Pre-Processor for Finite Element Analysis
of Highway Bridges

by S.L. Creighton, M.A. Austin and P. Albrecht

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-54

Pre-Processor for Finite Element Analysis
of Highway Bridges

by S.L. Creighton, M.A. Austin and P. Albrecht

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012)
and Industry

Research support for this
report has becn provided by
Federal Highway

Administration

SRC TR 90-54

Pre-Processor for Finite Element Analysis
of Highway Bridges

Submitted to

Structures Division
Turner-Fairbanks Highway Research Center
6300 Georgetown Pike
McLean, Virginia 22101

by

Steven L. Creighton !, Mark A. Austin %, and Pedro Albrecht *
University of Maryland
College Park, Maryland 20742

August 1990

!Graduate Research Assistant, Department of Civil Engineering & Systems Research Center
Z Assistant Professor, Department of Civil Engineering & Systems Research Center
3Professor, Department of Civil Engineering

ABSTRACT

Historically, the lack of interactive pre-processors to setup tedious finite element problem
descriptions has hindered the use of the finite element method for bridge analysis. The work
performed in the present study mitigates this problem via the use of highspeed engineering
workstations.

This report presents an interactive, graphically based pre-processor for the analysis of
highway bridges with the finite element method. With the pre-processor, bridge design en-
gineers can use both keyboard and mouse styles of interaction to describe bridge geometries.
The UNIX tool YACC has been used to create a command language for describing and
manipulating of structural geometries, material types, loads, and boundary conditions.

The pre-processor was successfully used to create input files in a format acceptable to the
finite element analysis program ANSYS. In fact, less than 20 minutes was needed to create
a finite element model of the prototype bridge tested at the Turner-Fairbanks Laboratory in
Langley, Virginia, in a joint FHWA-AISI project.

This report describes the development of the pre-processor in words that can hopefully

be understood by civil engineers and computer scientists alike.

Contents

1 Introduction

1.1 Problem Description e
1.2 Scopeof Work e e e
1.3 Reading Level e

Approach to Problem Solution: Objectives and Strategy
2.1 Introduction v . v e e e e e e e e e e e e e e e e e e
2.2 Pre-Processor Provisions i i e e e e e e e e e e e

Problem Solution Environment

3.1 Imtroduction e
3.2 Hardware e e
3.3 Software e e e e e e e e
3.3.1 UserlInterface.
3.32 CLanguageand UNIX,
The XBUILD System for Bridge Analysis
4.1 Introduction to XBUILD,
4.2 Software Architecture o oL
4.2.1 Window Layout 0 i e e e e
4.2.2 Design Libraries oo e
4.2.3 Tasks and Procedures
4.3 Command Language
4.3.1 Command Interpreter Design
4.3.2 XBUILD’s Program Modes and Prompting Mechanism
4.3.3 Description of Geometries L0 Lo
4.3.4 Design Attributes L o
4.4 Mouse e e e e e e e
4.4.1 Introduction e
4.4.2 Three Dimensional Graphical Display
4.4.3 Graphical Display Manipulation
4.4.4 Grabbing Objects oo
4.4.5 Pull-Down Menu
4.5 Query, Modification, and Grouping of Data
4.5.1 Data Query e e e e e e e e e
4.5.2 Data Modification L o
4.5.3 Creation of Structural Objects (Data Grouping)
4.6 Data Structures e e e e
4.6.1 Introduction
4.6.2 Linked Lists e
4.6.3 AITAYS . . . v o i e e e e e e e e e e e e e e
4.6.4 MHash Table e

4.6.5 Concluding Remarks

A e e

ot Qv Ot

5 FHWA Test Bridge Example
6 Conclusions

7 References

43

54

57

CHAPTER

ONE

INTRODUCTION

1.1 Problem Description

Few factors are having a greater impact on our view of computer-aided design of highway
bridge structures than rapid advances in computer hardware, the introduction of advanced
color display workstations to the marketplace, and a significant drop in the price/performance
ratio of engineering workstations. When these desk-top workstations were first introduced
to the engineering community, a substantial gap existed between the capabilities of the new

hardware and the capabilities of bridge design software to exploit this potential.

Unfortunately, solutions to this problem are more complicated than the simple upgrading
of traditional design methods to the level of the new hardware. This is because previous
generations of software systems were often developed with the intention of providing good
design answers with only a moderate amount of computation. In current engineering practice,
for example, multi-girder highway bridges are analyzed using greatly simplified analytical
models in accordance with specifications established by the American Association of State
Highway Transportation Officials (AASHTO). These models assume that (1) each girder is
idealized as a two-dimensional beam acting separately from the other beams; (2) the idealized
girder resists a fraction of the wheel loads as calculated with simplified formulas for wheel
load distribution; (3) in composite bridges, the idealized girder acts compositely with an

effective width of the deck as calculated with a semi-empirical formula.

Since slide rules and hand calculators were the dominant forms of computational assis-
tance during the 1950’s and 1960’s, the aforementioned assumptions were necessary simply
to get the job done. During the past decade, the profession has paid a high cost for the
convenience of reduced computational effort, often settling for designs that were overly con-
servative. For example, the moments induced by truck loading on the two-span-continuous,

three-girder FHWA-AISI prototype bridge were up to two times smaller when calculated

with the finite element method than with the AASHTO method [29]. In another example
from a FHWA sponsored study, the stresses calculated with the finite element method were
about three times smaller than those calculated with the AASHTO method [7]. The latter
case involved two simple-span bridges on Pennsylvania Route 33, one with six steel girders

and the other with six concrete girders.

Previous investigators have worked hard to improve the accuracy of bridge analysis. In
a recent $300,000 study sponsored by the National Cooperative Highway Research Program
(NCHRP), an extensive parametric analysis resulted in more accurate semi-empirical formu-
las for the distribution factor in slab-on-girder bridges [23]. Elnahal, Albrecht, and Cayes
[8] applied these formulas to the FHWA-AISI bridge, shown in figure 1.1, and found that
they lead to maximum moments about 5 to 53 % higher than those determined from exper-
imental work. These distribution factors are only valid for interior girders. Those for the
exterior girders, which controlled the design of the prototype bridge, are still based on the
AASHTO simple beam model. The findings clearly show the limitations of the distribution

factor approach.

Figure 1.1. FHWA test bridge: Turner-Fairbanks laboratory.

Other attempts to improve the accuracy of bridge analysis involved the modeling of
the bridge as a grid system to arrive at a more accurate distribution of wheel loads [2].

Longitudinal girders and transverse diaphragms made up the grid. Although grid models

are a step in the right direction, the designer still has to assume an effective deck width for

each girder and an equivalent moment of inertia for the diaphragms.

Today, the picture has changed. Now that high-speed desk-top workstations are readily
available, conservative assumptions made for the sole purpose of simplifying analysis methods
are no longer justifiable. Needed instead is finite element analysis to more accurately predict

bridge strength.

In a step towards improving the accuracy of bridge analysis, Elnahal, Albrecht and Cayes
[8] modeled the FHWA-AISI test bridge with the finite element analysis program “ANSYS”
[21]. In this way they were able to consistently predict the experimentally determined reac-

tions and moments with an accuracy of £10%.

Furthermore, at the University of California, Berkeley, a 20-year research program has
developed a finite element computer program, called CELL, for analysis of reinforced and
pre-stressed bridges. The first version, issued in 1970, was capable of analyzing box girder
bridges with arbitrary plan geometry and constant depth [8]. Subsequent modifications
to CELL led to a version called “CELL4”, released in 1985, which performs linear-elastic
analysis of post-tensioned, cellular structures of arbitrary plan geometry and constant depth

[27].

Although several general-purpose finite element analysis programs are commercially avail-
able, such as ANSYS [21], NASTRAN [22], SAP [34], and STRUDL [14], they all have
short-comings that limit their wide-spread application to the analysis of highway bridges.
Often, these programs are not well suited for bridges and contain numerous bulky features

not needed for bridge analysis.

Additionally, a search of the literature has found neither commercial nor research oriented
programs that have pre- and post-processors adequately suited for finite element analysis of
bridges. Nearly all currently available bridge software systems lack good facilities to set up,
edit, and query input data. In the proceedings of a workshop funded by the National Science
Foundation, Research Needs for Short- and Medium-Span Bridges, Scordelis states, “It has
become evident to me that if these new analytical tools (referring to finite element analysis
programs) are to be used by designers in the U.S., special purpose pre- and post-processing
packages, written especially for bridge analysis, need to be developed as part of research
projects undertaken in this field” [5].

1.2 Scope of Work

The idea for this project arose from the need to mitigate the deficiencies mentioned in sec-
tion 1.1. This report presents the development of a prototype pre-processor for generating
three-dimensional finite element meshes, applying stationary loads, and specifying boundary
conditions for straight, non-skewed, multi-girder highway bridges. Not included are discus-
sions of analysis packages, post- processors, nor the extent to which some finite element

models may be better than others.

1.3 Reading Level

Readers of this text are assumed to know the fundamentals of finite element analysis, C

programming language, and UNIX programming environment.

CHAPTER

TWO

APPROACH TO PROBLEM SOLUTION

2.1 Introduction

As mentioned in Chapter 1, the absence of bridge oriented finite element analysis pre-
processors within the engineering profession is a major reason FEA methods have not gained
wider acceptance in analysis of bridges. Many engineers continue to analyze bridges with
simplified methods, such as the AASHTO method, simply because they are easier to use.
This situation is unlikely to improve until software systems are developed that assist engi-
neers with FEA. With this background in mind, this chapter outlines a wish-list of features
a pre-processor should have to make FEA methods competitive with traditional analysis
methods.

2.2 Pre-processor Provisions

An effective pre-processor must provide mechanisms for rapid and concise generation of nodes
and elements, external loadings, and support conditions. For multi-girder highway bridge
analysis, methods are required for describing the geometric layout of girders, deck, and cross
braces (diaphragms). Additional features that should be incorporated into the pre-processor

are described below.

Graphical Echo of Finite Element Model

The pre-processor should allow the designer to view a finite element model during all stages
of its creation. Visual feedback helps to check commands and detect typographical errors.
Storage, Query, and Modification of Data

A pre-processor must provide computationally efficient algorithms and data structures for

storing, querying, and modifying input data. Ways of storing and querying data are needed

for two reasons. First, the user may not remember some of the data input earlier and need
to retrieve it. Second, the user may need to verify that information is correctly stored in the

database.

Procedures for modifying input data are also important. Bridge analysis and design is
typically an iterative process in which various parameters may have to be updated and tested

on a trial and error basis before a suitable model results.

A programmer’s ability to quickly modify input data shortens the turnaround time of
successive iterations in the analysis/design process. It should be noted that management of
the different versions of a design, in the iterative search for an optimal version, is a concern
shared by all engineering disciplines. A detailed explanation of research currently underway

on design version management can be found in the recent paper by Katz et al. [18].

Automatic Generation of Data Files

A good pre-processor must be able to interface easily with analysis routines. Two approaches
are possible. Either the pre-processor can have analysis routines attached to it, or it can

transfer information from its database to files compatible with existing FEA software.

Tools for Measurements and Calibration

Bridge designers need ancillary computational tools (such as a calculator) and mechanisms
for quickly converting between ST and US units of measure. Additionally, on-line tools are
needed to provide the user with a quick reference to information about (1) the cross-sectional
geometries of girders and AISC [2] sections, (2) materials and their properties, and (3) a help

menu of available commands and their use.

Save and Reload Data

A well designed pre-processor must be able to save and reload data.

Ease of Expansion

The architecture of the pre-processor should lend itself to easy expansion without having
to substantially modify it or requiring an in-depth knowledge of its source code. Also, the
pre-processor should be written in a computer language that is highly portable and capable

of linking with routines written in different languages.

CHAPTER

THREE

PROBLEM SOLUTION ENVIRONMENT

3.1 Introduction

Modern engineering workstations provide engineering designers with computational speed
once restricted to mainframes, highly graphical user interfaces, and network communication.
Before these workstations were introduced to the marketplace, FEA had to be performed
in batch mode on personal computers, mini main-frames, or main-frames. Compared to the
benefits offered by today’s engineering workstations, each hardware option had significant
disadvantages. A common shortcoming of personal computers, for example, is insufficient
memory to perform FEA of structures with many degrees of freedom. This limitation may be
overcome by resorting to special techniques for solving only parts of a problem in memory
at one time [35]. In comparison to user interfaces available on modern workstations, the
terminals through which most main frame and mini computers are accessed provide interfaces
incapable of simultaneously offering both powerful graphical capabilities and direct methods
for data input. Also, the costs of main frames and mini computers is more than what most

design firms can afford.

3.2 Hardware

After evaluating various hardware alternatives, the family of SUN Workstations was found
best suited for development of a pre-processor for FEA of bridges. SUN’s family of machines
includes the SUN2 series, SUN3 series, SUN4 series, the SUN386i, and the newly introduced
“SPARC Station”.

Apart from their fast computational speed - the “SPARC Station” was benchmarked
at 12.5 MIPS [30] - SUN Workstations have many advantages. For example, they: (1) are
widely used in both industry and universities; (2) operate under the UNIX operating system,

which provides good general support for software development; (3) support windowing and

multi-tasking; and (4) come equipped with a high resolution bit-mapped graphic display and

a separate graphics processor that facilitate the development of interactive user interfaces.

3.3 Software

3.3.1 User Interface

The importance of an effective user interface cannot be over emphasized. With interactive
computing environments becoming indispensable in solving difficult problems, growing evi-
dence suggests that ease of use is at least as important as functionality in determining the
likely success of an application program [9]. Foley and VanDam [9] point out that ease of use
varies in accordance with a user’s familiarity with a software package. Since beginners and
more experienced users often differ on what they think is the easiest - or most convenient -
way to interact with a program, software should be developed to support multiple styles of

interaction.

Styles of Interaction

An important criterion in developing the pre-processor software was to create a user interface
that allows engineers to freely switch between menu-based and keyboard styles of interaction.
Menus and other mouse activated devices are preferred by beginners because they can guide
the user through the steps needed to input data. Experienced users, on the other hand, prefer
command languages because they type a command without being presented an explicit set

of alternatives [9].

Hutchins et al. [16] describe the ways humans interact with computers with the metaphors
“conversational world” and “model world”. These metaphors correspond to sequential and
asynchronous dialogues, respectively [15]. In the “conversational world”, the user typically
describes the task to be performed with a command language. This kind of dialogue is called
“sequential” because it moves in a predictable manner from one part of the dialogue to the
next. Sequential dialogue allows both users and developers to visualize a specific logical
sequence of events. It includes request-response interactions, typed command strings, nav-
igation through networks of menus, and other data entry [15]. In the “model world”, the
user “grabs” visual representations of objects and manipulates them with the mouse. This
style of interaction is illustrated in figure 3.1. Notice that the box in figure 3.1(a) is not large
enough to enclose the baseball player. The user can “grab” one of the “handles”, in this case

the lower right-hand corner as shown in figure 3.1(a), and stretch the rectangle by moving

the mouse until the rectangle is the desired size and at the desired place, figure 3.1(b) [15].

& fde Edit Style font Loyout Rrronge Ftll tines Pen

73
r“%’
|

}

T UNIC] T o mme L Eoe

e

(G |ONIG! e rﬂ

1ol

{a)

E 2

I
Y

SHxim =

(]

ElooT

Figure 3.1 Asyncronous Dialogue: Grabbing With the Mouse

SunView: A Brief Description

SUN Workstations provide software developers with a user interface toolkit called “Sun-
View” (SUN Visual/Integrated Environment for Workstations), which supports both the

“conversational world” and “model world” styles of interaction.

SunView offers visual building blocks such as windows, pull-down menus, scrollbars,
buttons, terminal emulators, and icons that can be arranged on the screen and customized
to best meet the needs of the application program [30]. The SunView building blocks may
be setup to respond to a variety of user initiated “events.” Typical SunView events include,
toggling a pull-down menu item, pushing (or releasing) a mouse button, and depressing keys
on the keyboard. Each event has a unique identification and calls on specific subroutines.
For example, toggling the pull-down menu item labeled “clear screen” calls the subroutine

“clearscreen()”.

3.3.2 C Language and UNIX

The pre-processor was written in the C language under the UNIX operating system. Among
the benefits offered by C are (1) flexible data structures for storing data, (2) dynamic allo-
cation and utilization of memory, (3) easy manipulation of pointers to memory, (4) compat-
ibility with graphical user interface tool kits such as SunView [30] and X Windows [10], and

(5) portability to many other computers.

An important reason for selecting the UNIX operating system was the availability of
convenient tools for writing command languages. As is discussed in Chapter 4, the command

language for the pre-processor was written with the UNIX tool “Yet Another Compiler
Compiler” (YACC) [17] .

10

CHAPTER

FOUR

THE XBUILD SYSTEM FOR BRIDGE ANALYSIS

4.1 Introduction

The XBUILD pre-processor may be used to prepare input data for finite element analysis of
highway bridges. Version 1 of XBUILD employs the SunView window toolkit and runs on
the SUN family of workstations. Still, it was named “XBUILD” because the authors will

eventually modify it to run in the “X-Windows” environment [10].

This chapter presents an overview of XBUILD, and describes the issues that were consid-
ered in its design. The main components of the XBUILD software architecture are described
in section 4.2. Sections 4.3 through 4.5 cover XBUILD’s user interface, and sections 4.6
through 4.7 its database. The User’s Guide, a companion document to this report, contains

instructions for inputting data.

4.2 Software Architecture

Figure 4.1 shows a schematic of XBUILD’s main components. These include: (1) SunView
windows as part of an event based user interface; (2) design libraries containing finite element
attribute data; (3) tasks (and procedures) that may be called by both command language
and three-button mouse; and (4) data structures for storing finite element input data and

intermediate results.

11

| SUNVIEW WINDOWS | | DESIGN LIBRARIES |

| TASKS | e
! [| | DATABASE |
| PROCEDURES | = s—cemmmmeeee

Figure 4.1. Schematic of XBUILD software components.

4.2.1 Window Layout

XBUILD’s visual interface consists of a “parent” window and several “child” subwindows.
The subwindows shown in figure 4.2 include: (1) a terminal emulator (TTY) for entering
commands with the keyboard; (2) a canvas for displaying the xy elevation view of a structure;
(3) a canvas for displaying the xz plan view of a structure; (4) a canvas for displaying the
zy section view of a structure, in icon form; (5) a movement pad to change viewing planes;

and (6) pull-down menu items for ease of inputting data.

ADD WINDOWS OBJECT COLOR (6)
1X-2 (plan viewv) Y = 0.0000

Figure 4.2. Window layout.

12

4.2.2 Design Libraries

XBUILD’s design libraries contain: (1) beam/column element cross section property data
for over 200 AISC sections and several girders; and (2) property data for several engineering

materials. The information is read from the external files “material.dat” and “sections.dat”

when XBUILD is first activated.

4.2.3 Tasks and Procedures

A significant factor influencing the development of XBUILD was the observation that most
commands required for engineering design may be expressed as an “action” applied to an
“object.” A concise way of formulating this idea is to enter a <verb> followed by a <noun>.
For example, a designer can convey to XBUILD that nodes need to be added by simply typing
add node, or, toggling an “add node” pull-down menu item. Table 4.1 summarizes the verbs

and nouns currently supported by XBUILD.

Verbs & Nouns

<verb> | add, delete, label, fix, move, link, create, change, copy,
get_data, change, set, print, save

<noun> | node, offset_node, bc_elmt, plate4, point_load, linear_load,
area_load, bcond, object, ANSYS

Table 4.1. Verbs and nouns.

Unfortunately, simply entering a <verb> <noun> combination does not convey to the
computer “which” design items or “where” the verb-noun combination is to be applied.
Collectively, the terms “which” and “where” define the “scope” of the required command.
New nodes cannot be added, for example, until their locations are specified. Similarly,
existing nodes cannot be labeled until their numbers are given. As will be explained in the
following sections, XBUILD has several command language and mouse features that allow
designers to specify exactly “which” items are to be acted on, or, “where” a command is to

be applied.

Table 4.2 lists the tasks XBUILD can accomplish together with the interface mechanisms
available to execute them. Notice that all of these tasks are expressed as <verb> <noun>

combinations.

13

Task : <verb> <noun>

Language

Mouse

Both Required

add node

*

add offset_node

%

add bc_elmt

*

add plated

add point_load

add linear_load

add area_load

delete node

delete be_elmt

delete plated

label node

label be_elmt

label plate4

fix bcond

move node

link offset_node

create object

print ANSYS

copy object

get_data bc_elmt

get_data plated

get_data point_load

get_data linear_load

change bc_elmt

change plate4

change point_load

Table 4.2. Styles of interaction for XBUILD tasks.

14

4.3 Command Language

The command language written in this study enables users to enter commands at descriptive

prompts. The commands:

[1] Create finite element models consisting of nodes, elements, boundary conditions, and

loads.

[2] Specify material types and cross-sectional parameters for various elements.
[3] Select engineering units.

[4] Store, query, modify, and group input data.

[5] Save and load created models.

[6] Print ANSYS compatible data files.

[7] Create temporary sub-structure objects.

4.3.1 Command Interpreter Design

The interpreter for XBUILD’s command language was written with the UNIX tool YACC
[14], which produces the C source code for a function capable of parsing streams of commands.

YACC generates this “parser” with a hierarchical set of rules defined by the programmer.

An important consideration in the design of the language’s command interpreter was to
find ways of providing users with a wide variety of permissible design commands, without
requiring them to type lengthy, complicated instructions. Indeed, previous work has shown
that for two systems that are functionally equivalent, the one that has the simpler syntax

produced fewer errors and was more easily learned [25].

XBUILD’s YACC grammar has over 150 rules. Rather than give an exhaustive descrip-
tion of each rule, only the rules for evaluating arithmetic expressions, specifying engineering
quantities with units, and generating numerical lists are discussed. This sub-set of rules
was selected because they are used extensively in commands for generating finite element
meshes. More specifically, numerical lists are used to answer the questions of “which” and
“where” raised in section 4.2.3. However, since a numerical list is actually a list of values,
and XBUILD’s YACC grammar defines a value with combinations of arithmetic expressions

and engineering units, the latter are presented first.

15

Evaluation of Arithmetic Expressions

Figure 4.3 shows the YACC grammar for evaluating arithmetic expressions. The symbol
:=is read as “is” and separates left and right hand side components of the grammar. The
symbol | is read as “or” and separates the choices of rules. The symbols < and > enclose

variables representing constructs. The rules are numbered for explanation purposes.

<exprd::= <number> (rule 1)
| <expr> + <expr> (rule 2)
| <expr> - <expr> (rule 3)
| <expr> % <expr> (rule 4)
| <expr> / <expr> (rule 5)
| (> <expr> ’)’ (rule 6)

Figure 4.3. Arithmetic expressions in YACC grammar.

According to these rules, an arithmetic expression can be a number (rule 1), an expression
added to an expression (rule 2), an expression subtracted from an expression (rule 3), an
expression multiplied by an expression (rule 4), an expression divided by an expression (rule
5), or an expression in parenthesis. Although the details are not shown in figure 4.3, rule 6
has the highest precedence for evaluation, rules 4 & 5 have the 2nd level of precedence, and

rules 2 & 3, the third level of precedence. rules of equal precedence are evaluated from left
to right.

XBUILD >> { 5%6 }
XBUILD >> Value is 30
XBUILD >> { 6+(2%4)/2 }
XBUILD >> Value is 10

Figure 4.4. XBUILD’s calculator utility.

The script of code shown in figure 4.4 is taken from XBUILD’s calculator utility. It
demonstrates the combined effect of rules 1 through 6 and the imposed hierarchy of evalua-

tion.

Units

Quantities in bridge design are often specified in a variety of units. For example, the moment
of inertia is usually specified in?y and the length of a girder in feot, The command language

recognizes the quantities length, force, area, force per unit length (linear load), force times

16

length (moment), and pressure. It accepts most SI and US units for these quantities. The

rules below define each quantity.

<quantity> ::= <length>
<force>
<area>
<moment>
<linear_load>

<pressure>

<length> ::= <expr> LENGTH

<force> ::= <expr> FORCE

<area> ::= <expr> AREA
<expr> LENGTH # LENGTH

<expr> LENGTH"2

<moment> ::= <expr> FORCE * LENGTH

<linear_load> ::= <expr> FORCE / LENGTH

<pressure> ::= <expr> PRESSURE
<expr> FORCE / AREA
<expr> FORCE / LENGTH"2

<expr> FORCE / (LENGTH * LENGTH)

Figure 4.5. YACC rules for units.

For example, “5 sqin”, “5 in®”, and “5 in*in” are all acceptable ways of expressing five
square inches. Similarly, “10 psi”, “10 lb/sqin”, “10 lb/inQ” and “10 Ib/(in*in)” each express
ten pounds per square inch. Thus, quantities are defined by either single word descriptors

or arithmetic combinations of a quantity’s fundamental sub-units.

Numerical Lists

A list is a sequence of zero or more elements of a given type. Since the nodes and elements in
a FE model may be referenced uniquely by a number, the XBUILD grammar allows designers
to construct numerical lists for specifying “which” or “where” an action is to be applied to

an object.

The XBUILD grammar should mimic that of the English language as close as possible
(see section 4.5). However, in practical engineering design complicated numerical lists of

regularly and irregularly spaced items often need to be constructed. Consequently, XBUILD

17

allows lists to be created in several ways, some with token names that closely mimic the
English grammar, others with compact forms using braces, parenthesis and semi-colons.

The latter methods require less key-strokes, and are preferred by more advanced users.

<value> ::= <expr> (rule 7)

| <quantity> (rule 8)

<numlist> ::= <value> (rule 9)
| [<numlist> , <value>] (rule 10)

| <value> to <value> (rule 11)

[[<value> : <value>] (rule 12)

| <value> to <value> by <value> (rule 13)

| [(<value> ~ <value>) : <value>] (rule 14)

| [<numlist> ’;’ <numlist>] (rule 15)

Figure 4.6. Numerical list rules.

Figure 4.6 summarises the XBUILD grammar for constructing numerical lists. The sim-
plest numerical lists are single values (shown in rule 7) and engineering quantities (rule 8);
i.e. values accompanied by a unit of measure. Rules 9 through 15 define the grammar for
constructing numerical lists containing multiple elements. For example, typing [4,5,6,8]
matches rule 10 and generates the numerical list 4,5,6,8. An important draw back of rule
10 is the burden placed on the user when a long list of regularly spaced numbers needs to
be specified. To rectify this shortcoming, rules 11 and 12 allow a list to be generated by
specifying its starting and ending values (i.e., range), with 1 being the implied separation
increment. Typing either 4 to 8 or [4:8], for example, specifies the numerical list 4,5,6,7,8.
Rules 13 and 14 are similar to rules 12 and 13, except that separation increments may be
explicitly specified. For example, typing either O to 6 by 2 or [(0 2):6], generates the list
0,2,4,6. Also, notice that numerical lists may be concatenated to each other. For exam-
ple, typing [0 to 6 by 2; 6 to 12 by 3] generates the single list 0,2,4,6,9,12. The use of

concatenated lists is illustrated in chapter 5.

4.3.2 XBUILD’s Program Modes and Prompting Mechanism

When a designer is working through the details of setting up a bridge design problem descrip-
tion, sequential commands tend to have similar “actions” and “objects”, with only the details
of the “which” or “where” information changing from command to command. Rather than
requiring the user to type the complete details of his intent with each command, XBUILD

supports the idea of program “modes”. Program modes store the current <verb> <noun>

18

combination of interest. This allows users to convey the precise intent of a command by
only typing the scope information, with the <verb> <noun> settings being inferred from

the current program mode.

Program modes may be entered by either typing the required program state at the key-
board, or, selecting a menu item from the bar located along the top of the XBUILD window
frame. To enter the “add node” program state with the keyboard, for example, the user
simply types “add node”. XBUILD provides visual feedback of the current program state
by appending components of the <verb> <noun> combination to the XBUILD prompt lo-
cated in the TTY window; i.e., the “add node” program mode is indicated with the prompt
XBUILD_add_node >>.

XBUILD stores the details of the current program mode as a linked list of <verb>
<noun> components. Program mode items are appended and deleted from the end of the
linked list — similar to pushing and popping items from a stack data structure — as program

modes are entered and exited, respectively.

After the scope of a command is specified, XBUILD calls a “post_event_manager()” sub-
routine to determine the correct function call for the current program state. The early
versions of XBUILD naively handled this decision process by explicitly setting program {lags
and testing every program mode combination. Now the present version simplifies and signifi-
cantly shortens this process by noting that the function call and prompt appendage can have
identical names. When XBUILD is started up, character strings for each <verb>_<noun>
combination are stored in the hash table along with a pointer to a function having an identi-
cal name. Consequently, the new “post_event_manager()” (1) builds a character string of the
prompt appendage, for example, the appendage extracted from the XBUILD_add_node_>>
program state is “add_node”; (2) looks up the hash table using the character string as an
argument; (3) verifies that contents of the returned hash table item is of type pointer to func-
tion; and finally (4) calls the function pointed to in the hash table item. This sequence of
tasks is worked through every time the post_event_manager() is called, whether it is initiated

from a keyboard command or from a combined graphics/mouse event.
4.3.3 Description of Geometries

The geometry of a finite element model is created by first specifying the geometric location

of nodes and offset nodes, followed by the attachment of elements to these nodes.

19

Nodes

Nodes are created by keyboard input because it allows their coordinates to be specified to
the machine precision of the computer. The procedure for adding nodes is to first enter the
“add node” mode and then specify “where” the nodes are to be placed using commands of
the form:
"x <numlist> y <numlist> z <numlist>"

where <numlist> is a numerical list, and x, y, and z are identifiers for numerical lists
containing the nodal coordinates along the x, y and z axes, respectively. In its most general
form, this grammar generates a three-dimensional rectangular block of nodal coordinates.
However, when one or more dimensions take a single numerical value, nodes may be added
one at a time, in a line, or in a rectangular mesh. For example, the command:

XBUILD.add node >> x 0 to 180 by 60 y 0 to 100 by 50 z 30
generates a rectangular grid of 4 by 3 = 12 nodes spaced 60 ft apart in the x-direction, spaced
50 ft apart in the y-direction, and located in a plane normal to the z axis 30 ft away from the
x-y plane (see figure 4.7). Units of length were not specified in this example. Instead, the
entered values were assumed to be in units of feet. XBUILD’s assumptions of this nature

are discussed in section 4.3.4.

LD

2
FILE ADD DRAW LABKL DELETE WINDOWS OBJECT COLOR
2-Y (cross sectional view) X = 0.0000

Te
.00

B N

X~Y (elevation view) 2 = 30.000 ft

L
o.e008

f . .
L I = 9.0000 £t

ABUILD) add node
XBUILD_add_node >) x 0 to 180 by 60 y 0 to 100 by 50 <z 30
INFO_add node) Ko of nodes generated = 12
INFO_add_node)) Total no of nodes = 12
XBUILD_add_node > []

Figure 4.7. Node mesh.

20

The following mesh generation command illustrates XBUILD’s ability to interpret arith-
metic expressions and units within a command stream. Suppose that the command:
XBUILD.add_node >> x 0 to 150%2 by 75 y (150%(2+.54)*12) cm z 6 in
is entered while the design attribute for the quantity “length” is “feet”, XBUILD generates
a line of five nodes spaced 75 ft apart in the x direction and having the coordinates y = 150
ft and z = 6 ft (see figure 4.8).

FILE ADD DRAW

Z2-Y (cross sectional view) ¥ = 0.0000

LABEL DELETE WINDOWS OBJKCT COLOR

Z - 6.0080 ft

=Y (elevation view) Z = 6 0000 £t

T
150.00

£t
L X = 0.0308 £t

XBUILD_add_node >»
XBUILD_add_node))
XBUILD_add_node))
XRUILD_add_node)) x 0 to 150%2 by 75 y (150%(2+.54)%12) cm z 6
[converted length value in terms of “ft* is: 149.999700.
INFO_add _node)) ¥No of nodes generated = 3
INFO_add_node)) Total no of nodem = 5
XBUILD_add_node >) []

Figure 4.8. Node mesh with units and expressions.

Offset Nodes

XBUILD provides special nodes with constrained degrees of freedom, called “offset nodes”.

In the example shown in figure 4.9, the beam nodes 3 and 4 are connected to the plate

fa} (h) ()
fa) A reinforcing beam joined to one edge of a plate element. (b) Side view

(e} Typical node i (i = 1, 2, 3, 4), showing d.o.f. considered in the coordinate transtor-
mation.

Figure 4.9. Illustration of rigid links.

21

nodes 1 and 2 with rigid links. The degrees of freedom (DOFs) of the beam nodes then
become linear functions of the DOFs of the corresponding plate nodes. Only the latter

appear in the assembled stiffness matrix [6].

Offset nodes are needed for modeling composite highway bridge girders. They are created
with the same commands as those for generating a regular mesh of nodes, while XBUILD is

in the “add offset node” mode.

The DOF's of the offset nodes are “slaves” of the DOF's of the regular nodes. Offset nodes
are linked to regular nodes with commands of the form:
XBUILD >> link offset_node [3,4,5] to node [45,46,47]
Offset nodes are displayed on the screen with blue colored symbols larger than those used

for regular nodes.

Elements

The current version of XBUILD creates two-node beam/column elements and four-node
quadrilateral plate elements. Beam elements are modeled with three translational and three
rotational degrees of freedom per node. Each node of a four-node plate element is modeled

with three translational and two rotational degrees of freedom.

Beam/column elements may be added either one at a time using “from” and “to” gram-
mar, or in series by specifying node connectivity with numerical lists. For example, as figure
4.10 shows, a single beam/column element may be added to a structure with the following
command:

XBUILD.add bc_elmt >> from node 6 to node 11

Plate elements are also generated using numerical lists. In fact, planes of plates are
specified with the same grammar and syntax as planes of nodes (figure 4.7). For example,
the command:

XBUILD.add_plate4 >> x 0 to 112 by 2 z 0 to 20 by 2 y 3
generates a grid of 56 by 10 = 560 plate elements, 2 units long in the x direction, 2 units
wide in the z directions, all lying in the y = 3 plane (figure 4.11). As described in chapter
5, the concrete deck of a highway bridge can be easily modeled with plate elements in this

manner.

22

FILE ADD LABEL DELETE WINDOWS OBJECT COLOR
X=Z (plan view) Y = 0.0000

X-¥ (elevation view) Z = 0.0000

1 z

XBUILD_add _bc_elmt)) set bc_eimt material to "A588"

- INFO >> The present bc_elmt material has been wet to AS3S

XBUILD_add_be_elmt >) set be_elmt section to "w18x50" ’

.. INFO >) The present bc_elmt section has been xet to Wisx50

XBUILD_add_be _elmt >> from Mode 6 to Node 11 ’
INFO_add_bc_elmt >> No of elmts generated = 1
INFO_add_bc_elmt >) Total no of elmts = 1

XBUILD_add_bc_elmt >> (]

Figure 4.10. Addition of bc_elmts via language.

DRAW DELETE WINDOWS OBJECT COLOR

ADD
X-2 (plan view) Y = 3.0000 ft

S T IO T O 2 S DO T)

A N R) =
JJJJJJJﬁJJJJJJJJJJJJJ-

R S)
| JJJJJJJJJJJJJJJJJJJJJjj
Y AT T A 2 1 3
i i

T 2 3

! N T 3 o ¢

X-¥Y (elevation view) Z = 0.0000

Te
3.0000

ft '
X = 0.0089 £t

XBUILD_add_plated)>> x 0 to 112 by 2 z 0 to 20 by 2
WARNIRG >)> plated4 material type has not been aszigned.
WARNING >> plated4 section thickness has not been assigned.
INFO_add_plated >> No of nodes generated = 627
INFO_add_plated >> Total no of nodes = 627
INFO_add_plated >> No of planes generated 560
INYO_add_plated >> Total no of planes 560
XBUILD_add_plated >> []

y3

Figure 4.11. Addition of plates via language.

23

4.3.4 Design Attributes

Design attributes, set by the user, reduce the number of key strokes required to enter com-
mands. For example, a pre-selected unit is assigned to a number entered without a unit.
Additionally, pre-set material and section types are assigned to elements such as beams or
plates. To illustrate how the user sets design attributes, consider the following command:

XBUILD >> set bc_elmt material to "A36_STEEL"
This command assigns the material “A36_STEEL” to all beam/column elements. Similarly,
the command:

XBUILD >> set length units to feet

sets the design attribute for the quantity “length” to “feet”. The User’s Guide lists all of
XBUILD’s design attributes and explains how each is set.

4.4 Mouse

4.4.1 Introduction

In addition to a command language, XBUILD supports interaction by a mouse for changing
program modes, manipulating graphical displays, and acting as a pointing devise to identify

nodes and elements.

4.4.2 Three-Dimensional Graphical Display

A major obstacle in developing XBUILD was to devise a way of viewing both exterior and
interior components of FE models. Although three-dimensional (3-D) views are useful for

checking the overall FE model, they often cannot clearly show internal details. For example,

the

!nterior giapnragms not
visanle by isometric view

oral s Diaphragm @ x = 0 1t
Conssting of Cross Braces)

Figure 4.12. Isometric projection of FHWA test bridge.

isometric projection of the FHWA Test Bridge shown in figure 4.12 cannot provide an isolated
viewing of the bridge’s interior diaphragms. At best, this projection could be inverted, and

the interior diaphragms viewed at an angle.

25

XBUILD mitigates this potential problem by providing three two-dimensional graphic
displays of the plan, elevation, and cross-section views. Each view is obtained by cutting
the model with a clipping plane, thereby allowing the user to view the contents of the
model located in that plane [9]. The current version of XBUILD restricts clipping to planes
perpendicular to one of the three principal axis (x,y,or z). Consequently, clipping views are
always either x-y elevation views of clips along the z axis, x-z plan views of clips along the

y axis, or z-y section views of clips along the x axis (see figures 4.14 through 4.17).

4.4.3 Graphical Display Manipulation

XBUILD’s 2-D views can be changed with the mouse by either moving coordinate arrows or

pressing buttons on the movement pad.

Coordinate Arrows

“coordinate

Each of XBUILD’s three canvas subwindows (x-y, x-z, and z-y) contain two
arrows” that are located at the subwindow’s origin and are parallel to its two principal axis.
Each arrow can be extended or contracted in a direction parallel to its initial orientation.
For example, in the X-Y subwindow the X and Y arrows can be moved in the X and Y
directions respectively. Coordinate arrows are moved by a press, drag, and release sequence
using either the right or middle buttons of the mouse. The middle button controls all vertical

arrows while the right button controls the horizontal arrows.

For example, in figure 4.18 the X arrow in the X-Y window (elevation view) is positioned
at X=10 ft, and the Z-Y window (cross section view) displays the diaphragm located on
the X=10 ft clipping plane. Initial depression of the right button (i.e., the SunView event
identified as “RT_MOUSE_BUTTON = DOWN?”) snaps the cursor to the tip of the right
arrow. A drag of the mouse along the mouse pad (i.e., RT_MOUSE_BUTTON = LOC_DRAG
) moves the right arrow with the cursor. Finally, when the right button is released at X=>50 ft
(i.e., RT_'MOUSE_BUTTON = UP), the Z-Y window is cleared and the diaphragm located
on the X=>50 ft clipping plane is displayed. The graphical update resulting from this sequence

of mouse events is shown in figure 4.19.

Similarly, in figure 4.20, the Z arrow in the Z-Y window is positioned at Z=9.5987 ft, and
the X-Y window displays the interior girder located on the Z=9.5987 ft clipping plane. If
the Z arrow is moved to Z=16.401 ft, the X-Y window is updated and displays the exterior
girder located on the Z=16.401 ft clipping plane (figure 4.21).

26

A

Elevation View
(XY Coordinates)

i X=10t
CLIPPING PLANE

Figure 4.14. x = 10.0 ft clipping plane.

Eievation View
(XY Coordinates)

4

X =501t

Cross Sectional View CLIPPING PLANE

(ZY Coordinates)

Figure 4.15. x = 50.0 ft clipping plane.

27

Elevation View
(XY Coordinates)

r4

[~ 7 9.5087 ft
OO Gooranaes) CLIPPING PLANE

Figure 4.16. z = 9.5987 ft clipping plane.

A

Elevation View
(XY Coordinates)

z

Cross Sectional View

(@Y Coorinates) Z=16.401 ft
CLIPPING PLANE

Figure 4.17. z = 16.401 ft clipping plane.

28

ADD DRAW LABEL DELETE WINDOWS ORJEICT COLOR
Z-Y (cross sectional view) X = 10.000 ft

136

oy

— = 2 = $.5907 ft

%-Y (elevation view) Z = 9.5987

)
2667 X

g x
ft X X X X
*——-.\x - 10.008 £

XBUILD_label_node)>)
XBUILD_label_node))
XBUILD_label_node D)
XBUILD_label_bc_elmt D>
XIUILD_label_bec_elmt)
XBUILD_add_node))
XAUILD_add_node >> (K
xuILd > []

k4
X

Figure 4.18. XBUILD’s x = 10 ft clipping plane.

FILE ADD DRAW LABEL
Z~Y (cross sectional view) X = 50.000 ft

DELETE

WINDOWS ORJECT COLOR

161

Ya
0.1667 pi1] 156 1357 1353

l(‘

- 2 . 9.5907 £t

%-¥ (elevation view) Z = 9 5987 ft

P

‘ = 50,080 §t

XMILD_add_node))
XBUILD_add_node >> (K
XBUILD)>
XBUILD_label_node))
XMUILD_label_node >>
XBUILD_label_node))
XEUILD_label_bc_slmt >>
XBUILD_label_bec_elat > []

Figure 4.19. XBUILD’s x = 50 ft clipping plane.

29

FILE

Z-Y (cross sectional view) X = 50.000 ft

ADD DRAW

LABELL

DELETE

COLOR

%-Y (elevation view) Z = 9 5987 £t

>‘: . 93587 1t

XBUILD >)
XBUILD)
XBUILD))
TIUILD D)
XBUILD D)
XBUILD >>
XBUILD >)>
xuILd) []

Figure 4.20. XBUILD’s z = 9.5987 ft clipping plane.

C~Y (cross sectional view) X = 50.000 ft

DELETE OBJECT

COLOR

oy

L X3

X-¥ (elevation view) 2 =

16.401 ft

- (« 36401 Fb

s.a66y UM

-

fl

T T

TUILD >>

XMUILD D)
XBUILD D)
XSUILD >)
XBUILD >>
ZRUILD D)
XSUILD D)
xuzLd) {]

T

e
= X - 53,000 £t

Figure 4.21. XBUILD’s z = 16.401 ft clipping plane.

30

Movement Pad

XBUILD’s movement pad, located in the upper left corner of the display screen, provides a
second mechanism for changing clipping planes. The buttons on the movement pad, labeled
[+X], -X], [+Y], [-Y], [+Z], and [-Z], represent incremental movements of clipping planes in
positive and negative directions along an axis. When a movement button is pressed, views
are updated corresponding to the clipping plane displayed on the button. For example, if the
+x button is pressed, the z-y subwindow displays the next clipping plane in the positive x
direction. Similarly, if the -x button is pressed, the z-y subwindow displays the next clipping

plane in the negative x direction.

Consequently, the movement pad is especially useful for viewing clipping planes in large
problems where nodes and planes are densely packed on the screen, since this relieves a

designer from needing a high level of eye/hand coordination.

4.4.4 Grabbing Objects

When the left button is pressed and the mouse is moved, a rectangle appears on the screen
that can be used to enclose nodes and elements. Releasing the button “grabs” the enclosed
items and temporarily stores their numbers in lists (i.e., numeric lists are created). Thus,
grabbing items with the mouse is a method, alternate to the language, for answering the
question of “which” items are to be the scope of mode specific action. For example, grabbing
four nodes while the “add plate4” mode is active adds a quadrilateral plate element. This

process is shown in figures 4.22 through 4.25. The User’s Guide lists the available modes.

4.4.5 Pull-Down Menu

Pull-down menus speed the execution of frequently called procedures such as changing pro-
gram modes (i.e., specifying a <verb> <noun> combination), saving a model, clearing the

screen, changing element colors, and exiting the program.

31

FILE ADD LABEL DELETE WINDOWS OBJECT COLOR
X-Z (plan view) Y = 0.0000

X v 0.0000 1

N []
T T E U S — |}

X-Y (elevation view) 2 = 0.0000

Te
s.008

XBUILD_add >> plate4
XBUILD_add_plated4)) set plated material to "CON7.6"

. INFO >) The present plated4 material has besn met to CON7.6.
XBUILD_sadd_plated4 >> smet plated4 thickness to 4 in

Converted length value in terms of “ft“ is: 0.333333.

. INFO >)> The present plated4 thickness has been zet to 0.333 £¢.
XMUILD_add_plated >

XBUILD_sdd_plated >) []

Figure 4.22. Nodes are grabbed.

DELETE WINDOWS OBJECT COLOR
X-Z (plan view) ¥ = 0.0000

X = 0.0000 ft

X-¥ (elevation view) Z = 0.0000

v
0.0000

XRUILD_add_plated

XMUILD_add_plated
LEUILD_add_plated))
XBUILD_add_plated >>

INFO_add_plated)> No of planes generated = 1
» >> Total no of planex = 1
XBUILD_add_plated D) [_]

Figure 4.23. Four-node plate element is added.

32

FILE ADD ETE WINDOWS OBJECT COLOR
X-Z (plan visw) ¥ = 0.0000

X = 5.0000 #¢

& I
X-Y (elevation view) 2 = 0.0000

XBUILD_label node
XBUILD_labal_node
XBUTLD_label_ncde
XBUILD_label_node
XSUILD_label_node
XBUILD_label_node
XBUILD_label_node

Figure 4.24. Nodes are grabbed.

FILE ADD
X-2 (plan view) Y = 0.0000

DELETX WINDOWS OBJECT COLOR

X = 0.0000 ¢

|
%-Y (elevation view) Z = 0.0000 i

Ya
o.0000
1

XBUILD_label_node >>

XBUILD_label_node >)>
XBUILD_label_node))
YRUTLD_label_node))
XBUILD_ label _node))
XBUILD_label_node >>
XBUILD_label_node >>
XBUILD_label_node > []

Figure 4.25. Nodes are labeled.

33

4.5 Query, Modification, and Grouping of Data

Query, modification, and grouping of design data such as material properties, cross section
information, element parameters, and load information is supported by both the command

language and mouse.

4.5.1 Data Query

Data queries are accomplished by specifying numerical lists containing the numbers of the
nodes, elements, loads, or boundary conditions in question while in an appropriate “get
data” mode. For example, the design data for beam /column elements numbered 35 through
40 may be obtained by either the command:

XBUILD.get_data bc_elmt >> [35:40]

or by grabbing those elements with the mouse in the “get_data bc_elmt” mode.

4.5.2 Data Modification

The procedure for modifying design data is identical to that for making design queries except
a “change <noun>" mode must be active. For example, to change the material types of
the beam/column elements in section 4.5.1 to the pre-set “attribute” material, the elements
must either be specified by number with the keyboard or grabbed with the mouse while the

“change bc_elmt” mode is active.

4.5.3 Creation of Structural Objects (Data Grouping)

A structural object is a collection of items such as nodes, elements, loads, and boundary
conditions that can be given a name, duplicated, queried, and modified. With the duplication
feature, copies of an object can be positioned throughout a model, thus reducing the amount
of work. For example, all of the diaphragms in the FE model of the FHWA Test Bridge
discussed in chapter 5 were generated with the structural object facility. Rather than add the
nodes, offset_nodes, and elements for each of the bridge’s eleven diaphragms, one diaphragm
was added, and an object named “dia” was created. Duplicate copies were then placed at

the remaining ten positions along the bridge length.

34

4.6 Data Structures

4.6.1 Introduction

The management of data for finite element analysis and design is a problem complicated
by both the wide variety of design information and the changes in data as a design evolves
from the preliminary to the final version. Since the volume of data can be large, even for
problems of moderate size, procedures for storing, retrieving, and updating data must be
carefully planned. XBUILD employs three forms of data structures: linked lists, arrays, and

hash tables. The following sections describe each data structure and discuss their use in

XBUILD.

4.6.2 Linked Lists

A linked list is a sequence of items of any size. Each item contains a pointer to the next item
in the sequence. Unlike the items in an array, the items in a linked list do not have to reside
in any particular order, such as ascending numerically, nor do they have to be physically
next to each other in memory. Take, for example, a linked list consisting the four items A,
B, C, and D (figure 4.26). Item A might point to item C which, in turn, might point to item
B, which might point to item D. Thus, starting with item A (the head of the list), each item
can be processed in the order determined by following the pointers [32]. A threaded linked
list, by definition, is a linked list where each item contains, as one of its members, the head
of another list [32].

Figure 4.26. Schematic of one-way linked list.

Applications of Linked Lists

XBUILD’s linked lists are dynamic, meaning they grow and shrink as need requires. Thus,
only the amount of memory required by the situation at hand, is allocated during program

execution. The ability to rapidly insert and delete nodes and elements is important in FE

35

pre-processing. XBUILD accomplishes this through manipulations of simple one-way linked
lists containing double precision numbers. The type definition for one such list is shown in
figure 4.27.

typedef struct arglist {
double number;
struct arglist *next;
} ARG_LIST, *ARG_LIST_PTR;

Figure 4.27. Linked list type definition.

Data Storage via Threaded Linked Lists

One potential problem with XBUILD is that graphics windows are slowly updated in large
problems, especially if all nodes and elements must be searched and tested to see if they
should be plotted. To help overcome this problem, XBUILD uses threaded two-way linked

lists to store nodes and elements by their coordinate values.

To see how this idea works, consider the space frame shown in figure 4.28. As nodes
and elements are created, links are added to a system of lists according to their x, y, and z
values. Nodes and elements having common coordinates are stored together and remain in

close proximity.

(In X-Y Coordnates)

CROSS SECTION
VIEW
(in Z-Y Coorsinates)

Figure 4.28. Space frame.

36

Linked List System For Data Storage By

Spatial Location z=17.0
y=20.0 z=8.5 2
H=26.0 4
z=0.0, 6
y=0.0 9
12
14
¥ INDER Z INDER
LIST R INDER d ust
LIST
13
14
X-Z (plane view) Y=15.0 Z-Y (X-Sectn view) x=13.0 X-Y (elevatn view z=17.0
zx = 17.0 = 0
Y =
{ 1 14 15.0 A {5 0 3
N 14
= 8 9 8 9
13.0 4
s 6 2 12
3 z = 17.0 x = 13.0
Figure 4.29. Index lists: x, y, and z.
[:] Index Link contains:
{1) Z coordinate value
(2) Pointer to Subordinate List
node 2
O Subordinate Link contains: e
(1) node number node 4
(2) projection token
(not used for nodes)
node 6
node 9
X-Y (olevation view) z=17.01t node 12
node 14
14 node 8
node 11
12 node 13
x=13.0

Subordinate Lists

Figure 4.30. z node index list.

37

XBUILD’s linked list system depends on three primary sets of index lists for organizing
its nodes and elements. These primary lists are the x, y, and z index lists (figure 4.29
and table 4.3). Each item in an index list represents a particular x, y, or z clipping plane.
Moreover, each item in an index list contains a pointer to a subordinate list which in turn

stores the numbers of the nodes or elements that lie on a given clipping plane.

Index Lists

xnode_index_list y_node_index_list z_node_index_list

x_bc_elmtindex list | y_bc_elmtindexlist | z_bc_elmt_index.list

x_plate4_index_ list y-plated_index_ list z_plated_index_list

Table 4.3. XBUILD’s index lists.

Each item in the z node index list shown in figure 4.30 (e.g., items z =0.0, 8.5, and 17.0)
contains the head of a subordinate Z list. For example, the Z=17.0 index head points to a

list of all of the nodes located in the clipping plane z = 17.0.

Figure 4.30 illustrates how the index-list system enhances data access in support of graph-
ics. When XBUILD’s drawing routines are called to display this elevation view, the following
occurs: (1) the nodes located on the Z=17.0 plane are accessed from the z_node_index_list
and displayed on the screen; and (2) the beam/column elements located on the Z=17.0 plane

are accessed from the z_bc_elmt_indexist and displayed.

4.6.3 Arrays

All attributes of XBUILD’s nodes and elements, such as material properties, cross-sectional
information, and coordinate values, are stored in arrays. The retrieval of these attributes
is immediate because — given a node, beam, or plate number as the index — the array
member can be read directly.

Additionally, each array position contains pointers to corresponding locations in the
index-list system. Through these pointers, information about the nodes or elements in the
vicinity of the one designated by number may be sought. For example, all nodes or elements

close to node number 9 may be accessed through pointers in array position 9 (figure 4.31).

38

Figure 4.32 shows the source code that defines the data structure used in an array con-
taining node information (i.e., the array nodes[-]). Array positions reserved for nodes store
the following: color; x, y, and z coordinates; and a pointer to the list of all elements attached
to the node. To delete a node, all elements attached to it must be deleted first. Consequen-

tially, routines for deleting elements update the array positions of the nodes attached to the

elements.

(nedesi9])

ARRAY POSITION
#9

¥ ceord
y coord
z coord

VNN

a13.004-26.0
#=0.0 N
° z=17.0
10
2=8.5, 2
R INDER
LisT z=0. 6
9
12
14
Linked List system
for member storage <L flls:““
by spatiel tocation
Z-Y (X-S8ectn view) xw13.0 X-Y (elevatn view z=17.0

T =17.0 v = 0

.

{ 13 1 T N 15.0 2 'a
8 9 8 9

X = 1

13.0 2
s 3 8 z = 17.0 x = 13.0

Figure 4.31. Array-list couple.

12

39

typedef struct node {
int off_set_node_num;
int color;
double x_coord; /* <= x nodal */
double y_coord;
double z_coord;
double mass; /* <= For Dynamic use */
int new_nodeno;
int deleted;
CONN_LIST_PTR attached_elmts_list;
NODE_BC_LIST_PTR bcond; /* <= Point to bcond */
NODE_LOAD_LIST_PTR 1load; /* <= and load lists */
COORD_LIST_PTR x_geom_link;

COORD_LIST_INDEX_PTR x_geom_head;

COORD_LIST_PTR y_geom_link; /# <= List Locations */
COORD_LIST_INDEX_PTR y_geom_head; /# <= List Head */
COORD_LIST PTR z_geom_link; /* <= system. */
COORD_LIST_INDEX_PTR z_geon_head;

} NODE_LIST, *NODE_LIST_PTR;

Figure 4.32. Type definition for node array.

4.6.4 Hash Table

A hash table is a data structure characterized by its directness and speed for accessing and
storing information. Each items in a hash table is assumed to have a unique name, and
therefore may be directly referenced by performing arithmetic or other operations on data

provided as an access key [28].

Although a number of hashing schemes and data structures are available — see Sedgewick
[28] for a survey — XBUILD uses an array of bucket table headers pointing to linked lists
of table items. In fact, only one hash table is needed to store several types of information,

including:
[1] Key words used in the YACC grammar
[2] AISC sections
[3] Material properties
[4] Lists of nodes, beam elements, and plate elements
[5] Pointers to functions that implement user commands
[6] Integers used to flag stages of processing

To access a table item, XBUILD hashes, or “looks up”, a grammatical expression either

entered by the user or sent by an XBUILD routine. XBUILD’s hash access mechanism

40

consists of an array of pointers to linked lists. Figure 4.33 shows a schematic of this data
arrangement. Items in the linked list are called “hash nodes”. The type definition for hash

nodes is shown in figure 4.34.

Hash Node Containing
Deta Structure

ARRAY

T O0—0O—0—=0
1 +O—0O

o

LA b

a®,

Figure 4.33. Schematic of hash table.

:

typedef struct hash_node {
char *name ;
short name_token;

short type;
union {
double val;
double (*func) O ;
BC_SECTION_PTR sp;
MATERIAL_PTR mp;
ARG_LIST_PTR ap;
} u;

struct hash_node *next;
} HASH_NODE, *HASH_NODE_PTR;

Figure 4.34. Type definition for hash node.

Each hash node contains a name describing the information stored in it, a representation

of the name in token form, the type of information being stored, and a union. Unions allow

one of several possible data types to occupy a single area of memory [20]. For example, in

41

figure 4.35, the hash node “node”, stores a pointer to a linked list of type ARG_LIST_PTR
(defined in figure 4.27). However, elsewhere, the hash node “W18x50” stores AISC section
data.

Temporary Lists in Hash Table

When numerical lists are generated, as described in section 4.4, they are temporarily stored
in the hash table. For example, when a list of node numbers is generated, it is stored in the
hash table under the name “node” and may be retrieved at a later time by simply looking
up (i.e., hashing on) the word “node”. Figure 4.35, an excerpt from a routine that labels

nodes, shows how XBUILD does this.

double label_node()

HASH_NODE_PTR hn;
ARG_LIST_PTR p;

hn = lookup("node"); /* <= Hashing Routine Called */

for (p=hn->u.ap; p!=NULL; p=p->next) {
... Code for labeling nodes in a list ...
hn->u.ap = NULL;

return;

1

Figure 4.35. Routine that calls the hashing function.

4.6.5 Concluding Remarks

The benefits of having several types of data structures to store information becomes ap-
parent when XBUILD is running on the SUN SPARC Station; graphical updates appear

instantaneously.

42

CHAPTER

FIVE

FHWA TEST BRIDGE EXAMPLE

This chapter explains the sequence of keyboard commands and mouse operations needed
to create a FE model of the FHWA test bridge. The model consists of 341 nodes and 504
elements, and was devised by Robert Canham, a Graduate Research Fellow at the FHWA’s
Turner-Fairbanks Highway Research Center.

The User’s Guide gives examples of the steps engineers must work through to setup

models of simpler structures.

43

Phase 1) Generation of a quadrilateral plate element
mesh that models the bridge deck.

DECK INTRODUCTION:

The procedures in this phase generate a mesh of four-node
quadrilateral plate elements that model the bridge’s deck.

In the X direction, the plates are 40 inches long from X=0
to X=600 inches, 36 inches long from X=600 inches to X=744
inches, and 40 inches long from X=744 to X=1344 inches.

In the Z direction, the plates are 33.56 inches wide from
Z=0 to Z=33.56 inches, 27.208 inches wide from Z=33.56 to
Z=196.808 inches, and 33.56 inches wide from Z=196.808 to
Z=230.368 inches.

The mesh of plates lies on the Y=29.707 inch plane. All
plates are 4 inches thick and assumed to be made out of 7.6
ksi concrete.

COMMANDS:

1) With the mouse, the color '"concrete" is selected from the
pull-down menu labeled "colors".

2) XBUILD >> add plate4

XBUILD is put into its "add plate4" mode.

3) XBUILD_add_plate4 >> set plate4 thickness to 4 in

The plate thickness design attribute is set to four inches.
4) XBUILD_add_plate4 >> set plate4 material to "CON7.6"

The plate element material attribute is set to type "CON7.6"

The properties associated this material may be found in the
file "materials.dat".

5) XBUILD_add_plate4 >> set length units to in

The unit for length is set to inches, thus all values
entered when a length is required will be assumed of the
unit inch.

6) XBUILD add_plated >> x [0 to 600 by 40; 600 to 744 by
36; 744 to 1344 by 40] z [0 to 33.56 by 33.56; 33.56
to 196.808 by 27.208; 196.808 to 230.368 by 33.56] y
29.707

A grid of quadrilateral plate elements is generated, having
the X and Z spacings defined above (in the deck
introduction) and the design attributes specified in
commands 3 and 4 (see figure 5.1).

7) XBUILD_add_plate4 >> save "deck"

The current structure (ie. the deck) is saved in a binary
file called "deck.object".

Example: FHWA Test Bridge

44

FILE ADD
X-Z (plan view) Y = 29.707 in

DELETE WINDOWS

OBJECT COLOR

X-Y (elevation view) 2 = 0.0000 in

[
28.207

L PP,

.. INFO >> Base units of type "length” have been zet to "in".
XBUILD_add_plated >> x [0 to 600 by 40; 600 to 744 by 36; 744 to 1344 by 40] =z [0 to 33.56 by 33.
§56; 33.56 to 196.808 by 27.208: 196.808 to 230.368 by 33.56] y 29.707
INFO_add plated >> No of nodes gensrated = 315
INFO_add_plated))> Total no- of nodes = 31§
INFO_add_plated >> No of planes generated = 272
INFO_add_plated }>> Total no of planes = 272
XBUILD_add_plated >> []

Figure 5.1. Plate element mesh for modeling bridge deck.

45

Phase 2: Generation of Bridge Girders using Offset Nodes

GIRDER INTRODUCTION:

The bridge’s three girders are modeled as two-node beam
elements. To connect the beam elements of the girders to
the plate elements of the deck, slave-master constraints are
imposed with XBUILD’s offset node feature. Refer to Section
4.3.1 for more on offset nodes.

3) XBUILD_add_offset_node >> x [0 to 600 by 40; 600 to 744
by 36; 744 to 1344 by 40] =z 33.56 to 196.808 by (27.208x3)
y 12.51

Offset nodes for modeling the girders are generated.

NOTE: This command assigns a Y value of 12.51 inches to all
nodes, the center nodes will be lowered to Y=10.79 inches at
a later time (see figure 5.2).

5) XBUILD_add_nodal_off >> <

6) XBUILD_add >> bc_elmt

7) With the mouse, the color "weath-steel’ is selected.

8) XBUILD_add_bc_elmt >> set bc_elmt section to "FHWA_GC"
The beam/column element cross-section type attribute has
been set to "FHWA_GC". The variables associated this
section may be found in the file "sections.dat".

5) XBUILD_add_bc_elmt >> set bc_elmt material to "FHWA_MAT".

The beam/column element material attribute is set to type
"FHWA_MAT".

6) Nodes are grabbed with the mouse, thus inserting
beam/column elements between them (see figure 5.3).

Phase 3: Lowering of Center Nodes.

1) XBUILD_add_bc_elmt >> <<

2) XBUILD >> move node

3) XBUILD_move_node >> [(-107-3):-94] to y 10.79

Offset nodes numbered: 10,13,16,..,94 are lowered to a Y
coordinate of 10.79 inches. The node numbers specified in
this command are negative because the nodes moved are
actually offset nodes.

4) XBUILD_move_node >> save "moved"

The structure is saved as '"moved.object'.

Example: FHWA Test Bridge

46

FILE ADD DRAW LABREL DELETE WINDOWS OBJECT COLOR

2-7 (cross sectional view) X = 0.0000 in

X-Y (elevation view) Z = 33.560 in

Y.
v 0, L.

LS

IO_Md_pl-to‘ >> ... writing {(deck.object)
XBUILD_add_plated >> <
XBUILD_add >> nodal_off
XRUILD_add_nodal_off >> x [0 to 600 by 40; 600 to 744 by 36; 744 to 1344 by 40] =z 33.56 to 196.30
s by (27.208%3) y 12.51

INFO_add_nodal_off >> Mo of nodal off set nodes generated = 105

INFO_add_nodal_off >) Totsl no of nodal off sets = 105 .
XBUILD_add_nodal_off > []

Figure 5.2. Generation of offset nodes for girders.

OBJECT

COLOR

ADD DRAW DELETE WINDOWS

Z-Y (cross sectional view) X = 0.0000 in

T = 30.56¢ in

b v b G 1 A i S et 2 i Sl A Mot i e

33.560 in

%-Y (elevation view) 2

:-”7t..................................k

b s

[I - [

XBUILD_add_bc_elmt) met bc_elat section to “FHWA_OC"

. INFO)>)> The present bc_elmt section has been set to FHWA_GC.
XBUILD_add_bc_elmt >)> mat bc_elmt material to “FHWA_O_MAT"

. XNFO >> The present bc_elmt material has been set to FHWA_O_MWAT.
XBUILD_add_be_elnt >) []

Figure 5.3. Addition of girder elements with the mouse.

47

Phase 4: Generation of First Diaphragm.

NOTE: The vertical cross-braces, located midway between the
girders on each diaphragm, are assumed to be zero force
members and are omitted from the model.

1) XBUILD_move_node >> <<

2) XBUILD >> add nodal_off

3) XBUILD_add_nodal_off >> x 0 y 1.707 to 25.707 by 24
z 33.56 to 196.808 by (27.208%3)

See figure 5.4.

4) XBUILD_add_nodal_off >> <

5) XBUILD_add >> node

6) XBUILD_add_node >> x 0 y 1.707 =z 74.621 to

156.243 by (156.243-74.621)

7) XBUILD_add_node >> <

8) XBUILD_add >> bc_elmt

9) XBUILD_add_bc_elmt >> set bc_elmt section to "FHWA_DIA"

10) The color "black'" is selected with the mouse.

11) Beam/column elements are added with the mouse as shown
in figure 5.5.

The following commands add the beam/column elements whose
nodes are difficult to grab with the mouse.

12) XBUILD_add_bc_elmt >> from Nodal_off 109 to Node 316
13) XBUILD_add_bc_elmt >> from Nodal_off 110 to Node 316
14) XBUILD_add_bc_elmt >> from Nodal_off 110 to Node 317
15) XBUILD_add_bc_elmt >> from Nodal_off 111 to Node 317
See figure 5.6,

16) XBUILD_add_bc_elmt >> save "one_dia"

The structure is saved as "one_dia.object".

Example: FHWA Test Bridge

48

FILE ADD DRAW LABEL
-7 (cross sectional view) X = 0.0000 in

DELETE WINDOWS OBJECT COLOR

x
» [o

T 2,50 1n

X-Y (elevation view) Z = 33.560 in

Y~
28.797

XAUILD_move_node)) save “"moved"
IKFO_move_node >) ... writing (moved.object)
XBUILD move_node)>)> {{
XBUILD >) add nodal_off
XBUILD_add_nodal_off >> x 0 y 1.707 to 25,707 by 24 =z 33.56 to 196.8308 by (27.208%3)
INFO_add_nodal _off)>)> Mo of nodal off set nodes generated = 6
INFO_add_nodal_off)>) Total nmo of nodal off sets = 111
XBUILD_add_nodal_off)) []

Figure 5.4. Addition of offset nodes for first diaphragm.

FILK ADD DRAW LABREL
Z~Y (cross sectional view) X = 0.0000 in

DELETE

WINDOWS OBJECT COLOR

Y- {= a [
8197 N,
i x x x

T 33,568 1n

X-Y (elevation view) 2 = 33,580 in

.77

XRUILD_add_node 3} x 0 y 1.707 =z 74.621 to 156.243 by (156.
INFO_add_node >> JNo of podes generated = 2
INFO_add_node)) Total no of nodes a 317
TRUILD_add_node >)
XBUILD_add)) bc_elmt
XBUILD_sdd_bc_elmt >) set bc_elmt section to "FEWA_DIA“
. INVO ») The present bc_elmt zection baz been set to FHWA _DIA.
XBUILD_sdd_bc_elmt >> []

Figure 5.5. Cross braces are added with the mouse.

49

movement

G}
G
(3]

BEE

mILe ADD DRAW LABEL DELETE

Z-Y (cross sectional view) X = 0.0000 in

WINDOWS OBJECT COLOR

o
%-Y (elevation view) 2 = 33.560 in

in x
1
X = 0.0000 1n

INFO_add_bc_slmt)) Total no of elmts = 110
XBUILD_add_bc_elmt))> from Nodal_off 110 to Node 317
INFO_add_bc_elmt >> No of elmts generated = 1
INYO_add_bc_elmt >) Total no of elmts = 111
XBUILD_add_bc_elmt >> from Nodal _off 111 to Node 317

INFO_add_bc_elmt)) No of elmim generated =
INFO_add_bc_elmt >)> Total no of almtx = 112
XBUILD_add_bc_elat >> []

Figure 5.6. Diagonal cross braces are added with the language.

50

Phase 5: Creation of object "dia'" (diaphragm).

1) XBUILD_add_bc_elmt >> <<

2) XBUILD >> create object

3) XBUILD_create_object >> start object "dia"

4) XBUILD_create_object >> object

5) The beam/column elements that will belong to "dia" are

grabbed with the mouse.

The following commands add elements to "dia" that are
difficult to grab with the mouse.

6) XBUILD_create_object >> print object "dia"
7) XBUILD_create_object >> include bc_elmt 109

8) XBUILD_create_object >> include bc_elmt 110
9) XBUILD _create_object >> include bc_elmt 111

10) XBUILD_create_object >> include bc_elmt 112
11) XBUILD_create_object >> print object "dia"
See figure 5.7.

12) XBUILD_create_object >> stop object "dia"

13) XBUILD_create_object >> object

Phase 6: The object "dia" (diaphragm) is copied to
various locations longitudinally along the bridge.

1) XBUILD_create_object >> set length units to ft

2) XBUILD_create_object >> copy "dia'" x 10 to 50 by 10
The object "dia" is duplicated and placed at 10 foot
intervals along the first span of the bridge (ie. at
x=10,%=20,x=30,x=40,x=50) .

3) XBUILD_create_object >> copy "dia" x 56

The object ""dia" is duplicated and placed at x=56 ft, the
center of the bridge.

4) XBUILD_create_object >> copy "dia" x 112-50 to 112 by 10

The object "dia" is duplicated and placed at 10 foot
intervals along the second span of the bridge.

See figure 5.8.
5) XBUILD_create_object >> save "good"

The structure is saved as "good.object'.

Example: FHWA Test Bridge

o1

FILE DRAW LABEL DELETE WINDOWS OBJECT COLOR

Z-Y (cross sectional view) ¥ = 0.0000 in

. fUE] FTTI Y] Ty
PR “ /
n K‘ 109 m f 111 ‘.

V S s 106 i 108 108

T 30,360 ta

ADD

%-Y (elevation view) Z = 33 560 in

in x-
L
X = 5.0000 in
ject > include bc_elmt 111 B

XBUILD_create_obj
XBUILD_create_object >) include bc_elmt 112
XBUILD_create_object >> print object “dia”

jobj_num 1
. INFO >> Object dia has the following:
.. INFQ)>) Nodes no&: -111 -110 -109 -108 -107 -106 316 317

.. INFO D) Bc_elmts no#: 103 104 105 106 107 108 109 110 111 112
XBUILD_create_objact >> []

Figure 5.7. Verification of "dia” components.

FILE ADD DRAW LABEL DELETE WINDOWS OBJECT COLOR
Z-% {(¢ross sectional view) X = 56.000 ft

T - 27967 £t

&
X-Y (elevation view) Z = 2.7967 ft

XBUILD create_object)>) object ?

. INFO)> Mo objects are currently activated.
XBUILD_create_object D)) met length units to £t

. INFO >> BRase units of type "length" have been smet to "ft".
XBUILD create_object >> copy “dis” x 10 to 50 by 10
XBUILD_create_object)) copy “dia" x 56

XBUILD create_object }) copy “dia" x 112-50 to 112 by 10
XBUILD_creats_object > []

Figure 5.8. Duplication of first diaphragm along bridge.

52

Phase 7: Adding a Point Load.

1) XBUILD_create_object >> <<

2) XBUILD >> add point_load

3) XBUILD_add_point_load >> set point_load magnitude to 16
kips

4) XBUILD_add_point_load >> set point_load direction to -Y

5) A node is selected with the mouse, thus applying a 16 kip
load in the -Y direction to it.

Phase 8: Fixing boundary conditions.

1) XBUILD_add_point_load >> <<
2) XBUILD >> fix bcond
3) XBUILD_fix_bcond >> set bcond direction [X,Y]

Translations in the X and Y directions are declared the
boundary condition restraint attributes.

4) Nodes that are to have their displacements in the X and Y
directions restrained are grabbed with the mouse.

5) XBUILD_fix_bcond >> set bcond direction [Y]

The translation in the Y direction is declared the boundary
condition restraint attributes.

6) Nodes that are to have their displacement in the Y
direction restrained are grabbed with the mouse.

7) XBUILD_fix_bcond >> save "bridge"

The model is saved as "bridge.object".

Phase 9: ANSYS Translation.

1) XBUILD_fix_bcond >> print Ansys 'bridge"

An ASCIT file called "bridge.dat" has been generated that is
acceptable for input to the finite elements analysis program
ANSYS [41.

Phase 10: Starting a New Problem.

1) XBUILD >> clear

2) XBUILD >>

Example: FHWA Test Bridge

33

CHAPTER

SIX

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Recent research results indicate that finite element analysis (FEA) methods are not only
capable of predicting the behavior of bridge structures more accurately than approximate
analysis methods, but may lead to significant economic savings in bridge design [7,8]. Still,
mauny engineers prefer approximate bridge analysis methods simply because they are easier

to use.

However, the entry of workstations into the marketplace during the past five years will
raise the level of analysis in engineering firms. These workstations have computational
speeds once restricted to main frame computers and come equipped with software libraries
for developing customized user interfaces such as graphical windows, pull-down menus, and
TTY windows for keyboard input. Together these features make it possible for engineers to

take advantage of the accuracy and economic benefits of FEM’s, without undue extra work.

The long term goal of this research is to formulate new design methodologies and develop
computer software specifically tailored to the FEA and design highway bridges. This work
will include the development of software and interactive techniques to: (a) setup finite ele-
ment models of bridges, (a) analyse bridge structures with FEM, (b) graphically interpret
structural behavior, (¢) automatically check design specifications (or standards), (d) assist

in comparing design alternatives, and (e) optimize the design.

This report documents the first 18 months of work. The main result is XBUILD, a highly
interactive pre-processor for generating finite element models of bridges. Chapters 2 through
4 summarized the software development strategies, and the treatment of various problems

considered. Chapter 5 described the commands needed to setup a finite element model of
the bridge tested at the FHWA’s Turner-Fairbanks Highway Research Center.

o4

The benefits of using XBUILD are evident. Steve Creighton can setup a finite element
model of the test bridge and automatically generate a 1700-line ANSYS compatible data file

in approximately 20 minutes.

XBUILD’s features are still quite limited. Work is currently underway on Version 2 of
XBUILD, which will include the enhancements described below. This additional work is
being performed by Chris Hudson, a graduate student at the Systems Research Center.

[1]

[2]

Although bridges of arbitrary geometry may be input with Version 1, the graphical
interface is currently restricted to rectangular coordinate systems. As a result, compo-
nents such as a bridge diaphragm may be viewed only if its orientation is parallel to the
X, y or z axes. The customized linked-list data structures described in section 4.6.2 are
affected by this constraint. Relaxation of this constraint will require work in two steps.
First, the notion of a general design object that is not subject to geometric restrictions
needs to be formulated. For example, bridge diaphragms and decks may be neither
parallel to a coordinate axis, nor, even planar. Less tangible design objects include the
lanes on a bridge. Once the object is defined, step 2 of this work will be to develop
interactive techniques and software for naming, viewing and performing operations on
these objects. For example, a designer may want to position a substructure, join two
substructures together, or specify that a truck object should incrementally move along
a trajectory defined by the geometric location of a lane object. Steps 1 and 2 pose
tough problems. As a starting point, research is currently underway to develop a family
of interactive techniques for defining and manipulating three-dimensional geometries

of nodes and finite elements.

Version 1 of XBUILD can only handle point loads of fixed magnitude and orientation.
To generalize the loading, we plan to define a truck object data file called truck.dat,
which will contain definitions of standard highway trucks. A set of interactive functions
will be developed to initialize and position instances of trucks on the bridge deck.
Once a bridge lane object is defined, it should be a relatively straight forward step to
iteratively move trucks and cars to all parts of a bridge, enabling moment envelopes

to be created.

55

[3]

[4]

Version 1 of XBUILD runs on SUN Workstation hardware. The decision to develop
Version 1 of XBUILD using SunView was largely motivated software “bugs” in early
releases of Version 11 of X windows in 1988-1989. Now that X11 is well tested, future
versions of XBUILD should support the X window system developed at MIT [10].
This will allow XBUILD to run on a much wider range of hardware products, including
workstations manufactured by IBM, Hewlett Packard, Digital Equipment Corporation,
Apple, and of course, SUN MicroSystems.

Finally, XBUILD needs to be extensively tested by students, faculty, and other person-
nel at the University of Maryland and at the FHWA test facility. The accumulation

and evaluation of user feedback would provide a solid basis for system improvement.

56

[1]
[2]

[3]

[5]

(6]

[7]

[8]

(9]
[10]
[11]
[12]
[13]

[14]

References

Aho A.V., Sethi R., Ullman J.D., Compilers : Principles, Techniques and Tools,
Addison-Wesley, 1985.

American Institute of Steel Construction, Manual of Steel Construction, Seventh
Edition, 1973.

Austin, M.A., “CSTRUCT: An Interactive Computer Environment for the Design
and Analysis of Earthquake Resistant Steel Structures,” Report No. UCB/EERC-

87-13, Earthquake Engineering Research Center, University of California, Berkeley,
September, 1987.

Chamberlin D.D. and Boyce R.F., “SEQUEL : A Structured English Query Language,”
Proc. 1974 ACM SIGMOD Workshop on Data Description, Access and Con-
trol.

Computech Engineering Services, Proceedings of a Workshop on Research Needs for
Short and Medium Span Bridges, Sponsored by the National Science Foundation,
Washington, DC., 1986.

Cook, R.D, Malkus, D.S., and Plesha, M.E.,Concepts and Applications of Finite
Element Analysis, John Wiley & Sons, 1974.

Daniels, J.H., et al, “Weigh-in-Motion and Response of Four Inservice Bridges,” Report
No. FHWA /RD-86/045, Federal Highway Administration, Washington D.C., October,
1987.

Elnahal, M.K., Albrecht, P., and Cayes L., “Load Distribution in a Two-Span Continu-
ous Bridge” ,Report FHWA-RD-89-101, Federal Highway Administration, Washington
D.C., 1989.

Foley J.D. and Van Dam A., Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Company, 1983.

Gettys J., Newman R., and Fera T.D., “Xlib - C language X Interface Protocol Version
10,” Digital Equipment Corporation, 1986.

Goodwin N.C., “Functionality and Usability,” Communications of the ACM, March,
1987, pp. 229-233.

Gould J.D. and Lewis C., “Designing for Usability : Key Principles and what Designers
Think,” Commaunications of the ACM, Vol. 28, No. 3, March, 1985.

Grubb, M.A., “Prototype Bridge Final Girder Design,” American Institute of Steel
Construction, November, 1984.

GTICE Systems Laboratory, “GTSTRUDL User’s Manual Volume II”, School of En-
gineering, Georgia Institute of Technology, Atlanta, Georgia, 1986.

57

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

Hartson H.R. and Hix D., “Human-Computer Interface Development: Concepts and
Systems for its Management,” ACM Computing Surveys, Vol. 21, No. 1, March 1989.

Hutchins, E.L., Hollan, J.D., and Norman, D.A.,Direct Manipulation Interfaces in

User Controlled System Design, D.A. Norman and S.W. Draper, Eds., Lawrence
Associates, Hillsdale, NJ, 1986.

Johnson S.C.,“YACC - Yet another Compiler Compiler,” Computer Science Technical
Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey, 1975.

Katz R.H. et al., “Design Version Management,” IEEE Design and Test, February
1987.

Kernighan B.W. and Pike R., The UNIX Programming Environment, Prentice-
Hall Software Series, 1984.

Kernighan B.W. and Ritchie R., The C Programming Language, Prentice-Hall
Software Series, 1978.

Kohnke, P.C., “ANSYS Theoretical Manual,” Swanson Analysis Systems, Inc., 1977.

“MSC NASTRAN Application Manual”, McNeal-Schendler Corp., Los Angelos, Cali-
fornia, 1989.

Nutt, R.V., Zokaie, T., and Schamber, R.A., “Distribution of Wheel Loads on Highway
Bridges,” NCHRP Report, Transportation Research Board, National Research Council,
Washington D.C., October, 1987.

Plum T., Reliable Data Structures in C, Plum Hall Inc., Cardiff, New Jersey,
1986.

Rersner P., “Formal Grammar and Human Factors Design of an Interactive Graphics

System”, IEEE Trans. Software Eng, Vol. 7, No 2, 1981, pp. 229-240.

Schniederman, B., Software Psychology: Human Factors in Computer and
Information Systems, Winthrop Publishing Company, Cambridge, Mass., 1980.

Scordelis, A.C., Chan, E.C., Ketchum, M.A., and Van Der Walt, P., “Computer Pro-
grams for Prestressed Concrete Box Girder Bridges,” Report No. UCB/SESM 85-02,

Department of Structural Engineering and Structural Mechanics, University of Cali-

fornia, Berkeley, CA 94720, March, 1985.
Sedgewick R., Algorithms in C, Addison-Wesley Publishing Company, 1990.

“Standard Specifications for Highway Bridges,” 13th Edition, American Association of
State Highway and Transportation Officials, Washington, D.C., 1983.

Sun Microsystems, “SunView 1 Programmer’s Guide,” Copyright 1982..1988, Sun Mi-
crosystems, Inc.

Thompson, T., “Sun’s New Workstation: the Sun386i,” Byte, July, 1986, pp. 103-106.

58

[32] Van Wyk C.J., Data Structures and C Programs, Addison-Wesley Publishing
Company, 1988.

[33] William, K.J., and Scordelis, A.C., “Computer Program for Cellular Structures of
Arbitrary Plan Geometry,” Structural Engineering and Structural Mechanics Report
No. UC-SESM 70-10, University of California, Berkeley, September, 1970.

[34] Wilson E.L., Habibullah A., “SAP 80 : Structural Analysis Programs,” Users Guides,
Computers and Structures Inc, University Avenue, Berkeley, California, 1980.

[85] Zienkiewicz, O.C, Taylor,R.L, The Finite Element Method, Chapter 15, McGraw-
Hill Publishing Company, 1989.

59

