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Successful innovation of respirator masks depends on accurate models of 

exercise performance during respirator wear.  Any valid model must include oxygen 

deficit (OD), which is a vital indicator of the physiological changes that occur during 

the transition from rest to exercise.  OD represents anaerobic metabolism and is 

related to performance time.      

 The goal of this research was to model the effect of a respirator on oxygen 

deficit.  The following objectives were thereafter studied: (1) use experimental 

exercise data to calculate OD with a respirator; (2) determine the maximum OD and 

corresponding standard deviation values; and (3) develop a transfer function that 

accurately predicts OD in exercise while wearing a respirator.   

 The study results indicated that oxygen deficit was significantly affected by 

exercise intensity and performance time; at 85% maximal capacity, respirator wear 

was not a significant factor affecting OD.  Notably, the transfer function developed 

will serve a valuable predictive purpose.  
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Chapter 1: Research Introduction 
 

1-1. Justification of Research 

Respiratory protective masks are worn to protect the wearer from ambient 

conditions that may be detrimental to their respiratory health.  In several occupations, 

respirators are a vital piece of equipment that enable the wearer to perform necessary 

tasks in line with their work.  Proper design of respirators is, therefore, crucial. 

A key step in the proper design of respirators, as well as in the regulation of 

occupational safety, is the modeling of exercise performance while wearing a 

respirator.   A model that accurately predicts performance and performance time must 

include oxygen deficit, which is a measure of anaerobic capacity and ATP (adenosine 

triphosphate) re-synthesis.  Oxygen deficit (OD) occurs during the transition from rest 

to exercise at any intensity, and thus, should be included in performance models. 

A model was developed at the University of Maryland, College Park, to 

predict exercise performance while wearing a respirator (Chiou, 2004).  The model 

includes the oxygen deficit, but prediction of this parameter is based on the 

performance of individuals who are not wearing respirator masks.  This model is an 

extension of a previous model that used OD as the primary predictor of performance 

time (Coyne, 2001).  Based on the lack of an appropriate means of predicting oxygen 

deficit for respirator wearers, the current model should be extended to include a 

transfer function to determine the maximum oxygen deficit (ODmax) that occurs 

during exercise performance while wearing a respirator; determination of ODmax is 

work-rate dependent. 
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Data should be collected for several individuals through experimental exercise 

tests to determine individual values of oxygen deficit for those wearing a respirator 

mask.   Based on this data, relationships between OD, performance time, and work 

rate should be evaluated, and a transfer function may then be developed for use in 

predicting oxygen deficit in other individuals.  This function will, thereafter, be 

available for future incorporation into the current model to ensure that a more 

accurate description of maximum oxygen deficit is included for respirator wearers. 

1-2. Research Objectives 

The goal of this research was to model the effect of a respirator on oxygen 

deficit.  Based on this larger goal, the primary objectives of this research study were 

defined as follows: 

1. Calculate the oxygen deficit during exercise while wearing a respirator mask 

by using data from experimental exercise tests.  Thereafter, these values can 

be compared to oxygen deficit values determined from exercise tests 

completed without a respirator. 

2. Determine the mean maximum oxygen deficit values and the corresponding 

standard deviations for exercise both with and without a respirator, and across 

a range of different work intensities; 

3. Develop a transfer function that accurately describes the oxygen deficit 

developed during exercise with a respirator; this function will be available for 

future incorporation into a model of exercise performance while wearing a 

respiratory protective mask.  
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Chapter 2: Research Background 
 

2-1. Introduction to Oxygen Deficit 

The concept of oxygen (O2) deficit was first introduced by Krogh and 

Lindhard (1920) as the difference between total O2 uptake ( 2OV& ) at the 

commencement of exercise and O2 uptake at the steady-state level of exercise (Figure 

2-1.1).  Quantitatively, the O2 deficit represents the difference in total oxygen 

consumed during exercise and the theoretical oxygen consumption had steady-state 

metabolism begun immediately with exercise initiation (McArdle et al., 2000).  The 

difference is attributable to the immediate use of adenosine triphosphate (ATP) for 

energy without the requirement of oxygen; oxygen is more heavily utilized as 

exercise continues (McArdle et al., 2000).  Hence, the O2 deficit represents anaerobic 

metabolism and the re-synthesis of ATP (Scott, 2000; Graham, 1996; McArdle et al., 

2000; Medbo et al., 1988).  As such, OD is used as a determinant of anaerobic 

capacity, “the greatest anaerobic energy production that an individual can obtain at 

any exercise bout performed to exhaustion” (Bangsbo, 1996).  

 Figure 2-1.1. Oxygen deficits during different exercise intensities (Scott, 2000). 
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It was not until the late 1960s that accumulated oxygen deficit (AOD) was 

used as a measure of anaerobic capacity (Ericksson et al., 1973; Hermansen, 1969; 

Karlsson and Saltin, 1970).  Saltin (1990), as well as Green and Dawson (1993), 

concluded that the O2 deficit is the only measure that can potentially quantify 

anaerobic capacity.  In fact, OD has been shown to be quantitatively similar to the 

anaerobic capacity determined from changes in anaerobic metabolites (Green and 

Dawson, 1993; Medbo and Tabata, 1993; Bangsbo et al., 1990).   

The mean oxygen deficit is then calculated as the accumulated oxygen deficit 

divided by the exercise duration.  It represents the mean rate of anaerobic energy 

release (Medbo and Burgers, 1990; Ramsbottom et al., 2001).  The literature reports a 

range of mean maximal accumulated O2 deficit values for humans, from                           

33 ml/kg/min in prepubescent males (Eriksson et al., 1973) to 80-85 ml/kg/min in 

sprint athletes (Medbo and Burgers, 1990; Medbo et al., 1988; Scott et al., 1991).  

Maximal OD values predicted for humans are ≈100 ml/kg/min (Saltin, 1987).  

Maximally accumulated O2 deficit values of endurance athletes and untrained 

subjects are similar, ranging from 50 to 65 ml/kg/min (Medbo and Burgers, 1990; 

Scott et al., 1991); this similarity may be explained as a less efficient use of anaerobic 

energy transfer processes. 

2-2. Additional Physiological Factors 

2-2-1. Cyclic Process of Energy Production 

The process of energy production and use is cyclical in nature, adding to the 

complexity of the issue of oxygen deficit.  Glycogen, the storage form of 

carbohydrates, is used to maintain blood glucose levels.  Glucose is an important 
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sugar for energy metabolism, serving as an essential ingredient for the synthesis of 

ATP, which is chemical energy used for muscle activity (McArdle et al., 2000).  

During an anaerobic process termed glycolysis, glucose is broken down into 

pyruvate, with ATP simultaneously synthesized (McArdle et al., 2000).   

During exercise, immediate energy is obtained from ATP and creatine 

phosphate stored in muscle.  Creatine phosphate can provide energy rapidly and in the 

absence of O2 for the re-synthesis of ATP (McArdle et al., 2000).  In the early 

minutes of continuing exercise and during which anaerobic conditions exist, stored 

muscle glycogen is the primary energy source.  Glycogen stored in the liver is 

converted to glucose, via a process known as glycogenolysis, and is then transported 

to active muscle for additional ATP production.  Glycolysis must then occur to 

provide the necessary ATP for continued exercise (McArdle et al., 2000).  Under 

anaerobic conditions, the pyruvate formed via glycolysis is converted to lactate, 

which is further used in the liver as part of the Cori cycle for the synthesis of glucose 

in a process known as gluconeogenesis (McArdle et al., 2000).  As exercise 

continues, aerobic conditions ensue and additional methods are utilized for the 

production of glucose and ATP.  Carbohydrate metabolism during exercise produces 

alanine, which is then used in the liver to make glucose via gluconeogenesis.  Alanine 

is used in the alanine-glucose cycle to produce glucose that is released into the blood 

for delivery to the muscles for energy (McArdle et al., 2000). 

ATP is utilized for energy and must then be re-synthesized to provide 

continued energy sources for sustained activities.  Consideration of oxygen deficit 

requires consideration of this cyclic process, since oxygen deficit represents ATP re-
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synthesis as previously noted.  Simultaneous forward and reverse processes of 

glycolysis and gluconeogenesis make the measurement of maximum oxygen deficit 

particularly challenging.  What was sought here was not a characterization of each 

process and their interrelationships, but rather, the net effect of the processes for 

overall quantification that can be used as a limiting metric in exercise models. 

2-2-2. Components of Oxygen Uptake 

During graded exercise a point is reached at which the increase in minute 

ventilation increases disproportionately to the increase in 2OV& ; this point is labeled 

the ventilatory threshold (VT) (McArdle et al., 2000).  The VT is additionally 

important for defining the various components of oxygen uptake.  Constant workload 

exercise below the VT is characterized by an initial rapid increase in 2OV& , which is 

representative of a fast component of oxygen uptake.  The fast component is 

truncated upon the attainment of a steady state (Yano et al., 2004).  However, for 

constant workload exercise above the VT, the 2OV&  response shows a secondary 

increase to maximum oxygen uptake ( 2OV& max), which is indicative of a slow 

component (Scott, 1999).   

The slow component of 2OV&  represents an additional energy requirement 

above that of steady state and is found to occur at exercise intensities that are defined 

as severe or heavy (Scott, 1999).  Moreover, the final 2OV&  achieved after initiation of 

the slow component surpasses the estimated intensity- 2OV&  relationship (Yano et al., 

2004; Scott, 1999).  It should additionally be noted that the slow component of 
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oxygen uptake has been found to be exercise intensity-dependent (Ocel et al., 2003; 

Jacobsen et al., 1998). 

2-3. Methods of Determining O2 Deficit 

2-3-1. MAOD Method 

The process that is now considered the “traditional” oxygen deficit method 

was presented by Medbo et al. (1988).  The process incorporates ten bouts of 

exhaustive treadmill running at different submaximal exercise intensities in which 

2OV&  is measured.  The data produced from these tests are combined, and linear 

regression of the submaximal 2OV&  values and exercise intensity/treadmill speed is 

completed after forcing the data through a y-intercept of 5 ml/kg/min (representing 

resting oxygen uptake).  The relationship between submaximal 2OV&  and exercise 

intensity is determined on an individual basis and extrapolation of this linear 

regression provides determination of O2 demand (Medbo et al., 1988).  The 

submaximal O2 demand is used to define the intensity of an exhaustive bout of 

supramaximal exercise and is also considered the O2 demand of the intense exercise.  

After completion of the supramaximal exercise, the extrapolated O2 demand is 

multiplied by the exercise duration to define accumulated oxygen demand (AOD).  

The accumulated oxygen uptake is calculated by multiplying the O2 uptake observed 

during the supramaximal exercise by the exercise time.  Finally, the AOD is 

determined by subtraction of the accumulated O2 uptake from the accumulated O2 

demand (Medbo et al., 1988) (Figure 2-3-1.1). 
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The duration of the supramaximal exercise bout is of concern, as duration of 

an anaerobic capacity test must be metabolically appropriate.  This means that the test 

should be long enough to exhaust anaerobic metabolic processes, but should be brief 

enough to minimize energy influences from aerobic metabolism (Vandewalle et al., 

1987; Gastin et al., 1995).  This is to ensure that the immediate use of ATP is 

exhausted before oxygen is required for continued energy.  Medbo et al. (1988) 

reported that exercise should be done at a severe intensity that provokes fatigue in 

approximately 2 to 4 minutes, while Saltin (1990) claimed that fatigue should occur 

within 2 to 15 minutes after the onset of exercise. 

Despite the reliance on this “traditional” method, inherent limitations to its use 

exist.  More specifically, the O2 deficit method, or the MAOD (maximally 

accumulated oxygen deficit) method, is based on two primary assumptions: 

Figure 2-3-1.1.  A) Relationship between exercise intensity (as determined by   
treadmill speed) and O2 demand; B) accumulated oxygen 
deficit, calculated as the difference between accumulated 
oxygen demand and accumulated oxygen uptake (Medbo et 
al., 1988). 
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1. The oxygen demand during supramaximal or intense exercise can 

be estimated from a linear relationship between oxygen uptake and 

exercise intensity during submaximal exercise; and 

2. Supramaximal exercise produces a constant oxygen demand. 

Bangsbo (1996) suggested that these assumptions may not be valid for a multitude of 

reasons, and as such, the O2 deficit method may not be an appropriate means of 

determining O2 deficit.  However, this was not to say that the method was inadequate 

for the purposes of mathematical prediction of exercise characteristics. 

 The first assumption may be invalid, as it was reported that the relationship of 

power output and oxygen uptake is not linear from low to submaximal speeds; this 

nonlinearity may be due in part to the different musculature recruited at different 

times (Bangsbo et al., 1993).  Moreover, evidence exists that strongly suggests that at 

high velocities in the severe intensity domain, the relationship between O2 demand 

and velocity, and thus intensity, is curvilinear as opposed to linear (Hill et al., 2002).  

Therefore, based on the lack of a linear relationship, extrapolation may be 

inappropriate and may result in underestimated oxygen demands at higher intensities 

(Bangsbo, 1996; Hill et al., 2002).  Ramsbottom et al. (1994) suggested, however, 

that the underestimations may be small.  It should also be noted that different 

musculature is involved during different exercise intensities, leading also to different 

levels of lactate release; these physiological distinctions will differentiate lower 

exercise intensities from higher intensities (Bangsbo, 1996; Graham, 1996; Bangsbo, 

1998).  
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 The second assumption may also be invalid, as it has been suggested that 

energy production may vary throughout intense exercise (Bangsbo, 1996).  Hill et al. 

(2002) questioned the validity of this assumption based on reduced efficiency as 

exercise continues, as fatigue begins to affect the subject and muscle fiber recruitment 

may change.  Green and Dawson (1996) further stressed that anaerobic capacity 

should be mode-specific because of the amount of musculature involved.     

 Based on the invalidation of the assumptions used in the MAOD method, 

Bangsbo (1996) suggested that the O2 deficit is an inaccurate measure of anaerobic 

metabolism during whole body exercise.  Other studies also recognized that potential 

problems may exist in the assumptions of the O2 deficit method (Hill et al., 2002; 

Bangsbo, 1998; Moore and Murphy, 2003).  Despite such assertions that the O2 

deficit method is not valid, many studies have used the method and determined that 

OD may, in fact, be a useful estimate of anaerobic capacity (Scott et al., 1991; 

Ramsbottom et al., 2001; Doherty et al., 2000; Gardner et al., 2003; Gastin et al., 

1995). 

2-3-2. Additional Methods 

 Other methods have been used to determine the oxygen deficit in an attempt 

to either validate or further refute the O2 deficit method.  For example, Scott (1991) 

found significant correlations between the values obtained from the O2 deficit method 

and other existing anaerobic tests, including Wingate power and treadmill work.  

Moreover, Hill (1996) found that OD could be measured without extrapolation to 

determine O2 demand.  The non-extrapolative procedure relies on an iterative least 

squares method to derive O2 demand and deficit, using accumulated 2OV& , power, and 
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time to exhaustion obtained from experimental, severe intensity exercise tests.  Hill 

(1996) utilized the following equation:  

O2 deficit = (O2 demand · power · time) – accumulated 2OV&       (2-3-2.1)  

The method employed by Hill (1996) relied on three assumptions: 1) O2 

demand is a function of exercise intensity; 2) O2 deficit in intense exercise is 

independent of the exercise duration, as long as the exercise lasts 1 to 16 min; and    

3) O2 demand, and thus efficiency, does not change during supramaximal exercise.  

Based on the results of this study, it was established that O2 demand and deficit may 

be determined by utilizing several high intensity tests without extrapolating O2 

demand from submaximal exercise.  Furthermore, the values obtained via this method 

were highly correlated with the conventional O2 deficit method (Hill, 1996).  Such 

results were verified in another study by Hill (2002). 

 In addition to the method used by Hill (1996), Whipp and Ward (1993) 

proposed a method in which O2 deficit was determined as the product of 2OV& max and 

the time constant (tau) of the 2OV& max response.  Hill (2002) compared this method to 

the conventional method of Medbo et al. (1988) and to Hill (1996).  Comparisons 

showed that the values obtained using the Hill (1996) method and the Medbo et al. 

(1988) method were equal, while those from the Whipp and Ward (1993) method 

were lower than those of the other methods (Hill, 2002).   

Further studies attempted to compare shuttle runs and all-out tests with the 

conventional MAOD method.  Performance during high intensity shuttle runs showed 

a strong correlation with MAOD values (Ramsbottom et al., 2001; Moore and 

Murphy, 2003), as did results from all-out procedures that employed supramaximal 
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all-out intensity exercise as opposed to constant intensity exhaustive exercise (Gastin 

et al., 1995).  Gastin et al. (1995) also showed that the time required to reach maximal 

AOD is shorter for all-out exercise than for constant intensity exercise.  Moreover, it 

is likely that the test best suited for maximal AOD determination is based on 

individual abilities, including energy production mechanisms, training type and 

quantity, and inherent physiological characteristics, such as musculature composition.    

For untrained individuals an all-out protocol with a set duration is likely more 

appropriate (Gastin et al., 1995).               

2-4. Oxygen Deficit Differences 

Accumulated oxygen deficit has been found to be a reproducible measure 

(Doherty et al., 2000; Ramsbottom et al., 1994), which allows for comparison of 

AOD values among different groups, as well as among individuals before and after 

training.  Maximal O2 deficit is increased after high-intensity training on account of 

improvements in anaerobic capacity (Green and Dawson, 1993; Ramsbottom et al., 

2001).  Similar improvement in AOD after training was observed in both men and 

women (Medbo and Burgers, 1990; Ramsbottom et al., 2001).  The training-induced 

increase was associated with an enhanced ability to perform high intensity exercise at 

a greater volume due to a slower rate of oxygen deficit utilization (Ramsbottom et al., 

2001).  Furthermore, it was found that increases in oxygen deficit resulted in greater 

time to exhaustion when at the minimum speed at which 2OV& max was elicited (Renoux 

et al., 1999), enabling an increased ability to sustain exercise on account of an 

increase in anaerobic efficiency.   
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A reduction in O2 deficit is associated with an improvement in endurance 

performance, as the smaller OD is associated with increased exercise duration 

(Demarle et al., 2001; McArdle et al., 2000).  This is due to the aerobic nature of the 

activity, such that more of the energy cost is handled aerobically, as opposed to 

sprint-type activity that is anaerobic-based.  Aerobic exercise requires a faster 

transition from immediate anaerobic metabolism, while anaerobic exercise longer 

utilizes pathways of anaerobic metabolism and thus, is more heavily influenced by 

oxygen deficit.   

2-5. Modeling of Oxygen Deficit and VO2 Kinetics 

 Multiple efforts have been made to model and simulate oxygen deficit during 

exercise (Yano et al., 2003; Demarle et al., 2001; Bearden and Moffatt, 2000; 

Barstow, 1994; Carter et al., 2000; Hill et al., 2003; Coyne, 2001; Chiou, 2004).  

Each model provided relevant information to the modeling question at hand, and thus, 

will be discussed briefly herein. 

2-5-1. Yano et al. Model 

Yano et al. (2003) used computer simulation to estimate 2OV&  kinetics, oxygen 

deficit, and oxygen debt in decrement-load exercise (DLE); oxygen debt is the 

additional oxygen uptake above the resting level that occurs during exercise recovery 

to return the body to pre-exercise conditions and to support the physiological changes 

occurring during the recovery process (McArdle et al., 2000).  The purpose of the 

study was to establish if the difference between the O2 debt and deficit produced 

during DLE was related to 2OV&  kinetics.  OD was modeled by defining the oxygen 
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debt per unit time, and then multiplying this value by the duration of time elapsed and 

summing the products: 

])([)( 22 ntOVRtOVDt ∑=− &&                  (2-5-1.1) 

where 2OVDt &− = oxygen debt per unit time and ntOVR )(2
&  = recovery 2OV&  values in 

constant-load exercises (Yano et al., 2003).  Then, 

∑ ∆⋅−= )( 22 tOVDtdeficitO &                  (2-5-1.2) 

where ∆t = the duration of time elapsed (Yano et al., 2003).   The results of the 

simulation indicated that oxygen deficit can be modeled similarly to oxygen uptake 

kinetics if the repayment of oxygen debt during decrement-load exercise was 

included (Yano et al., 2003). 

2-5-2. Demarle et al. Model 

Demarle et al. (2001) hypothesized that OD and the slow component of 2OV&  

may be reduced after a program of specific endurance training.  Moreover, these 

reductions may be responsible for an increase in performance time above the lactate 

threshold.  In this study, oxygen kinetics were simulated using three models: a single 

exponential model and two double-exponential models.  Oxygen deficit was defined 

according to the following equation: 

)()( 11112 τ×+×= ATDADO       (2-5-2.1)     

where DO2 = the oxygen deficit (ml), A1 = the asymptotic amplitude of the fast 

component of 2OV&  (ml/s), 1τ  = the time constant of the fast component, and TD1 = 

the time delay from the onset of exercise for the fast component of 2OV&  (Demarle et 

al., 2001).  Demarle et al. (2001) showed that in a severe run, OD and the slow 
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component were not related to the performance time.  However, after a specific 

endurance training program, a decrease in OD was observed that was related to the 

observed increase in run time until exhaustion. 

2-5-3. Bearden and Moffatt Model 

Bearden and Moffatt developed a model that considered exercise as two 

phases for the calculation of the O2 deficit.  This approach was taken to account for 

the overestimations in recovery oxygen consumption that have been shown to occur 

using the traditional OD calculation (Bearden and Moffatt, 2000).  In this model, 

oxygen kinetics were simulated using three models: a single exponential model and 

two double-exponential models, as in the model developed by Demarle et al.    

The double monoexponential equation proposed by Bearden and Moffatt 

(2000) was as follows: 

]1[]1[)( 2211 /)(
2

/)(
122

ττ TDtTDt eAeAOVBtOV −−−− −+−+= &&             (2-5-3.1) 

in which 2OVB & = the baseline 2OV& , A1 and A2 = 2OV&  amplitudes for the fast and slow 

components, respectively, TD1 and TD2 = the time delays for the fast and slow 

components, respectively, and τ1 and τ2 = the time constants for the fast and slow 

components after their time delays, respectively.  Equation 2-5-3.1 was then used in 

the Bearden and Moffatt (2000) model as part of the traditional calculation of OD: 

∫−++= dttOVAAOVBtdefO Trad )()( 22122
&&      (2-5-3.2) 

Bearden and Moffatt went on to conclude that an accurate model of O2 deficit must 

include the slow component of 2OV& ; the slow component is an oxygen requirement 

with a delayed onset from rest to exercise.  This slow component makes the transition 
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to heavy exercise essentially biphasic with two separate transitions that should be 

accounted for in the model: one immediate and one delayed (Bearden and Moffatt, 

2000).  Hence, Equation 6 was determined by Bearden and Moffatt to be invalid 

about the lactate threshold, as the traditional O2 calculation is not biphasic in nature.  

Instead, a new means of calculating OD was developed by Bearden and Moffatt 

(2000) that accounted for the two distinct components of 2OV& :                  

                              )( 2222 TDAdefOdefO TradNew ×−=            (2-5-3.3) 

2-5-4. Three-Phase Model 

 A three-phase exponential model is commonly used to describe oxygen uptake 

kinetics (Barstow, 1994; Carter et al., 2000; Hill et al., 2003).  Phase I, the 

cardiodynamic component, occurs in the early seconds of exercise and reflects an 

initial increase in 2OV& .  The early 2OV&  rise is caused by an increase in pulmonary 

blood flow with exercise onset, as cardiac flow increases in direct proportion to 

exercise intensity, increasing rapidly initially followed by a more gradual increase to 

steady-state levels (McArdle et al., 2000).  The cardiodynamic component of the 

exercise response is followed by the primary component (phase II), which occurs 

approximately 10 to 20 seconds after exercise commencement.  This phase of 

exercise is characterized by an exponential increase in 2OV&  to steady state (Hill et al., 

2003).  Phase III, termed the slow component, is observed during high-intensity 

exercise, is characterized by an additional rise in 2OV&  to a secondary steady state, and 

is typically manifested after approximately 90 to 110 seconds of exercise (Hill et al., 

2003).  This component is believed to be based on a shift in muscle fiber recruitment, 
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in which the body shifts to an increased reliance on type II (predominately anaerobic) 

muscle fibers to meet the demands of heavy exercise and overcome fatiguing muscles 

(Carter et al., 2000).  While not physiologically distinct, the three phases are modeled 

as such with each phase terminating at the onset of the subsequent phase.   

 The three-phase model was defined as follows (Barstow, 1994): 
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where ( )02OV&  is the baseline value of 2OV& at time t = 0; onA0 , onA1 , and onA2  are the 

asymptotic amplitudes for each exponential term; on
0τ , on

1τ , and on
3τ are the time 

constants; and onTD1 and onTD2  are the time delays for each exponential term.  This 

equation does not consider that each phase is terminated at the beginning of the next.   

Further terms were defined (Barstow, 1994): 
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As previously noted, each phase ends when the subsequent phase is initiated.  More 

specifically, phase I ends at t = onTD1 , phase 2 ends at t = onTD2 , and phase three is 
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terminated at time t = ft .  The asymptotic amplitudes are additive based on on
n

A0 , on
n

A1 , 

and on
n

A2 (Figure 2-5-4.1). 

 

 

2-5-5. Coyne Model 

Coyne (2001) modeled the pulmonary effects of wearing respiratory 

protective masks during physical activity.  The model was focused on steady-state 

exercise and, therefore, did not account for the transition from rest to exercise, which 

incorporates oxygen deficit.  However, Coyne (2001) used oxygen deficit as a means 

of predicting performance time.  Coyne’s model is the fundamental model on which 

subsequent studies have been made in the Human Performance Lab at the University 

of Maryland, College Park, and as such, is of notable interest. 

The model inputs were: 1) subject characteristics, including age, height, 

weight, and maximal oxygen consumption; 2) respiratory system characteristics, 

including the resistance and dead volume; and 3) respirator characteristics, including 

mass, dead volume, and the inhalation and exhalation resistances.  Outputs of the 

model included oxygen consumption, minute ventilation, tidal volume, respiratory 

Figure 2-5-4.1. The three-phase model of oxygen uptake kinetics  
   (Stirling et al., 2005). 
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work, respiratory rate, times of inhalation and exhalation, oxygen deficit, and 

performance time (Coyne, 2001).   

Coyne calculated the oxygen deficit as the difference between oxygen demand 

and actual oxygen consumption.  Performance time was then calculated using the 

defined rate of OD development and an estimate of the maximal oxygen deficit: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

eDeficitRatO
eTimePerformanc

2

03.4                     (2-5-5.1) 

where 4.03 liters was the maximum oxygen deficit found above the anaerobic 

threshold, as observed by Bearden and Moffatt (2000) and stated by Coyne (2001). 

2-5-6. Chiou Model 

Chiou (2004) expanded on Coyne’s model to adjust oxygen deficit to include 

the fast and slow components of oxygen uptake.  Moreover, Chiou added transient 

effects in an attempt to make the model a more precise estimate of physiological 

factors.  Chiou first found physiological work rate, using external work rate and 

efficiency, then performed a linear regression on oxygen consumption and 

physiological work rate data.  Subsequently, performance time was predicted using 

the equation put forth by Kamon (1972): 

t wd= 7200 ( 2OV& max/ 2OV& ) – 7020                (2-5-6.1) 

in which twd = the performance time without masks.  Transient oxygen consumption 

was then calculated, and oxygen deficit was determined using performance time and 

oxygen consumption according to the single-exponential equation proposed by 

Convertino et al. (1984): 

OD = 2OV& (twd)* twd - 2OV& (twd)[twd +τ02 exp (twd/τ02)]            (2-5-6.2) 
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While the Chiou (2004) model enabled the oxygen deficit to be calculated, 

improved model results were observed when work rate was used instead of the 

oxygen deficit to predict performance time.  In addition, the model was fitted using 

data for 30% and 80% 2OV& max, which again does not model the transition from rest to 

exercise in which oxygen deficit is so influential.  Thus, this current model at the 

University of Maryland, College Park, is limited in its ability to adequately describe 

the oxygen deficit parameter of the exercise response.      

2-6. Analytical Processes 

 The research process incorporates a plethora of analytical processes, all of 

which should be thoroughly understood to provide the best research conclusion 

possible.  Some of the analytical procedures relevant to this study will, therefore, be 

discussed. 

2-6-1. Nonlinear Least Squares 

 The primary objective in modeling is defining the relationship that exists 

between independent or predictor variable(s) and dependent or criterion variable(s).  

Identification of this relationship allows the analyst to better fit the observed data 

with a predictive model equation or equation set.  It is also possible to select model 

functions that more accurately reflect the physical processes.  The fitting procedure 

will vary depending on the shape of the response curve; a nonlinear curve, as 

observed in the time response of oxygen uptake to exercise, is fit using a procedure 

referred to as nonlinear least squares (Ott and Longnecker, 2001).  This technique is 

utilized for more complex model structures, with complexity indicating that the 
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unknown values cannot be fit analytically, and instead, a numerical procedure must 

be employed (McCuen, 2003).   

 Optimizing a model to a set of data is based on minimizing the sum of the 

squares of the errors.  Minimization involves defining an objective function, 

expressed as a function of the model itself, and thereafter numerically computing 

derivatives of the objective function and adjusting the unknown coefficients until 

those derivatives equal zero.  The modeler is interested in the value of the unknowns 

where the derivatives are zero; these zero points must be found through an iterative 

process in numerical optimization (McCuen, 2003).           

 Using an iterative process, an optimum solution for each model coefficient is 

sought.  More than one coefficient may present a problem in numerical optimization 

due to the importance and sensitivity of the coefficients.  The process may be stopped 

when the more important coefficients have been optimized but the less important 

coefficients have not reached their optimal values; such is an approximately optimum 

solution (McCuen, 2003).  Moreover, those values associated with the insensitive 

coefficients may not accurately reflect the physical processes for which the model is 

desired.  These limitations to optimization require the modeler to have a fundamental 

understanding of the model and the physical processes under investigation (McCuen, 

2003).   

 The modeler should have a good working knowledge of the model and the 

physical processes being studied for additional reasons.  First, numerical optimization 

requires initial values of the unknowns to begin the iterative process.  Second, the 

technique requires increment increases/decreases for each coefficient during the 



 

 22 
 

iterations (McCuen, 2003).  Identifying appropriate initial values and incremental 

steps should be based on knowledge of the system at hand.  Furthermore, the 

modeling process often requires compromising model accuracy and model bias; the 

modeler must decide what limitations in accuracy and bias are acceptable for the 

study at hand.  Increased accuracy is associated with a minimum value of Se/Sy, in 

which Se is the standard error of estimate and Sy is the standard deviation of estimate 

(McCuen, 1993).  Bias refers to the difference between the actual value and the long-

term predicted result with an unbiased model consistently neither over- nor 

underestimating a predicted value (McCuen, 1993).  Minimum standard error (Se) and 

zero bias are often conflicting goals in fitting models, so compromising these criteria 

will often help to find an optimum solution (McCuen, 2003).  Hence, knowing when 

valid coefficient values have been determined, while still maintaining good accuracy 

and bias, is an important part of the modeling process.               

2-6-2. Assessing Model Reliability 

 The modeling process cannot be deemed complete without first performing an 

assessment of the goodness of fit and potential to reliably make predications about the 

system being investigated.  The data used for model calibration are often additionally 

used to assess the model reliability.  Some of the criteria used to assess model 

reliability include: (1) coefficient rationality; (2) the standard error of estimate, Se; (3) 

the relative standard error, Se/Sy; (4) the correlation coefficient, R; (5) the model bias, 

e ; and 5) the relative bias, ye /  (McCuen, 1993). 

 A rational model is characterized by reasonable or justifiable predictions 

provided by model use.  Rationality can likely be considered the most important 
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criteria for model assessment (McCuen, 1993).  Understanding of the model and the 

underlying physical processes is important in evaluating model sensibility or 

rationality.   

The standard error of estimate, Se, is calculated according to (McCuen, 1993): 

( ) ( ) 5.025.02 ˆ ⎟
⎠
⎞⎜

⎝
⎛ −== ∑∑ vYYveSe    (2-6-2.1) 

where Ŷ is the predicted value, Y is the measured value of the random variable, and v 

is the degrees of freedom associated with the model.  A model that makes “perfect” 

predictions will have a Se equal to zero, indicating that the predicted values equal the 

measured values.    

 The correlation coefficient, R, is an additional index of how well the predicted 

and measured values agree.  R2 defines the amount of variance in the predicted 

variable that may be explained by the predictor variable, and is hence used as another 

indictor of model fit (McCuen, 1993).  However, the correlation coefficient is 

technically applicable only to linear models and for purposes of this study, was 

replaced by a more suitable goodness of fit indicator for nonlinear models (i.e., Se or 

Se/Sy) (McCuen, 1993).   

 The model bias, as previously discussed, is a gauge of the difference between 

the long-term predicted value and the true value.  An unbiased model will 

consistently provide predicted values close to the measured value (McCuen, 1993). 

 Model accuracy is defined by the ratio Se/Sy, as previously noted.  This ratio 

signifies the improvement in the prediction accuracy due to the predictive model 

equation.  When near 0.0, the model drastically improves the prediction accuracy 

over predictions based on the mean, whereas values near 1.0 indicate little 
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improvement by the model in prediction accuracy as compared to the mean (McCuen, 

1993). 

 Hence, it is important that the model reliability or goodness of fit is evaluated 

before the model is determined complete and ready for use.  A model put to use 

before or without assessing its reliability, is ultimately of little worth.    

2-6-3. Evaluation of Differences 

 The analysis of variance (ANOVA) is completed to assess whether the 

differences in the sample means are statistically significant as compared to the 

variation that exists between samples (Ott and Longnecker, 2001).  In other words, 

this statistical method tests for the significance of the effect of the independent 

variable on the predicted variable (McCuen, 1993).  ANOVAs are performed to 

assess whether resultant differences are due to treatment or group effect, or simply 

random noise (Ott and Longnecker, 2001). 

The simple (single factor) analysis of variance is an ANOVA that considers 

only variation due to the independent variable and that associated with sampling 

error.  This test is one of the more popular statistical tests used in data analysis, and is 

highly applicable to a wide range of research fields (Roscoe, 1969).  The simple 

ANOVA has basic assumptions that are required for its use, including that the 

samples are independent random samples collected from normally distributed and 

equally variable study populations.  The normality assumption may be ignored for 

large sample sizes (Roscoe, 1969).   

 Results of the ANOVA may be interpreted by evaluating the p-value, defined 

as the level of significance of the statistical test.  ANOVA procedures are often run at 
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the 5% (0.05) significance level, meaning that the p-value is compared against 0.05 to 

assess statistical difference.  More specifically, a p-value of ≤ 0.05 indicates that a 

statistically significant difference exists between the variables being analyzed.   

2-6-4. Confidence Interval Estimation 

 The nature of physiology and the human body is variable, resulting in a range 

of values for physiological parameters across a given population.  Since a single 

parameter value will not adequately represent a physiological response, it is 

imperative that a range of predictive values be formulated to better describe the 

response of the larger population.  Confidence interval estimation is used to define 

such a range using values measured from the sample population. 

 Point estimates are the specific values from the sample data that are used for 

estimation of population parameters (Ott and Longnecker, 2001; McCuen, 1985).  

Based on these point estimates, confidence intervals may be developed for these same 

parameters.  The confidence interval indicates the probability of the true population 

value for the particular parameter occurring within that range (Ott and Longnecker, 

2001).  The smaller the interval, the more likely the population value is correct and 

thus, the higher the accuracy (McCuen, 1985).  The confidence coefficient for 95% 

confidence expresses the proportion in which repeated sampling would encompass 

the parameter being estimated 95% of the time, and is found according to the 

following equation: 

     
y

yCI σ96.1±=       (2-6-3.1) 
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where CI = the confidence interval, y = the sample mean, and
y

σ  = σ/ n , for which 

σ = standard deviation and n = sample size (Ott and Longnecker, 2001).  Using this 

equation, lower and upper confidence limits may be calculated to define an 

appropriate estimate range.  Graphically connecting these limits across the 

experimental treatments provides confidence “belts,” which allow for inference of 

intermediate treatment values (Ott and Longnecker, 2001).     
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Chapter 3: Experimental Procedures 
 

3-1. Sample Size Determination 

The appropriate determination of sample size is imperative for a successful 

study, as the sample size must provide a sufficient amount of data while maintaining 

research restraints.  The sample size is a compromise between the desired accuracy of 

the statistic as a predictor of the population value and the time necessary to achieve 

such accuracy (Ott and Longnecker, 2001).  

The researcher must define two factors for the calculation of sample size: the 

tolerable error, which is the width of the confidence interval, and the level of 

confidence (Ott and Longnecker, 2001).  The researcher must carefully choose these 

values, as a large confidence interval will result in an imprecise measure of the 

population mean and a low confidence level will likely result in an erroneous 

confidence interval.  However, that is not to say that a narrow confidence interval and 

a high confidence level of Type II error are optimal, for these conditions may require 

an unreasonably large sample size (Ott and Longnecker, 2001).  Typically, the 

confidence level is set at 90% to 95% and therefore, α = 0.10 to 0.05.  However, the 

tolerable error is dependent on the problem context and should therefore, be chosen 

according to the study (Ott and Longnecker, 2001). 

Sample size is calculated according to the following formula: 

2

22
2/ )(
E

z
n

σα=                                           (3-1.1) 

where n = sample size, z = the statistical z value at the designated α, σ = the standard 

deviation, and E = half the confidence interval width = half the tolerable error (Ott 
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and Longnecker, 2001).  However, use of equation 3-1.1 requires previous knowledge 

of the population variance (σ2) or the standard deviation (σ), both of which were 

unknown prior to initiation of this study.  Sample size was instead determined based 

on precedent set for human subject tests in the Human Performance Lab at the 

University of Maryland.  A minimum of ten subjects is the general rule for 

experiments conducted in this academic research lab; thus, ten was chosen as the 

sample size for this experimental study.   

Retrospective analysis with a tolerable error set equal to the standard 

deviation revealed that 15 subjects would be necessary to complete this research at 

the 95% confidence level.  Moreover, post-analysis indicated that use of 10 subjects 

for study completion resulted in the work being accomplished at the 88% confidence 

level.  This should be taken into account for possible future study expansion.   

3-2. Subject Recruitment 

Ten untrained subjects were recruited from the student population at the 

University of Maryland, College Park.  Some of the subjects were enlisted using a 

subject database stored in the Human Performance Lab in the Biological Resources 

Engineering Department, while others were found through day-to-day interactions 

within the campus community.  Subjects were chosen based on voluntary agreement 

to participate in the study, with the understanding that participation was not 

monetarily compensated.  Subjects were recruited following submission to and 

approval of the research protocol by the University of Maryland Institutional Review 

Board (Appendix A-1).   
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Subjects were required to be healthy, free of pulmonary and cardiovascular 

ailments, and fall within the age range of 18 to 40 years old; this age range was 

chosen to help eliminate the influence of age-induced reductions in physical ability 

and characteristics.    In addition, the American College of Sports Medicine (ACSM) 

in the Guidelines for Exercise Testing and Prescription (6th edition, 2000), states that 

vigorous physical exercise is appropriate for asymptomatic individuals between the 

ages of 18 to 40 years, and that medical clearance is not required for this group prior 

to initiating a vigorous exercise program.  This project did not provide medical 

clearance for prospective participants, and as a result, it was mandatory that 

individuals selected to participate did not require medical clearance and were at 

minimal risk for cardiovascular events while performing vigorous exercise. 

3-3. Subject Orientation 

 All study participants received an orientation to the research project in which 

they were provided with a basic explanation of the test procedures and methods being 

used.  Volunteers were given a written informed consent document outlining these 

procedures and methods and were asked to read and sign this document before being 

allowed to further participate (Appendix A-2). 

 All study volunteers were also asked to complete several questionnaires to 

better assess their health and medical ability to participate in the project.  The first 

questionnaire was a brief medical history document intended to gather information 

concerning the individual’s current and previous health background (Appendix A-3).  

The second assessment was the Physical Activity Readiness Questionnaire (PAR-Q) 

given to determine if exercise was appropriate for the volunteer without a medical 
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clearance (Appendix A-4).  Both the medical history and physical activity 

questionnaires were utilized to screen individuals deemed at risk for cardiovascular 

events when performing vigorous physical activity.  Subjects were screened for any 

cardiovascular risks, such as chest pain when exercising or heart palpitations; any 

indication of a possible cardiovascular risk would result in subject exclusion from the 

research study for safety purposes.  It was initially determined that participants should 

be administered the Spielberger State-Trait Anxiety Inventory to assess the subject’s 

anxiety disposition in general and prior to commencement of each exercise test.  

However, this information was later deemed less important than other data to be 

collected and, therefore, the Spielberger State-Trait Anxiety Inventory was not given 

in the interest of better focusing data collection efforts. 

 During this orientation, all volunteers were provided the opportunity to ask 

any questions they had regarding this study.  All subjects were informed that they 

were free to ask questions throughout the duration of the study and, moreover, were 

free to withdraw from the project at anytime without incurring any penalty.  Such a 

request of withdrawal could be made verbally or through written communication.  In 

addition, subjects were notified of their right to confidentiality in this study, with 

subject numbers serving as identifiers as opposed to names or other descriptors.    

3-4. Maximal Oxygen Consumption Test 

 A maximal oxygen consumption ( 2OV& max) test was completed by each subject 

to determine their maximal aerobic capacity, a value used to define the work rates of 

the subsequent exercise tests (75%, 85%, 100%, and 115% 2OV& max).  All subject 
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testing occurred in the Human Performance Laboratory at the University of 

Maryland, College Park. 

3-4-1. Test Procedure 

 Participants were first asked to warm-up on a Quinton motorized treadmill for 

approximately five minutes at 50 to 60% of his/her age-predicted maximum heart 

rate.  Immediately following this warm-up period, subjects were asked to briefly 

stretch in order to avoid possible muscle injury during the test.  Next, the participants 

were seated and fitted with a Hans-Rudolph half-piece breathing mask for the 

collection of expiratory air.  A hose was then connected to the exhalation valve of the 

mask to collect expired gas.  The hose was connected to a mixing chamber, which 

was, in turn, connected to a pneumotach.  A mass spectrometer was connected to this 

gas analysis system via a capillary tube attached to the collection hose; the mass 

spectrometer was necessary for supplying information regarding expired gas content.  

This airflow collection system also included a computer for gas analysis and data 

display.  A DAS-8 analog-to-digital converter board was utilized, in addition to a 

custom-designed computer program already in use in the Human Performance Lab 

for gas data collection and thirty-second average output.                   

At least one minute of baseline 2OV&  data was collected with the subjects in a 

seated position.  The subjects were then asked to stand and straddle the treadmill belt.  

When the belt began to move, subjects were asked to carefully step onto the belt and 

begin walking at the appropriate pace; the pace was gradually increased until the 

treadmill speed and grade were ramped to the levels required to elicit the desired 

work rate (50-60% of the volunteer’s age-predicted maximum heart rate response).  
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The moment at which the treadmill speed and grade reached the necessary levels to 

elicit this response marked the beginning of the 2OV& max test.  This work rate signified 

the initial stage of the test and was continued for approximately three minutes.   

At the completion of this stage, a new work rate was selected and the 

participants were required to work at this new intensity for another three minutes.  

Work rates were subsequently modified every third minute during the maximal 

aerobic assessment test until reaching 2OV& max.  The work rate increases were 

calculated to exhaust the subject’s aerobic system in approximately 9 to 15 minutes.  

In addition, the increase in work rate was achieved only through an increase in 

treadmill speed.  The treadmill grade was set at 2.5% for each 2OV& max test and each 

exercise test thereafter for enhanced comparison and result interpretation. 

The test sessions were discontinued upon reaching 2OV& max, a point at which 

oxygen uptake fails to increase, or may slightly decrease, despite increases in exercise 

intensity (McArdle et al., 2000).  This termination point was more specifically 

defined by a rise in the oxygen consumption rate of <150 ml/min in response to a new 

work rate (McArdle et al., 2000).  Additionally, the tests were terminated if the 

participants reached his/her age-predicted maximal heart rate, if the individuals 

displayed a response that contraindicated continued assessment (e.g., paleness in the 

face, extreme difficulty breathing), or if the participants reached volitional fatigue 

despite motivation from the test administrator.  If the tests were ceased prior to 

reaching 2OV& max, a decision was made based on the data collected as to whether the 

data was usable or if the subject should return to complete another graded exercise/ 
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2OV& max test.  None of the ten subjects required a second test to assess their aerobic 

capacity. 

Throughout the tests, heart rate data were collected using Polar (Polar Electro 

Inc.; Lake Success, New York) heart rate monitors worn by the subject.  Expired gas 

data were also collected throughout, as was the participant’s rating of perceived 

exertion (RPE).  The Rating of Perceived Exertion is a subjective scale that is used to 

identify the effort the subject believes that he/she is giving in the exercise test.  The 

scale is ranked 6 to 20 with a rating of 6 indicating a lack of exertion, increasing 

gradually until reaching a rating of 20, which corresponds to maximal exertion.  In an 

exercise test, the RPE scale is held up as the subject exercises and he/she is asked to 

indicate the rating by pointing to the level of exertion that he/she feels appropriate.  

Subjects are notified that there is no correct answer, so they may respond as they 

deem fitting.  The RPE value is then called out by the test administrator to ensure that 

the correct rating is recorded.  The RPE given by the subject is then used as an 

indication of the subject’s ability to continue, enabling the test administrator to adjust 

the work rate stages required to elicit 2OV& max in the time desired.  The data collected 

during the maximal oxygen consumption tests were recorded electronically and using 

hard copy data sheet (Appendix A-5).  Demographic information for all subjects was 

also collected at this time (Table 3-4-1.1). 
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Subject # Gender Age Weight (kg) Height 2OV& max  (L/min) 

001 M 42* 93 5' 8" 4.59 
145 M 35 93 5' 10" 3.96 
358 F 24 66.2 5' 6" 2.20 
359 M 25 84 5' 10" 3.57 
379 F 22 63.5 5' 4.5" 1.74 
401 F 25 50 5' 4" 2.80 
414 M 24 93.5 6' 0" 3.17 
419 M 21 69 5' 8" 2.82 
420 M 21 75 5' 7" 3.66 
422 M 21 75 5' 9" 2.72 

 

 

 

 

3-4-2. Test Analysis 

 The subsequent oxygen deficit exercise tests were based on 2OV& max; each test 

being conducted at a percent intensity of 2OV& max (75%, 85%, 100%, and 115% 

2OV& max).  In order to proceed with these tests, it was first necessary to determine the 

work rates (kJ/min) and treadmill speeds that would elicit these percent intensities.   

The first step in this process was to define the metabolic cost per stage in the 

2OV& max test.  The metabolic rate, or physical metabolic cost of exercise, was defined 

using the equation presented by Gagge and Nishi (1983):         

)77.023.0(14.21 2 += RQOVM &&      (3-4-2.1) 

where M&  = metabolic rate or cost (kJ/min) and RQ = the respiratory exchange ratio 

(known also as RER, unitless).  The RER, which is measured using the gas analysis 

program previously noted, is the ratio of carbon dioxide (CO2) produced by the body 

* Subject deemed able to participate based on extensive athletic 
involvement (aerobic and anaerobic activities).   Subject did not have 
cardiovascular risk factors as identified in the medical history questionnaire 
or the PARQ.  Moreover, subject reported no physician – identified reasons 
for not exercising and was additionally notified of the risks of study 
participation.  Involvement was deemed conditional, with any signs of 
subject distress serving as cause for ceasing further participation. 

Table 3-4-1.1. Demographic information for the study participants. 
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to oxygen consumed; a ratio closer to or above 1.0 indicates heavy or anaerobic 

activity in which CO2 accumulates (McArdle et al., 2000).  The maximum 2OV&  for 

each stage and the corresponding RER were used to compute the stage metabolic 

cost.  The metabolic cost for each stage was then compared to the metabolic cost 

associated with the subject’s 2OV& max to find the stage fraction of 2OV& max. 

 The metabolic cost was graphed versus the associated stage fraction of 2OV& max 

(kJ/min versus % 2OV& max).  A generally linear relationship existed between these two 

parameters (for a subject-specific intensity range), and the equation that relates these 

factors was determined for each subject (Appendix A-6).  This equation was then 

used to extrapolate the metabolic cost of each of the desired exercise intensity 

conditions.  Finally, the treadmill speeds for each intensity condition were calculated 

by substituting metabolic cost for work rate in the external work rate equation 

presented by Aoyagi et al. (1995):  

            θsin06.0 gvmW tot=&       (3-4-2.2) 

where W& = the external work rate (kJ/min), mtot = the mass of the body plus clothing 

(kg), g = the acceleration due to gravity (9.81 N/kg), and θ = the angle of treadmill 

inclination as compared to the horizontal (= arctan Grade/100, degrees, = 0.0250 

since the treadmill slope was held constant).  

3-5. Maximal Oxygen Deficit Tests 

3-5-1. Data Collection Program 

The program used for gas collection and analysis in the maximal oxygen 

consumption tests provided 30-second averages as output values.  The smoothing 



 

 36 
 

effect of averaging is often a desirable attribute, although data averaging, especially 

in regards to biological data, often removes inherent variability that exists within the 

system (Robergs and Burnett, 2003).  For a more accurate representation of the 

oxygen uptake response during exercise, and in turn a more precise estimate of the 

oxygen deficit developed, instantaneous gas collection was determined to be the most 

desirable option. 

A LabView (National Instruments Corporation; Austin, Texas) program (Koh, 

2005) was employed for instantaneous data collection.  The program uses expired gas 

flow, and carbon dioxide and oxygen contents of the gas as measured by the mass 

spectrometer to determine oxygen consumption.  The fundamental equation within 

the program was defined by McArdle et al. (2000): 
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where 2OV& = volume of oxygen consumed per minute and EV& = expired air volume 

per minute.  However, the LabView program calculates the percentage of nitrogen 

(N2) using O2 and CO2 values.  The program has a sampling rate of 1/100th of a 

second and provides several output parameters, including time, O2 and CO2 

concentrations, exhalation flow, and 2OV& . 

 In showing that the instantaneous program was reliable, the LabView program 

was calibrated against the standard 30-second average program used in the Human 

Performance Lab.  To do so, the 2OV&  values from the thirty-second program were 

compared against instantaneous 2OV&  values averaged over the same time period.  The 

two sets of 2OV&  values were graphed versus one another to assess the correlation 
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between the two gas analysis programs (Figure 3-5-1.1).  The two programs have a 

highly linear relationship and are strongly correlated, having an R2
 value of 0.95.  

Thus, the LabView program was deemed valid and suitable for use in collecting 

reliable instantaneous gas data. 
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 While the average program and the instantaneous program were found to be 

highly correlated, it was also necessary to assess whether a delay existed in the gas 

concentration analysis.  Any delay in the concentration reading can produce an offset 

in the 2OV&  reading for the duration of the exercise test and will require that the offset 

be accounted for in all subsequent calculations.  To determine if a delay existed, the 

CO2 and flow values were graphed versus time, and the times of the peaks were 

defined and compared against one another (Figure 3-5-1.2).  The peak times showed 

that CO2 concentration peaks an average of 0.48±0.12 seconds after the air flow 

Figure 3-5-1.1. Calibration graph for gas collection programs (Koh, 2005).  
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peaks.  An ANOVA on the peak times indicated that the peak times were not 

significantly different (p = 0.91), and therefore, it was not necessary to account for a 

delay in the instantaneous data analysis.  The times of the CO2 peaks should 

correspond to the times of the O2 peaks as based on the principles of gas expiration 

and expiratory measurement.  Hence, the strong correlation between CO2 peak times 

and flow peak times likewise indicates strong agreement between O2 and flow.  It is 

this relationship that is of key interest, as the lack of a difference between peak times 

provides confidence in the 2OV&  as measured and reinforces that there is no need to 

account for a delay in the instantaneous data analysis. 
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3-5-2. Pre-Test Metabolic State 

 Each individual has a specific minimum energy requirement for sustenance of 

metabolic activities while the body is awake though inactive.  Measurement of 

Figure 3-5-1.2. Delay calculation graph for Koh (2006) LabView program. 
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oxygen uptake prior to exercise initiation allows for inference of the metabolic 

activities occurring within the body.  A subject’s baseline 2OV&  will affect his/her 

metabolism during exercise; the higher the baseline 2OV& , the more elevated his/her 

metabolism during exercise based on an increased energy requirement throughout 

(McArdle et al., 2000).   

It was, therefore, important that each subject try to maintain a consistent pre-

test metabolic state for each exercise test to avoid inconsistencies in the oxygen 

uptake responses.  A relatively consistent baseline 2OV&  throughout the exercise test 

sessions would indicate that any differences in the O2 uptake response were not based 

on initial conditions, but rather on the exercise itself.  Research participants were 

asked to keep a log of their physical activity and diet for 24 hours prior to each 

exercise test session (Appendix A-7).  This information was used as a spot check to 

ensure that there were no dramatic changes in the food type/ amount consumed or in 

the amount/ type of activity completed by the study participant.  A significant 

difference would alter the subject’s metabolic conditions, indicating that the test may 

need to be rescheduled for another day to avoid metabolic inconsistencies.                

 The menstrual cycle of the female volunteers was also monitored for 

metabolic purposes.  While the phase of the menstrual cycle has been shown to have 

little or no influence on aerobic performance, studies have shown improvements in 

the performance of high-intensity exercise that occur during the luteal phase of the 

female cycle (Lebrun, 1993; Hall et al., 1981).  The luteal phase begins immediately 

following ovulation and ends before the onset of menses (Lebrun, 1993).  It was 

determined that the female participants should complete all of the exercise tests for 
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this study in the same two weeks of their cycle.  More specifically, the participants 

should not complete the tests during menses, but rather during the first two weeks of 

their next cycle.  Consistency within the menstrual cycle was the objective to ensure 

that there would not be metabolic changes due to menstruation.      

A final means of reducing any influence of metabolic differences on the final 

oxygen deficit results was to define rules of consistency for testing times.  Subjects 

were asked to complete each exercise test on a separate day, initiating each test at 

approximately the same time of day (± 2 hours) according to the procedure followed 

by Carter et al. (2000).  Maintaining such a schedule would help minimize the effects 

of prior exercise tests on the current test, while additionally minimizing the effect of 

any diurnal changes in metabolism.  Should time constraints require that a second test 

be conducted on an exercise trial day, subjects were asked to sit for an hour between 

tests to allow for recovery of energy stores; this decision was also made according to 

the procedure outlined by Carter et al. (2000).  Subjects were additionally asked to 

wear similar clothing for each session to eliminate thermoregulatory differences.      

3-5-3. Test Procedures  

 Each study participant was asked to complete five exercise tests, performed in 

a randomized order, to define the maximal oxygen deficit occurring across a range of 

exercise intensities.  The subjects completed tests on a Quinton motorized treadmill at 

75%, 85%, 100%, and 115% of their pre-determined 2OV& max.  Four of the five 

sessions were completed with the subject wearing a military-style (M40) respirator 

mask, while the remaining exercise test was performed with the subject wearing a 

Hans-Rudolph breathing mask.  The M40 worn by the subjects weighed 0.78263 kg 
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with the “standard” filter attached; this filter imposes a resistance of                     

0.749 cmH2O/L/sec when measured at a typical resting flow rate of 6 liters/min 

(Johnson et al., 2005).  The dead volume of the mask was not measured; the dead 

volume refers to the air that is present in the mask, but not taking part in gas exchange 

(Johnson, 1999; Johnson, 1991).  This volume was not measured because it may vary 

from subject to subject and test to test, as this parameter is based on breath flow 

patterns and any seal leaks due to improper fit (Saatci et al., 2004).    

Exercise was completed at each of the four intensities while wearing the M40 

respirator, although the Hans-Rudolph mask was worn only for a second exercise 

session at 85% 2OV& max; replication of the 85% test was done to examine the effect of 

the respirator mask on oxygen deficit at a commonly studied intensity.  It should be 

noted that the original study protocol called for three additional exercise sessions in 

which the Hans-Rudolph mask would be worn for exercise at the three remaining 

intensities; these tests were later deemed unnecessary for meeting the objectives of 

this research and were eliminated.  All tests were conducted in the same manner, the 

only difference being the mask condition and the work rate used.             

  After arriving in the Human Performance Lab, subjects were asked to sit for 

15 to 20 minutes in an attempt to return to resting metabolic conditions, or as close to 

baseline as possible.  A warm-up or stretching period was not allowed prior to 

exercise in order to ensure that the OD obtained was a maximal value for each test; 

warm-up or stretching by the volunteers would exhaust part of the ATP stores being 

drawn from at the beginning of exercise, thereby reducing the measured OD.  Study 

participants were then fitted with a M40 military-style negative pressure respirator 
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mask that had been adjusted for standard conditions (containing the standard filter) 

(Figure 3-5-3.1a).  If the exercise test was the Hans-Rudolph condition, subjects were 

instead fitted with a Hans-Rudolph half-piece breathing mask for collection of 

expiratory gases (Figure 3-5-3.1b).          

    

 

 

The mask exhalation valve (M40 or Hans-Rudolph) was then connected to a 

hose identical to that used in the 2OV& max test.  The hosing was connected directly to 

the pneumotach instead of the mixing chamber; the mixing chamber was removed 

from the gas collection system because of the desire to collect instantaneous breath 

data.  Again the mass spectrometer was connected to the system by a capillary tube 

attached to the hosing.  Two computers were connected to this airflow collection 

system, one running the standard 30-second average analysis program and the other 

operating the instantaneous LabView program.  The 30-second program was used 

only to spot check the 2OV&  response to ensure that the test was proceeding as 

expected; irrational values would imply that a problem existed in the gas collection 

set-up.   

Figure 3-5-3.1. a) Military-style M40 negative-pressure 
      respiratory mask;              
  b) Hans-Rudolph half-piece breathing mask. 

a b
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The subjects were then seated and asked to breathe normally for at least two 

minutes while baseline 2OV&  data were collected.  Afterward, the participants were 

asked to stand and straddle the treadmill belt.  The treadmill was turned on and the 

subjects were instructed not to step onto the belt until the treadmill speed and grade 

reached that required for the test.  All of the tests were conducted with the treadmill at 

2.5% grade for enhanced comparison across all subjects and intensity conditions.  

Once the treadmill speed and grade reached that defined for the specified exercise 

intensity, subjects were given an instruction to step onto the treadmill belt whenever 

they were ready to begin.  Since the speed was often quite high, the volunteers were 

asked to be cautious when stepping onto the belt and were asked to adjust to the pace 

as quickly and smoothly as possible.  Data logging and timing of the tests were 

initiated once the subjects stepped onto the moving belt.          

All exercise tests proceeded until volitional fatigue, although motivation was 

given to the subjects throughout the tests to help ensure that the subjects continued 

exercise as long as possible.  When the subjects were not able to proceed with 

exercise, data logging was stopped, the treadmill was slowed, and the time duration of 

the test was recorded.  Upon termination of the tests, subjects were asked to complete 

a five-minute cool-down to ensure subject safety.       

 A Polar heart rate monitor was worn by all subjects to collect heart rate data 

throughout exercise.  Rating of Perceived Exertion and Breathing Apparatus Comfort 

scales were taken periodically during each test to provide subject feedback on the 

exercise intensity and subject-perceived mask comfort.  The BACS (Breathing 

Apparatus Comfort Scale) is a subjective scale used to measure the subject-perceived 
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mask comfort.  The BACS is rated from 0 to 8; a rating of 0 is indicative of mask 

conditions that are “very, very uncomfortable,” whereas a rating of 8 is used to 

signify that the respirator is “very, very comfortable.”  Again, subjects were informed 

that there was no incorrect answer when identifying a BACS rating, and the rating 

was obtained in the same way as the RPE score.  The data collected from these 

exercise tests were recorded electronically and using a hard copy data sheet 

(Appendix A-8). 
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Chapter 4: Analytical Procedures and Results 
 

4-1. Breath-by-Breath Conversion 

 The high sampling rate of the instantaneous LabView program resulted in a 

large amount of expired gas data collected for each exercise test.  The instantaneous 

data incorporated both the inspiratory and expiratory components of breathing and, 

therefore, had to be converted to show the oxygen uptake response.  The conversion 

process was used to convert the 3,035,562 data points collected into the 15,428 

breaths taken by the subjects over the course of all of the oxygen deficit tests.  The 

breath-by-breath conversion process, described hereafter, was used for each exercise 

test.   

 The gas data were imported into Microsoft Excel (2003) and a graph of 2OV&  

(liters per minute, L/min) versus time (seconds) was generated for the test (Figure 4-

1.1).  Depending on the length of the test, graphing may have been done using 

multiple sequential series to accommodate all of the data.  The resulting graph 

provided a visual representation of each breath taken, including the inspiratory peaks 

and the pause between subsequent breaths (Figure 4-1.2).       
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Figure 4-1.1.  Example of the instantaneous breath data graphed for a single  
study participant. 

Figure 4-1.2.  Instantaneous breath data magnified to show breath components. 
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 In order to define the oxygen uptake that occurred within each breath, If-Then 

statements were used in the Excel worksheet to define the beginning and end of each 

inspiratory increase.  The point representing the breath beginning was defined as the 

time of the lowest 2OV&  value that occurred before an increase to peak 2OV&  after the 

relatively constant 2OV&  values experienced during exhalation; theoretically this point 

symbolized the onset of inhalation.  Likewise, the end of the inspiratory rise was 

identified by finding the time of the lowest 2OV&  value occurring after a decrease from 

peak 2OV& .  The If-Then statements were used to compare 2OV&  values to find the 

lowest points before and after each inhalation.  An offset in the breaths also had to be 

accounted for if the points of exhalation were above zero liters per minute (L/min); 

exhalation values should approximately equal zero L/min based on the idea that no 

oxygen uptake occurs during this breath component.  The offset in exhalation 2OV&  

was accounted for by averaging the exhalation uptake range and allowing only points 

above this average to be defined as the inhalation start and stop points.  Finally, the 

end of the breath was defined as the last time point before the start of the next breath, 

or next inhalation; theoretically this point signified the end of expiration. 

 Using the beginning and ending of the inspiratory rise to define each 

inhalation, the points within each inhalation were used for integration purposes to 

find the 2OV&  volume occurring within each rise.  The integration process utilized the 

upper sum method, a precursor technique to the Trapezoidal Rule and Simpson’s 

Rule, to calculate the area under each inhalation (Ellis and Gulick, 1994).  The 

premise for this method is that the overall area under a curve may be approximated by 

defining intervals within the range considered and circumscribing rectangles in the 
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intervals; the upper sums of the areas of the circumscribed rectangles were then 

calculated to find the overall area under the curve.  The upper sum was found 

according to the following equation given by Ellis and Gulick (1994):   

nnf xMxMxMPU ∆++∆+∆= ...)( 2211                  (4-1.1) 

in which M = 2OV&  (L/min) and x∆ = the time between sample points 

( nxxx ∆=∆=∆ 21 = 0.01 = the gas collection sampling rate).  All M values within 

each inspiratory rise were summed for the specified inhalation and multiplied by the 

sampling rate x∆ .  

 The time of each breath was calculated by subtracting the breath start time 

from the breath end time.  Finally, the upper sum for each inhalation was divided by 

the corresponding time length of the breath to find the breath-by-breath oxygen 

uptake per unit time.  When necessary, unit conversions were made within all of the 

breath-by-breath conversion calculations for consistency.  Upon completing these 

calculations for each breath within a dataset, the resulting breath-by-breath 2OV&  

values were graphed versus the associated breath start time to give the final breath-

by-breath oxygen uptake response for the exercise test (Figure 4-1.3).  
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4-2. Fitting of Nonlinear Equations 

4-2-1. Model Considerations 

 In attempting to define the appropriate model to fit to the collected data, it was 

first necessary to ascertain those characteristics that must be considered for model 

accuracy.  Upon examining the data, two primary factors were found to be of utmost 

importance when selecting a model: (1) the variability observed in the oxygen uptake 

response, as a large amount of noise was observed in each dataset; and (2) a 

decrement in 2OV&  that occurred near the end of exercise in some of the subject 

responses.  

 Breath-by-breath data is inherently variable, reflecting both biological 

variability and variability that is associated with a high sampling frequency (Myers   

Figure 4-1.3.  Breath-by-breath data as converted from raw exercise data. 
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et al., 1990; Robergs and Burnett, 2003).  Individuals also exhibit personal breathing 

patterns, resulting in additional variability in breath-by-breath data over a given 

population (Benchetrit, 2000).  Additional inconsistencies in 2OV&  data may be due to 

imprecision or limitations in the gas collection and analysis equipment, or the 

calibration process used for set-up (Robergs and Burnett, 2003).  It was, therefore, 

important that the variability of the data be considered in any model used for analysis.  

Moreover, data smoothing or breath averaging were not utilized in the modeling 

process, as these methods may actually remove unevenness due to true biological 

variability and artificially alter the 2OV&  response (Robergs and Burnett, 2003).   

 A decrement toward the end of the test session in the oxygen uptake response 

was observed in some of the exercise tests, although this phenomenon was not 

consistently observed; not all of the subjects showed an obvious decrement, nor was 

this decrease seen for specific exercise intensities.  Hoogeveen and Keizer (2003) 

studied the incidence of 2OV&  overshoot after it had been observed in prior exercise 

tests, conducted in two independent laboratories in which they worked, although 

never reported.  The concept of the overshoot in oxygen uptake is in contrast with the 

traditional exponential 2OV&  response.  Hoogeveen and Keizer (2003) studied the 2OV&  

response in 15 subjects during constant-load exercise, finding that a 2OV&  overshoot 

occurred in the first two minutes, namely 55 to 90 seconds, of exercise before the 

volunteers reached steady state; all but three of the study participants showed this 

response.   

 Hoogeveen and Keizer (2003) suggested several possible explanations for the 

overshoot phenomenon.  The first possible explanation was that a sudden increase in 
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exercise intensity may instigate an exaggerated immediate increase in ventilation to 

meet the physiological demands on the body, although the change in cardiac output 

that accompanies the intensity increase does not match that of ventilation.  Another 

rationalization is that a sudden increase in cardiovascular dilation may occur, which 

would enhance muscle perfusion for faster and increased oxygen extraction 

(Hoogeveen and Keizer, 2003).  Individuals might initially increase oxygen uptake to 

meet the estimated work demand, but upon reaching this level realize that such a level 

of uptake is not required to perform the work successfully and 2OV&  is decreased; 

however, this explanation introduces the question of where the additional oxygen is 

stored following this transition.  Perhaps individuals become more efficient as 

exercise continues and oxygen uptake may decrease.  It is also possible that the 

subjects exhibit a change in body posture near the end of exercise, which would cause 

a change in the oxygen demands of the musculature.  Regardless of the physiological 

rationale, the decrements in end 2OV&  reflect a change in the energy sources and 

transfer mechanisms being utilized and should be considered in any model used to 

define oxygen deficit.   

4-2-2. Model Used 

 While the three-phase model and a single-exponential model were originally 

attempted for modeling of the exercise data, it was determined that the data as a 

whole did not fit these models and a new model was sought.  Taking into 

consideration the breath-by-breath variability and possible end-exercise 2OV&  

decrements, a FORTRAN program was developed to model the data using a 

nonlinear equation.  The model was based on the following equation: 
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                             tCC etCOVy 32
12ˆ −+= &                  (4-2-2.1) 

where ŷ  = the oxygen uptake ( 2OV& ) response, 2OV&  = the oxygen uptake averaged 

from 2 minutes of baseline data (L/min); C1, C2, and C3 = coefficients to be optimized 

by the model; and t = time (sec).  C1 controls the scale of the ordinate with the 

magnitude of the 2OV&  response increasing with increasing C1.  The parameter C2 

controls the rate of climb of the response curve with the 2OV&  response rising higher as 

C2 increases.  The parameter C3 is a scaling factor that varies with time; as C3 

increases, the 2OV&  ( ŷ ) values are lessened because of the exponential term tCe 3− .  C3 

can cause a downslope in the curve; the curvilinearity of the response is controlled by 

a combination of C2 and C3.  Therefore, an increase in C1 or C2 is positively 

associated with an increase in 2OV& , whereas C3 has an inverse relationship with 2OV& .  

Moreover, the peak of the response curve occurs at a time of C2/C3, so a downslope 

will occur if the test duration exceeds that of the coefficient ratio.    

 Two models were run using the data, each identical in the equation used 

(Equation 4-2-2.1) although one required that the 2OV&  be set to the measured average 

baseline value and the other optimized the baseline 2OV&  to better match the data.  For 

some cases, the measured average baseline value did not agree with the 2OV&  values 

measured at the onset of exercise, presenting a discrepancy in the modeled response; 

therefore, the option was to allow the initial 2OV&  to be optimized.  The measured 

2OV&  baseline values were compared to those optimized by the second model to 

determine if optimization of the baseline 2OV&  was preferable for fitting of the data 

with the nonlinear model.  The error between the two sets of values was determined 
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and the average error calculated (Appendix B-1).  The results denoted an average 

error of 0.01 between the measured and optimized baseline 2OV&  values, which 

indicates that the measured baseline model is unbiased.  The statistical deviation of 

the errors is 0.20, which indicates the precision of the measured values relative to the 

model estimates, this level of precision was deemed acceptable in the interest of using 

actual data as measured from the subjects.  An ANOVA run on the two sets of 2OV&  

values indicated that there was no statistically significant difference between them (p 

= 0.71).  A decision was then made to use the model in which the baseline 2OV&  was 

set to the measured average value; the decision was made to use actual data, as 

opposed to theoretical optimum values, for improved applicability. 

 Finally, the model program using Equation 4-2-2.1 and set 2OV&  values was 

applied to each set of exercise data.  The program used an iterative process to define 

the optimum solution for each of the coefficients.  Initial values were approximated 

and the incremental steps were set to ten percent of the initial value estimates.  After 

iteration, the program provided values for goodness-of-fit statistics (e.g., accuracy 

and correlation), optimized values for each coefficient, and information relaying 

which of the coefficients was most important in defining the response curve was 

additionally provided; a typical set of results is presented (Table 4-2-2.1).  Model 

results were obtained for all subjects, across all of the exercise intensities and mask 

conditions (Appendix B-2), and graphed for visual comparison against the breath-by-

breath graphs (Figure 4-2-2.1, Appendix B-3).  The graphed model results showed 

strong visual correlation to the breath-by-breath data, so only the model results are 

presented in their entirety (Appendix B-4).     
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 414 

 C1 C2 C3 2OV&  Se/Sy R C2/C3 
75% M40 0.7672 0.2770 0.0005 0.44 0.7733 0.6362 554.0000
85% M40 0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286

100% M40 0.1555 0.6800 0.0023 0.42 0.5655 0.8267 295.6522
115% M40 0.0967 0.9914 0.0086 0.46 0.3533 0.9369 115.2791

          
85% M40 0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286
85% Hans 1.6770 0.1197 0.00001 0.39 0.8254 0.5667 11970.0000
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4-3. Assessment of Model Reliability 

4-3-1. Coefficient Rationality/ Trends 

As previously noted, the rationality of model coefficients is likely the most 

important measure of model assessment.  Rational values provide rational predictions 

of the phenomenon under consideration.  In order to assess rationality of the model, 

the values of C1, C2, and C3 had to be examined, recalling that C1 controls the 

Table 4-2-2.1 Model results for subject #414 across intensities and mask conditions.

Figure 4-2-2.1. Model results for subject #414 for exercise at 115% 2OV& max  
  while wearing an M40. 
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magnitude of the ordinate, C2 controls the rate of climb of the response curve, and C3 

causes a downward slope in the curve.  The peak of the response curve occurred at a 

time of C2/C3; this parameter was very important in assessing model rationality.  A 

decrease in C2/C3 indicated that the subject was reaching his/ her oxygen uptake peak 

at an earlier point in the exercise test.  This decrease in time was to be expected as 

exercise intensity increases, for which oxygen deficit values were also expected to 

increase.  The C2/C3 ratio should, therefore, be negatively correlated with oxygen 

deficit. 

Initially, the model coefficients indicated a generally decreasing trend for the 

C2/C3 parameter with increasing exercise intensity, though some of the data sets 

provided C2/C3 ratios inconsistent with this trend (Appendix B-2).  The correlation 

between OD values (to be later discussed) and C2/C3 values was not always 

consistent, with an R value of -0.15935 indicating little correlation.  Due to the lack 

of a consistent trend in the peak ratio and the poor resultant correlation, some of the 

data sets were rerun using the model to obtain different coefficient results.  Re-

analysis was completed in light of response surface analysis.  Response surfaces 

represent the relationship that exists between the fitted coefficients and the objective 

function under consideration (McCuen, 2003).  These tools provide information 

regarding the extent of interaction between the coefficients, optimal coefficient 

solutions, and the stability of this optimum solution.  In fitting the model coefficients 

in nonlinear regression, the objective is to descend over the response surface to a 

point of minimum Se/Sy (highest accuracy) (McCuen, 2003).  Hence, using response 
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surfaces it is possible to show that slightly altering the value of the coefficients may 

do little to change the model accuracy and correlation.        

Only those sets for which the peak ratio trend was not consistent were re-

analyzed.  The model was rerun by holding the C2 and C3 values constant at levels 

that would provide a C2/C3 value consistent with the expected decreasing trend; the C1 

coefficient would then be optimized by the model. Comparison of the resulting 

accuracy and correlation values was then completed to determine if the goodness-of-

fit of the model to the data was affected.  Very small decrements in the resultant 

correlation were deemed acceptable in the interest of more rational coefficient values, 

more specifically peak values consistent with the originally observed and generally 

expected trend, while larger values indicated that the reruns were not appropriate.  

The results of the new coefficient values were obtained (Appendix B-5) and new 

graphs of the results were created where appropriate (Appendix B-6).  This practice 

of using adjusted coefficients was justified because the response surface of the model 

was very flat near the optimum.  The extreme variation in the breath-by-breath 

measurements introduced considerable uncertainty in the coefficients.         

The peak ratios indicated reasonable values and trends in the expected 

direction according to increasing exercise intensity.  The ratios generally decrease 

with increasing intensity and typically increase with removal of the respiratory mask 

during exercise; increasing values with the Hans-Rudolph breathing mask are 

anticipated based on an uninhibited breathing ability by the subjects.  The correlation 

between the oxygen deficit values (to be later discussed) and the new C2/C3 ratio 

values was improved to an R value of -0.24623, which is also in the expected 
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direction of the physiological relationship.  Based on these findings, the new 

coefficient values were used in the subsequent calculation of oxygen deficit for each 

exercise test and in the determination of a transfer function to describe this exercise 

phenomenon.   

4-3-2. Goodness-of-Fit Statistics 

 The goodness-of-fit statistics for a given model are also important in assessing 

model reliability.  The two statistics of primary consideration for the current model 

were accuracy (Se/Sy) and correlation (R).  As previously noted, Se/Sy values of 0.0 are 

most desirable; the closer the accuracy estimate to zero, the more significant the 

improvement in prediction accuracy using the model.  The correlation coefficient, R, 

is used to determine the degree of agreement between the predicted and measured 

values; larger values indicate an increase in agreement and are, thus, more desirable.  

Less emphasis was placed on this statistic, however, since this indicator is most 

useful for linear models.       

 The model results (Appendix B-5) indicated low to relatively moderate 

accuracy estimates.  These low values were not deemed problematic based on the 

high variability observed in the breath-by-breath data.  The moderate goodness-of-fit 

statistics do not really suggest a mediocre model, as the model passes through the 

center of the data, and the model is intended to represent 2OV& , not the breath-by-

breath physiology of the subject.  As to the previous discussion, breath-by-breath data 

are highly variable due to both biological variability and error introduced by 

experimental collection and analysis.  The variability in these data likely reduces the 

fit of any model applied, presenting difficulty in an absolute model fit because of data 
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variability.  A low number of data points and a large range of variability are likely 

explanations for the lower accuracy estimates obtained for some of the data sets.  It 

should be noted, however, that the model results show moderate to relatively high 

correlation values.  These values are positive indicators of a reasonable model, 

although the fact that the model is nonlinear should be considered.    

4-4. Calculation of Oxygen Deficit 

 The analytical process continued with the calculation of the OD developed by 

each subject in the exercise tests.  The coefficients obtained using the nonlinear 

model were entered into the model equation (Equation 4-2-2.1) to determine the 

defining function of the oxygen uptake response curve for each exercise test.  Using 

Mathematica 5.2 (Wolfram Research Inc.; Champaign, Illinois), each model curve 

was explicitly integrated over the length of the test.  Integration over the exercise 

performance time provided the area under the oxygen uptake response curve, 

signifying the 2OV&  of the exercise test (Figure 4-4.1.a).  Oxygen deficit is, however, 

defined as the difference between 2OV&  at the beginning of exercise and 2OV&  

occurring at steady-state (Krogh and Lindhard, 1920; McArdle et al., 2000).  This 

definition implies that the area above the curve, as opposed to below it, up to the 

steady-state or peak 2OV&  level, is the oxygen deficit.  Therefore, the value of the 

steady-state or peak 2OV&  was multiplied by the corresponding exercise performance 

time to define the absolute maximum oxygen uptake possible in liters               

(Figure 4-4.1.b).  The associated integrated 2OV&  (Figure 4-4.1.a) was then subtracted 

from the absolute max uptake (Figure 4-4.1.b) to define the accumulated oxygen 



 

 59 
 

deficit for the exercise; schematically, this is the area above the curve, constrained by 

the level of the steady-state 2OV&  (Figure 4-4.1.c).  This value included the difference 

occurring at the end of the test if a decrement in 2OV&  was observed.      

 

 

b) 

a) 
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The mean oxygen deficit was found by dividing the accumulated oxygen 

deficit by the exercise duration.  Finally, the mean OD was divided by the weight of 

the subject (in kilograms) to provide an independent means of comparison.  OD 

values were defined for each subject for each intensity and mask condition         

(Table 4-4.1) utilizing time and unit conversions where necessary.          

 

 

 

a) Total 2OV&  of the exercise test, determined by integrating 
the model curve over the exercise performance time;   
b) maximum oxygen uptake possible, found by multiplying 
the peak or steady-state 2OV&  by the exercise duration time; 
c) the oxygen deficit developed in the test, calculated by 
subtracting the total exercise 2OV&  (a) from the maximum 

2OV&  possible (b). 

Figure 4-4.1. 

c) 
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 M40  85% 
 75% 85% 100% 115%  M40 Hans 

001 33 34 36 43  34 44 
145 37 52 44 45  52 39 
358 8 11 23 24  11 9 
359 19 22 N/A  49  22 53 
379 11 19 24 29  19 28 
401 15 20 22 30  20 17 
414 20 28 37 41  28 18 
419 23 24 41 42  24 28 
420 24 47 38 42  47 27 
422 13 33 39 32  33 35 
Avg 20.3 29.0 33.8 37.7  29.0 29.8 

Std Dev 9.32 12.80 8.42 8.25  12.80 13.34 
 
 It should be noted that use of this procedure is technically applicable only to 

the submaximal and maximal exercise tests.  This limitation is based on the fact that 

during supramaximal exercise, 2OV&  requirements cannot be attained even at the 

maximum level of physical exertion.  Hence, for supramaximal (e.g., 115% 2OV& max) 

exercise conditions, OD should be calculated using an extrapolated 2OV&  value in lieu 

of the peak 2OV&  value.  This procedure, however, was not utilized herein because 

some of the subjects attained higher peak 2OV&  values during this condition than those 

values extrapolated for 115% 2OV& max using their maximal oxygen uptake test data; 

this discrepancy between peak and extrapolated 2OV&  values was observed for 

approximately half of the study participants.  In an effort to be consistent in all 

oxygen deficit calculations for the supramaximal condition, the procedure previously 

described using the peak 2OV&  of the test was employed for all 115% 2OV& max OD 

calculations.    

Table 4-4.1. Oxygen deficit (OD) values calculated for each exercise  
          test (in ml/kg/min). 
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Before continuing with the analytical process, the oxygen deficit values were 

re-calculated, disregarding any 2OV&  decrement occurring toward the end of exercise.  

This was done to determine if the end 2OV&  decrease made an important contribution 

to the OD.  To calculate these OD values, the model curve was explicitly integrated 

from zero to the time of the peak 2OV&  (time of C2/C3); this represented the area under 

the curve.  The peak 2OV&  value was then multiplied by C2/C3 to define the maximum 

O2 uptake possible up to that point in the test.  Finally, the area under the curve was 

subtracted from the maximum 2OV&  possible to give the accumulated oxygen deficit 

occurring only from exercise commencement to steady-state (Figure 4-4.2).  These 

new values (Appendix B-7) were compared to the previously-calculated OD values; 

comparison revealed that the two sets of OD values were highly correlated (R2 = 

0.99) and no significant difference existed between the two sets (p = 0.6670).  While 

most of the newly-calculated values were identical to those previously determined, 

some of the new OD values were higher than the first.  This variation was likely due 

to rounding differences carried, and possibly augmented, throughout the calculation 

process.  It was, therefore, concluded that the drop in 2OV&  observed in some of the 

exercise tests did not make a significant contribution to the total accumulated oxygen 

deficit.  However, in the interest of being most comprehensive, the initial OD values 

calculated using any observed 2OV&  decrement were used for the subsequent analyses.  
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4-5. Interpretation of Oxygen Deficit Values 

 Determination of oxygen deficit values is meaningless without analysis and 

interpretation of the calculation results.  Several different analyses were performed to 

assess the importance of OD on exercise. 

4-5-1. Comparison to Published Values 

 First, the oxygen deficit values calculated were compared to those published 

in the literature to evaluate if those calculated were reasonable.  The values reported 

in the literature range from 33 ml/kg/min in prepubescent males (Eriksson et al., 

1973) to 80-85 ml/kg/min in sprint athletes (Medbo and Burgers, 1990; Medbo et al., 

1988; Scott et al., 1991).  Moreover, maximally accumulated O2 deficit values of 

endurance athletes and untrained subjects are reported to range from 50 to 65 

Figure 4-4.2. Schematic of the accumulated oxygen deficit occurring from  
          exercise initiation to steady-state exercise.  



 

 64 
 

ml/kg/min (Medbo and Burgers, 1990; Scott et al., 1991).  The values obtained in this 

study were generally lower than those reported for untrained subjects.  This 

difference may be attributable to the method used to calculate the OD.  The literature 

reported values determined using the MAOD method, to which the results of other 

methods were compared.  However, the method used herein was not found in the 

literature and may perhaps have contributed to the difference in the overall values. 

 Moreover, AOD values for lower work rates have not been reported.  It should 

be noted that the values obtained for the 115% 2OV& max condition were relatively close 

to those reported in the literature.  This was reasonable considering that the published 

values were measured under severe or heavy exercise conditions; 115% 2OV& max may 

be considered such a condition.  Since the 115% 2OV& max values were slightly lower 

than, though relatively similar to, published values, it should be expected that the 

lower exercise intensities would result in lesser AOD values.   

4-5-2. ANOVA Results 

 Multiple ANOVAs were performed to assess the statistical importance of 

oxygen deficit on exercise performance.  The first ANOVA was used to compare the 

OD values occurring across the different exercise intensities.  The results indicated 

that there was a statistically significant difference in oxygen deficit across the varying 

exercise intensities (p = 0.0028), for which an increase in exercise intensity was 

likewise associated with an increase in OD.  Subsequently, an ANOVA was 

performed to ascertain the influence of the M40 respiratory mask on exercise; a 

resulting p-value of 0.89 denoted that no statistically significant difference existed in 

the oxygen deficit developed in the different mask conditions.  Finally, an ANOVA 
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was completed to compare OD to the performance time of the corresponding exercise 

test (Table 4-5-2.1).  Results of the procedure showed a statistically significant 

difference in performance time and oxygen deficit values (p = 7.09E-10) with shorter 

duration tests being generally associated with higher oxygen deficit values. 

 

 75% 85% M40 85% Hans 100% 115% 
Subject Time OD Time OD Time OD Time OD Time OD 

001 4.07 33 1.91 34 7.51 44 1.14 36 1.62 43 
145 11.28 37 3.60 52 10.55 39 2.24 44 2.07 45 
358 17.22 8 21.45 11 23.24 9 3.97 23 1.54 24 
359 12.59 19 6.02 22 4.92 53 N/A N/A 1.15 49 
379 23.80 11 1.96 19 5.77 28 1.62 24 1.27 29 
401 11.62 15 18.87 20 54.75 17 3.12 22 1.21 30 
414 15.48 20 13.22 28 16.36 18 6.43 37 2.95 41 
419 17.33 23 20.07 24 19.21 28 5.90 41 2.39 42 
420 18.74 24 6.52 47 23.69 27 5.74 38 3.88 42 
422 27.30 13 13.52 33 15.96 35 6.26 39 2.90 32 
Avg 15.94 20.3 10.71 29.0 18.20 29.8 4.05 33.8 2.10 37.7

Std Dev 6.62 9.32 7.66 12.80 14.55 13.34 2.10 8.42 0.92 8.25

 

4-5-3. General OD Trends 

 The oxygen deficit values showed that women (subjects #358, 379, and 401) 

generally had lower OD values than their male counterparts, with the female subjects 

having an average OD value of 19.3 across all exercise tests as compared to an 

average OD value of 34.8 for the male participants.  Statistical analyses showed that 

the male OD values were significantly different than those developed by the female 

subjects (p = 0.00).  Additionally, both men and women showed statistically 

significant differences in OD across exercise intensity (p = 0.001 for men; p = 0.002 

for women).  The data for both men and women indicated that no statistical difference 

existed in the oxygen deficit developed in the different mask conditions (p = 0.93 for 

Table 4-5-2.1. Oxygen deficit values (ml/kg/min) versus performance time (min).
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men; p = 0.84 for women), whereas a statistically significant difference was found 

when comparing performance time to OD (p = 0.00 for men; p = 0.002 for women).  

Perhaps this is based on differences in normal exercise activity or perhaps a 

physiological rationale can account for this difference.  It is highly likely that the 

variation is associated with lean body mass differences.  A more specific rationale, 

physiological or otherwise, to explain this observation is currently unknown and 

should be further researched.   

 In regards to OD changes with exercise intensity, a general trend of increasing 

oxygen deficit with increasing exercise intensity was observed in the subject data.  

This indicated that the subjects generally utilized intramuscular ATP sources more 

heavily at the onset of exercise at higher intensities.  For seven of the ten subjects, a 

clear increasing trend was observed.  For the remaining three subjects, a single 

intensity condition disrupted the trend; this inconsistency may be due to subject 

motivation during the exercise test session.  A change in subject motivation, either 

adding to or lacking in motivation, for a test may dramatically alter the oxygen deficit 

attained as based on the exercise performance time and the peak 2OV&  reached; the 

value of the peak has great influence on the OD developed.            

 The magnitude of the OD values is indicative of the subject efficiency during 

exercise in regards to metabolism and overall performance.  Those subjects with 

lower overall oxygen deficit values were likely better equipped to perform aerobic 

activity, implying that these subjects more heavily utilized ATP generated through 

aerobic metabolism.  Conversely, those individuals with higher OD values across all 

intensities probably excel in more anaerobic-type exercise, relying more on anaerobic 
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metabolism to generate the ATP necessary to perform the work.  This is not to say, 

however, that all of the subjects are not capable of performing work for which they 

are not physiologically better equipped, as training would probably greatly affect 

performance.    

 In comparing the OD values developed in exercise with and without an M40 

respiratory mask, no specific trend was observed.  Half of the subjects exhibited an 

increase in oxygen deficit while wearing a Hans-Rudolph breathing mask as opposed 

to an M40 mask; such a difference may be accounted for by the higher 2OV&  values 

generally attained without respirators.  For the other half of the subjects, the respirator 

OD was higher than that achieved without the mask; it is possible that these subjects 

were more heavily impacted by the mask condition.  The large degree of variability 

observed when assessing mask differences may indicate that the presence of any 

respirator effect is only incidental.  To better assess mask limitations, or the lack 

thereof, it may be useful in future work to allow the subjects to become more 

comfortable with the mask before any exercise tests are initiated.  If subjects are 

given the opportunity to acclimate to the mask before beginning the study, the issue 

of mask discomfort or distress will be eliminated, leaving only physiological 

explanations for oxygen deficit differences. 

 A comparison was also made between the OD developed and the Rating of 

Perceived Exertion (RPE) value as indicated by the subject at the onset of exercise.  

The initial RPE values (Appendix B-8) were used in place of the terminating RPE 

values because these values should provide a more realistic assessment of how hard 

the individuals perceived they were working, whereas the terminating values were 
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likely to be very similar toward the end of each exercise test as fatigue set in.  The 

correlation between the initial RPE and the OD developed was poor (R = 0.12).  It 

was expected that the RPE increase with increasing exercise intensity, and should 

therefore, showed a better correlation to the OD.  However, the lack of correlation 

may indicate that the subjects might not have used the scale properly or that the scale 

is not the most appropriate indicator of work.  Perhaps a motivational scale would be 

a better tool to assess subject perceived work and willingness to continue exercise.        

 Overall, the results indicated that while generally increasing with increasing 

intensity, the oxygen deficit values were highly individualized and based on subject 

efficiency and physiological energy source preferences.  Motivational differences 

among subjects may be additionally important in accounting for individual values.  

Reproducibility of these values may provide additional future information and 

explanation. 

4-6. Determination of a Transfer Function  

 A transfer function to describe the changes in oxygen deficit occurring across 

exercise intensities while wearing an M40 military-style respirator mask was, 

thereafter, defined.  The function is important for being able to adequately predict the 

oxygen deficit developed by a subject for a given set of exercise conditions (mask and 

intensity).  The function must consider the variable nature of physiology and must, 

therefore, include a range of predictive values to better describe the population 

response.          

The transfer function was defined by first identifying sample means and 

standard deviations for the oxygen deficit values calculated for each exercise intensity 
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in the M40 mask condition.  The values were defined as: (1) 20.3 ± 9.3 ml/kg for the 

75% M40 condition; (2) 29.0 ± 12.8 ml/kg for the 85% M40 condition; (3) 29.8 ± 

13.3 ml/kg for the 85% Hans-Rudolph condition; (4) 33.8 ± 8.4 ml/kg for the 100% 

M40 condition; and (5) 37.7 ± 8.2 ml/kg for the 115% M40 condition.  The Hans-

Rudolph values were not incorporated into the transfer function, as they are irrelevant 

when discussing the OD developed during respirator wear, but are important when 

examining the effect of the respirator.  Confidence intervals were then calculated 

according to Equation 2-6-3.1.  The confidence interval values were connected to 

define confidence “belts” for inference of intermediate exercise intensities (Figure 4-

6.1).   Trend lines were subsequently fit to the means and confidence belts to define 

equations that may be generally used to define intermediate intensity oxygen deficit 

values (Figure 4-6.2).  
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Sample means and the corresponding confidence limits for 
oxygen deficit values developed over a range of exercise 
intensities.   

Figure 4-6.1.  
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The linear functions defining the oxygen deficit response for exercise 

completed across multiple intensities while wearing an M40 respirator mask were as 

follows:  

a) Upper confidence limit: OD = 37.348( 2OV& / 2OV& max) + 1.2619    (R2 = 0.8206); 

b) Sample mean: OD = 41.128( 2OV& / 2OV& max) – 8.3628    (R2 = 0.9223); and 

c) Lower confidence limit: OD = 44.908( 2OV& / 2OV& max) – 17.988    (R2 = 0.9731). 

A transfer function was similarly computed to define the predictive 

relationship between oxygen deficit and performance time.  Confidence intervals 

were subsequently calculated and connected to define “confidence belts” to better 

determine the predicted exercise performance times associated with intermediate 

oxygen deficit values (Figure 4-6.3).  The resulting curves were best fit and defined 

by exponential functions that may be later used for predictive purposes (Figure 4-6.4). 

Sample means and the corresponding confidence limits for 
oxygen deficit values developed over a range of exercise 
intensities with added trend lines. 

Figure 4-6.2.  
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Sample means and the corresponding confidence limits relating 
exercise performance time to oxygen deficit. 

Figure 4-6.3.  

Sample means and the corresponding confidence limits relating 
exercise performance time to oxygen deficit with added trend 
lines. 

Figure 4-6.4.  
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The exponential functions defining the expected performance time based on 

the oxygen deficit developed during exercise while wearing an M40 respirator mask 

were identified as follows:  

a) Upper confidence limit: Perf. Time = 2987.6e-0.0398*OD    (R2 = 0.8285); 

b) Sample mean: Perf. Time = 2136.2e-0.0433*OD    (R2 = 0.9037); and 

c) Lower confidence limit: Perf. Time = 885.68e-0.0398*OD    (R2 = 0.6155). 

The data were subsequently broken down into subgroups to define the male 

OD responses versus those OD values developed by the female subjects.  Separate 

transfer functions (Appendix B-9) were then developed to define the predictive 

relationships between work rate and OD developed, and OD and exercise 

performance time; these functions will be valuable in future modeling for enhanced 

predictive abilities.  
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Chapter 5: Discussion 

5-1. Conclusions 

 This study was undertaken to define the effect of exercise intensity and 

respirator wear on the development of oxygen deficit, a measure of an individual’s 

anaerobic capacity.  A model developed in the Human Performance Laboratory in the 

Biological Resources Engineering Department at the University of Maryland, College 

Park, is lacking in predictive ability for this exercise parameter.  The results of this 

study were intended to fill the existing gap in knowledge.     

The overall goal of this research was to model the effect of a respirator on 

oxygen deficit.  To fulfill this goal, three primary objectives were defined.  The 

objectives of this research were to: (1) use experimental exercise data to calculate 

oxygen deficit with a respirator; (2) determine the maximum oxygen deficit and 

standard deviation values from the same exercise data; and (3) develop a transfer 

function that accurately predicts oxygen deficit developed during exercise completed 

while wearing a respirator. 

5-1-1. Research Findings 

The model used in this study was developed to accurately model breath-by-

breath data collected during exercise testing, accounting for the large variability 

observed in the subject data and decrements in oxygen uptake observed near the 

termination of exercise in some of the tests.  The curves identified in the model were 

subsequently used to calculate the oxygen deficit accumulated during exercise.  The 

oxygen deficit values determined in this work were found to generally increase with 
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increasing exercise intensity, a trend expected as based on increasing peak 2OV&  

attained during exercise.  A decrement in 2OV& was observed near the end of exercise 

in some of the exercise tests, although this drop was found to not significantly 

contribute to the total oxygen deficit. 

The results of this research showed oxygen deficit values that were slightly 

lower than those previously reported in the literature, though this difference may be 

attributable to the method of oxygen deficit calculation employed.  The oxygen 

deficit values calculated were found to be significantly affected by exercise intensity 

(p = 0.0028), although no statistically significant difference was found between mask 

conditions (p = 0.89).  However, a significant difference was observed between 

oxygen deficit and performance time (p = 0.00), with an inverse relationship existing 

between the two exercise parameters.  There was little correlation (R2 = 0.014) found 

between the initial rating of perceived exertion identified by the subject during 

exercise and the OD developed.  This lack of correlation was unexpected, as harder 

work perception at the onset of exercise was anticipated for tests of increasing 

intensity.  The RPE scale may be augmented with an additional indicator of subject 

motivation, as motivational issues may have been the cause of some of the OD 

discrepancies found in this work.   

5-1-2. Model Utilized 

 The model employed in this analysis was developed when the collected data 

did not show the characteristics of the three-phase model response curve; namely, 

three exponential increases were not seen, but rather, a decrement in near-end 2OV&  

was occasionally observed.  The model equation was defined as follows: 
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            tCC etCOVy 32
12ˆ −+= &                  (4-2-2.1)  

where ŷ  = the oxygen uptake ( 2OV& ) response, 2OV&  = the oxygen uptake averaged 

from 2 minutes of baseline data (L/min); C1, C2, and C3 = coefficients to be optimized 

by the model; and t = time (sec).  Increasing C1 increases the scale of the 2OV&  curve, 

which in turns increases oxygen deficit by increasing the area above the curve.  

Increasing C2 causes the response curve to increase in magnitude and the time to peak 

2OV&  to increase; again, the area above the curve will increase.  Conversely, 

increasing C3 causes the curve to go down and the time to peak 2OV&  to occur earlier; 

the oxygen deficit will then decrease. 

 A physiological rationale for the model is herein hypothesized, and should be 

further analyzed in future work.  It is conjectured that C1 is the aerobic capacity of the 

individual, accounting for subject body type, endurance, and general fitness.  The 

aerobic capacity or 2OV& max for each subject is represented by the scale of the response 

curve and responds in the manner identified for C1.  C2 likely represents the anaerobic 

metabolic efficiency of the subject.  As the oxygen demand is increased, there is an 

increased initial reliance on anaerobic metabolic pathways to meet immediate 

physiological needs; an increased efficiency in anaerobic metabolism and transport 

pathways enables the body to meet higher work demands at an earlier time before 

transitioning to aerobic metabolism.  The parameter C3 is hypothesized to be the rate 

of type II muscle (anaerobic) fiber fatigue; an increase in the rate of fiber fatigue 

requires aerobic metabolism earlier to meet energy demands and limits the 

performance capacity possible. An increase in the rate of fiber fatigue would be 

associated with a decrease in total oxygen deficit.             
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5-1-3. Transfer Functions Developed 

 Using the OD values calculated a transfer function was developed to allow for 

inference of oxygen deficit values at intermediate exercise intensities for exercise 

performed while wearing a respirator.  A second transfer function was determined to 

allow for prediction of exercise performance time using oxygen deficit as a predictor.  

In this way, the work rate may be used to predict the OD developed, from which the 

exercise performance time with a respirator may be ascertained.  These functions are 

available for incorporation into the model that has been developed at the University 

of Maryland, College Park to predict exercise performance with a respirator.  This 

model, and hence these functions, may serve as useful tools in respirator design and 

innovation. 

 The confidence intervals for both functions indicate little expected population 

variation at the lowest and highest exercise intensities, though a larger variation is 

predicted for the intermediate intensities.  This is rational, as at lower intensities the 

body is able to work for a longer duration, while at higher intensities subjects are 

limited by physiological constraints.  The intermediate intensities are, therefore, more 

highly influenced by subject motivation and willingness to continue exercise.  The 

intermediate variation is further supported by the fact that motivation is highly 

subject-dependent.  Again, this reinforces the need to determine subject motivation 

both prior to and during exercise. 

5-2. Future Work 

 The results of this study indicated several possible facets for future study.  

Two primary focus areas emerged as key areas of future work.  The first 
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recommendation is to examine the reproducibility of oxygen deficit while wearing a 

respirator.  Oxygen deficit has been shown to be a reproducible measure (Doherty et 

al., 2000; Ramsbottom et al., 1994) without a respirator, and, thus, should be 

reproducible under respirator wear conditions.  Reproducibility efforts may also help 

to eliminate the inconsistencies observed in deficit trends.  The second key focus area 

is to further verify the model used for analysis in this work.  Additional exercise tests 

with additional subjects will help to ascertain if this model is the best suited for 

optimization of oxygen deficit exercise data.  The model may be verified or altered 

using additional exercise data.  Supplementary study may be done at additional 

exercise intensities to verify the transfer function developed through this research.   

The fit of the data to this model may also be compared to the fit to other 

models, such as the three-phase model, by using force-fitting methods to fit the data 

with other models.  The measurement system used to collect the data prevented 

collecting the data necessary to fit the three-phase model.  Breath-by-breath 

measurements include random variation that is as large as the systemic variation 

associated with the second and third phases.  To model this effect, it would be 

necessary to include a component that modeled the breath-by-breath variations.  It 

may also be useful to reanalyze the data collected using minimal breath averaging 

versus breath-by-breath conversion; this will enable the degree and influence of the 

variability imposed by the breath-by-breath method to be better assessed.      

 As previously noted, a motivational scale may be created and used to assess 

subject motivation prior to and during exercise.  Motivational differences may explain 

the discrepancies in oxygen deficit observed.  Additionally acclimatizing the subjects 
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to the respirator prior to study commencement may help eliminate baseline variations 

observed.  Another option to help reduce baseline 2OV&  variations is to measure the 

subjects in the ready position on the treadmill, rather than in the seated position since 

oxygen demands of the musculature will change based on position.   

      Other possible work that may stem from this research includes further 

studying physiological differences between subjects in an attempt to provide 

physiological explanations for the results obtained herein.  The differences between 

men and women seen in this study should be examined, as should body makeup 

differences observed between subjects.  Muscle biopsies may provide additional 

interesting information in attempting to explain subject oxygen deficit values.     
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Appendices 

A-1. Research Protocol  

 The Effects of Respiratory Protective Masks on Maximum Oxygen Deficit 
 
Abstract: A key step in the proper design of respirators, as well as in the regulation of 
occupational safety, is the modeling of exercise performance while wearing a 
respiratory mask.   A model that accurately predicts performance and performance 
time must include oxygen deficit, which occurs during the transition from rest to 
exercise at any intensity.  A current respirator model being developed at the 
University of Maryland, College Park includes oxygen deficit as based on 
performance of individuals not wearing respiratory masks.  Therefore, experimental 
data should be collected to ascertain oxygen deficit values during exercise with a 
respiratory mask to be incorporated into the current model.    
 
Purpose: This project is intended to determine oxygen deficit values during exercise 
at several different exercise intensities (75, 85, 100, and 115% VO2 max).  Exercise at 
each intensity will be completed for each respirator condition, namely with a military-
style respiratory mask or a Hans-Rudolph breathing mask. 
 
1. Subject Selection: 

a) Who will be the subjects, how will you persuade them to participate, and how 
many do you expect to participate?  If you plan to advertise for subjects, 
please include a copy of the advertisement. 

 
 We plan to recruit 10 participants from the University of Maryland, College 

Park.  A portion of this sample will be drawn from a database stored in the 
Human Performance Laboratory located in the Biological Resources 
Engineering Department.  Additional subjects will be selected through day-to-
day interaction within the campus community.  All participation will be 
voluntary. 

 
b) Will the subjects be selected for any specific characteristics (e.g. age, sex, race, 

ethnic origin, religion, or any social or economical qualifications)? 
 
 We will be selecting subjects between the ages of 18-40 years. 
 
c) State why the selection will be made on the basis or the bases given in 2(b)? 
 
 The selection criteria stipulated in 2(b) reflects a desire to recruit individuals 

who are at minimal risk while taking part in vigorous physical activities.  
Vigorous exercise may induce life-threatening cardiovascular responses in 
older populations with known cardiovascular diseases; therefore, this group 
may not be ideal for this project.  The American College of Sports Medicine 



 

 80 
 

(ACSM) in the Guidelines for Exercise Testing and Prescription (6th edition), 
states that vigorous physical exercise is appropriate for asymptomatic 
individuals between the ages of 18-40 years, and that medical clearance is not 
required for this group prior to initiating a vigorous exercise program.  This 
project will not provide medical clearance for prospective participants, and as 
a result, it is important to select individuals (aged 18-40 years) who do not 
require medical clearance and are at minimal risk for cardiovascular events 
while performing vigorous exercise. 

 
2. Describe precisely what will be done to the subject. 
 
Orientation 
All participants will be asked to report for a one-hour orientation session.  An 
investigator will be present at this session to explain the test procedures and methods 
applicable to this project.  Volunteers will be provided with a written informed 
consent document outlining these procedures and methods.  Participants will be asked 
to read and sign this document before being allowed to take part in this study. 
 
Volunteers will be asked to complete several questionnaires.  The first questionnaire 
will be a brief medical history document designed to provide investigators with the 
individual’s present and past health background.  Next, the subject will be 
administered a Physical Activity Readiness Questionnaire (PAR-Q) to determine 
whether exercise is appropriate at this time without first seeking medical clearance.  
The American College of Sports Medicine, in the Guidelines for Exercise Testing and 
Prescription, suggests administering this questionnaire to asymptomatic individuals 
prior to instituting vigorous exercise programs.  The medical history and physical 
activity questionnaires will be used as screening tools to exclude individuals who are 
at risk for cardiovascular events when performing vigorous physical activities.  The 
Spielberger State-Trait Anxiety Inventory will be the final questionnaire administered 
to volunteers, providing investigators with information on the individual’s present 
and general anxiety disposition.  These questions provide feedback on anxiety and are 
not intended to diagnose any psychological state. 
 
All participants will be provided the opportunity to have any questions regarding this 
study answered at this time or throughout the duration of the remaining test sessions. 
 
Maximal Aerobic Capacity 
All participants will undergo a maximal oxygen consumption assessment using a 
Quinton motorized treadmill.  First, participants will be allowed to warm-up on the 
treadmill for approximately 5 minutes at 50-60% of his or her age-predicted 
maximum heart rate, followed immediately by a brief stretching period.  Next, the 
volunteer will be seated and fitted with a Hans Rudolph breathing mask for the 
collection of expiratory air.  The test will begin with the treadmill speed and grade 
gradually ramped to the desired work rate (50-60% age-predicted maximum heart rate 
response) with this moment signifying the initial stage and lasting approximately 3 
minutes.  At the completion of this stage, a new work rate will be selected and the 
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participant will be required to work at this intensity for another 3 minutes.  Work 
rates will be modified every third minute during the maximal aerobic assessment 
period.  The session will be terminated if the participant fails to display a sufficient 
rise in oxygen consumption rate (<150 ml/min) to correspond to the new work rate, if 
the individual reaches his or her age-predicted maximal heart rate, if the individual 
displays a response that contraindicates continued assessment (e.g. irregular EKG 
tracings), or if the participant requests that the session be terminated.  The maximal 
aerobic assessment will last approximately 9-15 minutes. 
 
A Polar heart rate monitor will be used to assess heart rate responses during the 
session. 
 
Test Conditions 
Participants will be asked to report to the lab on 8 separate days to exercise on a 
Quinton motorized treadmill at one of 4 different exercise intensities (75, 85, 100, and 
115% VO2max).  Test sessions may or may not be completed on consecutive days, as 
based on subject availability.  Due to the large number of test sessions and a desire to 
run the test at the same point in the metabolic cycle (i.e. same place in the menstrual 
cycle for women), it may be necessary to run some of the tests on consecutive days.  
Four of the eight sessions will be done with the subject wearing a military-style 
respiratory mask, while the remaining four will be run while wearing a Hans Rudolph 
breathing mask.  All tests will be run in the same manner, the only difference being 
the mask condition and the work rate used.  The sessions will be ordered based on 
randomization of exercise intensities.  Moreover, randomization within each intensity 
block will be completed to determine the order of the mask condition (with or 
without).  This process is being followed to negate the effect of any learning curve 
associated with the activity.     
 
Test sessions will not include warm-up or stretching periods directly prior to 
commencement of the exercise.  This is to ensure that the oxygen deficit obtained is 
maximal for each test, as such periods would exhaust part of the ATP stores that are 
drawn from at the beginning of exercise.  Warm-up increases metabolic rate and 
affects ATP storage.  This procedure will alter the major variable outlined for this 
project.  Studies in healthy subjects have failed to confirm cardiovascular 
abnormalities during sudden strenuous exercise (ACSM Guidelines, p. 141).  
Therefore, it would appear reasonable to perform strenuous activities without a warm-
up period.  It should be noted that subjects will be informed of the risk of muscle 
injury or cardiovascular abnormalities that may occur from completing these test 
sessions without prior warm-up.   
 
After arriving in the Human Performance Lab, subjects will be asked to sit for 15-20 
minutes in an attempt to return to resting conditions, or as close to baseline as 
possible.  The subjects will then be fitted with a M40 military-style negative pressure 
respiratory mask that has been adjusted for standard conditions (contains the standard 
filter); should the test session not call for wearing of the military-style mask, the 
participant will be fitted with a Hans Rudolph breathing mask for collection of 
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expired air.  All of the tests will be run on a treadmill at 2.5% grade until volitional 
fatigue; only the speed of the treadmill belt will be adjusted to elicit the specific work 
rate desired. The grade will be held constant during the exercise tests for enhanced 
comparison and result interpretation.  The speed of the treadmill will be set to the 
appropriate level to elicit the specified work rate, and the treadmill will be turned on 
while the subject is straddling the belt.  Data logging and timing of the test will 
initiate once the subject steps onto the moving belt.  When the subject is no longer 
able to proceed with the test as based on his or her volitional fatigue, data logging 
will stop, the treadmill will be slowed before coming to a stop, and the time duration 
of the test will be recorded.  It is important to note that for all exercise tests, a short 
cool-down period will follow completion of the test to ensure subject safety and 
return to physical baseline.  Each cool-down period will last approximately 5 minutes. 
         
A Polar heart rate monitor will be used to provide heart rate responses during the 
exercise sessions.  Rating of Perceived Exertion and Breathing Apparatus Comfort 
scales will be taken periodically during each test to provide investigators with 
subjective feedback regarding the independent variables (e.g. exercise intensity and 
subject-perceived mask comfort).  Tests will be run at approximately the same time of 
day in an attempt to ensure that physiological conditions are constant and any diurnal 
cycles are not influencing the results obtained.  All of the procedures listed above will 
be employed for all exercise test sessions, namely all respiratory mask conditions 
(with or without) and at all exercise intensities.  
 
At the 75 and 85% VO2max exercise intensities, it is anticipated that exercise will last 
approximately 15-20 minutes; at the higher intensities (100 and 115% VO2max) it is 
expected that exercise will last only 30 seconds–3 minutes.  A single test condition 
will last up to approximately 30-45 minutes; therefore, this project will necessitate 
that individuals commit 6-7 hours to fulfill the requirements (1 orientation session 
with a maximal aerobic capacity test and 8 test conditions) outlined in this study.  
Participants are free to withdraw from this project at anytime without incurring a 
penalty.  This request may be expressed to an investigator through verbal or written 
communication. 
 
3. Risks and Benefits: Are there any risks to the subjects?  If so, what are these 
risks?  What potential benefits will accrue to justify taking these risks? 
 
Risks 
Vigorous physical exercise may produce undesired cardiovascular responses in at-risk 
populations, leading to possibly life-threatening situations.  The medical history and 
physical activity questionnaires will be used as screening tools to exclude this at-risk 
group.  An Automated External Defibrillator (AED) will be available for use should a 
cardiovascular incident arise during test sessions.  Investigators are trained and 
certified in the use of the AED. 
 
There is a risk of muscle injury occurring from beginning exercise without a proper 
warm-up period.  As exercise will be completed in this study without warm-up 
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periods, muscle injury is possible, though subjects will be continually monitored in an 
effort to maintain subject safety throughout the duration of this study. 
 
Benefits 
Participants will not receive monetary benefits from taking part in this study; 
however, individuals will be provided with test results upon completion of this 
project. 
 
Confidentiality 
All participants will be assigned an identification number and will be referred to by 
this descriptor in any presentation or publication of test findings.  All files will be 
stored and maintained in the assistant investigator’s office with access permitted to 
only those individuals directly responsible for the collection and analysis of test data. 
 
Information and Consent Form 
An investigator will meet with each participant to explain the test procedures and 
methods applicable to this project.  The participant will be provided with a written 
informed consent document outlining these procedures and methods.  Volunteers will 
be asked to read and sign this document before being allowed to participate in the 
investigation. 
 
Conflict of Interest 
Investigators do not have a conflict of interest in this project. 
 
HIPPA Compliance 
This investigation will not be using protected health information.  Identification 
numbers will be assigned to help ensure the patient’s anonymity.  Investigators plan 
to adhere to the guidelines outlined by the University of Maryland at College Park 
regarding any sensitive information. 
 
Research Outside of the United States 

a) Did the investigators previously conduct research in the country where the 
research will take place?  Briefly describe the Investigators’ knowledge and 
experience working with the study population. 
 
Not applicable.  All research is taking place in the United States. 
  

b) Are there any regulations, rules or policies for human subjects research in the 
country where the research will take place?  If so, please describe and explain 
how you will comply with the local human subject protection requirements. 

 
Not applicable.  All research is taking place in the United States. 
 

c)  Do you anticipate any risks to the research participants in the country where the 
research will take place, taking into account the population involved, the 
geographic location, and the culture?  If so, please describe.  Risks could 
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include physical, psychological, social or economic risks.  Do you anticipate 
that subjects who participate in this research will be placed at risk of criminal or 
civil liability?  If so, please describe. 

 
Not applicable.  All research is taking place in the United States. 

 
Research Involving Prisoners 
Not applicable.  All research is being done using subjects from the University of 
Maryland population and will not include prisoners. 
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A-2. Informed Consent Document 

The Effects of Respiratory Protective Masks on Maximum Oxygen Deficit 
 
 
I, ___________________________, state that I am 18 years of age or older, in good 
physical health, and wish to participate in a research project being conducted by 
Arthur T. Johnson, Ph.D., William H. Scott Jr., M.A., and Stephanie J. Phelps, B.S., 
at the University of Maryland, College Park. 
 
Purpose: This project is intended to determine oxygen values during exercise at 
several different exercise intensities (75, 85, 100, and 115% VO2max).  Exercise at 
each intensity will be completed for each respirator condition, namely with a military-
style respiratory mask or a Hans-Rudolph breathing mask. 
 
Methods and Procedures: All participants will be asked to report to the Human 
Performance Lab at the University of Maryland for an orientation session.  During 
this visit, volunteers will be presented with a written informed consent document 
outlining test procedures and methods applicable to this investigation.  Volunteers 
will be asked to read and sign this document before being allowed to take part in this 
study.  An investigator will be present to review this document and to provide any 
answers to questions that an individual may have concerning this project.  Next, the 
participant will be asked to complete three brief questionnaires, the first of which is a 
medical history form designed to provide investigators with information regarding an 
individual’s present and past health status.  The second questionnaire, Physical 
Activity Readiness Questionnaire, is constructed to determine whether vigorous 
physical activity is appropriate for the participant at this time.  The Spielberger State-
Trait Anxiety Inventory will be the final questionnaire administered to participants 
and will be used to provide investigators with information concerning the volunteer’s 
general and present anxiety levels.  Questions include: “I feel secure” and “I feel 
tense.”  This questionnaire is not intended to evaluate an individual’s psychological 
state.      
 
Fitness Test 
A maximal fitness assessment test will be conducted during the orientation session 
using a motorized treadmill.  A brief warm-up and stretching period will be 
performed prior to assessing fitness.  The warm-up period will last approximately 5 
minutes with the treadmill grade and speed set at a work rate corresponding to 50-
60% of the participant’s age-predicted maximal heart rate.  The warm-up period will 
be immediately followed by a brief stretching period.  Next, the volunteer will be 
fitted with a mask designed to collect expired air.  The assessment phase begins with 
the treadmill speed and grade gradually adjusted to the warm-up work level, 
signifying the first stage in the fitness test and lasting for a duration of 3 minutes.   
           
                                        ____________________                                              ____________________

Initials                                     Date 
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The speed will be increased every third minute, while the grade is held constant, until 
the test is terminated due to several predetermined end-point factors: 1) the volunteer 
experiences fatigue; 2) the volunteer reaches the maximal heart rate; 3) the volunteer 
displays a response that suggests terminating the test; or 4) if the volunteer requests 
that the test be terminated. 
 
Oxygen Deficit Sessions 
Participants will be required to report to the lab on 8 separate days (at approximately 
the same time of day) to exercise on a motorized treadmill at an exercise intensity 
ranging from 75-115% of maximal fitness capacity.  Four of the sessions will require 
that a M40 military-style respiratory mask be worn during exercise, while the other 
four sessions will be completed with a breathing mask like that used in the fitness 
test. Only one test will be performed each day.  The test session begins with a 15-
20 minute rest period.  Next, the participant will be fitted with the appropriate mask 
for the specified condition, and instructed to exercise at the determined exercise 
intensity until he or she is no longer able to tolerate the exercise conditions (work 
level or mask comfort).  The speed and grade of the treadmill will be set to the 
appropriate level to elicit the specified work rate, and the treadmill will be turned on 
while the volunteer is straddling the belt.  Once the participant steps onto the moving 
belt, the assessment period will begin.  The test will be terminated if the volunteer 
displays responses that suggest ending the session or if they are no longer able to 
tolerate the condition.  It is important to note that for all exercise tests, a short cool-
down period will follow completion of the test to ensure subject safety.  Each cool-
down period will last approximately 5 minutes.  These procedures will be followed 
for all 8 sessions (75, 85, 100, and 115% VO2max in both mask conditions). 
 
A heart rate monitor will be used to provide investigators with heart rate values.  This 
device is a commercially available product worn by joggers to track heart rate during 
workouts.  Also, perceived exertion and breathing mask comfort scales will be 
administered to participants during the exercise session to determine the subject’s 
exertion and comfort of the respiratory mask or breathing mask.     
 
At the 75 and 85% VO2max exercise intensities, it is anticipated that exercise will last 
approximately 15-20 minutes; at the higher intensities (100 and 115% VO2max) it is 
expected that exercise will last only 30 seconds–3 minutes.  A single test condition 
will last up to approximately 30-45 minutes; therefore, this project will necessitate 
that individuals commit 6-7 hours to fulfill the requirements (1 orientation session 
with a maximal aerobic capacity test and 8 test conditions) outlined in this study.   
 
Please note that there is no financial compensation for completion of any of the 
exercise tests performed as part of this study.  
 
Benefits and Risks: Subjects will be entitled to receive test results after completing 
the project.  This study has not been undertaken to benefit volunteers directly, but it is 
intended to provide investigators with information on oxygen values and performance 
time. ____________________                                              ____________________

Initials                                     Date 
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Vigorous physical exercise may produce a potential life-threatening risk for 
individuals with cardiovascular problems (e.g. heart disease).  This risk is very 
minimal in young individuals (18-40 years old) who are less likely to display 
symptoms associated with cardiovascular disease.  The medical history and physical 
activity questionnaires will be administered to all participants to determine whether 
vigorous physical exercise creates a potential risk.  Cool-down periods will be 
performed after each session to minimize the stress to the body normally associated 
with vigorous activities. 
 
There is a risk of muscle injury occurring from beginning exercise without a 
proper warm-up period.  As exercise will be completed in this study without 
warm-up periods, muscle injury is possible, though subjects will be continually 
monitored in an effort to maintain subject safety throughout the duration of this 
study. 
 
Informed Consent and Confidentiality: An investigator will provide the participant 
with an informed consent document to read and sign prior to the individual taking 
part in this research project.  Volunteers will be provided with a copy of the informed 
consent document containing important contact information should any study-related 
questions or inquiries arise. 
 
All participants will be assigned an identification number and will be referred to by 
this descriptor in any publication or presentation of this data.  All files will be 
maintained in the assistant investigator’s office and will be accessible only to 
individuals directly responsible for the collection and analysis of this data. 
 
Rights: Participants are free to withdraw from this investigation at any time without 
incurring a penalty.  This desire may be expressed to an investigator through written 
or verbal communication.  Individuals will be entitled to receive any benefits accrued 
at the time of termination. 
 
Medical Care: The University of Maryland does not provide any medical or 
hospitalization insurance for participants in this research study nor will the University 
of Maryland provide any compensation for any injury sustained as a result of 
participation in this research study, except as required by law. 
 
 
 
 
 
 
 
 
 
 
 ____________________                                              ____________________

Initials                                     Date 
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Contact Information: 
Arthur T. Johnson, Ph.D. 
William H. Scott, Jr., M.A. 
Stephanie J. Phelps, B.S. 
Biological Resources Engineering (Bldg. #142) 
Phone numbers: 301-405-1186 or 301-405-1199 
Email: sjphelps@wam.umd.edu or ws77@umail.umd.edu or aj16@umail.umd.edu 
 
If you have any questions about your rights as a research subject or wish to report a 
research-related injury, please contact: Institutional Review Board Office, University 
of Maryland, College Park, 20742; email: IRB@deans.umd.edu; telephone: 301-405-
4212 
 
 
 
 
_______________________________________  __________________ 
Volunteer Signature      Date 
 
 
         
 
_______________________________________  __________________ 
Investigator Signature      Date 
 
 

 

____________________                                              ____________________
Initials                                     Date 



 

 89 
 

 

A-3. Medical History Questionnaire 

Medical History Questionnaire 
 

 
Name         Date     
 
 
Address            
 
            
 
 
Phone # (Day)      (Night)     
 
 
Age    Date of Birth (DOB)     Gender _____ 
 
Height      Weight    
 
 
Family History 
List all deceased immediate family members (parents, grandparents, and 
brothers/sisters) as well as cause of death and age at death. 
 
          ______ 
 
          ______ 
 
          ______ 
 
          ______ 
 
 
Medications 
List any current medications or dietary supplements you may be taking and the 
reason: 
 
          ______ 
 
          ______ 
 
          ______ 
 
          ______ 
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Allergies (include allergies to medications as well): 
 
            
 
            
 
            
 
 
Personal Health Conditions: 
 
Have you had any of the following? Please circle the appropriate response: 
 
High blood pressure     yes  no 
Heart murmur      yes  no 
Heart attack      yes  no 
Stroke       yes  no 
Diseases of the arteries    yes  no 
Angina       yes  no 
Rheumatic fever, scarlet fever   yes  no 
Thyroid Disease     yes  no 
Emphysema      yes  no 
Diabetes      yes  no 
Bronchitis, pneumonia    yes  no 
Yellow jaundice     yes  no 
Hepatitis      yes  no 
Kidney Disease     yes  no 
Depression      yes  no 
Arthritis      yes  no 
Tuberculosis      yes  no 
Epilepsy      yes  no 
Asthma      yes  no 
Leukemia      yes  no 
Cancer       yes  no 
Glaucoma      yes  no 
Elevated Cholesterol     yes  no 
Polio       yes  no 
Diphtheria      yes  no 
 
 
Have you ever experienced any of the following? Please circle the appropriate 
response:  
 
Frequent headaches     yes  no 
Frequent colds      yes  no 
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Nose-bleeds      yes  no 
Recurrent sore throats     yes  no 
Wheezing spells     yes  no 
Coughed up blood     yes  no 
Coughed up phlegm     yes  no 
Heart palpitations     yes  no 
Chest pain w/exercise     yes  no 
Dizzy spells      yes  no 
Shortness of breath     yes  no 
Swollen feet/ankles     yes  no 
Heartburn or intestinal problems   yes  no 
Pain or cramps in legs     yes  no 
Painful joints      yes  no 
Ulcers        yes  no 
Recurrent constipation    yes  no 
Recurrent diarrhea     yes  no 
Prostrate trouble     yes  no 
Kidney problems     yes  no 
Phlebitis      yes  no 
Varicose veins      yes  no 
Osteoporosis      yes  no 
Reynaud’s syndrome     yes  no 
 
 
Smoking Check the appropriate response below: 
 
Never smoked   Stopped smoking more than 10 years ago    
 
Smoke up to 1 pack/day  _  Smoke 1-2 pack/day     
 
3 + pack/day     
 
What type of smoking? (circle all that apply)    

 
cigarette cigar  pipe  

 
 
Alcohol 
 
How many alcoholic beverages per week do you consume? (circle one) 
 
 
None  up to 2/week    3-7/week 7-10/week  10+/week 
 
 
What type of alcohol do you drink?       
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Exercise 
 
If you participate in a regular aerobic exercise program such as jogging or soccer, 
please indicate the frequency and type of exercise below. Regular means 3 or more 
times/week. 
 
 
Circle one of the following (if yes): 
 
1-3 times/week (circle one)   yes  no 
type:       
 
4-5 times/week (circle one)  yes  no 
type:       
 
6-7 times/week (circle one)  yes  no 
type:      
 
 
Date of Last Complete Physical Exam:      
 
Normal:      Abnormal     
 
 
Date of Last Chest X-ray:      
 
Normal:       Abnormal:     
 
 
Date of Last Electrocardiogram:       
 
Normal:       Abnormal:     
 
 
Date of Most Recent Blood Lipid Analysis:      
 
Report values below if known: 
 
Total Blood Cholesterol     Triglycerides     
 
HDL Cholesterol      LDL Cholesterol    
 
 
Most Recent Hospitalization and Reason:        
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Date and amount of Last Blood Donation:       
 
            
 
 
For Women Only (Circle appropriate responses) 
 
Are you currently pregnant?     yes   no 
 
Are you currently menstruating   yes   no 
 
If yes, are your menstrual cycles regular (once per month)?  yes  no 
 
 
 
Health Insurance  
 
I do have health insurance (circle one)  yes   no 
      
If yes, my insurance organization is:         
 
I do have dental coverage (circle one)  yes   no 
 
 
Do Not Write Below This Line: 
Total Number of Cardiovascular Risk Factors:   
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A-4. Physical Activity Readiness Questionnaire 
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A-5. Maximal Oxygen Consumption Test Data Sheet 

Maximal Oxygen Consumption 
 
Subject # __________     Date __________ 
 
Age __________      Weight __________ 
 
Height __________ 
 
      

Work Rate 
(mph/ % grade) 

Time Heart 
Rate 

Oxygen 
Consumption 

Minute 
Volume 

RPE 

 0:00     
 0:30     
 1:00     
 1:30     
 2:00     
 2:30     
 3:00     
      
      
 0:00     
 0:30     
 1:00     
 1:30     
 2:00     
 2:30     
 3:00     
      
      
 0:00     
 0:30     
 1:00     
 1:30     
 2:00     
 2:30     
 3:00     
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Work Rate 

(mph/ % grade) 
Time Heart 

Rate 
Oxygen 

Consumption 
Minute 
Volume 

RPE 

 0:00     
 0:30     
 1:00     
 1:30     
 2:00     
 2:30     
 3:00     
      
      
 0:00     
 0:30     
 1:00     
 1:30     
 2:00     
 2:30     
 3:00     

 
 
Performance Time ___________ 
 
Maximal Oxygen Consumption __________ 
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A-6. Extrapolative Equations for Test Intensity 

Note that the intensity range defined after each equation is the subject-specific 

intensity range for which the generally linear relationship between % 2OV& max and 

metabolic cost (kJ/min) was observed. 

Subject #001: % 2OV& max = 25.657*metabolic cost – 14.966     (44% to 100% 2OV& max) 

Subject #145: % 2OV& max = 27.204*metabolic cost – 21.025     (33% to 100% 2OV& max) 

Subject #358: % 2OV& max = 55.838*metabolic cost – 21.8     (54% to 100% 2OV& max)  

Subject #359: % 2OV& max = 25.707*metabolic cost – 5.6997     (40% to 100% 2OV& max)  

Subject #379: % 2OV& max = 61.149*metabolic cost – 31.459     (58% to 100% 2OV& max)  

Subject #401: % 2OV& max = 50.918*metabolic cost – 21.568     (35% to 100% 2OV& max)   

Subject #414: % 2OV& max = 26.633*metabolic cost – 12.655     (50% to 100% 2OV& max)  

Subject #419: % 2OV& max = 28.004*metabolic cost + 14.637     (53% to 100% 2OV& max)  

Subject #420: % 2OV& max = 30.795*metabolic cost – 3.5485     (44% to 100% 2OV& max)  

Subject #422: % 2OV& max = 43.517*metabolic cost – 43.515     (39% to 100% 2OV& max)  
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A-7. Pre-Test Food and Activity Log 

FOOD AND ACTIVITY LOG 
 
** NOTE TO SUBJECTS: Please be as thorough and honest as possible when filling 
out this log.  Also, please try to replicate your activity and diet for the 24 hours prior 
to each test (as best as possible).** 
 
 
Subject # _______________ Date: ______________ 
 
Record Start Time: ___________________ 
Record End Time: ____________________ 
 
Current Level of Daily Physical Activity (circle one): 

Inactive (no regular physical activity)  
Relatively Inactive (no regular organized activity) 
Light Physical Activity (sporadic recreational activities)   
Moderate Physical Activity (regular recreational/ fitness activities) 
Very Vigorous Physical Activity (extensive physical activity at least four  

days/week) 
 

Activity Completed Food Consumed 
Time Type Duration/ 

Intensity Type  Amount Comments 

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      



 

 99 
 

A-8. Oxygen Deficit Test Data Sheet 

ODmax Exercise Test 
 
Subject # ____________________                        Test Date _______________ 
Intensity/ Speed _______________  Mask Condition    M40     Hans Rudolph 
 
Age ______________    Height _________________ 
Weight ____________   1st Day of Last Period _____ 
Clothes Worn ____________________ 
 
Baseline: 

Time Heart Rate VO2 

0:30   
1:00   
1:30   
2:00   

 
 

Time Heart Rate VO2 RPE BACS 
0:30     
1:00     
1:30     
2:00     
2:30     
3:00     
3:30     
4:00     
4:30     
5:00     
5:30     
6:00     
6:30     
7:00     
7:30     
8:00     
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8:30     
9:00     
9:30     
10:00     
10:30     
11:00     
11:30     
12:00     
12:30     
13:00     
13:30     
14:00     
14:30     
15:00     
15:30     
16:00     
16:30     
17:00     
17:30     
18:00     
18:30     
19:00     
19:30     
20:00     
20:30     
21:00     
21:30     
22:00     
22:30     
23:00     
23:30     
24:00     
24:30     
25:00     
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B-1. Differences in Model VO2 Values 

Measured VO2 Optimized VO2 Error  
0.44 0.50 0.06 
0.42 0.38 -0.04 
0.47 0.24 -0.23 
0.43 0.46 0.03 
0.43 0.59 0.16 
0.48 0.38 -0.10 
0.52 0.34 -0.18 
0.45 0.13 -0.32 
0.37 0.72 0.35 
0.46 0.40 -0.06 
0.21 0.20 -0.01 
0.24 0.63 0.39 
0.14 0.17 0.03 
0.35 0.34 -0.01 
0.33 0.35 0.02 
0.60 0.32 -0.28 
0.38 0.66 0.28 
0.16 0.05 -0.11 
0.38 0.67 0.29 
0.33 0.34 0.01 
0.27 0.36 0.09 
0.31 0.34 0.03 
0.23 1.07 0.84 
0.29 0.29 0.00 
0.15 0.15 0.00 
0.24 0.25 0.01 
0.26 0.16 -0.10 
0.08 0.03 -0.05 
0.11 0.24 0.13 
0.44 0.21 -0.23 
0.37 0.29 -0.08 
0.39 0.38 -0.01 
0.42 0.42 0.00 
0.46 0.48 0.02 
0.41 0.60 0.19 
0.31 0.30 -0.01 
0.24 0.29 0.05 
0.31 0.28 -0.03 
0.35 0.18 -0.17 
0.40 0.41 0.01 
0.43 0.74 0.31 
0.40 0.40 0.00 
0.37 0.03 -0.34 
0.37 0.42 0.05 
0.35 0.38 0.03 
0.41 0.40 -0.01 
0.37 0.12 -0.25 
0.41 0.30 -0.11 
0.42 0.36 -0.06 

Average Error = 0.01 Standard Deviation of Error = 0.20 
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 The preceding table defines the measured baseline 2OV&  values as compared to 

the 2OV& values optimized by a second version of the model used in the study analysis.  

Comparison was completed to assess whether optimization of the baseline 2OV&  was 

preferable for fitting the data with the nonlinear model, as opposed to using those 

values measured prior to exercise commencement.  The error between the 2OV&  values 

was calculated to determine the average error and standard deviation of the errors 

between the two model versions.  As previously noted, the results indicated an 

unbiased model when the measured baseline 2OV&  is used.  In addition, the level of 

precision of the measured baseline model is adequate for the purposes of this work.  

Therefore, the model in which baseline 2OV&  was set by the user, as opposed to 

optimized by the model itself, was used in the interest of using actual data as 

measured from the subjects.   

 



 

 103 
 

B-2. Model Results – Coefficients and Fit Statistics 

 001 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.2100 0.6453 0.0032 0.44 0.5506 0.8370 201.6563
85% M40 0.0088 1.7022 0.0197 0.42 0.4406 0.9007 86.3185

100% M40 0.0008 2.7500 0.0489 0.43 0.4941 0.8746 56.2372
115% M40 0.0108 1.7400 0.0213 0.43 0.2841 0.9599 81.6901
          
85% M40 0.0088 1.7022 0.0197 0.42 0.4406 0.9007 86.3185
85% Hans 0.0620 0.8905 0.0028 0.47 0.5823 0.8141 318.0357

 
        
 145 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.5375 0.4400 0.0013 0.48 0.7481 0.6650 338.4615
85% M40 0.1285 0.8397 0.0039 0.52 0.4775 0.8804 215.3077

100% M40 0.0046 1.9494 0.0219 0.37 0.5416 0.8435 89.0137
115% M40 0.1831 0.8884 0.0091 0.46 0.4256 0.9071 97.6264
          
85% M40 0.1285 0.8397 0.0039 0.52 0.4775 0.8804 215.3077
85% Hans 0.2933 0.5490 0.0015 0.45 0.8548 0.5215 366.0000

 
        
 358 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.3996 0.2000 0.0004 0.21 0.9223 0.3896 500.0000
85% M40 0.6184 0.1014 -0.0001 0.24 0.8117 0.5867 -1126.6667

100% M40 0.0634 0.8200 0.0059 0.35 0.6403 0.7705 138.9831
115% M40 0.6258 0.2378 -0.0013 0.33 0.6430 0.7717 -182.9231
          
85% M40 0.6184 0.1014 -0.0001 0.24 0.8117 0.5867 -1126.6667
85% Hans 0.6513 0.1477 0.0002 0.14 0.8773 0.4835 738.5000

 
        
 359 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.1630 0.4400 0.0006 0.60 0.8030 0.5985 733.3333
85% M40 0.0164 0.9871 0.0030 0.38 0.6337 0.7760 329.0333

100% M40 n/a n/a n/a n/a n/a n/a n/a 
115% M40 0.2937 0.7273 0.0057 0.38 0.4432 0.9014 127.5965
          
85% M40 0.0164 0.9871 0.0030 0.38 0.6337 0.7760 329.0333
85% Hans 0.2320 0.5890 0.0011 0.16 0.5288 0.8506 535.4545
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 379 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.9649 0.0975 0.0001 0.33 0.9721 0.2428 975.0000
85% M40 0.0043 1.5418 0.0135 0.27 0.7080 0.7256 114.2074

100% M40 0.2700 0.5867 0.0053 0.23 0.7707 0.6541 110.6981
115% M40 0.1381 0.6642 0.0027 0.29 0.6945 0.7352 246.0000
          
85% M40 0.0043 1.5418 0.0135 0.27 0.7080 0.7256 114.2074
85% Hans 0.0437 0.8000 0.0027 0.31 0.7709 0.6410 296.2963

     
 
   

 401 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.6171 0.2009 0.0007 0.15 0.8983 0.4442 287.0000
85% M40 0.4573 0.2460 0.0004 0.24 0.8260 0.5656 615.0000

100% M40 0.3645 0.3600 0.0170 0.08 0.6298 0.7809 21.1765
115% M40 0.0336 1.3000 0.0235 0.11 0.4049 0.9181 55.3191
          
85% M40 0.4573 0.2460 0.0004 0.24 0.8260 0.5656 615.0000
85% Hans 0.8805 0.1492 0.0001 0.26 0.9172 0.4003 1492.0000

     
 
   

 414 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.7672 0.2770 0.0005 0.44 0.7733 0.6362 554.0000
85% M40 0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286

100% M40 0.1555 0.6800 0.0023 0.42 0.5655 0.8267 295.6522
115% M40 0.0967 0.9914 0.0086 0.46 0.3533 0.9369 115.2791
          
85% M40 0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286
85% Hans 1.6770 0.1197 0.00001 0.39 0.8254 0.5667 11970.0000

     
 
   

 419 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.5561 0.2761 0.0004 0.41 0.7883 0.6171 690.2500
85% M40 0.4898 0.3000 0.0003 0.31 0.7773 0.6314 1000.0000

100% M40 0.1391 0.6500 0.0020 0.31 0.4576 0.8904 325.0000
115% M40 0.0688 0.8937 0.0046 0.35 0.4200 0.9096 194.2826
          
85% M40 0.4898 0.3000 0.0003 0.31 0.7773 0.6314 1000.0000
85% Hans 0.4796 0.3147 0.00040 0.24 0.7326 0.6817 786.7500
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 420 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 0.6539 0.2699 0.0004 0.40 0.8106 0.5875 674.7500
85% M40 0.1915 0.6575 0.0025 0.43 0.7020 0.7167 263.0000

100% M40 0.3955 0.4200 0.0010 0.37 0.6315 0.7781 420.0000
115% M40 0.0840 1.0000 0.0094 0.37 0.5161 0.8584 106.3830
          
85% M40 0.1915 0.6575 0.0025 0.43 0.7020 0.7167 263.0000
85% Hans 1.0486 0.1899 0.0001 0.40 0.7329 0.6820 1899.0000

 
 
       

 422 
 C1 C2 C3 VO2 Se/Sy R C2/C3 
75% M40 1.7918 0.0925 0.0001 0.35 0.9865 0.1727 925.0000
85% M40 0.7986 0.2500 0.0003 0.41 0.6467 0.7638 833.3333

100% M40 0.2523 0.5500 0.0018 0.41 0.4485 0.8948 305.5556
115% M40 0.0039 1.7177 0.0150 0.42 0.4176 0.9106 114.5133
          
85% M40 0.7986 0.2500 0.0003 0.41 0.6467 0.7638 833.3333
85% Hans 0.3836 0.4000 0.0006 0.37 0.6209 0.7846 666.6667
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B-3. Raw Data vs. Model Results - Examples 
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Subject #414 - 85% VO2max (Hans)
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Subject #414 - 100% VO2max
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Subject #414 - 115% VO2max
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B-4. Subject Results – Model Graphs 
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Subject #358
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Subject #379
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0

1

2

3

4

5

0 200 400 600 800 1000 1200

Time (sec)

VO
2 

(L
/m

in
) 75%

85% M40

85% Hansxx
x

x

x

x

 x

100%
115%

 
 
 
 

Subject #419

0

1

2

3

4

0 200 400 600 800 1000 1200 1400

Time (sec)

VO
2 

(L
/m

in
) 75%

85% M40
85% Hans

x
x

x

x

x

100%
115%

 
 
 



 

 113 
 

 

Subject #420
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B-5. Model Results - Reruns 

** indicates rerun data set results 

 001  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.2100 0.6453 0.0032 0.44 0.5506 0.8370 201.6563  
85%  0.0088 1.7022 0.0197 0.42 0.4406 0.9007 86.3185  

100%  0.0008 2.7500 0.0489 0.43 0.4941 0.8746 56.2372  
115%  0.0108 1.7400 0.0213 0.43 0.2841 0.9599 81.6901  

           
85% 
M40 0.0088 1.7022 0.0197 0.42 0.4406 0.9007 86.3185  
85% 
Hans 0.0620 0.8905 0.0028 0.47 0.5823 0.8141 318.0357  

  
 
  

 
     

 145  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.5375 0.4400 0.0013 0.48 0.7481 0.6650 338.4615  
85%  0.1285 0.8397 0.0039 0.52 0.4775 0.8804 215.3077  

100%  0.0046 1.9494 0.0219 0.37 0.5416 0.8435 89.0137  
115%  0.1477 1.0000 0.0125 0.50 0.4566 0.8922 80.0000 **

           
85% 
M40 0.1285 0.8397 0.0039 0.52 0.4775 0.8804 215.3077  
85% 
Hans 0.2933 0.5490 0.0015 0.45 0.8548 0.5215 366.0000  

  
 
  

 
     

 358  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.3996 0.2000 0.0004 0.21 0.9223 0.3896 500.0000  
85%  0.3600 0.2185 0.0002 0.24 0.8397 0.5460 1092.5000 **

100%  0.0634 0.8200 0.0059 0.35 0.6403 0.7705 138.9831  
115%  0.5596 0.2882 0.0002 0.33 0.6456 0.7696 1441.0000 **

           
85% 
M40 0.3600 0.2185 0.0002 0.24 0.8397 0.5460 1092.5000 **
85% 
Hans 0.6513 0.1477 0.0002 0.14 0.8773 0.4835 738.5  
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 359  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.1630 0.4400 0.0006 0.60 0.8030 0.5985 733.3333  
85%  0.0164 0.9871 0.0030 0.38 0.6337 0.7760 329.0333  

100%  n/a n/a n/a n/a n/a n/a    
115%  0.2937 0.7273 0.0057 0.38 0.4432 0.9014 127.5965  

           
85% 
M40 0.0164 0.9871 0.0030 0.38 0.6337 0.7760 329.0333  
85% 
Hans 0.2320 0.5890 0.0011 0.16 0.5288 0.8506 535.4545  

 
  

 
       

 379  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.6301 0.1800 0.0003 0.40 0.9808 0.2054 600.0000 **
85%  0.0952 0.6000 0.0020 0.30 0.8204 0.6305 300.0000 **

100%  0.2700 0.5867 0.0053 0.23 0.7707 0.6541 110.6981  
115%  0.1150 0.8100 0.0090 0.20 0.6999 0.7304 90.0000 **

           
85% 
M40 0.0952 0.6000 0.0020 0.30 0.8204 0.6305 300.0000 **
85% 
Hans 0.0437 0.8000 0.0027 0.31 0.7709 0.6410 296.2963  

  
 
       

 401  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.6171 0.2009 0.0007 0.15 0.8983 0.4442 287.0000  
85%  0.4573 0.2460 0.0004 0.24 0.8260 0.5656 615.0000  

100%  0.2632 0.4500 0.0040 0.33 0.7064 0.7136 112.5000 **
115%  0.0336 1.3000 0.0235 0.11 0.4049 0.9181 55.3191  

           
85% 
M40 0.4573 0.2460 0.0004 0.24 0.8260 0.5656 615.0000  
85% 
Hans 0.8805 0.1492 0.0001 0.26 0.9172 0.4003 1492.0000  

       
 
  

 414  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  1.0652 0.2100 0.0003 0.41 0.7782 0.6303 700.0000 **
85%  0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286  

100%  0.1555 0.6800 0.0023 0.42 0.5655 0.8267 295.6522  
115%  0.0967 0.9914 0.0086 0.46 0.3533 0.9369 115.2791  

           
85% 
M40 0.3720 0.4084 0.0007 0.37 0.7099 0.7060 583.4286  
85% 
Hans 1.6770 0.1197 0.00001 0.39 0.8254 0.5667 1970.0000  
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 419  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.5561 0.2761 0.0004 0.41 0.7883 0.6171 690.2500  
85%  0.5497 0.3150 0.0007 0.40 0.9018 0.4369 450.0000 **

100%  0.1391 0.6500 0.0020 0.31 0.4576 0.8904 325.0000  
115%  0.0688 0.8937 0.0046 0.35 0.4200 0.9096 194.2826  

           
85% 
M40 0.5497 0.3150 0.0007 0.40 0.9018 0.4369 450.0000 **
85% 
Hans 0.4796 0.3147 0.00040 0.24 0.7326 0.6817 786.7500  

 
         
 420  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  0.6539 0.2699 0.0004 0.40 0.8106 0.5875 674.7500  
85%  0.1915 0.6575 0.0025 0.43 0.7020 0.7167 263.0000  

100%  0.1718 0.7000 0.0040 0.42 0.7524 0.6655 175.0000 **
115%  0.0840 1.0000 0.0094 0.37 0.5161 0.8584 106.3830  

           
85% 
M40 0.1915 0.6575 0.0025 0.43 0.7020 0.7167 263.0000  
85% 
Hans 1.0486 0.1899 0.0001 0.40 0.7329 0.6820 1899.0000  

      
 
   

 422  
 C1 C2 C3 VO2 Se/Sy R C2/C3  

75%  1.7918 0.0925 0.0001 0.35 0.9865 0.1727 925.0000  
85%  0.4047 0.4000 0.0008 0.41 0.6943 0.7209 500.0000 **

100%  0.2523 0.5500 0.0018 0.41 0.4485 0.8948 305.5556  
115%  0.0039 1.7177 0.0150 0.42 0.4176 0.9106 114.5133  

           
85% 
M40 0.4047 0.4000 0.0008 0.41 0.6943 0.7209 500.0000 **
85% 
Hans 0.3836 0.4000 0.0006 0.37 0.6209 0.7846 666.6667  
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B-6. Model Result Graphs - Reruns 
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Subject #358 - 85%, 115% VO2max
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Subject #358 - 85% VO2max (M40)
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Subject #358 - 115% VO2max
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Subject #379 - 75%, 85%, 115% VO2max
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Subject #379 - 75% VO2max
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Subject #379 - 85% VO2max (M40)
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Subject #379 - 115% VO2max
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Subject #401 - 100% VO2max
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Subject #401 - 100% VO2max
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Subject #414 - 75% VO2max
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Subject #419 - 85% VO2max
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Subject #419 - 85% VO2max (M40)
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Subject #420 - 100% VO2max

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

Time (sec)

VO
2 

(L
/m

in
)

x
x

xxx

x

x

x

 x

100%

 

 

Subject #420 - 100% VO2max
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Subject #422 - 85% VO2max
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B-7. Oxygen Deficit Values – Beginning to Steady-State Only 

 M40  85% 
 75% 85% 100% 115%  M40 Hans 

001 33 34 36 43  34 45 
145 40 52 44 46  52 41 
358 9 12 23 24  12 10 
359 19 22  N/A 49  22 53 
379 13 19 34 29  19 28 
401 17 22 23 30  22 20 
414 21 28 37 41  28 18 
419 25 28 42 42  28 30 
420 26 48 39 43  48 27 
422 14 34 40 32  34 37 
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B-8. Initial RPE Values Identified 

 M40  85% 
 75% 85% 100% 115%  M40 Hans 
001 13 12 6 13  12 13 
145 11 12 13 15  12 11 
358 9 11 14 20  11 7 
359 10 12  N/A 6  12 12 
379 9 11 15 16  11 13 
401 13 15 19 20  15 13 
414 12 12 12 15  12 11 
419 9 8 11 16  8 7 
420 9 11 12 14  11 9 
422 9 12 12 15  12 9 
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B-9. Male and Female Transfer Functions 

Work Rate vs. OD – male participants: 

Male Participants
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Work Rate vs. OD – male participants; trendlines added: 
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The linear functions defining the male oxygen deficit response for exercise 

completed across multiple intensities while wearing an M40 respirator mask were as 

follows:  

a) Upper confidence limit: OD = 31.753( 2OV& / 2OV& max) + 10.312    (R2 = 0.6723); 

b)  Sample mean: OD = 41.863( 2OV& / 2OV& max) – 4.3474    (R2 = 0.8717); and 

c)  Lower confidence limit: OD = 51.973( 2OV& / 2OV& max) – 19.007    (R2 = 0.9052). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 131 
 

OD vs. Performance Time – male participants: 

Male Participants
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OD vs. Performance Time – male participants; trendlines added: 
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The exponential functions defining the expected performance time for males 

based on the oxygen deficit developed during exercise while wearing an M40 

respirator mask were identified as follows:  

a) Upper confidence limit: Perf. Time = 3121.9e-0.0404*OD    (R2 = 0.7807); 

b) Sample mean: Perf. Time = 3240.4e-0.0514*OD    (R2 = 0.8712); and 

c) Lower confidence limit: Perf. Time = 2744.5e-0.0608*OD    (R2 = 0.6940). 
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Work Rate vs. OD – female participants: 

Female Participants
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Work Rate vs. OD – female participants; trendlines added: 
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The linear functions defining the female oxygen deficit response for exercise 

completed across multiple intensities while wearing an M40 respirator mask were as 

follows:  

a) Upper confidence limit: OD = 36.392( 2OV& / 2OV& max) – 10.869   (R2 = 0.9379); 

b)  Sample mean: OD = 40.635( 2OV& / 2OV& max) – 18.429   (R2 = 0.9879); and 

c)  Lower confidence limit: OD = 44.878( 2OV& / 2OV& max) – 25.988   (R2 = 0.936). 
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OD vs. Performance Time – female participants: 

Female Participants
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OD vs. Performance Time – female participants; trendlines added: 
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The defining the expected performance time for females based on the oxygen 

deficit developed during exercise while wearing an M40 respirator mask were 

identified as follows:  

a) Upper confidence limit: Perf. Time = 5704.4e-0.0761*OD    (R2 = 0.3735); 

b) Sample mean: Perf. Time = 5305.6e-0.1034*OD    (R2 = 0.6877); and 

c) Lower confidence limit: Perf. Time = -907.55ln(OD) + 3015.8    (R2 = 0.9315). 
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