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In this dissertation we study two problems that are related to the question of

how to obtain appropriate macroscopic descriptions of a gas from its microscopic

formulation. Mathematically, fluid equations formulate the macroscopic dynamics

of a gas while kinetic equations are used to study the microscopic world. One can

derive fluid equations from kinetic equations through formal asymptotic expansions

like those of Hilbert or Chapman-Enskog. The first problem we study relates to the

justification of the steps in those formal expansions, while the second relates to the

well-posedness of a resulting fluid system.

The first problem we study is that of establishing a Fredholm alternative for

the linearized Boltzmann collision operator. The Fredholm alternative is used in

both the formal asymptotic derivations and the rigorous justifications of fluid ap-

proximations to the Boltzmann equation. Results of this type have been obtained for

collision kernels satisfying the Grad angular cutoff assumption. However, because

DiPerna-Lions’ renormalized solutions for the Boltzmann equation are established

for more general collision kernels, it is interesting to extend the Fredholm property



of the linearized Boltzmann operator to these collision kernels. We show that un-

der a weak cutoff assumption, the linearized Boltzamnn operator does satisfy the

Fredholm alternative.

The second problem we study is the well-posedness of a dispersive fluid system

that is formally obtained via an asymptotic expansion of the Boltzmann equation

[21] as a first correction to the compressible Navier-Stokes system. This system

is degenerate in both dissipation and dispersion. Therefore the theory for strictly

dispersive systems does not apply directly. To prove the well-posedness of this degen-

erate system, we need to study different smoothing effects for different components

of the solution. We show that using the regularization effects including dispersion

and dissipation, this system has a unique smooth solution for a finite time.
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Chapter 1

Introduction

In this dissertation we study two problems that are related to the question of

how to obtain appropriate macroscopic descriptions of a gas from its microscopic

formulation. This has been a central question in kinetic theory since it was founded

by Maxwell and Boltzmann [24, 3]. To have any hope of answering this question,

we need to gain a good understanding of three things:

• the macroscopic dynamics of a gas as a fluid,

• the microscopic dynamics of a gas,

• the bridge between these two worlds.

Mathematically, fluid-type of equations formulate the macroscopic dynamics of a gas

while kinetic equations are used to study the microscopic world. There are various

ways to connect these two types of equations. In this dissertation, we focus on

problems relevant to asymptotic expansions like Hilbert or Chapman-Enskog type

of expansions and the fluid systems derived from these expansions.

In this section, we give an introduction to the two problems studied in this

dissertation. The main results will be presented in chapters two and three.
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1.1 Fluid Regime

In fluid regimes, we will use the mass density, bulk velocity and temperature,

denoted as (ρ, u, θ) to describe the state of a gas. These fluid variables (ρ, u, θ)

depend on the space variable x ∈ RD and time t ≥ 0.

1.1.1 Fluid Systems

If we consider ideal polytropic gases composed of identical monatomic molecules,

then according to the conservation laws of mass, momentum, and energy, a fluid sys-

tem takes the general form

∂tρ +∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρ u⊗ u) +∇x(ρθ) = ∇x · S,

∂t(ρe) +∇x · (ρeu + ρθu) = ∇x · (Su) +∇x · q ,

(1.1)

Here ρe = 1
2
ρ |u|2 + d

2
ρ θ is the total energy density with d being the dimension of

the microscopic freedom of the gas molecules; usually d = 3. If there is symmetry

in the macroscopic motion of the gas, then D < d, otherwise D = d. Here S and

q are the negatives of the stress tensor and heat flux. They are determined by

constitutive relations. If S = 0, q = 0, then (1.1) becomes the Euler system. If we

take into account of viscosity and thermal conductivity, then for Newtonian fluids

(1.1) becomes the compressible Navier-Stokes system with

S = µ
(∇xu + (∇xu)T − 2

d
(∇x · u)I

)
+ λ (∇x · u)I , q = κ∇xθ , (1.2)

2



where the scalar quantities µ > 0, λ ≥ 0 are the shear and bulk viscosity coefficients,

and κ > 0 is the thermal conductivity coefficient. These coefficients generally depend

on ρ and θ. More complicated systems that include additional terms can be derived

from kinetic theory. We will study the well-posedness of one such system in this

dissertation.

1.1.2 Entropy

The notion of entropy is an important thermodynamical quantity for a gas.

By thermodynamics [7], the specific entropy σ = σ(ρ, θ) satisfies the differential

relation

dσ =
d

2

dθ

θ
− dρ

ρ
, (1.3)

that is, ∂θσ = d
2θ

, ∂ρσ = 1
ρ
. Thus the physical entropy density for the system (1.1)

is given by

ρσ = ρ log

(
θd/2

ρ

)
.

The second law of thermodynamics states that, in a closed system, the total en-

tropy for a gas in a nonequilibrium state will increase with time until attaining its

maximum value when the system reaches equilibrium. The mathematical entropy

density η is defined as

η = − ρ log

(
(2π θ)d/2

ρ

)
= ρ log

(
ρ

(2π θ)d/2

)
, (1.4)

which is the negative of the physical entropy.
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To find the equation for the entropy density η, write (1.1) in terms of the fluid

variables (ρ, u, θ) in the convective form

∂tρ + u · ∇xρ + ρ∇x · u = 0,

ρ (∂tu + u · ∇xu) +∇x(ρ θ) = ∇x · S,

d
2
ρ (∂tθ + u · ∇xθ) + ρ θ∇x · u = S : ∇xu +∇x · q.

(1.5)

Then by the differential relation (1.3),

ρ (∂tσ + u · ∇xσ) = d
2

ρ
θ
(∂tθ + u · ∇xθ)− (∂tρ + u · ∇xρ) ,

= − S

θ
: ∇xu− 1

θ
∇xq.

This can be put into the divergence form

∂tη +∇x ·
(
η u +

q

θ

)
= −S

θ
: ∇xu− q

θ2
· ∇xθ. (1.6)

The local version of the second law of thermodynamics implies the right-hand

side of (1.6) must be a divergence plus a nonpositive term. This law is respected by

both the compressible Euler and the Navier-Stokes systems. For the compressible

Euler system, the right-hand side of (1.6) is zero and the entropy is formally con-

served. For the compressible Navier-Stokes system, the right-hand side of (1.6) is

computed as

−S

θ
: ∇xu− q

θ2
· ∇xθ = −

(
µ

∣∣∇xu + (∇x)
T − 2

d
∇x · u

∣∣2 + λ|∇x · u|2 + κ|∇xθ|2
)

.
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Therefore, by the fact that µ > 0, λ ≥ 0, κ > 0, the right-hand side of (1.6) is

nonpositive. Hence, the mathematical entropy is formally dissipated. The fluid

system we study later also respect the second law of thermodynamics.

1.2 Kinetic Regime

In kinetic regimes, the phase space of a single particle of a gas is given by

its position x ∈ Rd and velocity v ∈ Rd at each time t ≥ 0, and the phase space

density function F (t, x, v) is used to describe the gas. The macroscopic mass, mo-

mentum, and total energy density functions (ρ, ρu, ρe) can be recovered from F by

the following relations:

ρ =

∫

Rd

F dv, ρ u =

∫

Rd

v F dv, ρ e =

∫

Rd

1
2
|v|2 F dv. (1.7)

1.2.1 General Kinetic Equations

If the gas considered is composed of identical, monatomic particles and is dilute

in the sense that the total volume of the gas molecules are negligible compared with

the macroscopic volume, then the phase space density function F (t, x, v) is governed

by the kinetic equation:

∂tF + v · ∇xF = C (F ), (1.8)

where C (F ) is the collision term that specifies the type of collisions for the gas

molecules. In most cases, this collision term is nonlinear. For example, the classical

Boltzmann equation has a quadratic collision term. Because the first problem in this
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dissertation focuses on the Boltzmann equation, we give a more detailed description

of this equation.

1.2.2 Boltzmann Equation

The derivation of the Boltzmann equation is based on the following assump-

tions due to the rarefaction of the gas:

• there are only binary collisions, that is, multiple collisions are ignored;

• the states of two molecules are independent of each other before they collide.

Under these assumptions, the collision term in the Boltzmann equation is quadratic

and we denote it as B (F, F ). The equation has the form

∂tF + v · ∇xF = B (F, F ), (1.9)

where B (F, F ) is given by

B (F, F ) =

∫∫

Sd−1×Rd

(F ′
1F

′ − F1F ) b(v1 − v, ω) dωdv1 . (1.10)

Notice that the collision term operates only on the velocity variable. Here F ′
1, F ′, F1,

and F denotes F (t, x, · ) evaluated at the velocities v′1, v
′, v1, and v respectively with

(v, v1) and (v′, v′1) being two velocity pairs before and after the collision or vice versa.

Because we only consider elastic collisions, (v, v1) and (v′, v′1) must conserve both
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momentum and energy:

v + v1 = v′ + v′1,

|v|2 + |v1|2 = |v′|2 + |v′1|2.
(1.11)

The unit vector ω is perpendicular to the reflection plane with dω being the rota-

tionally invariant unit measure for Sd−1. The general solution of (1.11) for (v′, v′1)

in terms of (v, v1, ω) is written as

v′ = v + ω ω · (v1 − v), v′1 = v1 − ω ω · (v1 − v). (1.12)

1.2.3 Collision Kernels

The term b (v1 − v, ω) in (1.10) is called the collision kernel. It determines

specific types of interactions among molecules. For example, the collision kernel for

the hard sphere [8] model satisfies

b(v − v1, ω) = c|(v − v1) · ω|, (1.13)

where c > 0 is a constant.

We also consider the case in which the intermolecular potential V (r) is an

inverse power law with r being the distance between two molecules. That is, the

case in which V (r) is proportional to r−k for some k > 0. For this kind of potential,

7



b has the following form:

b(v1 − v, ω) = |v1 − v|β b̂ (ω · n), n =
v − v1

|v − v1| ,

β = 1− 2(d− 1)

k
< 1.

(1.14)

Notice that β can be negative which makes b singular when v = v1. We assume that

β > −d so that |v − v1|β is locally integrable at the singularity. This assumption is

equivalent to k > 2d−1
d+1

. For d = 3, the condition on k becomes k > 1, whereby the

Coulomb potential is the marginal case.

Notice that the hard sphere case (1.13) also has the form as in (1.14). In

genenral β satisfies the bounds

−d < β ≤ 1. (1.15)

The range −d < β < 0 is called the soft potential case, the range 0 < β ≤ 1 the hard

potential, and β = 0 the Maxwell molecules where there is no v− v1 dependence for

b. The soft potential case is in general harder to deal with than the hard potential

due to the singularity.

Another singularity of b occurs when ω ·n = 0 since b̂ (ω ·n) ∼ (ω ·n)−(k+1)/(k−1).

Notice that this singularity is never integrable. It arises due to the many grazing

collisions that occur when two molecules pass far from each other. To avoid this

singularity, Grad [16] argued that these collisions can be neglected. He introduced a

cutoff assumption that |b̂(ω ·n)| ≤ c|ω ·n| near the singular point. This assumption

allows him to apply the techniques Hilbert used for the hard sphere case (1.13).
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Recently more general types of cutoffs have been introduced. For example, the

global existence theory of DiPerna-Lions’ renormalized solution to the Boltzmann

equation was established for b̂ satisfying the weak cutoff assumption:

b̂ (ω · n) ∈ L1(dω) . (1.16)

Many works are based on this global existence result [15, 23]. Therefore, it is

interesting to investigate kernels that satisfy this weak cutoff collision kernel.

Under the assumptions (1.14), (1.15) and (1.16) on b, we can separate B (F, F )

into a gain and loss part that can be treated individually. Write

B(F, F ) = B+(F, F )− B−(F, F ) ,

where

B+(F, F ) =

∫∫

Sd−1×Rd

F ′
1F

′ b dωdv1,

B−(F, F ) =

∫∫

Sd−1×Rd

F1F b dωdv1,

(1.17)

are the gain and loss parts respectively. The gain part denotes the number of

molecules turned into velocity v after collisions while the loss part denotes the loss

of molecules of velocity v because of collisions. Notice that if those two terms are

to be separated, then the weak cutoff assumption (1.16) is a necessary condition for

the integral in the loss term to exist.

9



1.2.4 Conservation Laws

Due to the relations between the velocity pairs (1.11) and the structure of the

collision kernel (1.15), the operator B (F, F ) satisfies the conservation properties [8]:

∫

Rd

B (F, F ) dv = 0,

∫

Rd

v B (F, F ) dv = 0,

∫

Rd

|v|2B (F, F ) dv = 0. (1.18)

Therefore, by (1.7), the conservations of macroscopic mass, momentum, and to-

tal energy can be formally derived from the Boltzmann equation (1.9). To make

notation short, for any integrable ξ(v), let

〈ξ〉 =

∫

RD

ξ dv.

The conservation laws in the local form are

∂t〈F 〉+∇x · 〈vF 〉 = 0,

∂t〈vF 〉+∇x · 〈v ⊗ v F 〉 = 0,

∂t

〈
1
2
|v|2F〉

+∇x ·
〈

1
2
|v|2vF

〉
= 0.

(1.19)

1.2.5 Entropy

The Boltzmann equation has an analogy of the entropy. It derives from sym-

metries associated with the measure denoted as

dµ̃ = b (v − v1, ω · n) dω dv1 dv, 〈〈·〉〉 =

∫
dµ̃ .

10



By the symmetry of b and relations between the velocity pairs (1.11), dµ̃ is invariant

under the changes:

(v, v1) ↔ (v′, v′1), (v, v′) ↔ (v1, v
′
1) .

By the symmetry of dµ̃, Boltzmann observed the following key equality [8] for his

fundamental H-theorem :

〈log F B (F, F )〉 =
1

4

〈〈
log

(
F ′

1 F ′

F1 F

)
(F1 F − F ′

1 F ′)
〉〉

. (1.20)

Notice that for any F , the right-hand side of the above equality is nonpositive.

When F is a classical solution of the Boltzmann equation (1.9), one can multiply

(1.9) by log F and obtain the following dissipation law:

∂t〈F log F − F 〉+∇x · 〈v (F log F − F )〉

=
1

4

〈〈
log

(
F ′

1 F ′

F1 F

) (
F1 F − F ′

1 F ′
)〉〉

≤ 0,

(1.21)

where 〈F log F − F 〉 is defined as the entropy density. The above dissipation law

of entropy shows the irreversibility of the Boltzmann equation. It is consistent with

the second law of thermodynamics.
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1.2.6 Equilibrium States

One can see from (1.21) that the equality is true only when

F (v′)F (v′1)− F (v)F (v1) = 0, for almost every (v, v1) ∈ Rd ×Rd, (1.22)

with v′, v′1 satisfying (1.12). Notice that B (F, F ) vanishes for F (v) satisfying (1.22),

that is, F is an equilibrium state of B (F, F ). This observation provides a char-

acterization of equilibrium states of the Boltzmann equation through the entropy

dissipation. It can be shown that for such an F , we have

log F (v) ∈ span{1, v1, v2, · · · vd, |v|2}.

Therefore, for any F such that the integrals make sense, the following state-

ments are equivalent:

• B (F, F ) = 0 ,

• 〈log(F )B (F, F )〉 = 0 ,

• log F (v) ∈ span{1, v1, v2, · · · vd, |v|2}.

Together with the entropy dissipation law (1.21) it is called the Boltzmann H-

theorem. This is the most fundamental property of the Boltzmann equation.

Use M to denote these equilibrium states and rewrite them as

M =
ρ

(2π θ)d/2
exp

(
−|v − u|2

2θ

)
, (1.23)

12



with ρ, θ > 0. Note that the operations so far are only on the velocity v. Therefore

ρ, u, θ and M can also depend on (t, x), that is, (ρ, u, θ) = (ρ, u, θ)(t, x) and M =

M(t, x, v). These M’s are called the local Maxwellians. By the definition of M, it

can be verified that

〈M〉 = ρ, 〈vM〉 = ρ u,
〈

1
2
|v|2M〉

= 1
2
ρ |u|2 + d

2
ρ θ , (1.24)

and the Euler entropy density is given by

〈M logM−M〉 = ρ log

(
ρ

(2πθ)d/2

)
− d+2

2
ρ ,

which is essentially the same as the fluid entropy density (1.4) since they differ only

by the term − (
d
2
log(2π) + d+2

2

)
ρ. To emphasize the dependence of M on (ρ, u, θ),

we also write it as Mρ,u,θ.

1.3 Asymptotic Expansions

In this section we are going to connect the kinetic and fluid regimes via the

method of asymptotic expansions and give a statement of the first problem studied in

this dissertation. We use the Chapman-Enskog expansion as an illustration. There

are other kinds of expansions such as the Hilbert expansion [8] and the balance

argument used by Maxwell [24] and Boltzmann [4]. We restrict ourselves to the

Boltzmann equation.

13



1.3.1 Knudsen Number

By the dimension analysis (see, for example, [1]), the resulting dimensionless

Boltzmann equation has the form :

∂tF + v · ∇xF =
1

ε
B (F, F ), (1.25)

The parameter ε is called the Knudsen number. If we define the mean free path

as the scale of distances that molecules travel between collisions when the gas is in

its equilibrium state, then the Knudsen number is the ratio of the mean free path

with the macroscopic length in consideration. It provides a measurement of how

close a gas is to its equilibrium state. Fluid systems give good approximations to

the kinetic equation when the Knudsen number becomes small enough.

1.3.2 Chapman-Enskog Expansion

Denote

e =
(
1, v, 1

2
|v|2)T

,

ρ = 〈eF 〉 =
(
ρ, ρu, 1

2
ρ|u|2 + d

2
ρθ

)T
,

E [ρ] = Mρ,u,θ .

(1.26)

The formal conservation law of the Boltzmann equation (1.19) is now written as

∂tρ +∇x · 〈veF 〉 = 0. (1.27)

Suppose the space-time dependence of F is governed by ρ through an operator

14



F:

F (t, x, v) = F[ρ(t, x)](v), such that ρ = 〈eF[ρ]〉. (1.28)

The idea of the Chapman-Enskog expansion is to approximately solve an equa-

tion for F in terms of ρ. The first step is to express ∂tF in terms of the spatial

derivatives of F using the conservation law (1.27):

∂tF = DρF[ρ]∂tρ = −DρF[ρ]〈ev · ∇xF[ρ]〉, (1.29)

where DρF[ρ] is the functional derivative of F[ρ] defined formally as

DρF[ρ] f = lim
δ→0

F[ρ + δf]− F[ρ]

δ
.

Eliminate ∂tF in the Boltzmann equation using (1.29). We obtain

(
I − PF[ρ]

)
v · ∇xF[ρ] =

1

ε
B(F[ρ], F[ρ]),

where

PFf = DρF[ρ] 〈ef〉.

Suppress the variable ρ in the above equation and write it as an equation for

operators as follows:

(
I − PF

)
v · ∇xF =

1

ε
B(F, F). (1.30)

By (1.28), it is clear that I = 〈e ⊗ DρF[ρ]〉. Therefore P2
F = PF, that is, PF
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is a projection operator. Define its complement as P̃F = I − PF, which is also a

projection. Then we have

Range(PF) = Null(P̃F) = span{1, v1, v2, · · · , vd, |v|2}, (1.31)

Thus, (1.30) is rewritten as:

P̃Fv · ∇xF =
1

ε
B(F, F). (1.32)

Expand F formally as

F = F0 + εF1 + ε2F2 · · · , (1.33)

and use this expansion in (1.32).

For order ε−1, we have B(F0, F0) = 0. By Boltzmann’s H-theorem, F0[ρ] = E [ρ]

for any ρ.

For order ε0, we obtain

P̃E v · ∇xM = −MLM
(

F1[ρ]

M
)

, (1.34)

where Mρ,u,θ = E [ρ] with (ρ, u, θ) relating to ρ by (1.26), and

LMf =

∫∫

Sd−1×Rd

(f(v) + f(v1)− f(v′)− f(v′1)) b(v − v1, ω · n)M(v1)dv1,

(1.35)
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for any f in the domain of the operators LM.

The operator LM is the linearized Boltzmann operator around the local Maxwellian

Mρ,u,θ. Following are classical fact about LM by a symmetry argument[8]:

• LM is self-adjoint and nonnegative over L2(Mdv);

• Null space of LM = span{1, v1, v2, · · · , vd, |v|2}.

In order to solve the linear equation (1.34), we want MLM, and thus LM to

satisfy the Fredholm alternative property in an appropriate space. Provided this is

true, by (1.31), we can solve (1.34) and obtain

F1[ρ] = −(MLM)−1P̃E (v · ∇xM) , (1.36)

where (MLM)−1 : Null(LM)⊥ → Null(LM)⊥ is the pseudo-inverse of MLM. Then

the compressible Navier-Stokes system is recovered by using F = E + εF1 in (1.27).

For ε1, we have

−MLM(F2[ρ]) = P̃E v · ∇xF1[ρ]− B(F1[ρ], F1[ρ])−DρF1[ρ] 〈ev · ∇xE [ρ]〉

, RHS.

(1.37)

By the conservation properties of B (1.18) and the expression of F1 (1.36),

it is clear that each term on the right hand side of the above equation is in the

orthogonal space of Null (LM). Again, if LM satisfies the Fredholm alternative, we

can solve for F2[ρ] as

F2[ρ] = −(MLM)−1(RHS).
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For εk, k ≥ 2, we always have the equation as:

−MLM
(
Fk+1[ρ]

)
= Hk

(
Fj[ρ]

)
j≤k

,

with Hk

(
Fj[ρ]

)
j≤k

∈ Null(LM)⊥. Therefore, the Fredholm alternative property of

LM always guarantees the solvability of the approximated operator equations. It

provides a sufficient condition for formally deriving those fluid systems. These are

the motivations for the first problem studied in this dissertation that we show LM

does satisfy the Fredholm alternative as desired.

1.3.3 Fredholm Alternative

There are various results about the Fredholm alternative property of LM. The

differences between them are the assumptions on the collision kernel b(v− v1, ω ·n).

The first result of this kind was given by Hilbert [19] for the hard sphere case as

an example to apply his integral theory. After Grad’s cutoff assumption was intro-

duced, more general collision kernels with this assumption have been considered.

For example, for the 3D case, Grad [17] showed that LM has a Fredholm property

over L2(Mdv) for the hard potential case and Caflisch [5] generalized this result to

the soft potential case when −1 < β < 1. Later on, Golse and Poupaud [14] proved

it for −2 ≤ β < 1 on a L2 space with a different weight, and Guo [18] extended

Caflisch’s result to the full range of the potential where −3 < β < 1.

Our result extends the previous ones by assuming the weak cutoff condition
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(1.16) for b which includes the Grad cutoff case. If we define a(v) as

a(v) =

∫∫

Sd−1×Rd

b(v − v1, ω) dωM(v1)dv1,

then the main theorem is roughly stated as

Statement 1. Assume that the collision kernel b(v − v1, ω) satisfies the cutoff as-

sumptions (1.16) and (1.15). Then 1
a(v)
LM is a Fredholm operator on L2 (aMdv),

that is, there exists a compact operator K on L2 (aMdv) such that 1
a(v)
LM = I −K.

Because a Fredholm operator satisfies the Fredholm alternative, we conclude

that LM satisfies the Fredholm alternative on the space L2 (aMdv). The exact

theorem is stated in section 2.1.

It will be shown in section 2.1 that K is a bounded operator on Lp(aMdv) for

any 1 ≤ p < ∞. By interpolation, K is compact on Lp(aMdv) for any 1 < p < ∞.

Therefore, we conclude that 1
a(v)
LM satisfies the Fredholm alternative on Lp(aMdv)

for any 1 < p < ∞.

Once this property is verified for LM, each step of the Chapman-Enskog ex-

pansion can be carried out and fluid systems are formally derived at each order

systematically. The Fredholm alternative of LM is also used in rigorous justifica-

tions of the Navier-Stokes approximation [6].
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1.4 Beyond Navier-Stokes

When the Chapman-Enskog expansion is carried out to derive fluid systems

beyond Navier-Stokes, we recover the so called Burnett and super-Burnett equations.

These equations are known to be linearly ill-posed [2].

To overcome this ill-posedness problem, people introduce various ways to mod-

ify the truncations of the Chapman-Enskog expansion. In [21], by respecting the en-

tropy structure of the Boltzmann equation, Levermore proposed a systematic way to

construct fluid dynamical systems as corrections to the compressible Navier-Stokes.

The formal well-posedness of these fluid systems is given by the entropy dissipation.

Among these well-posed systems, the most important one beyond Navier-Stokes is

the first correction system. Because the correction is dispersive in nature, we call it

the dispersive Naiver-Stokes system, abbreviated as the DNS system.

In order to justify this approximation, we need the well-posedness of this DNS

system. The second part of this dissertation is to prove the local well-posedness

of this system. To see the structure of the DNS system, here we present a model

system that has simpler dispersive corrections to the compressible Navier-Stokes.

In spite of the simplification, this model system has all the major structures of the

original DNS system. Therefore, we still call it a DNS system.
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1.4.1 DNS system (Simplified)

The dispersive Navier-Stokes system has the form

∂tρ +∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇x(ρθ) = ∇x · Σ +∇x · P̃ ,

∂t(ρe) +∇x · (ρeu + ρθu) +∇x · q = ∇x · (Σu + P̃ u) +∇x · q̃,

(ρ, u, θ)(x, 0) = (ρin, uin, θin),

(1.38)

where ρ, u, θ are the density, velocity and temperature of the gas respectively, and

the constitutive relations are given as:

• ρe = 1
2
ρ|u|2 + d

2
ρθ denotes the total energy with d ≥ 2 being the dimension of

the microscopic world.

• Σ = µ(θ)
(∇xu + (∇xu)T − 2

d
(∇x · u)I

)
with µ(θ) ≥ µ0 > 0 being the viscosity.

• q = κ(θ)∇xθ with κ(θ) ≥ κ0 > 0 being the thermal conductivity.

In the simplified model, P̃ and q̃ have the forms:

P̃ = θ
(∇2

xθ − 1
d
(∆xθ)I

)
, q̃ =

θ2

2
∇x ·

(∇xu + (∇xu)T − 2
d
(∇x · u)I

)
. (1.39)

Dispersive effect is introduced by the tensor P̃ and the vector q̃.
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1.4.2 Entropy Structure

Observe that P̃ , q̃ satisfy the following relation:

P̃ :
∇xu

θ
+ q̃ · ∇xθ

θ2
= ∇x ·

(∇xθ ·
(∇xu + (∇xu)T − 2

d
(∇x · u)I

))
, (1.40)

that is, P̃ : ∇xθ
θ

+ q̃ · ∇xθ
θ2 is a divergence. Accordingly, by the entropy equation (1.6),

it is clear that dispersion only contributes to the flux of the entropy. Therefore the

entire system formally dissipates the entropy in the same way as the compressible

Navier-Stokes. This effect guarantees that the formal well-posedness of the disper-

sive system (1.38).

1.4.3 Analytic Structure

The DNS system features degeneracies in both dissipation and dispersion. If

the system is written in terms of the fluid variables (ρ, u, θ), it is obvious that for the

density component of the solution, there is neither dissipation nor dispersion. By the

assumptions for the viscosity and heat conductivity, the velocity and temperature

equations are strictly dissipative. However, as for the dispersion, we notice another

degenerate component other than the density. To see this, calculate ∇x · q̃ in the

energy equation.

∇x · q̃ = d−1
d

θ2 ∆x∇x · u + θ∇x ·
(∇xu + (∇xu)T − 2

d
(∇x · u)I

) · ∇xθ, (1.41)
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where the second term is a lower order term. It is now clear from (3.4) that if we use

Hodge decomposition to decompose the velocity field u into the divergence free part

and the gradient part, then there is no dispersive regularization for the divergence

free part.

To summarize, we have neither dissipative nor dispersive effect for the density

function, there is only strict dissipation for the divergence free part of the velocity

field, and there are both strict dissipation and strict dispersion for the gradient part

of the velocity field and the temperature.

Due to this degeneracy, a well-posedness result for the DNS system is in-

trinsically interesting. The dispersive systems that have been treated so far are

limited to those having strictly and uniformly dispersive effects. Each component

of the solution have the same amount of regularization and dispersion alone gives

the well-posedness of these systems. In the DNS system, however, to treat the vari-

ous degeneracies, we need to decouple components with different smoothing effects

using tools of pseudodifferential operators. We also need to combine the dispersive

regularization with dissipative effect and hyperbolicity to close the energy estimate

for the whole system. Using these ideas, we can prove the well-posedness of this

system. The main theorem is as follows:

Statement 2. Let 〈x〉2 = 1+x2. There exists N = N(d) such that given any initial
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data (ρin, uin, θin) satisfying the non-trapping condition A4 and

ρin − ρ̄ ∈ Hs+1(Rd), (uin, θin − θ̄) ∈ Hs(Rd)×Hs(Rd),

〈x〉2∂β
xρin ∈ L2(Rd),

(
〈x〉2∂α

x uin, 〈x〉2∂α
x θ

)
∈ L2(Rd)× L2(Rd),

1 ≤ |β| ≤ s1 + 1, 1 ≤ |α| ≤ s1

where s1 ≥ d
2

+ 6, s ≥ max{s1 + 6, N + d/2 + 4}, there exists T0 > 0 such that the

dispersive system (1.38) has a unique solution (ρ, u, θ) with

ρ− ρ̄ ∈ C([0, T0]; H
s) ∩ L∞([0, T0]; H

s+1),

(u, θ − θ̄) ∈ C([0, T0]; H
s−1) ∩ L∞([0, T0]; H

s) ∩ L2(0, T0; H
s+1).

Notice that initially we need less regularity for u and θ. This is due to the

regularization from dispersion and dissipation for these two components. Due to the

degeneracy in both effects, ρ does not gain any regularity. However, the dispersive

regularization of other components is used to avoid losing regularity for ρ.

Given this existence result, we can now try to justify rigorously the DNS

approximation to the Boltzmann equation, as having been done for the compressible

Euler and Navier-Stoke system [6, 12]. It is also interesting to compare the DNS

system with the Navier-Stokes system to see in which sense could this higher order

dispersive system provide a better approximation to the Boltzmann equation.
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Chapter 2

Fredholm-Alternative

2.1 Preliminaries

In this chapter we prove that under the weak cutoff assumption (1.16) on

the collision kernel, the linearized Boltzmann operator LM satisfies a Fredholm

alternative. Recall the definition of LM:

LMf =

∫∫

Sd−1×Rd

(
f(v) + f(v1)− f(v′)− f(v′1)

)
b(v − v1, ω) dωM(v1)dv1,

(2.1)

where M is a local Maxwellian defined by

M(v) = Mρ,u,θ (v) =
ρ

(2πθ)d/2
exp

(
−|v − u|2

2θ

)
,

The collision kernel b(v − v1, ω · n) satisfies

b(v1 − v, ω) = |v1 − v|β b̂ (ω · n), n =
v − v1

|v − v1| ,

− d < β ≤ 1,

(2.2)

where b̂(ω · n) satisfies the weak cutoff condition

b̂ (ω · n) ∈ L1(dω). (2.3)
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The condition (2.3) is the weakly cutoff assumption for the collision kernel b.

Because LM operates only on the velocity variable of f(t, x, v), we only need

to consider the case where (ρ, u, θ) = (1, 0, 1). This is the equilibrium state of the

gas with even density, zero bulk velocity and even temperature. The general case

then follows by translating and scaling in v. We call M1,0,1 the absolute Maxwellian

and adopt the following notations:

M = M1,0,1 =
1

(2π)d/2
e−|v|

2/2, L = LM .

The attenuation coefficient a(v) with the absolute Maxwellian is

a(v) = Cβ

∫

Rd

|v1 − v|β M1dv1, (2.4)

where Cβ =
∫

Sd−1 b̂ (ω · n)dω is a constant.

From the definition (2.1), it is clear that the first term in L is just a multi-

plication of f(v) with the attenuation coefficient a(v). Rewrite L in the following

form:

Lf = a(v)f − K̂f = a(v) (I −Kf) = a(v)
(
I +K− −K+

)
f, (2.5)

where

K̂f =

∫∫

Sd−1×Rd

(
f(v′) + f(v′1)− f(v1)

)
b(v − v1, ω) dω M(v1)dv1,
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and

K̂ = a(v)K, K = K+ −K−,

K−f =
1

a(v)

∫∫

Sd−1×Rd

f(v1) b(v − v1, ω) dω M1dv1

K+f =
1

a(v)

∫∫

Sd−1×Rd

(
f(v′) + f(v′1)

)
b(v − v1, ω) dω M1dv1,

Therefore, we have

1

a(v)
L = I − K.

The structure of 1
a(v)
L yields the following lemma.

Lemma 2.1.1. 1
a(v)
L : Lp (aMdv) −→ Lp (aMdv) is bounded for any 1 ≤ p ≤ ∞.

Proof. Define the measure

dµ = b(v − v1, ω) dω M(v)dv M(v1)dv1.

By the definition of b and the conservations laws for the before and after collision

velocity pairs, dµ is invariant under the changes

(v, v1) ↔ (v′, v′1), (v, v′) ↔ (v1, v
′
1).

Therefore, for any f(v) ∈ Lp (aMdv), f̃(v) ∈ Lq (aMdv) with 1
p

+ 1
q

= 1,

∣∣∣∣
〈

1

a(v)
L f, f̃

〉∣∣∣∣ = |〈〈f + f1 − f ′ − f ′1〉〉|

≤ (‖f‖Lp(dµ) + ‖f1‖Lp(dµ) + ‖f ′‖Lp(dµ) + ‖f ′1‖Lp(dµ)

) ‖f̃‖Lq(dµ)

≤ 4 ‖f‖Lp(aMdv) ‖f̃‖Lq(aMdv).
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It is clear from the above estimate that 1
a(v)
L is a bounded operator with its operator

norm equal to 4.

Because 1
a(v)
L = I − K, naturally K is also bounded. If we can further show

that K : Lp (aMdv) → Lp(aMdv) is compact, then 1
a(v)
L is a Fredholm operator.

This is the main theorem we prove in this chapter.

Main Theorem 1. Assume that the collision kernel b(v− v1, ω) satisfies (2.2) and

(2.3). Then K± : L2(aMdv) → L2(aMdv) are compact. Therefore, 1
a(v)
L is a

Fredholm operator on L2 (aMdv) and has a Fredholm alternative.

There are various results on the compactness of K̂ and K, thus the Fredholm

alternative property of the linearized Boltzmann operator. It was first shown for the

hard sphere case by Hilbert [19] in 1912 as an application for his integral theory. He

showed that the kernel of K̂ decays exponentially and has only first order singularity.

With the Grad angular cutoff assumption for the collision kernel, Grad [17]

proved that K̂ is compact on L2(Mdv) for a hard potential by showing that the kernel

of K̂ is Hilbert-Schmidt. Using a similar method, Caflisch [5] generalized Grad’s

result to soft potential cases with −1 < β < 1. For the compactness of K, Golse

and Poupaud [14] showed that K is compact on L2(aMdv) for −2 < β < 1. In [18]

Guo extended Caflisch’s result to the full range of β where −3 < β < 1. Compared

with [18], we consider the compactness of K with a more general assumption for b.
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2.2 Outline of Proof

In this section we give an outline of the proof for the compactness of the

operator K defined in (2.5). Because K = K− −K+, we will show the compactness

for these two parts individually. The proof is based on the following theorem in

functional analysis:

Theorem 2.2.1. The space of compact operators is closed under the operator norm.

We will also use the following basic bound for the proof of a generalized Hilbert-

Schmidt theorem.

Theorem 2.2.2. Let dν be a positive Borel measure over RD. Let K be defined in

the kernel form

Kg(v) =

∫

RD

K(v, v′)g(v′)dν ′. (2.6)

with K(v, v′) symmetric and dν ′ = dν(v′). If there exist two constants r, s ≥ 0 such

that K(v, v′) satisfies

‖K‖Ls(dν,Lr(dν′)) ,
(∫

RD

(∫

RD

|K(v, v′)|rdν ′
) s

r

dν

) 1
s

< ∞, (2.7)

where p, q, r, s ∈ [0,∞], r ≤ s ≤ ∞, p, q ∈ [r, s], 1
q
+ 1

q∗ = 1, 1
p
+ 1

q
+ 1

r
+ 1

s
= 2. Then

K : Lp(dν) → Lq∗(dν) is bounded and

‖K‖BL(Lp,Lq∗ ) ≤ ‖K‖Ls(dν,Lr(dν′)), (2.8)

where BL(Lp, Lq∗) is the space of all linear bounded operators from Lp(dν) to Lq∗(dν).
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Corollary 2.2.1. If K(v, v′) satisfies (2.7) with s < ∞ then K : Lp(dν) → Lq∗(dν)

defined by (2.6) is compact.

The proof of Corollary 2.2.1 is based on the following facts:

• finite rank operators are compact,

• kernels of finite rank operators are dense in the space Ls(dµ, Lr(dµ′)),

• if the kernel of an integral operator satisfies (2.7), then there exists a sequence

of finite rank operators that converges to this integral operator.

Hence, Theorem 2.2.1 guarantees the compactness of this integral operator.

Therefore, we first try to find the kernels of K± respectively. The kernel of

K− is easy to identify and is in a simple form. We show the compactness proof in

section 2.3 using a direct application of Theorem 2.2.1.

To show the compactness of K+, we change variables in the integral in K+ and

use the forms introduced by Grad [17] to find its kernel. Due to the singularities

in the integral, this kernel is too complicated for a straightforward application of

Theorem 2.2.1. The idea is to truncate the operator K+ such that we can avoid the

singularities. For the truncated operators, we apply Theorem 2.2.1 to show their

compactness. For the remainder we find uniform bounds in the operator norm. By

theorem 2.2.1, we conclude that the original K+ is also compact.
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2.3 Compactness of the Loss Operator

In this section we show the compactness of the loss operator K−. By the

definition,

K−f =
1

a(v)

∫∫

Sd−1×Rd

f(v1) b(v − v1, ω) dω M1dv1

=
Cβ

a(v)

∫

Rd

f(v1)|v − v1|β M1dv1,

where

a(v) = Cβ

∫

Rd

|v − v1|β M1dv1,

is the attenuation coefficient. Therefore, it is clear thatK− : L2(aMdv) → L2(aMdv)

has the kernel

K−(v, v1) =
Cβ|v − v1|β
a(v)a(v1)

.

Before the compactness proof for K−, we need the following estimate for a(v).

The following lemma shows that a(v) is bounded above and below by (1 + |v|)β.

Lemma 2.3.1. Assume that the collision kernel b satisfies (2.2) and (2.3). Then

there exist constants c1, c2 > 0 such that

c1(1 + |v|)β ≤ a(v) ≤ c2(1 + |v|)β, ∀v ∈ RD.

The above inequality is also true when the measure Mdv is changed to Mαdv for

any α > 0.

Proof. Proof is done by direct estimates over the different regions of v1.
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For β ≥ 0, it is straightforward to see the upper bound for a(v) as

a(v) = C

∫

Rd

|v1 − v|β M1dv1 ≤ c

∫

Rd

(|v1|β + |v|β)
M1dv1 ≤ c1 (1 + |v|)β .

As for the lower bound, let χ(v) be the characteristic function such that χ(v) =

0 when |v| ≥ 1 and χ(v) = 1 when |v| ≤ 1. Then we have

a(v) = C

∫

Rd

|v1 − v|β M1dv1

≥ c

(
χ(v)

∫

|v1|≥2

|v1 − v|β M1dv1 + (1− χ(v))

∫

|v1|≤ 1
2
|v|
|v1 − v|β M1dv1

)

≥ c

(
χ(v)

∫

|v1|≥2

1

2
|v1|β M1dv1 + (1− χ(v))

∫

|v1|≤ 1
2

1

2
|v|β M1dv1

)

≥ c3χ(v) + c4(1− χ(v))|v|β

≥ c2 (1 + |v|)β .

The estimate for the case β ≤ 0 is done in a similar way. It is now easy to see

the lower bound for a(v) since

a(v) = C

∫

Rd

|v1 − v|β M1dv1 ≥ c

∫

Rd

(|v1|β + |v|β)
M1dv1 ≥ c2 (1 + |v|)β .

Note that |v1|β is integrable near 0 since we assume that β ≥ −d.

For the upper bound, use the characteristic function χ(v) again to see that

a(v) = C

∫

Rd

|v1 − v|β M1dv1

= c

(
χ(v)

∫

Rd

|v1 − v|β M1dv1 + (1− χ(v))

∫

Rd

|v1 − v|β M1dv1

)
.
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where

χ(v)

∫

Rd

|v1 − v|β M1dv1 ≤ χ(v)

∫

|v1|≥2

|v1 − v|β M1dv1 + χ(v)

∫

|v1|≤2

|v1 − v|β M1dv1

≤χ(v)

∫

|v1|≥2

1

2
|v1|β M1dv1 + χ(v) · c

∫

|v1|≤2

|v1 − v|βdv1

≤ c · χ(v) + χ(v) · c
∫

|v1|≤3

|v1|βdv1

≤ c0 · χ(v) ≤ c0,

and

(1− χ(v))

∫

Rd

|v1 − v|β M1dv1

≤ (1− χ(v))

∫

|v1−v|≥1

|v1 − v|β M1dv1 + (1− χ(v))

∫

|v1−v|≤1

|v1 − v|β M1dv1

≤ (1− χ(v))

∫

|v1−v|≥1

M1dv1 + c(1− χ(v)) ·M(v)

∫

|v1−v|≤1

|v1 − v|β dv1

≤ (1− χ(v))

∫

Rd

M1dv1 + c(1− χ(v)) ·M(v)

≤ c(1− χ(v))(1 + M(v))

≤ c(1 + |v|)β.

Overall for β ≤ 0 we also have

c1(1 + |v|)β ≤ a(v) ≤ c2(1 + |v|)β.

It can be seen from the above proof that if M is changed to Mα for any α > 0,

the estimate for a(v) stays the same for the following reasons: there are two places

that we use M . One is to guarantee that aMdv is a finite measure. The other is
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when we can change M(v1) to M(v) when |v| is bounded by |v1|, and we use the fact

that M(v) decays faster than any polynomial. Thus we finish the proof for Lemma

2.3.1.

The compactness of K− is a direct application of Corollary 2.2.1 and Lemma

2.3.1.

Theorem 2.3.1. K− : L2(aMdv) → L2(aMdv) is compact.

Proof. By the fact that β ∈ (−d, 1), there exists 1 < r < 2 such that β r ∈ (−d, 1).

First we show that

K−(v1, v) ∈ L∞(aMdv; Lr(a1M1dv1)).

By direction calculations,

∥∥K−(v1, v)
∥∥r

Lr(a1M1dv1)
=

(
C

a(v)

)r ∥∥∥∥
|v1 − v|β r

a(v1)
r

∥∥∥∥
L1(a1 M1 dv1)

≤ c

a(v)r

∥∥∥∥
|v1 − v|β r

a(v1)
r−1

∥∥∥∥
L1(M1 dv1)

≤ c

a(v)r

∫

Rd

|v1 − v|β r M1 dv1

≤ c

a(v)r
(1 + |v|)β r ≤ ĉ ,

where ĉ is independent of v. Notice that we applied a similar estimate for
∫

Rd |v1 −

v|β r M1 dv1 as we have done in Lemma 2.3.1 where −d < β r < 1 is in the same

position as β there.
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Because aMdv is a finite measure, for any 1 < s < r we have

K−(v1, v) ∈ Ls(aMdv; Lr(a(v1)M1dv1)).

Particularly we choose s = r∗ where 1
r
+ 1

r∗ = 1. Using p = q = 2 in Corollary 2.2.1,

we obtain the compactness of K− : L2(aMdv) → L2(aMdv).

2.4 Compactness of the Gain Operator

What remains is to show the compactness of the gain operator K+ which is

defined as

K+g =
1

a(v)

∫∫

Sd−1×Rd

(g(v′) + g(v′1)) b(ω · n, |v − v1|) dω M(v1)dv1

=
1

a(v)

∫∫

Sd−1×Rd

g(v′) b(ω · n, |v − v1|) dω M(v1)dv1

+
1

a(v)

∫∫

Sd−1×Rd

g(v′1) b(ω · n, |v − v1|) dω M(v1)dv1.

Noticing that the two term in K+ depend on different variables v′ and v′1, we separate

those two terms as

K+ , K̄+ + K̃+.

The basic idea is to apply Corollary 2.2.1 for both K̄+ and K̃+ to show that both

K̄+ and K̃+ are compact from L2(aMdv) to L2(aMdv). Therefore their sum is also

a compact operator from L2(aMdv) to L2(aMdv).

To this end, we use their kernels forms introduced by Grad [17]. By the

symmetry, we need only to consider the region ω · n > 0. Then kernel of the
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operator K̄+ has the form

K+(v, v′) =
2|v − v′|−(d−1)

a(v)a(v′)

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y|2−y·v′ b̂

( |v − v′|√
|v − v′|2 + |y|2

)
dy,

while the kernel of the operator K̃+ is

K̃+(v, v′1) =
2

a(v)a(v′1)

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v b̂

( |z|√
|z|2 + |v − v′1|2

)
dz.

Following are some notations to be used in the following exposition.

〈h1, h2〉 4=
∫

Rd

h1 h2 Mdv,

y = v1 − v′ = v′1 − v, z = v′ − v = v1 − v′1,

ξ1 + ξ2 = v, ξ1 ‖ (v − v′), ξ2 ⊥ (v − v′).

We want to show the compactness of K̄+ (K̃+) by constructing a sequence of trun-

cated operators which converges in the sup norm of the operator space to K̄+ (K̃+).

Because the space of compact operators is closed under this norm, we can conclude

that the limit operator K̄+ (K̃+) is also compact. The truncations of the opera-

tors are given by the truncations of the kernels, that is, we consider the following

approximations of K+(v, v′), K̃+(v, v′1) respectively:

K+
ε,T (v, v′) =

2|v − v′|−(d−1)

a(v)a(v′)
I|v|<T I|v′|<T

× I|v−v′|>ε|v−v1|b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
dy,

(2.9)
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K̃+
ε,T (v, v′1) =

2

a(v)a(v′1)
I|v|<T I|v′1|<T

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v

× I|v−v′1|>ε|v−v1| I|z|>ε|v−v1| b̂

(
|z|√

|z|2 + |v − v′1|2

)
dz.

(2.10)

Then we have the following key theorem.

Theorem 2.4.1. Let K̄+
ε,T , K̃+

ε,T be the corresponding operators with the kernels

K+
ε,T (v, v′), K̃+

ε,T (v, v′) defined in (2.9), (2.10) respectively. Then

(1) K̄+
ε,T : L2(aMdv) → L2(aMdv) is compact.

(2) K̃+
ε,T : L2(aMdv) → L2(aMdv) is compact.

Proof. (1). Recall that |v − v′| = |v − v1| cos θ, |y| = |v − v′1| = |v − v′1| cos θ. Then

K+
ε,T (v, v′) =

2|v − v′|−(d−1)

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y+ξ2|2

× I|v−v′|>ε|v−v1| b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
dy

≤2|v − v′|−(d−1)

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y+ξ2|2

× I|v−v′|>ε|v−v1| b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
dy

≤2|v − v′|−(d−1)

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫

y⊥(v−v′)
|v − v1|β

× I|v−v′|>ε|v−v1| b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
dy

≤c|v − v′|−(d−1)

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫ cε|v−v′|

0

|v − v1|β |y|d−2

× I|v−v′|>ε|v−v1| b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
d|y|.

37



Change the variable in the above integral as

cos θ =
|v − v′|√

|v − v′|2 + |y|2 . (2.11)

Therefore we have

sin θ dθ = 2
|v − v′|
|v − v1|3 |y| d|y|,

and the estimate for K+
ε,T (v, v′) continues as

K+
ε,T (v, v′) ≤c|v − v′|−(d−1)

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫ π/2

0

|v − v1|β |y|d−2 |v − v1|3
|v − v′|

1

|y|

× I|v−v′|>ε|v−v1| b̂(cos θ) dθ

≤ c|v − v′|−d

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫ π/2

0

|v − v1|β+3 |y|d−3

× I|v−v′|>ε|v−v1| b̂(cos θ) dθ.

By the fact that β > −d, for d ≥ 3, in the region |v − v′| ≥ ε|v − v1| we have

|v − v1|β+3 |y|D−3 ≤ |v − v1|β+D

( |y|
|v − v1|

)D−3

≤ |v − v1|β+D ≤ cε|v − v′|β+D,

and this gives

K+
ε,T (v, v′) ≤ cε|v − v′|β

a(v)a(v′)
e|ξ2|

2/2 I|v|<T I|v′|<T

∫ π/2

0

b̂(cos θ) dθ.

By the definition of ξ2, we know that e|ξ2|
2/2 ≤ cT because |ξ2| ≤ |v| ≤ T .
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Overall we have

|K+
ε,T (v, v′)| ≤ Cε,T

a(v)a(v′)
|v − v′|β I|v|<T I|v′|<T

∥∥∥b̂
∥∥∥

L1(dω)
.

For the given β, choose 1 < r < 2 such that rβ > −d. Then

∫

Rd

(∫

Rd

|K+
ε,T (v, v′)|r a(v′) M(v′) dv′

) r∗
r

a(v)M(v)dv

≤
∫

Rd

(∫

Rd

|v − v′|rβ (a(v′))1−r M(v′) dv′
) r∗

r

I|v|<T (a(v))1−r M(v) dv

<∞.

Thus by Theorem 2, K̄+
ε,T : Lp (aMdv) → Lp (aMdv) is compact for any r ≤ p ≤ r∗,

which is particularly true for the case when p = 2.

(2). The compactness of K̃+
ε,T : L2(aMdv) → L2(aMdv) is done in a similar way.

Recall that |z| = |v − v′| = |v − v1| cos θ, |v − v′1| = |v − v1| sin θ. Make a similar

change of variable as in (2.11). Let

cos θ =
|z|√

|v − v′1|2 + |z|2 ,

which gives

sin θ dθ =

(
1

|v − v1| −
|z|2

|v − v1|3
)

d|z| = |v − v′1|2
|v − v1|3 d|z|.
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Then we have

K̃+
ε,T (v, v′1) =

2e
1
2
|ξ1|2

a(v)a(v′1)
I|v|<T I|v′1|<T

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z−ξ1|2

× I|v−v′1|>ε|v−v1| I|z|>ε|v−v1| b̂

(
|z|√

|z|2 + |v − v′1|2

)
dz

≤ 2e
1
2
|ξ1|2

a(v)a(v′1)
I|v|<T

∫ π/2

0

|v − v1|β
|z|d−1

e−
1
2
|z−ξ1|2 |v − v1|3

|v − v′1|2
|z|D−2

× I| cos θ|>ε Isin θ>ε b̂(cos θ) sin θ dθ

≤ CT

a(v)a(v′1)
I|v|<T

∫ π/2

0

|v − v1|β+3

|v − v′1|2
1

|z|

× I| cos θ|>ε Isin θ>ε b̂(cos θ) sin θ dθ

≤ Cε,T |v − v′1|β
a(v)a(v′1)

I|v|<T

∫ π/2

0

b̂(cos θ) sin θ dθ

= Cε,T
|v − v′1|β
a(v)a(v′1)

I|v|<T ‖b̂‖L1(dω).

Notice we used in the above proof |ξ1| ≤ |v| ≤ T, |v − v′1| ≤ |v − v1| ≤ Cε|v − v′1|

and |z| ≤ |v − v1| ≤ cε|z|.

Again choose r > 1 such that rβ > −D and by Theorem 2 we know K̃+
ε,T :

L2(aMdv) → L2(aMdv) is compact and this completes the proof of Theorem

2.4.1.

Now consider the remainders of the two operators K̄+, K̃+. Their kernels have

the following forms.

K̄+(v, v′)− K̄+
ε,T (v, v′) = K̄+

ε (v, v′) + K̄+
T (v, v′) + K̄T,T (v, v′),

K̃+(v, v′)− K̃+
ε,T (v, v′) = K̃+

ε (v, v′) + K̃+
T (v, v′) + K̃T,T (v, v′),
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where

K̄+
ε (v, v′) =

2|v − v′|−(d−1)

a(v)a(v′)

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y|2−y·v′

× b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
I|v−v′|<ε|v−v1| dy,

K̄+
T (v, v′) =

2|v − v′|−(d−1)

a(v)a(v′)
I|v|>T

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y|2−y·v′

× b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
I|v−v′|>ε|v−v1| dy,

K̄+
T,T (v, v′) =

2|v − v′|−(d−1)

a(v)a(v′)
I|v|<T I|v′|>T

∫

y⊥(v−v′)
|v − v1|β e−

1
2
|y|2−y·v′

× b̂

(
|v − v′|√

|v − v′|2 + |y|2

)
I|v−v′|>ε|v−v1| dy,

K̃+
ε (v, v′1) =

2

a(v)a(v′1)

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v b̂

( |z|√
|z|2 + |v − v′1|2

)

× (
1− I|v−v′1|>ε|v−v1|I|z|>ε|v−v1|

)
dz

≤ 2

a(v)a(v′1)

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v b̂

( |z|√
|z|2 + |v − v′1|2

)

× (I|v−v′1|<ε|v−v1| + I|z|<ε|v−v1|) dz,

K̃+
T (v, v′1) =

2

a(v)a(v′1)
I|v|>T

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v

× I|v−v′1|>ε|v−v1|I|z|>ε|v−v1| b̂

(
|z|√

|z|2 + |v − v′1|2

)
dz.

K̃+
T,T (v, v′1) =

2

a(v)a(v′1)
I|v|<T I|v′1|>T

∫

z⊥(v−v′1)

|v − v1|β
|z|d−1

e−
1
2
|z|2−z·v

× I|v−v′1|>ε|v−v1|I|z|>ε|v−v1| b̂

(
|z|√

|z|2 + |v − v′1|2

)
dz.

Use K̄+
ε , K̄+

T , K̄+
T,T to denote the operators with the kernels K̄+

ε (v, v′), K̄+
T (v, v′),

K̄+
T,T (v, v′). Similarly K̃+

ε , K̃+
T , K̃+

T,T are corresponding operators with kernels K̃+
ε (v, v′1),

41



K̃+
T (v, v′1), K̃+

T,T (v, v′1) respectively. Let L be the linear operator space endowed with

the sup norm ‖ · ‖L. We will show in the following that ‖K̄+
ε ‖L

ε↓0−→ 0, ‖K̄+
T ‖L

T↑∞−→ 0,

‖K̄+
T,T‖L

T↑∞−→ 0, ‖K̃+
ε ‖L

ε↓0−→ 0, ‖K̃+
T ‖L

T↑∞−→ 0, ‖K̃+
T,T‖L

T↑∞−→ 0. Then as L is closed

under the sup norm, we get the compactness of K̄+ and K̃+.

The following theorem is to show the smallness of ‖K̄+
ε ‖L, ‖K̄+

T ‖L, ‖K̄+
T,T‖L,

‖K̃+
ε ‖L, ‖K̃+

T ‖L and ‖K̃+
T,T‖L.

Theorem 2.4.2. ∀g, g̃ ∈ L2(aMdv), we have

∣∣〈a(v)K̄+
ε g(v), g̃(v)

〉∣∣ ≤ ηε ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

∣∣〈a(v)K̄+
T g(v), g̃(v)

〉∣∣ ≤ ηT ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

∣∣〈a(v)K̄+
T,T g(v), g̃(v)

〉∣∣ ≤ ηT ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

∣∣∣
〈
a(v)K̃+

ε g(v), g̃(v)
〉∣∣∣ ≤ ηε ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

∣∣∣
〈
a(v)K̃+

T g(v), g̃(v)
〉∣∣∣ ≤ ηT ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

∣∣∣
〈
a(v)K̃+

T,T g(v), g̃(v)
〉∣∣∣ ≤ ηT ‖g‖L2(aMdv) ‖g̃‖L2(aMdv) ,

with ηε
ε↓0−→ 0, ηT

T↑∞−→ 0 (for fixed ε) independent of g, g̃. Notice here ηT can be

dependent on ε.

Proof. In what follows, we prove the above six inequalities one by one. First, keeping

the various truncations in mind, we write the remainder operators in their original
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forms instead of the kernel forms, that is, for any g(v),

K̄+
ε g =

1

a(v)

∫∫

Sd−1×Rd

g(v′) I|v−v′|<ε|v−v1|

b(ω · n, |v − v1|) dω M(v1)dv1,

K̄+
T g =

1

a(v)
I|v|>T

∫∫

Sd−1×Rd

g(v′) I|v−v′|>ε|v−v1|

b(ω · n, |v − v1|) dω M(v1)dv1,

K̄+
T,T g =

1

a(v)
I|v|<T I|v′|>T

∫∫

Sd−1×Rd

g(v′) I|v−v′|>ε|v−v1|

b(ω · n, |v − v1|) dω M(v1)dv1,

K̃+
ε g =

1

a(v)

∫∫

Sd−1×Rd

g(v′1)
(
1− I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1|

)

× b(ω · n, |v − v1|) dω M(v1)dv1,

K̃+
T g =

1

a(v)
I|v|>T

∫∫

Sd−1×Rd

g(v′1) I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1|

× b(ω · n, |v − v1|) dω M(v1)dv1,

K̃+
T,T g =

1

a(v)
I|v|<T I|v′1|>T

∫∫

Sd−1×Rd

g(v′1) I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1|

b(ω · n, |v − v1|) dω M(v1)dv1,

To simplify the notation, let dµ = b(ω · n, |v − v1|) dω M(v1) dv1 M(v) dv.
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To prove the first inequality, we have

∣∣〈a(v)K̄+
ε g(v), g̃(v)

〉∣∣ =

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v) g(v′) I|v−v′|<ε|v−v1| dµ

∣∣∣∣

≤
(∫∫∫

Sd−1×Rd×Rd

|g(v′)|2 I|v−v′|<ε|v−v1| dµ

) 1
2

·‖g̃‖L2(aMdv) .

We need only to check the first factor on the right-hand side of the above

inequality.

By changing variables: (v, v1) → (v′, v′1) and utilizing the symmetric property

of the measure dµ,

∫∫∫

Sd−1×Rd×Rd

|g(v′)|2 I|v−v′|<ε|v−v1| dµ

=

∫∫∫

Sd−1×Rd×Rd

|g(v)|2 I|v−v′|<ε|v−v1| dµ

=

∫

RD

|g(v)|2
(∫∫

Sd−1×Rd

I|v−v′|<ε|v−v1| b(ω · n, |v − v1|) dω M(v1) dv1

)
M(v) dv.

Let

J =

∫∫

Sd−1×Rd

I|v−v′|<ε|v−v1| b(ω · n, |v − v1|) dω M(v1) dv1.

Then by the definition of the collision kernel b,

J =

∫∫

Sd−1×Rd

|v − v1|β b̂(| cos θ|) I| cos θ|<ε dω M(v1) dv1

=

∫

RD

|v − v1|β
(∫

SD−1

b̂(| cos θ|) I| cos θ|<ε dω

)
M(v1)dv1

=

∫

RD

|v − v1|βM(v1)dv1 ·
∫

SD−1

b̂(| cos θ|) I| cos θ|<ε dω.
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For any η > 0, since b̂(| cos θ|) ∈ L1(dω), there exists δ0 > 0 such that ∀δ < δ0,

we have
∫

Sd−1

b̂(| cos θ|) I| cos θ|<δ dω < η.

Therefore choosing ε small enough, we have

J ≤ η

∫

Rd

|v − v1|β M(v1) dv1 = η a(v),

which gives

∫∫∫

Sd−1×Rd×Rd

|g(v′)|2 I|v−v′|<ε|v−v1| dµ ≤ η ‖g‖L2(aMdv) ,

when ε is small enough. Because η → 0 when ε → 0, we use the notation ηε for η.

Thus we are done with the first inequality.

Next we show the proof for the second inequality. To this end, we estimate

∣∣〈a(v)K̄+
T g, g̃(v)

〉∣∣ with ε fixed.

∣∣〈a(v)K̄+
T g, g̃(v)

〉∣∣

=

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v′) g̃(v) I|v|>T I|v−v′|>ε|v−v1| b(ω · n, |v − v1|) M1 M dω dv1 dv

∣∣∣∣

≤
∫∫∫

Sd−1×Rd×Rd

|g(v′)| |g̃(v)| I|v1|>m b(ω · n, |v − v1|) M1 M dωdv1dv

+

∫∫∫

Sd−1×Rd×Rd

|g(v′)| |g̃(v)| I| cos θ|>ε I|v1|<m I|v|>T bM1 M dωdv1dv

4
= I1 + I2.
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We are going to estimate I1 and I2 individually. First estimate I1.

I1 ≤
(∫∫∫

Sd−1×Rd×Rd

|g̃(v)|2 I|v1|>m b M1 M dω dv1dv

) 1
2

· ‖g‖L2(aMdv)

≤
(∫

RD

|g̃(v)|2
(∫

RD

I|v1|>m |v − v1|β M1dv1

)
Mdv

) 1
2

·
∥∥∥b̂

∥∥∥
1
2

L1(dω)
· ‖g‖L2(aMdv)

≤Ce−
1
4
m2

(∫

Rd

|g̃(v)|2
(∫

Rd

I|v1|>m |v − v1|β
√

M1dv1

)
Mdv

) 1
2

· ||g||L2(aMdv)

≤Ce−
1
4
m2

(∫

Rd

|g̃(v)|2
(∫

Rd

|v − v1|β
√

M1dv1

)
Mdv

) 1
2

· ||g||L2(aMdv)

≤Ce−
1
4
m2 ‖g̃‖L2(aMdv) · ‖g‖L2(aMdv) .

Note that the last step is guaranteed by Lemma 2.3.1. Because m > 0 is arbitrary

in the above estimate, for any η > 0, we can choose m large enough such that

Ce−
1
4
m2

< η
2
. Then

I1 ≤ η

2
‖g‖L2(aMdv) · ‖g̃‖L2(aMdv) .

Now fix m and we prove that for this fixed m, I2 is arbitrarily small when T is large.

To estimate I2, notice that when m and ε are fixed, |v′1−v1| = |v−v′| > ε|v−v1|.

So |v′1| > ε|v − v1| − |v1|. We can choose T large enough such that |v′1| >
εT

2
. This
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can be done because |v1| < m where m is fixed. By using this T we have

I2 =

∫∫∫

Sd−1×Rd×Rd

(√
M(v′) |g(v′)|

)
·
(√

M(v) |g̃(v)|
)

× I| cos θ|>ε I|v1|<m I|v|>T b
M(v1)M(v)√
M(v′)M(v)

dωdv1dv

≤
∫∫∫

Sd−1×Rd×Rd

(√
M(v′) |g(v′)|

)
·
(√

M(v) |g̃(v)|
)

× I|v′1|> εT
2

I|v1|<m b
√

M(v1)
√

M(v′1) dωdv1dv

≤Cme−
(εT )2

32

∫∫∫

Sd−1×Rd×Rd

(√
M(v′) |g(v′)|

)
·
(√

M | g̃(v)|
)

× I|v1|<m e−
1
8
|v′1|2 b dωdv1dv

≤Cme−
(εT )2

32

(∫∫∫

Sd−1×Rd×Rd

|g̃(v)|2 I|v1|<m bM dωdv1dv

) 1
2

×
(∫∫∫

Sd−1×Rd×Rd

|g(v′)|2 M(v′)
√

M(v′1) bdωdv1dv

) 1
2

= Cme−
(εT )2

32

(∫∫∫

Sd−1×Rd×Rd

|g̃(v)|2 I|v1|<m bM dωdv1dv

) 1
2

×
(∫∫∫

Sd−1×Rd×Rd

|g(v)|2
√

M1 b dωdv1M dv

) 1
2

≤Cme−
(εT )2

32 ‖g‖L2(aMdv) · ‖g̃‖L2(aMdv) .

It is clear from the above inequality that for fixed ε, ∀η > 0, we can choose T large

enough such that Cme−
(εT )2

32 < η
2
. Therefore, for T > 0 large, we have shown that

I2 ≤ η

2
‖g‖L2(aMdv) · ‖g̃‖L2(aMdv) .

Together with the bound on I1 we complete the proof of the second inequality.

Again, since η → 0 as T →∞, we use ηT for η.
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For the third inequality we use symmetry to show that actually it is bounded

by the term of the left side of the second inequality.

∣∣〈a(v)K̄+
T,T g, g̃(v)

〉∣∣ =

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v′) g̃(v) I|v|<T I|v′|>T I|v−v′|>ε|v−v1| dµ

∣∣∣∣ .

If we change the variable in the above integral (v, v1) → (v′, v′1), then

∣∣〈a(v)K̄+
T,T g, g̃(v)

〉∣∣ =

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v) g̃(v′) I|v|>T I|v′|<T I|v−v′|>ε|v−v1| dµ

∣∣∣∣

≤
∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v) g̃(v′) I|v|>T I|v−v′|>ε|v−v1| dµ

∣∣∣∣

by applying the symmetry of the measure dµ = bM1 M dωdv1dv. Therefore it’s

clear that

∣∣〈a(v)K̄+
T,T g, g̃(v)

〉∣∣ ≤
∣∣〈a(v)K̄+

T g̃, g(v)
〉∣∣ ≤ ηT ‖g‖L2(aMdv) · ‖g̃‖L2(aMdv) .

By showing this inequality we have proved that all the remainders of K̄+ are

arbitrarily small under the operator norm. Thus, by the comment before Theorem

2.4.2, the first part of the gain operator K̄+ is compact from L2(aMdv) to L2(aMdv).

The proofs for the remaining three inequalities related to K̃+ are similar.
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For the fourth inequality, for any g(v), g̃(v) we have

∣∣∣
〈
a(v)K̃+

ε g(v), g̃(v)
〉∣∣∣

≤
∫∫∫

Sd−1×Rd×Rd

|g(v′1)| |g(v)|
(
1− I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1|

)
dµ

≤
∫∫∫

Sd−1×Rd×Rd

|g(v′1)| |g(v)| (
I|v−v′1|<ε|v−v1| + I|v−v′|<ε|v−v1|

)
dµ

≤ c

(∫∫∫

Sd−1×Rd×Rd

|g(v′1)|2 I|v−v′1|<ε|v−v1| dµ

) 1
2

· ‖g(v)‖L2(aMdv)

+ c

(∫∫∫

Sd−1×Rd×Rd

|g(v′1)|2 I|v−v′|<ε|v−v1| dµ

) 1
2

· ‖g(v)‖L2(aMdv)

≤ c

(∫∫∫

Sd−1×Rd×Rd

|g(v)|2 I| sin θ|≤ε dµ

) 1
2

· ‖g(v)‖L2(aMdv)

+ c

(∫∫∫

Sd−1×Rd×Rd

|g(v)|2 I| cos θ|≤ε dµ

) 1
2

· ‖g(v)‖L2(aMdv).

It is now evident that the smallness comes from L1 integrability of b̂(ω) and the

length of the integration interval {θ : | cos θ| < ε} ∪ {θ : | sin θ| < ε} is arbitrarily

small, the same as in the proof for the first inequality.

For the fifth inequality, again divide the region into two subregions: {v1 : |v1| >

m} and {v1 : |v1| < m} for some m large. Over the first region the smallness comes

from M1 when |v1| is large. Over the second region, for a fixed m, using the fact that

|v| < m, it can be deduced that |v′| is large because |v′−v1| = |v−v1| sin θ > ε|v−v1|.

Then by MM1 = M ′M ′
1, use the same method as we estimate I2 we can get the

smallness of K̃+
T .

For the last inequality we again change the variables from (v, v1) to (v′1, v
′)
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and by using the symmetry of the measure dµ. Then

∣∣∣
〈
a(v)K̃+

T,T g, g̃
〉∣∣∣

=

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v′1) g̃(v) I|v|>T I|v′1|<T I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1| dµ

∣∣∣∣

=

∣∣∣∣
∫∫∫

Sd−1×Rd×Rd

g(v) g̃(v′1) I|v|<T I|v′1|>T I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1| dµ

∣∣∣∣

≤
∫∫∫

Sd−1×Rd×Rd

|g(v)| |g̃(v′1)| I|v|<T I|v−v′1|>ε|v−v1| I|v−v′|>ε|v−v1| dµ.

As before, the rest of the steps follow from those for the fifth inequality. Thus we

finish the proof for Theorem 2.4.2.

Combining Theorem 2.4.1 and Theorem 2.4.2 we are done with the proof for

compactness of K+ : L2(aMdv) → L2(aMdv). Together with Theorem 2.3.1, the

proof for the main theorem is now completed.

2.5 Conclusion

Based on this compactness result, it is interesting to investigate whether what

have been done using more restricted cutoff assumptions can be extended to this

weakly cutoff case. For example, whether the machinery developed by Guo [18]

to prove the global existence of classical solutions to the Boltzmann equation can

be applied to this more general collision kernel; in the setting of DiPerna-Lions

renormalized solutions, many rigorous proofs of the hydrodynamic limits are done

for more restricted collision kernels such as bounded kernels [15] due to the lack of

Fredholm alternative of the linearized Boltzmann operator. In a recent work [23] by
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Levermore and Masmoudi, applying the result we prove here, they can generalize the

incompressible Navier-Stokes limit from the Boltzmann equation to collision kernel

with merely the integrability assumption. We also want to mention that later on

Mouhot and Strain [25] generalized the Fredholm alternative to non-cutoff kernels.
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Chapter 3

Dispersive Navier-Stokes System

3.1 Introduction

In this chapter we are going to prove a local well-posedness result for the

dispersive Navier-Stokes (DNS) system

∂tρ +∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇x(ρθ) = ∇x · Σ +∇x · P̃ ,

∂t(ρe) +∇x · (ρeu + ρθu) +∇x · q = ∇x · (Σu + P̃ u) +∇x · q̃,

(ρ, u, θ)(x, 0) = (ρin, uin, θin),

(3.1)

where (ρ, u, θ)(t, x) are the mass density, bulk velocity and temperature of the gas

respectively for (t, x) ∈ [0,∞)×Rd, and the constitutive relations are given as:

• ρe = 1
2
ρ|u|2 + d

2
ρθ denotes the total energy with d ≥ 2 being the dimension of

the microscopic world.

• Σ = µ(θ)
(∇xu + (∇xu)T − 2

d
(∇x · u)I

)
with µ(θ) ≥ µ0 > 0 being the viscosity.

• q = κ(θ)∇xθ with κ(θ) ≥ κ0 > 0 being the thermal conductivity.
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The dispersive effect is introduced by the tensor P̃ and the vector q̃ and the

structures of those two terms are shown below as

P̃ = τ1(ρ, θ)

(
∇2

xθ −
(

1

d
∆xθ

)
I

)
+ τ2(ρ, θ)

(
∇xθ ⊗∇xθ − 1

d
|∇xθ|2I

)

+τ3(ρ, θ)

(
∇xρ⊗∇xθ +∇xθ ⊗∇xρ− 2

d
∇xρ · ∇xθI

)
,

q̃ = τ4(ρ, θ)

(
∆xu +

d− 2

d
∇x∇x · u

)
+ τ5(ρ, θ)∇xθ ·

(
∇xu + (∇xu)T − 2

d
(∇x · u) I

)

+τ6(ρ, θ)∇xρ ·
(
∇xu + (∇xu)T − 2

d
(∇x · u) I

)
,

where from kinetic theory τ1, τ2, · · · , τ6 satisfy the following relations:

τ4 =
θ

2
τ1,

τ2

θ
+

2τ5

θ2
=

∂

∂θ

( τ4

θ2

)
, θτ3 + τ6 = 2

∂τ4

∂ρ
. (3.2)

The simplified model (1.39) given in the introduction corresponds to τ1 = θ, τ4 = θ2

2
,

τi = 0 for i = 2, 3, 5, 6. Recall for this simplified model, the dispersion has an entropy

structure

P̃ :
∇xu

θ
+ q̃ · ∇xθ

θ2
= divergence. (3.3)

This entropy structure is also satisfied by P̃ , q̃ for the original DNS system by the

relation (3.2). Therefore, the Euler entropy

η = ρ log
( ρ

θd/2

)

is also formally dissipated by the system (3.1).
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Same as in the model system, dispersive effect is degenerate for (3.1). Calcu-

lation of ∇x · q̃ in the energy equation shows that

∇x · q̃ = 2(d−1)
d

τ4(ρ, θ) ∆x∇x · u + remainder, (3.4)

where the remainder is given by lower order terms. It is now clear from (3.4) that if

we use Hodge decomposition to decompose the velocity field u into the divergence

free part and the gradient part, then there is no dispersive regularization for the

divergence free part.

Therefore, we have neither dissipative nor dispersive effect for the density

function, there is only strict dissipation for the divergence free part of the velocity

field, and there are both strict dissipation and strict dispersion for the gradient part

of the velocity field and the temperature.

The above observation provides us the whole framework of the proof. The

dispersive systems been treated so far in the literature are limited to those having

strictly or uniformly dispersive effects. To treat the various degeneracies in the DNS

system, we first use the tool of pseudodifferential operators to decouple this system

into components with different smoothing effects. For the strictly dispersive part,

we apply the strategy from [22] to show the local regularization. Together with the

dissipation and hyperbolicity for other components, we can close the energy estimate

for the whole system.
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3.1.1 Dispersive Regularization

Because the dispersive regularization plays a central role in our proof of well-

posedness, we give a short literature review of it.

Dispersion, by the name, means in the propagation of waves, different wave

numbers will lead to different phase speeds [28]. Particularly, the dispersive relation

in terms of the wave number is real with its Hessian matrix being nonsingular. For

simplicity, if we consider the 1D case, then the group velocity (take the magnitude if

necessary) is increasing in the wave number. Thus the waves with higher frequencies

will travel to infinity faster than those with lower frequencies. Intuitively, this means

if we let the initial state evolve, then for any t > 0, there is only slower waves left

in the local region which gives a local smoothing effect for the overall profile.

Mathematically, the first result for the local smoothing effect for solutions to

dispersive equations was shown by Strichartz in his seminal paper [26]. By applying

the Fourier restriction theorem, he showed that for the free Schrödinger equation,

there is a gain of integrability in space-time topology than the initial data. The

theorem states

Theorem 3.1.1. Let u(t, x) be the solution of the free Schrödinger equation with

the initial data u0(x) ∈ L2(Rn),

∂tu− i∆xu = 0, x ∈ Rn, t ∈ R

u(x, 0) = u0(x).
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Then

(∫ ∞

−∞

∫

Rn

|u(t, x)|2(n+2)/n dxdt

) n
2(n+2)

≤ C

(∫

Rn

|u0(x)|2 dx

)1/2

. (3.5)

The Strichartz inequality (3.5) can be generalized to u(t, x) ∈ Lq
tL

r
x(R × Rn)

for an L2 initial data where 2 ≤ q, r ≤ ∞ satisfies the admissible condition 2
q
+ n

r
= n

2

and (q, r, n) 6= (2,∞, 2). Similar type of estimates are also been set up for other

dispersive equations such as the Airy equation and the wave equation as well [27].

Strichartz type of estimates are crucial in studying the behavior of solutions to

nonlinear dispersive equations [27].

There is another type of regularization due to dispersion that was first noticed

by Kato when he was studying the 1D KdV equation [20]. By the algebraic prop-

erties of the symbol for the KdV equation and the fact that the spacial dimension

is one, he showed that locally the solution of the KdV equation is one derivative

smoother than the intial data. The theorem is as follows.

Theorem 3.1.2. Let u(t, x) be the solution of the Korteweg-de Vries (KdV) equation

with the smooth initial data u0(x):

∂tu + ∂3
xu + u∂xu = 0, , x, t ∈ R

u(x, 0) = u0(x).
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Then for any T, R > 0,

∫ T

−T

∫ R

−R

|∂xu(t, x)|2 dxdt ≤ c
(
T, R, ‖u0(x)‖L2(R)

)
.

Later on, it was shown that this is not a property restricted to the KdV

equation. Various works generalized Kato’s result to general dispersive equations

with constant coefficients. For example, in [9], Constantin and Saut showed that

if the dispersive equation is of order m, then the solution gains m−1
2

derivatives.

They also showed in this paper that similar result holds for systems with constant

coefficients that are strictly dispersive.

Variable coefficients and nonlinear dispersive equations are also studies by us-

ing the tool of pseudodifferential operators. For example, Craig, Kappeler, and

Strauss considered a generalization of the Schrödinger equation with variable coef-

ficients in [11]. Assuming the ellipticity of the principle operator, they can quantify

the relation between the increase in smoothness of the solution with the moment

property of the initial data. Similar result was gained in [10] for a 1D fully nonlinear

dispersive equation. Again the strictness of the dispersion was assumed. In [22],

Kenig, Ponce, and Vega showed the local regularization for a quasilinear Schrödinger

equation with an elliptic operator. Based on this smoothing effect, they derived the

local well-posedness of this equation. The treatment of the strictly dispersive part

of the DNS system in my dissertation follows from their strategy. The main theorem

states that

Statement 3. Let 〈x〉2 = 1 + x2. Let ρ̄, θ̄ > 0 be two constants. There exists
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N = N(d) such that given any initial data (ρin, uin, θin) satisfying the non-trapping

condition A4 and

ρin − ρ̄ ∈ Hs+1(Rd), (uin, θin − θ̄) ∈ Hs(Rd)×Hs(Rd),

〈x〉2∂β
xρin ∈ L2(Rd),

(
〈x〉2∂α

x uin, 〈x〉2∂α
x θ

)
∈ L2(Rd)× L2(Rd),

1 ≤ |β| ≤ s1 + 1, 1 ≤ |α| ≤ s1

where s1 ≥ d
2

+ 6, s ≥ max{s1 + 6, N + d/2 + 4}, there exists T0 > 0 such that the

dispersive system (1.38) has a unique solution (ρ, u, θ) with

ρ− ρ̄ ∈ C([0, T0]; H
s) ∩ L∞([0, T0]; H

s+1),

(u, θ − θ̄) ∈ C([0, T0]; H
s−1) ∩ L∞([0, T0]; H

s) ∩ L2(0, T0; H
s+1) .

3.2 Notations and Outline of Proof

In this short section we state the general strategy for the proof in the following

sections and give notations used there.

3.2.1 Outline of Proof

As standard for proving well-posedness for nonlinear PDEs, we need an energy

estimate plus compactness in some appropriate space.

Approximating Sequence. To find a solution to the DNS system, first of all, we

construct an sequence of approximate solutions to it. To achieve this, we regularize

the system by adding an extra high order viscous term. Namely, if we use U to
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denote the solution, then the regularizing term is chosen as −ε∆2
xU . Here ε > 0 is

small. For this regularized system, via the contraction mapping theorem, it’s not

hard to show the existence of a unique solution to this regularized system. Thus,

for all ε > 0, we obtain a sequence of solutions denoted as U ε.

A Priori Estimate. In order to obtain the compactness of this approximating se-

quence, we establish an energy estimate which is independent of the regularization.

This key estimate is done in two steps. First, we linearize the regularized DNS

system and prove an L2-type of estimate for the linear system. Next, to obtain the

a priori estimate for the nonlinear system, we assume the existence of a smooth

enough solution. For this solution, we show that its higher order derivatives with

or without weights satisfy equations with similar structures as in the linear case.

Due to the nonlinearity, the coefficients will depend on the solution itself. But it

is shown that this dependence will not change with the order of derivatives. Thus

Sobolev inequalities can be applied to close the energy estimate. Finally applying

the linear estimate we obtain the a priori estimate needed for the nonlinear system.

Passing to the Limit. To construct a solution to the original DNS system, we let the

artificial viscous term go to zero, that is, let ε → 0. Since the compactness of the

approximating sequence has been guaranteed by the a priori estimate, this sequence

will converge to a solution to the DNS system. Uniqueness is also given by the a

priori estimate. Thus we finish the proof for the local well-posedness.
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3.2.2 Notations

Except the dissipative term, we do not distinguish among the second order

ψ.d.o’s and always denote them as Ψ2. Similarly, we write Ψ1, Ψ0 for all first order

and zeroth order operators respectively. For constants appearing in the context, we

always use c with 0 in the subscript to denote those depending on the initial data,

and with A in the subscript for those depending on the assumptions.

3.3 Linear Estimate

In this section and the following ones, we are going to show in detail the proof

of the local well-posedness.

As mention in the outline of proof, in order to construct an approximating

sequence to the DNS system, first we regularize the DNS system by adding an arti-

ficial high order viscous term to it. Because both the dissipation and the dispersion

are explicitly in terms of the fluid variables (u, θ), we write the regularization is in

(ρ, u, θ).

∂tρ +∇x · (ρu) = −ε∆2
xρ,

∂t(ρu) +∇x · (ρu⊗ u) +∇x(ρθ) = −ε∆2
xu +∇x · Σ +∇x · P̃ ,

∂t(ρe) +∇x · (ρeu + ρθu) +∇x · q = −ε∆2
xθ +∇x · (Σu + P̃ u) +∇x · q̃,

(ρ, u, θ)(x, 0) = (ρin, uin, θin),

(3.6)
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Then rewrite (3.6) in terms of (ρ, u, θ) as

∂tρ = −ε∆2
xρ− u · ∇xρ− ρ∇x · u,

∂tu = −ε∆2
xu +

1

ρ
∇x · Σ +

d− 1

ρd
τ1∆x∇xθ + Ψ2(ρ, θ) + Ψ1(ρ, u, θ),

∂tθ = −ε∆2
xθ +

2

ρd
∇x · q +

4(d− 1)

d2ρ
τ4∆x∇x · u + Ψ2(ρ, u) + Ψ1(ρ, u, θ),

(ρ, u, θ)(x, 0) = (ρin, uin, θin).

(3.7)

Because (ρ − ρ̄, u, θ − θ̄) satisfies the same system as (3.7), we use (ρ, u, θ) to de-

note (ρ − ρ̄, u, θ − θ̄) and refer to (3.7) as the system for (ρ − ρ̄, u, θ − θ̄). In the

equation for u, Ψ2 is given by the second order terms in ∇x · P̃ . Therefore this is a

homogenous ψ.d.o of order 2. By the definition of P̃ , the coefficients of Ψ2 depend

on (ρ, θ,∇xρ,∇xθ) and are proportional to ∇x(ρ, θ). Meanwhile, Ψ1 in the equation

for u is given by the convection term, the pressure term and the first order terms in

P̃ . It is homogeneous of order 1 with coefficients depending on (ρ, u, θ) and ∇x(ρ, θ).

These coefficients can be quadratic in ∇x(ρ, θ).

Similarly, in the equation for θ, the homogeneous operator Ψ2 is given by the

second order terms in ∇x · q̃. The coefficients of Ψ2 depend on (ρ, θ) and ∇x(ρ, u, θ).

Again these coefficients are proportional to ∇x(ρ, u, θ). Finally, Ψ1 is given by the

convection term, the pressure term, the viscous term and the first order terms in q̃.

It is homogeneous of order 1 with coefficients depending nonlinearly on (ρ, u, θ) and

∇x(ρ, u, θ).

Let V = (%, v, ϑ), U = (ρ, u, θ). Replace (ρ, u, θ) in the coefficients of Ψ2, Ψ1

by (%, v, ϑ) to make these operators linear in U . Define the linear operator with
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variable coefficients L(V )U as follows.

L(V )U =




L1(V )U

L2(V )U

L3(V )U




=




−v · ∇xρ− %∇x · u
1
%
∇x · Σ + d−1

%d
τ1∆x∇xθ + Ψ2(ρ, θ) + Ψ1(ρ, u, θ)

2
d%
∇x · q + 4(d−1)

d2%
τ4∆x∇x · u + Ψ2(ρ, u) + Ψ1(ρ, u, θ) .




(3.8)

Note here we also replace (ρ, u, θ) in the transport coefficients µ, κ and in τ1, τ4 by

(%, v, ϑ). Therefore system (3.7) can be written in an abstract way as

∂tU = −ε∆2
xU + L(U)U, U(x, 0) = U in(x). (3.9)

In the first subsection we are going to state the assumptions on the initial data

U in and the coefficients of the linear operator L(V ) (hence on V ). The theorem for

the linear estimate is also stated in this subsection. In the second subsection we are

going to establish this estimate for the linear system (3.9).

3.3.1 Assumptions and Statement of the Linear Estimate

To derive the linear estimate, we need to make the following assumptions on

V = (%, v, ϑ), which in turn give the assumptions on the coefficients of the linear

operator L(V ). These assumptions suggest the proper functional spaces in which

we can find a unique solution to system (3.1).
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Assumptions .

A1. Decay of the coefficients of the second order symbols. Assume that there

exist constants cA, T1 > 0 such that ∀(x, t) ∈ Rd × [0, T1],

|∂t(%, v, ϑ)(t, x)|+ |∇x(%, v, ϑ)(t, x)|+ |∂t∇x(%, v, ϑ)(t, x)| ≤ cA

〈x〉2 , (3.10)

with 〈x〉 4= (1 + |x|2) 1
2 .

A2. Regularity of the coefficients. Assume that there exists T2 > 0 such

that for each 0 ≤ t ≤ T2, (%, v, ϑ)(t, x) ∈ CN+4
b (Rd) for N sufficiently large. This

guarantees that the proofs involving ψ.d.o’s can be carried out. Again use cA to

denote the uniform bound (in t) of (%, v, ϑ) in CN
b (RD). Choose T3 = min(T1, T2)

such that A1 and A2 are both satisfied for any (x, t) ∈ Rd × [0, T3].

A3. Lower bounds of the coefficients. Assume that there exists a constant τ0

such that %, ϑ ≥ τ0 > 0.

A4. Non-trapping condition. Let h(x, ξ) =
√

τ̂1(x, 0)τ̂4(x, 0)|ξ|3 and Hh be

the corresponding Hamiltonian flow. Assume that Hh satisfies the non-trapping

condition.

Remark 3.3.1. Notice that by inequality (3.10) , if we assume that there exists c0 > 0

such that

|∇x(%
in, vin, ϑin)| = |∇x(ρ

in, uin, θin)| ≤ c0

2

1

〈x〉2 , ∀x ∈ Rd,
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then we can choose T4 > 0 small enough such that

|∇x(%, v, ϑ)(t, x)| ≤ c0

〈x〉2 , ∀ (t, x) ∈ [0, T2]×Rd, (3.11)

where T4 depends on both c0 and cA, but the bound on ∇x(%, v, ϑ) depends only on

the initial data.

The same observation holds for the constant in assumption A2. Since essen-

tially (%, v, ϑ) is the solution of system (1.1), the time derivative of ∂α
x (%, v, ϑ) for

any |α| ≤ N + 1 is bounded by ‖(%, v, ϑ)‖CN+4
b

. Therefore if we assume that

‖(%in, vin, ϑin)‖CN+1
b

≤ c0

2
,

then there exists T5 > 0 depending on c0, cA such that

‖(%, v, ϑ)(t, x)‖CN+1
b

≤ c0, ∀ (t, x) ∈ [0, T5]×Rd. (3.12)

Remark 3.3.2. Let p(t, x, ξ) be the symbol of Ψ2 in the equations for u and for θ.

Then p is a homogeneous second order polynomial in ξ. By A1,A2,A3 and the

above two remarks, there exists a constant c0,1 > 0 depending on c0, τ0 and T6 > 0

depending on cA such that

|p(t, x, ξ)| ≤ c0,1

〈x〉2 |ξ|
2, ∀ (x, t) ∈ Rd × [0, T6],

and every coefficient of p is in CN
b (Rd) uniformly for t ∈ [0, T6].
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In what follows, use T > 0 to denote the time interval on which all the as-

sumptions A1 −A4 are true.

We can now state the theorem for the linear estimate based on the above

assumptions.

Theorem 3.3.1. Suppose the coefficients of the linear operator L(V ) defined in

(3.8) satisfy the assumptions A1 − A4. Let (ρε, uε, θε) be a smooth solution to the

system (3.9). Then there exist c0, T0 > 0 such that

sup
[0,T0]

(
‖ρε − ρ̄‖2

H1
x

+ ‖(uε, θε − θ̄)‖2
L2

x

)
(t) +

∫ T0

0

‖∇x(u
ε, θε)‖2

L2
x
(s) ds

≤ c0

(
‖ρin − ρ‖2

H1
x

+ ‖(uin, θin − θ̄)‖2
L2

x

)
,

where c0 depends only on the initial data and τ0, while T0 depends on cA, τ0.

3.3.2 Linear Estimate

In this section we establish the linear estimate for solutions to the DNS system

with artificial viscosities. As shown in Theorem 1, this estimate is performed in the

space (ρ, u, θ)(t, ·) ∈ H1 × L2 × L2 for each t. The local smoothing effect from

the dispersion is illustrated by this estimate. It will be clear that the artificial

viscosities do not contribute to the proof. Therefore the same linear estimate holds

for the original DNS system.

The strategy for proving the linear estimate is that we first study the subsys-

tem given by the uniformly non-degenerate dispersive components of the solution.

Combining the dispersive regularization effect gained for these components with
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dissipation and hyperbolicity for other components, we derive the linear energy es-

timate for the regularized DNS system. The proof is divided into six steps.

Step1. Decomposition of u. Since Qu is the gradient part of the velocity field u,

there exists a scalar function φ such that Qu = ∇xφ. It will be shown below that in

the Fourier space essentially it is the component of û(ξ) along the ξ-direction that

has a non-degenerate dispersive effect. Therefore we are interested in studying the

regularity of φ.

To this end, let θR(ξ) ∈ C∞(Rd) be a cutoff function such that θR(ξ) = 1 for

|ξ| > 2R, θR(ξ) = 0 for |ξ| < R and 0 ≤ θR(ξ) ≤ 1 otherwise. Let

p0,k(ξ) = −i
ξk

|ξ| , ψR(ξ) = 1− θR(ξ), k = 1, 2, . . . , d.

Let Ψp0,k
, ΨψR

be the corresponding ψ.d.o’s. Write
∑d

k=1 Ψp0,k
uk in short as Ψp0Qu.

Decompose the velocity field u as

u = ΨθR
Qu + ΨθR

Pu + ΨψR
u.

By Plancherel’s theorem, it is clear that for any real number s,

‖ΨθR
Qu‖Hs(Rd) = ‖ΨθR

Ψp0u‖Hs(Rd).
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In addition, it is obvious that

‖u‖Hs(Rd) ≤‖ΨθR
Ψp0u‖Hs(Rd) + ‖ΨθR

Pu‖Hs(Rd) + ‖ΨψR
u‖Hs(Rd)

≤ 3‖u‖Hs(Rd).

Furthermore, for any real number s the following inequality is true for the weighted

Sobolev spaces Hs (〈x〉2dx) , that is, there exists a cs > 0 depending only on s such

that

‖u‖Hs(〈x〉2dx) ≤‖ΨθR
Ψp0u‖Hs(〈x〉2dx) + ‖ΨθR

Pu‖Hs(〈x〉2dx) + ‖ΨψR
u‖Hs(〈x〉2dx)

≤ cs‖u‖Hs(〈x〉2dx),

by the fact that in the Fourier space the weight 〈x〉2 becomes the second derivative

on ξ.

Since Hs(dx) and Hs (〈x〉2dx) are all the functional spaces we consider, these

equivalences of the norms justify that we need only to study the behavior of the

components of u, that is, Ψθ0Ψp0u, ΨθR
Pu and ΨψR

u.

Apply these three operators to the equation for u, and work out the equations

for these components respectively.

The equation for ΨθR
Ψp0u shows that

∂t(ΨθR
Ψp0u) =− ε∆2

x(ΨθR
Ψp0u) + ΨθR

Ψp0

(
1
%
∇x · Σ

)

+ ΨθR
Ψp0

(
1
%
∇x · P̃

)
+ Ψ1(ρ, u, θ),

(3.13)
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where

Ψ1(ρ, u, θ) = −Ψθ0Ψp0

(
v · ∇xu + ϑ

%
∇xρ +∇xθ

)

= Ψ1ρ + Ψ1u + Ψ1θ

= Ψ1ρ + Ψ1ΨθR
Qu + Ψ1ΨθR

Pu + Ψ1ΨψR
u + Ψ1θ

= Ψ1ρ + Ψ1 (ΨθR
Ψp0u) + Ψ1 (ΨθR

Pu) + Ψ1θ + Ψ0 (ΨψR
u) .

Notice that we use the following fact in the above calculation:

the symbol of ΨθR
Q = θR

ξ ⊗ ξ

|ξ|2 · = θR
iξ

|ξ| (θRp0) ,

that is,

ΨθR
Qu = ΨE0 (ΨθR

Ψp0u) .

Compute the second and third terms on the right hand side of (3.13). We have

ΨθR
Ψp0

(
1
%
∇x · Σ

)

= ΨθR
Ψp0

(
µ
%

(
∆x + d−2

d
∇x∇x·

)
u
)

+ ΨθR
Ψp0Ψ1(u)

=
µ

%
ΨθR

Ψp0

(
∆x + d−2

d
∇x∇x·

)
u + Ψ1u

= 2(d−1)
d

µ
%
∆x (ΨθR

Ψp0u) + Ψ1 (ΨθR
Ψp0u) + Ψ1 (ΨθR

Pu) + Ψ0 (ΨψR
u) ,

(3.14)
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and

ΨθR
Ψp0

(
1
%
∇x · P̃

)

= ΨθR
Ψp0

(
d−1

d
τ1
%
∇x∆xθ

)
+ Ψ2(ρ, θ) + Ψ1(ρ, θ)

= − d−1
d

τ1
%
ΨθR

(−∆x)
3
2 θ + ΨE2(ρ, θ) + Ψ1(ρ, θ)

= − d−1
d

τ1
%
(−∆x)

3
2 θ + Ψ2(ρ, θ) + Ψ1(ρ, θ) + Ψ0θ.

Overall, the equation for ΨθR
Ψp0u is written as

∂t (ΨθR
Ψp0u)

= − ε∆2
x(ΨθR

Ψp0u) + 2(d−1)
d

µ
%
∆x (ΨθR

Ψp0u)− d−1
d

τ1
%
(−∆x)

3
2 θ

+ Ψ2(ρ, θ) + Ψ1 (ρ, ΨθR
Ψp0u, ΨθR

Pu, ΨψR
u, θ) .

(3.15)

where as stated before, the symbols of the second order operators Ψ2(%, ϑ) are

homogeneous of order two and proportional to ∇x(%, ϑ), while the norms of the

first and zeroth order operators depend on finitely many derivatives of (%, v, ϑ).

Similarly, apply the operator ΨθR
P to the equation for the velocity field u to

obtain the equation for the component ΨθR
Pu.

∂t(ΨθR
Pu) =− ε∆2

x(ΨθR
Pu) + ΨθR

P

(
1

%
∇x · Σ

)

+ ΨθR
P

(
1

%
∇x · P̃

)
+ Ψ1(ρ, u, θ),

(3.16)
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where

Ψ1(ρ, u, θ) = −Ψθ0P

(
v · ∇xu +

ϑ

%
∇xρ +∇xθ

)

= Ψ1u + Ψ0(ρ, θ)

= Ψ1 (ΨθR
Ψp0u) + Ψ1 (ΨθR

Pu) + Ψ0 (ρ, ΨψR
u, θ) .

Similar calculations show that

ΨθR
P

(
1

%
∇x · Σ

)
= ΨθR

P

(
µ

%

(
∆x +

d− 2

d
∇x∇x·

)
u

)
+ ΨθR

PΨ1u

=
µ

%
ΨθR

P

(
∆x +

d− 2

d
∇x∇x·

)
u + Ψ1u

=
µ

%
∆x (ΨθR

Pu) + Ψ1 (ΨθR
Ψp0u, ΨθR

Pu) + Ψ0 (ΨψR
u) ,

and

ΨθR
P

(
1

%
∇x · P̃

)
= ΨθR

P

(
d− 1

d

τ1

%
∇x∆xθ

)
+ Ψ2θ + Ψ2ρ + Ψ1θ + Ψ1ρ

= Ψ2(ρ, θ) + Ψ1(ρ, θ)

Notice that in the equality for ΨθR
P

(
1
%
∇x · P̃

)
, we use the fact

ΨθR
P

(
∇x

(
d− 1

d

τ1

%
∆xθ

))
= 0.

Therefore the equation for ΨθR
Pu is written as

∂t (ΨθR
Pu) = −ε∆2

x (ΨθR
Pu) +

µ

%
∆x (ΨθR

Pu) + Ψ2(ρ, θ)

+ Ψ1 (ρ, ΨθR
Ψp0u, ΨθR

Pu, ΨψR
u, θ) + Ψ0(ρ, ΨψR

u, θ) .

(3.17)
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Finally, by applying the operator ΨψR
to the equation for u, we obtain the

equation for the third component ΨψR
u as

∂t (ΨψR
u) = Ψ0 (ρ, ΨθR

Ψp0u, ΨθR
Pu, ΨψR

u, θ) . (3.18)

Combine the mass equation, (3.15), (3.17), (3.18) and the equation for the

temperature θ.

The complete system is written as

∂tρ =− ε∆2
xρ−∇x · (ρu)

∂t (ΨθR
Pu) =− ε∆2

x (ΨθR
Pu) +

µ

%
∆x (ΨθR

Pu) + Ψ2(ρ, θ)

+ Ψ1 (ρ, ΨθR
Pu, ΨθR

Ψp0u, θ) + Ψ0(ρ, ΨψR
u, θ)

∂t (ΨθR
Ψp0u) =− ε∆2

x (ΨθR
Ψp0u) +

2(d− 1)

d

µ

%
∆x (ΨθR

Ψp0u)− d− 1

d

τ1

%
(−∆x)

3
2 θ

+ Ψ2(ρ, θ) + Ψ1 (ρ, ΨθR
Pu, ΨθR

Ψp0u, θ) + Ψ0 (ΨψR
u)

∂t (ΨψR
u) =Ψ0 (ρ, ΨθR

Ψp0u, ΨθR
Pu, ΨψR

u, θ)

∂tθ =− ε∆2
xθ +

2

d

κ

%
∆xθ +

4(d− 1)

d2

τ4

%
(−∆x)

3
2 (ΨθR

Ψp0u)

+ Ψ2 (ρ, ΨθR
Pu, ΨθR

Ψp0u)

+ Ψ1 (ρ, ΨθR
Pu, ΨθR

Ψp0u, θ) + Ψ0 (ΨψR
u)

(ρ, u, θ)(x, 0) = (ρin, uin, θin),

(3.19)

where the symbols of the second order operators Ψ2(%, θ) are homogeneous of order

two and proportional to ∇x(%, v, ϑ), while the norms of the first and zeroth order
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operators depend on finitely many derivatives of (%, v, ϑ).

System (3.19) shows that dispersion occurs only for ΨθR
Ψp0u and θ. This

validates the statement that the DNS system is degenerate in dispersion. Compared

with other components, it is reasonable to expect extra smoothing effect for those

two strictly dispersed terms. To see this dispersive smoothing effect, we study the

subsystem for (ΨθR
Ψp0u, θ) first.

To make notations simple, let

→
ω= (ω1, ω2)

T 4
= (ΨθR

Ψp0u, θ)T ,

→
η= (η1,

→
η2)

T 4
= (ρ, ΨθR

Pu)T ,
→
ζ
4
= ΨψR

u,

τ̂1 =
d− 1

d

τ1

%
, τ̂4 =

4(d− 1)

d2

τ4

%

Therefore, the system for
→
ω is written as

∂t
→
ω= −ε∆2

x

→
ω + ΨD

→
ω + ΨL0

→
ω + ΨB0

→
ω + Ψ2

→
η + Ψ1

(→
η ,

→
ω

)
+ Ψ0

→
ζ , (3.20)

where

ΨD
→
ω=




2(d−1)
d

µ
%
∆xω1

2
d

κ
%
∆xω2


 ,

ΨL0

→
ω=



−d−1

d
τ1
%
(−∆x)

3
2 ω2

4(d−1)
d2

τ4
%
(−∆x)

3
2 ω1


 , ΨB0

→
ω=




Ψ2ω2

Ψ2
→
ω


 .
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The corresponding symbols of ΨD and ΨL0 are

D =



−2(d−1)

d
µ
%
|ξ|2 0

0 −2
d

κ
%
|ξ|2


 , L0 =




0 −τ̂1|ξ|3

τ̂4|ξ|3 0


 ,

while repeatedly, B0, the symbol of ΨB0 , is homogeneous of order two with coeffi-

cients proportional to ∇x(%, v, ϑ). Therefore, by the assumptions for (%, v, ϑ), there

exists c0,2 > 0 depending on c0, τ0 such that B0 satisfies the following condition.

|B0(t, x, ξ)| ≤ c0,2|ξ|2
〈x〉2 , ∀ (t, x, ξ) ∈ [0, T ]×Rd ×Rd. (3.21)

The same condition is satisfied by the symbol of ΨE2 in (3.17), the equation for

ΨθR
Pu.

Step2. Diagonalization of ΨL0 . This step is to diagonalize L0 to make the dispersion

explicit. Obviously L0 has two eigenvalues λ± = ±i
√

τ̂1τ̂4|ξ|3.

Introduce the matrix S and its inverse as follows

S =



−i

√
τ̂1/τ̂4

i
√

τ̂1/τ̂4


 , S−1 =

1

2




i −i

√
τ̂4/τ̂1

√
τ̂4/τ̂1


 .

Note that due to the specific structures of (τ̂1, τ̂4), matrix S (therefore S−1) depend

on θ only. Each entry of S and S−1 is a zeroth order ψ.d.o. To be specific, since S =

S(t, x), the corresponding operator ΨS is just a multiplication, that is, ΨS
→
ω= S

→
ω.

Furthermore, as an operator, S is invertible on Hs(dx), Hs(〈x〉2dx) and Hs(〈x〉−2dx)

for all s by A2 and A3.
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By choosing such an S we have

SL0 =




λ+ 0

0 λ−


 S

4
= LS.

To diagonalize L0, multiply S to (1.10). Define
→
β
4
= S

→
ω.

∂t

→
β= ∂t(S

→
ω)

= − εS∆2
x

→
ω +SΨD

→
ω +SΨL0

→
ω +SΨB0

→
ω

+ SΨ2

→
η +SΨ1

(→
η ,

→
ω

)
+ (∂tS)

→
ω +SΨ0

→
ζ .

(3.22)

To obtain a system for
→
β , we need to study each of the above terms respectively.

First,

εS∆2
x

→
ω= ε∆2

xS
→
ω +ε(ΨR1S

−1)S
→
ω
4
= ε∆2

x

→
β +ε(ΨR2)

→
β,

where ΨR1 , hence ΨR2 , are third order ψ.d.o’s with seminorms bounded by the

constants cA, τ0.

Next we have

SΨB0

→
ω= SΨB0S

−1
→
β .

Since both S and S−1 are both of zeroth order, SΨB0S
−1 is still a second order

operator and we use ΨB1 to denote the highest order part of this operator, that is,

ΨB1 −SΨB0S
−1 is a first order operator and B1(t, x, ξ) is homogeneous of order 2 in

ξ. Notice that by assumptions A1 −A3, there exists c0,3 > 0 such that B1 satisfies
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the following condition,

|B1(x, t, ξ)| ≤ c0,3|ξ|2
〈x〉2 , ∀ (x, t, ξ) ∈ Rd × [0, T ]×Rd. (3.23)

By the same token, we can write SΨ2

→
η +SΨ1

(→
η ,

→
ω

)
as

SΨ2

→
η +SΨ1

(→
η ,

→
ω

)
= Ψ2

→
η +Ψ1(

→
η ,

→
β), SΨ0

→
ζ = Ψ0

→
ζ ,

where Ψ2 is a second order operator with its symbol homogeneous of order 2 in ξ

and satisfying the same inequality as (3.23). At the same time, by the assumptions

of (%, v, ϑ), ∂tS is a zeroth order operator. Therefore,

(∂tS)
→
ω= (∂tS)S−1

→
β= Ψ0β.

For the dissipative term, we have

SΨDS−1 =
1

2



−i

√
τ̂1/τ̂4

i
√

τ̂1/τ̂4







2(d−1)
d

µ
%
∆x 0

0 2
d

κ
%
∆x







i −i

√
τ̂4/τ̂1

√
τ̂4/τ̂1




=




(
d−1

d
µ
%

+ κ
%d

)
∆x 0

0
(

d−1
d

µ
%

+ κ
%d

)
∆x




+




0
(
−d−1

d
µ
%

+ κ
%d

)
∆x

(
−d−1

d
µ
%

+ κ
%d

)
∆x 0


 + Ψr1
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with r1 ∈ S1. Therefore,

SΨD
→
ω=

(
d− 1

d

µ

%
+

κ

%d

)
∆x

→
β

+




0
(
−d−1

d
µ
%

+ κ
%d

)
∆x

(
−d−1

d
µ
%

+ κ
%d

)
∆x 0




→
β +Ψr1S

−1
→
β .

Notice that although the second term on the right side of the above equation is of

second order, there is no contribution from the diagonal. Combine this term with

ΨB1 , and use ΨB2 to denote this new second order operator. Obviously the diagonal

terms of B2 satisfy the same property as B1 in (3.23).

Next we study the structure of SΨL0 . Using the fact that SL0 = LS, we have

SΨL0 = ΨLS + (ΨSL0 −ΨLS) + (ΨLS −ΨLS) = ΨLS + (ΨLS −ΨLS).

We claim that ΨLS−ΨLS is a second order operator. This is shown by the following

calculation.

ΨLS −ΨLS =




√
τ̂1τ̂4(−∆x)

3
2 i

√
τ̂1τ̂4

√
τ̂1/τ̂4(−∆x)

3
2

√
τ̂1τ̂4(−∆x)

3
2 −i

√
τ̂1τ̂4

√
τ̂1/τ̂4(−∆x)

3
2




−




√
τ̂1τ̂4(−∆x)

3
2 i

√
τ̂1τ̂4(−∆x)

3
2

√
τ̂1/τ̂4

√
τ̂1τ̂4(−∆x)

3
2 −i

√
τ̂1τ̂4(−∆x)

3
2

√
τ̂1/τ̂4




=




0 i
√

τ̂1τ̂4

√
τ̂1/τ̂4(−∆x)

3
2 − i

√
τ̂1τ̂4(−∆x)

3
2

√
τ̂1/τ̂4

0 −i
√

τ̂1τ̂4

√
τ̂1/τ̂4(−∆x)

3
2 + i

√
τ̂1τ̂4(−∆x)

3
2

√
τ̂1/τ̂4


 .
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The nonzero terms in the above matrix are commutators of a zeroth order operator

and a third order operator. Therefore each entry of ΨLS − ΨLS is of second order.

Let B3 be the symbol matrix corresponding to the leading order of ΨLS −ΨLS. By

the calculus of ψ.d.o’s and assumptions A1−A3, there exists c0,4 > 0 such that B3

satisfies the following inequality.

|B3(x, t, ξ)| ≤ c0,4|ξ|2
〈x〉2 , ∀ (x, t, ξ) ∈ Rd × [0, T2]×Rd.

Combine ΨB2 with ΨB3 , and use ΨB to denote this second order operator. Then the

diagonal of B satisfies that

|Bdiag(x, t, ξ)| ≤ c0,5|ξ|2
〈x〉2 , ∀ (x, t, ξ) ∈ Rd × [0, T ]×Rd. (3.24)

Overall the system for
→
β is written as

∂t

→
β = − ε∆2

x

→
β +εΨR2

→
β +

(
d− 1

d

µ

%
+

κ

%d

)
∆x

→
β +ΨL

→
β +ΨB

→
β

+ Ψ2

→
η +Ψ1(

→
η ,

→
β) + Ψ0(

→
ζ ,

→
β).

(3.25)

Step3. Diagonalization of ΨB. In this step we continue to diagonalize the main

parts of the system (3.25) so that we can decouple β1, β2. From (3.25) it is clear

that both dissipation and dispersion parts for
→
β have been diagonalized. The only
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term left is ΨB. To this end, write

ΨB = ΨBdiag
+ ΨBanti

=




ΨB11 0

0 ΨB22


 +




0 ΨB12

ΨB21 0


 .

We will show that by suitable transformation, ΨBanti
is essentially canceled out by

terms from ΨL. The cancelation is based on the observation that the second order

off-diagonal terms can be recovered from the dispersion terms for the corresponding

variables by multiplying operators of order -1 to these equations. This technique

will be used again in estimates for ρ.

Let

h(t, x, ξ) =
√

τ̂1τ̂4|ξ|3, h̃(t, x, ξ) = h−1(t, x, ξ)θR(ξ),

where 0 ≤ θR(ξ) ≤ 1 is again the C∞ cutoff function. Then h̃ ∈ S−3 uniformly in t

and Ψh̃Ψh = I + Ψr2 with r2 ∈ S−1 uniformly in t. Define

T12 = i
1

2
ΨB12Ψh̃, T21 = −i

1

2
ΨB21Ψh̃, T =




0 T12

T21 0


 ,

and the diagonalizing transform Λ of order 0

Λ = I − T.

Note that since T is of order −1, its S0 seminorm is of order O(1/R). Therefore by
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taking R large enough one can assume that Λ is invertible on Hs(dx), Hs(〈x〉2dx)

and Hs(〈x〉−2dx) with operator norm between 1/2 and 2. Also the inverse of Λ is

of order 0 with operator norm between 1/2 and 2.

The transformation Λ acting on system (3.25) shows the following computa-

tion. First,

εΛ∆2
x + εΛΨR2 = ε∆2

xΛ + ε
(
Λ∆2

x −∆2
xΛ

)
Λ−1Λ + ε

(
ΛΨR2Λ

−1
)
Λ

= ε∆2
xΛ + εΨR3Λ,

with ΨR3 = (Λ∆2
x −∆2

xΛ) Λ−1 + ΛΨR2Λ
−1 being a third order ψ.d.o, for it’s easy to

see that (Λ∆2
x −∆2

xΛ) Λ−1 is a second order ψ.d.o. The seminorms of ΨR3 depend

on the constants cA, τ0.

Second,

Λ∂t

→
β= ∂t(Λ

→
β)− (∂tΛ)Λ−1Λ

→
β,

where (∂tΛ)Λ−1 is a 0’th order operator.

Next, since the symbol of T is in S−1, and from

ΛΨBdiag
−ΨBdiag

Λ = −TΨBdiag
+ ΨBdiag

T,

it’s clear that ΛΨBdiag
= ΨBdiag

Λ + ΨE1Λ.

79



Similarly,

ΛΨBanti
= ΨBanti

Λ + Ψ1Λ,

Λ

(
(1− 1

d
)

µ

%d
+

2κ

%d

)
∆xI =

(
(1− 1

d
)

µ

%d
+

2κ

%d

)
∆xΛI + Ψ1Λ,

ΛΨ2

→
η= Ψ2

→
η , ΛΨ1

(→
η ,

→
β
)

= Ψ1

(→
η , Λ

→
β
)

,

ΛΨ0

(→
ζ ,

→
β
)

= Ψ0

(→
ζ , Λ

→
β
)

.

Now check the term ΛΨL −ΨLΛ.

ΛΨL −ΨLΛ = ΨLT − TΨL

= i




Ψh 0

0 −Ψh







0 T12

T21 0


− i




0 T12

T21 0







Ψh 0

0 −Ψh




= i




0 ΨhT12 + T12Ψh

−[ΨhT21 + T21Ψh] 0


 .

By the fact that ΨhT12 = T12Ψh + Ψ1, we have

i(ΨhT12 + T12Ψh) = 2iT12Ψh + Ψ1 = −ΨB12 + Ψ1,

−i(ΨhT21 + T21Ψh) = −2iT21Ψh + Ψ1 = −ΨB21 + Ψ1.

Therefore,

ΛΨL + ΛΨBanti
= ΨLΛ + Ψ1 = ΨLΛ + Ψ1Λ.
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Let
→
z= Λ

→
β . Then the system for

→
z is written as

∂t
→
z=− ε∆2

x

→
z +εΨR3

→
z +

(
d− 1

d

µ

%
+

2

d

κ

%

)
∆x

→
z +ΨL

→
z +ΨBdiag

→
z

+ Ψ2

→
η +Ψ1(

→
η ,

→
z ) + Ψ0(

→
ζ ,

→
z ),

(3.26)

where Bdiag satisfies (3.24). The same condition holds for the symbol for Ψ2.

As stated before, the dispersion will bring a local smoothing effect to the

system. Besides that, it will be illustrated in the following calculation that the

control of the second order term ΨBdiag

→
z comes from the dispersion. To achieve

both objectives, we need a further transformation.

Step4. Decoupling of the nondispersive and dispersive parts. Since the couplings of

the dispersive terms with the nondispersive ones, (ρ, ΨθR
Pu), makes the latter terms

uncontrollable, we need to decouple those two parts before we can hope to obtain

the energy estimate. We apply the same idea as we did to cancel the Banti in the

last step.

First notice that in the continuity equation, the coupling is introduced by the

term ρ∇x ·u, essentially it is the term ρ∇x ·Qu. This shows the coupling comes solely

from the strictly dispersive part. Since this strictly dispersive part (Qu, θ) has been

transformed into
→
z , we rewrite the continuity equation in terms of

(
ρ, ΨθR

Pu,
→
z
)

as follows.

∂tρ = −ε∆2
xρ− v · ∇xρ + ΨΓ1z1 + ΨΓ2z2 + Ψ0

→
ζ . (3.27)

Here we have applied the facts that the transformations S, Λ are zeroth order oper-

ators and they are invertible so that Qu can be written in terms of
→
z .
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Define

T1 = iΨΓ1Ψh̃, T2 = −iΨΓ2Ψh̃ .

Then T1, T2 are of order −2. By the definition of Ψh̃ we see that

T1Ψih + ΨΓ1 = −ΨΓ1Ψh̃Ψh + ΨΓ1 ,

T2Ψ−ih + ΨΓ2 = −ΨΓ2Ψh̃Ψh + ΨΓ2 .

(3.28)

By the calculus of ψ.d.o’s, T1Ψih+ΨΓ1 , T2Ψ−ih+ΨΓ2 are both zeroth order operators.

Now consider the equations for T1z1 and T2z2. Apply T1, T2 to the equations

for z1, z2 respectively to obtain that

∂t(T1z1) = −ε∆2
x(T1z1) + εΨR5z1 + T1Ψihz1 + Ψ0

(→
η ,

→
ζ ,

→
z
)

,

∂t(T2z2) = −ε∆2
x(T2z2) + εΨR6z2 + T2Ψ−ihz2 + Ψ0

(→
η ,

→
ζ ,

→
z
)

,

(3.29)

where R5, R6 ∈ S1. Combine (3.27) and (3.29). Let σ = ρ + T1z1 + T2z2. Then the

equation for % is written as

∂tσ = −ε∆2
xσ + εΨ1

→
z −v · ∇xσ + Ψ0

(
σ, ΨθR

Pu,
→
ζ ,

→
z
)

. (3.30)

Similar steps follow for the second order term for θ in the equation for ΨθR
Pu.

First write θ which is also denoted as ω2 in terms of
→
z= (z1, z2)

T . Then there exist

ΨΓ3 , ΨΓ4 such that ΨE2ω2 = ΨΓ3z1 + ΨΓ4z2.

Define

T3 = iΨΓ3Ψh̃, T4 = iΨΓ4Ψh̃.
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Thus T3, T4 are of order −1, and we have

T3Ψih + ΨΓ3 = −ΨΓ3Ψh̃Ψh + ΨΓ3 ,

T4Ψ−ih + ΨΓ4 = −ΨΓ4Ψh̃Ψh + ΨΓ4 .

(3.31)

By the calculus of ψ.d.o’s, T3Ψih +ΨΓ3 , T4Ψ−ih +ΨΓ4 are both first order operators.

Apply T3, T4 to the equations for z1, z2 respectively to obtain that

∂t(T3z1) = −ε∆2
x(T3z1) + εΨR7z1 + T3Ψihz1 + Ψ1

(→
η ,

→
ζ ,

→
z
)

+ Ψ0

(→
η ,

→
ζ ,

→
z
)

,

∂t(T4z2) = −ε∆2
x(T4z2) + εΨR8z2 + T4Ψ−ihz2 + Ψ1

(→
η ,

→
ζ ,

→
z
)

+ Ψ0

(→
η ,

→
ζ ,

→
z
)

,

(3.32)

where R7, R8 ∈ S2.

The equation for ΨθR
Pu is written as

∂t (ΨθR
Pu) = − ε∆2

x (ΨθR
Pu) +

µ

%
∆x (ΨθR

Pu) + ΨE2σ + ΨΓ3z1 + ΨΓ4z2

+ Ψ1

(→
η ,

→
z
)

+ Ψ0

(→
η ,

→
z ,

→
ζ
) (3.33)

Therefore the equation for ΨθR
Pu + T3α1 + T4α2

4
=
→
v is as follows:

∂t
→
v= −ε∆2

x

→
v +εΨ2

→
z +

µ

%
∆x

→
v +ΨE2σ + ΨE1

(
σ,

→
z ,

→
v
)

+ ΨE0

(
σ,

→
z ,

→
v ,

→
ζ
)

.

(3.34)
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Overall, the whole system is written as

∂tσ =− ε∆2
xσ + εΨ1

→
z −v · ∇xσ + ΨE0

(→
v ,

→
ζ ,

→
z
)

,

∂t
→
v=− ε∆2

x

→
v +εΨ2

→
z +

µ

%
∆x

→
v +Ψ2σ + Ψ1

(
σ,

→
v ,

→
z
)

+ Ψ0

(
σ,

→
v ,

→
z ,

→
ζ
)

,

∂t
→
z=− ε∆2

x

→
z +εΨR3

→
z +

(
d− 1

d

µ

%
+

2

d

κ

%

)
∆x

→
z +ΨL

→
z +ΨBdiag

→
z

+ Ψ2

(
σ,

→
v
)

+ Ψ1

(
σ,

→
v ,

→
z
)

+ Ψ0

(
σ,

→
v ,

→
ζ ,

→
z
)

∂t

→
ζ = ΨE0

(
σ,

→
v ,

→
α,

→
ζ
)

.

(3.35)

Note that we have changed all the
→
η by

→
v and σ without changing the structure of

the system.

Step5. A further transformation. At this step we are going to define a transforma-

tion to show the control of the Bdiag term in the equation for
→
z by the commutator

of L with this new transformation. Before we give a definition, we state one lemma

and prove a slightly more general version of it based on the assumptions A1 −A4.

Lemma 3.3.1. [13] Let h1(x, ξ) = h(x, 0, ξ). Under the assumptions A1 − A4 at

t = 0 there exists p ∈ S0 real, and constants c1, c2 which depend on the constants in

A1 −A3 for t = 0 and the non-trapping condition A4 such that

Hh1p ≥ c1
|ξ|2
〈x〉2 − c2, ∀ (x, ξ) ∈ Rd ×Rd .

Moreover, finitely many seminorms of p are bounded. These bounds depend only on

A1 −A3 at t = 0.

Note that there is no time dependence in Lemma 3.3.1. We can extend Lemma
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3.3.1 to the time-dependent case, as stated in the following lemma.

Lemma 3.3.2. There exists T ∗ > 0, depending on the constants cA, τ0 and Lemma

1, such that for every t ∈ [0, T ∗) we have

Hhp = {h, p}(x, t, ξ) ≥ c1

2

|ξ|2
〈x〉2 − c2, ∀ (x, ξ) ∈ Rd ×Rd .

Proof. By definition, Hhp =
∑d

j=1

(
∂ξj

h ∂xj
p− ∂xj

h ∂ξj
p
)
, while

∂ξj
h = 3

√
τ̂1τ̂4|ξ|ξj, ∂xj

h = ∂xj

(√
τ̂1τ̂4

)
|ξ|3.

Thus it follows from the assumption on (ρ, θ) that

|∂ξj
h(x, t, ξ)− ∂ξj

h(x, 0, ξ)| ≤ c0,4T
∗

〈x〉2 |ξ|
2,

|∂xj
h(x, t, ξ)− ∂xj

h(x, 0, ξ)| ≤ c0,5T
∗

〈x〉2 |ξ|
3.

Hence

|Hhp−Hh1p| ≤
c0,6T

∗

〈x〉2 |ξ|
2.

Choose T ∗ small enough to complete the proof.

Now we are ready to construct the transformation. Let

q1(x, ξ) = exp (Mp(x, ξ)θR(ξ)) , q2(x, ξ) = exp (−Mp(x, ξ)θR(ξ)) ,
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where θR(ξ) is again the cutoff function and M > 0 to be chosen. Then

Ψq1Ψq2 = I + Ψr3 , Ψq2Ψq1 = I + Ψr4 ,

with r3, r4 ∈ S−1. Thus Ψq1 , Ψq2 are invertible and their inverses are of order 0 for

large R.

From the calculus of symbols we know that ΨhΨq1 − Ψq1Ψh = Ψ−i{h,q1} + Ψ1

with

{h, q1} =
d∑

j=1

(
∂ξj

h ∂xj
q1 − ∂xj

h ∂ξj
q1

)

=
d∑

j=1

(
M θR ∂ξj

h ∂xj
p−M θR ∂xj

h ∂ξj
p
)
q1 −

d∑
j=1

(
M p∂xj

h ∂ξj
θR

)
q1 ,

that is,

{h, q1} = M θR (Hhp) q1 + Ψ0.

Overall we have

ΨihΨq1 −Ψq1Ψih = ΨMθRHhpΨq1 + Ψ1 .

A similar computation shows that

ΨihΨq2 −Ψq2Ψih = −ΨMθRHhpΨq2 + Ψ1 .
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Now consider a new system in the variable

→
α= (α1, α2)

T =




Ψq1 0

0 Ψq2




→
z
4
= Ψ

→
z .

Note that Ψ is invertible and Ψ−1 =




Ψ−1
q1

0

0 Ψ−1
q2


 is also a matrix of order 0.

Apply the operator matrix Ψ to the system (3.26). We have

∂t
→
α = Ψ∂t

→
z

= −εΨ∆2
x

→
z +εΨΨR3

→
z +Ψ

(
(1− 1

d
)µ

%
+ κ

%d

)
∆x

→
z +ΨΨL

→
z

+ ΨΨBdiag

→
z +ΨΨ2

(
σ,

→
v
)

+ ΨΨ1

(
σ,

→
v ,

→
z
)

+ ΨΨ0

(
σ,

→
v ,

→
ζ ,

→
z
)

.

Evaluate each term on the right as follows. First, there exists R4 ∈ S3 such

that

−εΨ∆2
x

→
z +εΨΨR3

→
z= −ε∆2

x

→
α +εΨR4

→
α .

Second,

Ψ

(
(1− 1

d
)µ

%
+

2κ

%d

)
∆x

→
z

=
(
(1− 1

d
)µ

%
+ 2κ

%d

)
Ψ∆xΨ

−1 →α +Ψ1
→
α

=
(
(1− 1

d
)µ

%
+ 2κ

%d

)



Ψq1∆xΨ
−1
q1

0

0 Ψq2∆xΨ
−1
q2




→
α +Ψ1

→
α

=
(
(1− 1

d
)µ

%
+ 2κ

%d

)
∆x

→
α +Ψ1

→
α .
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Similarly,

ΨΨBdiag

→
z= ΨBdiag

→
α +(ΨΨBdiag

−ΨBdiag
Ψ)

→
z= ΨBdiag

→
α +Ψ1

→
α .

It is essential that Bdiag in the above equation is the same as Bdiag in (3.29), that

is, it does not depend on M .

Next,

ΨΨ2
→
v= Ψ2

(
Ψq1

→
v , Ψq2

→
v
)

+ Ψ1
→
v , ΨΨ2σ = Ψ2σ,

ΨΨk

→
η= Ψk

→
η , ΨΨ0

→
ζ = Ψ0

→
ζ ,

ΨΨk
→
z= ΨΨkΨ

−1 →α= Ψk
→
α, k = 1, 0.

Similarly, the second order operator on
→
v does not depend on M . The norms

of the other ψ.d.o’s depend on finitely many derivatives of (%, v, ϑ) and M .

Now for the dispersive part,

ΨΨL
→
z = ΨL

→
α +




Ψq1Ψih −ΨihΨq1 0

0 −(Ψq2Ψih −ΨihΨq2)




= ΨL
→
α +



−ΨMθRHhp 0

0 −ΨMθRHhp




→
α +Ψ1

→
α .
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Overall, the system for
→
α is written as

∂t
→
α = −ε∆2

x

→
α +εΨR4

→
α +

(
(1− 1

d
)µ

%
+ κ

%d

)
∆x

→
α +ΨL

→
α

+



−ΨMθRHhp 0

0 −ΨMθRHhp




→
α +ΨBdiag

→
α

+ Ψ2

(
Ψq1

→
v , Ψq2

→
v
)

+ Ψ2σ + Ψ1(
→
η ,

→
α) + Ψ0(

→
ζ ,

→
α) ,

(3.36)

where ΨBdiag
and the second order operator on

→
v do not depend on M .

By performing the transformations Ψq1 , Ψq2 on the equation for
→
v respectively,

it is easy to work out the equations for
(
Ψq1

→
v , Ψq2

→
v
) 4

=
→
n as

∂t
→
n= −ε∆2

x

→
n +εΨ2

→
α +

µ

%
∆x

→
n +Ψ2σ + Ψ1

(
σ,
→
n,

→
z
)

+ Ψ0

(
σ,
→
n,

→
α,

→
ζ
)

. (3.37)

Therefore the overall system in terms of (σ,
→
n,

→
α,

→
ζ ) has the form

∂tσ = −ε∆2
xσ + εΨ1

→
α −v · ∇xσ + Ψ0

(
σ,
→
n,

→
α,

→
ζ
)

,

∂t
→
n = −ε∆2

x

→
n +εΨ2

→
α +

µ

%
∆x

→
n +Ψ2σ + Ψ1

(
σ,
→
n,

→
z
)

+ Ψ0

(
σ,
→
n,

→
α,

→
ζ
)

,

∂t
→
α = −ε∆2

x

→
α +εΨR4

→
α +

(
(1− 1

d
)µ

%
+ κ

%d

)
∆x

→
α +ΨL

→
α

+



−ΨMθRHhp 0

0 −ΨMθRHhp




→
α +ΨBdiag

→
α

+ Ψ2

(
σ,
→
n
)

+ Ψ1

(
σ,
→
n,

→
α,

→
ζ
)

+ Ψ0

(
σ,
→
n,

→
α,

→
ζ
)

,

∂t

→
ζ = Ψ0

(
σ,
→
n,

→
α,

→
ζ
)

.

(3.38)

Step6. Energy estimate. We perform the energy estimate in this step. Since the
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estimate for the strictly dispersive part
→
α is most technical, we start with estimations

for
→
α. By the standard way of doing energy estimate we multiply the equation for

→
α in (3.38) by

→
α and integrate over Rd. Denote the usual L2 inner product over Rd

as 〈·〉. Then

d

dt

〈→
α,

→
α

〉

=
〈
∂t

→
α,

→
α

〉
+

〈→
α, ∂t

→
α

〉

= −ε
〈
∆2

x

→
α,

→
α

〉
− ε

〈→
α, ∆2

x

→
α

〉
+ ε

〈
ΨR4

→
α,

→
α

〉
+ ε

〈→
α, ΨR4

→
α

〉

+
〈(

(1− 1
d
)µ

%
+ κ

%d

)
∆x

→
α,

→
α

〉
+

〈
→
α,

(
(1− 1

d
)
µ

%
+

κ

%d

)
∆x

→
α

〉

+
〈
ΨL

→
α,

→
α

〉
+

〈→
α, ΨL

→
α

〉
+

〈
ΨBdiag

→
α,

→
α

〉
+

〈→
α, ΨBdiag

→
α

〉

+

〈


−ΨMθRHhp 0

0 −ΨMθRHhp




→
α,

→
α

〉

+

〈
→
α,



−ΨMθRHhp 0

0 −ΨMθRHhp




→
α

〉

+
〈
Ψ2

→
n,

→
α

〉
+

〈→
α, Ψ2

→
n
〉

+
〈
Ψ2σ,

→
α

〉
+

〈→
α, Ψ2σ

〉

+
〈
Ψ1

(
σ,
→
n,

→
α

)
,
→
α

〉
+

〈→
α, Ψ1

(
σ,
→
n,

→
α

)〉

+
〈
Ψ0

(
σ,

→
v ,

→
α,

→
ζ
)

,
→
α

〉
+

〈→
α, Ψ0

(
σ,
→
n,

→
α,

→
ζ
)〉

.

Now estimate each term above. For the terms containing ε,

−ε〈∆2
x

→
α,

→
α〉 − ε〈→α, ∆2

x

→
α〉 = −2ε‖∆x

→
α ‖2

L2 .
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Since R4 ∈ S3, by interpolation it’s clear that

ε
∣∣∣
〈
ΨR4

→
α,

→
α

〉∣∣∣ + ε
∣∣∣
〈→
α, ΨR4

→
α

〉∣∣∣ ≤ εcA‖ →α ‖2

H
3
2
≤ 2ε‖∆x

→
α ‖2

L2 + εc0,6‖ →α ‖2
L2

This shows that the terms containing ΨR4 are well-controlled by the biharmonic

terms.

For the dissipative term,

〈(
(1− 1

d
)µ

%
+ κ

%d

)
∆x

→
α,

→
α

〉
+

〈→
α,

(
(1− 1

d
)µ

%
+ κ

%d

)
∆x

→
α

〉

≤ −c3‖∇x
→
α ‖2

L2(RD) + c0,7‖ →α ‖2
L2 ,

where c3 > 0 depending only on µ0, κ0, D, d and τ0.

Next we deal with the second order terms for
→
n and σ.

For the Ψ2
→
n term, denote the symbol for this second order term as Γ5. By

assumptions A1 and A3, we can choose T7 > 0 small enough such that Γ5 satisfies

the upper bound |Γ5| ≤ c0,8

〈x〉2 |ξ|
2, ∀(x, t) ∈ Rd × [0, T7]. Therefore we derive that

∣∣∣〈ΨΓ5

→
n,

→
α〉

∣∣∣ +
∣∣∣〈→α, ΨΓ5

→
n〉

∣∣∣

≤ η‖∇x
→
n ‖2

L2 + c0,η

∫

R2

1

〈x〉2 |∇x
→
α |2dx + c0,η‖ →α ‖2

L2 ,

where c0,η depends only η and the data. Note that c0,η does not depend on M .

To control the first term on the right-hand side of the above inequality, that

is, η‖∇x
→
n ‖L2

x
, we need to utilize the equation for

→
n.

From equation (3.37) by multiplying on both sides
→
n and integration by parts,
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it’s easy to see that the energy estimate for
→
n is as follows.

1

2

d

dt
‖ →n ‖2

L2 + c0,9‖∇x
→
n ‖2

L2

≤ ηε‖∆x
→
α ‖2

L2 + cA,M

(
‖ →α ‖2

L2 + ‖σ‖2
L2 + ‖ →n ‖2

L2 + ‖
→
ζ ‖2

L2

)

+ cA,M‖∇xσ‖2
L2 .

(3.39)

The above inequality shows that we need to control the H1 norm of σ. Control of

‖σ‖H1 is also needed for the estimate of the second order term in the equation for

→
α.

First multiply the σ-equation in the system (3.38) by σ to obtain the following

L2 estimate:

1

2

d

dt
‖σ‖2

L2 ≤ ηε‖∇x
→
α ‖2

L2 + cA,M

(
‖σ‖2

L2 + ‖ →α ‖2
L2 + ‖ →n ‖2

L2

)
. (3.40)

Differentiate the equation for σ in (3.38) with respect to xl, 1 ≤ l ≤ d, multiply by

∂lσ and integrate over Rd. Then we gain the following equality

1

2

d

dt
‖∂l σ‖2

L2(Rd) −
1

2

∫

Rd

|∂l σ|2∇x · u dx +

∫

Rd

(∂l σ)∇xσ · ∂lu dx

=− ε
〈
∆2

x (∂l σ) , ∂l σ
〉

+
〈
εΨ2

→
α, ∂l σ

〉

+
〈
Ψ1

→
n, ∂l σ

〉
+

〈
Ψ1

→
α, ∂l σ

〉
+

〈
Ψ0

→
ζ , ∂l σ

〉
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Therefore, the energy inequality shows that

1

2

d

dt
‖∂l σ‖2

L2 ≤cA,M,η‖∂l σ‖2
L2 + ηε‖∆x

→
α ‖2

L2

+ η
(
‖∇x

→
v ‖2

L2 + ‖∇x
→
α ‖2

L2

)
+ ‖

→
ζ ‖2

L2 .

(3.41)

Combining (3.40) and (3.41) we obtain the energy estimate for ‖σ‖2
H1 as

1

2

d

dt
‖σ‖2

H1 ≤ cA,M,η‖σ‖2
H1 + ηε‖∆x

→
α ‖2

L2 + η
(
‖∇x

→
n ‖2

L2 + ‖∇x
→
α ‖2

L2

)

+ ‖ →α ‖2
L2 + ‖ →n ‖2

L2 + ‖
→
ζ ‖2

L2 .

(3.42)

For the first order terms, let η > 0 small enough. Then

∣∣∣
〈
Ψ1

→
α,

→
α

〉∣∣∣ +
∣∣∣
〈→
α, Ψ1

→
α

〉∣∣∣ ≤ η‖∇x
→
α ‖2

L2(R2) + cA,M,η‖ →α ‖2
L2 ,

∣∣∣
〈
Ψ1

→
n,

→
α

〉∣∣∣ +
∣∣∣
〈→
α, Ψ1

→
n
〉∣∣∣ ≤ η‖∇x

→
n ‖2

L2(R2) + cA,M,η‖ →α ‖2
L2 ,

∣∣∣
〈
Ψ1σ,

→
α

〉∣∣∣ +
∣∣∣
〈→
α, Ψ1σ

〉∣∣∣ ≤ η‖∇x
→
α ‖2

L2(R2) + cA,M,η‖σ‖2
L2 ,

(3.43)

with cA,M,η depending on M, η and the bounds cA.

The estimate for
→
ζ is straightforward from the equation for

→
ζ in (3.38), and

it shows that

1

2

d

dt
‖
→
ζ ‖2

L2 ≤ ‖
→
ζ ‖2

L2 + ‖ →α ‖2
L2 + ‖ →v ‖2

L2 + ‖%‖2
L2 . (3.44)

Next, by the calculus it can be shown that

〈ΨL
→
α,

→
α〉+ 〈→α, ΨL

→
α〉 = 〈→α, ΨB̂diag

→
α〉,
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where

B̂diag =




B̂11 0

0 B̂22


 , |B̂kk| ≤ c0,10

〈x〉2 |ξ|
2, ∀(t, x, ξ) ∈ [0, T ]×Rd ×Rd, k = 1, 2.

By the fact that B̂diag is real, we can combine
1

2
B̂diag with Bdiag and still denote it

as Bdiag =




B11 0

0 B22


. This will not change the fact that Bdiag does not depend

on M . Notice that the diagonal entries of Bdiag satisfy that |Bkk| ≤ c0,11|ξ|2
〈x〉2 for

k = 1, 2. By Lemma 3.3.2, taking M large enough we have

−MθRHhp + |Bkk| ≤ c0,12 − 1

2
c0,13

|ξ|2
〈x〉2 , ∀|ξ| > R. (3.45)

Obviously the choice of M depends only on c0.

For a shorter notation, let c′ = c0,13. Then c′ depends only on the data. By
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the sharp G̊arding inequality

〈


−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α,

→
α

〉

+

〈
→
α,



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〉

≤ c‖ →α ‖2

H
1
2
−Re

〈



Ψc′|ξ|2/〈x〉2 0

0 Ψc′|ξ|2/〈x〉2




→
α,

→
α

〉

≤ η‖ →α ‖2
H1 + cη‖ →α ‖2

L2 −Re

〈



Ψc′|ξ|2/〈x〉2 0

0 Ψc′|ξ|2/〈x〉2




→
α,

→
α

〉
.

Here η > 0 is chosen to be small enough so that the first term can be controlled by

the dissipation.

For the operator Ψc′|ξ|2/〈x〉2 , by the calculus of the ψ.d.o′s,

Ψc′|ξ|2/〈x〉2 =
1

〈x〉2 Ψc′|ξ|2 + Ψ1, Ψc′|ξ|2 = −c′∆x,

and

− 1

〈x〉2 ∆x = −∇x ·
(

1

〈x〉2∇x

)
+ Ψ1.

Therefore,

Re

〈



Ψc′|ξ|2/〈x〉2 0

0 Ψc′|ξ|2/〈x〉2




→
α,

→
α

〉

≥ c′
∫

Rd

1

〈x〉2 |∇x
→
α |2dx− η‖∇x

→
α ‖2

L2 − cη‖ →α ‖2
L2 .
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Overall we have

〈


−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α,

→
α

〉

+

〈
→
α,



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〉

≤ η‖ →α ‖2
H1 + cη‖ →α ‖2

L2 − c′
∫

Rd

1

〈x〉2 |∇x
→
α |2dx.

(3.46)

Remark 3.3.3. It is exactly the above inequality that introduces the dispersive regu-

larization. The first term including η on the right-hand side of the above inequality

can be controlled by the dissipation. However, we will show below another way

which tells us that dissipation is actually not necessary here.

Instead of considering
→
α directly, we consider it with a weight, that is,

→
α
〈x〉 .

Then we have the following estimate.

〈


−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α,

→
α

〉

=

〈
〈x〉



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22


 〈x〉

→
α

〈x〉 ,
→
α

〈x〉

〉

=

〈
〈x〉2



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〈x〉 ,
→
α

〈x〉

〉

+

〈
Ψ1

( →
α

〈x〉

)
,

→
α

〈x〉

〉
.

(3.47)

96



By (3.45), the symbol of 〈x〉2 (−ΨMθRHhp + Bkk) satisfies that

〈x〉2 (−ΨMθRHhp + Bkk) ≤ c0,10〈x〉2 − 1

2
c0,11|ξ|2. (3.48)

We perform the following estimate.

〈


−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α,

→
α

〉

+

〈
→
α,



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〉

=

〈
〈x〉2



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〈x〉 ,
→
α

〈x〉

〉

+

〈 →
α

〈x〉 , 〈x〉
2



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〈x〉

〉
+

〈
Ψ1

→
α

〈x〉 ,
→
α

〈x〉

〉

≤c

∥∥∥∥∥
→
α

〈x〉

∥∥∥∥∥

2

H
1
2

+ c0,14‖ →α ‖2
L2 − c0,15

∥∥∥∥∥
→
α

〈x〉

∥∥∥∥∥

2

H1

≤− c0,14

∥∥∥∥∥
→
α

〈x〉

∥∥∥∥∥

2

H1

+ c0,15‖ →α ‖2
L2 .

The last inequality is achieved by interpolation. Accordingly, we have shown that
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there exist c0,16, c0,17 > 0 depending only on the data such that

〈


−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α,

→
α

〉

+

〈
→
α,



−ΨMθRHhp + B11 0

0 −ΨMθRHhp + B22




→
α

〉

≤− c0,16

∫

R2

1

〈x〉2 |∇x
→
α |2dx + c0,17‖ →α ‖2

L2 .

(3.49)

Overall by adding (3.39), (3.42), (3.44), (3.43) and (3.46) we conclude that

d

dt

(
‖σ‖2

H1 + ‖ →α ‖2
L2 + ‖ →n ‖2

L2 + ‖
→
ζ ‖2

L2

)
+ ĉ

∫

Rd

(
‖∇x

→
α ‖2 + ‖∇x

→
n ‖2

)
dx

≤ c̃
(
‖σ‖2

H1 + ‖ →α ‖2
L2 + ‖ →n ‖2

L2 + ‖
→
ζ ‖2

L2

)
,

(3.50)

where c̃ depends on cA, θ0 and ĉ depends on µ, κ, θ0, d.

By Gronwall’s inequality we clearly see that

sup
0≤t≤T

(
‖σ‖2

H1 + ‖ →α ‖2
L2 + ‖ →n ‖2

L2 + ‖
→
ζ ‖2

L2

)
+

∫ T

0

‖∇x(
→
α,

→
n)‖2

L2(s) ds

≤ c′eTK0

(
‖σ(0)‖2

H1 + ‖ →α (0)‖2
L2 + ‖ →n (0)‖2

L2 + ‖
→
ζ (0)‖2

L2

)

≤ c′
(
‖%(0)‖2

H1 + ‖ →α (0)‖2
L2 + ‖ →n (0)‖2

L2 + ‖
→
ζ (0)‖2

L2

)

(3.51)

where c′ depends only on the initial data and θ0 which is the lower bound of ρ, θ,

K0 depends on cA, θ0 and T > 0 is chosen to be small enough such that the second

inequality is true.

Using the fact that the equivalence of ‖%‖2
H1 + ‖ →

α ‖2
L2 + ‖ →

v ‖2
L2 + ‖

→
ζ ‖2

L2
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and ‖ρ‖2
H1 + ‖u‖2

L2 + ‖θ‖2
L2 depends only on the data, we conclude that there exist

T > 0 depending on cA, θ0, while c > 0 depending only on the data and θ0 such that

sup
[0,T ]

(‖ρ‖2
H1 + ‖(u, θ)‖2

L2

)
(t) +

∫ T

0

‖∇x(u, θ)‖2
L2(s) ds

≤ c
(‖ρin‖2

H1 + ‖(uin, θin)‖2
L2

)
.

(3.52)

3.4 A Priori Estimate

Based on the linear estimate, we establish the a priori estimate for the non-

linear system (3.1). Before the statement of the theorem, we define the functional

space in which system (3.1) is locally well-posed. Let

s1 ≥ d

2
+ 6, s ≥ max{s1 + 6, N + d/2 + 4},

λ = ‖ρin − ρ̄‖Hs+1 + ‖uin‖Hs + ‖θin − θ̄‖Hs +
∑

1≤|α|≤s1

‖〈x〉2∂α
x (ρin, uin, θin)‖L2 ,

M0 = 100cλ,

with c being the constant in (3.52). Therefore M0 depends only on the data.

For functions (ρ, u, θ) : Rd × [0, T ] → R1 ×Rd ×R1 satisfying

ρ− ρ̄ ∈ C([0, T ]; Hs+1), (u, θ − θ̄) ∈ C([0, T ]; Hs),

〈x〉2∂α
x (ρ, u, θ) ∈ C([0, T ]; L2), ∀1 ≤ |α| ≤ s1,

define the space XT,M as follows:

XT,M =
{
(ρ, u, θ) : ‖|(ρ, u, θ)‖|T ≤ M, (ρ, u, θ)(0) = (ρin, uin, θin)

}
,
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with the norm

‖|(ρ, u, θ)‖|T

= sup
[0,T ]


‖ρ(t)− ρ̄‖Hs+1 + ‖u(t)‖Hs + ‖θ(t)− θ̄‖Hs +

∑

1≤|α|≤s1

‖〈x〉2∂α
x (ρ, u, θ)(t)‖L2


 .

The a priori estimate of system (3.1) is stated in the following theorem.

Theorem 3.4.1. Let (ρε, uε, θε) ∈ XTε,M0 be a solution to the regularized DNS sys-

tem (1.1). Then there exists T0 > 0 independent of ε such that ‖|(ρε, uε, θε)‖|T0 ≤ M0.

Proof. First for the L2 bound, we see that if we use (ρε, uε, θε) for (%, v, ϑ), then by

Theorem 3.3.1, there will be a T1 > 0 independent of ε such that

sup
[0,T1]

(‖ρε − ρ̄‖H1 + ‖uε‖L2 + ‖θε − θ̄‖L2

) ≤ M0. (3.53)

We need to check this for higher order terms and terms with weights. For the

time being, write (ρ, u, θ) for (ρε, uε, θε).

To obtain the estimate for high order terms apply ∂α
x to the nonlinear system.

The resulting system for (∂α
x ρ, ∂α

x u, ∂α
x θ) shows that

∂t (∂α
x ρ) = −ε∆2

x (∂α
x ρ) + L̃1 (ρ, u, θ) (∂α

x ρ, ∂α
x u) + Ψ0 (∂α

x ρ, ∂α
x u) + fα,0

∂t (∂α
x u) = −ε∆2

x (∂α
x u) + L̃2(ρ, u, θ) (∂α

x ρ, ∂α
x u, ∂α

x θ) + Ψ0 (∂α
x ρ, ∂α

x u, ∂α
x θ) + fα,1

∂t (∂α
x θ) = −ε∆2

x (∂α
x θ) + L̃3(ρ, u, θ) (∂α

x ρ, ∂α
x u, ∂α

x θ) + Ψ0 (∂α
x ρ, ∂α

x u, ∂α
x θ) + fα,2,

where fα,k, k = 0, 1, 2 are functions dependent on (∂γ
xρ, ∂γ

xu, ∂γ
xθ)|γ|≤|α|−1 and since

these lower derivatives of (ρ, u, θ) have been estimated we treat them as forcing
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terms.

Here L̃1, L̃2, L̃3 are different linear operators from L1,L2,L3 but they have

the same structures. It’s easy to see that the assumptions A1 − A4 are satisfied

for L̃1, L̃2, L̃3. We have an extra zero-order operator in each equation. By Hölder’s

inequality it’s obvious that they won’t hurt either the H1 estimate for ∂α+1
x ρ or the

L2 estimates for (∂α
x u, ∂α

x θ). Together with the fact that fα,0, fα,1, fα,2 have already

been estimated in the L∞T L2
x-norm, we conclude that the same linear estimate (1.45)

applies for (∂α
x ρ, ∂α

x u, ∂α
x θ) for all 1 ≤ |α| ≤ s, that is, there exists T0 > 0 depending

on M0, τ0 such that

sup
[0,T0]

(‖∂α
x ρ‖2

H1 + ‖∂α
x u‖2

L2 + ‖∂α
x θ‖2

L2

)
+

∫ T0

0

‖∇x (∂α
x u, ∂α

x θ) ‖2
L2(s)ds

≤ c

(
‖∂α

x ρin‖2
H1 + ‖∂α

x uin‖2
L2 + ‖∂α

x θin‖2
L2 +

∫ T0

0

‖(fα,0, fα,1, fα,2)‖2
L2(s)ds

)
.

Notice that since (fα,0, fα,1, fα,2) ∈ L∞(0, T0; L
2(Rd)), the last term including

the forcings can be made arbitrarily small by taking T0 small. Thus, there exists a

time T0 > 0 independent of ε such that

sup
[0,T0]

(‖ρε − ρ̄‖Hs+1 + ‖ (
uε, θε − θ̄

) ‖Hs

) ≤ M0.

Now check the bounds for 〈x〉2(ρ, u, θ) and 〈x〉2∂α
x (ρ, u, θ) with 1 ≤ |α| ≤ s1.

We show that the system for 〈x〉2∂α
x (ρ, u, θ) has the same structure as those for

(ρ, u, θ) and ∂α
x (ρ, u, θ).
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The system satisfied by xl(ρ, u, θ) has the form:

∂t(xlρ, xlu, xlθ) =− ε∆2
x(xlρ, xlu, xlθ) + L (ρ, u, θ)(xlρ, xlu, xlθ)

+ fl

(
(∂β

x (ρ, u, θ))|β|≤3

)
,

where fl term depends only on the H3 norm of (ρ, u, θ) and thus is well-controlled.

Clearly the linear estimate holds for (xlρ, xlu, xlθ) for each l = 1, 2, . . . , d.

Similar situations hold for xl∂
α
x (ρ, u, θ) and for 〈x〉2∂α

x (ρ, u, θ). This can be

seen from the equivalence of norms of 〈x〉2∂α
x (ρ, u, θ) with norms of ∂α

x (〈x〉2(ρ, u, θ)).

Consequently we conclude that there exists T0 > 0 independent of ε such that

‖|(ρε, uε, θε)‖|T0 ≤ M0.

Therefore (ρε, uε, θε) can be extended to the time interval [0, T0], that is, (ρε, uε, θε) ∈

XT0,M0 .

This a priori estimate shows that for the approximating sequence (ρε, uε, θε),

there exists a common time interval [0, T0] such that they are uniformly bounded in

the norm ‖| · ‖|T0 by M0 > 0 with M0 depending only on the initial data.

3.5 Local Existence Proof

Using the a priori estimate in the last section, we can now establish the proof

for the local well-posedness of the nonlinear system (1.1). To construct the solution

to the DNS system, we first show the existence of solutions to the regularized DNS
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system using the standard contraction mapping argument. These solutions yield

an approximating sequence. By the compactness from the a priori estimate we can

pass to the limit to find a solution. Uniqueness is also shown.

For each given U , let Γ(U) be the solution operator to the system

∂tΓ(U) = −ε∆2
x Γ(U) + L(U)U, Γ(U)(x, 0) = U in, (3.54)

where L(U) is defined as the operator in (1.2).

For U smooth enough, (3.1) is equivalent to the following integral form for

Γ(U), that is,

Γ(U)(t) = e−εt∆2
xU in +

∫ t

0

e−ε(t−t′)∆2
x L(U)U(t′)dt′. (3.55)

To show that the regularized DNS system has a solution, it’s enough to show

that Γ has a fixed point in an appropriate space. By studying the semigroup gener-

ated by −ε∆2
x, we can prove that

Theorem 3.5.1. For each ε ∈ (0, 1) there exists Tε = O(ε) such that the operator

Γ defined in (3.1) is a contraction mapping on XTε,M0.

Proof. To show Γ is a contraction mapping, we first show that for each ε > 0, there

exists Tε > 0 such that Γ maps XTε,M0 into itself. Observe that

‖(−∆x)
3
2 e−εt∆2

xU‖L2 ≤ 1

(εt)3/4
‖U‖L2 . (3.56)
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Take α derivatives for α ≤ s on both sides of (3.1). It shows

∂α
x Γ(U) = e−εt∆2

x∂α
x U in +

∫ t

0

e−ε(t−t′)∆2
x ∂α

x (L(U)U) (t′)dt′.

By the definition of L(U)U and (3.3),

sup
[0,T1]

∑
α≤s

‖∂α
x Γ(U)‖L2 ≤

∑
α≤s

‖∂α
x U in‖L2 +

∑
α≤s

∫ T1

0

∥∥∥e−ε(t−t′)∆2
x ∂α

x (L(U)U) (t′)
∥∥∥

L2
dt′

≤
∑
α≤s

‖∂α
x U in‖L2 +

cs

ε3/4
Q1(M0)

∫ T1

0

1

(t− t′)3/4
dt′

≤
∑
α≤s

‖∂α
x U in‖L2 +

csT
1/4
1

ε3/4
Q1(M0) ≤ ‖U in‖Hs + M0/4 ≤ M0/2

by taking T1 = O(ε3) small enough, while Q1(M0) is an increasing function in M0

given by

Q1(M0) = M2
0

(
1 + ||τ1(·), τ4(·)‖L∞[0,M0]

)
,

and cs is a constant depending only on s. Therefore we have verified that

sup
[0,T1]

‖Γ(U)‖Hs ≤ M0/2,

for T1 sufficiently small.

Next, check the weighted Sobolev norm ‖Γ(U)‖Hs1 (〈x〉2dx). For each 1 ≤ l ≤ d,

the equation for xl∂
α
x Γ(U) is written as

∂t (xl∂
α
x Γ(U)) = −ε∆2

x (xl∂
α
x Γ(U)) + ∂α

x

(
L(U)(xlU)

)
+ F, (3.57)
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where

F = εcs1∆x∂xl
∂α

x Γ(U) + ∂α−1
x

(
L(U)U

)
+ ∂α

x

(
xlL(U)− L(U)xl

)
U,

and xlL(U)−L(U)xl is a second order operator that does not depend on xl. There-

fore F depends on only the ‖U‖Hs provided s1 ≤ s− 3. By the quadratic structure

of L(U) and the fact that U ∈ XTε,M0 , we have sup[0,Tε] ‖F‖L2 ≤ cs1M
2
0 .

Overall, by the integral form of (3.4), the estimate of xl∂
α
x Γ(U) shows

sup
[0,T2]

∑
α≤s1

‖xl∂
α
x Γ(U)‖L2

≤
∑
α≤s1

‖xl∂
α
x U in‖L2 +

∑
α≤s1

∫ T2

0

∥∥∥∥e−ε(t−t′)∆2
x

(
∂α

x L(U)(xlU) + F

)
(t′)

∥∥∥∥
L2

dt′

≤
∑
α≤s1

‖xl∂
α
x U in‖L2 +

cs

ε3/4
(Q2(M0) + M2

0 )

∫ T1

0

1

(t− t′)3/4
dt′

≤
∑
α≤s1

‖xl∂
α
x U in‖L2 +

csT
1/4
2

ε3/4
Q1(M0) ≤ ‖U in‖Hs1 (〈x〉2dx) + M0/4 ≤ M0/2,

(3.58)

where Q2 is an increasing function depending on M0, τ1, τ4 and T2 is chose to be

sufficiently small.

Similarly, the equation for x2
l ∂

α
x Γ(U) shows that

∂t

(
x2

l ∂
α
x Γ(U)

)
= −ε∆2

x

(
x2

l ∂
α
x Γ(U)

)
+ ∂α

x

(L(U)
(
x2

l U
))

+ F̃ ,

where F̃ depends on ‖xl∂
α
x Γ(U)‖L2 for α ≤ s1 , ‖U‖Hs provided s ≥ s1 + 6 and

‖Γ(U)‖Hs . Since these quantities have all been shown bounded by M0, we deduce

that ‖F̃‖Hs1 is bounded by a constant multiple of M0.
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By the same estimate as in (3.5), we conclude that there exists T3 > 0 suffi-

ciently small which depends on ε such that

sup
[0,T3]

∑
α≤s1

‖x2
l ∂

α
x Γ(U)‖L2 ≤ M0/2 (3.59)

for each α ≤ s1. And this finishes the proof for the claim that there exists Tε > 0

such that for each U ∈ XTε,M0 , Γ(U) is also in the space XTε,M0 .

Next we show that Γ is a contraction mapping. Let U,U ∈ XTε,M0 . Then

Γ(U)− Γ(W ) =

∫ t

0

e−ε(t−t′)∆2
x (L(U)U − L(W )W )(t′)dt′.

By similar arguments we can show that

sup
[0,T ]

‖Γ(U)− Γ(W )‖Hs ≤ csT
1/4

ε3/4
Q3(M0) sup

[0,T ]

‖U −W‖Hs ,

and

sup
[0,T ]

∑
α≤s1

‖〈x〉2∂α
x (Γ(U)− Γ(W ))‖L2 ≤ csT

1/4

ε3/4
Q4(M0) sup

[0,T ]

∑
α≤s1

‖〈x〉2(∂α
x U − ∂α

x W )‖L2

+ TQ5(M0)

(
sup
[0,T ]

‖Γ(U)− Γ(W )‖Hs + sup
[0,T ]

‖U −W‖Hs

)
.

(3.60)

Consequently, by taking T > 0 small enough we can guarantee that Γ :

XT,M0 −→ XT,M0 is a contraction mapping. Thus we finish the proof for Theo-

rem 3.5.1.
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By Theorem 3.5.1, there exists a solution (ρε, uε, θε) ∈ XTε,M0 to the nonlinear

system with an artificial viscosity. In the following theorem we show that this

sequence of approximated solutions converges to the solution of the original DNS

system. Uniqueness is also established in the following theorem.

Theorem 3.5.2. Given the initial data (ρin, uin, θin) satisfying the condition that

‖ρin‖Hs+1 + ‖(uin, θin)‖Hs +
∑

1≤|α|≤s1

(‖〈x〉2∂α
x ρin‖H1 + ‖〈x〉2∂α

x (uin, θin‖L2

)
< ∞,

there exists T0 > 0 independent of ε such thata system (2.2) has a unique solution

in XT0,M0. Moreover, there exists ρ ∈ C([0, T0]; H
s) ∩ L∞([0, T0]; H

s+1), (u, θ) ∈

C([0, T0]; H
s−1)∩L∞([0, T0]; H

s)∩L2(0, T0; H
s+1) such that for any α ≤ s1 we have

ρε − ρ̄ −→ ρ− ρ̄ in C([0, T0]; H
s),

(uε, θε − θ̄) −→ (u, θ − θ̄) in C([0, T0]; H
s−1),

〈x〉2∂α
x ρε −→ 〈x〉2∂α

x ρ in C([0, T0]; H
1),

〈x〉2∂α
x (uε, θε) −→ 〈x〉2∂α

x (u, θ) in C([0, T0]; L
2) as ε → 0,

and (ρ, u, θ) solves the original system (3.1).

Proof. The first part has been shown in Theorem 3.5.1. To show the convergence,

we apply the standard high-low technique. Basically, we will show that (ρε, uε, θε)

converges in C(0, T0; L
2(Rd)). Then by using the interpolation and the uniform

bounds on (ρε, uε, θε) we can show that (ρε, uε, θε) converges in C(0, T0; H
s−1(Rd)).

For ε, ε′ > 0, let % = ρε − ρε′ , v = uε − uε′ , η = θε − θε′ and study the system
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for (%, v, η).

∂t% = −ε∆2
x%− (ε− ε′)∆2

xρ
ε′ + L1(ρ

ε, uε, θε)(%, v) + ΨE0(%, v)

∂tv = −ε∆2
xv − (ε− ε′)∆2

xu
ε′ + L2(ρ

ε, uε, θε)(%, v, η) + ΨE0(%, v, η)

∂tη = −ε∆2
xη − (ε− ε′)∆2

xθ
ε′ + L3(ρ

ε, uε, θε)(%, v, η) + ΨE0(%, v, η).

It is clear that given (ρε, uε, θε), (ρε′ , uε′ , θε′) ∈ XT0,M0 , the linear estimate ap-

plies to the above system. Therefore we have

sup
[0,T0]

(‖%‖2
H1 + ‖(v, η)‖2

L2

)

≤ c(ε− ε′)
∫ T0

0

(‖∆2
xρ

ε(·, s)‖2
H1 + ‖∆2

xu
ε(·, s)‖2

L2 + ‖∆2
xθ

ε(·, s)‖2
L2

)
ds

≤ c(ε− ε′)T0M0.

This shows (ρε, uε, θε) is a Cauchy sequence in C([0, T0]; L
2(Rd)). Since this is also a

bounded sequence in L∞(0, T0; H
s(Rd)) we conclude that it’s a Cauchy sequence

in C([0, T0]; H
s−1(Rd)). Thus, there exists (ρ, u, θ) ∈ C([0, T0]; H

s−1(Rd)) such

that (ρε, uε, θε) −→ (ρ, u, θ) in C([0, T0]; H
s−1(Rd)). By the weak compactness of

(ρε, uε, θε) in L∞(0, T0; H
s(Rd)) we also have that (ρ, u, θ) ∈ L∞(0, T0; H

s(Rd)).

By interpolation it’s clear that for each 1 ≤ l ≤ d,

xl∂
α
x ρε −→ xl∂

α
x ρ in C([0, T0]; H

1(Rd)), ∀|α| ≤ s1,

xl∂
α
x uε −→ xl∂

α
x u in C([0, T0]; L

2(Rd)), ∀|α| ≤ s1,

xl∂
α
x θε −→ xl∂

α
x θ in C([0, T0]; L

2(Rd)), ∀|α| ≤ s1.
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Now apply ∂α
x to the system for (ρε, uε, θε) and multiply the result by 〈x〉2,

using similar arguments we can show that

〈x〉2∂α
x ρε −→ 〈x〉2∂α

x ρ in C([0, T0]; H
1(Rd)), ∀|α| ≤ s1,

〈x〉2∂α
x uε −→ 〈x〉2∂α

x u in C([0, T0]; L
2(Rd)), ∀|α| ≤ s1,

〈x〉2∂α
x θε −→ 〈x〉2∂α

x θ in C([0, T0]; L
2(Rd)), ∀|α| ≤ s1.

Based on the above results, we see that if we let ε −→ 0 then (ρ, u, θ) will be

a classical solution to the nonlinear system with (ρ, u, θ) ∈ C([0, T0]; H
s−1(Rd)) ∩

C1((0, T0]; H
s−4(Rd)).

By considering the system for (ρ1 − ρ2, u1 − u2, θ1 − θ2) provided (ρ1, u1, θ1)

and (ρ2, u2, θ2) are two solutions and using the linear estimate with ε = ε′ = 0 for

the difference as before, we show the uniqueness of the classical solution.

Overall, there exists a unique solution (ρ, u, θ) such that

ρ− ρ̄ ∈ C([0, T0]; H
s(Rd)) ∩ C1((0, T0]; H

s−1(Rd)) ∩ C([0, T0]; H
s1+1(〈x〉2dx)),

(u, θ − θ̄) ∈ C([0, T0]; H
s−1(Rd)) ∩ C1((0, T0]; H

s−4(Rd)) ∩ C([0, T0]; H
s1(〈x〉2dx))

with s1 ≥ d/2 + 6, s ≥ max{s1 + 6, N + d/2 + 4} to the nonlinear system.

3.6 Conclusion

Given the local existence result for the dispersive Navier-Stokes system, we

can begin to work on the following problems:

1. how to justify the approximation to the kinetic equation by the DNS system;
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2. compared with the Navier-Stokes system, is the DNS system a better ap-

proximation to the kinetic equation?

As for the DNS system itself, we can also think about the following problems:

1. Notice that the entropy structure shows a global L2 bound for the solution.

This is a fact we haven’t utilized in the above proof. Although the L2 bound may

not be strong enough for the global time existence of classical solutions, we can still

ask whether there is any global existence result for solutions in a weaker sense, and

whether Lions’ theory for the compressible Navier-Stokes system can be applied.

2. As for the regularization effect, we want to know whether dispersion or

the coupling of dispersion and dissipation give more regularity to the solution of

the DNS system compared with the compressible Navier-Stokes. Using dispersive

corrections provides a perspective to study the compressible Navier-Stokes system

too.

3. In the assumptions for the proof, we assume that the density and tem-

perature are both bounded away from zero. This assumption is made mainly for

the dispersive estimate. Since τ1, τ4 in the dispersion are more dependent on the

temperature than the density, it is natural to ask whether the well-posedness can

be generalized to the case when there is appearance of vacuum.
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