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Processive molecular motors, such as kinesins, myosins and helicases, take mul-

tiple discrete steps on linear polar tracks such as microtubules, filamentous actin,

and DNA/RNA substrates. Insights into the mechanisms and functions of this im-

portant class of biological motors have been obtained through observations from

single-molecule experiments and structural studies. Such information includes the

distribution of n, the number of steps motors take before dissociating, and v, the

motor velocity, in the presence and absence of an external resistive force from single

molecule experiments; and different structures of different states of motors at dif-

ferent conditions. Based on those available data, this thesis focuses on using both

analytical and computational theoretical tools to investigate the workings of proces-

sive motors. Two examples of processive motors considered here are kinesins that

walk on microtubules while transporting vesicles, and helicases which translocate on

DNA/RNA substrate while unwinding the helix substrate. New physical principles

and predictions related to their motility emerge from the proposed theories.



The most significant results reported in this thesis are:

Exact and approximate equations for velocity distribution, P (v), and run-

length distribution, P (n), have been derived. Application of the theory to kinesins

shows that P (v) is non-Gaussian and bimodal at high resistive forces. This unex-

pected behavior is a consequence of the discrete spacing between the α/β tubulins,

the building blocks of microtubule. In the case of helicases, we demonstrate that

P (v) of typical helicases T7 and T4 shows signatures of heterogeneity, inferred from

large variations in the velocity from molecule to molecule. The theory is used to

propose experiments in order to distinguish between different physical basis for het-

erogeneity.

We generated a one-µs atomic simulation trajectory capturing the docking

process of the neck-linker, a crucial element deemed to be important in the motility

of Kinesin-1. The conformational change in the neck linker is important in the force

generation in this type of motor. The simulations revealed new conformations of

the neck-linker that have not been noted in previous structural studies of Kinesin-1,

but which are demonstrated to be relevant to another superfamily member, Kinesin-

5. By comparing the simulation results with currently available data, we suggest

that the two superfamilies might actually share more similarities in the neck-linker

docking process than previously thought.
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Chapter 1: Introduction

1.1 Introduction to processive molecular motors

Molecular motors convert chemical energy, typically from NTP hydrolysis, into

mechanical work to facilitate myriad activities in the cell, including gene replica-

tion, transcription, translation, and cell division [6,24–26]. Despite the bewildering

variations in their sequences, structures, and functions, molecular motors can be di-

vided into two main types: distributive and processive motors. Distributive motors

release their substrates after every one or few cycles of catalysis. An example of

this type of motors is ATP synthase, which is a motor that moves protons down the

electromagnetic gradient across the membranes to create the most important energy

storage molecules in cells, Adenosine Triphosphates (ATP). One ATP molecule is

created for every 3 (or slightly different numbers, depending on the systems) H+

moved from the inter-membrane space to the matrix in mitochrondria [27]. The

process is reversible if the electromagnetic gradient is small or reversed. In that

case, each cycle of ATP hydrolysis, the motors release 3 H+ from the matrix into

the inter-membrane space. In contrast to the motors of this type, a large number

of cellular motors undergo many cycles of catalysis before they detach from their

substrate, and are known as processive motors. Some of them are capable of tak-
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ing multiple steps directionally along linear tracks. Well-known in this category

are kinesins [28], myosins [29] and dyneins [30] that carry vesicles and organelles

along microtubules or actin filaments [6,31], and helicases that unwind nucleic acid

strands while translocating on them [32,33]. This thesis focuses on the latter type,

the processive molecular motors.

Fundamental insights into their functions have emerged from single molecule

experiments [8,14,25,34–40] and structural studies [6,7,41]. Corresponding to those

two experimental methods, there are two main theoretical approaches that have

been widely applied to investigate the fundamental principles underlying this class

of molecular motors: standard chemical kinetics based mathematical models and

structural based computations and simulations. Firstly, mathematical models based

on standard chemical kinetics have been developed to analyze the quantities that

are measured in single molecule experiments [42, 42–53]. Such quantities include:

velocity; run-length (or processivity) which is the distance that each motor travels

before it dissociates from its track; size of each step the motors take; dwell time the

motors spend in a particular binding site; and the dependence of those quantities on

the NTP concentration of the solution and the applied (both resistive and assistive)

forces to the motor or to the track that the motor walks on. This mathematical

modeling approach, based on chemical kinetics, has been used to answer questions

at the individual motor and motor-motor level (different to the types of questions

that structure based theory can answer), such as: How do they move? How much

energy do they consume? What are the efficiencies? How fast and processive are

they? What are their collective behaviors? The other theoretical approach includes
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the structure based computations and simulations. These methods have been proved

to be powerful in gaining information about mechanisms of the mobility of motors,

from the static pictures obtained in structural experiments [54–57]. These structure

based theoretical models shed light on the dynamics inside the motors, and are not

limited to issues such as: how the motors move, generate forces or function; where

the ligands bind; what the allosteric regulations are. Depending on the types of

the questions to be asked, the simulations or computations might be performed at

amino-acid, atomic or higher or lower levels. (Other methods that are also important

in the study of molecular motors are sequence-based computations [58,59]. However,

they are not considered here in this thesis.)

Among the mathematical models that have been used, there are 2 most suc-

cessful and widely used methods: discrete stochastic (or chemical kinetics) mod-

els [42–47] and Brownian ratchet (or continuum ratchet) model [42,48–51] (Fig. 1.1).

These two methods are not unrelated to each other. In fact, a simple ratchet model

was analyzed and proved to be a simple case of the discrete stochastic model [60].

In addition, a two-state model of a stochastic model is indeed a ratchet model [51].

These models have focused on physical quantities such as mean velocity, mean run-

length, and the dwell-time distribution [39,61], and were able to reproduce the sin-

gle molecule experimental data at varying external forces and ATP concentrations.

Given the inherently stochastic nature of the motor cycle, velocity fluctuations must

play an important role in motor dynamics. However, up to now analytical tools to

interpret the fluctuation data, readily available from experiments, do not exist. The

first half of this thesis seeks to address this gap, providing universal closed-form
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expressions for velocity and run-length distributions valid for any processive motor,

using stochastic models.

Structural studies, such as from X-ray crystallography, nuclear magnetic reso-

nance spectroscopy (NMR) and electron microscopy (EM), are powerful in provid-

ing snapshots of biological systems. However, they lack direct dynamic information

needed to describe the stepping of motors. Especially, for molecular motors, struc-

tural details of the stepping mechanisms are important in order to understand how

they operate. Since the first paper [54] in 1977, molecular dynamics (MD) simula-

tions have played important roles in revealing the dynamic pictures of many biolog-

ical molecules by providing individual molecular motions as functions of time. In

turn, MD can also assist to refine X-ray or EM data, to obtain a better static struc-

ture. Depending on types of questions and systems, different dynamics with different

levels of description needed (Table 1.1). Another structural based method that com-

plements molecular dynamics simulations is Normal Mode Analysis (NMA) [55–57].

This method considers the interactions between individual particles as harmonic

potentials, with the assumption that the crystal strutures is at the lowest local min-

imum. This allows one to calculate the motions of the lowest modes, related to

the flexibility of the molecule around equilibrium. The most popular method to

calculate the normal modes of a molecule is the Elastic Network Models (ENM),

where one single spring constant is used in the harmonic potentials between all pairs

of beads that are in contact with each other within a cut-off distance in the crys-

tal structures [62, 63]. The second half of this thesis (and some continuing future

work which are not included in this thesis) focuses on using these powerful tools to
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address questions on the docking process of kinesin-1 (and stepping mechanisms of

helicases).

To summary, processive molecular motors are ubiquitous inside cells. Hence,

it is very important to understand their functions and characteristics. This disser-

tation is an extension from the current theoretical studies of such motors, with an

emphasis on developing models/simulations to analyze and interpret current exper-

imental data, in order to discover new general principles of the workings of those

biological motors. The theories are demonstrated here with two illustrations: ki-

nesins and helicases, but they are general to the wide class of processive motors.

Brief introductions about kinesins and helicases are in the next sections.
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Figure 1.1: Illustrations of the two mathematical models for processive
motors: (A) Brownian ratchet model and (B) stochastic discrete model.
A: A Brownian ratchet model is normally illustrated with 2 periodic
potential levels. A motor (blue circle) at the binding site i utilizes the
energy from the ATP hydrolysis to jump to the higher energy (long
vertical solid arrow). It undergoes a Brownian diffusion in the higher
energy surface (dashed arrow), jumps down to the lower energy (short
vertical solid arrow), and diffuses to the next binding site (dashed arrow),
thus, completing a step. With the two potential levels and the chemical
energy to pump the motor to the higher level, the motor can “diffuse”
toward one direction. B: In a stochastic discrete kinetic model, two
adjacent binding sites i and i + 1 are separated by intermediate states,
and at each state, the motor can hop to the next state (forward or
backward) or dissociate from the track with different stochastic rates
(blue arrows). For a review, see [42].
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Table 1.1: Different dynamics in molecular dynamics simulations. For details, see [1].
Type of dynamics Motion equation Notes

(a) Newtonian mir̈i = −∆iU(r) The solvent might be treated implicitly
or explicitly. Normally used in all-atom
simulations.

(b) Langevin mir̈i = −∆iU(r)−miηiṙi(t) +Ri(t) Including the two latter terms repre-
senting to the interactions with the sol-
vent. Normally used in coarse-grained
(CG) simulations to access long time-
scales.

(c) Brownian ṙi(t) = −∆iU(r)+Ri(t)
miηi

In the over-damped solvent regime, and
also normally accomplished with CG
simulations.
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1.2 Introduction to kinesins

Kinesins are one of the smallest molecular motors inside cells. Most of them

“walk” as transporters on microtubules (mostly towards the plus end), which classi-

fied them as processive motors. Since the initial discovery of a small force-generating

motor in 1985 [64], many different families of kinesins have been found in different

oligomer states, and have been associated with different functions inside cells (Ta-

ble 1.2). In the genome of mouse alone, there are already 45 different kinesin super-

families (KIF) [5]. The most standardized kinesin nomenclature divides them into

14 families. The first family in this nomenclature, kinesin-1 (K-1 for abbreviation

in this thesis), is the family of the conventional kinesins that were first discovered in

the squid axons [2]. Structurally, each K-1 motor contains two heavy chains form-

ing the main motor subunits, which bind to two other small chains. The two heavy

chains (KHC) bind a cargo with the binding domains at their C terminals, twist

around each other to form a “coiled coil stalk” that connect to two motor heads at

the N terminals (Fig. 4.1). The connections between the heads and the stalk are

small segments named “neck linker” (NL), which is believed to be a critical element

in force generation.

Kinetic analysis of the single molecule experimental data has shown that the

motors use motor heads to walk on the MT in the manner called “hand over hand”:

one head binds, one head moves at a time, and then they switch [65, 66]. With

this mechanism, they are able to take about 100 steps processively on a single

protofilament, towards the plus end of the microtubule (MT). Each step-size is
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exactly 8.2 nm, which is the mean distance between the two adjacent binding sites

on the MT, which is polymer consisting of αβ monomers. The motors hydrolyze

one ATP molecule per step.

During the ATP cycle, the motor head changes its structure, alternates its MT

affinity, and generates force through the NL to move the other head forward and

bind to the next binding site. In particular, the motor heads are believed to change

their conformations so that they have higher MT affinity in the ATP-bound or no-

nucleotide states than in the ADP states (Fig. 1.2). When the motor head binds MT

and ATP, the NL binds and interacts with the core domain of the motor, adopting

an “ordered” conformation. However, at the no-nucleotide state, the NL unbinds

from the core domain and becomes a flexible, “disordered” coil. Interestingly, in

the ADP bound states, the NL has been observed with both ordered (2KIN [67],

3KIN [68], 1MKJ [69]) and disordered (1BG2 - [17]) conformations. It was suggested

that the distinct NL conformations are only observed when the motor is in complex

with MT [70].

Much of the detailed structural changes during the ATP cycles have been

resolved, thanks to cryo-EM imaging and crystallographic works performed for over

30 years [72]. Most importantly, structures of MT-K-1 complex have finally been

solved using both methods, almost within the same year [19,71,73,74]. The allosteric

regulations between the NT binding, the MT binding, and the conformation of the

NL has been proposed leading to good agreements with a “seesaw” model [41, 75]

(Fig. 1.2). The motor head can be divided into 3 main domains: SWI/II domain,

P loop domain and tubulin binding domain; with 3 clefts created between them: a
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docking pocket, a nucleotide cleft and a polymer cleft (Fig. 1.2). The NT and MT

binding (or unbinding) close (or open) one or two clefts on one side of the motor

head, trigger the open (or closure) of the pocket 15 Å far away on the other side.

As explained above, current experimental and theoretical works have revealed

many insights about the dynamic mechanism of kinesins. Still, many details on

mechanisms of this type of processive motors are not fully understood [76]. Typi-

cally, some important questions for transporting motors are still open, such as: how

forces are generated, what are their regulation mechanism (gating mechanisms), and

how their behaviors depend on external loads. Also, with a large number of differ-

ent sub-classes revealed, questions especially related to the commonality among the

many different families, and how the variations and similarities contribute to func-

tions inside the cell have become more important. The theories explained in this

thesis contribute to answer some of those important general questions.
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Figure 1.2: Seesaw model for kinesin head.
Kinesin head is divided into 3 main domains, forming 3 different
clefts/pocket at the interfaces. A: ATP molecule binds to a MT-bound
head, closing the NT cleft (filled pentagon). As a consequence, the poly-
mer cleft adjacent to the NL cleft is also closed (filled triangle), opens the
docking pocket at the other end of the “seesaw” (opened cicle), allowing
the NL (red arrow) to interact and bind to the core domains (mainly with
the P loop domain in this case). B: MT-bound head with no-nucleotide
bound has an opened NT pocket (opened pentagon). Thus, the polymer
cleft is opened (open triangle), closing the docking pocket at the other
side of the motor head, thus, preventing the NL from interacting with
the core domain, making the NL disorder (pink arrows). C: When the
kinesin is unbound from the MT, the “relay helix” that forms the main
MT binding interface (long orange rectangle) is shortened and creates
a longer disorder adjacent loop (orange loop), making the polymer cleft
impossible to close (open triangle). Thus, even when the NT cleft is
closed with a nucleotide (ADP) bound to it (filled pentagon), the dock-
ing pocket is not locked at an opened or closed form. The NL is capable
of transfering between order and disorder conformations. Bottom is
the structure of the MT-bound kinesin head at the no-nucleotide bound
state [71], colored corresponding to the schemes in A, B and C.
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Table 1.2: Examples of kinesin families. For the full standardized nomenclature, see [2]. For reviews, see [3–6]
Standardized
name

Oligomers velocity
in vivo
(nm/s)

velocity
in vitro
(nm/s)

Found
in

Function Known as

Kinesin-1 dimer 1800 840 axons cargo transport conventional kinesin/
kinesin heavy chain
(KHC)

Kinesin-3 monomer/dimer 690 1200 axons/
mitosis

cargo transport monomeric kinesin
(though they might
actually work as
dimers in vivo [77])/
Unc104/kif1

Kinesin-5 bipolar tetramer 18 60 mitosis/
meiosis

spindle forma-
tion

Eg5 (human)/ bipolar
mitotic/ tetrameric/
BimC

Kinesin-14 dimer – -90 mitosis/
meiosis

Chromosome
segregation/
cargo transport

Ncd/ C-terminal mo-
tors (the only family
walks toward the mi-
nus end of the MT)
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1.3 Introduction to helicases

The main function of helicases is to destabilize or unwind the helical structures

of long DNA or RNA substrates. Thus, the helicase function is also normally accom-

panied by a translocase function, in which helicases processively walk along nucleic

acids while unwinding them. These functions also require NTP/dNTP hydrolysis,

as many other processive motors. The first helicase TraI was discovered in E.coli in

1976 [78, 79]. Since then, various helicases have been classified into 6 superfamilies

based on the types and orders of their shared “signature motifs” [33, 80]. Differ-

ent helicases can work with different oligomer states and have different functional

mechanisms (Table 1.3 and Fig. 1.3).

Table 1.3: Six superfamilies of helicases [7].
Oligomers Examples Folds Polarity

SFI monomer/dimer PcrA/UvrD/TraI RecA SFIA 3’-5’/ SFIB 5’-3
SFII monomer/dimer RecG/RecQ/NS3 RecA SFIA 3’-5’/ SFIB 5’-3
SFIII hexamer E1 AAA+ 3’-5’
SFIV hexamer DnaB/T7/T4 RecA 5’-3’
SFV hexamer Rho RecA 5’-3’
SFVI hexamer MCM AAA+ 3’-5’

Structures of the NTP/dNTP binding sites of helicases fall into the class of P-

loop NTPases, which share in common two motifs, called Walker A (AxxGxGKT)

and Walker B (DExx – with A, G, K, T, D, E are names of amino acids, and x

is any possible amino acids) [81]. More specifically, they belong to the Additional

Strand Catalytic E (ASCE) subgroup, characterized with the presence of a catalytic

glutamate, and the nucleotide binding site formed at the cleft of two separated
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Figure 1.3: Schematics of DNA/RNA helicases from different superfamilies.
SFI and SFII helicases have two main DNA/RNA domains (other than
auxiliary domains) that have Rec-A like conformations, forming a NT
binding site in the cleft (black star). The two domains also interact with
NA strand, mainly with the bases in SFI (left above), and the backbone
in SFII (left below). The other four members of the superfamilies are
hexamers (right). 6 Rec-A-like or AAA+-like subunits form 6 NT bind-
ing sites sandwiching between them. The traslocated ssNA substrate is
threaded through the central pore, forming interactions with the 6 sub-
units mainly via the backbone. DNA/RNA strands are in red. Black
stars are NT binding sites. A, B, R are the 2 common conserved motifs
(Walker A and B) and an arginine finger R in NT pockets.

domains (Fig. 1.3). (Within this ASCE subgroup, there are two smaller subdivisions

known as Rec-A fold and AAA+ fold, with an addition of C-terminal α-helical

domains in the AAA+ fold [7].) The NTP/dNTP binding sites normally formed by

Walker A (also known as the “P-loop”) and Walker B motifs on one domain, with

an arginine finger (or other additional elements necessary for hydrolysis) coming

from another domain. The domains separately bind the NA strand in the other

sites (Fig. 1.3). Once bound, NTP/dNTP molecules are sandwiched in the clefts
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formed by the two adjacent domains, changing the widths of the clefts during their

hydrolysis cycles.

Based on both bulk and single molecule experiments and structural studies,

it is suggested that the relative changes in the distances between the domains,

coupled with the different DNA/RNA binding affinities, is the main mechanism for

the motors to translocate. In the cases for monomeric helicases, this is known as

the “inch-worm” model [7, 33]. In the case of hexameric helicases, it is suggested

to be a sequential NTP hydrolysis model. However, details about the order of

the sequential models are not known yet. The monomeric/dimeric helicases might

contain additional domains or units that directly interact with the double strand

junctions to destabilize the basepairs. These domains serve as wedges or “pin points”

for the helicase function. The hexameric helicases, on the other hand, adopt a

different mechanism. They thread one sDNA/sRNA strand through the central

channel formed by the 6 subunits, and exclude the other strand of sDNA/sRNA

outside of the ring, separating the two strands (Fig. 1.4) [7, 33].

One of the stochastic discreted models has been developed to analyze data

from single molecule experiments of helicases more than 10 years ago and has been

referred to as Betterton and Julicher’s model [47]. This model has been wildly used

to analyze data in several works to estimate important characteristic parameters of

helicases, such as step-size, interacting range, interaction energy between the motor

and the junction [15, 16]. They also proposed to classify helicases into two types:

active vs passive, based on the active involvements to destabilize the duplex or pas-

sively waiting for the thermal fluctuation to open it. Since then, there are several
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Figure 1.4: Schematics of the unwinding and translocating mechanisms
in helicases.

different criteria for classifying helicases as active or passive [47,82]; although strictly

speaking, all helicases are active, with some are more so than others. There are also

two ways to define step-size in helicases: physical step-size (per NTP hydrolysis)

vs kinetic step-size (between 2 successive rate-limiting steps of the reaction). In-

terestingly, it is commonly known in the field that there are inconsistencies in the

estimations of the step-sizes in many helicases, due to the limitations of resolution

in tracking measurements to visualize the step-size directly (compared to kinesins).

Moreover, the heterogeneity nature of helicases also contribute to limit the correct

estimation of parameters (including step-size) from bulk experiments [83]. Also,

using Betterton and Julicher’s model, different sets of parameters were able to ex-

plain the same single molecule experiments which leads to a limitation of estimating

the correct parameter set [15, 16]. The last limitation of current theory has been

resolved by an extended model developed in our group [23,84]. Using their results,
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the theory explained in this thesis can be used to analyze the heterogeneity nature

of helicases.

1.4 Outline of the Thesis

This thesis focuses on using both analytical and computational tools in order

to discover general principles of the functions and dynamics of biomolecular motors.

Fluctuations in the physical properties of biological machines are inextricably

linked to their functions. Distributions of run-lengths and velocities of processive

molecular motors, like Kinesin-1 and helicases, are readily accessible through single

molecule techniques, yet the lack of a rigorous theoretical model for these proba-

bilities hitherto has prevented their use in experimental analysis. In the first half

of the thesis, I describe analytical models to investigate velocity distributions of

processive motors. The models allow us to derive exact expressions for velocity

distributions under various circumstances (Table 1.4). The theory quantitatively

explain experimental data, allowing us to predict interesting behavior of the motors

at the molecular level. In Chap. 2, we show that the distribution of velocities of

Kinesin-1 becomes bimodal under load as a consequence of the discreteness in the

step-size traversed along the MT [85]. In Chap. 3, we quantitatively examine the

emergence of heterogeneity in a helicase by analyzing their velocity distributions,

based on a model developed in the group [23, 84], which in turn is a extension of

an earlier model for helicases [47]. We show that T4 and T7 helicases in SFIV ex-

hibit heterogeneity. Based on our model, we propose further experiments to discern
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between two types of heterogeneity, dynamic disorder vs static disorder [85]. The

detailed derivations for the different types of velocity distributions can be found in

Appendix A. Refer to Table 1.4 for the schematics of the different models.

Computational tools are useful in order to understand the structural basis of

function and mechanisms of molecular motors. Different methods can be chosen to

tackle different types of questions. In Chap. 4, I describe all-atom simulations to

investigate the docking process of Kinesin. A one µs simulation was able to capture,

for the first time in simulations, the docking of the neck-linker in the Kinesin-1 head,

which allows us to predict possible sites that the neck-linker interacts with in the

“disordered state”. These binding sites correspond to the two binding sites that

were obtained in crystal and EM structures of Kinesin-5, suggesting that the two

types of kinesins have very similar docking mechanisms.

Appendices B and C provide supplemental materials for chapters 2, and 3,

respectively.
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Table 1.4: Velocity distributions have been calculated for 6 different models as below. Detaied derivations
are in Appendix A.

	 Notes	 Schematics	 Notations	 Source	

Model	1	 Fixed	
runlength	 	

PN(v)	 Chapter	2,	3	
	

Model	2	 Finite	
processivity	

	

	 Chapter	2	

Model	3	 Finite	
processivity	

	

P(v),	(PA(v)	for	
approximation)	 Chapter	2	

Model	4	

Finite	
processivity	
with	an	

intermediate	
state	

	

Pi(v)	 Chapter	2	

Model	5	 Fixed	
runlength	 	

PN(v),	(PAN(v)	
for	

approximation)	

Chapter	3	
Model	6	

Fixed	
runlength	
with	static	
disorder	in	
the	forward	

rate	
	

PNH	(PNH,A	for	
approximation)	
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Chapter 2: Discrete step sizes of molecular motors lead to bimodal

non-Gaussian velocity distributions under force

2.1 Overview

Let us assume a motor takes steps of size s on a polar track, leading to a

net displacement ns before detaching at time t, where n is an integer proportional

to the run-length. The natural definition of average velocity for the trajectory is

v = ns/t. This chapter tackles several key questions relate to the distributions P (v)

and P (n) for molecular motors subject to resisting force, F . A natural question is:

when can P (v) be represented by a Gaussian, an approximation used to analyze

experiments [14, 35, 77, 86–88]? At small force, if the detachment rate from the

polar track γ is negligible compared to the forward rate k+ (Model 2 or Model 3

with k− << k+ in Table 1.4), the motor takes a large number of steps forward

before detachment. In this case, P (v) should approximately be a Gaussian, as

expected from the Central Limit Theorem (CLT). However, what is the behavior

of P (v) and P (n) when γ becomes comparable or even larger than the other rates,

situations encountered in single-molecule experiments in the presence of external

force (Fig 2.4A [25, 89])? To address these questions, we derive exact analytical
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expressions for P (n) and P (v), using a simple but accurate kinetic model, redrawn

in Fig. 2.2B), with only three rate parameters (Table 1.4 Model 3). The model

has a broad scope, allowing for analyzing with potential prediction for experimental

outcomes for a large class of processive motors.

The central results in this chapter are: (i) At non-zero F , P (v) is non-Gaussian

because γ cannot be neglected compared to k+, resulting in the number of steps

being not large enough for CLT to be applied. Even when F = 0 there is a discernible

deviation from the Gaussian distribution. (ii) Surprisingly, when F 6= 0, P (v) is

asymmetric about v = 0 with a bimodal shape containing peaks, one at v > 0 and

the other at v < 0. With increasing F , the peaks become symmetrically positioned

with respect to v = 0, and is completely symmetric at the stall force FS. (iii) As

F exceeds FS, reaching the superstall regime, the peak position at v > 0 (v < 0)

moves to higher (lower) values. We show that these counter-intuitive results are

consequences of the discrete nature of steps that molecular motors take on their

tracks.

2.2 When will PN(v) be non-Gaussian?

In order to understand when the velocity distribution PN(v) will be Gaussian

or non-Gaussian depending on the fixed run-length N , we derive an exact expres-

sion for PN(v) from the Model 1 in Table 1.4 (see Appendix A for details). This

expression for PN(v) (Eq. A.8) is plotted in Fig 2.1, for increasing values of N . In

each panel of the figure, a Gaussian is fit to data points generated from Eq. A.8.
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Figure 2.1: Comparision of velocity distribution with a Gaussian func-
tion for different number of steps N .
The blue dotted lines are exact results and the red solid lines are Gaus-
sian fits. Below: Kurtosis of PN(v) depends on number of steps N (blue
line). As N increases, the kurtosis approaches 3, the exact value for a
Gaussian distribution.

Clearly, as N becomes larger, the Gaussian fit becomes better and at N = 2000,

the Gaussian is indistinguishable from the theory. When N → ∞, the velocity

distribution approaches a delta function. This behavior is not surprising, since the

distribution becomes more Gaussian-like at large N a consequence of the central

limit theorem.

This simple model, however, explicitly highlights the fact that for N ∼ 100

or less, the velocity distribution could be distinctly non-Gaussian. In reality, the

processivity of any molecular motor with (γ 6= 0) will be finite, and hence N is

unlikely to be large enough for CLT to be valid. For example, at zero force, Kinesin

takes on an average N = 77 steps prior to dissociation [14]. Moreover, when a motor

is under a resistive force either in vivo or in optical tweezer experiments in vitro,

the detachment rates is even larger, which would make N smaller than 100. Under
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these circumstances, Gaussian approximation for P (v) may be inaccurate and more

accurate expressions need to be derived.

2.3 P (v) at zero force

We first analyze the F = 0 data for kinesin-1 (K-1) [14] using our theory for

Model 3 (Table 1.4), in which each motor can move towards the plus/minus ends

of the track or detach from any site. From the model, the run-length distribution

should take the form (as in Eq.A.44 and A.45),

P (n ≷ 0) =

(
2k±

kT +
√
k2
T − 4k+k−

)±n
γ√

k2
T − 4k+k−

, (2.1)

and P (n = 0) = γ√
k2T−4k+k−

. The exact expressions for P (v ≷ 0) is (Eq. A.63 and

A.70)

P (v ≷ 0) =
γ

|v|

∞∑
n=0

(
n

|v|

)n+1
1

n!

(
k±e−

kT
|v|

)n
0F1

(
;n+ 1;

n2k+k−

|v|2

)
. (2.2)

Experiments have shown that K-1 walks hand-over-hand [90,91] taking discrete

steps in multiples of s = 8.2 nm with each step being almost identical [34, 37, 38,

92]. The 8.2 nm is commensurate with the α/β tubulin periodicity of a single MT

protofilament, here modeled as a one dimensional lattice (Fig 2.2) [28]. For K-1

the measured F = 0 mean velocity is 1089 nm/s (Fig. 2.3B) [14], which implies

that k+
0 − k−0 = 132.8 step/s. The ratio

k+0
k−0

is not reported in [14], which forced us

to use data from other sources. This ratio is reported independently in 2 papers

as
k+0
k−0

= 221 [8] and
k+0
k−0

= 802 [9]. Solving the two equations, we get k+
0 and k−0

corresponding to the two experimental values of the ratio (Table I (a) and (b), note
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Figure 2.2: Kinetic stochastic model applied to kinesins.
A: Schematic of a kinesin molecule walking hand-over-hand on a micro-
tubule (MT) with a discrete step-size of 8.2 nm. B: Sketch of the Model
3 (Table 1.4) in which the yellow circle represents the center-of-mass
(COM) of the kinesin (capturing the point in yellow in A). The position
of the COM on the MT is denoted by i. Kinesin can step ahead, back,
and detach from the microtubule with rates k+, k−, and γ respectively.
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Table 2.1: Force-dependent rates for K-1. (a) and (b) are rates at F = 0 obtained

from experimental data on Kin1/acetylated microtubule with ratio
k+0
k−0

= 221 [8] and

k+0
k−0

= 802 [9] respectively. The error in γ0, obtained by simultaneously fitting P (n)

and P (v) (Fig. 1), is estimated using the bootstrap sampling method [10]. (c)-(g)
are rates at different values of load, calculated using the F = 0 values in (a).

F k+ k− γ
(pN) (s−1) (s−1) (s−1)

(a) 0 133.4 0.6 2.3±0.3
(b) 0 133.0 0.2 2.3±0.3
(c) 3 47.1 1.8 6.2
(d) 4 33.3 2.5 8.7
(e) 5 23.5 3.6 12.1
(f) 7.6 9.5 9.3 29.0
(g) 8.5 7.0 12.8 39.1

that even though the ratios are different, k+
0 and k−0 are similar.) Using k+

0 and

k−0 , we obtained the detachment rate at zero force, γ0, by simultaneously fitting

the measured [14] velocity distribution using Eq. 2.2 and run-length distribution

using Eq. 2.1. The excellent fits to both data sets P (n) and P (v) (Fig. 2.3) using

a single parameter shows that our theory captures the basic aspects of the K-1

motion. More importantly, the value of the only unknown parameter γ0 is the same

in Table 2.1(a) and (b) and is in a very good agreement with an independent way of

obtaining the detachment rate (see Appendix B). While analyzing the experimental

data, we convert velocity in step/s to nm/s (or vice versa) by multiplying (dividing)

by s = 8.2 nm.

2.4 P (v) under resistive force

The distribution P (v) has the same form as in Eq. 2.2 when the motor is

subjected to an external force, F , (Fig. 2.4A) except k+(F ) and k−(F ) are depen-
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Figure 2.3: Simultaneous fits (red lines) of zero force K-1 data (blue dots)
[14] for run-length (A: P (n)–Eq. 2.1) and velocity (B: P (v)–Eq. 2.2)
distributions.
The dashed line in B is a Gaussian fit. It should be stressed that the
results in (A) and (B) were fit using a single parameter, γ0, with the
extracted zero force values for k+

0 and k−0 in Table 2.1(a).

dent on F . We model these rates using the Bell model, k±(F ) = k±0 e
−
F‖d
±
‖

kT where

F‖ is the component of the force parallel to the microtubule, k+
0 and k−0 are the

forward and backward rates at F = 0, and the transition state distances d+
‖ and

d−‖ are defined in Fig. 2.4B. We can rewrite the arguments of the exponentials as

k±(F ) = k±0 e
−Fd

±
kT , defining effective distances d± = d±‖ |F‖/F |.

We obtained |d+| = 1.4 nm and |d−| = 1.6 nm (Fig 2.9), by fitting the average

velocity as a function of force [8] with v(F ) = (k+(F ) − k−(F )) subject to the

constraint |d+| + |d−| = 2.9 nm [8], assuming that d± are independent of F . Note

that |d+| + |d−| = 2.9 nm is different from the mean step-size (8.2 nm) of K-1,

because the force transmitted to the kinesin heads is not parallel to the direction of

the motor movement (Fig 2.4A), so d± = d±‖ |F‖/F | < d±‖ . An alternate mechanism

for |d+| + |d−| being less than 8.2 nm has been proposed elsewhere [93]. Similarly,

the F -dependent detachment rate is taken to be γ(F ) = γ0 exp
(
F⊥dγ
kT

)
, which we
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|| ||

Figure 2.4: Model for force-dependent of kinetic rates.
A: Decomposition of the resistive optical trap force F applied to the
bead attached to the coiled-coil, along components parallel (F‖) and
perpendicular (F⊥) to the MT axis [25]. B: Energy landscape for forward
and backward rates with the blue and the red curves corresponding to
zero and non-zero F respectively. F‖ increases the backward rate and
decreases the forward rate; F⊥ increases the detachment rate.

rewrite as γ(F ) = γ0 exp
(
|F |
Fd

)
where Fd = |F |kT

F⊥dγ
(≈ 3 pN) is the force at which

the two-headed kinesin disengages from the microtubule [89]. At distances greater

than the transition state distance dγ the motor is unbound from the MT. Table 2.1

(c)–(g), listing the three rates at several values of F , shows that γ(F ) is appreciable

relative to k+(F ) at F > 3 pN, which is profound consequences on P (v), as we show

below.

2.4.1 Bimodality in P (v) from Model 3

The normalized P (v 6= 0) distributions for different F values are plotted in

Fig. 2.5A using Eq. 2.2, showing distinctly the non-Gaussian behavior, in sharp con-
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Figure 2.5: Predictions of the normalized velocity distributions ((P (v >
0) +P (v < 0))/(1−P (v = 0))) (A) and run-length distributions (B) at
different force values.
The inset shows P (v = 0) as a function of F . The dashed line is the prob-
ability (γ/kT ) that the motor detaches without taking a step. The solid
line is the cumulative probability, P (n = 0) = P (v = 0) = γ√

k2T−4k+k−
,

the total number of motors detaching with zero average velocity and
zero net displacement, which includes both motors that detach without
stepping, and those that return to their starting location.

trast to the approximately Gaussian distribution at F = 0 (Fig. 2.3B). By stringent

standards even at F = 0, P (v) is not a Gaussian [94] but the extent of the devia-

tion from a Gaussian increases dramatically as F increases. This happens because

γ increases and eventually becomes larger than the other rates (Table 2.1), thus

decreasing the processivity (Fig. 2.5B). As a result, CLT does not hold resulting in

P (v) to exhibit non-Gaussian behavior.

More unexpectedly, the predicted F -dependent P (v)s are bimodal (Fig. 2.5A).

As F increases, the peak at v < 0 becomes higher and reaches the same height as

the one at v > 0 at the stall force FS. For forces below FS = 7.63 pN [8], the

location of the peak of the P (v > 0) curves, vP , shifts to lower velocity values as

F increases, but then moves to higher ones at F > FS (vP at F = 8.5 pN (green

curve) is larger than vP at FS = 7.6 pN (red curve)).
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These two counter-intuitive results are direct consequences of the discrete steps

that kinesin takes on the MT. For large values of γ(F ), corresponding to large forces

(where the bimodal structure is most prominent), the time the motor spends on

the microtubule is necessarily small (t ∼ 1/γ(F )). Since ns has to be an integer

multiple of 8.2 nm, it cannot be less than 8.2 nm, implying that velocities close to

zero (both positive and negative) are improbable, giving us a full explanation of the

two-peak structure in P (v). In addition, for F ≤ 5 pN, vP can be estimated using

8.2(k+(F ) − k−(F )) nm/s. As F increases, k+(F ) decreases while k−(F ) increases

(Table 2.1, Fig. 2.4B), leading to a decrease of vP with F . However, vP cannot shift

to arbitrarily low values of the velocity due to the discreteness of the step-size. As

the force increases beyond FS, for most of the trajectories that contribute to the

v > 0 peak, the motor falls off after taking just one step (smallest n) (Fig. 2.5B),

and at the same time the detachment time continuously decreases, shifting vP to

larger velocities (v ∼ 1
t
).

The discrete nature of the stepping kinetics is less significant when a large

number of n terms contribute to P (v). At F = 0, the motor takes in excess of

50 steps of net displacement before detaching. It is then reasonable to replace

the summation in Eq. 2.2 by an integral. An ansatz for the approximate velocity

distribution, PA(v), which is highly accurate for F = 0 where γ � k+ (Fig. 2.3B),

is given by (same as Eq. A.77 in Appendix A)

PA(v > 0) =
γ

v2
(1 + 4a)−1/4

[
2 ln

(
1 +
√

1 + 4a

2
· v
k+

)
− 2
√

1 + 4a+ 2
kT
v

]−3/2

,

(2.3)
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Figure 2.6: Comparison of the exact P (v > 0) (Eq. 2.2 or A.63 plotted
as dashed curves) and approximate PA(v > 0) (Eq. 2.3 or A.77 plotted
in red) for three values of F .
As a test of convergence, P (v) is plotted as a function of the number
of terms used in the summation in Eq. 2.2, showing that the number
of terms required to converge the sum is F -dependent. For F = 0 in
excess of 400 terms are needed whereas at higher F converged results are
obtained using very few terms. Comparison of the results for P (v) and
PA(v) shows agreement only for F = 0. There are qualitative differences
between P (v) and PA(v) as F increases.
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Figure 2.7: Predictions of velocity distributions at different values of
loads using the approximation Eq. 2.3 or A.77.
The continuum approximation washes out the bimodal structure in the
exact P (v) (see Fig. 2.5A).

where a = k+k−

v2
. However, for F 6= 0 the values of γ are such that only few terms

in Eq. 2.2 are non-negligible, thus making the approximate expression (Eq. 2.3)

invalid (Fig. 2.6). As F increases, the average number of forward steps decreases

dramatically. At F = 3 pN the probability of K-1 taking in net displacement for

more than 10 steps is small (Fig. 2.5B). This results in qualitative differences between

PA(v) (continuum steps) and P (v) (discrete steps), which is dramatically illustrated

by comparing Fig. 2.5A and Fig. 2.7. Thus, the discreteness of the motor step must

be taken explicitly into account when analyzing data, especially at non-zero values

of the resistive force.

For F 6= 0 the motor would take only a small number of steps because γ(F ) is

an increasing function of F , raising the possibility that the predictions in Fig. 2.5A

may not be measurable. To account for potential experimental limitations we calcu-

lated the conditional probability P (v|n > n0) where the first n0 terms in Eq. 2.2 are

neglected. Fig. 2.8 shows that even with this restriction the bimodal distribution
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persists espectially near the stall force where it is prominent.
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Figure 2.8: Normalized velocity distribution obtained from motors that
take more than three steps.
This restriction is imposed to assess if the bimodal distribution in P (v)
can be measured at F 6= 0. The main conclusions are robust.

2.4.2 Bimodality of P (v) with different force velocity curves

There are substantial variations in force velocity (F -v) curves at saturated

ATP concentration for K-1 in different experiments. Even the shape of the F -

v curve in [8] does not agree with the results in [9, 95]. In order to assess their

impact on our predictions, we analyzed the F -v curves reported in [9, 95]. First,

Fig. 2.9A shows that with a single parameter (d+) we can quantitatively fit the

three F − v curves. Using this value, d+, along with k+
0 , k−0 , and γ0 we calculated

the dependence of P (v) on F using the F−v curve from [95] (Fig. 2.9B) and the one

from [9] (Fig. 2.9C). The results show that, just as those in Fig. 2.5, the predicted

bimodality in P (v) remains regardless of the differences in the shapes of the F -v

curves among different experiments.
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Figure 2.9: Bimodality of P (v) (C and D) with different force velocity
curves (A).
A: Force velocity curves. The dots are experimental data from [8] (Blue),
[95] (Red), [9] (Purple), while the lines are fits to the data, using Eq.

v(F ) = s(k+
0 e−

Fd+

kT − k−0 e−
Fd−
kT ). The characteristic distances extracted

from the fit are in the Table 2.2. B: Force dependence of averaged
run-length. The solid line is the averaged positive runlength estimated
from our Model 3. The deviation in the values with experimental data
(red dots) comes from the fact that the analyzed data in the model [14]
is from a different system to the available force-runlength data from
experiments [40]. C (D): Predictions for P (v) at different values of
loads with parameters listed in the second (third) row of Table 2.2.

2.4.3 Bimodality of P (v) with variability in the step-size

Although we assumed that stepping occurs in integer multiples of 8.2 nm,

experiments show that the step-size distribution has a finite but small width for

K-1 [38], which could possibly affect the bimodal structure in P (v) at F 6= 0.

Since inclusion of the distribution in the step-sizes makes the model analytically
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Table 2.2: Characteristic distances d+ and d− for the fitting lines with different data
sets in Fig. 2.9A.

k+
0 k−0 |d+| |d+ − d−|

[8] 133.4 s−1 0.6 s−1 1.4 nm 2.9 nm
[95] 133.4 s−1 0.6 s−1 0.6 nm 3.0 nm
[9] 133.0 s−1 0.2 s−1 2.1 nm 3.3 nm
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Figure 2.10: Kinetic model extended from Model 3 with a Gaussian
step-size distribution.

intractable, we performed Kinetic Monte Carlo (KMC) simulations [96]. In this set

of simulations, every time kinesin jumps forward or backward, s is sampled from

the Gaussian distribution N(s, σ), with mean s = 8.2 nm, and standard deviation

σ varied from 0 nm to 8 nm (Fig. 2.10). As σ increases, the two-peak structure gets

washed out (Fig. 2.11). However, for the experimentally measured value of σ = 1.6

nm, the two-peak velocity distribution is present (Fig. 2.11C) (we converted the

standard error SE = 0.03 nm from the measurements (see Fig. 2 in [38]) on wild

type kinesin LpK to σ = SE
√
N = 0.03

√
2993 = 1.6 nm). We conclude that the

key predictions in Fig. 2.5A are robust with respect to inclusion of a physically

meaningful step-size distribution and experiments should be able to discern the

two-peak structure in P (v) at F 6= 0. The predictions for P (v) at various forces

with σ = 1.6 nm are displayed in Fig. 2.12.
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Figure 2.11: Kinetic Monte Carlo simulations (blue histograms) of the
velocity distribution at 7.6 pN load, with a Gaussian step-size distribu-
tion [N(s,σ) in the left corner of each panel].
Progressive loss of bimodal nature of the velocity distribution as the
width of the step-size distribution increases. At the physical step-size
distribution (C), although inclusion of distribution in the step-size leads
to minor deviations in P (v), the predicted bimodality persists. The solid
lines are the exact P (v)–Eq. 2.2 obtained by assuming that all motors
take identical 8.2 nm step.

2.4.4 Bimodality of P (v) with an intermediate state – Model 4

It is natural to wonder if the predicted bimodality in P (v) at F 6= 0 is a

consequence of the simplicity of the model. We now show that the presence of a

chemical intermediate state, which has been invoked to analyze experiments [61],

does not alter the bimodal structure in P (v). We generalized a more complicated

model to include a chemical intermediate (Model 4 in Table 1.4 and Fig. A.7) and

computed P (v) exactly (see Appendix A). Eqs. A.81 and A.82 (blue lines) are plotted
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Figure 2.12: Velocity distribution simulations with step-size distribution
N(8.2,1.6) with increasing load (blue histograms).
The solid lines, which are the same exact velocity distribution functions
(Eq. 2.2) with no step-size distribution, fit the simulation results quan-
titatively.

in Fig. 2.13 to compare with KMC simulations of the same model (blue histograms).

The velocity distributions Eq. 2.2 (red lines) for the Model 3 in the Fig. 2.5A are also

plotted for comparison. In the intermediate state model (Model 4), the motor takes

two sub-steps with rates k+
s , k−s , to complete a full step, which in the Model 3 occurs

with k+ and k− rates. Thence, for K-1 at F = 7.5pN we chose k+
s = 2k+, k−s = 2k−

and γ = 2.3 s−1 in Eqs. A.81 and A.82. The presence of the intermediate state

merely makes the velocity distribution narrower without altering the bimodality in

P (v). We found that the important bimodal feature is still preserved, thus further

establishing the robustness of our conclusions.

2.4.5 Randomness – parameter measuring the fluctuation effects

Other than P (v) and P (n), fluctuation effects in the reaction cycle of motors

and more generally in any enzyme reaction has been succinctly captured using the

randomness parameter (r) introduced by Schnitzer and Block [43]. Hence, why do

we have to calculate P (v) and P (n) and make our predictions for P (v) under force?
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Figure 2.13: Velocity distribution simulations with intermediate state
from KMC simulations (blue histograms) and the exact function
Eqs. A.81 and A.82 (blue line) at F = 7.5 pN.
For comparison we also show the exact velocity distribution function for
the Model 3 (Eq. 2.2) with no step-size distribution (red line). Although
the velocity distribution becomes narrower when an intermediate state
is present, the two-peak structure still remains.

For motors, r can be measured and computed from the overall motor displacement

x(t) using [25,97,98]

r = limt→∞
< x2(t) > − < x(t) >2

s < x(t) >
=

2D

s < v >
. (2.4)

where D is an effective diffusion constant. If there is no dispersion in the step-size s,

r can be used to obtain the second moment (r ≡ σ2(τ)
<τ>2 ) of the dwell-time distribution

P (τ) with 1/r setting the lower bound for the number of intermediate states needed

to characterize the reaction cycle [43]. If the step size is non-uniform then r =

σ2(s)
<s>2 + σ2(τ)

<τ>2 where σ2(s) is the dispersion in s [45]. Although the use of randomness

parameter is not without problems [43,98] the ability to measure and analyze r has

given considerable insights into motor function. However this approach has some

limitations. The parameter r only gives us information about second moment, not

the full distribution. It is conceivable that different distributions could have the
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same value of r, the interpretation of the results may be difficult [43, 98]. Indeed,

in the oversimplified model considered in Model 3, the dwell-time distribution is

P (τ) = kT e
−kT τ . Thus, r is unity. Even though r = 1 at all forces, the P (v)

distribution are highly F -dependent suggesting that r alone is not indicator of the

non-Gaussian shape and bimodal structure of P (v) at large forces. It should be

borne in mind that measurement of r (Eq. 2.4) requires the enzymes to be processive,

allowing data to be collected for a long sufficient of time. This makes randomness

to be inappropriate to investigate for fluctuation of Kinesin at around and above

stall forces.

0 2 4 6 8
0.5

0.6

0.7

0.8

F (pN)

r

Figure 2.14: The dependence of the randomness parameter on F for the
model described in Fig. S6 A.

Nevertheless, r = 1 for the simple model does raise a question. Is the central

result is a consequence of the over simplification in Model 3? Fig. 2.13 already

shows that P (v) is bimodal when an intermediate is considered. We calculated the

F -dependent r parameter for the more realistic model in Fig. 2.13, Model 4. The
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results in Fig. 2.14 show that r increases from about 0.5 at small forces to unity as

F approaches Fs. The values of r are in qualitative agreement with experiments [95]

and is satisfactory given the difficulty in computing r accurately even with models

with multiple intermediate states [61]. The combined results in Figs. 2.13 and

2.14 show that the central predictions in the Model 3 hold even using models that

qualitatively capture the F -dependent r values.

2.4.6 Bimodality of distribution of “instantaneous” velocity vinst

Our approach also allows us to compare P (v) with the distribution of P (vinst)

of “instantaneous velocity”, an alternative measure of motor dynamics. If the dwell-

time of a motor at a site is τ , then vinst = s/τ . The distribution P (vinst) can, in

principle, be computed from P (τ), the distribution of dwell-times. P (τ) has been

establised generally in several important studies [99–101] of sequential models with

multiple intermediate states (between 4 and 6) connecting two successive target

binding states. From the numerical solution of an appropriate master equation,

the F -dependent instantaneous mean velocity has been reported for K-1 without

explicitly considering detachment [99]. Good agreement with experiments is found

using the six state sequential model.

The measured P (τ) decays exponentially at all F (see Fig. S2 in [9]). This

finding is a consequence of the absence of correlation between successive steps (dwell

time >> jump time) that the motors take on the underlying lattice. If P (τ) decays

exponentially, then for our model, which quantitatively describes all the experi-
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mental F − v curves (Fig. 2.9A using the kinetic scheme given in Model 3), the

distribution of τ can be written as P (τ) = kT e−kT τ . The dwell time distributions

for forward and backward steps are, P+(τ) = k+e−kT τ , and P−(τ) = k−e−kT τ where,

in our simple model, kT = k+ +k−+γ (all the rates are F -dependent.) This implies

that the total dwell time distribution alone cannot be used to separately calcu-

late the distribution of dwell times when the motor takes predominantly forward

or backward steps without an underlying model. The distribution of instantaneous

velocities (vinst > 0) and (vinst < 0) can be readily calculated by evaluating the

integral P (vinst > 0) =
∫∞

0
P+(τ)δ(vinst − 1

τ
)dτ , leading to

P (vinst > 0) =
k+

v2
inst

e
−kT 1

vinst . (2.5)

A similar expression holds for P (vinst < 0). Note that for convenience we measure v

in unit of step/s. We can convert the unit of velocity to nm/s by multiplying it with

the step-size s, which is equal to 8.2 nm for K-1. The F -dependent P (vinst) is shown

in Fig. 2.15 exhibits the bimodality found in the distribution of the physical velocity

discussed in the Model 3. However, P (vinst) and P (v) deviate qualitatively as F

decreases. In particular, P (vinst) differs significantly from the expected Gaussian

distribution at F = 0 (Fig. 2.15).

From this analysis we draw two important conclusions: (1) From the measured

F -dependent dwell time distributions alone, as reported in Fig. S2 in [9], one cannot

separate P (vinst) into P (vinst > 0) and P (vinst < 0) without a tractable model

that includes the possibility that the motor can detach from the track. The more

complicated models [99–101] cannot produce analytic expressions for P (vinst > 0)
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and P (vinst < 0), which can be used to analyze experimental data. In this context,

the simple but accurate model that we have proposed (Model 3), is ideally suited

to interpret available data and also make testable predictions. (2) At zero F where

k− and γ are negligible the velocity distribution (dominated by positive velocities)

is well-approximated by a Gaussian (see Fig. 2.3). This is not the case for P (vinst),

suggesting that vinst may not be the correct measure of the motor velocity.
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Figure 2.15: Predictions for P (vinst) at different values of F with the
parameters listed in the first row (A), second row (B), and third row
(C) in the Table 2.2.

2.5 Conclusions

In summary, an exact theoretical analysis using a simple model for motor

motility quantitatively explains the zero force velocity and run-length distributions
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simultaneously for K-1, with just one physically reasonable fitting parameter. With

an average run-length of∼632 nm = 77 steps [14], we expect the velocity distribution

of K-1 to deviate from a Gaussian (albeit slightly) even at zero force [94]. Based on

the analysis of the zero force data, we calculated the load dependence of the velocity

distribution of K-1 and discovered that the discrete nature of kinesin’s steps leads

to an unexpected bimodal structure in the velocity distribution under load. This

surprising result can be tested in single molecule experiments, most readily accessed

near the stall force where the motor has equal probability of moving forward or

backward. An example of such a trajectory may be found in Fig. 1 of [9]. It remains

to be seen if our predictions can be readily tested within the precision of single

molecule experiments. Although set in the context of K-1, our general theory can

be used to analyze experimental data for any molecular motor for which the Model

3 in Table 1.4 is deemed appropriate. Thus, our major results should hold for any

finitely processive motor that takes discrete steps.
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Chapter 3: Broad velocity distributions in SFIV helicases is a con-

sequence of heterogeneity

3.1 Introduction and overview

Heterogeneity is a common and accepted theme in many complex systems,

ranging from ecosystems [102], to landscapes [103], to organisms [104] and cells

[105]. For an instance, within tumor, cell-to-cell variation in numerous genotypic and

phenotypic traits has led to the challenging problem of drug-resistance in the field of

cancer biology and cancer medicine [106,107]. Though the presence of heterogeneity

is wide-spread, it is surprisingly poorly explored and established at the level of single

proteins [108,109]. Perhaps this was historically a result of the ‘uniqueness principle’

of protein folding expounded in the seminal works of Anfinsen, which states that

the functional (native) state of a protein is unique in its structure [110]. However,

with the advent of high resolution techniques that allow us to probe proteins at

the single-molecule level [111], we are poised at an exciting stage where we can

hope to clarify the emergence of heterogenety. A number of studies have already

shown a high degree of variability in the functional response of proteins, for instance

in single molecule enzymes [112], in Holliday junctions [113], or Single Molecule
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Figure 3.1: The width of the velocity distribution is a function of a
number of parameters.
(A) Effect of changing the forward and backward rates while maintaining
a fixed average velocity (k+ − k− = 100). (B) Effect of changing the
number of base pairs used to measure the velocity distribution.

Pulling Experiments [108]. This highly variable functional response is surprising,

and cannot be easily reconciled with a ‘unique’ native state picture of the protein

energy landscape (Fig. 3.4A).

Recent experiments have suggested that there is a wide variation in the ve-

locities of apparently identical helicases [15, 16, 83, 114–117]. Among many other

physiological functions, helicases use chemical energy from NTP to translocate along

nucleic acid strands and unwind them [33]. Using single molecule techniques such as

fluorescence, optical and magnetic tweezers and flow-induced DNA stretching, the

velocities of these motors can be tracked with unprecedented precision, providing

the first glimpses of how varied the velocities actually are among supposedly iden-

tical helicase molecules [15, 16, 83, 114–117]. For instance, by measuring the time

it takes for individual motors to traverse a certain length of ssDNA, Johnson et al

measured the translocation velocity of T7 helicase at the single molecule level [15].

By measuring the velocity for a number of molecules, the distribution of velocity
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Figure 3.2: Schematic of the model.
The forward and backward rates of the helicase are denoted by k+ and
k− respectively. The reason for neglecting any detachment from the
track is explained in the text.

PN(v) was obtained. The resulting PN(v) was broad, prompting the authors to hy-

pothesize the role of heterogeneity as a plausible explanation of the width. However,

this experiment only hinted at the presence of heterogeneity, since no quantitative

measure was developed for the expected width of velocity distributions of homoge-

neous versus heterogeneous motors. A quantitative model is required to decouple

the effects of inherent stochasticity, DNA length, forward and back-stepping rate –

all of which contribute to the width of the velocity distribution (see Fig. 3.1). In this

chapter, we develop a theoretical model to quantitatively establish the presence of

heterogeneity in two ring helicases T7 and T4 belonging to the SF-IV superfamily.

3.2 Methods

3.2.1 Kinetic model for homogeneous motors

In a single molecule experiment [15,118], the time t each helicase takes to tra-

verse a fixed length of ssDNA (NDNA), is recorded for each trajectory. Translocation

velocity is obtained as vdata = NDNA/t. Based on this definition of velocity, we now

propose a simple model for the velocity distribution of helicases. As shown in Fig

3.2 (Model 5 in Table 1.4), starting from the binding site 0, the helicase can move

45



forward (backward) along a one-dimensional track with kinetic rates k+ (k−). The

helicase trajectories have an absorbing state at the binding site N , corresponding to

a fixed distance NDNA = N s, where s is the step-size. The waiting time for back-

ward or forward steps is assumed to be exponentially distributed. The velocity of

the motor in a particular trajectory is defined as v = N/t, where in accord with [15],

t is the time taken to travel the fixed length on the nucleic acid. (For simplicity, we

measure v in unit of step/s in our calculations. When dealing with real data, all the

equations are converted back to the real unit bp/s with the equation vdata = v s).

Note that this definition of velocity assumes that all the motors can travel the fixed

distance without dissociation. This is a reasonable assumption for the helicases

we analyze here (T7 and T4), since the average run-length of both these helicases

are orders of magnitude larger than the NDNA used in the experiments. Note that

unlike this model, the detachment rate was explicitly considered in our previous

work on Kinesin in Chap. 2 [85]. Finally, we also note in passing that in this model

there is no difference in the end rates as opposed to the “n-step” model [119–121].

This is because the helicase does not actually stop or dissociate after traveling the

distance N binding sites in the experiments [15], but is simply a point where the

measurement detects the presence of the helicase.

The exact analytical equation for N-step velocity distribution of homogeneous

motors is given by the following expression (see Appendix A for detailed derivations):

PN(v) =

(
N

v

)N+1(
k+ exp(−kT

v
)

)N
1

N !
0F1

(
;N + 1;

N2

v2
k+k−

)
, (3.1)

where 0F1 is a hypergeometric function [122].
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Using the approximate expression for the hypergeometric function [85] 0F1(;N+

1; aN2) ≈ (1+4a)−1/4 exp(Nc) where c =
√

1 + 4a−1− ln
(

1+
√

1+4a
2

)
and a = k+k−

v2
,

we arrive at the following approximate expression for the velocity distribution,

PA
N (v) ≈

(
N

v

)N+1(
k+ exp(−kT

v
)

)N
1

N !
(1 + 4a)−1/4 exp(Nc). (3.2)

As pointed out in chap. 2 and [85], we have to use the exact equation if the number

of steps N is small (N ∼ 10 steps) because the discreteness of N in that case is

important. In the experimental systems that we analyze here [15, 16], helicases are

likely to travel N ∼ 100 steps and hence Eq. 3.2 is a very good approximation for

the exact Eq. 3.1.

In a recent work, Chakrabarti et al. [23] (CJT) developed a method based

on Betterton and Jülicher’s models [47, 51], to analyze the force dependence of the

mean velocity and mean runlength of helicases. By analyzing both force - unwinding

velocity and force - runlength curves simultaneously, they were able to accurately ex-

tract kinetic parameters such as step-size, interaction range, and forward/backward

rates at saturating ATP conditions (See Appendix C and the original paper). With

the kinetic parameters extracted using the CJT theory, Eqs. 3.1 and 3.2 allow us to

predict the velocity distribution of the systems without heterogeneity.

3.2.2 Motors with heterogeneous rates

In this section, we build on the model discussed above, to allow for hetero-

geneity or variation in the forward rates of the motors. The function of a number

of molecular motors demands directed motion along linear tracks, which is charac-
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terized in models with much larger forward rates k+ as compared to backward k−

or detachment rates. This is actually the common case, for instance T7 gp4 [23] or

T4 gp41 helicases. It is found that k− is roughly hundred times smaller than k+

(see Appendix C). Therefore, although it is reasonable to think about heterogeneity

in all of the parameters of the model, the dispersion in the forward rate should

be the main contributor to the heterogeneity in the velocity of the motor. So we

calculate the velocity distribution where the forward rate k+ is normal distributed

with a mean of µk (which equals to the mean forward rate estimated from the CJT

theory), and a standard deviation (s.d.) of σk (the only fitting parameter), which

accounts for static disorder in the forward rate (Model 6 in Table 1.4). With this

addition, the velocity distribution becomes,

PH
N (v) =

∫ ∞
−∞

dk+PN(v)
1√

2πσk
e
− (k+−µk)

2

2σ2
k . (3.3)

Here, after doing some approximations (see Appendix A for details), we obtain an

analytical result PH,A
N (v) as

PH,A
N (v) =

√
N√

2πv

e
− N(k−+v−µk)

2

2(Nσ2
k
+v(2k−+v))√

Nσ2
k+v(2k−+v)

(2k−+v)

. (3.4)

Comparision of this approximation function (orange line) with the numerical result

(brown dots) of the exact integral, displayed in Fig. 3.3A shows that this is a very

good approximation, when the step distance N is large (∼ 50 steps) and k+ >> k−.

When N is small or k− ∼ k+, Eq. 3.3 can be numerically computed. Note that the

unit of velocity in the graphs has been converted from step/s to nt/s, as usually

reported in experiments.
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3.2.3 A test of heterogeneity in motors with negligible back-stepping

rates

We now provide a simple method to quantitatively test for heterogeneity of a

motor from the measured velocity distribution, without fitting the data to a specific

model. We calculate the average velocity and the width of the velocity distribution

for the simplest case where the backward rate is negligible compared to the forward

rate (k− → 0) (Model 1 in Table 1.4). The dependencies of the average velocity and

the s.d. of P (v) on the number of base pairs that the motors travel NDNA = N.s,

step size s and the homogeneous forward rate k+ are,

< vdata >=< v > s = k+s
NDNA

NDNA − s
, (3.5)

and

σvdata =
< vdata >√
N − 2

=
< vdata >√
NDNA
s
− 2

. (3.6)

Note that vdata is in bp/s and v is in step/s, s is the step-size (see Appendix A for

detailed derivations).

For general processive motors with the forward rate is typically much greater

than the backward and detachment rates, it is possible to measure the velocities

of many motors over a fixed length specified by the travel distance, NDNA. Using

average velocity, < vdata >, we can calculate the expected standard deviation of

the distribution σvdata using Eq. 3.6, assuming that all motors are homogeneous.

Comparison of the expected value , σvdata , and measured values σ′vdata allows us to

discern the degree of heterogeneity. If σvdata is smaller than σ′vdata , then we have
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heterogeneity. In other words, the stepping of each motor is distinct.

Another way to interpret Eq. 3.6 is that the coefficient of variation (ratio of

the s.d. to the mean) of velocity distribution for homogeneous processive motors

depends on the length of measuring segment as
σvdata
<vdata>

= (NDNA
s
− 2)−1/2. If the

experimentally measured coefficient of variation is greater than this value, there is

heterogeneity.

Note that when NDNA → ∞, this simple test converges to the Central Limit

Theorem for average of many Poisson processes (
σvdata
<vdata>

≈ 1√
N

). However, when

a small NDNA is used in an experiment (for example in FRET experiments [118]),

Eq. 3.6 provides an important test of heterogeneity. If k− is comparable to k+, our

more general theory with the exact Eqs. 3.1 and 3.3 is needed instead of the simple

test.

3.3 Results

3.3.1 Heterogeneity in helicase T7 gp4

Helicase T7, which is a processive motor and rarely takes backward steps while

translocating on ssDNA (k− � k+, see Table 3.1), is a great example to apply our

model and test for heterogeneity. Applying the method for motors with negligible

back-stepping rates (Section 3.2.3) to helicase T7, we found that the s.d. of P (v)

from the experiments σ′vdata is clearly larger than the predicted value σvdata for the

homogeneous case (Table 3.1). This easy test leads to the conclusion that helicase

T7 is highly heterogeneous, which means there are motor-to-motor variations in the
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stepping of T7 helicase.

A more rigorous test with the full model in Fig. 3.2, involving both the forward

and backward rates (Section 3.2.1), leads to the same conclusion. Using the param-

eters extracted from the CJT analysis of the experimental data for helicase T7, the

predicted translocation rate distributions when the system is homogeneous using

Eq 3.2 (dashed green lines - PA
N (v)) are narrower than the distribution observed in

experiments (blue dots) (see Fig. 3.3).

To quantify the extent of heterogeneity, we fit Eq. 3.4 (orange line - PH,A
N (v))

to the actual experimental data (blue dots) that was measured with NDNA=500 nt,

and extracted the s.d. of P (k+) as σk = 32 ± 15 s−1. The error in the fitted σk

was obtained using the bootstrap method [10]. The authors also reported that they

measured another P (v) as a Gaussian N(320, 44) nt/s for NDNA=2800 nt, without

providing the raw data [15]. Therefore, we simply fit the same equation with a

generated data from the distribution that the authors reported (Fig. 3.3A inset),

and ontained σk = 22 s−1 which falls in the range for NDNA=500 nt quoted above.

3.3.2 Heterogeneity in T4 gp41

We also tested for heterogeneity in the hexameric helicase, T4 gp41 [16]. Due

to insufficient data for T4 gp41, we could not extract the step-size of this helicase

unambiguously (see Appendix C). However, we analyzed different cases of physically

reasonable step-size values and all of them show that T4 gp41 is also heterogeneous.

With the quick test of σvdata (Table 3.2), all of the predicted values of the standard

51



150 200 250 300 350 400 450
0.000

0.005

0.010

0.015

0.020

100 200 300 400 500 600 700 800
0.000

0.005

0.010

0.015 s = 1
s = 2
s = 3
s = 4

ssDNA translocation rate (nt/s)ssDNA translocation rate (nt/s)

P
(v

) 
(n

t 
.s

) PN   (v)
PN(v)

PN(v)

data

A

H,A

H

-1

150 200 250 300 350 400 450
0.00

0.01

0.02

0.03

0.04

0.05

A B

data 0 100 200 300 400 500
0.000

0.005

0.010

0.015

v (nt/s)

P
(v

 )
 (

s/
n
t)

PN(v)

PN(v)

data

H

U

U

Figure 3.3: Fitting velocity distribution functions for T7 gp4 [15] (A)
and T4 gp41 [16] (B) helicases’s ssDNA translocation rates.
A: The rates were measured over a distance of ∼ 500 nt for the main
graph and ∼ 2800 nt for the inset. The blue dots are the data extracted
from the papers. (The blue dots in the inset are generated from a distri-
bution that the authors reported as 320± 44 nt/s.) All the dashed lines
are predicted PA

N (V )s if the system is homogeneous, drawn from Eq. 3.2
with different sets of parameters in Table 3.1 (A) and Table 3.2 (B).
The solid lines are the fitted to the data of velocity distribution with
heterogeneity (PH,A

N (v) - Eq. 3.4). B inset: Fitting velocity distribution
functions for unwinding velocity of T4 gp41 [16] using exact equations
for homogeneous (PN(v) - Eq. 3.1) and fitting heterogeneous (PH

N (v) -
Eq. 3.3) velocity distributions.
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deviation of the velocity are smaller than the corresponding measured values. Note

that we did not apply this test to the first data set when s = 1 because, the

backward rate in that case is non-negligible, k− = 20 s−1. Further test with the

predicted homogeneous translocation rate distributions (PA
N (v) - dashed lines) are

clearly narrower than in experiments (Fig. 3.3B). The heterogeneous property is

quantified as the s.d. of the forward rate σk in the Table 3.2.

In case the backward rate is not negligible, we can use our exact equations

(Eqs. 3.1 and 3.3) in the analysis for heterogeneity We demonstrate an example by

analyzing the unwinding velocity of T4 helicases, and show in the inset of Fig. 3.3B.

Chakrabarti et al. showed that the backward rate is not negligible when the dsDNA

is present. They estimated that the backward rate increases to as much as ∼ 26%

of the total rates when T7 unwinds dsDNA under zero force conditions [23]. With

this information, and the observation that difference of the two rates is equal to the

averaged velocity (k+−k− = 238 nt/s), we estimated the forward and backward rates

of unwinding helicases reported in Fig. S10A of [16] as in Table 3.2e). With these

parameters, we computed the velocity distribution. If the system is homogeneous,

then PN(v) (Eq. 3.1) is predicted to be the dashed line, which is narrower than

the real data (blue dots). Fitting the exact Eq. 3.3 to the experimental data in

this case give us a larger value of σk compared to the case of translocation velocity

(Table 3.2e). This indicates that the presence of DNA increases the disorder in the

systems, which has been reported in experiments with UvrD helicases [114].
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Table 3.1: Helicase parameters for T7 helicase.
NDNA s < vdata > σ′vdata σvdata k+ k− σk

[23] [15] [15] Eq. 3.6 [23] [23]
(nt) (nt/step) (nt/s) (nt/s) (nt/s) (s−1) (s−1) (s−1)

a) 500 2 322 62 20 161.6 0.6 32± 15
b) 2800 2 320 44 8.6 161.6 0.6 22

Table 3.2: Helicase T4 gp41’s parameters. (a-d) are estimated parameters for translocation velocity analysis
– Fig. 3.3B and (e) is estimated parameters for unwinding velocity analysis – Fig. 3.3B inset.

NDNA s < vdata > σ′vdata σvdata k+ k− σk
Appen. C [16] [16] Eq. 3.6 Appen. C Appen. C

(nt) (nt/step) (nt/s) (nt/s) (nt/s) (s−1) (s−1) (s−1)
a) 231 1 314 83 – 334 20 87± 14
b) 231 2 314 83 29 157.7 0.7 41± 7
c) 231 3 314 83 36 104.73 0.06 26± 4
d) 231 4 314 83 42 78.505 0.005 18± 3
e) 231 1 238 21 – 366 128 103± 16
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3.4 Discussion

Based on a simple kinetic model, we have shown that the wide translocation-

velocity distributions of T7 and T4 helicases cannot arise from purely homogeneous

motors in which all motors have the same velocity with a small dispersion. We

built a theory based on the assumption that small differences in certain critical

components in the helicase molecules might cause the large dispersion in the velocity.

We modeled the heterogeneity by choosing the forward rates of different helicases

from a Gaussian distribution. The mean of the Gaussian was chosen to be the

forward rate obtained using analysis given in [23], and the s.d. σk required to explain

the data gives a measure of the heterogeneity. We also proposed a method to test

for heterogeneity in motors, which involves measuring the coefficient of variation of

the measured velocity distribution. It is a quick test that can be readily applied to

motors that rarely take backward steps.

3.4.1 Possible role of ATP hydrolysis in helicase heterogeneity

Mechanical movement of motors along a preferred direction is a consequence

of structural changes that occur as a result of ATP consumption. As a result, the

forward rates are larger than the backward rates in the absence of a resistive force.

Possibily that heterogeneous ATP hydrolysis rates creates the wide velocity distri-

butions observed in experiments. Indeed, we show that allowing for heterogeneity in

the forward rate of our simple model (which is linked to the effect of ATP hydrolysis)

is the only way of reconciling our theory with experimental data. Heterogeneity in
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the diffusion (essentially backward) rate does not contribute to broadening of the ve-

locity distribution, as shown in the Appendix C. Our theory therefore suggests that

the mechanisms of NTP/dNTP binding to the motors and hydrolysis possibly play a

significant role in the heterogeneity of helicases, which is supported by experimental

observations bellow. There is evidence that ATP-Mg binds to and sets the initial

state of RecBCD, which in turn controls the unwinding rate of the helicase [115].

The unwinding rate only changes if the ATP concentration is reset, which might

change the nature of ATP-Mg binding to the helicase. The idea that heterogeneity

originates from the variability of NTP/dNTP hydrolysis rates is also supported by

the chemo-mechanical kinetics of hexameric helicases like T7 and T4. There is evi-

dence to support a model where all six subunits of the helicase T7 coordinate their

chemo-mechanical activities and DNA binding. Only one subunit at a time can ac-

cept the incoming nucleotide, while the rest are nucleotide-bound and coordinated

with each other [123]. However, while the subunits are coordinated to translocate

along ssDNA, there are many possible kinetic pathways that the subunits might

follow depending on the initial conditions [124], each with its own rate. Increasing

the concentration of dTTP shifts the kinetic fluxes to the high-occupancy states,

and also increases the number of pathways [124]. This suggests that at saturating

dTTP, as in the experiments we analyzed, these multiple pathways might lead to

overall heterogeneity observed in the mobility of helicases. With some different ini-

tial conformations, or initial occupancy states, the motors can pass through different

mechanochemical pathways, leading to different stepping rates. A model with three

non-catalytic units in coarse-grained simulations for hexameric helicases [125] also
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shows the chance the motor can take backward steps, increasing the diversity in

the trajectories. Therefore, there is compelling evidence supporting our observation

that a model with only heterogeneity in forward rates is sufficient to explain the

wide velocity distributions of T7 and T4 helicases.

3.4.2 Static and dynamic heterogeneity and analogy to glasses

Though we have established that the behavior of T7 and T4 helicases as re-

vealed in their velocities must be heterogeneous, we have not discussed different

forms of heterogeneity. To illustrate the different forms of heterogeneity, we adopt

an energy landscape perspective. Examples of the expected trajectories of a homo-

geneous system, with a single dominant basion of attraction, is shown in Fig. 3.4a.

Fig. 3.4b–d shows trajectories from simulations to illustrate two fundamentally dif-

ferent forms of heterogeneity, both of which can lead to the broadening of the ve-

locity distributions. As shown in Fig. 3.4c, the slope of the position-time curve

of the motor might change within a single trajectory, indicating that the forward

rate has changed within the course of one trajectory. This phenomenon is classified

as dynamic disorder, when heterogeneity is recorded on the time scale of a single

trajectory [112]. In the extreme case when the forward rate changes very rapidly,

the overall behavior is averaged over the whole trajectory and results in annealed

disorder, which leads to the behavior similar to the homogeneous case shown in

Fig. 3.4b. In the other extreme limit, when the rate changes so slowly that within

the time scale of the experiment, each motor stays the same over a given trajectory,
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Figure 3.4: a–d: Examples of trajectories generated from KMC simu-
lations in different energy landscapes. A–D: Schematic of the folding
funnel for different scenarios in a–d.
a: homogeneous scenario – motors in each trajectories have the same
fixed stepping rates, corresponding to a common picture of energy land-
scape with a single smooth basin of attraction (A). b: annealed disorder
(similar behavior in trajectories to homogeneous scenario) – motors in
each trajectories changes the forward stepping rates in every 1 bind-
ing site. The rates changes so fast corresponding to small wiggles with
the barriers at the bottom of the funnel being small compared to kBT
(B). Each motor can pass through different states so fast, resulting in
an annealing effect. c: dynamic disorder – within a single trajectory,
each motor changes the stepping rate several times in the experimen-
tal time course. In this case, the energy landscape has several local
minima, (C) corresponding to several different functional folded states
(different conformations with different stepping rates). The barriers be-
tween the minima are higher than the previous case but still low enough
that the system can go through several of them within the time scale
of experiments. d: quenched disorder (also known as static disorder)
– each motor has fixed stepping rates within each trajectory, but dif-
ferent rates between different trajectories. The corresponding energy
landscape is (D) with several different local minima separated by high
barriers corresponding to several different functional folded states (with
different conformations). Within the experimental time scale, each mo-
tor is trapped in one single minimum. In this picture the motor cannot
change to another functional state, unless we dramatically change the
external condition (for example: temperature, ATP concentration, etc)
and “quench” the system again to another functional folded state.
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the heterogeneity arises purely out of different motors having intrinsically different

rates. This results in different trajectories with different slopes as in Fig. 3.4d. This

is an example of quenched or static disorder.

To obtain a better understanding of heterogeneity in proteins, analogies have

been drawn between heterogeneity in single protein molecules and the classical dy-

namic heterogeneity in the theory of glasses [113, 126, 127]. In this description, the

energy landscape of the protein is considered to have multiple minima. In some

cases, when the barrier between these minima are small compared to thermal en-

ergy, the folded protein essentially sees just one minimum in that energy funnel

and we have a homogeneous system with every motor functioning identically. This

case is very similar to the “classic” picture in Fig. 3.4A. Even if each minima (cor-

responding to slightly different functions) have low barriers, the system can easily

passes through those different states and we have annealed disorder in the system.

This scenario is also very close to the homogeneous case as the function is averaged

over the detailed conformations (simulations where motors have rates changing after

every binding site is shown in Fig. 3.4b). In other scenarios, the barriers between the

local minima are not negligible, and each folded state in each minimum has different

functional parameters (for example speed of translocation/unwinding of a helicase).

However, these barriers are not high enough and hence within the time scale of a

single experiment, the system is able to go through several different functional states

(Fig. 3.4C). In this case, we have dynamic disorder in the system (Fig. 3.4c). Fi-

nally, if the barriers between the conformations are high enough so that the system

is not able to jump back and forth to find different conformations with different
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functions (Fig. 3.4D), we have static (or quenched) disorder (Fig. 3.4d), similar to

a glassy system [126].

3.4.3 Dynamic disorder with changing rates and broad rate distribu-

tion can also explain a broad P (v)

We performed several Kinetic Monte Carlo (KMC) simulations in Fig. 3.5B–D

to illustrate the effects of dynamic disorder, the case when the forward stepping rate

of the system varies within the trajectories. Some trajectories in these simulations

are plotted in Fig. 3.4b–d. These are very simple models for dynamic disorder, and

did not account for all possible cases happen in reality, but they are capable of

telling us some important consequences of the dynamic disorder.

Firstly, we show that a wide velocity distribution of P (v) can be explained

not only by a static disorder, but also by a dynamic disorder. A simplified dynamic

disorder simulation in Fig. 3.5B has a similar distribution with the same width

(blue histogram) as we got in the static disorder simulation in Fig. 3.5A. The only

differences in the former compared to the latter are: the forward rate is changed

after the first Nd = 200 steps within each trajectory of N = 250 steps, and a wider

rate distribution (σk = 38 s−1) > 32 s−1). This suggests that simply looking at

the width of P (v), one cannot be able to distinguish between static and dynamic

disorder.

Secondly, in simulations reported in Fig. 3.5C, motors with the same param-

eters as in Table. 3.1a for T7 was performed. However, the forward rate changes at
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Figure 3.5: Static disorder vs dynamic disorder.
A: Comparision of approximate velocity distribution for the static disor-
der in the forward rate Eq. 3.4 (orange line) with a Kinetic Monte Carlo
simulation (blue histogram). The parameters are taken from T7 data
(Table 3.1a)), with the same s.d. for forward rate σk = 32 s−1 and the
forward rate does not change within each trajectory of N = 250 steps.
B: A same variance of P (v) can also be explained with another simpli-
fied dynamic disorder. The blue histogram shows a system with similar
parameters of T7 from the same Table 3.1a, but after 200 first binding
sites (Nd = 200 steps), the forward rate changes and the s.d. of forward
rates increases to σk = 38 s−1. C: Motors with annealed disorder behave
similar to the homogeneous case. The simulations performed for the
same system as in helicase T7, when the forward rate in each trajectory
changes every binding site. Although the s.d. of forward rate increases,
the width of P (v) stays the same. The only effect is that the moves of
the peak to a lower velocity. This is a consequence of the deviation from
Central Limit Theorem (N = 250 steps 6=∞). D: The more “dynamic”
the system is, the narrower P (v) is. KMC simulations (solid lines) of
simplified dynamic disorder model with σk = 32 s−1. The forward rate
changes in each trajectory after every Nd binding sites. When the sys-
tem changes the rate more frequently in each trajectory, P (v) becomes
narrower and reaches the annealed case (dark blue line) where there is
no difference in the width with the homogeneous system (dashed green
line).
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every binding sites. The rate is drawn from a Gaussian distribution with different

s.d. σk (same mean k+ = 161.6 s−1 as in T7 case). Here we can see that, as the s.d.

σk increases, the width of the distributions stays the same. The reason is that in

this case, the rates changes fast within each trajectory. As a result, there is only

one average rate, as the disorder is annealed. The only effect that we can see is that

the average velocity slightly moves to lower velocity, when the s.d. is very high.

Lastly, the main result is that even though with the same dispersion of stepping

rates (σk = 32 s−1), the width of P (v) increases as the number of binding sites that

the motor can take without changing the rate, Nd, increases. In the annealed disorder

limit when the rate changes very frequently (every binding site - Nd = 1 step), shown

in Fig. 3.5C and dark blue line in D, the width of P (v) is very similar to the width

of P (v) in the homogeneous case (the dashed green line). As Nd increases, the width

of P (v) increases (Fig. 3.5D). If the rate does not change Nd = 250 sites, which is

the measuring length of each trajectory N = NDNA
s

= 250 steps (dark green line) in

the experiment [15], we have a histogram with a similar width as for static disorder

PH,A
N (v) (Fig. 3.5A) (dashed orange line).

All in all, we come to a conclusion that: not only a static disorder model,

but also a dynamic disorder model can account for the same dispersion in P (v).

However, the dispersion of the rates, σk, obtained with the static disorder model is

always smaller than obtained with the dynamic disorder. Or, in other words, if we

assume a particular system is static disorder (which might not be true), the value

σk obtained using our model in this paper is the lowest bound of the true dispersion

of the forward rate. The σk value in this case might solve as an effective dispersion
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parameter of the system. This suggests to us an experimental set-up that can be

used to discern between static and dynamic disorder in molecular motors in the next

subsection.

3.4.4 A method to distinguish between static and dynamic hetero-

geneity in molecular motors from experimental data

We have demonstrated that there is heterogeneity in the translocation veloc-

ities of helicases T7 gp4 and T4 gp41, which cannot be accounted for by standard

fluctuation effects. In order to quantify the extent of heterogeneity using a single

parameter σk, we assumed that there is static disorder in the helicases. The value

of σk under the assumption of static disorder has an important physical meaning.

It is the “effective” dispersion of the forward as if the stepping rate of the motor

does not change within each molecule. Our estimation of σk is an under-estimate

of the actual dispersion of the rates. A large value of σk estimate in Eq. 3.3 would

therefore indicate the presence of heterogeneity.

However, as shown in the previous section (Fig. 3.5B), a model with dynamic

disorder could also explain the experimental P (v). As noted before, this requires a

single motor to change the stepping rate. In addition, it becomes necessary to choose

a large value of σk. Therefore, if P (v) is measured at only one value of NDNA, it is

not possible to distinguish between static and dynamic disorder. Here, we suggest

a new extension of currently used experimental procedures, to distinguish between

these two types of disorders in any motor.
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Figure 3.6: A method to distinguish between static and dynamic hetero-
geneities in helicases.
(A) KMC simulations for velocity distributions, P (v), measured as a
funtion of traversed binding sites, N = NDNA

s
. In these simulations, the

forward stepping rate changes every 250 binding sites. The forward rates
are drawn from a Gaussian distribution N(161.6,32) s−1. Backward rate
is 0.6 s−1, which is the same as in T7 (Table 3.1A). (B) The variation of
the effective s.d. of forward rate, σEk , on N . Inset: Same graph but with
a smaller scale for a better visualization of the static disorder regime.

The velocity distribution of a motor should be measured on different lengths

of the same type of DNA or RNA (different N = NDNA
s

). Each velocity distribution

PN(v) can subsequently be analyzed using our model with the assumption that there

is only static disorder, and the values of σk can be extracted for each distribution.

If a particular system has static disorder in reality, the values of σk ≡ σ∗k (σ∗k – true

dispersion) should not change with length N . However, if dynamic disorder in any

form is in play, the value of σk should be smaller than the actual value σk < σ∗k. As

a result, as N increases, the disorder is likely to be dynamic, resulting in smaller

σk values. Hence, by plotting σk versus N , it should be possible to distinguish

static from dynamic disorder. To illustrate this method, Fig. 3.6A shows histograms

of KMC simulations of a simplified motor exhibiting dynamic disorder. All the
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parameters are obtained from T7 as listed in Table 3.1a), but the forward stepping

rates in each trajectory can change every time the motors travels Nd =250 steps.

Each velocity distribution is derived for different N values. We can see that for N =

100, 150, 250 steps, within each trajectory the motors does not change the stepping

rate, so we have static disorder. As expected, the extracted σk values are the same

in all 3 cases and close to the actual σ∗k = 32 s−1 used to simulate the distribution

(purple regime in Fig. 3.6B inset). Once the number of steps in each trajectory

increases, the dynamic disorder increases. Although using the same generated σ∗k =

32 s−1 in the simulations, the effective σk gets progressively smaller, indicating a

transition to the dynamic disorder regime (light green regime in Fig. 3.6B inset).

We expect to see the static regime in real helicase systems of PN(v) for small N and

dynamic regime if N is large. Such a transition assumes that the forward stepping

rate changes stochastically, an assumption that requires experimental support.

For T7 helicases a bootstrap analysis shows that σk = 22 s−1 for P (v) of

NDNA = 28 000 nt trajectories falls within the error range of σk = 32 ± 15 s−1 for

P (v) of NDNA = 500 nt trajectories (Table 3.1). This suggests that T7 helicases

exhibit static disorder. However, we could draw a more concrete conclusion about

the type of disorder if we could estimate the error in σk more percisely. In addition,

measurement of P (v) for different NDNA values is a way to verify our predictions.

We hope that such experiments are performed in the future, in order to better

understand the nature of heterogeneity in helicases.
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Chapter 4: Atomic Interactions in Kinesin Docking Process Reveal

Similarity in the Neck Linker Docking in Different Ki-

nesin Families

4.1 Introduction and overview

Conventional kinesin motors, discovered in 1985 [64] and classified as Kinesin-

1 [2]), are possibly the smallest motors. They function as dimers carrying cargo by

walking on microtubules (MT). Each protein consists of ∼800 amino acids including

a head domain with ∼340 amino acids [128]. Two motor heads, labeled as LH

(leading head) and TH (trailing head) in Fig. 4.1, are connected by a coiled coil

made of 2 α-helical stalks (Fig. 4.1A). These motors transport cargos bound to the

tip of the coiled coil helix as they walk predominantly on a single protofilament of

the MT from the minus to the plus end [129,130]. The structural basis of how these

tiny motors utilize chemical energy from ATP to generate forces has been extensively

studied, although fundamental questions still remain. The key region of a 13-amino-

acid connecting the motor head (MH) and the α-helix stalk, referred to as the neck

linker (NL), plays a vital role in the mobility of kinesin. The structural change of the

NL during the ATP cycle shows that, upon ATP binding to the leading head, the
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NL goes a transition from a disordered (freely moving) state to an ordered (bound

to the MH) state [70]. This docking process of the NL is sometimes refered to as a

“power stroke”, which helps to propel the rear head forward, initiates the stepping

process (first stage in Fig. 4.1B). Furthermore, the disorder-order transition of the

NL is a key factor in lowering the possibility that kinesin takes side steps [130].

Hwang, Lang and Karplus provided insights into the docking process of the

NL [133] using Molecular Dynamics (MD) simulations. They showed that the NL

tends to form a β-sheet with the 9-amino-acid cover strand (CS) in the N-terminal of

the head (colored in red and yellow in crystal structures in Fig. 4.3). They suggested

that the resulting Cover-Neck Bundle (CNB) induces a conformational bias that

forces the NL into the binding pocket of the core motor head by a hinge-like action.

This conformational bias might stablize the CNB by a free energy gain greater than

the amount of 3 kJ/mol [134] compared to the NL docking alone. The additional

gain in stablility could partially account for the estimate of the required energy

of ∼25 kJ/mol that kinesin needs in tranversing a single step [76]. Subsequently,

several experimental papers supported the importance of the CNB formation in

different kinesin families [21,22,135–138].

Hwang et al. also proposed a model for structural changes that occur upon NL

docking as a consequence ATP binding to the LH. At the beginning of the docking

process, the CS is free. After ATP binding to the LH, the helix α6, which connects

directly with NL, and α4, which belongs to the SWII cluster and lies in the MT

binding interface, change their positions. They suggest that before ATP binding,

the α4 is too closed to the α6, blocks right at the end of the α6, thus unwinds a part
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Figure 4.1: Kinesin-1 structure (A) and its stepping process (B).
A: Model for the structure of Kinesin heavy chain (KHC) known as
conventional kinesin, consisting of 2 proteins (red and blue) with a tail
connected to a cargo. The two heads are bound to a microtuble at a
stage right before docking. The NL of the LH points backwards towards
the minus end of the MT in this state. The figure is not to scale. B: A
kinesin’s step is believed to start with a disorder-order transition of the
NL (dark black arrow), followed by a diffusive search of the TH (grey
arrow), and finished by a microtubule capture of the TH to the next
binding site (red arrow). During the whole process, the LH is tightly
bound to the MT [130, 131]. Figure is adopted from Zhang et al [130]
(with permission) with the NLs in yellow. A single step is completed
with a life time of 50µs [132].
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of α6 which connects directly to the NL, inhibiting the NL to be forward. Upon

ATP binding, the relative positions of α6 and α4 change: the α6 raised up so that

α4 is out of its end and α6 can form an extra turn and bring the NL to interact with

the core and dock to the front. This opens the “docking pocket”, bringing the NL in

contact with the CS, enabling it to dock back to the binding site. Thus, the power

stroke is guided by this mechanism refered to as “ATP gating” (see Chap. 1). At the

atomic level, the “docking pocket” lies between Ile9 at the end of the CS and Leu268

at the C terminal of the α4 helix. The pocket has to be opened to create a cavity,

allowing the first residue of the NL (Ile325) to be buried, bringing the NL in contact

with the CS [19, 41, 71, 73] (In Fig. 4.2, the alignment between 1BG2 structure and

our structure at the beginning of our simulations shows that, α4 at the beginning of

our simulation (dark blue helix) is clearly lower than in 1BG2 structure(light blue

helix). Thus, residue Ile325 of α6 is allowed to be buried between residues Ile9 of

the CS and Leu268 of the α4 (right box Fig. 4.2), whereas part of the α6 is unwound

and the residue Ile325 is protruded away outside of the closed cleft between Ile9 and

Leu268 (left box Fig. 4.2).) Although there are agreements about the link between

NL dockings and ATP gatings, a clear picture of the NL docking process with the

CNB formation at the molecular level has not been well established.

Detailed conformational changes that the NL undergoes from a disordered

to an ordered state are not yet fully established at the molecular level. The NL

is small (only 13 amino acids), which means atomically MD detailed simulations

could be useful in yielding insights into some aspects of the docking process. The

processivity of Kinesin-1 (∼100 steps before detaching from the MT [14, 139]) is
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Figure 4.2: Closed (left) vs open (open) “docking pocket” of a Kinesin-
1 in crystal structure 1BG2 with a “disorder” NL [17] (left) vs at the
beginning of our simulation (right).
Kinesin-1 in our simulation is in darker colors, compared to 1BG2 struc-
ture. Residues Ile 9 (CS), Ile325 (NL), and Leu 268 (α4) are represented
as balls. Bellow: Alignment of the two structures showing the difference
of α4 (blue, lighter in 1BG2, darker in our simulation) and α6 (green,
again, lighter in 1BG2, darker in our simulation) relative positions. In
all figures, parts of the CSs of both structures has been truncated for
better visualizations.
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accomplished by a very short stepping time, compared to the dwell time. Thus,

the actual time one of the motor heads remains detached from the MT is very

short compared to the time the two heads are bound. In particular, Kinesin-1 takes

∼100 steps every second [8, 9, 140] under zero load, leading to a dwell time in the

range of 10 ms. However, the life time for the detached state of the TH during

one step is ∼ 50µs [132]. Thus, the docking process is even faster (∼ 20µs [141]).

Unfortunately, with the time window of a few µs, the docking process is too fast

to be directly measured in experiments, and too slow to be simulated in atomically

detailed MD simulation.

In this study, we provide, for the first time to our knowledge, a comprehensive

atomically detailed view of the docking process in kinesin in order to gain insights

into the movements of the NL and the CS during the process. In order to do so,

we need to start with a conformation of a motor head as it is in the leading head

(LH) position right before the kinesin takes a step (the red head in Fig. 4.1A). In

such a conformation, the NL is undocked and pointed backwards (light pink) as

it connects to the coiled coil stalk and the NL of the trailing head (TH – blue)

attached to the MT. However, crystal structures describing such a waiting state are

not available. All the crystal structures with a clear ordered NL were captured in

an “ATP-like state”, which is believed to be the state of LH after docking. Note

that, such conformations were observed with either ATP analogues or ADP bound

to the head when it is not bound to the MT [69,70,142].

To create the conformation of the LH right before docking occurs, we pulled

the NL of an ATP-like state structure (pdb 1MKJ [69]) completely backwards by
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β9	 β10	

+	-	

Figure 4.3: X-ray crystal structure of kinesin with pulling directions of
the neck-pulling simulations.
A: 2KIN crystal structure with five pulling directions performed in
Hwang’s paper [133] (The figure is adopted from their paper with per-
missions from the journal) B: 1MKJ crystal structure with a backward
pulling direction (green arrow) we performed to get a more realistic start-
ing conformation for docking simulation. CS (red), NL (orange), α4
(blue) and anchored atoms (brown sphere) in MT binding domains are
colored similarly to those in the reference paper.

180 ◦. Note that the direction of the applied force here is different from the upward

or partially upward applied forces used previously (Fig. 4.3). Starting from an ATP-

like state ensures the “docking pocket” is open at the beginning of the simulation,

open the “ATP gate” (Fig. 4.2). The pulled conformations were allowed to relax,

in order to observe whether or not the docking process spontaneously occurs, as in

experiments (for details, see the Methods section).

With the help of the resources made available through the Anton supercom-

puter, we were able to partially overcome the time scale limitation, allowing us to

observe the NL docking process in one µs simulation. This allowed us to analyze

the interactions of the NL and CS with the other residues in the head. The main

results are: (i) the NL interacts with the domains in the back at the beginning of

the docking process by interactions between hydrophobic residues; (ii) interactions
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with the CS enable the NL to dock; (iii) the NL can form an extra turn and be-

come an extended alpha helix of α6, resulting in shortening of the NL when the

tension is low; (iv) NL docks to a new binding site adjacent to the MT-binding site,

which is distinct from the conformation observed in crystal structures. Using these

observation, we suggest some additional roles of NL during the stepping of kinesin

(Fig. 4.1B).

4.2 Methods

4.2.1 All atomic molecular simulations

We deleted the coordinates of the α7, which is the N-terminus of the coiled coil

connected with β10 of the NL, from the ATP-like crystal structure 1MKJ of human

Kinesin-1 motor domain [69] to reduce the system size. We added the coordinates

of the L11 loop, which is a missing loop for the MT binding pocket. The system is

equilibrated and solvated in explicit water. We then performed pulling simulations

to prepare an initial conformation (Table 4.1a)). A constant force (460 pN) was

applied to the last atom of the NL, and we adopted the same constraints applied to

Cα atoms in the MT binding domain (AA 142-145, AA 273-281, AA 238 and AA

255) as in the previous study [133]. The pulling direction for the NL was chosen to

be the direction from N338 Cα to T334 Cα, pointing backward, along the direction

of β10 of the NL (Fig. 4.3). The simulations were performed using NAMD version

2.9 [143] with the CHARMM27 (CHARMM22+CMAP) force field [144] at 310K

until the NL was completely undocked and pointing backward, as expected before
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Table 4.1: Setups of the simulations done in the project. The MHs are represented
as circles. The NLs are lines. The tubulins are rectangles. The arrow shows the
relative direction of the applied force.

	 Starting	conformation	 Simulation	time	 Results	 Note	
a)	

- +	

Until	the	NL	
completely	
rearward	

Got	the	initial	
conformation	for	b)	

and	c)	

Fig.	4.2	

b)	

- +	

1μs	 See	main	results	in	
the	main	text	

Fig.s	4.5,	4.6,	
4.7,	4.8,	4.10,	
4.11,	4.12	

c)	

- +	

10ns	 Confirm	the	NL3	
conformation	

during	the	stage	I	

Data	not	
shown	

d)	

- +	

10ns	 Confirm	the	NL3	
conformation	

during	the	stage	I	

Data	not	
shown	

e)	

- +	

10ns	 Confirm	the	NL3	
conformation	

during	the	stage	I	

Data	not	
shown	

f)	

- +	

1μs	 NL	becomes	an	
extension	of	α6	

Fig.	4.9	

g)	

- +	

10ns	 NL2	conformation	is	
stable	within	the	

time	scale	

Fig.s	4.13,	
4.14	

	

the docking process.

Starting with the NL that is completely pointed rearward, we solvated it in

a 96 Å x 96 Å x 96 Å explicit water box, added salt NaCl to a concentration of

0.15 mol/L and neutralized the system. The system has a total of 83377 atoms. We

observed the time evolution for 1 µs (Table 4.1b)) after releasing the force. Thus,

our model probes unbiased dynamics of the docking process. The main results
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from the simulations are presented in this chapter. Similar set-ups have been run

also on clusters (Deepthought1 in UMD), each for a much shorter time scale: 10 ns

(Table 4.1c))

When we carried out this work, the Kinesin-MT complex structure was not

available. So we created the MT-Kin structure by aligning the main head with the

bovine tubulin crystal structure 1JFF [145] using the complex structure 2P4N [146].

For the 1µs simulation with the rearward pointing NL, after fully solvating the

system with the added salt, the system with 116031 atoms was simulated on the

Anton supercomputer (Table 4.1f)) and other supercomputing clusters (Table 4.1g)).

We also adopted Kinesin dimer structures and kinesin dimer-bound MT structures

that had been built in a previous work in the group [147] to conduct several 10 ns

simulations on clusters (Table 4.1d) and e)).

4.2.2 Data analysis

Correlation functions (Fig. 4.5A) were used to analyze the NL motion and

orientation. Running averages of various quantities were followed to show the evo-

lution of the process over time. We defined a unit vector ~̂u along the direction of the

NL, from Cα of residue 337 to Cα atom of residue 325, throughout the simulation,

~̂u =
~rC325

α
− ~rC337

α

|~rC325
α
− ~rC337

α
|
. (4.1)

Let ~̂u0 be the same unit vector in the docked state from the crystal structure (See

diagram in Fig. 4.4). If the NL is fully docked, the product

fNL(t)−NL0 = ~̂u. ~̂u0 (4.2)
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is equal to one and when the NL is pointing rearward as in the starting conformation

of our simulation, ~̂u(t = 0). ~̂u0 = −1. Ideally, fNL should be averaged over multiple

trajectories to draw statistically meaningful conclusions.

Figure 4.4: A diagram of unit vectors that used to quantify the orienta-
tion of the head.
Here the unit vector of NL ~̂u(t = 0) is opposite to the unit vector of NL

~̂u0 in the crystal structure. The LH is shown in pink and NL is in orange
as in Fig. 4.1.

The running time average function (Fig. 4.5B) is defined as

f̄NL(t)−NL0 =
1

t

∫ t

0

fNL(s)−NL0ds. (4.3)

Similar functions fCS(t)−CS0 and f̄CS(t)−CS0 were also calculated for CS with a

unit vector ~̂v =
~r
C1
α
−~r

C9
α

|~r
C1
α
−~r

C9
α
| . We also quantitate the relative orientation between the NL

and the CS at a particular time by calculating fNL(t)−CS(t) = ~̂u.~̂v and f̄NL(t)−CS(t) =

1
t

∫ t
0
fNL(s)−CS(s)ds.

Fig. 4.8 shows the main interactions that the NL and CS have during the three

different stages. Hydrogen bond interactions are assigned between residues if the

distance between the donor atom and the acceptor atom is smaller than 3 Å and

the angle D-H-A is smaller than 20 degrees. Hydrophobic interactions are assigned

to any two hydrophobic residues that are within a distance cutoff of 3 Å.

76



Table 4.2 shows the list of PDB structures used in this work. The structure

alignments between different structures were performed using MultiSeq [148] within

VMD [149]. Graphs are rendered using Tachyon [150].
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Table 4.2: Table of crystal structures used in this work.
pdb ID NL conformation appeared in reference note NT state

K1 1BG2 disorder Fig. 4.2 Kull1996 [17] crystal structure ADP bound
K1 2KIN NL1 Fig. 4.3 Sack1997 [67] crystal structure ADP bound
K1 1MKJ NL1 Fig. 4.7 sindelar2002 [69] crystal structure ADP bound
K5 1II6 NL3 Fig. 4.15 Turner2001 [20] crystal structure ADP bound
K5-MT 4AQW NL3 Fig. 4.16 Goulet2012 [21] Fitting of 1II6 and

3HQD with EM
rigor (no NT)

K5-MT 4CK7 NL2 Fig. 4.17 Goulet2014 [22] pseudo atomic struc-
ture fitting with EM

ADP.AlFX bound
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4.3 Results

A

B

f=
<

u
(t

).
u
 > 0

^
^

fl

Stage	I		Stage	II																									Stage	III

t (ns)

Figure 4.5: Angle correlation functions (A – Eq. 4.2) and running aver-
age functions (B – Eq. 4.3) of directions of NL (red line), CS (blue line)
(u(t)) vs the docked directions in the original crystal structure (u0) and
between NL and CS (green line) during 1 µs simulation.
Changing of NL’s functions (red line) from around -1 to +1 shows the
docking process. The close to 1 value of the correlation between the NL
and CS (green line) in the middle of the simulation shows the CNB did
form for a short time. Dashed lines divide the trajectory into 3 main
stages. See the text for details.
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Figure 4.6: Distance between the residue A3370 at the crystal structure
(1MKJ) and the same residue A337(t) along the simulation (A337 is the
position where the force was applied at during the initial simulation –
see Fig. 4.3).
The vertical gray lines separate the three main stages as in Fig. 4.5. The
red dashed line is the averaged distance during the stage III (21.9 Å).
The distance does not reach zero at the end of our simulation, indicating
that the NL does not come back to the binding pocket as observed in
the crystal structure.

80



CS
NL

SWII cluster

α6
β-domain

Kinesin-1

1MKJ
+-

8
o

+-

E

L13

+- - +

NL3
β1c

α6 A

NL2

CB

NL1

NL2
+-

D E

L12

L8

L13

-

Figure 4.7: Three snapshots from the 1 µs simulation representing the three main stages.
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Continuing caption of Fig. 4.7 A: Stage I, where the NL mainly interacts
with the α6 and the β1-domain in the back region of the head while the
CS is “free”. The residues that interact with the NL during this stage
(Stage I in Fig. 4.8) are shown as a purple surf surface. Caption is
continue on the next page. B: In stage II, the CS interacts with the NL,
facilitating its motion forward. The CNB is formed between the β10
and the CS, and the docking process starts. The NL starts to form an
extra turn at the end of the α6. C: In stage III, the CNB is disengaged.
The NL points forward but moves down to interact with the residues
adjacent to the MT-binding site. The residues that interact with the NL
during this stage (Stage III in Fig. 4.8) are shown as a blue surf surface.
D: Comparision of a snapshot in stage III with the crystal structure
(1MKJ – lighter colors) shows the difference between the two docking
conformations of NL and CS. We call the NL-CS conformations in the
crystal structure NL1, in the stage III of our simulation NL2, and in the
stage I of our simulation NL3. E: Same as D but rotated 90◦, showing
an 8◦ tilted of α4 at the end of the simulation compared to the 1MKJ
structure.

We successfully observed the docking process of the NL, which starting from

a rearward direction, orients itself toward the plus end direction of the MT within

the duration of the simulation (1µs – Table 4.1b)). Fig. 4.5A shows the correlations

between the directions of the NL and the CS with the original directions and the

correlations between each other (see the Method sections for details). Fig. 4.5B

shows the average of the correlations over the trajectory. The quantity of fNL(t)−NL0

change from -1 at the beginning of the simulation to 1 at the end, showing that

the orientation of the NL changes from the rearward direction towards the plus

end direction during the whole course of the simulation. However, the NL does

not come back to the binding pocket as observed in the original crystal structure

(Fig. 4.6). (We refer to this NL conformation observed in crystal structures as NL1,

to distinguish with other conformations that we see in our simulation.) Based on

the evolution of the functions and the distance along the trajectory, we divide the
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Figure 4.8: Interactions of the NL and CS highlighting the key residues
are in contact during the three corresponding docking stages in Fig. 4.5
and 4.7.
Residues on NL (orange), CS (red), α6 (green), α4 (blue), β1-domain
(purple) are colored similarly as in Fig. 4.7. Thick orange lines: back-
bone hydrogen bonds. Dashed orange lines: salt bridge between polar
side chains, or hydrogen bond between polar side chain and backbone hy-
drogen or oxygen. Blue lines: hydrophobic contact between side chains.
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docking process of the NL into 3 stages (dashed lines in Fig. 4.5 and Fig. 4.7) and

analyze the main interactions with the NL during each stage using the contact-map

(Fig. 4.8).

Stage I: NL is “trapped rearward” by β1-domain and α6. In the crys-

tal structure of kinesin, other than the eight-stranded antiparallel β-sheet located

at the center of the head, there is a smaller antiparallel β-sheet composed of 3 short

strands (β1a, β1b and β1c, closed to the N-terminal) located at the rear of the head

named β1-domain (Fig. 4.7). Interestingly, at the start of the simulation, the NL

docking does not happen immediately. Instead, it is“trapped” by this β1-domain

for about 130ns (Fig. 4.7A). We refer to this as stage I and the conformation of the

NL as NL3. The residues that trap the NL by strong interactions, thus preventing

it from directly redocking, are located in the β1-domain and α6. They are shown in

the interaction-map (Stage I in Fig. 4.8) and presented as a purple surf pocket in

Fig. 4.7A. During this stage, the CS is completely disordered and does not interact

with the NL.

We performed several other simulations starting from the same conformation

for a shorter time scale (10 ns – Table 4.1c)). Within that time scale, none of the

simulations show the NL moving forward, but the interactions between the NL and

the β1-domain and the α6 are stable (data not shown). These interactions also

exist in our other all-atom simulations for 10 ns with two heads and two heads-MT

(Table 4.1d) and e)). Experiments indicate that the flexible NL interacts with the

β1-domain during its undocked state in Kinesin-1 and Kinesin-3 [74], and Kinesin-5

(discuss further in the Discussions), thus suggesting that this is a common mecha-
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Time t(ns) Time t(ns)

Figure 4.9: Hydrophobic interactions between the NL and the β1-domain
during the first 250ns.
A: Distance between the donor and the acceptor of the key H-bonds
in the interactions. B: Counting average number of water molecules in
contact with β1-domain every 1 ns. The NL is latched by the 2 residues
N332 and E334. There is a peak where NL is moving far away (at ∼20
ns) but then being trapped again (at ∼100ns) until completely apart
from the β1-domain with the help of CS after 130 ns.

nism within kinesin families.

Among the interactions between the NL and the β1-domain, the most impor-

tant are the H-bonds between K44 in the beta domain, and N332 and E334 in the

NL. Fig. 4.9A shows that the H-bonds disrupted after some period of time at the

beginning, but reform (at around 100ns) when the distance between donor and ac-

ceptor becomes less than 3 Å (the green line). The number of water molecules within

3.5 Å of the β1-domain decreased by 10 molecules during the time ∼40-70 ns (Fig.

4.9B). In other words, the NL was drawn back to the β1-domain by the hydrophobic

effect, and then formed H-bonds, during the first stage of our simulation.

Stage II: The CS helps to disrupt NL – β1-domain interactions and

α6 forms an extra turn. After the interactions of the NL with the β1-domain are
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disrupted by fluctuations, the NL is oriented forwardly with the Cover-Neck-Bundle

formation (Fig. 4.5). There are a number of hydrophobic interactions between the

NL and CS. However, all of them are between the CS and the β10 (Fig. 4.7B),

instead of the β9 as appeared in crystal structures (Fig. 4.3B). These contacts are

not strong and the stability of the CNB is compromised.

In the simulation, the CS interacts with the β10, instead of the β9 because

the NL was shortened when some hydrogen bonds (orange solid lines in Stage II in

Fig. 4.8) started to form between the residues at the N-terminal of the neck with

the other residues at the end of α6 (Fig. 4.7B). This indicates that α6 has an extra

turn. Moreover, the NL is even shorter when the other C-terminal of the neck (T336,

E334) interacts with the middle residues of the CS (A5, L4) and the other residues

in the middle (C330, V331, V333) interact with the first end residue of α4 (L268)

(see Stage II in Fig. 4.8).

In another 1 µs simulation that we perform in presence of α and β tubulin

units, we observe the whole NL completely formed an extensive alpha helix of α6

(Table 4.1f) and Fig. 4.10). However, CHARMM27 (CHARMM22+CMAP) force

field and water TIP3P model are known to stabilize the helices [151]. So, in order to

testify the observation of the NL forming extra turn to α6, we perform a secondary

structure prediction using Jpred4 [18]. The result also shows the possibility that the

first half of the NL can form extra helix turns with the α6 (Fig. 4.11). Moreover,

based on EM and crystal structures, it is also shown that the α6 is extended when

the α4 change the position, opening the“docking pocket”, allowing the NL to dock

[19,75]. Thus we do not exclude the possibility of what we observe in our simulation
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Figure 4.10: A snapshot of another 1 µs simulation for MT-Kinesin com-
plex starting with a rearward pointing NL conformation (Table 4.1f)),
showing the NL quickly becomes the extension of the α6 helix. The CS
interacts with the NL during the time.

here showing that the α6 can be further extended in solutions if the interhead tension

is low.

Stage III: The NL docks in a new binding site adjacent to the MT

binding pocket. At t ∼ 500 ns, the hydrophobic interactions between the NL and

CS become unstable, the NL is captured near the MT-binding pocket which mainly

consists of SW-II cluster (We refer to this conformation as NL2 in Fig. 4.7C.) The

two most important residues of the NL that Hwang et al. mentioned as a latch in

the docking mechanism, E334 and N332, also contribute the most to the interactions
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Figure 4.11: JNet secondary structure prediction for sequence of the α6
and the NL of human Kinesin-1 using Jpred4 [18].
Helices are marked as red tubes, and sheets as green arrows. “jnetpred”
is the final prediction for the query, showing the prediction that the first
half of the NL can form a single helix with the α6.

in this stage (Stage III in Fig. 4.8). Notice, among the two residues that trapped

E334, R278 are associated with Switch II (SWII), and R161 is in the L8b loop. Both

are adjacent to the MT-binding domains. Such a conformation of the NL has not

been observed in any structures of Kinesin-1, but has been discovered in Kinesin-5

(see discussion section for details.)

The α4 helix, believed to be the “relay helix” of Kinesin [142], has a rela-

tive orientation with respect to the motor core links the “nucleotide cleft” and the

“docking pocket” about 15 Å apart (see the “seesaw model” in Chap. 1). This is

consistent with our observation that the noticeable differences between the 1MKJ

structure and our structure at the end of the simulation are the NL and CS confor-

mations (NL1 vs NL2 in Fig. 4.7D), coupled with an 8 ◦ tilt of the α4 (Fig. 4.7E).
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4.4 Discussion

We have investigated the kinesin NL docking process using atomically detailed

MD simulations and obtained several interesting results. The full movement of NL

docking with CNB formation was captured in a 1µs simulation. Some interactions

between the NL and the core were found that had not been previously observed in

crystal structures. The formation of CNB played a role in bringing the NL away

from the rear end, driving it toward the binding pocket. The NL can form alpha

helix, providing an extra turn for α6. Despite limitations of force fields and limited

simulation time scale, our simulations provided insights into the docking process,

such a structural transition known to be crucial to the stepping of kinesin.

A previous study from our group [130] showed that in a step of kinesin, after

NL docking, is completed by a random diffusion of the tethered head to find the

correct binding site (directed diffusion in Fig. 4.1B or process driven by rate k7 in

Fig. 4.18). It is suggested that the interaction between the MT binding site and MT

helps to orient the head into the correct direction. In this work, we showed that

the NL interacts with the β1-domain and α6 in the back, stabilized by hydrophobic

contacts in the first stage when the NL is pointing rearward. This suggests that

water molecules must play an important role indriving the NL to the region in

the back of the head and to orient the NL to the rearward position(orange box

in Fig. 4.18). This, in addition to the MT–Kinesin interactions at the interface

mentioned earlier, helps the head to orient correctly before it binds to the target

binding site, thus completing the step (last phase in Fig. 4.1B).
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The residues that interact with the NL during the stage III belong to L12, L13

and L8 loops (See Stage III in Fig. 4.8 for the list of residues and Fig. 4.7C to visualize

their positions in the structure). Among them, L12 belong to the SWII cluster,

which was observed to be directly in contact with the MT interface. Even though

L8 does not interact with the tubulin [74], it is close to the interface (Fig. 4.12).

Thus, there might be one possible reason that the absence of MT in the simulations

made the MT-binding pocket solvent exposed and attracted the NL, preventing it

from going back to the position in the crystal structure. In order to assess the role

of MT, we performed two additional simulations. We aligned the conformation of

Kinesin-1 at the end of the 1 µs simulation, with the crystal structure of 2 tubulin

units, and relaxed the system for 10ns (Table 4.1 g)). Even though the α4 helix is

shorter and L11 is longer in the simulations compared to the crystal structure of

Kinesin-1 obtained in complex with MT [19,71,73,74], the positions of SWII and L8

tips, viewed from the NL side, are similar to the actual crystal structure of Kinesin-

MT complex (Fig. 4.12). The NL in the NL2 conformation does not interact directly

with the tubulins. In both of the simulations, the NL conformations are stable (flat

red lines in Fig. 4.13A, B), even though the CS are disordered. This suggests that

the presence/absence of the MT does not affect the NL2 conformation.

We observed in our simulations that the CS is important in enabling the NL

to move forward and dock to the LH. However, CS interacts mainly with the second

strand of the NL (β10) in our simulation (Stage II in Fig. 4.8), instead of the initial

strand of the NL (β9) as in the crystal structure (Fig. 4.7D). In fact, when a core

head of Kinesin-1 is hybridized with a NL of Kinesin-5, the motor loses its motility.
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Figure 4.12: Comparing the structure of MT-Kinesin complex (dark
colors) with the NL2 conformation from the end of our 1µ s simulation
vs. the docked MT-Kinesin crystal structure 4HNA [19].
There are slight protrusions in of L12 and L8. However the NL does not
directly interact with the tubulins even in the NL2 conformation.

However, when a wild type core head and β9 strand of Kinesin-1 is attached to a NL

of Kinesin-5, the chimera restored motility [152]. There is also evidence of sequential

docking of the NL in Kinesin-3. Thus, it is crucial that the initial residues of NL and

β9 domain dock firstin order to form the “correct” docking conformation [153]. The

sequential docking is also highly coupled with the chemical ATP cycle. We argue

that in order for the NL to favor the docking conformation observed in the crystal

structure (NL1 conformation) the formation of interactions between the CS and the

β9 strand to form the CNB is crucial. In our simulations, we did not observe the

formation of these interactions, which is the reason why we could not observe the

NL1 conformation.
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Figure 4.13: NL2 conformation is stable within 10 ns in the MT-Kinesin
complex (Fig. 4.12).
Correlation (A and B) and Average running (C and D, respectively) of
the NL and CS obtained from two 10 ns-trajectory of the MT-Kinesin
complex with NL2 conformation (KinAB NL2 in Fig. 4.12).

The tension in the NL is estimated to be 12-15 pN [154, 155], which is larger

compared to the ∼6 pN stall force [25, 76]. The absence of the stalk and other

trailing head protein makes the NL in our simulation more flexible than it ought

to be. We believe that the enhanced flexibility of the NL is the reason it forms an

extra turn at the end of α6 in our simulations. We expect if the tension is large, the

NL could extend by stretching the α6 end to complete the step of 8 nm [156]. We

also expect that the tensionincreases the probability of forming the CNB between

the CS and the β9, thus reducing the probability that the NL adopts NL2-like
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Figure 4.14: Landscape of model of NL conformations.
Kinesin has three different docking conformations. Two conformations
NL1 as observed in the crystal structures and NL2 found in our simu-
lations are separated with conformation NL3 by a high barrier. A: In
solution, NL of a nucleotide bound motor head can interchange between
the conformation NL1 with a more favored conformation NL2. NL3

conformation can only easily be accessed with a high “unzipping” force,
or jumped out with the formation of CNB (see text for details) B: When
ATP is bound to the MT-bound head, the landscape is shifted and only
NL1 conformation is favored.

When the motor is in a complex with MT, a distinct NL1 conformation is

only observed with bound ATP. However, without MT, it was suggested that the

NL is “docked” in both the ATP analogues and ADP bound states [69, 70]. Ex-

periments support this idea. The FRET data shows that the NL undergoes a large

conformational change upon ATP binding on MT-bound Kinesin-1. However, the

FRET signal suggests that the NL is not rigidly fixed in the nucleotide binding
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states when the motor is in solution or weakly bound to MT [70]. The NL freely

exchanges between docked and disordered conformations when MTs are absent [69].

Our work suggest that Kinesin-1 NL can also adopt at least two intermediate states

(NL3 and NL2) beside the “docked” conformation in the crystal structure, similar

to Kinesin-5 (Fig. 4.14). It is likely that Kinesin-1 and Kinesin-5 use the same basic

mechanisms for force generation as shown below.

4.4.1 Similarity with Kinesin-5 mechanism

While Kinesin-1 carries cargo inside the cytoplasm of the axon of nerve cells

(axoplasm), Kinesin-5 (Eg5) walks and cross-links two antiparallel microtubules,

forming the bipolar spindle during mitosis [157,158]. The latter has become one of

the most studied member of the kinesin families, due to the potential to be a target

for anticancer drug development [159,160]. In fact, the number of crystal structures

available for Kinesin-5 has increased dramatically and exceeded the number of struc-

tures for Kinesin-1 [72]. The mitotic motor and the conventional kinesin share 40%

sequence similarity and have almost the same structure with some deviations in the

lengths of the loops and α helices [20]. It has been shown that these two processive

motors share several similar mechanisms. For instance, the MT bound head rotates

upon ATP binding in both Kinesin-1 and Kinesin-5 [21, 71]. The central β-sheets

get twisted along the nucleotide cycles in both the families [41,73,161]. By using our

simulations, we show that they also share similarities in the NL docking processes.

The first crystal structure of ADP bound Kinesin-5 revealed a conformation of

94



the NL that was not observed before in Kinesin-1. Interestingly, in that structure,

the NL interacts with the β1-domain in the back of the head as we observed during

stage I in our simulation (Fig. 4.15). Even the two conserved residues but not in

other families that mainly interact with the NL in the Kinesin-5 crystal structure

(shown as black) are in the same position with the residues that mainly interact with

the NL in our simulation (shown as purple). This conformation of the NL is further

supported by conclusions reached in previous works [21]. The pseudo-atomic model

fitting the 1II6 structure [20] into the EM data shows a similar NL conformation [21]

(Fig. 4.16). Site specific gold labels in that study confirm that the NL during the

rigor conformation (before ATP bound state) orients towards the minus end.

There is also evidence of the CS supporting the NL during the docking process

in Kinesin-5 [21,22,136,138]. This is consistent with what we see in our simulation

during stage II. With the assistance of CS, the NL can escape more easily from the

interactions with the β1-domain, leading to docking to the LH.

It is also suggested that the NL of Kinesin-5 is in equilibrium between two

discrete orientations, one is the docked position (similar to the NL1 conformation),

and the other is adjacent to that position, before ATP binding [13,22] (correspond-

ing to the process driven by k2 and k−2 rates in the purple box in Fig. 4.18). The

kinetic results suggest that before ATP binding, equilibrium actualy favors the sec-

ond conformation of the NL. Other experiments also suggest that the NL is still

oriented toward the plus-end after ATP hydrolysis [21] (green box in Fig. 4.18).

This implies that ATP binding simply redistributes the equilibrium between the

two NL conformations to favor only the docked conformation observed in crystal
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Figure 4.15: Comparing the structure of Kinesin-1 (darker colors) during
stage I in our simulation (NL3 conformation) with Kinesin-5 structure
[20].
The snapshot shows similar conformations on the NLs. Two black beads
are the two conserved residues found only in the Kinesin-5 family that
interact with the NL in the in the 1II6 structure. The residues that
interact with the NL in our simulations (Fig. 4.8 and 4.7A) during stage
I are in dark purple. The main domains are colored as in Fig. 4.7.
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Figure 4.16: Similar NL conformations between the structure of Kinesin-
1 (darker colors) during stage I in our simulation (NL3 conformation)
with Kinesin-5 pseudo-atomic model [21] obtained by fitting the 1II6
structure [20] into EM data.
The main domains are colored as in Fig. 4.7.
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structures (Fig. 4.14). The second docking conformation has not been observed in

crystal structures. We suggest that this conformation is the NL2 conformation in

stage III, where the NL interacts with the residues close to the MT binding site.

Indeed, a snapshot of the NL2 conformation in our simulation shows a similar ar-

rangement with the pseudo-atomic models of disconnected NL conformation in the

ATP hydrolysis transition state reported for Kinesin-5 elsewhere [22] (Fig. 4.17).

Several FRET studies provided insights into the mechanochemitry of K1 and

K5 [11, 13]. In one of the experimental set-up, Kinesin-1 [11] and Kinesin-5 [13]

were labeled with AEDANS at the tip of the NLs. These AEDANS probes can be

excited by FRET from the MT tryptophans. The value of R0, the Forster critical

energy transfer distance between tryptophan and AEDANS has been measured to

be 20.3 − 21.0 Å [11]. That means, in order to obtain FRET signals, the NL that

contains the FRET acceptor has to remain close within 20 Å to the tryptophan-

donors in the MT most of the time. Or in other words, the NLs of both families

tend to be adjacent to the MT surface as in the conformation NL2, instead of more

than 20 Å apart from the MT as in the conformation NL1.

Moreover, another experiment measured the FRET distances between MT-

bound Oregon Green 488-taxol and NL-attached QSY7 maleimide for both monomeric

K-1 and K-5 (Table three in [13]). It was shown that for Kinesin-1, the mean dis-

tance between the tip of the NL and the MT is 37.7 Å in the rigor state (no NT

bound) and 56.9 Å in the ATP state (AMPPNP bound). This means that once the

ATP binds, the tip of the NL is moved more than 20 Å apart from the position be-

fore ATP binding, and about 20 Å farther from the MT. This is consistent with the
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mean distance 21.9 Å difference between the residue A337 of the NL in the NL2 and

NL1 conformations (Fig. 4.6). Also, the NL is more stable once the ATP binds to

the head (half-width distance, related to the s.d. of the distance distribution [162],

is smaller in the AMPPNP condition - 3.6 Å - than in the rigor condition - 1.2 Å)

in Table three of [13]). We infer from these results that before ATP binding, the

NL of a monomeric Kinesin-1 is in equilibrium between different NL conformations,

and spend most of the time in the NL2 conformation (purple box in Fig. 4.18).

The ATP binding will shift the energy landscape to favor only NL1 (2nd state in

Fig. 4.18).

Before our work, it was believed that the docking process in Kinesin-5 might

be very different from Kinesin-1, due to some conformations of NL observed in

Kinesin-5 [20, 22], but not in Kinesin-1. We believe that, the deviations in the two

families lie in the longer and less conserved NL in Kinesin-5, compared to Kinesin-

1. This increases the interactions and the mean life time of stage I and stage III

in Kinesin-5, making it easier to capture such conformations in crystal [20] or EM

structures [21,22]. Indeed, the whole NL docking rate is reported to be more than 10

times faster in Kinesin-1 than in Kinesin-5 (Table 4.3). Thus, the fact that we have

not observed such conformations in Kinesin-1 might mean that they are difficult to

detect in experiments.

Our work here is the first to report such new conformations in Kinesin-1.

Hence, we suggest that, other than working at different kinetic rates (Table 4.3),

Kinesin-5 and Kinesin-1 have very similar docking mechanisms, including how the

NL changes the conformation when it orients during the mechanochemical cycle. As
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Figure 4.17: Similar NL and CS conformations between a snapshot of
Kinesin-1 (darker colors) in stage III in our simulation (NL2 conforma-
tion) and the Kinesin-5 coordination reported in [22] with a “discon-
nected NL”.
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the motors in both families walk with a hand-over-hand mechanism, the NLs can

adopt 3 different conformations: interacting with the core beta sheet and pointed

towards the plus end of the MT (NL1 or often referred to as “docked” conformation),

interacting with residues next to the MT-binding site (NL2) and pointed towards

the plus end of the MT, and interacting with the β1-domain and pointed towards

the minus end of the MT (Fig. 4.7). As demonstrated in Fig. 4.18, the ATP cycle

starts with a conformation that occurs when the partner head is dissociated from

the MT, opening the “ATP gating” in the MT-bound leading head. The NL at

this stage, starting from the NL3 conformation, is in equilibrium between all 3

conformations (purple box in Fig. 4.18). With the help of the CS forming the

CNB with the NL, the NL3 conformation is less favored than the NL2 and NL1

conformations. Among those two latter conformations, FRET evidence suggested

that the equilibrium favors the NL2 the most, before ATP binding [13] (see again

Fig. 4.14). Our main 1µs simulation trajectory (Table 4.1b)) captures this state

in the cycle. After ATP binding to the Kinesin-MT complex, the NL is “zipped”

tightly to the core, only the NL1 is most favored. At this stage, this head has become

the trailing head. Following ATP hydrolysis, the NL is in equilibrium between two

conformations NL2 and NL1, probably favoring NL2 again (green box in Fig. 4.18)

and quickly dissociate from the MT once the orthophosphate is released. The NL

is still oriented towards the (+) end. After getting launched forward by the partner

head, the detached head has its NL pulled backward. This NL now is trapped at

the conformation NL3, which in turn, assists the formation of the head in correct

orientation to locate the next binding site on MT during the random-search-phase
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Table 4.3: Some reported kinetic rates (Fig. 4.18) measured in both Kinesin-1 and
Kinesin-5 at 20◦C from the same lab for comparisons [11–13].

Reaction Unit Kinesin-1 Kinesin-5
[11,12] [13]

NK docking s−1 800 62± 17
ATP binding to K-MT (k3) µM−1 s−1 4.9 1.1± 0.1
ATP dissociation from K-MT (k−3) s−1 105± 11 19± 9.6
ATP hydrolysis (k4) s−1 100 10.3± 0.3
ATP-induced dissociation (k5) s−1 60 6.3± 0.3

(orange box in Fig. 4.18). After ADP release, this head binds the MT tightly,

creates the tension in the NLs that prevent the next ATP binding, until the partner

head is disengaged from the MT once again, starting the new cycle. By changing

between the three conformations, the NLs regulate the mechanochemistry of the

heads to move processively forward. We expect both Kinesin-1 and Kinesin-5 share

this mechanism.
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Figure 4.18: General schematic pathway for stepping in K-1 and K-5.
The focused head is colored in solid red circle (striated circle) in the
states having high (low) MT affinity, accompanied by the partner head
colored in light blue. Tubulins are in dark grey rectangles. The NLs
are thick solid (dashed) lines when they are under high (low) tensions
or forces. Smaller boxes are details of the NL changing conformations
in the different NL “disordered” states. The docking process is shown
in the purple box. Some of the reported kinetic rates are summarized in
Table 4.3.
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Chapter 5: Conclusions

5.1 From stochastic discrete models for P (v) to simulations for detail

mechanisms of processive motors

Processive motors are a large class of molecular motors in cells which walk

on linear tracks in order to execute diverse functions. Many insights about their

dynamics and mechanisms have been revealed by current theories and experiments.

However, most of the attention is focused on mean values of observations, such

as their mean velocity and mean runlength. Dispersion in these observables are

poorly described, despite the fact that fluctuations are important. This dissertation

addresses that gap by providing general stochastic theories to investigate velocity

and runlength distributions of processive motors, which are in pronciple measure-

able. The theories provide quantitative insights about the workings of kinesins and

helicases, two examples of processive motors.

Our theory demonstrated that, when the processive motors can not take many

steps, which is likely the case when they are subjected to large resisting loads, ve-

locity distributions are not Gaussian. Exact equations for velocity distributions

and runlength distributions are obtained for several models (Table 1.4) and can be

104



used to analyze data when the motors are not “processive” enough for the Central

Limit Theorem to be valid. In Chap. 2, we validate the theory by fitting simul-

taneously our equations to the experimental data of P (v) and P (n) of Kinesin-1

at zero force, with a single fitting parameter – the detachment rate γ. The ex-

tracted value is in an agreement with the physical detachment rate of two headed

Kinesin-1, estimated from the detachment rates of independent heads measured in

experiments (Appendix B). The theory is used to predict P (v) of Kinesin-1 under

loads, which indeed deviate from Gaussian. A more surprising prediction is that,

the velocity distributions are bimodal, with two peaks separated on the positive and

negative velocity populations. The bimodality is a consequence of the discreteness

of Kinesin-1’s step-size. Our prediction awaits experimental validation.

Application of our theory to helicases in Chap. 3, we have shown that helicases

in superfamily IV are heterogeneous. To our knowledge, this demonstrated model is

the first quantitative test of heterogeneity. Although our theory for heterogeneous

systems is weaked by assuming static disorder, the theory works as an effective model

with the extracted value of the dispersion of the ATP driving forward stepping rate,

σk as a lower bound value. Moreover, based on our theory, we suggest single molecule

experiment to determine the type of disorder exist in the systems, static vs dynamic.

Note again that the theories here are general and can be applied to a broad general

class of processive motors.

Other than analytical theory, computations and simulations are powerful tools

to investigate complex systems. Chap. 4 demonstrates one example of using all

atomic simulations to investigate important process in mechanisms of kinesins: the
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neck-linker docking. The NL of kinesins is important in regulating communication

between the two heads. It is suggested that upon ATP binding to the leading

head, the NL change its conformations in a process called NL docking to generate

the required force to launch the trailing head forward. However, details of how

the NL change its conformations are not well understood, due to the difficulties

in directly visualizing it in experiments and the limitations of time scale in MD

simulations. We have overcome this limitation by using Anton supercomputer to

simulate atomic details of the NL docking process and reveal some interesting results.

Firstly, the simulation confirms the role of the Cover-Neck-Bundle that assist the

NL to orient forward. Secondly, in our simulations when the NL is free to move with

no tension, we observe the NL forms an extra turn for α6 helix. And thirdly, the NL

is observed to interact with different binding regions that have not been observed

in Kinesin-1 before, but captured in Kinesin-5’s structure. The work helps us to

better understand some commonalities among different superfamilies of kinesins.

5.2 T7 and T4 helicases exhibit heterogeneity, unlike Kinesin-1

To account for different experimental setups, the analytical models that have

been used to analyze data of kinesins and helicases are slightly different, but they

are indeed similar in the nature. Hence, it is interesting to draw some comparasions

in the biological workings of these two processive motors as the last remark of this

disertation.

While most helicases (RecBCD [115], T4 [16], T7 [15], UvrD [114], PcrA [83,
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116], AddAB [117]) seem to exhibit some levels of heterogeneity (quantitatively

tested for T4 and T7 helicases in Chap. 3), we had shown that K-1 does not exhibit

heterogeneity in Chap. 2 and [85]. A model where all K-1 molecules have identical

kinetic rates in moving forward was sufficient to explain the velocity distribution

at zero force. This difference is interesting, and could be a result of fundamentally

different mechanisms of nucleotide binding/hydrolysis in helicases and kinesins, or

could be a consequence of differences in the structure and environment of these

different motors.

In particular, the linear microtubule lattice that kinesins walk on, is stiffer than

the DNA/RNA track for helicases (persistence length of microtubules is 1.4 mm [163]

whereas that of dsDNA is about 50 nm [164]). Moreover, microtubules are poly-

mers made from tubulin dimers, so they are relatively homogeneous. However,

DNA/RNA strands have four different types of monomer blocks, making them

more heterogeneous. It was shown that motors are more likely to pause or stall

on a heterogeneous track, which could explain the overall heterogeneous behavior of

helicases [165].

The step-size of kinesin is also larger than in helicases. Kinesins walk in a

hand-over-hand manner on microtubules with a discrete step-size of 8.2 nm [38,129],

whereas the step-size of most helicases is an order of magnitude smaller (less than

1 nm [23]). Molecular heterogeneity in the track could result in large variations in

the velocities of individual helicases at smaller length scales. However, the variation

might simply get washed out at the larger length scale in the case of kinesins.

In addition, T7 and T4 helicases work as hexamers while conventional ki-
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nesins function as dimers. Therefore, T7 and T4 helicases have more ATP bind-

ing/hydrolysis sites than kinesins, leading to more possible states than the helicases

can adopt, increasing the diversity in the functions of the helicase population. While

kinesins work as dimers, its gating mechanisms are very accurate, which means the

two heads regulate each other very tightly. Even having two ATP binding sites in

two heads, no more than one binding site (in the apo MT-bound LH) is capable

to bind ATP at all time. However, the regulations among subunits of T7/T4 heli-

cases are not well understood, and the order of ATP binding in different possible

binding sites are not clear. There is evidence showing that T7 and T4 helicases

can form different oligomer states, including a crystal structure of a heptamer T7

helicases [166]. Hence, it is possible that different native structures of monomers

can come together to form different functional oligomer states of T7/T4 helicases.

These different functional oligomer states are called morpheeins [167]. Understand-

ing morpheeins are very important in understanding the structural basis of diseases,

allosteric regulations and drug developments.

5.3 Open questions for future work

Other than some predictions and observations that await confirmation from

experiments, our works here also open more questions for future studies. Some of

them are: How to quantitatively demonstrate the origins of heterogeneity within

helicases system? How will increasing numbers of ATP binding sites or lowering the

length scale increase the heterogeneity in the system? This question can be tackled
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by a discrete stochastic rate model that can accomplish also the ATP hydrolysis

rates and its effects to other observable quantities. Another question can be asked

is: What are the roles of heterogeneity and different morpheein forms in helicases?

More mathematical models developed to analyze more future single molecule exper-

imental data are needed to investigate this problem. Moreover, the heterogeneity

property is believed to be a general property of not only helicases, but also many

other molecular motors. Hence, solving this question will help us to understand an

important fundamental biological phenomenon of many molecular motors.

Other questions concerning on detail structural and dynamic mechanisms of

helicases are: What are the structures of those morpheein forms? What is the struc-

tural basis of different forward rates of helicases? In addition, after many decades

of studies, the detail mechanisms of stepping, slipping and pausing in helicases are

still not clear. The system size and time scale of these problems are too large for de-

tail all-atom simulations. Hence, the structural based tools, such as coarse-grained

simulations [?] and Elastic Netword Mode (or Normal Mode Analysis) [?] with the

advantage of a wider range of parameters are suitable to investigate these questions.

The current coarse-grained models are available for proteins, or DNA/RNA sepa-

rately. However, helicases, and many other protein motors normally works in context

with DNA/RNA substrates. Hence, these questions are await for new models for

interactions between DNA/RNA and proteins to be developed. More theoretical

works will continue to be important to understand the workings of these class of

motors in the future.
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Appendix A: Detailed derivations of different Kinetic Models for ve-

locity distribution

A.1 Model 1 – simplest model with fixed runlength

A.1.1 Velocity distribution with negligible detachment rate

If detachment rate (γ) is much smaller than the forward stepping rate (k+),

we can neglect γ. In this simplest possible description of a processive motor (Fig

A.1), the velocity of a single trajectory is:

v =
N

t
(A.1)

where the trajectory is defined by a fixed number of steps n = N . Since the waiting

time for each step is an exponentially distributed random variable, the time t for

different trajectories will be different. Hence the velocity defined as v = N/t for

different trajectories will also be different. The distribution of velocities arising from
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Figure A.1: Schematic of the simpliest model with fixed runlength.
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an ensemble of such trajectories is defined as PN(v).

The probability density P (n, t1, t2, ..., tn) for the motor to jump n steps, at

time t1, t2, ..., tn respectively, is given by

P (n, t1, t2, ..., tn) = [k+e−k
+t1 ][k+e−k

+(t2−t1)]...[k+e−k
+(tn−tn−1)] (A.2)

= (k+)ne−k
+tn . (A.3)

So the joint probability density for the motor to jump n steps in time tn is

P (n, tn) =

∫ tn

0

P (n, t1, t2, ..., tn)dt1

∫ tn

t1

dt2...

∫ tn

tn−2

dtn−1 (A.4)

= (k+)ne−k
+tn

(tn)n−1

(n− 1)!
. (A.5)

This equation is widely used to analyze dwell-time distributions of molecular motors

to estimate number of intermediate states within each step in the literature [90,114].

The velocity distribution as defined before, is given by:

PN(v) =

∫ ∞
0

dtP (n = N, t)δ
(
v − n

t

)
(A.6)

=
n

v2(n− 1)!

(n
v

)n−1

(k+)n exp
(
−kn

v

) ∣∣∣
n=N

(A.7)

=

(
N

v

)N+1(
k+ exp(−k

+

v
)

)N
1

N !
(A.8)

A set of Kinetic Monte Carlo simulations [168] has been performed and compared

with our analytical results (equations A.5 and A.8) in Fig A.2 to verify both the

simulations agree with thetheory.

For the simple case, setting N=1 and we obtain the formula for the distribution

of instantaneous velocity obtained separately in Eq. 2.5.
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Figure A.2: Comparision of theory and Kinetic Monte Carlo simulation
in the model where the motor can only take forward step with a rate of
k+ = 100 /s.
A: probability distribution of time for taking N = 200 steps and B:
probability distribution of velocity assuming that all motors take N =
200 steps. Red lines are predicted functions from the analytical model.

A.1.2 Estimation of the width of PN(v) of homogeneous motors when

k− → 0

Now we estimate the width of the velocity distribution for the model described

above. Consider the general expected values Ii =
∫∞

0
viPN(v|k− → 0)dv, we have

Ii =

∫ ∞
0

viPN(v|k− → 0)dv (A.9)

=
N

N !

∫ ∞
0

vie−
k+

v
N

(
k+N

v

)N
dv

v
(A.10)
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Substitute u = k+N
v

then

Ii =
N

N !

∫ ∞
0

(
k+N

u

)i
e−uuN−1du (A.11)

=
N

N !
(k+N)i

∫ ∞
0

e−uuN−1−idu (A.12)

=
N

N !
(k+N)i

1

N − i

∫ ∞
0

e−uuN−idu (A.13)

... (A.14)

=
N

N !
(k+N)i

1

(N − i)...(N)

∫ ∞
0

e−uuNdu (A.15)

With Γ(N + 1) =
∫∞

0
e−uuNdu = N ! is the Gamma function, we obtain:

• If i = 0, then I0 = N
N !

(k+N)0 1
N
N ! = 1 which is the normalization condition

for PN(v|k− → 0)

• If i > 1 then

Ii =
(k+N)i

(N − i)...(N − 1)
(A.16)

From Eq. A.16, the average velocity is

I1 =< v >=
k+N

N − 1
, (A.17)

and

I2 =< v2 >=
(k+N)2

(N − 1)(N − 2)
. (A.18)

So the standard deviation velocity distribution PN(v|k− → 0) is

σv =
√
< v2 > − < v >2 =

k+N

N − 1

√
1

N − 2
=

< v >√
N − 2

(A.19)

The validity of Eqs. A.17 and A.19 is tested in Fig. A.3 when compared with results

from Monte Carlo simulations. Notice that when the number of step distance N is
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Figure A.3: Average velocity < v > (A) and standard deviation of
velocity distribution σv (B) depend on number of binding sites N that
the motors travel in every velocity calculations.
The blue lines are exact analytical expressions Eqs. A.17 (A) and A.19
(B) and the red dots are from Monte Carlo simulations for the same
model with k+ = 100/s which is the value of the purple line in A.

large, the prediction in Eq. A.19 gives is in accord wtih the Central Limit Theorem

(CLT). Converting to normal real distance unit that normally used in experimental

data, we have Eqs. 3.5 and 3.6 in Chap. 3.
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A.2 Model 2 – model with finite processivity and zero back-stepping

rate

We now consider motors with a detachment rate γ, and negligible back-

stepping rate (k− ≈ 0). In this model, the motor has a forward rate k+ and

detachment rate γ, as shown in Fig. A.4. Since single molecule experiments can

follow motors untill they detach from the track, we define the velocity v from one

particular trajectory to be the runlength divided by the run-time:

v =
n

t
. (A.20)

Note that unlike Eq. A.1, n is not fixed and is itself a random variable. An ensemble

of such trajectories observed in the experiment therefore results in a corresponding

ensemble of velocities, giving rise to the distribution P (v).

 

        
        
 

i i+1 i-1 

k+ 
𝛾 

Figure A.4: Schematic of the model with no backward steps.

In this model, the distribution function of time t for a motor to that takes n

steps before detaching is

P (t) = γe(−γt) (A.21)
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A.2.1 Runlength distribution

Distribution function of the number of steps n that a motor takes before

detaching, also known as processivity or runlength distribution, is given by

P (n) =

(
k+

kT

)n(
γ

kT

)
, (A.22)

where kT = k+ +γ is the total rate. k+/kT is just the probability of taking a forward

step at each site, while γ/kT is the probability to detach from any site.

A.2.2 Velocity distribution

Let us consider a trajectory where the motor jumps n steps, at times t1, t2, ..., tn

respectively and then detaches at time t, such that t1 < t2 < ... < tn < t. The

probability density P (n, t1, t2, ..., tn, t) of such a trajectory is given by:

P (n, t1, t2, ..., tn, t) =

[
kT e

−kT t1 k
+

kT

] [
kT e

−kT (t2−t1)k
+

kT

]
. . .

[
kT e

−kT (t−tn) γ

kT

]
(A.23)

= (kT )n+1e−kT t
(
k+

kT

)n
γ

kT
. (A.24)

So the joint probability density for the motor to jump n steps and detach in t time

is

P (n, t) =

∫ t

0

P (n, t1, t2, ..., tn, t)dt1

∫ t

t1

dt2 . . .

∫ t

tn−1

dtn (A.25)

= (kT )n+1e−kT t
(
k+

kT

)n
γ

kT

tn

n!
(A.26)

=

(
tn

n!

)
(k+)nγe−kT t. (A.27)

Of course, we have

∞∑
n=0

P (n, t) = P (t) and

∫ ∞
0

P (n, t)dt = P (n), (A.28)
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where P (t) is given by Eq. (A.21) and P (n) is given by Eq. (A.22).

The distribution of velocities P (v) is given by:

P (v) =
∞∑
n=0

∫ ∞
0

dtP (n, t)δ
(
v − n

t

)
(A.29)

=
∞∑
n=0

∫ ∞
0

dt

(
tn

n!

)
(k+)nγe−kT tδ

(
v − n

t

)
(A.30)

=
∞∑
n=0

(n
v

)n+1 1

vn!
(k+)nγe−kT

n
v (A.31)

=
γ

v

∞∑
n=0

(n
v

)n+1 1

n!

(
k+e−

kT
v

)n
. (A.32)

Eq. A.32 is the exact equation for the velocity distribution of a motor that does

not take back-steps. For detachment rates much smaller than the forward stepping

rate (γ << k+), the small n terms in Eq. A.32 do not contribute much to the

sum as the motor usually detaches only taking many steps. In that limit, we can

using a particular form of Stirling’s approximation n! ≈
√

2πn(n
e
)n, to obtain an

approximate result:

P (v) ≈ γ

v2
√

2π

∞∑
n=0

√
nAn (A.33)

with

A =
k

v
e1− kT

v . (A.34)

Approximating the sum in Eq. A.33 by an integral, we obtain

∞∑
n=0

√
nAn ≈

∫ ∞
n=0

dn
√
nAn =

√
π

2(− lnA)3/2
. (A.35)

Using the above two approximations, we obtain PA(v), the approximate version of

Eq. A.32:

PA(v) =
γ

v2

(
−2 ln

(
k+

v

)
− 2 + 2

kT
v

)−3/2

. (A.36)
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A.3 Model 3 – Finite processivity and non-zero back-stepping rate

We extend the previous model to a more realistic one, by adding the rate k−

for the motor to take backward steps (see Fig A.5). In this model, the distribution

 

        
        
 

i i+1 i-1 

k+ 
𝛾 

k- 

Figure A.5: Schematic of the model with finite backward rate.

function for the time of a motor to stay on the track is still the same as in the

previous model (Eq. A.21).

A.3.1 Runlength distribution, P (n)

In the model described in Fig. A.5 the motor takes both forward and backward

steps, hence we define the distribution P (m, l) for the motor to take m steps forward

and l steps backward before falling off the track:

P (m, l) =

(
k+

kT

)m(
k−

kT

)l(
γ

kT

)
(m+ l)!

m!l!
, (A.37)

where kT = k+ + k− + γ is the total rate, and the final term is just the binomial

coefficient.

If we set n = m − l then the processivity distribution for motors of this type
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is given by

P (n) =
∞∑

m,l=0

(
k+

kT

)m(
k−

kT

)l(
γ

kT

)
(m+ l)!

m!l!
δ(n−m+ l) (A.38)

The previous equation for runlength distribution can be broken into P (n) = P (n ≥

0) + P (n < 0), where

P (n ≥ 0) =

(
k+

kT

)n(
γ

kT

) ∞∑
l=0

(
k+k−

k2
T

)l
(2l + n)!

(n+ l)!l!
(A.39)

=

(
k+

kT

)n(
γ

kT

)
2F1(

1 + n

2
,
2 + n

2
; 1 + n; 4

k+k−

k2
T

), (A.40)

when m ≥ l. In the above equation, 2F1 is a Gaussian hypergeometric function, a

special function represented by the hypergeometric series, defined as:

2F1(
1 + n

2
,
2 + n

2
; 1 + n; 4

k+k−

k2
T

) =
∞∑
l=0

(
1+n

2

)
l

(
2+n

2

)
l

(1 + n)l

(
4k

+k−

k2T

)l
l!

(A.41)

=
∞∑
l=0

(
k+k−

k2
T

)l
(2l + n)!

(n+ l)!l!
(A.42)

Using a property of the Gauss hypergeometric series [169] page 556, we obtain

P (n ≥ 0) =

(
k+

kT

)n(
γ

kT

) 2

1 +
√

1− 4k
+k−

k2T

n

1√
1− 4k

+k−

k2T

(A.43)

=

(
2k+

kT +
√
k2
T − 4k+k−

)n
γ√

k2
T − 4k+k−

, (A.44)

and

P (n < 0) =

(
2k−

kT +
√
k2
T − 4k+k−

)n
γ√

k2
T − 4k+k−

. (A.45)

A.3.2 Velocity distribution, P (v)

In order to obtain the velocity distribution function we need the joint distri-

bution P (m, l, t) for the motor to to take m steps forward, l steps backward, and
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then detach. Using the same method as in the previous simpler case, we obtain

P (m, l, t) =
tm+l

m!l!
(k+)m(k−)lγ exp(−kT t). (A.46)

Again, by setting n = m− l we have

P (n, t) =
∞∑

m,l=0

δ(n−m+ l)P (m, l, t), (A.47)

P (n > 0, t) = (k+t)nγ exp(−kT t)
∞∑
l=0

t2l(k+k−)l

(n+ l)!l!
(A.48)

= (k+t)nγ exp(−kT t)(t2k+k−)−
n
2 In(2t

√
k+k−) (A.49)

=

(
k+

k−

)n
2

γ exp(−kT t)In(2t
√
k+k−), (A.50)

P (n < 0, t) =

(
k−

k+

)n
2

γ exp(−kT t)In(2t
√
k+k−), (A.51)

where In is the modified Bessel function of the first kind, defined as

In(x) =
∞∑
l=0

1

(n+ l)!l!
(x)2l+n . (A.52)

The velocity distribution is obtained as

P (v) =
∞∑

n=−∞

∫ ∞
0

dtδ(v − n

t
)P (n, t) (A.53)

=
0∑

n=−∞

∫ ∞
0

dtδ(v − n

t
)P (n, t) +

∞∑
n=0

∫ ∞
0

dtδ(v − n

t
)P (n, t) (A.54)

+

∫ ∞
0

dtδ(v − n

t
)P (n, t)|n=0 (A.55)

=
∞∑
n=0

n

v2
P (n,

n

v
)θ(v − 0) +

0∑
n=−∞

−n
v2
P (n,

n

v
)θ(0− v) (A.56)

+P (n = 0) (A.57)

= P (v > 0) + P (v < 0) + P (v = 0). (A.58)

We can break up the expression for P (v) into positive and negative n since only

negative n terms give negative velocities while positive n terms give positive veloc-
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ities (and P (v = 0) = P (n = 0)). Now let us consider the term P (v > 0) first.

Substitute Eq. A.50 into this equation

P (v > 0) =
∞∑
n=0

n

v2

(
k+

k−

)n
2

γ exp(−kT
n

v
)In(

2n

v

√
k+k−) (A.59)

=
∞∑
n=0

B · n · Cn · In(
2n

v

√
k+k−), (A.60)

where

B =
γ

v2
and C =

√
k+

k−
e−

kT
v (A.61)

Converting the Bessel I function into the hypergeometric function 0F1, we have

P (v > 0) =
∞∑
n=0

B · n · Cn ·
(n
v

√
k+k−

)n 1

n!
0F1

(
;n+ 1;

n2

v2
k+k−

)
(A.62)

=
γ

v

∞∑
n=0

(n
v

)n+1 1

n!

(
k+e−

kT
v

)n
0F1

(
;n+ 1;

n2k+k−

v2

)
, (A.63)

where the hypergeometric function is defined as,

0F1

(
;n+ 1;

n2k+k−

v2

)
=
∞∑
l=0

1

(n+ 1)l

(
n2k+k−

v2

)l
l!

. (A.64)

In the case where the backward rate of the motor is small (k− → 0), the hyper-

geometric function 0F1(;n + 1; 0) → 1, Eq. A.63 reverts back to Eq. A.32 that we

obtained previously in Model 2.

For P (v < 0), similarly, we have

P (v < 0) =
0∑

n=−∞

B · (−n) · Cn · In(
2n

v

√
k+k−). (A.65)

Setting n = −h, we obtain

P (v < 0) =
0∑

h=∞

B · h · C−h · I−h(
−2h

v

√
k+k−) (A.66)

=
∞∑
h=0

B · h · C−h · (−1)hIh(
2h

v

√
k+k−). (A.67)
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Converting the modified Bessel I function in Eq. A.67 to the hypergeometric

function 0F1, and changing the argument for the sum back to n, we have

P (v < 0) =
∞∑
n=0

B · n · C−n · (−1)n
(n
v

√
k+k−

)n 1

n!
0F1

(
;n+ 1;

n2

v2
k+k−

)
(A.68)

=
∞∑
n=0

( γ
v2

)(√ k−

k+

)n

en
kT
v

(
−n
v

√
k+k−

)n n
n!

0F1

(
;n+ 1;

n2

v2
k+k−

)
(A.69)

=
γ

−v

∞∑
n=0

(
n

−v

)n+1
1

n!

(
k−e

kT
v

)n
0F1

(
;n+ 1;

n2k+k−

v2

)
(A.70)

Eq. A.58 along with Eq. A.63 and Eq. A.70, give the exact expression for

the velocity distribution function. Working out an approximate expression for the

hypegeometric function, we get

0F1(;n+ 1; an2) ≈ (1 + 4a)−1/4 exp(nc) (A.71)

where

c =
√

1 + 4a− 1− ln

(
1 +
√

1 + 4a

2

)
(A.72)

and a = k+k−

v2
. Once again, as in the simpler model with no back-stepping, we can

obtain a simple expression for the velocity distribution in the limit γ << k+. Using

the approximation for the hypergeometric function and the second order Stirling’s

approximation n! =
√

2πn(n/e)n, we obtain

P (v > 0) =
γ

v2
√

2π
(1 + 4a)−1/4

∞∑
n=0

√
nAn (A.73)

where the argument A is

A =
k+

v
exp

(
c+ 1− kT

v

)
(A.74)

=
k+

v
exp

(√
1 + 4a− ln

(
1 +
√

1 + 4a

2

)
− kT

v

)
. (A.75)
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Converting the sum in Eq. A.73 into an integral (see Eq. A.35), we obtain

PA(v > 0) =
γ

v2
(1 + 4a)−1/4(−2 ln(A))−3/2 (A.76)

=
γ

v2
(1 + 4a)−1/4

[
2 ln

(
1 +
√

1 + 4a

2
· v
k+

)
− 2
√

1 + 4a+ 2
kT
v

]−3/2

(A.77)

Similarly

PA(v < 0) =
γ

v2
(1 + 4a)−

1
4

[
2 ln

(
1 +
√

1 + 4a

2
· |v|
k−

)
− 2
√

1 + 4a+ 2
kT
|v|

]− 3
2

(A.78)

Eq. A.77 is a useful approximation equation that we can use to analyze data under

zero or small load. Fig A.6 shows the comparison between our analytical results

with a sets of Kinetic Monte Carlo simulation [168].

A.4 Model 4 – Modeling stepping with an intermediate state

We consider a model with a chemical intermediate state (Fig. A.7). Each

motor steps from site i to site i+ 1, which is physically 8.2 nm away along the track

in the Kinesin case, by visiting a single chemical intermediate state. In any state,

the motor can take a sub-step to the next state with the same forward rate k+
s ,

backward rate k−s , and detachment rate γ.

The probability for the motor to take a single step forward, by passing the

intermediate state and subsequently binding to the next binding site, is Pi(1, t) =

t(k+
s )2e−kT t where kT = k+

s + k−s + γ. The probability for the motor to take m step
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Figure A.6: Comparison of theory and Kinetic Monte Carlo simulations.
A–C: No backward rate and k+ = 100 /s, γ = 2 /s. D–F: k+ = 100
/s, k− = 20 /s, γ = 2 /s. Red and blue lines are predicted functions
from the analytical model, while the blue histograms are obtained from
Kinetic Monte Carlo simulations. A, D (Eq. A.21): P (t) - probability
distribution of time before detaching. B (Eq. A.22), E (Eq. A.44): P (n)
- probability distribution of number of steps that the motor takes before
detaching. C (Eq. A.36), F (Eq. A.77): PA(v) - probability distribution
of velocity.

forward, l step backward and then detach from the track at time t is,

Pi(m, l, t) =

[
t2(m+l)

(2m)!(2l)!
(k+
s )2m(k−s )2l +

t2(m+l)+1

(2m+ 1)!(2l)!
(k+
s )2m+1(k−s )2l

+
t2(m+l)+1

(2m)!(2l + 1)!
(k+
s )2m(k−s )2l+1 +

t2(m+l+1)

(2m+ 1)!(2l + 1)!
(k+
s )2m+1(k−s )2l+1

]
γ exp(−kT t)

(A.79)

Thus, the probability for the motor to complete n = (m− l) steps in time t becomes,

Pi(n, t) =
∞∑

m,l=0

δ(m−l),nPi(m, l, t)

=γe−kT tt2n(k+
s )2n

∞∑
l=0

[
t4l(k+

s k
−
s )2l

(2n+ 2l)!(2l)!
+ tk+

s

t4l(k+
s k
−
s )2l

(2n+ 2l + 1)!(2l)!

+ tk−s
t4l(k+

s k
−
s )2l

(2n+ 2l)!(2l + 1)!
+ t2k+

s k
−
s

t4l(k+
s k
−
s )2l

(2n+ 2l + 1)!(2l + 1)!

]
(A.80)

Just as before, we partition the velocity distribution as Pi(v) = Pi(v > 0) + P (v =
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Figure A.7: Kinetic model for stepping with a chemical intermediate
state at every step.

0) + Pi(v < 0) where

Pi(v > 0) =
γ

v

∞∑
n=0

[(
n

v

)2n+1(
(k+
s )2e−

kT
v

)n 1

2k+
s k
−
s n

(
− (k+

s + k−s )v0F1

[
2n,−k

+
s k
−
s n

2

v2

]
+ (k+

s + k−s )v0F1

[
2n,

k+
s k
−
s n

2

v2

]
+ 2k+

s nv0F1

[
2n+ 1,−k

+
s k
−
s n

2

v2

]
+ 2k+

s n(k−s − v)0F1

[
2n+ 1,

k+
s k
−
s n

2

v2

])]
, (A.81)

and

Pi(v < 0) =
γ

−v

∞∑
n=0

[(
n

−v

)2n+1(
(k−s )2e

kT
v

)n 1

2k+
s k
−
s n

(
(k+
s + k−s )v0F1

[
2n,−k

+
s k
−
s n

2

v2

]
− (k+

s + k−s )v0F1

[
2n,

k+
s k
−
s n

2

v2

]
− 2k−s nv0F1

[
2n+ 1,−k

+
s k
−
s n

2

v2

]
+ 2k−s n(k+

s + v)0F1

[
2n+ 1,

k+
s k
−
s n

2

v2

])]
. (A.82)
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A.5 Velocity distribution of molecular motors - model with fixed run-

length and non-zero back-stepping rate

A.5.1 Velocity distribution PN(v) for homogeneous helicases taking

N steps

Let P (m, l) be the probability that the motor takes m steps forward and l

steps backward and until reaches site n = m− l. For this model, P (m, l) is given as

P (m, l) =

(
k+

kT

)m(
k−

kT

)l
(m+ l)!

m!l!

(m− l)
(m+ l)

, (A.83)

where kT = k+ + k− is the total rate, k±

kT
is the probability of taking a forward

(backward) step at any site, and the (m+l)!
m!l!

term is the binomial coefficient accounting

for the number of ways the motor can take m forward, l backward steps, and the

final term (m−l)
(m+l)

is accounted for an absorbing barrier [170].

To find an expression for P (v = N
t

), we first calculate the joint distribution

P (m, l, t) for the motor to take m steps forward, l steps backward, and then detach

at t due to the presence of an absorbing barrier:

P (m, l, t) =

(
k+

kT

)m(
k−

kT

)l
(m+ l)!

m!l!

(m− l)
(m+ l)

tm+l−1

(m+ l − 1)!
km+l
T exp(−kT t)(A.84)

=
tm+l−1

m!l!
(m− l)(k+)m(k−)l exp(−kT t). (A.85)

Setting n = m− l, which is the binding site difference with the initial position,
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we obtain,

P (n, t) =
∞∑

m,l=0

δ(n−m+ l)P (m, l, t) (A.86)

=
(k+t)n

t
exp(−kT t)n

∞∑
l=0

t2l(k+k−)l

(n+ l)!l!
(A.87)

=
(k+t)n

t
exp(−kT t)

n

n!
0F1(;n+ 1; t2k+k−), (A.88)

where the hypergeometric function 0F1 is defined as:

0F1(;n+ 1; t2k+k−) =
∞∑
l=0

n!

(n+ l)!

(t2k+k−)l

l!
(A.89)

In experiments, the length of DNA, NDNA, is fixed. In such single moelecule

experiments, time t is measured when each motor reaches binding site N th (N =

NDNA
s

). In this case, the velocity distribution PN(v) is given by,

PN(v) =
∞∑
n=0

∫ ∞
0

dtP (n = N, t)δ

(
v − N

t

)
(A.90)

=
N

v2
P

(
N,

N

v

)
(A.91)

=
N

v2

(
N

v

)N−1(
k+ exp(−kT

v
)

)N
N

N !
0F1

(
;N + 1;

N2

v2
k+k−

)
(A.92)

=

(
N

v

)N+1(
k+ exp(−kT

v
)

)N
1

N !
0F1

(
;N + 1;

N2

v2
k+k−

)
. (A.93)

This is an exact expression PN(v) for homogeneous motors with identical same

kinetic rates taking N steps (same as Eq. 3.1 in the Chap. 3).

A.6 Velocity distribution for motors with static disorder - model with

fixed runlength and Gaussian distribution of forward rates

First, let us work out an approximate equation for the velocity distribution

(Eqs. 3.1, 3.2).
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From Eq. 3.2, we obtain

PA
N (v) ≈

(
N

v

)n+1
1

N !
(1 + 4a)−1/4 exp

[
N

(
c− kT

v
+ Lnk+

)]
(A.94)

=

(
N

v

)n+1
1

N !
(1 + 4a)−1/4 exp[N f(k+)] (A.95)

where f(k+) = c− kT
v

+ Lnk+. For N large, function f(k+) can be expand around

its peak at k+
0 . After performing some algebra, it can be shown that

f ′(k+) =
2k−

v2(1 +
√

1 + 4a)
− 1

v
+

1

k+
. (A.96)

Set f ′(k+
0 ) = 0 we have k+

0 = k− + v. Then f(k+
0 ) = −1 + Ln(v) and the second

derivative at k+
0 is f”(k+

0 ) = − 1
v(2k−+v)

. We finally obtain PA
N (v) for large Nlarge,

PA
Nlarge(v) ≈

(
N

v

)n+1
(1 + 4a)−1/4

N !
exp

[
N
(
f(k+

0 ) +
1

2
f”(k+

0 )(k+ − k+
0 )2
)]

=

(
N

v

)n+1
(1 + 4a)−1/4

N !
exp

[
N

(
− 1 + Ln(v)− (k+ − k− − v)2

2v(2k− + v)

)]
=

(
N

v

)n+1
(1 + 4a)−1/4

N !
exp

[
N

(
− 1 + Ln(v)− (k+ − k− − v)2

2v(2k− + v)

)]
=

(
N

v

)n+1
(1 + 4a)−1/4vN

N !eN
exp

[
N

(
− (k+ − k− − v)2

2v(2k− + v)

)]
(A.97)

Using Stirling’s approximation N ! ≈
√

2πN(N
e

)N , we can rewrite the above equation

as,

PA
Nlarge(v) ≈

√
N

2π

[
(1 + 4a)−1/4

v
exp

(
−N(k+ − k− − v)2

2v(2k− + v)

)]
. (A.98)

If k+ � k−, then the major contributions to PA
Nlarge comes from value at around

k+
0 = k− + v, which means v ∼ k+ � k−. Therefore, we can further approximate

(1 + 4a)−1/4 = (1 + 4k+k−

v2
)−1/4 ≈ 1, which leads to the velocity distribution,

PA
Nlarge(v) ≈

√
N

2π

[
1

v
exp

(
−N(k+ − k− − v)2

2v(2k− + v)

)]
. (A.99)
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Figure A.8: Comparison of exact (PN(v) - Eq. 3.1) and approximation
theory results (PA

N (v) - Eq. 3.2 and PA
Nlarge(v) - Eq. A.99) with Kinetic

Monte Carlo simulations (blue histogram) (A); and with different num-
ber of steps (B).

Fig. A.8 shows the approximate form of velocity distribution (Eqs. 3.2 and A.99)

agrees well with the exact form (Eq. 3.1) with the parameters ectracted for helicase

T7 [23]. The exact velocity distribution PN(v) (dashed red, Eq. 3.1) coincides

with the first approximate equation PA
N (v) (dashed green, Eq. 3.2) and the further

approximate equation PA
Nlarge(v) (blue, Eq. A.99). All of the lines fit well with the

histogram from a Kinetic Monte Carlo simulation. Fig. A.8B shows the 3 functions

with different values of the number of steps as an illustration of the n needed to

reach the PA
Nlarge limit. Surprisingly, even for N = 50 steps, the approximation is

very good.

With this new approximation of velocity distribution, the integral in Eq. 3.3

can be performed exactly as an integral of a product of two different Gaussian

distributions for k+. With this, we arrive at the analytical expression for velocity
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distribution with a normal distributed forward rate as,

PH,A
N (v) =

√
N√

2πv

e
− N(k−+v−µk)

2

2(Nσ2
k
+v(2k−+v))√

Nσ2
k+v(2k−+v)

(2k−+v)

. (A.100)

This is Eq. 3.4 in Chap. 3
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Appendix B: Supporting Information for Chapter 2

B.1 Estimation of the K-1 detachment rate, γ0

To estimate the detachment rate of kinesin, we consider the pathway in Fig

B.1, where K-1 from a State 1 with both heads bound to the MT, can detach one

head at a time (States 2 and 3), and before fully dissociating from the track. The

detachment rate of the two-headed kinesin is ktotal = k14 = γ that can be estimated

from the microscopic rates kij, defined in Fig. B.1. We assume that once the two

heads dissociate, the rates for reattachment to the MT are zero (k43 = k42 = 0).

The Laplace transform π̃i(s) of πi(t), which is probability density distribution that
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Figure B.1: Enzymatic pathway used to estimate the K-1 detachment rate, γ.
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the system goes from state i to the final dissociated state 4 in time t [45], is

π̃2(s) =
k21π̃1(s) + k24π̃4(s)

k21 + k24 + s
(B.1)

π̃3(s) =
k31π̃1(s) + k34π̃4(s)

k31 + k34 + s
(B.2)

π̃1(s) =
k12π̃2(s) + k13π̃3(s)

k12 + k13 + s
(B.3)

π̃4(s) = 1. (B.4)

Solving for the distribution π̃total(s) = π̃1(s) yields

π̃total(s) =
k13k34(k21 + k24 + s) + k12k24(k31 + k34 + s)

k12(k24 + s)(k31 + k34 + s) + (k21 + k24 + s)(k13(k34 + s) + s(k31 + k34 + s))
.

(B.5)

The average detachment time < t >= γ−1 is the first moment of the generating

function π̃total(s),

< t >=
1

γ
=

(
−dπ̃total(s)

ds

) ∣∣∣∣
s=0

=
k13(k21 + k24) + (k12 + k21 + k24)(k31 + k34)

k13(k21 + k24)k34 + k12k24(k31 + k34)

(B.6)

In the limit k21 → 0 and k31 → 0, which would result in an over estimate of k14, we

obtain,

γ < k14 =
k13k24k34 + k12k24k34

k13k24 + (k12 + k24)k34

. (B.7)

The microscopic rates kij for the K-1 have been reported in an experimental paper

[171]. We expect the detachment rate of the kinesin trailing head (State 2) to be

faster so we set k12 = 48s−1 from their measurements. All other rates are set to

the one-headed detachment rate k13 = k24 = k34 = 3s−1. With these values, the

estimated detachment rate of K-1 is γ0 = 2.8s−1. This value is in a very good

agreement with γ0 = 2.3s−1 extracted by using our theory to simultaneously fit the
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experimental data for P (v) and P (n).
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Appendix C: Supporting Information for Chapter 3

C.1 Model of NA unwinding by a helicase and application for T4

gp41

In the study by Chakrabarti et al. [23], it was shown that only by fitting the

force dependences of both the unwinding velocity and run-length, one can obtain

robust parameters for a finitely processive helicase. Lionnet et al.’s paper [16] report

that the runlength of T4 gp41 as 178 ± 48 bp at F = 9.7 ± 3 pN and 2 mM ATP

concentration. In the absence of additional data, we choose to fit Chakrabarti et

al.’s model to the force dependence of the unwinding rate reported for the same

ATP concentration 2 mM. Subsequently, analyze the parametes with the data point

to get force-dependent processivity.

From their model [23] (CJT), the unwinding rate vu and processivity < d >

depend on several parameters (See the scheme of their model in Fig. C.1 for visual

picture of some of the parameters):

• g - representing the fractional position of the free energy barrier between base-

pair opened and base-pair closed states (0� g � 1)

• s - step-size of helicase (number of base-pairs)
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• u - step-height of the interaction potential between helicase and d.s junction

(in kBT)

• r - range of interaction between helicase and d.s junction (number of base

pair)

• rf - forward s.s translocation rate of helicase with the driving force arising from

NTP/dNTP hydrolysis. Normally, this rate can be converted from average s.s

translocation rate by devided by the step-size (rf = <vss>
s

). When analyzing

T4 gp41 helicase’s data, we use the average s.s translocation velocity, which

is equal to the mean rezipping velocity. At 2 mM ATP concentration, the

measured value is < vss >= 260± 30 bp/s [16]

• k - pure diffusion forward and backward s.s translocation rates of helicase

(k+ = k− = k) Note here that we distinguished these diffusion forward and

backward rates in the CJT model (k+ and k−) with our forward and backward

rates in our model (k+ and k−). They related to each other as k+ = rf +k+ =

rf + k and k− = k− = k

• kd - detachment rate of helicase from s.s in translocation (which is the same as

γ in our model). For T4 gp41, the detachment rate is estimated to be 0.006 s−1

(see below)

• b - ratio of the nucleic acid breathing rates under force when the helicase is

far away from the junction (b = α/β = e−(∆G−∆GF ))

• ∆G - stability of the particular d.s base pair. To limit one more fitting pa-
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rameter, here, we take ∆G = 2.27 kBT as a value averaged over the sequence

for the DNA substrate with 42% GC content that was used in the force de-

pendence experiment [16] with EGC = 3.2 kBT and EAT = 1.6 kBT [172]. (We

choose this value over ∆G = 1.95 kBT in Lionnet et al. [16] obtained from

other parameters of EGC and EAT because it gives us better fits.)

• ∆GF - force dependence free energy contribution to the free energy cost to open

one base pair (∆GF = 2 zmax
lK

ln
(

1
FlK

sinh(FlK)
)
). We use the same contour

length per base zmax = 0.58 nm/bp and Kuhn length lK = 2.46 nm obtained

from the experiment for the same DNA substrate [16]

We estimate the detachment rate of T4 gp41 from its dissociation half-life of

1 min, when it translocates on ssDNA at 37 ◦C [173] (with a complete replisome, this

dissociation half-life is reported to be 11 min [174]). Using temperature coefficient

Q10 to be equals to 2 [175], we estimate the detachment rate of T4 gp41 at 25 ◦C

to be γ = 0.006 s−1. This detachment rate is in the same range with the estimated

detachment rates of the similar helicase, T7 [23,176].

After estimating all possible parameters, we fit the unwinding rate vu(F ) with

different possible value set of step-size s and range of interaction r to the data to

extract 3 parameters g, k, and u. We chose only the fitted parameter sets that give us

consistent average processivities with the reported range obtained at F = 9.7±3 pN

[16]. The data sets that give good fits are reported in Table C.1. Fig. C.2 shows the

fitting line with the parameter set a) from the table.

From Table C.1, we can see that, with a fixed step-size value s, changing the

136



 

 

 

α β 
𝑘ା 𝑘ି 

𝛾 

s 

0 j -r 

u 

𝑟௙ 

Figure C.1: Model for nucleic acid unwinding by a helicase [23]. In
this model, the helicase has step-size s = 2 nt, and a range of interaction
with the d.s junction r = 3 nt.
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Figure C.2: Force dependence of unwinding velocity vu(F ) data (in blue)
at 2 mM ATP concentration [16] with the fitting line (in red) using pa-
rameters a) from the Table C.1.
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Table C.1: Fitting parameters for T4 gp41
χ2 s r g k u

(nt) (nt) (s−1) kBT
a)∗ 0.61 1 8 0.21 14.0 0.61
b) 0.58 1 9 0.22 13.9 0.61
c) 0.56 1 10 0.23 13.9 0.62
d) 0.50 1 15 0.25 13.8 0.63
e)∗ 2.48 2 5 0.14 10−9 1.14
f) 3.63 2 7 0.16 10−9 1.15
g) 4.69 2 10 0.17 10−9 1.15
h) 5.43 2 15 0.18 10−9 1.15
i)∗ 6.76 3 5 0.10 10−9 1.49
j) 8.97 3 6 0.11 10−10 1.47
k)∗ 4.54 4 4 0.03 10−12 1.82
l) 8.59 4 5 0.06 10−12 1.71

∗ parameters used to calculate error bars
a)∗ 0.61 1 8 0.2± 0.3 14± 6 0.6± 0.3
e)∗ 2.48 2 5 0.1± 0.8 0 + 0.7 1.1± 0.2
i)∗ 6.76 3 5 0.10± 0.04 0.00 + 0.06 1.5± 0.2
k)∗ 4.54 4 4 0.03± 0.02 0.000 + 0.005 1.8± 0.2

value of the interaction range r does not change the estimated parameters much.

Indeed, all of those obtained parameters lie within the error-bars of the first fitting

parameter set. For instance, for s = 1, all possible value of r ≥ 8 gives us reasonable

fits (Table C.1 a-d)). However, all the values of g (same to k, u) are similar and lies

within the error bars of Table C.1 a)∗. So for each value of s, we can not extract

exact value of r, but we can be confident with the other fitting parameters, g, k,

and u with the error bars as reported in the table at a), e), i), and k). We can not

conclude anything further than that, due to the lack of data for processivity.

In order to apply our model to test for the heterogeneity for T4 gp41, we need

the information about step-size s and the rate k of the helicase. The other param-

eters are not as important. Also, both of these two parameters are independent of

ATP concentration. Therefore, we can still use them to analyze s.s translocation
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velocity distribution at 5 mM. We perform the test for heterogeneity with all 4 pos-

sible sets Table C.1 a), e), i), and k) in the main text. The different parameters in

the 2 models were converted as k+ = rf + k+ = rf + k and k− = k− = k. As we

expected, all of them show that T4 gp41 is heterogeneous, similar to helicase T7.

C.2 Heterogeneity in the diffusion rate does not contribute much to

the width of velocity distribution
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Figure C.3: Heterogeneity effect on the diffusion rate PH,diff
N and the

forward rate (or driving rate) PH
N (v) on velocity distribution.

In Chap. 3, we explained the main model for heterogeneity with a dispersion

in the forward rate k+ alone. Conceptually, that means we have considered only the

heterogeneity in the forward rate driving by NTP/dNTP hydrolysis rf in the CJT

model [23]. In this section, we consider the effect of heterogeneity in the diffusion

forward and backward s.s translocation rates in the CJT model (k− ≡ k− = k+ = k).

We calculate numerically the velocity distribution, PH,diff
N (v) as,

PH,diff
N (v) =

∫ ∞
−∞

dk−PN(v|k+ → rf + k−)
1√

2πσk
e
− (k−−µk)

2

2σ2
k . (C.1)
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where µk and σk now are the mean and s.d. of a Gaussian distribution for k−.

Because the diffusion rates contribute to both the forward and backward rates in

our model, we substitute all the forward rate k+ with k+ = rf + k− in the Eq. 3.1.

We consider the value of diffusion rate, k− in this case, distributed normally with a

mean µk and a s.d. σk (rf = 161 step−1, µk = 0.6 step−1, σk = 1.6 step−1 for T7 and

rf = 314 step−1, µk = 20 step−1, σk = 20 step−1 for T4). Here, we choose only the

first case of T4 with the fit for the step size s = 1. We see in Fig. C.3 that there is

no clear effect of the heterogeneity in the diffusion rate on the velocity distribution.

Basically PH,diff
N lies exactly on top of the velocity distribution for homogeneous

case PA
N (v).
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J Wiórkiewicz-Kuczera, D Yin, and M Karplus. All-atom empirical potential
for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B,
102(18):3586–3616, April 1998.

[145] J Lowe, H Li, K.H Downing, and E. Nogales. Refined structure of alpha
beta-tubulin at 3.5 A resolution. J. Mol. Biol., 313:1045–1057, 2001.

[146] Charles V. Sindelar and Kenneth H. Downing. The beginning of kinesin’s
force-generating cycle visualized at 9- resolution. J. Cell Biol., 177(3):377–
385, May 2007.

[147] Zhechun Zhang, Riina Tehver, and D. Thirumalai. Microtubule assists in
kinesin’s adp release and diffusional search. unpublished.

[148] John Eargle, Dan Wright, and Zaida Luthey-Schulten. Multiple Alignment
of protein structures and sequences for VMD. Bioinformatics, 22(4):504–506,
Feb 2006.

152



[149] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual Molec-
ular Dynamics. J. Mol. Graph., 14:33–38, 1996.

[150] John Stone. An Efficient Library for Parallel Ray Tracing and Animation.
Master’s thesis, Computer Science Department, University of Missouri-Rolla,
April 1998.

[151] Arun Kumar Somavarapu and Kasper P. Kepp. The Dependence of Amyloid-
β Dynamics on Protein Force Fields and Water Models. Chemphyschem,
16(15):3278–3289, October 2015.

[152] Nikolina Kalchishkova and Konrad J. Bhm. The Role of Kinesin Neck Linker
and Neck in Velocity Regulation. J. Mol. Biol., 382(1):127–135, September
2008.

[153] Ryo Nitta, Yasushi Okada, and Nobutaka Hirokawa. Structural model for
strain-dependent microtubule activation of Mg-ADP release from kinesin. Nat.
Struct. Mol. Biol., 15(10):1067–1075, October 2008.
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