the regular authorizations in each hour would be assigned as follows.
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(1) Capacity limitation: the number of slots is equal to theageenumber of
“slot” operations held under the HDR or subject to a predetermirgtity in each

hour time period;

(2) Equity among carriers: the average remaining life foslats is roughly

5.5 years or a similar value if a time discount factor is applied,;

(3) Minimal service interruption (evenly distributed reallocationwally): the
total years of the remaining life among all slots would béridiged so that 10

percent of the total slots at the airport expire each year.

5.3 Integer Programming Formulation

In this section, we present several integer programming modelsaghgn
“life” or lease to landing slots at a major airport to achidve system optimal
capacity utilization, equity among air carriers and mininaabise interruption as
much as possible. Generally, multi-objective programming involves cimdlic
objectives, so it is possible that not all objectives can simultalyeoesch their
optimal levels. Recall that multiple solutions are generatedhapter 3 so as to
construct Pareto optimal tradeoff curves. Alternatively, withinsiagle utility
maximizing framework, this section focuses on how to combine differbjective
functions together, and then compare different resulting models antlpdssiristic
algorithms.

The notation and decision variables are defined as the followingtinbeof
day is divided into a finite set of time periods of equal durationgfample, 1 hour,
denoted byT). This formulation considers the slot lease assignment time window

from 7AM to 10PM. The time interval can be one hour without loss of generality.
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Subscripts:

index of air carrier,

k slot lease lengtrk=1...10 years,

t time period of dayt = 1,2, ...T (e.g. 7am-10pm during a day).
Parameters

St number of slots carriegrowns in time period,

H; targetaverage lease (slot years/slot) for time petjod

Ct number of available slots with lease lenkinh time period,

N; number of slots carrierowns in all time periods,

Vi value of a slot in timé

TA  targetaverage slot value for carrier

TT;  targettotal value for carrier,

o weight coefficient for max slot lease percentage deviation,
B weight coefficient for air carrier slot value deviation percentage.

Decision Variables:

Xikt

Pit

Wt

/4

number ofk-yearslots assigned to airlingn time period,
average slot lease percentage deviation for airlingéime period,
max average slot lease percentage deviation in time geriod

maximum allowable deviations from target.

As described earlier in this section, there are several possible objéctikiess

problem. We start by definition for each airline
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> (kx Vg
Average Slot Value (ASYis ”‘T , we can now define several

i
equity metrics.

1. Overall average slot value deviation from target:

Z(kx\/txkt)
ADG = ASY- TA:”‘T— T/

2. Overall total slot value deviation from target:

NiZ(kXV X0 )
06 = X (ko)

k.t

Air carrier performance equity metrics:

1. Equity metric weighting air carriers equally

EMA= Zmax(O,ADQ )

2. Equity metric weighting by air carrier size

Z[ N, x max(0,ADG )|
EMB=- Z N

3. Equity metric weighting bgquared roobf air carrier size:

IZ[\/WIX max(0,ADG )}
EMC = Z\/N_I
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To assign slot lease equitably in terms of both slot lifetime length and total
value for each airline, one objective could be defined as the weighted sum of an
hourly metric and EMA, as described in the following model.

Model: Slot Assignment Problem (SAP):
min  a) y,+BxEMA
t
=a) y,+fx Y max(0,ASY- TA) (5.1)
t i

Z(kx\/t)gkt)
=a)y, +ﬂz max(O,"’tT—TA,\)

Subject to:
Capacity constraint:
Z)gkt <G Vkit (5.2)
Supply constraint:
D% <SS Vit (5.3)
k
Min-max definitional constraint:
Y2 Vit (5.4)
D(kxx) SH-> (k< )
p, >1-- = . Vit (5.5)
t S H S H

In objective function (5.1), the first termz Yy, is the summation of the
t

maximum slot lease percentage deviation over different timedgerEssentially, this

single-hour metric aims to ensure slot life equitably amongaiters in each time

Z(kx\/t %)
period. The second terpd) max(O,“T—TA ) is the summation of overall

airline slot value deviation percentage (i.e., equity metric ENFAJ.a typical multi-
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objective optimization program, coefficientssand f are the weights that can be
adjusted depending on the importance of the two metrics. Dependihg dedision
makers’ specific consideration and the other available alternamiggics, the
problem could focus on air carrier performance, e.g., air catoelesase percentage
deviation and air carrier slot value percentage deviation, or on haethc. Without
loss of generality, the following section will illustrate @ighms and model

improvement based on Eq. (5.1).

There are several challenging issues in solving the above model:

1. Symmetry in time values: One symmetry problem comes fromdb#icients
if no time discount is applied for the lease type. For exarf@@line a has 2
slots in hour 7, given the target average lease term = 5.5, leaSeand 6
years and leases of 4 and 7 years have equal values. To find thaloptim
solutions, a typical integer programming solver needs to maisyammetric
nodes in the branch-and-bound tree, leading to large solution times.ako bre
the symmetry in the model, a time discount factor could be appliesl .will
be further discussed in the following section.

2. Complicated constraints Egs. (5.4) and (5.5): With only constraints (5.2) and
(5.3), the problem is a simple transportation problem, however, with
constraints (5.4) and (5.5), the problem becomes more general (profoundly
difficult IP).

The above issues make the problem difficult to solve optimally within
reasonable computational time. In the following section, an alternaéiyef solving

the problem to near optimality will be described.
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5.4 Sequential Optimization Models

Considering the complexity of solving the above model with multijphes t
periods, this section proposes to decompose the problem into multiple-lsougl
optimization subproblems, as shown in Figure 5.2. Essentially, thigrsgjumodel
iteratively applies the single period model to each time windod then adjusts
targets after each iteration to achieve global balan®ofgective function). The
single-hour optimization problem considers an hour at a time, saddhision
variablesxi; are reduced from a three-dimensional vector (air carriease lengtlk
and time period) to a two-dimensional vector (air carrigrlease lengttk) for a
specific timet. The assignment results from the previous time periods to thenturre
time t is provided as a result of solving the same subproblems at the préweus

periods, sayr =7, 8, ...,t-1. That is, for the single-hour subproblem at subject tjour
assignment result§ are given forz=1, 2, ...,t-1, and we can use a new variable
vectorx, to represent the numberlofear slots assigned to airlinen time period.
Single-Hour Slot Assignment ProbleBiHSAR:

min Y, (5.6)

Subject to:

Capacity constraint:

2% <G, vk (5.7)

Supply constraint:

gasa vi (5.8)

MinMax definitional constraint:
Y2 p Vi (5.9)
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SHxR+Y (k< %)= s HV (5.10)

Constraints representing maximum allowable deviations from target:

> (kx %) ZZV&

2 B -TA)<y (5.11)

It is easy to observe that the new constraints (5.7) and (5.8)ecaewed as
the supply and demand constraints in a standard assignment problerhe anih-t
max definitional constraint can be handled in the post-checking stage. The setond a
third terms in Eq. (5.11) are constants since the other sub-problenoisslate fixed
except for the subject hour that is solved. In Eq. (5119 ,the threshold used in the
airline metric, e.g., 5% meaning the maximum allowed airrier deviation
percentage. After determining this threshold and obtaining thef l&tlines with the
metric exceeding the threshold, Eqg. (5.11) is dynamically addduetomprovement
problem. For air carriers with more deficits from their tésgéhe threshold could be
slightly altered so that the air carrier could be compensated im the improvement
procedure. The scheme used here is similar te-ttenstraint method discussed in
Chapter 3. The new single-hour sub-problem becomes much smabezeine.g,
when the time period includes 16 hrs, the sub-problem is 1/16 site afriginal

problem, which dramatically reduces the computational time.
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Figure 5-2 Sequential optimization models illustration

Essentially, there are two ways of implementing the Sequential optilomza
procedure.

1. Solve each hour chronologically using equity measure 1 as the objective
and adjust air carriers’ target after solving each single hour problem.

2. Obtain an initial feasible solution, and update chronologically by adjusting
airlines’ target hour by hour.
Accordingly, we propose the following two heuristic algorithms to the slot
assignment problem.
Algorithm 1:
For iterationn=1 toM
Step 1: Solve a single-hour problem SH$ARh the hourly metric objective (5.6)

subject to the air carrier metric threshold (maximum allowebigations from target,
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i.e. y) constraints (5.11), and then calculate the deviation from the tslggeyear

value and other equity metrics for each air cairier

Step 2: Compare each air carrier’s loss or deviation with cespehe threshold (a
constant set at the beginning, e.g., 5%). Adjust air cartemget TAin the next hour
if the threshold is reached.

Step 3: Repeat step 1 for the following hour until all hours have lmeunlated at

least once and no air carrier’s loss or deviation exceeds the threshold.

End for

Stop and output final solution.

Another way of utilizing the characteristics of the hourly problem can be
described in the following algorithm.
Algorithm 2:
Step 1: Obtain an initial feasible solution by solving a single-objective ¢hoatric)
problemSAPwithout considering the air carrier performance objective function.
Step 2: Starting from the first hoyrcalculate air carrier deviatiodDG or TDG in
the current solution.
Step 3: Choose the max air carrier deviation as{A®G}, and compare it to the
deviation threshold. If no air carrier metric exceeds the threshold, continue for the
next hourt+1. Otherwise, hold the solutions in the other hours to be constant, add air
carrier deviations exceeding threshold as additional constrainsolrdthe resulting

single-hour problensHSARto obtain improved solutions.
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5.5 Priority-Based Paired Allocation Heuristic Aldgihms

To achieve reasonable fair slot assignment results, thisisetins to explore
alternative heuristic methods by enhancing the commonly used rohimdmethod
in the field of computer resource scheduling. In general, the rald-procedure
alternately allows claimants to choose among resources lefif endonsidered to
embody the fundamental fairness principle. In our study, we i@mdund-robin
method as a heuristic for solving Integer Programming, and fuehleance it to
allow interactive participation by air carrier representatives

There are a wide range of scheduling algorithms availablealfocating
scarce resources, such as first-come first-served schedudimagtest job first
scheduling, priority scheduling and round-robin scheduling. In particularptimel-
robin scheduling method has been widely used in time sharing CRe&msysin
which a small unit of CPU time resource, calléoine quantum; is defined. Each
process/user only obtains a small slice of time quantum (tigpit@-100 million
seconds), and time slices are assigned to each process/ugaalip@rtions and in
circular order.

Let us consider the slot selection for a particular subject hour, where air
carriers can be viewed as slot users and the assets to be assignedaith slots
different lease lengths. We can assign each air carrier to one stohatfeom the
pool of available slots. By doing so, all air carriers are handled without priltitis
round-robin scheduling method, which can lead to the following key properties

related to max-min fairness, as illustrated in Figure 5.3.
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(1) Slot resources are allocated to air carriers in order of increa=imgnd,

such that no users receive more than requested.

(2) Users with low demand will receive all of their requests, and usdrs wit

high demands will not have all their demand satisfied but will evenly split the

remaining slot resources.

Satisfied slot
request
quantum

Slot requests

Unsatisfied
slot request
quantum

\4

Airline A Airline C Airline B Airline D
Figure 5-3lllustration of round-robin scheduling method

If a simple round-robin mechanism is used, each air carrier charae to
select one preferred slot in a cyclic order, but it may not bealse if the value of
slots (with different lease lengths) varies widely from tmanother. The remaining
challenge is how to create more balancstbt request quantuimto ensure fair
assignment across different air carriers, because the long4dt assignment
problem under consideration also involves an additional dimension of slet leas
lengths (e.g. 1 year vs. 10 years). For example, a long-ease (e.g., 10-year lease)
would be favored over other short-term leases (1 or 2 year leadbijs ctase, the air
carriers which can select slots early will alwayssefavored slots with higher value

first, and the leftover slots will have low values. To further ensammess, the
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proposed enhanced round-robin algorithm first creates a number of bineles
resource quantum), and each bundle includes one or two slots and the corngspondi
average lease length is closer to the average lease lenglhdbthe slots available.
By doing so, each bundle will have similar or equal value. In anotbedsyweach
time an air carrier A chooses, if A is “owed” 2 or more stben A chooses a pair of
slots from among a specific list of “balanced” pairs, othenaisengle slot is chosen.
For example, if an air carrier needs to request 7 slots, thessi4 time quantum
which can select 2, 2, 2 and 1 slot(s), respectively. If theadlaiklot leases are 1-10
years, without time discount factor, the average target sk k@ould be close to 5.5
years. Depending on the size of request in a quantum (one slot \wots)pa single-
slot request quantum will be assigned a slot with a leasehlendt years or 6 years,
while a two-slot request quantum will be assigned to a twoeslptbination of (1

year + 10 year) or (2 year + 9 year).

Algorithm 3: Enhanced round-robin assignment algorithm

Step 1: (Initialization) For subject hoyrfor each air carriar, calculate the target slot

PAEIERED WA
valueTA andactual average slot valugSA = & N =t k for the

beginning of assignmeftl to the current hour Calculate the difference between
TA andAA as max{0AA-TA}, according to Eq. (5.11).

Step 2: (Creating time quantum for slot selection) Divide airie€rs’ requests into
selection time quantum. At each time quantum, an air carrier can seleasta? slots

as a bundle.
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Step 3: (pre-sorting time quantum) Use one of the following priority rules téhsort
selection time quantum in the queues.
1. If an air carrier only has one slot request, the associatedgtiaretum will
be placed first.
2. Else if an air carrier has a large slot value deviatioalsA\A-TA), then

this air carrier will be placed in the beginning of quantum queue.

Step 4: (assign slots to quantum) For each time quantum in the gelegéasailable
slot(s) sequentially. If two slots are requested from a time quantunb(aslie), then
a combination of two slots with the average target leaseherigse to the overall

average target lease length will be selected.

Step 5: (Update) Update the actual assigned slot values in each slot andigraldas

slot values. It =T, stop, otherwise advance time cldek+1 and go back to step 1.

To further improve the performance of heuristic methods, the foltpwles
are proposed. The growing deviation metrics will be introduced first.

The growing deviation value (GDV) metric is defined as:

t-1

ZZ(kXVrX %er )

GD\/i’t — =1 k N _TIAI\

The growing deviation slot year metric is defined as if 5.théstarget slot

lease
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Heuristic Rule 1. After running each hout sequentially, calculate target
value per slot based on past assignment for each air cageethis target value per
slot in the following hour, deviation metrics are based on the GDVif eme air
carrier got lower than target assignment for the alreadigraesd hours, the new
calculated target value per slot will be adjusted higher to make up for the.deficit

Heuristic Rule 2 Slightly different from Rule 1, adjust target value aftetheac
subgroup assignment instead of each hour.

Heuristic Rule 3: Slightly different from Rule 1, use GDY instead of GDV

Heuristic Rule 4: Slightly different from Rule 2, use GDY instead of GDV

5.6 Computational Comparisons amongq Different Medeld Approaches

We first explain the experimental and computational settingkywietl by
comparisons of the performance of different models. Since dailynslobers vary
slightly from day to day, the test data set in this studgmsttucted from a single day
(March 18" 2005) of LGA’s Aviation System Performance Metrics Offichiline
Guide data, which contains departure/arrival slot information for eadmai As
discussed earlier, departure slots and arrival slots are a$sarbe properly paired,
so the following experiments only focus on assignment of arrigtd,dor simplicity.

It is assumed that available slot leases are 1-10 yeaengthl and every year the
discount factor is 0.97, i.e. a 2-year slot lease will be wai¥th = 1.9592.
All the optimization experiments are conducted on CPLEX 9.1 from SUN

workstations, and the paired-assignment heuristic algorithm (hiigo8) is coded in
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C++. CPLEX cannot solve the complete formulation of the Slot Assghiroblem
(SAP) with an analysis horizon of 16 hours, 21 airlines and 35 — 40 slotsnger
window (hour), and an “out of memory” error message was encounteeeceveral
days of execution. The sequential optimization model, presented imnséct,
obtains results within a reasonable amount of time, and the pas&phaent
heuristic algorithm finishes in a few seconds.

Figure 5.4 shows the number of slots in each hour for the givemwtiayn the

reduced capacity is set to 36 per hour.
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Figure 5-4 Slot schedule in each hour and reduced capacity 86 flights per hour

Results of single-objective (hourly metric) optimization model

The single-objective optimization model aims to minimize the mar air

carrier slot year percentage deviation in each houn: Z y, . Figure 5.5 shows the
t

Z(kx)gkt)

percentage of deviation for hour y,=max| 1-~———| , corresponding to

S H

constraints (5.4) and (5.5), is less than 7% from hour 7 to hour 22. dirlates’
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Z(kx\/txkt)

performance is measured in termsADG = ASY- TA=”‘T— T4, that is,

i
the ratio of each airline’s actual slot year vala&/, and target slot year valuésy,
Figure 5.5 shows that air carrier slot year value deviatmm the target could be as

large as 15%.
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Figure 5-5Air carrier specific fairness measure from single-bjective optimization model

We then examine the results from the sequential solution procedargnds
from the feasible solution obtained by solving the individual hourly proltesolve
the min-max problem, the sequential optimization procedure aimsigoove the
initial feasible solution and adjust each airline’s goal slighflye results in figures
5.6 and 5.7 show the hourly metric change and air carrier perfoencaange after a

single round of improvement.
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Figure 5-6 Hourly deviation changes from initial feasible soltion to improved solution
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Figure 5-7 Air carrier performance change from initial feasible solution to improved solution

In terms of hourly metrig;, which is the maximum of deviation between the

goal and each air carrier's total number of assigned slot pesrentage, the

improved solution should be no better than the initial solution, as ttke teas been

optimized for each single hour However, as shown in Figure 5.6, the improved

solution can reduce the range of deviations across different heith®ut

dramatically affecting air carrier specific fairness measurd-igure 5.7.
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Figure 5-8 Airline deviations from target value per slot for heuristic methods

deviation from the target average value per slot of each aiercamong three
heuristic methods using different rules. Figure 5.9 shows the deviabim the target
total slot year values among these heuristics methods. Obviallsligree heuristic
methods have similar performance based on the above fairneasreseddoreover,
heuristics 1 and 3 tend to relieve the target value per slottdefiairlines with more
slots. Both heuristics 1 and 3 use a balanced start rule, so thairfgjlsection will

add additional rules and further compare the heuristic methodstivaitsequential

We now further compare the proposed heuristics. Figure 5.8 depicts the

optimization method.

heuristic rules through Figures 5.10- 5.12, we observe that the sefjpemtidure
outperforms heuristics methods in terms of both the slot year haatyc and slot
value hourly metric. This can be explained by the fact thaseqeential method has
an improved solution based on the optimal solutions for each single hdarms of

individual air carrier performance, Figure 5.12 also demonstrateshihgdequential

By comparing the sequential optimization model and the proposed four
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model produces a smoother air carrier deviation series, whichesnplore equitable

resource assignment.
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Figure 5-9 Air carrier deviations from target total slot year values for heuristic methods
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Figure 5-10 Hourly max deviations from target (using slot valus percentage) from heuristic

methods and sequential optimization models.
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Figure 5-12Air carrier performances in heuristic methods and quential optimization models

5.7 Conclusion and Future Research

This chapter developed a long term slot lease assignment .neledral

models and algorithms are developed to solve the slot assignmengnprebih
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equity consideration. The models and algorithms have been numeeewallyated
extensively on hourly metric and air carrier specific nestrlUsing the data from the
LGA airport, experiment results show that the proposed sequential sades the

problem with very good solution quality with reasonable running time and resource.

The proposed models can be improved further with greater flexilaht
different needs. The slot assignment can take into accountraargainput as they
are the parties that are influenced by the final decision. Altihthey proposed round-
robin heuristic algorithms do not outperform the sequential optimizatmael based
on experiment results, they still provide an option of adding fletibih the
assignment. For example, instead of making centralized assigrirased on the
values that we measure, a round-robin or a different intergatoeedure could be
adapted. After calculating the deviation and determining the assngronger, air
carrier could select their own preferred subgroup bundle subjectetiainc
restrictions. Furthermore, the paired assignment could be extem@th4subgroup
cases to enable more choices to further improve solution quality. thasmodels
could be further extended to multi-day scenario, and each day’s daveatuld be
compensated by the following day and so on. The models and methods diseussed
this chapter in fact provide a starting point and possible directorritie long term

slot lease assignment.
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Chapter 6: Conclusions and Future Research Directio

Economic development leads to increasing air traffic demand vuhitlrn

poses increasingly stress to the National Airspace Syg@ix®). As a result, air

traffic congestion is expected to remain as a top concernhéomrdlated public

agencies and private corporations.

Table 6-1 Summary of modeling elements and contriliions

\J

Chapter 3 4 5

Topic Airspace sector-level Airspace rerouting | Airport long-term
optimization and ground holding | slot assignment

decisions

Decisions to | Offload excess Make flight-specific | Assign airport long-

be made demand from routing and ground | term slots to
different competing | holding decisions different air carriers
airlines in the
congested airspace

Models Bi-criteria and- Dynamic multi- Alternative models
constraint integer commodity flow for incorporating
programming models, optimization model | equity metrics into
network flow models assignment
with side constraints

Algorithms Integer programming Lagrangian Sequential paired
solution methods, relaxation to dualize | assignment heuristi
efficient network stochastic capacity, | algorithm that
flow solution non-anticipatory and| considers airline-
algorithms with side | equity assignment | specific equity
constraints constraints metrics

Key Construct and tested| Enable equitable Adapt round robin

Contributions

alterative network
flow programming
models for the
resource allocation
problem with equity

considerations

assignment in flight
rerouting and ground
holding decision in a
stochastic capacity
environment

scheduling principle
for improving
fairness measures
across different
airlines

As summarized in Table 6.1, this dissertation develops a number of model

reformulations and efficient solution algorithms to address resoallogation

problems in air traffic flow management, while explicitly aenting for equitability
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objectives in order to encourage further collaborations by diffestakeholders,
specifically air carriers with competing objectives when usgagpacity-limited

airspace networks.

6.1 Sector-level Formulation with Equity Consideyas

In Chapter 3, we discuss how to model the Flow Constraint Ar€&)(F
decisions and how to solve the corresponding airspace congestion proldersai-
time application (with a relatively short time period (one to several houGN.AFP
is currently being used as a strategic approach to solveirdga@e congestion
problem due to demand/capacity imbalance or severe weathetiosituaut the
current FCA/AFP approach does not consider the entire congesi@diaequity

among air carriers when choosing offloaded flights.

After discussing some important modeling issues, e.g., exempticn ante
offloading bias among airlines, Chapter 3 first develops a lr@itoptimization
model and &-constraint model to offload excess demand from different competing
airlines in the congested airspace when the predicted tdfitand is higher than
available capacity. Additional network flow-based reformulations, asatirculation
models and the “flight on the node” model, are also developed for botlke-siecjior
and multi-sector cases. Computationally efficient network flow rsodéth side
constraints are developed and extensively tested using datasstedbitom the
Traffic Flow Management Systems (TFMS) database. Represeniareto-optimal

tradeoff frontiers are consequently generated to allow decisakens to identify

113



best-compromising solutions based on relative weights and systemasiclerations
of both efficiency and equity.

The contributions of this chapter is to develop several integer gmging
and network flow programming models to solve the resource allocatiorepratith
equity consideration, in particular for airspace single-sectmaultiple-sector cases.
Both computational running time and solution quality of those models are

systematically evaluated.

6.2 Integrated Airspace Flight Rerouting and Growholding Problem

In Chapter 4, we further model and solve an integrated flight re-gpatid
ground holding problem on an airspace network. Given a network of arspators
with a set of waypoint entries and a set of flights belongmglitferent airline
companies, the optimization model aims to minimize the total flightel time
subject to a set of flight routing equity, operational and saégyirements. A time-
dependent network flow programming formulation is proposed with sectocitapa
and rerouting equity for each airline company as side constraMdseover, to
consider stochastic airspace capacity under severe weather awdive use
multiple scenarios to represent random realizations of predi@pdciies, and
further integrate non-anticipatory constraints to ensure thestaige solutions across
different scenarios have the same values. The routing equityfiised through an
average travel cost threshold (per flight) for individual airiees with a number of

flights competing for the congested airspace.
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A Lagrangian relaxation based method is used to dualize these side atsstrai
and decompose the original complex problem into a sequence of simiggeri
programming problems. If all three sets of side constraintdaaézed, then the
relaxed problems reduce into a sequence of linear programming psobigimtotal
unimodularity properties. By relaxing the coupling constraints betvights, the
proposed Lagrangian relaxation-based solution method can separateiginal
problem into individual flight scheduling subproblems that can be effigi solved
by the shortest path algorithm in an expanded time-space neflfiwlexperiments
investigate the computational time and solution quality gaps of eiffgnossible

relaxations in the Lagrangian relaxation framework.

6.3 Airport Long-term Slot Assignment Problem

In Chapter 5, we develop an initial slot lease assignment modghalsing
out the High Density Rule, the FAA recognized the possibility tthere could be an
increase in congestion and delay at the affected airportsr Afiploring all
possibilities, including do nothing, assigning based on a market methasist
auctions, etc., the FAA proposed to assign the current landing islivéslifzes with
possible capacity reduction. Moreover, the expired landing slots wjecs to
reassignment, and flexible marketing mechanisms, such as auctiamgestion

pricing.

Within a multi-objective utility maximization framework, thishapter
proposes several practically useful heuristic algorithms fototig-term airport slot

assignment problem. Alternative models are constructed to decoitfgosemplex
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model into a series of hourly assignment sub-problems. A new passsgnment
heuristic algorithm is developed to adapt the round robin scheduling gbeirfor
improving fairness measures across different airlines. Computatiesalts are

presented to show the strength of each proposed modeling approach.

6.4 Future Research

Equity in Air Traffic Flow Management

To ensure the fair allocation of en-route airspace resourcdighedperators
and FAA should agree upon equity standards related to constrained eirdpaa
real-time decision environment, future research needs to be cohdacte
systematically quantify the expectation of airlines on the &ot and route
assignment, as well as to dynamic calibration of the behavior Inteliged to
competing agents. With well-defined equity measures, it will paeeviay for rapidly
adapting the equity-oriented resource allocation mechanism in wificl Flow

Management applications.

Sector-level rerouting decisions with equity considerations

The models can be extended to incorporate the airlines’ preference
information. The proposed models are formulated in a centralizedwiggh mainly
highlights the system efficiency side with equitable offloadasgignment among
airlines. It should be noted that, the relative importance of thletslifor each airline
is not modeled and a bi-level structure model can be explored tavuffe control to
the airlines.  Moreover, the computational efficiency of the propos®tels can be

improved in order to meet the requirement arising in the contexial-time decision
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making where the decision should be rapidly modified if the comgesituation

changes.

Integrated-routing and ground holding decisions with equity constraints

This study assumes stochastic sector capacity, but determsestor travel
times, so a natural extension is to allow variable travedgiand stochastic capacity
for more realistic applications. However, because introducing reaw problem
dimensions typically increases the computational complexity cgigeply, it is
undoubtedly vital to develop efficient and effective approximation and dtieuri
schemes. Further research will focus on how to extend a tge-siatimization
model to multiple stages for emerging real-time adaptive mguéipplications. To
search for high-quality solutions under tight equity constraintsmigdt need to
propose alternative reformulations or solution methods to enforce dbgy e
constraints, while allowing exceptions or compromises which should be
systematically considered in a multi-objective decision-makiragnéwork with
multiple agents. As the numerical experiment only tests thygoged algorithm on a
small network, successful applications call for an extensioraaratiaptation of the
current Lagrangian relaxation framework for producing optimalutgwis for

medium-sized or large-scale networks.

Equitable long-term airport slot assignment

The proposed models can be improved further regarding flexibility for
meeting different modeling needs. The slot assignment willitdkeaccount airline’s
input as they are the parties that are influenced by the firasiole. Although,

according to the numerical experiments, the proposed heuristictiatgsrdo not
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outperform the sequential optimization model, they still provide a lpbgsiof

adding flexibility in the assignment. For example, instead of ngattie assignment
according to the values that we measure, a more interactivedpirec could be
adapted. After sorting the deviation and determining the assignonéet, airlines

could select their own preferred subgroup assignment subjeettin restrictions.
Furthermore, the paired assignment could be extended to 3-imeapbcases, where
there will more choices and the solution quality could be further improved. Lsly
models could be further extended to multi-day scenarios, and eachdgayégion

could be compensated by the following day and so on. The proposed models and
methods provide a starting point and possible directions for the isloallease

assignment.
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