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The objective of this study was to examine, using mesocosm experiments, the 

long-term effects of sediment resuspension on the fate, transport, and 

bioaccumulation of Hg and MeHg in shallow ecosystems. A bioenergetic-based 

model including sediment resuspension was developed to assess MeHg 

bioaccumulation into benthic and pelagic organisms under the experimental 

conditions. In addition, this study examined the spatial distribution of Hg and MeHg 

in the sediments from the Chesapeake Bay and used the model developed to examine 

the important factors in Hg and MeHg distribution and bioaccumulation in the Bay.  

        Using STORM (high bottom Shear realistic water column Turbulence 

Resuspension Mesocosm) mesocosms, two 4-week experiments were conducted in 

July and October of 2001 (experiments 1 and 2) with Baltimore Harbor sediments. 

Tidal resuspension (4 h-on and 2 h-off cycles) was simulated with three replicates of 

the resuspension (R) and no-resuspension (NR) tanks. In experiment 1, there was no 

benthic macrofauna. In experiment 2, hard clams, Mercenaria mercenaria, were 



added to the sediment in the mesocosm tanks. Water, sediment, and biota 

(zooplankton and clams) samples were collected and analyzed for Hg and MeHg. 

Using Hg stable isotopes, Hg methylation and MeHg demethylation rates were 

determined.

        The STORM experiments showed that during sediment resuspension there was a 

significantly higher suspended particulate total Hg (THg) (on a mass basis), while 

particulate MeHg was significantly lower, as sediment particles with relatively poor 

MeHg were dominant in the water column. The results suggested that equilibrium 

partitioning between the dissolved and particulate phases for THg and MeHg was not 

occurring. It appeared that resuspension enhanced Hg methylation in the top sediment 

layer, especially in summer. Concentrations of THg and MeHg in biota showed that 

resuspension had a complex effect of system productivity and bioaccumulation. It 

appeared that organic matter content played an important role in the distribution of 

THg and MeHg in sediments and bioaccumulation into benthic and pelagic 

organisms. The modeling studies demonstrated that sediment resuspension played a 

role in transporting the enhanced MeHg to the water column and ultimately in 

increasing the MeHg burden into biota.     
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Chapter 1: Introduction

1.1. Introduction

        Over the last century the mercury (Hg) concentration in estuarine and coastal 

environments has been increased by human activities with inputs from sources such 

as urban runoff, industrial effluents, and atmospheric deposition (Mason et al., 1994; 

Gagnon et al, 1997). The contamination of Hg in estuaries is a concern as most 

estuarine and coastal environments are in close proximity to urban centers. In 

addition, they are productive ecosystems and provide an important food source for 

humans as well as being nursery areas for young fish (Benoit et al., 1998; Mason et 

al, 1999). Within oxic waters, Hg binds with inorganic ligands (e.g. Cl-, OH-) or 

dissolved organic carbon (DOC), or sorbs to particulate matter. Hg can also be 

reduced microbially or abiotically to elemental Hg and it is volatilized to the 

atmosphere as most waters are supersaturated with respect to the solubility of 

atmospheric elemental Hg (Mason et al., 1994). Within anoxic environments, Hg 

forms strong aqueous complexes with sulfide and precipitates as HgS or is 

incorporated with sulfide phases such as acid volatile sulfide (AVS) (Driscoll et al., 

1994; Paquette and Helz, 1995; Jay et al., 2000). Hg can be converted to methyl 

mercury (MeHg) in anaerobic environments by sulfate-reducing bacteria, the 

important mediators of Hg methylation (Gilmour and Henry, 1992). MeHg, a major 
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organic form of Hg, bioaccumulates through aquatic food chains more efficiently than 

inorganic Hg.

        The important processes in terms of Hg and MeHg biogeochemical cycling are 

summarized in Fig.1.1. Sediments are the main repository of Hg in estuaries (Benoit 

et al., 1998; Wang et al, 1998) and can be a significant source to the overlying water 

column via various processes including diffusion, resuspension, and bioturbation 

(Gagnon et al, 1997; Bloom et al., 1999; Mason and Lawrence, 1999; Sunderland et 

al., 2004; Heyes et al., 2004). In addition, Hg in sediments constitutes an enriched 

pool potentially available to organisms. Lower trophic levels play an important role in 

Hg bioaccumulation into fish as the greatest bioconcentration occurs between the 

water and phytoplankton (Lindqvist et al, 1991; Mason et al., 1996). Elevated MeHg 

in fish is reported in aquatic environments (Clarkson, 1990; Driscoll et al., 1995; Park 

et al., 1997). This is of the greatest concern to human health because fish 

consumption is the major exposure route of MeHg to humans (Clarkson, 1990). The 

bioavailability of Hg and MeHg to benthic organisms from sediment has been 

actively investigated, especially as they often dominate the lower trophic level of the 

aquatic food chain in shallow systems and have the potential to transfer the 

bioaccumulated Hg and MeHg from sediments to upper levels of the food chain 

(Gagnon and Fisher, 1997; Wang et al., 1998; Mason and Lawrence, 1999). Benthic 

animals can be potentially exposed to Hg and MeHg from the pore water/ overlying 

water and the sediments (solid phase). In addition, the bioavailability of Hg to benthic 

invertebrates from the sediment can be affected by sediment geochemical factors such 

as organic content, metal oxide, and sulfide mineral content. Inverse relationships 
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between Hg bioaccumulation in benthic organisms and organic content in the 

sediment have been observed (Lawrence et al., 1999; Mason and Lawrence, 1999).      

~~~~~~~~~~~~~~~~~~~~ (1)  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

Organisms                 Hg (0)     Organisms     
                                                                                        (8)
Water     (8)                       (8)     (2)                                                         (8)  
 column                        (4)                       (3)                             (4)                
                         Hg P                Hg (II)D                   CH3Hg(II)D               CH3Hg P

    (5)      (6)             (7)                        (7)                         (5)      (6)  

Sediment                      (4)                         (3)                             (4)    
                         Hg P                Hg (II)D                     CH3Hg(II)D               CH3Hg P

Figure 1.1. Mercury biogeochemical cycling: (1) air-water exchange; (2) reduction; 
(3) methylation/demethylation; (4) adsorption/desorption; (5) particle settling; (6) 
resuspension; (7) diffusion; (8) bioaccumulation. Hg(0) : elemental Hg; HgP: 
particulate inorganic Hg; Hg(II)D: dissolved inorganic Hg; CH3Hg P: particulate 
MeHg; CH3Hg(II)D: dissolved MeHg.  

The mobility and bioavailability of Hg and MeHg depend upon the nature and 

concentration of the binding phases in the sediment, which apparently are controlled 

by sediment redox status. Hg associates primarily with particulate organic matter and 

iron/manganese oxides through adsorption and coprecipitation reactions in oxidized 

sediments while in anoxic sediments, Hg is adsorbed onto and coprecipitated with 

sulfide minerals (Gobeil and Cossa, 1993; Gagnon et al, 1997; Wang et al, 1998). 

When metal oxides are reduced Hg can be released into porewater (and eventually to 
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overlying water via diffusion) or can be removed by adsorption and coprecipitation 

with sulfide minerals under anoxic conditions. It can also be released as a result of the 

microbial degradation of organic matter and by chemical dissolution due to redox 

changes during diagenesis. Very few studies have been published that have 

incorporated the relative importance of these geochemical factors, in controlling the 

behavior of Hg and MeHg, in conjunction with physical disturbance of these 

environments through processes such as sediment resuspension, which will change 

sediment redox state.  

        Resuspension is an important process in the cycling of particles and associated 

nutrients and contaminants at the sediment-water interface (Bloesch, 1995). In 

estuarine and coastal environments, bottom-sediment resuspension can be caused by 

natural events (e.g. tidal currents, storm events, and wave-current interaction) and 

anthropogenic activities (e.g. dredging and trawling) (Schoellhamer, 1996; Sloth et 

al., 1996). Sediment resuspension takes place when the bottom shear stress is 

sufficient to disrupt the cohesion of the bottom materials (Evans, 1994). 

Resuspension is a function of the properties of bottom sediments such as grain size, 

type of sediments, organic content, and water content. Once particles are 

resuspended, they tend to resettle by gravity when the shear stress diminishes and this 

process of resuspension may occur repeatedly (Bloesch, 1995).   

        Chang (1999) developed a sediment resuspension model that coupled physical 

processes, including particle transport induced by tidal resuspension, with organic 

matter degradation above and below the sediment-water interface. This water quality 

model consisted of a water column, a floc layer of time varying thickness, and a 
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surface sediment layer characterized by a high degree of chemical and biological 

activity. The Chang model simulations suggested that resuspension at the sediment-

water interface increased the dissolved organic contaminant concentrations, organic 

matter degradation rates, desorption rates and nitrification in the water column. The 

model results also indicated that resuspension decreased sediment diffusive fluxes but 

increased advective fluxes under conditions of continuous tidal forcing, and increased 

both diffusive and advcetive fluxes if resuspension was induced by storm events only. 

In addition, resuspension also decreased accumulation (burial flux) and enhanced 

recycling rates. 

        Since sediment resuspension in shallow ecosystems controls the movement and 

redistribution of particles, it could play a major role in the mobility and 

bioavailability of Hg and MeHg in shallow systems. There is, however, a paucity of 

information available on the degree to which sediment resuspension influences the 

fate and bioavailability of Hg and MeHg across the sediment-water interface.
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1.2. Background

1.2.1. Sources, fate and biogeochemical cycling of mercury and methyl mercury 

in estuarine systems

1.2.1.1. Sources of mercury inputs

        A variety of anthropogenic activities (e.g. mining, smelting, burning of fossil 

fuel, waste incineration, and the production of steel, cement, and phosphate) 

contribute to the increase of Hg levels in the environment. The principal industrial 

users of Hg are the chlor-alkali industry, the pulp industry, and electrical equipment 

manufacturers (Lu, 1996). Atmospheric deposition and riverine inputs are typically 

the primary sources of Hg to aquatic systems with the relative importance of each 

being a function of: 1) the watershed area to surface area of the waterbody and 2) the 

magnitude of point source inputs (e.g. urban runoff, industrial effluent inputs) (Wang 

and Driscoll, 1996; Gagnon et al, 1997; Bloom et al., 1999; Covelli et al., 1999; 

Mason et al., 1999). 

        Table 1.1 shows the range in total Hg (THg) concentrations in the water column 

typically measured in different aquatic systems. The Lower Fox River, Onondaga 

Lake, and Clay Lake have all received municipal effluent and industrial waste for 

decades (Hurley et al., 1998; Wang and Driscoll, 1995; Parks et al., 1989). Not 

surprisingly, the Lower Fox River is listed as an Area of Concern by the USEPA. 

Concentrations of THg in the bottom sediment as high as 37 nmol g-1 have been 

found in such environments and those of THg in water samples ranged from near-

background levels (10 pM or less) to 910 pM with a median of 120 pM. Both 

Onondaga Lake and Clay Lake received, respectively, approximately 76 tons and 10 
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tons of Hg discharge from adjacent chlor-alkali plants until 1970. The Patuxent River, 

a subestuary of the Chesapeake Bay, lies within the suburbs of Washington and 

Baltimore and 38 % of the drainage basin area is developed, while the Adirondacks 

Lakes and pristine lakes of Glacier National Park represent lakes relatively remote 

from direct anthropogenic sources of Hg (Table 1.1). Both receive the majority of 

their Hg from atmospheric deposition.        

Table 1.1. Water column THg concentrations (pM) measured in different aquatic 
systems.

Aquatic systems THg References

The Lower Fox River, Wisconsin
Onondaga Lake, New York
Clay Lake, Ontario
The Patuxent River Estuary, 
Maryland
Baltimore Harbor and
the Chesapeake Bay, Maryland
Adirondacks Lakes, New York
Remote lakes of Glacier National 
Park, Montana
San Francisco Bay, California
Hudson River Estuary, New York

9.0 – 910
13 – 180
25 – 400

2.5 – 30

2.5 – 39
7.0 – 33

1.8 – 14
0.73 – 440
0.18 - 580

Hurley et al. (1998)
Wang and Driscoll (1995)

Parks et al. (1989)

Benoit et al. (1998)

Mason et al. (1999)
Driscoll et al. (1994)

Watras et al. (1995)
Conaway et al. (2003)

Heyes et al. (2004)
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1.2.1.2. Total mercury in the water column

        Hg is mostly associated with suspended particulate matter (SPM) in water. The 

relative affinity of Hg for dissolved and particulate phases is often parameterized by 

the distribution coefficient (Kd), where Kd = particulate concentration (ng kg-1)/

dissolved concentration (ng L-1). A higher Kd value indicates a higher affinity for the 

particulate phase. Hg has one of the highest Kd values of the heavy metals (Lawson et 

al., 2001). For a log Kd of 5, more than 75 % of the Hg will be in the particulate phase 

at 30 mg L-1 SPM; for a log Kd of 5.5, > 90% will be particulate at 30 mg L-1 SPM. 

Benoit et al. (1998) observed that in the Patuxent River, the log Kd ranged from 4.8 to 

5.7. These values are within a similar range with those found for other coastal water 

(Stordal et al., 1996). 

Coquery et al. (1997) found that the particulate fractions were more than 95 % of 

the THg in the estuarine mixing zones between freshwater and seawater in the highly 

turbid Loire and the Seine estuaries, France. Their calculated Kd did not show any 

relationship with salinity, suggesting that dissolved Hg mainly was associated with 

organic matter, most likely through thiol complexation  (i.e. chlorocomplexes did not 

seem to play a major role in the Hg distribution). Mason et al.(1999) found that a 

substantial portion (35 –75 %) of THg was in particulate phase and that 70 – 80 % of 

the total dissolved Hg was bound to dissolved organic matter in the Chesapeake Bay 

where SPM ranges from 5 – 30 mg L-1 and DOC ranges from 160 – 500 µM. A small 

fraction of the total dissolved Hg was dissolved gaseous Hg and MeHg, with about 

10 % or less of the THg being inorganically- bound dissolved ionic Hg. The 

concentration of THg was higher in the bottom water when oxygen was depleted, 
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suggesting the release of Hg from the sediment during anoxia via mechanisms 

discussed above.      

1.2.1.3. Methyl mercury in the water column

It has been observed that MeHg concentration is low in freshwater and estuarine 

systems compared to those of THg (Benoit et al., 1998; Hurley et al., 1998; Monson 

and Brezonik, 1998; Mason et al., 1999). Benoit et al. (1998) found that MeHg 

accounted for < 5 % of the THg (unfiltered) and < 2 % of the dissolved Hg (filterable) 

in the Patuxent River and that the log Kd for MeHg was lower compared to that for 

Hg, ranging from 3.8 to 4. Mason et al. (1999) found that concentrations of MeHg 

ranged from the detection limit (0.03) to 1.0 pM (0.28 ± 0.03 pM) in the water 

column of the Chesapeake Bay, while significantly higher concentrations of MeHg 

were found in the low oxygen bottom water of Baltimore Harbor. Additionally, a flux 

experiment with Baltimore Harbor sediments has found that release of MeHg from 

sediments occurred under anoxic conditions likely due to particulate dissolution 

(Mason, et al., submitted). Similar patterns of MeHg in the water column under 

anoxic conditions have been reported in other lakes and estuarine systems (Mason et 

al., 1993; Regnell et al., 1997; Benoit et al., 1998; Hurley et al., 1998). This suggests 

that MeHg is either released from the sediment under anoxic conditions or that MeHg 

production occurs in the water column. With sediment flux chamber deployments in 

Lavaca Bay, Texas, Gill et al. (1999) found during a diurnal study that MeHg was 

released into the water column from the sediment as water column dissolved oxygen 
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decreased at night, suggesting a change in the sediment redox status in the absence of 

benthic photosynthesis.

1.2.1.4. Total mercury in sediment 

 As mentioned earlier, sediment is an important sink for Hg. Hg contamination in 

the sediment, however, is of concern because there are many potential pathways for 

the Hg to be transported to aquatic food chains, and sediment can also be a significant 

source of Hg into the overlying water. In estuarine environments, THg concentrations 

vary from parts per billion (ng g-1) in clean sediments to parts per million (µg g-1) in 

contaminated zones with MeHg typically accounting for less than 0.5 % of the THg 

concentrations (Gobeil and Cossa, 1993; Gagnon et al., 1996; Benoit et al., 1998; 

Conaway et al., 2003; Chapter 5). Table 1.2 shows the sediment concentrati on of THg 

in various regions of the Chesapeake Bay and other east coastal urbanized estuaries. 

On average, the sediment concentrations of THg in the Baltimore Harbor region fall 

within the same order as other east coastal estuaries, which contain large urban 

environments and harbors. While some of these other regions show extremely 

elevated sediment concentration of Hg, this is not the case for Baltimore Harbor. In 

terms of the perceived environmental impact, Boston Harbor ranks highest followed 

by the Hudson River and Baltimore Harbor as determined by the U.S. EPA tier 

system ranking (Mason and Lawrence, 1999). In addition, there was a decline in the 

concentration of Hg from north to south of the Chesapeake Bay (Chapter 5). 
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Table 1.2. Chesapeake Bay regions and a number of coastal sediments concentrations 
for THg. 

Sites
THg (nmol g-1)

Mean
References

Mainstem of the Chesapeake Bay
Hart-Miller Island, MD

Baltimore Harbor/Gunpower-
Patapsco, MD

Boston Harbor/Charles River, MA
Hudson River, NY-NJ
San Francisco Bay, CA
Long Island Sound, NY

0.4 ± 0.5
0.8 ± 0.4

1.7

3.0
5.0
1.0

0.2 – 1.7

This study (Chapter 5)
This study (Chapter 5)

Mason and Lawrence, 1999

Mason and Lawrence, 1999
Heyes et al., 2004

Conaway et al., 2003
Hammerschmidt and 

Fitzgerald, 2004

        Gobeil and Cossa (1993) found that the pore water concentration for Hg was low 

near the sediment surface but increased to a maximum at about 5 cm depth with a 

decreasing concentration in deeper sediments. They also observed the coincidental 

increase of iron and Hg, suggesting that the Hg released into the pore water could be 

related to the solubility changes of iron oxide/hydroxides as a result of low oxygen 

conditions. These oxides are insoluble in oxic environments but are solubilized in 

suboxic and anoxic conditions. Gobeil and Cossa (1993) also suggested that the 

decrease in dissolved Hg below 5 cm depth in the sediment core accounted for the 

coprecipitation of Hg with iron sulfides. Similar results were also found in the Gulf of 

Trieste, Northern Adriatic Sea (Covelli et al., 1999) and in Lavaca Bay, Texas 

(Bloom et al., 1999). Overall, depending on the redox conditions, Hg is scavenged by 

iron oxides either directly or indirectly via the adsorption of organic carbon to oxides 

or released to the pore water as iron oxides are solubilized under suboxic conditions. 

Under anoxic conditions, insoluble iron sulfide species form removing iron from 

solution. Thus, there is a resulting peak in pore water iron in the oxic-anoxic 
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transition zone. Depending on sediment conditions, there may be an associated peak 

in Hg or MeHg in this region. Thus, the formation of insoluble metal sulfides inhibits 

the metal release from the sediment. Bloom et al. (1999) found that in the pore water 

(Lavaca Bay, Texas) below 4 cm, the concentration of inorganic Hg increased with 

the concentrations of dissolved sulfide and DOC in the pore water, suggesting that the 

mobility of inorganic Hg was controlled by the formation of soluble polysulfides or 

soluble organic complexes. 

1.2.1.5. Methyl mercury in sediment 

        Despite the low percent of MeHg in estuarine sediments, MeHg is the form of 

Hg that is most toxic and bioaccumulates most efficiently due to its capability of 

passing the biological membrane, its high chemical stability and slow excretion from 

most organisms (Regnell and Ewald, 1997). Recent studies have shown that in situ

MeHg production is a significant source to estuarine environments (Mason et al, 

1999; Sunderland et al., 2004; Hammerschmidt and Fitzgerald, 2004; Balcom et al., 

2004). Benoit et al. (1998) reported that THg, sulfide, and organic matter were the 

factors most related to the percent of MeHg in the Patuxent River sediments. They 

found that there was a weak positive relationship between the concentrations of THg 

and MeHg (r2 = 0.61, p = 0.05). Both THg and MeHg concentrations were correlated 

with organic matter. This is consistent with the observation of a positive relationship 

(r2 = 0.61, p < 0.05, n = 36 for MeHg; r2 = 0.60, p < 0.05, n = 36, for THg) between 

organic content and the concentration of MeHg and THg in the mainstem of the 

Chesapeake Bay (Chapter 5). 
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        Bloom et al. (1999) and others have found that MeHg is less strongly bound to 

the solid phase (a mean log Kd of 2.7 ± 0.8) compared to inorganic Hg (a mean log Kd 

of 4.9 ± 0.4). They also observed that the Kd values for MeHg were low at the depths 

where the dissolved iron concentration was maximum. Covelli et al. (1999) also 

found that the concentration of MeHg in the pore water increased with the dissolved 

iron concentration below the subsurface but decreased toward surficial oxic layers. 

These results support the proposal that the oxic surficial sediment layer may act as a 

barrier to diffusion of dissolved MeHg to the overlying water (Gagnon et al., 1996). 

As mentioned earlier, Gill et al. (1999) observed a strong diurnal flux of MeHg from 

Lavaca Bay, Texas sediment into the overlying water during dark periods, suggesting 

that the sediment-water exchange of MeHg was strongly mediated by sediment redox 

status, as determined by the microbial activity in sediments. Responding to the 

photosynthetic and respiratory activity of benthic organisms, the redox boundary 

migrates diurnally. As a result, it is postulated that MeHg, adsorbed onto iron oxides 

(either directly or through association with adsorbed organic matter) under oxic 

conditions, can be released into solution as iron oxides are reduced under anoxic 

periods. However, diffusion is not the only mechanism for transferring Hg and MeHg

from sediments to the water column. While diffusive fluxes may be small under oxic 

conditions because MeHg is bound to oxide phases, Gagnon et al. (1996) suggest that 

benthic organisms such as worms and amphipods that assimilate MeHg in the anoxic 

sediment can be important vectors of MeHg to benthic predators. Additionally, 

processes such as bioturbation and physical mixing can enhance the transfer of Hg 

and MeHg from the sediment to the water column.  
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1.2.2. The role of sediment geochemistry and resuspension in the mobility and 

bioavailability of mercury and methyl mercury  

        As discussed earlier, in the oxic environment, there is a competition between the 

oxide phases and the organic phases for the binding of Hg and MeHg. However, 

complexation to organic matter via thiol ligands becomes dominant as the relative 

concentration of thiol ligands increases with the dissolution of oxide phases in 

reduced environments or because of competition between phases in high organic 

carbon or low iron environments. At higher sulfide concentrations, as Benoit et al. 

(1999a) suggested, complexation of inorganic Hg to sulfide in anoxic pore water was 

more important than complexation to dissolved organic carbon. The model of Benoit 

et al. (1999a) included the binding of Hg to reduced sulfide solid phases, although it 

was not identified whether these phases were inorganic (e.g. FeS, FeS2) or organic 

compounds containing thiol groups. Typically, however, in surface sediments there 

are both the reduced (e.g. FeS/AVS) and oxidized solid iron phases coexisting and 

thus the association of Hg and MeHg is complicated and depends on the relative 

concentrations of iron, AVS, and organic carbon (Mason and Lawrence, 1999).    

        Lawrence and Mason (2000) developed a simple bioaccumulation model to 

examine the relative importance of various uptake routes for amphipods (e.g. water, 

pore water, in-place sediment, and food). The model was constructed using the results 

from laboratory experiments (e.g. sediment exposure assays with amphipods and 

water only exposure experiments). Bioaccumulation factors were determined to be a 

function of the organic carbon of the medium. The model developed was applied to 

data obtained from Lavaca Bay, Texas. The model results suggest that the sediment 
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and fresh algal matter were the most important sources to the amphipods and that 

uptake from either overlying water or porewater was small. At high organic matter, 

the sediment bioaccumulation factor (BSAF) was small, indicating that MeHg was 

tightly bound to organic matter and relatively less bioavailable. Given the importance 

of the solid phase as a source of Hg and MeHg to benthic organisms, processes that 

alter particle distribution and fate, such as resuspension, may have an important 

impact on bioaccumulation.

1.2.3. The effect of resuspension on mercury methylation

        The effect of resuspension on Hg methylation is difficult to quantify because it 

will depend on a variety of variables. The methylation of Hg depends upon 

environmental factors that control the overall metabolic activity of the methylating 

organisms and the bioavailability of Hg in the matrix where methylation occurs. As 

the supply of organic carbon enhances the Hg methylation rate (Choi and Bartha, 

1994), the distribution of methylation activity is dependent upon the distribution of 

biodegradable organic matter. Thus, maximal methylation rates are often observed in 

biologically active surface sediments (Callister and Winfrey, 1986; Korthals and 

Winfrey, 1987). 

        Sulfate can stimulate both sulfate reduction and Hg methylation by sulfate 

reducing bacteria at relatively low sulfate concentrations (Gilmour and Henry, 1991). 

However, high concentrations of sulfate, such as found in estuarine and marine 

environments, enhance pore water dissolved sulfide and thereby inhibit Hg 

methylation (Compeau and Bartha, 1983; 1987; Gilmour et al., 1998; Benoit et al., 
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1998). Benoit et al. (1999a) developed a chemical equilibrium model to test the 

hypothesis that the bioavailability of Hg to sulfate reducing bacteria was a function of 

the concentration of neutral Hg sulfide complexes that can readily diffuse across the 

bacterial membrane. The model results suggest that as sulfide increases, the dominant 

Hg speciation changes from neutral dissolved Hg complexes (e.g. HgS (aq)) to 

charged sulfide complexes and thus, bioavailability to bacteria decreases. Octanol-

water partition experiments (Benoit et al., 1999b) and culture experiments (Benoit et 

al., 2001) have confirmed this hypothesis. 

 Thus, resuspension may enhance methylation by decreasing sulfide levels, but it 

may also limit methylation if sediments become too oxic by limiting the activity of 

sulfate reducing bacteria. Further, resuspension can change the availability of organic 

carbon to sulfate reducing bacteria and thus further influence bacterial activity. In 

addition, demethylation occurs primarily under oxygenated conditions (Matilainen 

and Verta, 1995). Higher demethylation rates were observed in oxygenated sediments 

than in anoxic sediments (Compeau and Bartha, 1984). Marvin-Dipasquale and 

Oremland (1998) found during their incubation experiments with sediments from the 

Florida Everglades that oxidative demethylation in all samples was an important 

degradation mechanism. Thus, resuspension may enhance the demethylation of 

MeHg by introducing oxygenated conditions to anoxic environments.   
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1.2.4. The novelty of the proposed research  

        There have been a number of laboratory studies demonstrating that resuspension 

of sediments results in the release of organic contaminants, such as PAHs and PCBs 

(Latimer et al., 1999), as well as trace metals, such as Mn, Fe, Zn, Cu, and Cd, into 

overlying water (Calvo et al., 1991; Petersen et al., 1997; Laima et al., 1998). In 

contrast, Brassard et al. (1997) concluded from their small reactor experiment that 

surficial sediments were not significant sources of trace metals into water column 

when resuspended. They postulated, however, that this might not be applicable to 

anoxic sediments from deeper layer because of the potential for oxidative release of 

metals. Bloom and Lasorsa (1999) found from their laboratory mixing experiment 

that approximately 5 % of the sediment bound MeHg and less than 1 % of THg were 

released upon shaking with seawater.    

        Overall, the previous laboratory experiments have been limited as they failed to 

mimic nature (i.e. both realistic bottom shear stress and water turbulence). In nature, 

resuspension typically removes only mm of surface sediments and therefore the 

experiments in the laboratory likely overestimate the potential for anoxic sediments 

being resuspended into the water column. Most laboratory experiments were run for 

no more than 24 hours. This likely results in an incorrect assessment of partitioning 

between particle and dissolved fractions because the sorption processes can be quite 

slow (Chang, 1999). Thus, it is not possible to extrapolate from the small scale of 

these laboratory studies to natural conditions. In a laboratory experiment for

partitioning of radioactive trace metals between seawater and particulate matter, 

Nyffeler et al. (1984) found that for group 1 elements (e.g. Na, Zn, Se, Sr, Cd, Sn, Sb, 
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Cs, Ba, Hg, Th and Pa) constant distribution coefficients were reached after 2-3 days 

of equilibrium. They also found that group II elements (e.g. Be, Mn, Co, and Fe) 

showed an increasing distribution coefficient over the whole observation time (108 

days). Thus, the previous laboratory resuspension experiments may not represent 

what occurs in terms of partitioning under long-term steady state conditions. In 

addition, none of the previous studies have assessed the impact of resuspension on Hg 

fate and transport and how it would affect bioaccumulation of Hg and MeHg to 

organisms inhabiting the sediment-water interface.    

        Interest in bioaccumulation of Hg and MeHg by benthic organisms stems from 

public health concerns because these organisms serve as essential links for higher 

levels of the food chain, such as fish and larger invertebrates. As mentioned earlier, 

fish consumption is the major exposure route to humans (Clarkson, 1990). Benthic 

invertebrates can be exposed to Hg and MeHg from both dissolved phase (e.g. 

overlying water and pore water) and sediments (Fisher et al., 1996; Gagnon and 

Fisher, 1997; Lawrence and Mason, 2001). Kinetic models have been developed to 

effectively and quantitatively separate uptake pathways of contaminants by aquatic 

organisms (Thomann et al., 1995; Morrison et al., 1997; Wang et al., 1998; Fisher et

al., 2000; Roditi et al., 2000). The previous models, however, did not include 

physically induced processes such as resuspension that can be a significant factor in 

the bioaccumulation of Hg and MeHg into benthic animals. As mentioned earlier, 

resuspension could increase the bioavailability of Hg and MeHg to these organisms 

via release from the sediments, and could also alter methylation within the sediments. 
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        This dissertation research is different from the previous studies in that 1) a new 

experimental design, that has been successfully developed to produce both realistic 

bottom shear stress and water column turbulence (Porter et al., 2000), was used in the 

bioaccumulation studies; and 2) long-term (4 weeks) resuspension experiments were 

conducted to examine how resuspension would affect the mobility and bioavailability 

of Hg and MeHg. To integrate the resuspension experiments and the other studies, a 

bioaccumulation model was developed that included sediment resuspension and the 

dynamics of adsorption/desorption between dissolved and particulate phases, and 

other processes.        

1.3. Hypotheses 

        The research was driven by the following hypotheses:

1) Resuspension through a series of direct and indirect interactions decreases 

MeHg sediment concentration but increases MeHg flux at the sediment-

water interface; and

2) Resuspension will lead to an enhancement of MeHg accumulation into 

higher trophic level organisms.

More specifically, it is postulated that long-term resuspension may increase the 

dissolved Hg and MeHg in the water column due to oxidation of sulfide phases and 

other processes enhancing desorption. This enhanced concentration can lead to an 

increased uptake of Hg and MeHg into algae, the preferred food of the filter feeding 

benthic organisms. In addition, resuspension likely decreases the productivity but 
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increases the consumption of microphytobenthos by filter feeders. Additionally, by 

recycling and resupplying organic mater to the surface sediment, resuspension may 

also increase bioaccumulation into surface deposit feeders. While short term 

resuspension may increase the methylation due to partial oxidation of sediments 

thereby decreasing pore water sulfide gradients, upon longer term resuspension, the 

methylation may decrease in the surface layers due to the removal of organic 

material, the inhibition of benthic algal formation, and the decrease in sulfate 

reducing bacterial activity. Also, sediment oxygenation likely increases 

demethylation. It is hypothesized that the increase in the flux of Hg and MeHg from 

sediments and the increased bioavailability of sediment Hg and MeHg that can result 

from resuspension may negate any impact of resuspension on methylation activity. 

Finally, given the strength of binding of Hg and MeHg to various sedimentary phases, 

it is postulated that resuspension, by oxygenating surface sediment, likely results in 

an increase in the bioavailability of solid phase sediment Hg and MeHg to benthic 

organisms. Overall, the complexity of such interactions is difficult to ascertain from 

simple experiments and thus, the mesocosm studies, in conjunction with modeling, 

provided a unique mechanism to investigate these complex direct and indirect effects.        
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1.4. Objectives

        To test these hypotheses, the objectives of this dissertation research were to: 

1) investigate using mesocosms the long-term effects of resuspension on the fate 

and bioaccumulation of Hg and MeHg in shallow systems;

2) develop a bioenergetic-based model including the effects of resuspension to 

assess MeHg bioaccumulation in shallow systems; 

3) calibrate the bioaccumulation model by comparing the model results to data 

from the mesocosm study, and then apply the model to field situations to 

estimate the potential impact of resuspension of MeHg bioaccumulation into 

benthic and pelagic organisms in representative shallow water environments;

and

4) examine the spatial distribution of Hg and MeHg in the sediments from the 

Chesapeake Bay and the important controlling factors in determining Hg and 

MeHg concentrations and their bioaccumulation.

        This thesis is composed of 4 chapters examining the objectives above. Chapter 2 

and 3 present two mesocosm experiments conducted in July and October of 2001. 

There were two treatments (resuspension vs. no-resuspension) and three replicates 

without clams (experiment 1) and with clams (experiment 2). Chapter 4 describes the 

model development, calibration, and model results in comparison with the data in 

experiment 2. Chapter 5 includes model applications examining the impact of running 

the model for a longer period, with different sediment organic contents, and with THg 
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and MeHg concentrations as found in the sediments of the Chesapeake Bay. Finally, 

Chapter 6 summarizes the overall results and conclusions of this study.     

        In Chapter 2, water column data are presented from both experiment 1 and 2. 

The data include THg and MeHg concentrations in both particulate and dissolved 

phases as well as total suspended solids (TSS), particulate matter (POM), DOC, and 

phytoplankton biomass. The relationships between THg/MeHg concentrations and 

other variables (e.g. TSS, POM, DOC) are presented and discussed. In addition, the 

effects of sediment resuspension on Hg partitioning in the water column are 

discussed.  

 Chapter 3 examines the effects of resuspension on the fate and bioaccumulation 

of THg and MeHg in experiments 1 and 2. The results are mostly focused on THg 

and MeHg dynamics in sediments as well as bioaccumulation into benthic and pelagic 

organisms. The effects of resuspension on Hg methylation and demethylation are also 

discussed. The relationships between THg and MeHg concentrations, as well as AVS 

and organic matter in sediments are discussed. Important factors in controlling Hg 

and MeHg bioaccumulation are also examined.

        Chapter 4 models MeHg bioaccumulation into benthic and pelagic organisms. 

The model development and calibration are described and the model results are 

calibrated with the data in experiment 2. Different model scenarios are described and 

the model results are presented. The model applications include the effects of clams 

on phytoplankton and zooplankton biomass and MeHg accumulation into biota. 

Important parameters in controlling biomass and subsequent MeHg concentration in 

biota are examined and discussed using sensitivity analysis of the model parameters.               
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        Chapter 5 investigates the spatial distribution and bioaccumulation of THg and 

MeHg in the Chesapeake Bay region including the mainstem of the Bay, Baltimore 

Harbor, and its vicinities (e.g. the Hart-Miller Island [HMI]; Dredge Material 

Contaminant Facility). This chapter discusses the controlling factors in the 

distribution of THg and MeHg in sediments and the controlling factors in the 

transport and bioaccumulation of THg and MeHg. The chapter focuses on the role of 

organic content in sediments in determining THg and MeHg concentrations in 

sediments and bioaccumulation into benthic and pelagic organisms. Additionally, 

representative Chesapeake Bay conditions are used in the model, and the model is 

simulated over a longer period, to examine the effect of organic content and Hg 

methylation on MeHg bioaccumulation and burden in biota.     

Finally, Chapter 6 summarizes the overall conclusions of the mesocosm 

experiments, field studies and modeling studies. Model limitations and further 

applications are included in this chapter. Implications and suggestions for future study 

are also discussed.
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Chapter 2: The effect of resuspension on the fate of total mercury 

and methylmercury in a shallow estuarine ecosystem: A mesocosm 

study

Reprinted from Marine Chemsitry, 86, Kim et al., 121-137., Copyright (2004), with 

permission from Elsevier.

2.1. Introduction

        Estuaries provide an essential link in the global biogeochemical cycling of 

mercury between the terrestrial and the marine environment. Similar to other metals, 

only a small fraction of the mercury transported in rivers is exported to the ocean due 

to the high retention of mercury in estuarine environments (Cossa et al., 1996; Benoit 

et al., 1998; Mason et al., 1999), mainly as a result of sediment burial. Sediment 

resuspension is an important process for re-introducing metals into the water column 

and in the cycling of particles and associated nutrients and contaminants at the 

sediment-water interface (Bloesch, 1995). In estuarine and coastal environments, 

bottom-sediment resuspension can be caused by natural events (e.g. tidal currents, 

wind waves, storm events, and wave-current interaction) (Sanford et al., 1991; Arfi et 

al., 1993) and anthropogenic activities (e.g. dredging and trawling) (Schoellhamer, 

1996; Lewis et. al., 2001). Sediment resuspension takes place when the bottom shear 

stress is sufficient to disrupt the cohesion of the bottom materials (Evans, 1994). 



25

Resuspension is a function of the properties of bottom sediments such as grain size, 

type of sediments, organic content, and water content. Once particles are 

resuspended, they tend to resettle by gravity when the shear stress diminishes and this 

process of resuspension may occur repeatedly (Bloesch, 1995).  

      Since resuspension of sediments in shallow aquatic ecosystems controls the 

movement and redistribution of particles, it can play a major role in the mobility and 

bioavailability of trace metals in these systems. For example, Simpson et al. (1998) 

observed in a laboratory experiment that during an 8-h resuspension, acid volatile 

sulfide (AVS) decreased to values lower than the concentrations of simultaneously 

extracted metals (SEM), suggesting that a significant fraction of metal sulfide phases 

were oxidized. As trace metals are likely associated with FeS phases either through 

coprecipitation or adsorption, these metals may be released as the FeS phases are 

oxidized and released, in concert with the oxidized sulfur species, to the overlying 

water. Thus, resuspension can act as a potential source of toxic metals to the water 

column, increasing the potential metal bioavailability. The released metal may, 

however, be quickly scavenged by or coprecipitated with iron and manganese oxides 

or complexed to organic matter. While studies have focused on other metals, to date 

there is a paucity of information available on the fate of mercury and methyl mercury 

during resuspension, or on their potential release from reduced sulfide phases upon 

resuspension.

        A number of laboratory studies have demonstrated that resuspension of 

sediments results in the release of organic contaminants, such as PAHs and PCBs 

(Latimer et al., 1999), as well as trace metals, such as Mn, Fe, Zn, Cu, and Cd, into 
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overlying water (Calvo et al., 1991; Petersen et al., 1997; Laima et al., 1998). In 

contrast, however, Brassard et al. (1997) concluded from their small reactor 

experiment that surficial sediments were not significant sources of trace metals into 

the water column when resuspended. They postulated, however, that this might not be 

applicable to anoxic sediments from deeper layers because of the potential for 

oxidative release of metals. However, the degree to which this may occur in the 

environment is limited. 

        Overall, the previous laboratory experiments have been limited as they failed to 

mimic nature (i.e. both realistic bottom shear stress and water turbulence) (Porter et 

al., 2003), have been of short duration and have used high suspended sediment: water 

ratios greater than found in nature. Thus, it is not possible to extrapolate from the 

small scale of these laboratory studies to natural conditions. The objective of this 

study was, therefore, to investigate the effect of sediment resuspension on the fate and 

bioavailability of total mercury (THg) and methylmercury (MeHg) using the new 

STORM (high bottom S hear realistic water column Turbulence Resuspension 

Mesocosm) facility designed and developed by Elka Porter (Porter, 1999; Porter et 

al., 2004b). The experimental system can mimic both realistic bottom shear stress and 

water column turbulence. We conducted two experiments, one in July (experiment 1) 

and the other in October of 2001 (experiment 2). In experiment 1, no benthic 

macrofauna were introduced to the mesocosms while in experiment 2, hard clams, 

Mercenaria mercenaria, were added to the sediment in the mesocosms. Experiment 2 

was aimed at investigating the effect of resuspension on the bioavailability of Hg and 

its bioaccumulation into clams, as well as the methylation and demethylation of Hg in 
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the sediment. In this chapter, however, the fate of Hg in the water column will be 

specifically discussed. A companion chapter will discuss the sedimentary dynamics 

of THg and MeMg and their bioaccumulation in zooplankton and clams (Chapter 3, 

Kim et al., submitted).    

2.2. Material and methods

2.2.1. Mesocosm set-up

Muddy surface sediment was collected from Baltimore Harbor in the spring of 

2001 and transferred to a fiberglass holding tank and prepared for each experiment 

following techniques developed in Porter (1999). The sediment was covered with a 

black plastic sheet for defaunation (4 days) and it was kept in the holding tank until

the experiment. After the top 10 cm layer of sediment was scooped off to remove any 

remaining live macrofauna, the sediment was transferred to six STORM tanks (1m2

sediment surface area). The sediment was mixed thoroughly and flattened. Ambient 

water from the mouth of the Patuxent River, a subestuary of the Chesapeake Bay, 

Maryland, USA, was filtered through filtration units (pore size 0.5 µm absolute) and 

carefully added into the tanks to a depth of 20 cm above the sediment surface without 

any disturbance of the sediment layer. The mesocosms then underwent an 

equilibration period (about 2 weeks) with the water column oxygenated by bubbling. 

During this period, 50 % of water was exchanged daily with filtered ambient water. 

The final sediment depth was about 10 cm after the equilibration period. After this 

period, unfiltered ambient water from the Patuxent River was added to the tanks (total 
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volume of 1000 L) without any sediment disturbance. There were 3 replicates of 

resuspension (R) and no resuspension (NR) mesocosms set up for the experiments. 

Tidal resuspension (4 h on-  and 2 h off-cycles) was simulated using the STORM tank 

mixing design. In both R and NR tanks, water turbulence intensity was similar and 

water mixing was set to have 4 h on- and 2 h off- cycles in both tanks. Thus, there 

were both sediment resuspension and water turbulence in the R tanks while there was 

water turbulence only in the NR tanks. Water was exchanged daily at a rate of 10 % 

of the total volume with filtered Patuxent River water to mimic the flushing time 

scale of the Chesapeake Bay. In addition, water exchange was always performed near 

the end of the off-phase in order to minimize particle loss in the R tanks.

        The sediment in the mesocosms was transferred to the holding tank after 

experiment 1 and stored until the next experiment. Experiment 2 was basically set up 

in a similar manner as experiment 1. However, a scaled population of about 50 ca 40 

mm long clams, M. mercenaria, was placed into the sediment individually by hand

after the sediment equilibration period. Hard clams were allowed to bury themselves 

into the sediments overnight. Those clams that had not buried themselves by the next 

morning were collected and discarded and replaced with new clams. New clams that 

again had not buried themselves by the next morning were removed and not replaced. 

Since negative effects (e.g. inhibition of feeding rate, burrowing, growth, and survival 

of juveniles and adults) on clams result from salinities below 15 ppt (Grizzle et al., 

2001 and references therein), salinity was maintained approximately 19 ppt 

throughout experiment 2, compared to a salinity of around 14 ppt for experiment 1. 
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2.2.2. Sample collection

        Water samples were collected every 2-3 days during the on-cycle (sediment 

resuspension in the R tanks) by siphoning water from 50 cm below the surface by 

gravity flow into a sample bottle. Additionally, on three occasions samples were 

collected after the cessation of resuspension in all tanks. Water samples were taken 

separately for Hg and other variables such as TSS, dissolved organic carbon (DOC) 

and Chlorophyll a (Chl a). All sample bottles for Hg were Teflon and were acid-

cleaned according to our established protocols before use (e.g. Mason et al., 1999). 

Water samples were filtered onto 0.4 µm polycarbonate filters for particulate THg 

and MeHg. The filters were then stored double bagged and frozen until subsequent 

digestion and analysis. The filtrate was collected for dissolved THg and MeHg in 

acid-cleaned Teflon bottles and kept frozen. For TSS and particulate organic matter 

(POM), samples were filtered through pre-weighed 0.7 µm Whatman GF/F glass fiber 

filters. POM was calculated from loss on ignition at 450 °C for 4 h after the samples 

had been dried. The samples for Chl a and DOC were filtered in the same way as 

mentioned above and were sent to the Analytical Service at CBL for analyses.
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2.2.3. Sample analyses

2.2.3.1. Total mercury

        The filtrates were thawed and oxidized with bromine monochloride (BrCl) for 

1/2 - 1 h while the particulate filter samples were digested in a solution of 7:3 sulfuric 

acid: nitric acid in Teflon vials in an oven at 60 °C overnight prior to BrCl oxidation. 

For all samples, excess oxidant was neutralized with 10 % hydroxylamine 

hydrochloride prior to analysis (Bloom and Crecelius, 1983). The samples were then 

reduced by tin chloride, sparged, and the elemental Hg trapped on gold traps. 

Quantification was done by dual-stage gold amalgamation/Cold Vapor Atomic 

Florescence detection (CVAFS) (Bloom and Fitzgerald, 1988) in accordance with 

protocols outlined in EPA method 1631 (EPA, 1995). A calibration curve with an r2

of at least 0.99 was achieved daily. Detection limits for THg were based on three 

standard deviations of blank measurements (digestion blanks for filters and SnCl2

bubbler blanks for filtered water). The detection limits for THg were 0.2 pmol g-1 for 

filters and 0.4 pmol l-1 for filtered water. Analysis of duplicate samples yielded an 

average relative percent difference (RP D) of less than 20 %. A recovery of estuarine 

sediment standard reference material (IAEA-405) was greater than 85 %.   

2.2.3.2. Methylmercury 

Details of the analytical protocols are given elsewhere (Mason et al., 1999; Mason 

and Lawrence, 1999). Briefly, samples were distilled with a 50 % sulfuric acid/ 20 % 

potassium chloride solution (Horvat et al., 1993). A sodium tetraethylborate solution 

was added to the distillate to convert the nonvolatile MeHg to gaseous 
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methylethylmercury (Bloom, 1989). The volatile adduct was then purged from 

solution and recollected on a graphitic carbon column at room temperature. The 

methylethylmercury was thermally desorbed from the column, and analyzed by 

isothermal gas chromatography with CVAFS. This method was used for the analysis 

of MeHg in both filters and water. A calibration curve with an r2 of at least 0.99 was 

achieved daily. Detection limits for MeHg were based on three standard deviations of 

distillation blanks. The detections for MeHg were 0.005 pmol g-1 for filters and 0.09 

pmol l-1 for filtered water. Spike recoveries for MeHg were 92 ± 18 % for filters and 

86 ± 18 % for filtered water. 

2.2.4. Statistics

        The data of all the sampling days in each system were averaged for statistical 

analysis. The data analysis was performed using ANOVA to test if there was a 

significant difference between two treatments (R vs. NR). Data were checked for 

normality and equal variances and log-transformed if necessary. A nonparametric test 

(Wilcoxon Test) was performed when the assumption of equal variances was not met. 

Correlation coefficient (r) was obtained using Pearson product-moment correlation to 

see if there was a linear relation between variables. All the statistical results were 

reported as significant at a level of p < 0.05. We used JMP®, version 4 by SAS 

institute Inc., Cary, NC, USA for all the statistical analyses.     
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2.3. Results and discussion

2.3.1. Experiment 1 (without clams) 

2.3.1.1. Water column characteristics

        As seen in Fig. 2.1a, TSS in the R tanks was significantly higher during 

resuspension, averaging 150 ± 27 mg l-1 than that in the NR tanks (10 ± 0.2 mg l-1) 

throughout the experiment period (28 days). As mentioned earlier, experiment 1 

started with unfiltered ambient water from the Patuxent River. Thus, TSS in the NR 

tanks represented particles from the Patuxent River and in situ production during the 

course of the experiment. Over time, TSS in the R tanks showed a slight decrease for 

the initial two weeks but tended to increase toward the end of the experiment. It 

should be noted, however, that the R system was accidentally shut off on the 20th day 

and all the R tanks were not disturbed overnight. The arrow in Figure 2.1a shows 

when the system was down. As mentioned above, there were three additional 

samplings during the off-cycle in accordance with the on-cycle sampling to assess 

changes in parameters during the non-resuspension phase (day 12, 18, and 25). 

Average TSS and other variables during the non-resuspension phase were only 

compared to the resuspension phase on those corresponding days. Although these 

data are not shown in the figures, average values (n = 3) are discussed in the text only 

when there is a significant difference between the two cycles for all the variables. In 

that case, average values only for the off-cycle (non-resuspension) were given, as 

those for the on-cycle (n = 3) were similar to average values for the entire sampling 

period (n = 11). Average concentration of TSS in the R tanks decreased significantly 

during the off-cycle (20 ± 1 mg l-1, n = 3), compared to the on-cycle.    
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        Similarly, POM was significantly higher in the R tanks than the NR tanks, 

averaging 22 ± 3 and 5.4 ± 0.1 mg l-1, respectively (Fig. 2.1b). Average POM 

decreased significantly in the R tanks during the off-cycle (5.2 ± 0.2 mg l-1, n = 3), 

compared to the on-cycle. The result confirms that POM was introduced to the water 

column as TSS increased during resuspension events. There was a significant positive 

correlation between TSS and POM in the R tanks (r = 0.99, n = 33) as well as in the 

NR tanks (r = 0.90, n = 33).  However, average % POM was significantly higher in 

the NR tanks (53 ± 1 %) than the R tanks (18 ± 0.9 %) (Fig. 2.1b). While POM in the 

R tanks decreased during the off-cycle, there was a significant increase in % POM 

(26 ± 2 %, n = 3) in the R tanks, compared to the on-cycle. This was because the large 

amount of sediment particles, which were transferred to the water column during 

resuspension events, settled rapidly during the off-cycle. In addition, the higher % 

POM in the NR tanks was partially due to a relatively higher fraction of 

phytoplankton and zooplankton, compared to the R tanks (Appendix I). Average 

ratios of phytoplankton and POM were 0.2 ± 0.1 in the R tanks and 0.3 ± 0.2 in the 

NR tanks, respectively (Fig. A in Appendix I). In addition, average ratios between 

zooplankton and POM were 0.02 ± 0.01 (R) and 0.2 ± 0.1 (NR), respectively (Fig. B 

in Appendix I).   

        In both systems, two distinct phytoplankton “blooms” occurred during the 

experiment with an earlier bloom in the NR tanks, compared to the R tanks (Fig.

2.1c). Chl a in the R tanks was significantly higher on average than the NR tanks, 

averaging 24 ± 2 and 13 ± 0.9 µg l-1, respectively. These results appear counter-

intuitive to expectation (i.e. increased turbidity would result in a reduction of primary 
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productivity). In corroboration, Wainright (1987) also found that planktonic microbial 

growth was stimulated by resuspended sediments. In addition, other studies have 

demonstrated that sediment microbial production (e.g. benthic bacteria and 

microalgae) and settled phytoplankton are transferred to the water column during 

resuspension (Wainright, 1990). However, it appears that this is not the case for our 

experiment as Chl a during the on-cycle was not significantly different from that of 

the off-cycle, suggesting that benthic phytoplankton were not transferred to the water 

column to any significant degree as resuspension occurred. Sloth et al. (1996) 

similarly found in their mesocosm experiment that less than 2 % of the benthic algal 

chlorophyll was transferred to the water column during the resuspension period (2 h). 

While there were significant correlations between Chl a and TSS (r = 0.56, n = 33) as 

well as POM (r = 0.62, n = 33) in the NR tanks, there was no correlation found in the 

R tanks. This also supports the contention that benthic phytoplankton was not 

transported to the water column in any substantial way as resuspension occurred.      

        DOC in the NR tanks was significantly higher than in the R tanks, averaging 280

± 3 µM (NR) and 240 ± 8 µM (R) during the on-cycle (Fig. 2.1d). There are no data 

available during the off-cycle. The range in DOC falls well within the range found in 

the Chesapeake Bay (160 – 500 µM) where TSS varies from 5 – 30 mg l-1 (Mason et 

al., 1999). As mentioned earlier, the higher biomass of zooplankton may explain the 

higher DOC in the NR tanks because DOC can be produced by zooplankton 

excretion. In fact, Park et al. (1997) found a significant correlation between labile 

DOC production rates and zooplankton densities in their outdoor continuous flow-

through pond experiment.       
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        Table 2.1 presents the water chemical characteristics measured daily (during the 

on-cycle) over the experiment period. The salinity and temperature were similar in 

both systems. DO and pH in the NR tanks were higher than those in the R tanks.  

Table 2.1. Average and standard deviation for ancillary parameters in the water 
column of the R and NR tanks during the course of experiment 1 and 2. 

Parameters R NR

Experiment 1

DO (mg l -1 )
Salinity (ppt)

Temperature (ºC)
pH

5.7 ± 1.2
14 ± 0.3
25 ± 1.2
7.7 ± 0.2

8.5 ± 1.5
14 ± 0.3
25 ± 1.3
8.1 ± 0.3

Experiment 2

DO (mg l -1 )
Salinity (ppt)

Temperature (ºC)
pH

6.7 ± 0.8
19 ± 0.2
20 ± 1.9
7.5 ± 0.3

8.2 ± 1.3
19 ± 0.2
20 ± 2.0
7.8 ± 0.2
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Figure 2.1. Average concentrations of the following variables in the R and NR tanks 
(experiment 1). (a) TSS concentration. (b) POM and % POM. (c) Chl a concentration. 
(d) DOC concentration. 

Error bars show standard deviations of 3 replicates in each system.
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2.3.1.2. Mercury distribution

        The average concentration of particulate THg (on a mass basis) was significantly 

higher in the R tanks than the NR tanks, being 2.3 ± 0.1 (R) and 1.1 ± 0.05 nmol g-1 

(NR) (Fig. 2.2a). This suggests that resuspended sediments contributed to higher 

particulate THg in the R tanks. Unfortunately, there are no data available for the first 

9 days due to loss of the samples. Even during the off-cycle (non-resuspension), a 

similar pattern was observed (e.g. significantly higher particulate THg in the R tanks). 

The average concentration of particulate THg was not significantly different in the R 

tanks during the off-cycle, compared to the on-cycle.

        Although sediment data are not discussed here, sediment cores were taken from 

all the R and NR tanks for Hg analyses (Chapter 3, Kim et al., submitted). The 

average concentrations of THg in the top sediment (0-0.5 cm) were 2.6 ± 0.3 (R) and 

2.3 ± 0.8 nmol g-1 (dry weight) (NR) at the end of the experiment. In the R tanks, 

THg in surface sediment was comparable with particulate THg in the water column 

but this was not the case in the NR tanks. Given that the unfiltered ambient water 

added at the beginning of the experiment was from the Patuxent River and that this 

was the major source of particles for the NR tanks, besides in situ production, it was 

possible that THg in the water column would be similar to that in the Patuxent River. 

Our THg data (particulate + dissolved THg on a pM basis) in the water column fell 

within the range of THg in unfiltered Patuxent River water reported by Benoit et al. 

(1998). In addition, phytoplankton growth would change the average concentration of 

THg on particles. Overall, particulate THg in the water column in the R tanks also 

represented its origin (i.e. from the sediment during resuspension). 
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Dissolved THg, unlike particulate THg, was remarkably similar between the two 

systems, averaging 5.5 ± 1.0 pM and varied during the experiment period (Fig. 2.2b). 

As mentioned earlier, there was a water exchange every day at a rate of 10 % with 

ambient filtered water. Input water was also collected for Hg analysis three times 

throughout the experiment period (day 18, 22 and 28). The average concentration of 

input water was 3.0 ± 0.5 pM (n = 3). The disparity of dissolved THg concentrations 

between the input water and the mesocosms could be due to daily fluctuations of THg 

concentration in the input water or could reflect Hg input from the suspended particle 

phase or from the sediment. There was no significant difference in dissolved THg 

between the resuspension and non-resuspension phases in the R tanks, suggesting that 

particle desorption processes were not occurring substantially during resuspension. 

Overall, the dissolved THg did not seem to change in concert with changes in the 

particulate THg. This suggests that particles and water did not reach equilibrium very 

quickly (i.e. not on the timescale of the on- and off- cycles), or that Hg bound to 

particles was not available for exchange.          

        Mason et al. (1999) estimated that 70 – 80 % of the dissolved THg was bound to 

DOC in the Chesapeake Bay. There was, however, no correlation found between 

DOC and the dissolved THg in this experiment. DOC in our experiment ranged from 

130 to 320 (R) and 210 to 330 µM (NR). It is possible that the lack of correlation 

results from the small range of DOC found in the mesocosms. Similarly, Lacerda and 

Gonςalves (2001) did not find a significant correlation between DOC and dissolved 

THg in waters of the coastal lagoons of Rio de Janeiro, Brazil probably due to the 

small range of DOC (520 - 730 µM) and the limited dataset. In contrast, Conaway et 
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al. (2003) found that dissolved THg was significantly correlated with DOC in the San 

Francisco Bay estuary, USA, where DOC ranged widely (e.g. from 80 to 890 µM).



42

Day

1 3 5 7 9 12 15 18 22 25 28

Pa
rt

. T
H

g 
(n

m
ol

 g
-1

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
NR

a

Day

1 3 5 7 9 12 15 18 22 25 28

D
is

s.
 T

H
g 

(p
M

)

0

5

10

15

20

25
R
NR 

b

Figure 2.2. Average concentrations of THg in particulate and dissolved phases in the 
R and NR tanks (experiment 1). (a) Particulate THg concentration. (b) Dissolved THg 
concentration. 

Error bars show standard deviations of 3 replicates in each system.
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Particulate and % MeHg are presented in Fig. 2.3a, showing an opposite trend to 

particulate THg. The concentration of particulate MeHg was significantly higher in 

the NR tanks than in the R tanks, averaging 34 ± 5.0 and 11 ± 2.0 pmol g-1, 

respectively. Although % MeHg was available only from the 12th day onwards due to 

the sample loss for particulate THg, it was also higher in the NR tanks than the R 

tanks. This difference likely resulted from the introduction of sediment particles that 

contained lower MeHg concentration (< 1 % of THg) to the water column during 

resuspension. While sediment particles were dominant in the R tanks, higher fractions

of the POM were phytoplankton and zooplankton in the NR tanks, as mentioned 

earlier. During the off-cycle, particulate MeHg in the R tanks increased significantly 

(26 ± 6.5 pmol g-1, n = 3), compared to the on-cycle, as sediment particles, primarily 

less MeHg-rich particles, settled quickly. Particulate MeHg per gram increased due to 

its higher concentrations in the higher POM non-settling particles, a large fraction of 

which was likely plankton. As mentioned earlier, % POM actually increased in the R 

tanks during the off-phase. In addition, particulate MeHg (on a pM basis) was 

significantly correlated with Chl a (r = 0.35, n = 33) and POM (r = 0.78, n = 33) in 

the R tanks and similarly with Chl a (r = 0.39, n = 33) as well as POM (r = 0.34, n = 

33) in the NR tanks. As mentioned earlier, NR tanks had higher % POM and 

zooplankton biomass. Sediment MeHg (5.0 ± 1.0 pmol g-1) in the R tank was 

comparable to particulate MeHg in the water column during the on-phase while 

sediment MeHg (5.0 ± 2.5 pmol g-1) was lower than particulate MeHg in the NR 

tanks. As mentioned earlier, these sediment MeHg data were from the averages 

respectively of all the R and NR tanks at the end of experiment.
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Figure 2.3. Average concentrations of MeHg in particulate and dissolved phases in 
the R and NR tanks (experiment 1). (a) Particulate MeHg concentration. (b) 
Dissolved MeHg concentration. 

Error bars show standard deviations of 3 replicates in each system.
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        Dissolved MeHg in both systems varied throughout the experiment, as observed 

for dissolved THg. The average concentrations of dissolved MeHg were 0.3 ± 0.2 (R) 

and 0.3 ± 0.1 pM (NR) (Fig. 2.3b). Again, dissolved MeHg did not appear to change 

in concert with particulate MeHg in both systems. As mentioned before, dissolved 

concentration seemed to be influenced by the incoming water as much as by 

partitioning between particles and dissolved fractions. The average MeHg 

concentration in the inflow water was 0.5 ± 0.5 pM (n = 3). No significant correlation 

was found between the dissolved MeHg and DOC in both systems, as observed for 

dissolved THg and DOC.      

2.3.1.3. Distribution coefficients

  The relative affinity of Hg for dissolved and particulate phases is often 

parameterized by the distribution coefficient: Kd = S/D (l kg-1); where S = 

concentration of Hg sorbed to particles (ng kg-1), calculated as [particulate Hg 

(ng l-1)]/TSS (kg l-1); and D = dissolved concentration (ng l-1). A higher Kd value 

indicates a higher affinity for the particulate phase. Table 2.2 shows the average water 

column distribution coefficient (log Kd) and standard deviation for THg and MeHg in 

this experiment. The Kd values for both THg and MeHg were in a similar range to 

those found for other aquatic systems (Babiarz et al., 1998, Coquery et al. 1997, 

Mason and Sullivan, 1997, Muhaya et al., 1988, Stordal et al., 1996). In experiment 1, 

lower Kd values were found for MeHg than for THg. Others have found this pattern, 

for example, Benoit et al. (1998) found in the Patuxent River that the log Kd for 

MeHg (3.8 – 4.0) was lower compared to that for THg (4.8 - 5.7). 
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        The Kd for THg in the R tanks was significantly higher than in the NR tanks 

during both cycles because of higher particulate THg (on nmol g-1 basis) in the R 

tanks. There was, however, no significant difference in Kd for THg in the R tanks 

between the two cycles. This was because particulate THg in the R tank remained 

relatively constant between the two cycles. The Kd for MeHg in the NR tanks was 

significantly higher only during the on-cycle compared to the R tanks. Coquery et al. 

(1997) observed a lower Kd value with increasing TSS, which has been noted by 

others (Honeyman and Santschi, 1989) and which is explained by the increase of the 

proportion of colloidal material in the filter passing (so-called dissolved) fraction with 

increasing TSS. Lawson et al. (2001) showed that the Kd values for both THg and 

MeHg decreased with particulate organic content, confirming the notion that Hg 

binding to suspended particulate involves complexation to organic material. Others 

have found similar results (Bloom et al., 1999; Mason and Sullivan, 1998). Here, 

while the presence of colloidal material may explain the results, it is more likely that 

the effect is due to the higher relative MeHg concentration of the smaller particulate, 

living and dead, which does not settle during the off-cycle compared to the quickly 

settling larger particles. This notion is given credence by the fact that the Kd for 

MeHg in the R tanks during the off-cycle is very similar to that of the NR tanks.          
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2.3.2. Experiment 2 (with clams) 

2.3.2.1. Water column characteristics

The concentration of TSS was significantly higher in the RC tanks than the 

NRC tanks, averaging 63 ± 22 (RC) and 4.5 ± 0.6 (NRC) mg l-1 (Fig. 2.4a). As 

mentioned in experiment 1, there were three sampling times of the resuspension off-

cycle (day 4, 10, and 17). In the RC tanks, average TSS significantly decreased 

during the off-cycle (9.5 ± 2.2 mg l-1, n = 3) compared to the on-cycle, which was a 

similar pattern with that in experiment 1. However, TSS concentrations were about 

half those of experiment 1. Less TSS in the NRC tanks was due to a combination of 

clam feeding on phytoplankton and lower temperature compared to that in experiment 

1. Less TSS in the RC tanks likely resulted from a change in sediment properties as 

the sediment from experiment 1 was reused for experiment 2. In addition, TSS tended 

to decrease toward the end of experiment, suggesting that clams in the RC tanks were 

active in removing particulate from the water column, or that initially clams 

destabilized sediments and increased resuspension in the initial part of the 

experiment. 

        POM was significantly higher in the RC tanks than the NRC tanks, averaging 10 

± 4.2 (R) and 2.0 ± 0.2 mg l-1 (NR) (Fig. 2.4b). The average POM in the RC tanks 

decreased significantly to 2.5 ± 0.4 mg l-1 (n = 3) during the off-cycle compared to the 

on-phase. POM was positively correlated with TSS in both RC tanks (r = 0.77, n = 

24) and NRC tanks (r = 0.96, n = 24), as observed in experiment 1. Overall, POM in 

experiment 2 showed a similar pattern with that in experiment 1. The average POM in 

experiment 2, however, was also less than that in experiment 1 due to a decrease in 
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TSS in the water column. In addition, although it is not possible to directly compare 

zooplankton biomass between the two experiments due to differences in water 

temperature, salinity, and clam presence, this biomass decreased roughly by 80 % in 

the RC tanks and 87 % in the NRC tanks in experiment 2, compared to experiment 1. 

One explanation for a zooplankton decrease could be due to reduced food availability. 

As discussed later, less standing stock of phytoplankton was observed in experiment 

2, compared to experiment 1, potentially as a result of not only lower water 

temperature (Table 2.1) but also clam feeding. Percent POM was significantly higher 

in the NRC tanks, averaging 46 ± 2.3 (NR) and 16 ± 0.7 % (R) (Fig. 2.4b). In the RC

tanks, % POM significantly increased to 29 ± 6.6 % (n = 3) during the off-cycle 

compared to the on-cycle, as seen in experiment 1. Overall, % POM was similar in 

both sets of the tanks during the two experiments.

        There was a small phytoplankton bloom observed in the RC tanks later in this 

experiment while there was an overall decreasing trend in Chl a in the NRC tanks 

(Fig. 2.4c). As seen in experiment 1, Chl a was significantly higher in the RC tanks 

than NRC tanks, averaging 6.7 ± 0.3 and 3.6 ± 0.1 µg l-1, respectively. Compared to 

experiment 1, Chl a concentration in both systems decreased by 72 % as water 

temperature was lower in experiment 2. Chl a in the RC tanks was significantly 

higher during the on-cycle compared to the off-phase (5.3 ± 0.9 µg l-1, n = 3). In 

experiment 1, however, there was no significant difference in Chl a between the two 

cycles in the RC tanks. This was probably due to larger variability in Chl a in 

experiment 1. In addition, Chl a was not correlated with either TSS or POM in the RC

tanks, whereas there was a positive correlation between Chl a and TSS (r = 0.48, n = 
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24) and POM (r = 0.46, n = 24) in the NRC tanks, as observed in experiment 1. The 

lower Chl a standing stock in this experiment results from a combination of lower 

water temperature as well as the existence of clams in both systems. As in experiment 

1, DOC data were available only during the on-cycle (Fig. 2.4d). Although the 

average DOC in the NRC tanks (330 ± 10 µM) was higher than that in the RC tanks 

(300 ± 54 µM), the difference was not significant. 

        Water column characteristics for experiment 2 are presented in Table 2.1. These 

measurements were made during the on-cycle. More diurnal fluctuation in 

temperature was observed in experiment 2. A heating system was occasionally used 

when the water temperature was unusually low in order to prevent large temperature 

differences potentially harmful to the ecological community in the mesocosms. As 

seen in experiment 1, DO and pH were slightly higher in the NRC tanks than the RC

tanks. Sloth et al. (1996) found that oxygen concentration decreased by 5 % during a 

2 h-resuspension event in their mesocosm experiment and that the decrease in oxygen 

content corresponded to an oxygen consumption rate of 500 mmol m-2 d-1, or 10 times 

the normal oxygen consumption rate of the sediment. They suggested that the 

increase in oxygen consumption was probably due to liberation of pools of reduced 

inorganic and organic products from anaerobic processes in the sediment. Similar 

procedures are likely consuming DO in the RC tanks in our experiment. 
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Figure 2.4. Average concentrations of the following variables in the R and NR tanks 
(experiment 2). (a) TSS concentration. (b) POM and % POM. (c) Chl a concentration. 
(d) DOC concentration.
Error bars show standard deviations of 3 replicates in each system.  
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2.3.2.2. Mercury distribution

        Particulate THg was significantly higher in the RC tanks than the NRC tanks, as 

seen in experiment 1, averaging 2.3 ± 0.2 (RC) and 1.4 ± 0.05 nmol g-1 (NRC) (Fig. 

2.5a). Particulate THg (on nmol l-1 basis) was significantly correlated with TSS (r = 

0.97, n = 24) and POM (r = 0.77, n = 24) in the RC tanks, as seen in experiment 1. In 

addition, there was a significant correlation between particulate THg and TSS (r = 

0.39, n = 24), as well as POM (r = 0.40, n = 24), in the NRC tanks. The lack of 

correlation between particulate THg and TSS or POM found in experiment 1 was 

unexpected because Hg is one of the most strongly particle-associated metals. This 

was probably because of the smaller data set in experiment 1 due to sample loss. In 

experiment 2, sediment cores were also taken from all the tanks in the end of the 

experiment for Hg analysis (Chapter 3, Kim et al., submitted). The average 

concentrations of surface sediment THg in the cores were 1.8 ± 0.5 (RC) and 1.3 ± 

0.4 nmol g-1 (NRC), showing a slightly lower range than that in experiment 1. This 

was likely due to inherent sediment heterogeneity, as discussed in Chapter 3 (Kim et 

al., submitted).     

        Dissolved THg was significantly higher in the RC tanks than the NRC tanks

(Fig. 2.5b). The average concentrations of dissolved THg were 8.0 ± 0.5 (RC) and 6.0 

± 0.3 pM (NRC). A similar range of dissolved THg was found during the off-phase. 

Dissolved THg tended to increase toward the end of the experiment. However, the 

change in dissolved THg did not correspond to the change in particulate THg, as seen 

in experiment 1. Dissolved THg in the input water was measured also for the same 

sampling days, except the 4th day. A similar range of THg in the input water was 
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found (average of 7.0 ± 5.5 pM). Given that water exchange was always done after 

sampling, dissolved THg in the mesocosms did not directly represent the 

concentration of THg in the input water on the corresponding day. Nonetheless, it 

appears that dissolved THg in the tanks may have been driven as much by the change 

in the incoming water than by the release of THg from particles upon resuspension.       
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Figure 2.5. Average concentrations of THg in particulate and dissolved phases in the 
R and NR tanks (experiment 2). (a) Particulate THg concentration. (b) Dissolved THg 
concentration.
Error bars show standard deviations of 3 replicates in each system.
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Particulate MeHg was significantly higher in the NRC tanks than the RC tanks, 

averaging 26 ± 5.0 (NR) and 6.0 ± 1.0 pmol g-1 (R), as seen in experiment 1 (Fig. 

2.6a). The percent MeHg was also higher in the NRC tanks than the RC tanks 

throughout the experiment. During the off-cycle, the average concentration of 

particulate MeHg increased to 15 ± 7.0 pmol g-1 (n = 3) in the RC tanks. It appears 

that suspended particulate MeHg was somewhat diluted by material of lower MeHg 

during the on-phase and higher particulate MeHg was found during the off-phase, as 

TSS decreased (concentration effect). The average concentrations of MeHg in surface 

sediments were similar between the two systems, being 5.0 ± 0.5 (RC ) and 5.0 ± 0.4 

pmol g-1 (NRC) from all the tanks. The results showed that sediment MeHg was 

comparable to particulate MeHg in the R tanks (during the on-cycle) but lower than 

that in the NR tanks.              

        There was a significant correlation between particulate MeHg (on a pM basis) 

and TSS (r = 0.76, n = 24) as well as POM (r = 0.57, n = 24) in the RC tanks. 

Particulate MeHg was also significantly correlated with particulate THg (r = 0.77, n = 

24) but not with Chl a in the RC tanks. The lack of correlation between particulate 

MeHg and Chl a may be due to the smaller range of Chl a concentration compared to 

experiment 1. It is interesting that particulate MeHg was negatively but significantly 

correlated with POM (r = - 0.41, n = 24) as well as Chl a (r = - 0.37, n = 24) in the 

NRC tanks while there were positive correlations found in experiment 1.       

        The average concentration of dissolved MeHg was 0.2 ± 0.05 (NRC) and 0.2 ± 

0.05 pM (RC) (Fig. 2.6b). As seen in experiment 1, dissolved MeHg was remarkably 

similar in both systems. The average concentration of dissolved MeHg in the input 
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water was 0.2 ± 0.1 pM, which was in a similar range of MeHg found in the 

mesocosms. Overall, it is unlikely that resuspension increased dissolved MeHg in the 

water column, suggesting that release due to oxidation of sulfide phases, or other 

processes enhancing desorption, were not significant. 
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Figure 2.6. Average concentrations of MeHg in particulate and dissolved phases in 
the R and NR tanks (experiment 2). (a) Particulate MeHg concentration. (b) 
Dissolved MeHg concentration. 
Error bars show standard deviations of 3 replicates in each system.
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2.3.2.3. Distribution coefficients

      As seen in experiment 1, the average Kd for THg was significantly higher in the 

RC tanks than the NRC tanks during both cycles (Table 2.2). The average Kd for 

MeHg was significantly higher in the NRC tanks during the on-cycle only, as seen in 

experiment 1. These observations suggest that there are two types of particles in the 

RC tanks: one that is relatively inorganic, consisting mostly of sediment particles, 

which does not release Hg rapidly (non-reactive) and the other that is reactive and 

takes up Hg actively, or contains Hg which is readily exchangeable. Also, it appears 

that the non-reactive particles had a higher THg than the reactive ones. However, 

these concentrations in the RC tanks were similar to that of the surface sediment. The 

much higher Hg in the non-reactive particles results in the trends observed for the two 

experiments. The opposite was observed for MeHg in that the Kd was higher in the 

NRC tanks than the RC tanks during the on-phase, suggesting that suspended 

particles were actively accumulating MeHg compared to the sediment. In addition, 

the Kd for MeHg in the RC tanks was higher during the off-phase in both experiment 

1 and 2 when TSS concentration was lower as most of resuspended sediment particles 

settled quickly.
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Table 2.2. Average and standard deviation for log Kd in the R and NR tanks during 
the course of experiments 1 and 2.  

log Kd R NR

Experiment 1
THg (on)a

THg (off)b
5.7 ± 0.05
5.8 ± 0.07

5.4 ± 0.06
5.5 ± 0.1

MeHg (on)
MeHg (off)

4.8 ± 0.2
5.1 ± 0.6

5.3 ± 0.1
5.2 ± 0.06

Experiment 2
THg  (on)
THg (off)

5.6 ± 0.09
5.4 ± 0.09

5.4 ± 0.05
5.2 ± 0.1

MeHg (on)
MeHg (off)

4.7 ± 0.2
4.9 ± 1.1

5.2 ± 0.3
5.2 ± 0.5

a: on-cycles when both resuspension and water mixing system was on in the R tanks 
while in the NR tanks only water mixing was on. 
b: off-cycles when both resuspension and water mixing was ceased in the R tanks. 
Off-cycles in the NR tanks means there was no water mixing. See the text for details.

       Scaling calculations for Hg uptake in phytoplankton confirm that uptake by 

phytoplankton would not lead to enhanced particulate Hg concentration in the water 

column, given the relatively high sediment Hg concentration. Based on the Chl a

concentration in the R tanks during the off-phase, and some reasonable assumptions 

about phytoplankton size and growth rate, the data in Mason et al. (1996) can be used 

to estimate the steady state phytoplankton Hg burden under the experiment 

conditions. MeHg uptake rate for phytoplankton was obtained from Mason et al. 

(1996), which was similar to uptake rate used in the bioaccumulation model (Chapter 

4). A range in Hg concentration of 0.3 – 0.5 nmol g-1 is estimated, much lower than 

the sediment load (i.e. uptake of Hg from the dissolved phase into plankton is 

unlikely to significantly alter the Hg burden in the suspended particles and thus no 

difference is expected between the on-phase (sediment particles dominant) and the 

off-phase (phytoplankton more dominant). 
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        Similar calculations for MeHg give a range in values of 5 – 30 pmol g-1, 

comparable to the measured values in the NR tanks and in the R tanks during the off-

phase. Thus, active uptake by phytoplankton could be influencing the overall MeHg 

particulate load given that the steady state phytoplankton MeHg concentration is 

higher than that of the surface sediments. Thus, our scaling arguments confirm the 

observations and measurements. While this uptake into biota is important in defining 

the MeHg concentration on a pmol g-1 TSS basis, it is not an important sink for 

dissolved MeHg given the large size of the tank (1000 L) and the estimated rate of 

uptake. 

        Additionally, a similar pattern in dissolved THg and MeHg in both R and NR 

tanks show that dissolved and particulate fractionation cannot be explained purely by 

equilibrium partitioning. As suggested above, THg is more particle associated and 

strongly bound to the non-living (or sediment) fraction that cycles between the water 

column and the sediment, with very little release during resuspension. Heyes et al. 

(2004) found from a Hudson River study that particulate THg in the water column 

was mostly bound to reactive phases, such as iron oxides and amorphous iron sulfide, 

and organic phases and that Hg partitioning on resuspended particles did not change 

over a tidal diurnal cycle resuspension event. In contrast to inorganic Hg, MeHg 

partitioning appears to be controlled more by the biotic fraction that actively 

accumulates MeHg.         
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2.3.2.4. Mass Balance Calculations

        A simple mass balance in the water column provides useful insights into MeHg 

fate and production. Given measured concentrations in input waters, and in the tanks 

during the off-phase, the following is estimated: experiment 1 input of MeHg ~ 50 

pmol d-1 from the input water with output of ~ 55 pmol d-1 for the NR tanks and ~ 80 

pmol d-1 for the R tanks, which have higher TSS. Thus, it appears that MeHg is 

produced within the R mesocosms and that the methylation rate is overall higher in 

the R system. Our results for Hg methylation in the sediment, which are contained in 

Chapter 3 (Kim et al., submitted), confirm this notion of higher methylation in the R 

tanks. However, the overall net rate derived from mass balance is low compared to 

what others have measured for estuarine sediments using Hg core spike incubations 

(Benoit et al. 1998) and compared to our rates from core incubations of these 

sediments. As suggested by others, these results suggest that while core spike 

incubation experiments give a relative measure of the methylation rate between 

treatments, they do not provide an accurate estimate of in situ methylation. These 

mesocosm studies therefore provide useful information about net MeHg production in 

estuarine systems that are not easily obtained by other approaches. 

        The results of the mesocosm experiments suggest that resuspension can enhance 

MeHg production. While this may appear counter-intuitive, the likely explanation is 

that the oxygenation of the sediment that results from resuspension reduces sediment 

AVS and pore water sulfides in estuarine sediments and thus improves the 

methylation environment by enhancing Hg bioavailability to bacteria, by mechanisms 

proposed by Benoit et al. (1999). Furthermore, in an estuarine system, or any aquatic 
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system with high TSS, the fate of Hg will be linked closely to that of the particulate 

phase. Thus, from a mass balance perspective, understanding the sediment transport is 

crucial in ascertaining whether the system will be a net source or sink for Hg. For 

MeHg, this is less true, even given the high Kd for MeHg in many environments as 

internal sources of MeHg (i.e. Hg methylation) are likely a complicating factor in the 

overall MeHg mass balance.

2.4. Summary 

        Our experiments showed that significant amounts of particulate THg in the R 

tanks were introduced to the water column by resuspension. However, particulate 

MeHg was found to be significantly lower than that in the NR tanks. Dissolved 

concentrations of THg and MeHg showed a similar pattern between the two systems 

and appeared little impacted by sediment load. The dynamics between the dissolved 

and particulate phases in these experiments suggests that the notion of equilibrium 

partitioning for Hg is not valid. There appears to be two types of particles, those that 

readily accumulate and/or potentially release Hg and MeHg, and those that do not. 

Our mass balance calculation suggests that resuspension likely enhances MeHg 

production in these sediments.        
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Chapter 3: The importance of resuspension on sediment mercury 

dynamics, and methylmercury production and fate: a mesocosm 

study

Submitted to Marine Chemistry

3.1. Introduction

        Sediments are the main repository of mercury (Hg) in estuaries (Benoit et al., 

1998; Wang et al, 1998) and can be a significant source to the overlying water 

column via various processes including diffusion, resuspension, and bioturbation 

(Gagnon et al, 1997; Bloom et al., 1999; Mason and Lawrence, 1999). The mobility 

and bioavailability of Hg and methylmercury (MeHg) depends upon the nature and 

concentration of the binding phases in the sediment, which apparently are controlled 

by sediment redox status. Hg associates primarily with particulate organic matter or 

iron/manganese oxides through adsorption and coprecipitation reactions in oxidized 

sediments (Gagnon, Pelletier et al. 1997). Miller and Mason (submitted) found from 

laboratory experiments and surface complexation modeling that organic matter, not 

iron oxides, was the dominant complexer of Hg. In anoxic sediments, Hg is adsorbed 

onto and coprecipitated with sulfide minerals (Gobeil and Cossa, 1993; Gagnon et al, 

1997; Wang et al, 1998). When metal oxides are reduced, Hg can be released into 

pore water (and eventually to overlying water via diffusion) or be removed by 
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adsorption and coprecipitation with sulfide minerals under anoxic conditions. Hg can 

also be released as a result of the microbial degradation of organic matter and by 

chemical dissolution of sulfides due to redox changes during diagenesis. 

        Under anoxic conditions, dissolved sulfide may precipitate with Fe2+ ions, which 

are released by reduction of iron (hydr)oxides. Iron sulfide can then adsorb and 

coprecipitate divalent metals. Many toxic metals can form highly insoluble sulfide 

minerals and adsorb/coprecipitate with pyrite and acid volatile sulfide (AVS). 

Consequently, it may be less bioavailable to aquatic organisms (Allen, 1995). 

However, Copper and Morse (1996) concluded that sulfide-associated trace metals 

could be a more bioavailable phase following a major oxidation event such as that 

caused by dredging, resuspension, and seasonal migration of the redoxcline. During 

the oxidation event, these metal sulfides may oxidize and thereby release the 

associated metals and the oxidized sulfur species to the overlying water. Thus, this 

process can act as a potential source of toxic metals to the water column, possible 

increasing bioavailability. The released metal may be, however, quickly scavenged or 

coprecipitated with iron and manganese hydroxides or be complexed by organic 

matter (Simpson et al., 1998). However, Heyes et al. (2004) found from the Hudson 

River study that Hg release from particles did not readily occur upon sediment 

resuspension. 

        As mentioned above, sediment resuspension can induce a change in sediment 

redox status, which can be an important factor in controlling the methylation of Hg in 

sediments. Hg methylation depends upon environmental factors that control the 

overall metabolic activity of the methylating organisms (e.g. sulfate reducing
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bacteria) and the bioavailability of Hg in the matrix where methylation occurs. As the 

supply of organic carbon enhances Hg methylation rate (Choi and Bartha, 1994), the 

distribution of methylation activity depends upon the distribution of biodegradable 

organic matter. Thus, maximal methylation rates are often observed in biologically 

active surface sediments near the sediment-water interface (Callister and Winfrey, 

1986; Korthals and Winfrey, 1987). While sulfate can stimulate both sulfate reduction 

and Hg methylation by sulfate reducing bacteria at relatively low sulfate 

concentrations (Gilmour and Henry, 1991), the high concentrations of sulfate 

typically found in estuarine and marine environments enhance pore water dissolved 

sulfide, which can inhibit methylation (Compeau and Bartha, 1983; 1987; Gilmour et 

al., 1998; Benoit et al., 1998). Thus, resuspension may enhance methylation by 

decreasing sulfide levels, but it may also limit methylation if sediments become too 

oxic by limiting the activity of sulfate reducing bacteria. In addition, demethylation 

occurs primarily under oxygenated conditions (Matilainen and Verta, 1995; Marvin-

Dipasquale and Oremland, 1998). Higher demethylation rates were observed in 

oxygenated sediments than in anoxic sediments (Compeau and Bartha, 1984). Thus, it 

is likely that resuspension enhances the demethylation by introducing oxygenated 

conditions to anoxic environments. There is, however, very little information 

available on to what degree resuspension affects the methylation/demethylation of 

Hg.    

        Elevated MeHg in fish has been found in many aquatic environments (Clarkson, 

1990; Driscoll et al., 1995; Park et al., 1997) and this is of the greatest concern to 

human health because fish consumption is the main MeHg exposure route to humans 
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(Clarkson, 1990). Lower trophic levels play an important role in Hg and MeHg 

bioaccumulation into fish as the greatest bioconcentration occurs between water and 

phytoplankton (Lindqvist et al, 1991; Mason et al., 1996).  However, Hg and MeHg 

in sediments also constitute an enriched pool potentially available to organisms. The 

bioavailability of Hg and MeHg to benthic organisms from sediments has been 

actively investigated as these organisms often dominate the lower trophic level of 

aquatic food chains in shallow systems, and have the potential to transfer the 

bioaccumulated Hg to upper levels of the food chain (Gagnon and Fisher, 1997; 

Wang et al., 1998; Mason and Lawrence, 1999). Filter-feeding bivalves (e.g. mussels, 

oysters) in the second trophic level are capable of accumulating toxic metals and 

organic contaminants from the large volume of water they filter. Thus, these 

organisms have been used as effective biomonitors for a variety of coastal toxicants 

(Claisse et al., 2001; Kawaguchi et al., 1999; Roper et al., 1996).       

        Although sedimentary dynamics and bioavailability of Hg have been actively 

studied, there are few studies that have investigated how resuspension affects the fate 

and bioavailability of Hg in the sediment and possible release of Hg to the water 

column. Therefore, the objective of this study was to investigate the effects of tidal 

sediment resuspension over a 4-week period on the fate of total mercury (THg) and 

MeHg and their bioaccumulation. We used the new STORM (high bottom Shear 

realistic water column Turbulence Resuspension Mesocosms) facility designed and 

developed by E.T. Porter (Porter 1999, Porter et al., in press a). The STORM system 

can simulate both realistic bottom shear stress and water column turbulence levels in 

a single system, mimicking benthic-pelagic coupling processes realistically, including 
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tidal or episodic sediment resuspension, over long time periods. Two 4-week 

experiments were conducted in 2001; one in July without clams (experiment 1) and 

the other in October with clams (experiment 2).  In experiment 2, hard clams, 

Mercenaria mercenaria, were introduced into the sediment for the bioaccumulation 

study. Hard clams were chosen because they are suspension feeders, common in the 

eastern coastal and estuarine regions of USA (Stanley 1985) and there is little 

information on Hg (especially MeHg) bioaccumulation into hard clams. This chapter 

discusses the effects of sediment resuspension on the sedimentary dynamics of THg 

and MeHg and their bioaccumulation. A companion chapter (Chapter 2, Kim et al., 

2004) discusses the impact of sediment resuspension on water column THg and 

MeHg dynamics.       

3.2. Material and Methods

3.2.1. Mesocosm and experimental set-up

        Muddy sediment from Baltimore Harbor was collected in the spring of 2001 and 

transferred to a fiberglass holding tank at CBL and prepared for each experiment 

following techniques developed in Porter (1999) and Porter et al. (2004b). The details 

of the experimental set-up are described in Chapter 2 (Kim et al., 2004). Briefly, the 

sediment was transferred into 6 STORM tanks after defaunation (4 days). The 

sediment was thoroughly mixed and flattened. Filtered ambient water from the mouth 

of the Patuxent River (a tributary of the Chesapeake Bay, Maryland, USA) was added 

into the tanks without any disturbance of the sediment layer to a depth of 20 cm 

above the sediment surface. After a 2-week sediment equilibration period, to re-



69

establish realistic pore water gradients (Porter 1999), unfiltered ambient water was 

added to the tanks. There were 3 resuspension (R) tanks (T1, T2, and T3) and 3 non-

resuspension (NR) tanks (T4, T5, and T6) for each experiment. In both systems, 

water column turbulence intensities were similar. However, high instantaneous 

bottom shear induced sediment resuspension in the R systems whereas bottom shear 

velocity was low in the NR systems (Crawford and Sanford, 2001; Porter et al., 

2004a). Tidal resuspension (4 h-on and 2 h-off cycles) over the 4-week period was 

simulated using the STORM tank mixing design. 

        As mentioned above, in experiment 2, a scaled population of about 50 - 40 mm 

long hard clams were placed into the sediment individually by hand after the 

sediment equilibration period. Five clams were also placed in a plastic basket hanging 

at 50 cm below the water surface near the wall of each tank (so-called “suspended 

clams”). Since the clams buried themselves in the sediment and it was not possible to 

observe them (especially in the R tanks due to turbidity), these suspended clams in 

the water column helped confirm whether or not the clams were feeding. Given that 

some negative effects (i.e. inhibition of feeding rate, burrowing, growth and survival 

of juveniles and adults) result when the clams are exposed to salinities below 15 ppt 

(Grizzle et al., 2001 and references therein), salinity adjustment was necessary in 

experiment 2. The average salinity for all the tanks was approximately 19 ppt 

throughout the experiment period. The salinity of the input water (Patuxent River 

water) was around 13 ppt.  
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3.2.2. Sample collection

        Sediment cores for THg, MeHg, and AVS were taken at the start of the 

experiment (initial sediment cores were incubated in a separate benthic chamber setup 

as discussed below), around the mid point of experiment 1, and at the end of the 

experiment, during the “on-cycle” (resuspension actively occurring). There was no 

mid point sampling for experiment 2. The sediment cores were generally about 9 cm 

deep, taken in 3.5 cm ID and 25 cm long acrylic tubes and sliced immediately at the 

following intervals: 0-0.5, 0.5-1, 1-2, 2-3, 3-5, and 5-7 cm. The sliced sediment was 

then quickly stored frozen until analysis. The initial cores were taken from 

approximately 13.5 cm ID and 35 cm long benthic chambers. These chambers were 

set up separately in a flow- through water bath in the dark for initial Hg and AVS 

measurements so that the sediment surface in the tanks was not disturbed before the

experiments began. The separate cores underwent a 2-week equilibration period 

indoors in the same manner as the STORM tanks (Chapter 2, Kim et al., 2004), 

representing a similar initial condition as in the tanks. Percent organic content in each 

interval of sediment samples was determined as loss on ignition to 550 °C overnight. 

        Clams were shipped on ice from Cherrystone Aqua Farms, Cheriton, Virginia. 

They were kept in a holding tank with a constant water circulation until experiment 2 

began. Clams were acclimated, a salinity change from the 21 ppt at which they were 

cultured, to 18-19 ppt, our experimental condition (i.e. decreasing salinity by 1 ppt 

per day). For water quality assurance, levels of ammonia, nitrate, nitrite, salinity, and 

pH were measured on a daily basis. Algae paste (Aquaculture Supply USA) was fed 

to clams once a day until the experiment. Ten to 15 clams from the holding tank were 
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sacrificed for initial Hg measurements. Clams were retrieved from all 6 tanks at the 

end of the experiment. In general, for Hg analysis, tissue samples from 10-15 clams 

in each tank were ground homogeneously and kept frozen in acid-cleaned containers 

until analysis. 

        Zooplankton samples for Hg analysis were collected during experiment 2 

roughly once a week using pre-acid cleaned polypropylene nets of 210 µm. A 

sampling hose attached to a PVC rod was continuously moving in the water column 

while water was being withdrawn to sample zooplankton as homogeneously as 

possible. For sampling, an electric pump was used that was specially designed to 

sample “gently” without destroying zooplankton and to sample fast enough so that 

they did not escape. Then, zooplankton was transferred from the nets to Teflon vials 

and filtered onto polycarbonate filters. The filters were then stored in an acid-cleaned 

petri dish, double bagged and frozen until Hg analysis. Polycarbonate filters and 

filtration units were acid-cleaned prior to use.

3.2.3. Stable isotope spike addition incubation

Acrylic tubes with 1cm- interval holes were used for stable isotope spike addition 

methylation/demethylation incubation experiments from only one tank of each system 

(i.e. T1 for R and T4 for NR tanks in experiment 1; T2 for R and T5 for NR tanks in 

experiment 2). This sampling was made in accordance with other sediment core 

sampling for Hg and AVS analysis for the initial, mid (experiment 1 only), and final 

conditions. Four sediment cores were obtained from each tank and transferred to the 



72

lab immediately. Hg stable isotope (199Hg) was obtained from the Oak Ridge National 

Laboratory (purity of > 90 %). The 199Hg was prepared with the overlying water from 

the mesocosm tanks, aiming at a 20 % increase of background concentration found in 

Baltimore Harbor sediments (Mason and Lawrence, 1999; Mason et al., submitted for 

publication). The 199Hg was then injected into two cores at 1 cm intervals (except for 

the top 1 cm of sediment cores; 0.5 cm intervals) to determine the methylation rate. 

MeHg stable isotope (Me199Hg) was synthesized from the 199Hg using 

methylcobalamin reaction followed by methylene chloride extraction. The Me199Hg 

was diluted in the overlying water from the mesocosm tanks. The target concentration 

was double the MeHg concentration found in Baltimore Harbor (Mason and

Lawrence, 1999). Then, the Me199Hg was injected into the other two cores at 1 cm 

intervals (except for the top 1 cm of sediment cores; 0.5 cm intervals) to obtain the 

demethylation rate. After a 2h-incubation at room temperature, the cores were sliced 

as described above and immediately frozen until analysis. All Hg isotope amended 

samples were analyzed using an Inductively Coupled Plasma-Mass Spectrometer 

(ICP-MS). 
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3.2.4. Sample analyses

3.2.4.1. Total mercury

        Both sediment and biota samples were thawed and digested in a solution of 7:3 

sulfuric acid: nitric acid in Teflon vials in an oven at 60 °C overnight prior to BrCl 

oxidation (1/2-1 h). Then, excess oxidant was neutralized with 10 % hydroxylamine 

hydrochloride prior to analysis (Bloom and Crecelius, 1983). The samples were then 

reduced by tin chloride, sparged, and the elemental Hg trapped on gold traps. 

Quantification was done by dual-stage gold amalgamation/Cold Vapor Atomic 

Florescence detection (CVAFS) (Bloom and Fitzgerald, 1988) in accordance with 

protocols outlined in EPA method 1631 (EPA, 1995). Standard calibration curves 

with r 2 of > 0.99 for THg were achieved daily. THg concentration was determined by 

both ICP and CVAFS. Analysis of standard reference material, estuarine sediments

IAEA-405 (3.9 – 4.3 nmol g-1), typically gave a 90 % recovery for CVAFS, and a 83 

% for ICP-MS. Analysis of duplicate samples typically yielded a relative percent 

difference (RP D) of less than 20 % for both CVAFS and ICP- MS. Detection limits 

were based on 3 standard deviations of digestion blank measurements. For CVAFS, 

detection limits for THg were 1.1 pmol g-1 for sediments, and 0.1 pmol g-1 for biota. 

For ICP-MS, the detection limit for THg was 0.5 pmol g-1 for sediments amended 

with the Hg isotopes.   
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3.2.4.2. Methyl mercury

        Details of the analytical protocols are given elsewhere (Mason et al., 1999; 

Mason and Lawrence, 1999). Sediment and biota samples were distilled with a 50 % 

sulfuric acid/ 20 % potassium chloride solution (Horvat et al., 1993). A sodium 

tetraethylborate solution was added to the distillate to convert the nonvolatile MeHg 

to gaseous methylethylmercury (Bloom, 1989). The volatile adduct was then purged 

from solution and recollected on a graphitic carbon column at room temperature. The 

methylethylmercury was thermally desorbed from the column, and analyzed by 

isothermal gas chromatography with CVAFS. Samples for Me199Hg were distilled in 

the same manner, as described above, and analyzed using ICP-MS after gas 

chromatographic separation. A calibration curve with an r2 of > 0.99 was achieved on 

a daily basis. Analysis of duplicate samples typically gave a RPD of less than 20 %. 

Detection limits were based on 3 standard deviations of distillation blank 

measurements. For CVAFS, detection limits for MeHg were 0.02 pmol g-1 for 

sediments and 0.005 pmol g-1 for biota. For ICP-MS, detection limit for Me199Hg was 

0.009 pmol g-1 for sediment samples. For both ICP-MS and CVAFS, analysis of 

IAEA-405 (25 - 30 pmol g-1) generally gave a 90 % recovery. Spike recoveries 

yielded 87 % for CVAFS, and 94 % for ICP-MS.    
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3.2.4.3. Trace metals

        A subsample of sediment was placed in acid-cleaned flasks for digestion (EPA, 

1996; Keith, 1991). Optima HNO3 was added and the flasks were covered with watch 

glasses. The samples were then heated to 95°C and allowed to reflux for 15 min 

without boiling. Once the samples were cooled, HNO3 was added, followed by 

refluxing for 30 min. This procedure was repeated in order to ensure complete 

oxidation. After the watch glasses were removed, the samples were allowed to

evaporate to approximately 5 mL without boiling. When the samples were cooled, 

aliquots of 30 % H2O2 were added until the effervescence was minimal. Then, 

concentrated HCl and deionized water were added and the samples refluxed for 15 

min. Finally, the samples were allowed to cool and diluted to 50 mL with deionized 

water. The digestates were analyzed for trace metals by ICP-MS using a quadrapole 

Hewlett-Packard 4500. A calibration curve with an r2 of at least 0.99 was obtained 

daily. Analysis of duplicate samples generally gave a RPD of less than 10 %. 

Detection limits for metals, based on 3 standard deviations of digestion blanks, were 

generally lower than 0.1 nmol g-1. Analysis of standard reference material, estuarine 

sediment NIST 1646a, typically yielded a recovery of 84 %. Spike recovery averaged 

83 %.
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3.2.4.4. Acid Volatile Sulfide (AVS)

        A subsample of sediment was weighed and added into a tared 3 neck flask. The 

flasks were attached immediately to a gas manifold with nitrogen gas purging in order 

to minimize exposure to oxygen. Van Griethuysen et al. (2002) found that losses of 

AVS due to air–sample contact (less than 15 min) did not occur. While gassing, 

deoxygenated HCl was added into each flask. The samples then were distilled for 1.5 

to 2 h at room temperature under nitrogen gas flow. Sulfide volatilized during 

distillation was collected in traps filled with SAOB (sulfide antioxidant buffer) 

solution (EPA, 1996). Total sulfide in the traps was measured using an ion specific 

sulfide electrode (Baumann, 1974; Allen et al., 1991; EPA, 1996). A calibration curve 

with an r2 of at least 0.99 was achieved daily. Analysis of duplicate samples yielded a 

RPD of less than 20 %. Spike recovery averaged 95 %. The detection limit was 0.4 

µM. 

3.2.5. Statistics

        In order to examine correlation between two variables, Pearson’s product-

moment correlation coefficient (r) and associated significant probability (P) were 

obtained for the data. All the statistical results were reported as significant at a level 

of p < 0.05. We used JMP®, version 4 by SAS institute Inc., Cary, NC, USA for all 

the statistical analyses. Repeated measures ANOVA was tested using SAS PROC 

MIXED to see if there was a significant effect on Hg concentration in biota between 

treatments (R vs. NR) as well as between each time point within the treatments.   
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3.3. Results and discussion

3.3.1. Experiment 1 (without clams)

3.3.1.1. Overall sediment trends 

        Table 3.1 shows average and standard deviation of AVS concentration and % 

organic content for all the tanks. There was only one core taken for the initial 

condition and no standard deviation is shown. AVS concentration in the initial core 

tended to increase with depth, while % organic content remained relatively constant. 

In the R tanks, AVS in the top 0.5 cm decreased to an average of 12 µmole g-1 in the 

mid point cores, compared to the initial AVS, and then increased to an average of 31 

µmole g-1 in the final cores at the end of the experiment. A similar pattern was 

observed in deeper sediments. In the NR tank, however, AVS in the top 0.5 cm 

decreased over the entire experiment from the initial concentration of 36 µmole g-1 to 

8.0 µmole g-1 (final). In all the cores, AVS concentration fell within the lower range 

of AVS values found in surface sediments (top 2 cm) of Baltimore Harbor (e.g. AVS 

concentration was mostly < 100 µmole g-1 but was as high as 800 µmole g-1) (Mason 

and Lawrence, 1999). Overall, increasing AVS with depth can be explained by sulfate 

reduction, which is a major pathway for the oxidation of organic matter in anoxic 

estuarine sediments (Van Den Berg et al., 1998, Lin et al., 2002). 

        Percent organic content in the R tanks remained constant with depth and also 

showed little change over time (Table 3.1). In the NR tanks, % organic content 

showed a distinct increase in the top 1 cm sediment at the end, compared to the mid 

point cores. Although this may not be quantitatively substantial, one explanation for 

the change can be that settling particles (once deposited in sediments and not 
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resuspended) in the NR tanks likely contributed to an increase of % organic content in 

the top sediment layer. In fact, % organic content in the water column was 

significantly higher in the NR tanks, averaging 53 %, while being only 18 % in the R 

tanks during resuspension (Chapter 2, Kim et al., 2004). Another explanation is that 

there was an increase in microphytobenthos over time (Porter et al., unpublished data) 

in the NR systems as there was no resuspension and light penetrated to the sediment 

surface. On the other hand, in the R tanks, a large amount of sediment was 

resuspended to the water column. However, this material settled rapidly during the 

off-cycle. Thus, % organic matter significantly increased (26 % of TSS) in the water 

column as sediment settled quickly upon cessation of resuspension, and was similar 

to that of the NR tanks (Chapter 2, Kim et al., 2004).  

        The average concentrations and standard deviations of THg are presented in 

Table 3.1. THg in the initial cores showed a peak at a depth of 1-2 cm, averaging 2.9 

nmol g-1. The R tank in the mid point cores showed a somewhat lower range of THg, 

compared to both initial and final cores. THg concentration in the final cores was 

highest in the top 0.5 cm, averaging 2.6 ± 0.3 nmol g-1. In the NR tank, THg was 

highest in the top 0.5 cm for both mid point and final cores, averaging 2.3 ± 0.06 

nmol g-1 and 2.3 ± 0.8 nmol g-1, respectively. THg concentrations in the final cores of 

both R and NR tanks appeared to be higher than the mid point cores. However, this is 

likely due to inherent sediment heterogeneity as large standard deviations were often 

found between the three replicate tanks. Relative standard deviations (RSD) between 

the replicate tanks (20 - 40 %) were overall comparable to RPDs between the 

duplicate cores within the tank. In comparison with analytical errors, as mentioned 
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earlier, analysis of duplicate samples typically yielded a RPD of less than 15 %. 

Mason et al. (1998) similarly found in the field relatively large variability between 

cores collected further apart owing to sediment inhomogeneity. The range of THg in 

the surficial sediment agreed well with concentrations in Baltimore Harbor found by 

Mason and Lawrence (1999) (average of 2.3 nmol g-1). 

        There was a significant positive correlation between THg concentration and % 

organic content (r = 0.5, n = 36). Similarly, Mason and Lawrence (1999) concluded 

that organic complexation/adsorption was an important factor controlling Hg 

distribution in the surface sediment of Baltimore Harbor as the two parameters were 

strongly correlated. Mason and Lawrence (1999) found no significant correlation 

between THg and AVS in the surface sediment from Baltimore Harbor. They 

estimated the maximum degree of pyritization (% DOP), as defined by Huerta-Diaz 

and Morse (1990), for the Baltimore Harbor sediments. Percent DOP yielded 6.8 ± 

5.7 %, which was in a relatively low range but fell within the range of other values 

for surface sediments (Huerta-Diaz and Morse, 1990). Thus, based on the 

relationships with Fe and S, it is estimated that 10 % or less of the Fe is associated 

with S phases in the surface sediment (i.e. Fe is likely bound in other forms, for 

example, Fe-oxyhydroxides). If Hg was associated with Fe-S or Fe-oxide phases, then 

there should have been a relationship between Hg and Fe. The data of Mason and 

Lawrence (1999), however, did not show any relationship between Hg and Fe. 

Therefore, it appeared that Hg binding in the Baltimore Harbor sediments was not 

controlled to a large degree by sulfide or Fe chemistry. This was likely because of the 

high organic content and the low % DOP of these surficial sediments. In our 
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experiment, this may also be an explanation for the lack of relationship between THg 

and AVS in the top sediment layers in this experiment. However, in deeper layers 

where sediments are anoxic, AVS and organic matter both likely become important 

binding phases.       

        Table 3.1 also shows the average concentration and standard deviations of 

MeHg. The initial concentration of MeHg showed a peak below the top 1 cm of 

sediment. MeHg concentration in the R tanks was highest near the surface but 

changed little over the course of the experiment. A similar pattern was found in the 

NR tanks. In addition, the fraction of the Hg as MeHg was generally low (< 0.5 % of 

THg concentration), as found by others in estuarine sediments (Gobeil and Cossa, 

1994; Gagnon et al., 1996, Benoit et al., 1998). MeHg concentration was significantly 

and positively correlated with % organic content (r = 0.3, n = 36) but negatively with 

AVS (r = - 0.4, n = 36). Benoit et al. (1998) found that % organic content was 

correlated with both THg and MeHg concentrations in sediments from the Patuxent 

River, suggesting their affinity for, or association with, depositing organic matter, and 

a potential interaction between MeHg production and sediment organic content. 
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Table 3.1. Average concentrations of THg, MeHg, AVS, and % organic content with 
standard deviations from all the tanks in experiment 1.

Depth
(cm)

THg
(nmol g-1)

MeHg
(pmol g-1)

AVSb

(µmole g-1)
% organic 

matterc

Initial Aa

0-0.5
0.5-1 
1-2 
2-3 
3-5 

2.0
2.0
2.9
2.3
2.1

6.2
6.4
5.1
5.2
4.5

36
132
114
81
122

12
12
13
13
13

Initial Ba

0-0.5
0.5-1 
1-2 
2-3 
3-5 

1.5
2.8
2.8
2.8
2.2

3.2
2.8
6.7
7.6
5.4

Mid-Rd

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

1.4 ± 0.6
0.9 ± 0.3
1.3 ± 0.3
1.2 ± 0.7
1.3 ± 0.2
1.4 ± 0.2

5.4 ± 1.2
5.1 ± 0.7
3.0 ± 0.4
2.4 ± 1.6
3.7 ± 0.2

3.1

12 ± 2.6
34 ± 4.1
42 ± 21
69 ± 20
94 ± 10

94

12 ± 0.6
12 ± 1.0
12 ± 0.1
12 ± 0.4
12 ± 0.1
12 ± 0.8

Final-R 

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

2.6 ± 0.3
2.0 ± 0.8
1.6 ± 0.5
2.2 ± 0.8
2.4 ± 0.9
2.2 ± 1.0

4.8 ± 1.0
3.9 ± 1.3
3.6 ± 1.3
2.3 ± 0.4
2.1 ± 0.7
2.8 ± 0.8

31 ± 5.5
57 ± 8.2
66 ± 17
85 ± 12
85 ± 14
103 ± 17

13 ± 0.5
13 ± 0.9
13 ± 0.4
13 ± 0.6
12 ± 0.04
12 ± 0.1

Mid-NRd

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

2.3 ± 0.06
1.9 ± 0.4
1.3 ± 0.1
1.4 ± 0.4
1.2 ± 0.06
1.5 ± 0.3

5.5 ± 1.1
3.1 ± 2.4
2.7 ± 0.2
3.9 ± 0.4
3.9 ± 0.09
3.9 ± 1.1

18 ± 6.0
49 ± 5.9
58 ± 12
60 ± 4.2
75 ± 30
69 ± 10

13 ± 0.3
12 ± 0.5
12 ± 0.1
12 ± 0.2
12 ± 0.2
12 ± 0.5

Final-NR

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

2.3 ± 0.8
1.9 ± 0.3
1.7 ± 0.2
1.8 ± 0.08
1.8 ± 0.2
1.7 ± 0.2

5.0 ± 2.6
5.2 ± 4.4
3.9 ± 1.5
4.5 ± 2.5
3.9 ± 2.0
3.0 ± 0.8

8.0 ± 7.2
31 ± 12
53 ± 7.1
71 ± 5.0
72 ± 8.7
82 ± 11

15 ± 0.3
14 ± 0.7
13 ± 0.3
13 ± 0.2
13 ± 0.1
12 ± 0.4

a: initial duplicate cores run by ICP for THg and MeHg. 
b and c: only one core was used for the initial condition. 
d: the rest of samples are presented in averages of all three replicate tanks run by both 
ICP and CVAFS (see the text for details).   
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3.3.1.2. Mercury methylation

The % methylation from spiked core incubation experiments using 199Hg in the 

initial cores ranged from 0.07 to 0.3 %, showing a tendency to slightly increase with 

depth (Fig. 3.1a). The R tank in the mid point cores showed a large variability in % 

methylation, with peaks at depths of 0-0.5 cm and 2-3 cm sediment. Percent 

methylation was highest in the top 0.5 cm of sediment (Fig. 3.1b). The average % 

methylation in the mid point cores was 0.6 ± 0.5 % in the 0-0.5 cm depth range and 

0.4 ± 0.06 % in the 0.5-1 cm range, and 0.5 ± 0.1 % in the 0-0.5 cm and 0.2 ± 0.1 % 

in the 0.5-1 cm range in the final cores. In the NR tank, % methylation appeared to 

increase in the top 1 cm of the sediment over time and averaged 0.1 ± 0.03 % in the 

0-0.5 cm and 0.3 ± 0.1 % in the 0.5-1 cm depth sediment in the mid point cores, and 

0.3 ± 0.1 % in the 0-0.5 cm and 0.6 ± 0.3 % in the 0.5-1 cm range in the final cores 

(Fig. 3.1c). However, overall % methylation was higher in the R tanks than in the NR 

tanks in the upper sediment layers.
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Figure 3.1. Percent methylation in sediment cores (experiment 1): (a) initial cores; (b) 
R tank (T1); (c) NR tank (T4).
Duplicate core IDs are presented in parenthesis for each time point (see text for 
details).  
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        The amount of Me199Hg produced in the 2 h-incubation was significantly and 

positively correlated with MeHg concentration in the sediment (r = 0.8, n = 58) (Fig. 

3.2a). In the R tank, the amount of Me199Hg produced in the mid point cores appeared 

to be in a slightly higher range, compared to the final cores, with the initial 

concentration being in between. On the other hand, the NR tank had an opposite trend 

in that the amount of Me199Hg produced in the final cores was higher than the mid 

point cores. As seen in Fig. 3.2b, there was also a significant positive but weak 

correlation found between % methylation and in situ MeHg concentration (r = 0.4, 

n = 58). The relationship showed more variability than the correlation between

Me199Hg produced and in situ MeHg concentration. Heyes et al. (in preparation) 

found a similar result in their Hg isotope addition incubation experiment with 

sediments from Mackall Cove, a small inlet off the Patuxent River, Maryland. 

Similarly, such relationships were found for sediments from the Hudson River 

turbidity maximum zone (Heyes et al., 2004) and for the Bay of Fundy (Sunderland et 

al., 2004). 
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Figure 3.2. The correlations between (a) Me199Hg produced in 2 h and sediment 
MeHg; (b) % methylation and sediment MeHg (experiment 1).
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        Based on our results, Hg methylation rate constants were calculated using the 

following equation given by Hintelmann et al. (2000), which treats both methylation 

and demethylation as pseudo first order reactions. The net rate of Me199Hg production 

is:

              d[Me199Hg])/dt = k1 [
199Hg(II)] - k2 [Me199Hg]                                     (1)

where k1 = methylation rate constant (d -1)
          k2 = demethylation rate constant (d -1)
          [199Hg] = concentration of added 199Hg (nmol g-1)
          [Me199Hg] = concentration of Me199Hg (nmol g-1) produced.

For a short-term assay, the second term in equation 1 can be ignored because 

[Me199Hg] is low enough at the early stage in the stable isotope incubation 

experiment. Thus, equation 1 leads to: 

                   d[Me199Hg])/dt = k1 [
199Hg]                                                    (2)

By integrating equation 2, the methylation rate constant is obtained as below: 

                        k1 = [Me199Hg)]/ ([ 199Hg] · t)                                                     (3)

 In the mid point cores, the R tank had a higher rate constant for Hg methylation (0.08 

± 0.06 d-1) than the NR tank (0.02 ± 0.004 d-1) in the top 0.5 cm of sediments. 

However, the rate constant in the R tank slightly decreased to 0.05 ± 0.01 d-1 in the 

final cores, whereas, in the NR tank, the rate constant increased to 0.04 ± 0.01 d-1. A 

similar trend was found in the 0.5-1 cm of sediment. Overall, resuspension appeared 
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to increase Hg methylation in the sediment, especially in the top layer (0-1 cm), with 

the impact being to some degree more pronounced earlier in the experiment. The R 

tank showed a decrease in Hg methylation at the end of experiment. It should be 

noted that the R system was accidentally shut off on the 20th day and all the R tanks 

were not disturbed overnight. This event may have influenced the sediment redox 

state and may have resulted in an AVS increase and a Hg methylation decrease in the 

final core samples.  

3.3.1.3. Methylmercury demethylation 

        The initial cores showed more than 60 % demethylation in the 2-h incubation 

throughout the core depth, with less demethylation occurring in the top sediment (Fig. 

3.3a). In the R tank, demethylation in the mid point cores appeared to be similar to 

that of the initial cores, while the final cores showed a relatively constant % 

demethylation except for the top 0.5 cm of the sediment (Fig. 3.3b). In the NR tank, 

demethylation in the mid point core showed large variability between the duplicate 

cores (Fig. 3.3c). Percent demethylation in the final cores of the NR tank was fairly 

constant with depth. In general, the demethylation rate appeared to be higher than the 

methylation rate in these sediments. 
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Figure 3.3. Percent demethylation in sediment cores (experiment 1): (a) initial cores; 
(b) R tank (T1); (c) NR tank (T4). 

Duplicate core IDs are presented in parenthesis for each time point (see text for 
details).  
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The demethylation rate constants were also calculated using equation 4 derived 

from equation 1 (Hintelmann et al., 2000). At the beginning of the incubation 

experiment, as there is no excess [199Hg], then equation 1 reduces to 

                         d[Me199Hg])/dt =  - k2 [Me199Hg]                                               (4)

By integration, 

                        k2 = (1/t)·ln([Me199Hg]0/[ Me199Hg])                                           (5)

where [Me199Hg]0 is the initial concentration of Me199Hg in the sediment.

The demethylation rate constants in the mid point cores were 15.3 ± 5.7 d -1 for the R 

tank and 13.9 ± 14.5 d -1 for the NR tank in the top 0.5 cm of sediments. The rate 

constants for the R tank in the final cores decreased to 8.6 ± 2.4 d -1 in the top 0.5 cm 

of sediments, whereas the NR tanks showed a demethylation increase, with an 

average of 32.2 ± 5.9 d -1 in the top 0.5 cm of sediments. 

        At a steady state, if equal fractions of added spike isotopes are bioavailable, then

equation 1 leads to [MeHg]/[Hg] = k1 / k2. As seen in Table 3.2, the ratio of the two 

rate constants (k1 / k2) for the R tank yielded around 0.005 and the ratio for the NR 

tank was approximately 0.001 in the top 0.5 cm of the sediment. The ratios of in situ

THg and MeHg concentrations yielded ratios of the same order of magnitude as the 

calculated values for both R and NR tanks (Table 3.2). Thus, although demethylation 

rate constants were orders of magnitude higher than methylation rate constants, our 
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results from isotope spike incubation experiments appear to be reasonably consistent 

with ambient Hg pools in sediments. These results suggest that MeHg must be 

similarly available in sediments for demethylation, compared to inorganic Hg for 

methylation. The differences between the results for the R and NR tanks suggest a 

higher rate of net methylation in the R tank compared to the NR tank. Moreover, the 

half-life of MeHg (t ½ = ln 2 × 1/k2) was generally less than 2 h, suggesting that 

MeHg turnover occurred very rapidly in the sediment. Thus, methylation process 

seems to play an important role in determining MeHg concentration in sediments as 

in the absence of continuous methylation, MeHg would be rapidly depleted. Our 

preliminary mass balance, discussed in Chapter 2 (Kim et al., 2004), suggested that 

net MeHg production within the mesocosm tanks was higher in the R tanks than in 

the NR tanks. While the mass balance suggested an overall net formation of MeHg in 

the R tanks, the results for the NR tanks were equivocal given the errors associated 

with the mass balance estimates. The discussion above is consistent with the mass 

balance in terms of the higher net methylation rate in the R tanks compared to the NR 

tanks.   
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Table 3.2. Comparison of methylation and demethylation rates in the top sediment 
(0-0.5 cm).

3.3.2. Experiment 2 with clams 

3.3.2.1. Overall sediment profiles  

        AVS and % organic content for this experiment are presented in Table 3.3. AVS

in the initial cores showed a tendency to increase with depth, which was similar to the 

initial AVS concentration in experiment 1. Both RC and NRC tanks showed a similar 

pattern with AVS concentration at the end of the experiment. Unlike experiment 1, 

AVS in the top 0.5 cm of sediment was comparable between the two systems. Percent 

organic content in the initial cores was fairly constant with depth, which was very 

similar to experiment 1. The RC tanks showed a slight increase in % organic content 

in the top 0.5 cm of sediment. In the NRC tanks, % organic content increased by 15 

% in the top sediment. This is consistent with the result in experiment 1 that, in the 

NRC tanks, organic content tended to increase in the top sediment over time. 

k1

(× 10-2)
(d-1)

k2

(d-1)
k1/ k2

(× 10-3)

[MeHg]tot

/[Hg]tot

(× 10-3)

Experiment 1

Initial
Mid-R 
Final-R 
Mid-NR
Final-NR

1.2
7.7
5.4
1.7
2.5

18.2
15.3
8.6
13.9
28.1

0.66
5.0
6.3
1.2
0.89

2.5
4.0
1.9
2.2
2.2

Experiment 
2

Initial
Final-R 

Final-NR

1.9
2.0
2.7

13.5
17.2
16.2

1.4
1.2
1.7

3.9
2.5
3.3
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        As discussed in Chapter 2 (Kim et al., 2004), POM in the water column 

decreased by 80 % (RC) and 87 % (NRC), on average, compared to POM 

concentration in experiment 1, due to a combination of lower water temperature and 

the presence of clams in experiment 2. However, % POM in both systems remained 

similar to experiment 1 (higher % POM in the NRC tanks). Thus, even with the 

presence of clams and the lower phytoplankton stock, settling particles that contained 

higher % POM likely contributed to the accumulation of higher % organic content in 

surface sediments over time in the NRC tanks. As mentioned earlier, the presence of 

microphytobenthos mediated by enhanced light reaching the bottom could also 

contribute to the higher surface % organic content. Moreover, biodeposits by clams 

that do not ever get resuspended in the NR tanks might have accumulated in the 

surface sediment as well. 

        THg concentration in the initial cores showed peaks in depths of 0.5-1 and 3-5 

cm sediment (Table 3.3). Both RC and NRC tanks showed a similar range and 

vertical distribution of THg. There was no significant correlation between THg and % 

organic content, which was in contrast to the result in experiment 1. The lack of 

relationship is likely due to the smaller set of data, as we did not have the mid point 

measurement for this experiment. THg was not significantly correlated with AVS, as 

observed in experiment 1. Indeed, a relationship between AVS and THg in field 

samples has not been shown in any published data. 

        MeHg concentration in the initial cores showed a relatively constant profile with 

depth and a similar pattern was observed in both RC and NRC tanks (Table 3.3). 

There was no significant correlation found between MeHg concentration and % 
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organic content, as well as AVS. MeHg concentration was not significantly correlated 

with THg. Mason and Lawrence (1999) found that MeHg concentration was not 

significantly correlated with organic matter or AVS for Baltimore Harbor sediments. 

As mentioned above, Baltimore Harbor samples were from the surface sediments 

only (top 2 cm). In contrast, Hintelmann and Wilken (1995) found a significant 

positive correlation between MeHg and AVS in an Elbe River (Germany) sediment 

profile. While the AVS profile was comparable to the results in our experiment, 

MeHg concentration (e.g., highest value of 180 pmol g-1) was an order of magnitude 

higher than our results.
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Table 3.3. Average concentrations of THg, MeHg, AVS, and % organic content with 
standard deviations from all the tanks in experiment 2.

Depth
(cm)

THg
(nmol g-1)

MeHg
(pmol g-1)

AVSb

(µmole g-1)
% organic 

matterc

Initial Aa

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

1.1
1.4
1.5
1.4
1.7
1.4

6.6
5.4
5.9
2.6
4.9
2.3

39
86
75
72
94
94

12
12
13
13
13
12

Initial B

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

1.2
1.8
1.5
1.2
1.7
1.6

3.4
4.0
3.1
2.9
3.3
3.6

Final-RCd

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

1.8 ± 0.5
1.9 ± 0.3
1.3 ± 0.2
1.7 ± 0.5
1.3 ± 0.1
1.3 ± 0.2

4.4 ± 0.7
4.7 ± 1.1
3.6 ± 1.0
3.4 ± 0.8
4.5 ± 0.9
3.8 ± 1.0

28 ± 9.4
66 ± 19
55 ± 13
79 ± 16
82 ± 25
90 ± 20

13 ± 0.3
13 ± 0.3
13 ± 0.1
13 ± 0.3
13 ± 0.1
13 ± 0.2

Final-NRCd

0-0.5
0.5-1 
1-2 
2-3 
3-5 
5-7 

1.3 ± 0.4
1.2 ± 0.6
1.1 ± 0.3
1.6 ± 0.7
1.5 ± 0.6
1.3 ± 0.4

4.3 ± 0.4
3.9 ± 0.6
3.0 ± 0.6
2.8 ± 0.6
3.3 ± 0.4
3.5 ± 0.6

24 ± 1.0
57 ± 13
58 ± 11
73 ± 13
81 ± 6.2
85 ± 3.4

14 ± 0.3
13 ± 0.1
13 ± 0.2
13 ± 0.3
13 ± 0.3
12 ± 0.2

a: averages of duplicates run by ICP for THg and MeHg. 
b and c: only one core was used for the initial condition. 
d: the rest of samples are presented in averages of all three replicate tanks run by both 
ICP and CVAFS (see the text for details).   
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3.3.2.2. Mercury methylation 

        Percent methylation in the initial cores showed a peak in the 0.5-1 cm of the 

sediment layers, averaging 0.4 ± 0.003 % (Fig. 3.4a). In the RC tank, % methylation 

in the final cores was highest in deeper sediments (1-2 cm), averaging 0.8 ± 0.2 % 

(Fig. 3.4b). In the NRC tank, % methylation showed a peak in 0.5-1 cm sediment 

layer, with an average methylation of 0.9 ± 0.5 % (Fig. 3.4c). Compared to 

experiment 1, there was a distinct peak in both systems and less variability was found 

between the duplicates. A similar pattern was found in both RC and NRC tanks 

except that the peak in % methylation was found in deeper sediments of the RC tank. 

Although we did not collect pore water samples, our results likely suggest that there 

was optimum conditions for Hg methylation at these depths. Optimum conditions 

would be found in anoxic sediments with low concentrations of sulfide in pore water, 

as well as the presence of enriched biodegradable organic content and nutrients (Parks 

et al., 1989). In addition, the presence of hard clams in experiment 2 may have 

influenced Hg methylation. Hard clams are moderately rapid burrowers and adjust 

burrowing depth with the posterior tip positioned within 1-2 cm of the sediment 

surface (Harte, 2001). Burrowing activity is known to enhance transport of dissolved 

oxygen in sediments, thereby resulting in a local oxidation of reduced sediment 

compounds (Oenema et al., 1988), and a potential decrease in sulfate reduction 

activity, and by association, Hg methylation. 
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Figure 3.4. Percent methylation in sediment cores (experiment 2): (a) initial cores; (b) 
RC tank (T2); (c) NRC tank (T5). 

Duplicate core IDs are presented in parenthesis for each time point (see text for 
details).  
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        There was a significant positive correlation between Me199Hg produced in 2 h 

and sediment MeHg (r = 0.6, n = 36), as seen in experiment 1 (Fig. 3.5a). The RC

tank MeHg concentrations were in a higher range than the NRC tank, which showed a 

similar pattern to that of the mid point cores in experiment 1 (Fig. 3.2a). There was no 

correlation found between % methylation and sediment MeHg (Fig. 3.5b). 

Methylation rate constants in the initial cores were higher in the 0.5-1 cm of 

sediments (0.04 ± 0.0003 d-1) than deeper layers. The NRC tank had a methylation 

maximum in the 0.5-1 cm of sediment (0.1 ± 0.05 d-1), while methylation rate in the 

RC tank showed a peak in deeper sediment (1-2 cm), averaging 0.09 ± 0.02 d-1. 
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3.3.2.3. Methylmercury demethylation 

        There was only one initial core used for demethylation. As seen in Fig. 3.6a, 

demethylation showed a peak in the 2-3 cm of sediment (> 90 %) and more than 60 % 

of the added MeHg was demethylated at all depths. Both RC and NRC tanks showed 

a similar pattern for % demethylation that was lower in the top 0.5 cm and remained 

relatively constant in the deeper sediments (Fig. 3.6b, c). As seen in experiment 1, 

demethylation rates were substantially higher than methylation rates (i.e. ratio of 

methylation/ demethylation << 1). For example, the demethylation rate constant for 

the RC tank in the 1-2 cm of sediments was 24 ± 0.03 d-1 and 29 ± 10.3 d-1 for the 

NRC tank in the 0.5-1 cm of sediments, where the peaks in Hg methylation were 

observed. However, as mentioned earlier, MeHg concentration did not markedly 

decrease at the end of both experiments, compared to the initial condition.  
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Figure 3.6. Percent demethylation in sediment cores (experiment 2): (a) initial cores; 
(b) RC tank (T2); (c) NRC tank (T5).

Duplicate core IDs are presented in parenthesis for each time point (see text for 
details).  
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        The ratio between the two rate constants (k1/k2) was comparable to the ratio of 

sediment Hg and MeHg concentrations, as seen in experiment 1 (Table 3.2). In 

addition, Table 3.4 presents methylation/demethylation rates and ratios of the two 

constants and in situ Hg/MeHg concentrations across ecosystems for comparisons. As 

seen in Table 3.4, the ratio between methylation and demethylation are generally in 

good agreement with the ratios of in situ Hg concentrations (e.g. within a factor of 

two) especially for estuarine systems. Stable isotope addition experiments seem to 

give better agreement in comparison of methylation/demethylation rates and sediment 

Hg concentration, compared to approaches where radioisotopes are used perhaps 

because of the necessity for longer incubations when radioisotopes are used 

especially for demethylation studies. It should, however, be noted that since the stable 

isotope (Me199Hg or 199Hg) was added in solution, there is the possibility that the 

spiked isotope could have been more quickly methylated/demethylated when it was 

injected into cores, compared to the in situ Hg or MeHg. Others have expressed 

similar concerns with the short term rate measurements (e.g. Hintelmann, 2000; 

Benoit et al., 2003) but the results of this study suggest that the relative rates of 

methylation and demethylation measured using stable isotope spike experiments 

reflect relatively well the relative rates of methylation and demethylation in situ.
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Table 3.4. Comparison of methylation and demethylation rates across ecosystems.

Location
Type and Methoda

k1

(× 10-2)
(d-1)

k2

(d-1)
k1/ k2

(× 10-3)

[MeHg]tot

/[Hg]tot

(× 10-3)
References.

Hudson River (E/S)
Bay of Fundy (E/S)
Mesocosm Studies
(E/S)
San Pablo Bay 
(EW/R)
115 Wetland 
(FW/S)
Ontario Lakes 
(L/S)
Everglades
(W/S+R)

Lake Sediment 
(L/R)

0.4
4.2
3.1

1.4

3.2
1.3
1-4 

 

0.2

11.9
5.5

16.4

0.3

5.0
0.5

0.04

1-3 

0.2
7.6
2.3

56

6.4
28

250-1000

0.7-1 

0.2
5.8
2.8

18

78
16

1-40

-

Heyes et al., 2004 
Sunderland et al., 2004 
This studyb

Marvin- Dipasquale, 2003

Heyes (unpublished data)
Hintelmann et al., 2000
Benoit et al., 
2003/Marvin-
Dipasquale & Oremland, 
1998c

Pak & Bartha, 1998

a: Type-- E = Estuarine; L = Lake; F = Freshwater; W = Wetland; 
    Method -- S = Stable isotopes used; R = Radioisotopes used.

  (Time to equilibrium is hours to days.)
b: average values for both R and NR systems in the top sediment layer (0-0.5 cm).  
c: methylation study used stable isotopes; demethylation study used radioisotopes.
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3.3.2.4. Trace metals 

        Table 3.5 shows correlation coefficients (r) between metals including THg and 

MeHg in sediments (n = 48). THg concentration was positively and significantly 

correlated with most of the other metals except Cd, while MeHg had a significant 

positive correlation with As, Cu, and Zn only. It is surprising that there was no 

significant relation between AVS and other metals, especially Fe. However, when the 

data from the top sediment (1 cm) were excluded, p-values were improved, being 

near the significant level (p ≤ 0.05) in most cases. Thus, as found by others (Gobeil 

and Cossa, 1993; Gagnon et al., 1997), trace metals are likely associated with other 

matrices such as iron oxides, organic matter, and oxide/organic matter associations, 

and not only AVS, in these surface sediments. Under highly anoxic conditions, 

however, AVS and organic matter are important scavengers for Hg species and other 

trace metals.    
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Table 3.5. Correlation table for experiment 2; values listed are Pearson’s product-
moment correlation coefficients (r)a.  

Ag As Cd Co Cu Fe
Ag
As
Cd
Co
Cu
Fe

1 0.95
1

0.60
0.48

1

0.96
0.98
0.46

1

0.98
0.97
0.49
0.99

1

0.79
0.87
NS
0.86
0.86

1
Ni Pb Se Zn THg MeHg

Ag
As
Cd
Co
Cu
Fe
Ni
Pb
Se
Zn

THg
MeHg

0.97
0.97
0.48
0.99
0.99
0.84

1

0.88
0.87
NS
0.90
0.91
0.80
0.90

1

0.98
0.93
0.63
0.96
0.98
0.80
0.96
0.85

1

0.97
0.99
0.50
0.98
0.98
0.88
0.97
0.88
0.96

1

0.52
0.47
NS
0.51
0.52
0.49
0.49
0.55
0.55
0.52

1

NS
0.47
NS
NS
0.42
NS
NS
NS
NS
0.48
NS
1

a: correlation coefficients are significant at a level of p < 0.05; NS = not significant.
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3.3.3. Impact of resuspension on Hg methylation/demethylation

       Overall, sediment resuspension seems to have a complex effect on the 

association of Hg with binding phases as well as Hg methylation and demethylation 

in surface sediments. It was observed in experiment 1 that AVS in the R tanks 

initially decreased in surface sediments, suggesting the oxidation of AVS due to 

resuspension. However, sediment AVS did not continuously decrease in the R tanks

throughout the experiment, as was expected. In fact, the final AVS concentration in 

the R tanks was higher than in the NR tank. As mentioned above, the R system was 

accidentally shut down overnight near the end of experiment 1 and this may have 

resulted in the surface sediment possibly becoming more anoxic temporally due to the 

lack of oxygen penetration. However, we consider this unlikely given its relatively 

short duration compared to the overall experiment. More likely, during summer, the 

suboxic and anoxic boundary layer is closer to the sediment-water interface because 

of the higher sediment temperature and the input of freshly deposited organic matter, 

and its increased degradation. It should be noted that sediment resuspension did not 

inhibit primary productivity in the mesocosms (Chapter 2, Kim et al., 2004), as may 

have been expected. The enhanced supply of nutrients from the sediments, as a result 

of resuspension, led to an overall comparable or higher Chl a (Chlorophyll a) 

concentration in the resuspension tanks compared to the NR tanks, and a bloom in the 

mid period of the experiment. Settling of this organic matter may have resulted in the 

noted shift in surface sediment AVS. Thus, a combination of the seasonal influence 

and the accidental shutoff of the resuspension stirring mechanism is the likely 
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explanation for the AVS increase in the surface sediment of the R tanks at the end of 

the experiment. 

        As proposed by Gagnon et al. (1997), the oxidation of AVS could produce 

stable, soluble Hg complexes in the pore water. This released Hg could then be 

adsorbed onto or co-precipitated with iron oxides or organic matter. As mentioned 

above, sulfate reducing bacteria are the primary agents for methylating Hg. Maximal 

methylation occurs in environments where sulfate is sufficient to stimulate sulfate 

reduction and, as a result, Hg methylation but where there is relatively low sulfide, so 

that methylation is not limited (Choi and Bartha, 1994; Benoit et al., 1998). 

Bioavailability of Hg is an important factor in Hg methylation. Benoit et al. (1999a) 

developed a chemical equilibrium model to test the hypothesis that the bioavailability 

of Hg to sulfate reducing bacteria is a function of the concentration of neutral Hg 

sulfide complexes that can readily diffuse across the bacterial membrane. The model 

results suggest that as sulfide increases, the dominant Hg speciation changes from 

neutral dissolved Hg complexes (e.g. HgS (aq)) to charged sulfide complexes. 

Octanol-water partition experiments (Benoit et al., 1999b) and culture experiments 

(Benoit et al., 2001) have confirmed this hypothesis.

        The results in experiment 1 showed that in situ MeHg production had an 

opposite pattern to changes in AVS concentration, especially in the top sediment 

layers. Although there was no attempt to analyze dissolved Hg species and 

sulfate/sulfide concentration in the pore water, our results from experiment 1 showed 

that Hg methylation was likely enhanced by resuspension, tightly coupled with the 

oxidation of AVS and the assumed associated change in redox state. In experiment 2, 
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however, the relationship between MeHg production and AVS concentration was 

found to be less clear. The situation is complex as while some sediment oxidation 

may lower sulfide levels and enhance Hg methylation, too much oxidation may 

hinder bacterial activity.  

        The demethylation of MeHg has received relatively less attention until recently, 

compared to Hg methylation. MeHg demethylation can proceed by biotic and abiotic 

pathways. Abiotic pathways such as photodegradation have been reported in the 

water column (Sellers et al., 1996; Weber, 1993). Biotic pathways include reductive 

(RD) and oxidative demethylation (OD), which produce different end products (e.g. 

CH4 and Hg(0)  for reductive demethylation; CO2 and Hg(II) for oxidative 

demethylation) (Marvin-Dipasquale and Oremland, 1998; Hintelmann et al., 2000) 

and which occur in different regions of the redox zone. Although environmental 

factors controlling demethylation rates are not yet fully understood, Marvin-

Dipasquale et al. (2000) found that RD was a major pathway in extremely 

contaminated sediments (i.e. ppm levels of THg concentration), while OD was 

dominant in less contaminated sediments (natural environments). In addition, both 

sulfate reducing bacteria and methanogens have been shown to be the primary agents 

for OD (Oremland et al., 1991; Oremland et al., 1995; Pak and Bartha, 1998). Thus, 

in environments where OD dominates, the end product, Hg(II) may be re-methylated 

or associated with reduced sulfur species. Recycling of Hg appears to be important 

and the balance between methylation/demethylation ultimately determines MeHg 

concentration in sediments. 
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It appears that our demethylation experiments in both experiment 1 and 2 gave 

a consistent relative comparison between the two experimental systems and also 

showed less variability between the R and NR tanks, compared to the methylation 

studies. Both sets of tanks showed a similar pattern in that demethylation rate was 

lower in the top sediment, while it remained fairly constant in deeper sediments. 

Therefore, our experiments seem to suggest that Hg methylation played a key role in 

maintaining a low MeHg pool in sediments while resuspension changed the sediment 

chemistry to favor relatively more Hg methylation.      

3.3.4. Impacts of clams on plankton and mercury dynamics in the water column

This dissertation work is mostly focused on experiments 1 and 2. However, there 

were two more experiments conducted in summer of 2002 and 2003 (experiments 3 

and 4; see Appendix I for more in detail). The later two experiments were designed to 

examine the effects of clam existence (RC vs. RNC) and density (RHC vs. RLC) on 

TSS levels, phytoplankton and zooplankton biomass, as well as Hg dynamics. 

Although experiments 3 and 4 are not discussed in detail here, some of data are 

shown in Appendix I for comparison.

Overall, the ratio of phytoplankton and POM was higher without clams (RNC) 

than with clams (RC) in experiment 3, averaging 0.3 ± 0.09 and 0.05 ± 0.02, 

respectively (Fig. A in Appendix I). Similarly, in experiment 4, the ratio between 

phytoplankton and POM was higher with low density clams (RLC) than with high 

density clams (RHC), averaging 0.3 ± 0.1 and 0.1 ± 0.2, respectively (Fig. A in 

Appendix I). The results indicate that clams played an important role in controlling 
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phytoplankton biomass as phytoplankton served as a primary food source. Studies 

have found that phytoplankton biomass is reduced significantly due to filter feeder 

grazing (Padilla et al., 1996; Caraco et al., 1997; Descy et al., 2003). The ratio of 

zooplankton and POM showed a similar pattern that zooplankton biomass increased 

with decreasing clam density (Fig. B in Appendix I). It may have been due to a 

decrease in phytoplankton biomass, which is an important food source to 

zooplankton, and/or due to zooplankton being grazed by filter feeders. Viroux (2000) 

found that small zooplankton decreased with high zebra mussel density. To examine 

the clam-zooplankton interaction, modeling studies examined the effects of clams on 

plankton biomass and subsequent MeHg bioaccumulation (Chapter 4).  

Tables A and B in Appendix I show water column data including THg and 

MeHg concentrations for all experiments for comparison. It appears that TSS 

concentration was higher with clams. Increasing TSS concentration was likely 

ascribed to sediment destabilization by clam presence (Porter et al., in preparation). 

Average concentrations of dissolved THg were not significantly different between RC 

and RNC (experiment 3) as well as RHC and RLC (experiment 4). A similar pattern 

was observed for dissolved MeHg in experiments 3 and 4, suggesting that clam 

presence or changes in clam density did not play a major role in Hg partitioning in the 

water column. 
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3.3.5. Mercury bioaccumulation

Total Hg concentration in zooplankton is shown in Fig. 3.7a. Unfortunately, 

zooplankton samples were not collected for THg on day 15. THg concentration was 

not significantly different between the two treatments (RC vs. NRC). There was no 

significant interaction between time and the treatments. However, THg concentration 

in zooplankton decreased significantly after day 2 and then remained relatively 

constant. Recall that in the beginning of the experiment ambient water from the 

Patuxent River, mixed with concentrated seawater, was added to the tanks, and the 

zooplankton in this water was the source of zooplankton in the mesocosms, and that 

the first sampling was made on day 2 of the experiment. Thus, zooplankton THg 

likely represented the concentration and reflected conditions in the Patuxent River for 

the first week until the zooplankton growth, uptake and depuration lead to the 

concentration being reflective of the in situ concentrations during the experiments. A 

sharp decrease in THg appeared to be linked to a zooplankton biomass increase. 

Zooplankton biomass (> 210 µm) on day 8 increased about a factor of two in the RC

tanks and a factor of 3.5 in the NRC tanks, compared to day 2 (Fig. 3.7c).   

        As seen in zooplankton THg concentration, MeHg concentration showed no 

significant difference between the RC and NRC tanks (Fig. 3.7b). There was no 

significant interaction found between time and the treatments. In the RC tanks, MeHg 

in zooplankton increased significantly on day 15 and 22, compared to day 2. 

However, a MeHg increase in the NRC tanks was not significantly different over 

time. Changes in zooplankton concentration did not mirror water column MeHg 

concentration that was relatively constant over time, and that did not significantly 
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differ between experimental systems (Chapter 2, Kim et al., 2004). In the RC tanks, 

the average concentration of MeHg was 1.3 times higher than the NRC tanks. 

However, zooplankton biomass in the NRC tanks was 1.3 times higher, on average, 

than the RC tanks, suggesting that biomass dilution likely led to slightly lower 

concentration of MeHg in the NRC tanks. 
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Fig. 3.7. (a) THg in zooplankton; (b) MeHg in zooplankton; (c) zooplankton biomass
(> 210 µm) (experiment 2).
Error bars show standard deviations of 3 replicates in each system.  
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Based on the Chl a concentration in the mesocosm tanks and some reasonable 

assumptions about phytoplankton size and growth rate, the data in Mason et al. 

(1996) was used to estimate the steady state phytoplankton Hg burden under the 

experimental conditions (experiment 2) (Chapter 2, Kim et al., 2004). The estimated 

phytoplankton THg was in a similar range for both systems (about 0.3 to 0.5 nmol 

g-1), being lower than the THg concentration in zooplankton and THg in the sediment. 

Calculation for MeHg gave a range of 5-30 pmol g-1 for both RC and NRC tanks, 

which was higher than MeHg concentrations in the sediment. Compared to the 

estimated MeHg in phytoplankton, zooplankton MeHg showed an increase by a factor 

of 2-3. A similar range in biomagnification has been found between phytoplankton 

and zooplankton by other investigators (Mason and Sullivan, 1997; Watras and 

Bloom, 1992). 

        The concentration of THg and MeHg in clams is presented in Table 3.6. There 

was no significant difference found in THg and MeHg concentration between the 

treatments. No significant interaction between time and the treatments was also 

found. However, the final concentration of THg significantly increased in the RC

tanks, compared to the initial concentration. In contrast, the increase in the NRC tanks 

was not significant, compared to the initial concentration. As mentioned earlier, there 

were 5 suspended clams in each tank and a similar trend was observed to clams in 

sediments, indicating that the clams, although residing in the sediment, were 

reflecting the water column conditions as expected for filter feeders. Compared to the 

initial concentration, MeHg concentration in clams significantly increased in both RC

and NRC tanks. A similar pattern was observed with the suspended clams. MeHg in 
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clams accounted for 71 ± 12 % of THg concentration, on average. There are very few 

data available on MeHg or % MeHg concentration in clams in field populations. 

MeHg, however, generally accounts for 20-80 % of THg in invertebrates while it is 

10-30 % in plants and 80-100 % in fish and higher predators (Claisse et al., 2001). 

Our result falls within the range of % MeHg in oysters (Crassostrea gigas) and 

mussels (Mytilus spp) from the French Coast (11 to 88 % with a median of 43 %) 

(Claisse et al., 2001).

Table 3.6. Average concentrations of THg and MeHg in clams, Mercenaria 
mercenaria, with standard deviations at the beginning and the end of experiment 2. 

THg (nmol g-1 dw) MeHg (nmol g-1 dw) % MeHg
Initial

RC tanks
Sa – RC tanks

NRC tanks
Sa – NRC tanks

0.18
0.25 ± 0.04
0.24 ± 0.08
0.23 ± 0.04
0.20 ± 0.1

0.13
0.16 ± 0.006
0.18 ± 0.06
0.15 ± 0.01
0.17 ± 0.05

72
65 ± 11
74 ± 12
64 ± 5.9
86 ± 10

a: suspended clams in the RC and NRC tanks (see the text for details).

As discussed in Chapter 2 (Kim et al., 2004), average water temperature during 

the course of experiment 2 was 20 ± 2.0 °C and salinity for all the tanks was 19 ± 0.2 

ppt. Within these ranges of temperature and salinity, there are generally no 

detrimental effects on pumping rate and growth of these clams (Grizzle et al., 2001 

and references therein.). The RC tanks seem to be beneficial to feeding of clams in 

that Chl a concentration was higher and there was less zooplankton biomass (i.e. less 

competition), compared to the NRC tanks. Moreover, in experiment 3, a clam gape 

monitor (Porter et al., in preparation) was developed and used to measure clam gape 
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activity (closing/opening). It was found that clams in the RC tanks were open 62 % of 

time at TSS levels of 110 mg l-1, suggesting that hard clams were coping with the 

turbid environment and were actively feeding. This observation is in contrast to what 

had been previously found (Bricelj and Malouf, 1984; Turner and Mills; 1991). 

However, it is not clear whether or not there was a strong correlation between valve 

gape and filtration rates, as suggested by Riisgård et al. (2003). They found that 

filtration rates of clams, Mya arenaria, decreased with reduced siphon opening but 

opening degree of siphons and valve gape might not be always correlated. 

Nevertheless, our data showed that the ratio between phytoplankton and POM was 

lower with increasing clam density, suggesting that phytoplankton was removed by 

clams (Fig. A in Appendix I).

        Riisgård et al. (2003) found that filter feeding bivalves reduced their opening 

state and finally ceased filtering within a few hours when bivalves experienced algal 

concentration below a certain threshold (e.g. 0.5 µg l-1). As discussed in Chapter 2 

(Kim et al., 2004), Chl a was significantly higher in the RC tanks than NRC tanks, 

averaging 6.7 ± 0.3 and 3.6 ± 0.1 µg l-1, respectively. In addition, Chl a concentration 

in both systems was lower, by 72 % (likely due to combination effects of lower 

temperature and clam presence), compared to experiment 1. Under the experiment 

condition, it is likely that filtration rates of clams in both systems were not 

dramatically different. Clams in the RC tanks were in the turbid environment where 

filtration rates may have been negatively affected but food concentration was 

relatively higher (compared to the NRC tanks). In contrast, clams in the NRC tanks 

likely faced food limitation due to a lower standing stock of phytoplankton. Overall, 
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resuspension of sediment has a complex effect of system productivity – it appears to 

enhance phytoplankton growth, but not zooplankton biomass, or that of clams (Porter 

et al., in preparation). The MeHg concentrations in the RC tanks in the clams were 

somewhat higher than those in the NRC tanks at the end of the experiment, with the 

likely explanation for this trend being differences in filtration and feeding rather than 

differences in concentration at the base of the food chain. A detailed ecosystem 

modeling study would be needed to reinforce this conclusion and this is examined in 

Chapter 4 where the effects of clams on phytoplankton and zooplankton biomass and 

the resulting MeHg bioaccumulation are modeled. 

3.4. Summary

        Our results suggest that sediment resuspension has a complex effect on Hg 

sedimentary chemistry (e.g. changes in the association of Hg with binding phases). 

Furthermore, resuspension appeared to enhance Hg methylation in surficial 

sediments. Demethylation was found to be similar between the R and NR systems 

with less variability, suggesting that Hg methylation played a key role in maintaining 

the MeHg pool in sediments. The results from measurements of the THg and MeHg 

concentration in the biota indicate that there is no simple relationship between the 

concentrations in the suspended particles and phytoplankton and the herbivores in 

these systems. In addition, clams did not seem to affect THg and MeHg 

concentrations in the water column. 
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Chapter 4: A modeling study on important factors in controlling 

methylmercury bioaccumulation into benthic and pelagic organisms

4.1. Introduction

        There have been extensive efforts in modeling mercury (Hg) transport, 

speciation, and bioavailability in aquatic environments. Hg models have included 

various processes and biogeochemical reactions (e.g. atmospheric deposition, 

diffusive flux, biogeochemical transformation, sorption processes with particles, 

deposition/resuspension, and biouptake) to simulate Hg cycling in aquatic 

ecosystems. Existing Hg models are well described by Bale (2000). Interest in 

bioaccumulation of Hg and methylmercury (MeHg) by benthic organisms stems from 

public health concerns because these organisms serve as the food for benthic 

predators such as fish and as larger invertebrates are consumed by humans. Most 

bioaccumulation models for trace metals including Hg are under steady-state 

conditions (Fisher, 2000). Kinetic models have been developed to effectively and 

quantitatively separate uptake pathways of contaminants by aquatic organisms 

(Thomann et al., 1995; Morrison et al., 1997; Wang et al., 1998; Fisher et al., 2000; 

Roditi et al., 2000). While Hg models are mostly focused on equilibrium speciation, 

models that incorporate Hg cycling into carbon flows within aquatic systems are rare. 

Additionally, the previous models did not include physically induced processes such 
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as resuspension that may be a significant factor in the bioaccumulation of Hg and 

MeHg into benthic and pelagic organisms. 

        Two STORM (high bottom Shear realistic water column Turbulence 

Resuspension Mesocosm) experiments were conducted in July (experiment 1) and 

October (experiment 2) of 2001 (Chapters 2 and 3). Each experiment was conducted 

with 3 replicates of resuspension (R) and no resuspension (NR). Hard clams, 

Mercenaria mercenaria, were introduced into the sediment for the study of 

bioaccumulation during experiment 2. Resuspension cycles were simulated with 4 h-

on / 2 h-off cycles. More details on experiment set-up and results are discussed in 

Kim et al. (2004) and Kim et al. (submitted) (Chapters 2 and 3). It was found from the 

STORM experiments that dissolved MeHg was not significantly different between the 

two systems (R vs. NR). This suggests that release from sediment due to oxidation of 

sulfide phases, or other processes enhancing desorption, were not significant. Overall, 

the results from the experiments suggest that the impact of resuspension on MeHg 

bioaccumulation was likely indirect.         

        Increasing turbidity due to resuspension can limit light penetration and reduce 

primary production (Kirk, 1985; Ryan, 1991; Hoetzel and Croome, 1994). On the 

other hand, Schallenberg and Burns (2004) found that sediment resuspension 

stimulated phytoplankton production mainly through enhancing available nutrients 

even though light levels were more limited with resuspension. Light limitation due to 

resuspension rarely occurred in shallow lake systems (Schallenberg and Burns, 2004). 

The results of the STORM experiments showed that chlorophyll a (Chl a)

concentration was higher and inorganic nutrients increased with resuspension 
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(Chapter 2; Porter et al., in preparation). The results indicated that phytoplankton 

growth was not substantially affected by light limitation due to resuspension. 

        Ashley (1998) proposed from his modeling results that as productivity increased, 

the algal contaminant concentration decreased due to growth dilution effects (i.e. the 

algal bioaccumulation factor (BAF) decreased). In addition, as the filter feeders 

increased their feeding rate with increasing productivity, the filter feeder BAF 

increased. However, once the feeding rate reached a maximum, the BAF began to 

decrease with decreasing algal BAF. Thus, the net effect of increased suspended 

material on the BAF of filter feeders was complex and could result in either an 

increase or decrease in the contaminant burden in filter feeders as a result of 

resuspension. It has been found from the STORM experiments that MeHg 

concentration in biota was not different between the resuspension and no-

resuspension systems (Chapter 3, submitted). It appeared that food availability 

(phytoplankton stock in the water column) and food ingestion rates were the 

important factors in influencing accumulation of MeHg into herbivores (e.g. 

zooplankton and clams). To further investigate these interactions and processes,

multi-compartment bioaccumulation model was developed in order to reinforce this 

conclusion and examine indirect effects.        

        As mentioned in Chapter 3 (Kim et al., submitted), Hg methylation is controlled 

by organic carbon content, microbial activity, and Hg bioavailability to methylating 

organisms (i.e. sulfate reducing bacteria; SRB). Relatively low sulfate concentration 

was found to stimulate both sulfate reduction and Hg methylation by SRB (Gilmour 

and Henry, 1991). Sediment resuspension can cause a change in sediment redox 
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status and influence Hg methylation in sediments. The STORM experiment results 

showed that resuspension appeared to enhance Hg methylation especially in summer 

when sediment temperature was high, which resulted in the increased degradation of 

freshly deposited organic matter (Chapter 3, submitted). In addition, demethylation 

rate was lower in the top sediment, while it remained fairly constant in deeper 

sediments. Demethylation also showed less variability between the treatments 

(resuspension vs. no resuspension) and with the different seasons, compared to 

methylation (Chapter 3, submitted). Thus, overall results of the methylation/

demethylation studies suggest that Hg methylation played a key role in maintaining a 

low MeHg pool in sediments while resuspension changed the sediment chemistry to 

favor relatively more Hg methylation. In this modeling study, Hg methylation and 

MeHg demethylation rates in the sediment were included as empirically-derived 

parameters. Methylation/demethylation rates were measured over the sediment depth 

in both experiments 1 and 2 using stable isotope spike addition incubation techniques 

(Chapter 3, submitted).  

        The objectives of this modeling study were a) to develop a carbon-based 

bioaccumulation model for MeHg within a shallow estuarine system with 

resuspension and b) to determine the most important parameters controlling MeHg 

bioaccumulation into benthic and pelagic organisms in shallow estuarine 

environments. This study also attempted to use the model as a diagnostic tool to 

examine and provide insight into the role of sediment resuspension in MeHg transfer 

and accumulation into benthic and pelagic organisms. 
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4.2. Methods

4.2.1. Model structure 

        Ashley (1998) incorporated a carbon-based benthic-pelagic food chain model 

that tracked the transfer and accumulation of organic carbon among numerous biotic 

and abiotic pools over time into an organic contaminant (HOC) model. In the Ashley

model, contaminant flow and accumulation was subsequently modeled in response to 

the dynamic changes within the carbon-based model. The model consisted of five 

trophic levels (bacteria, protozoa, phytoplankton, zooplankton, zooplanktivores, and 

piscivores) within the water column and three benthic and epi-benthic trophic groups 

(deposit feeders, filter feeders, and benthivores/forage feeders). Chang (2001) refined 

the Ashley model with mass balance adjustments, variable depth, and bioenergetics 

terms. In this study, the formulation of Chang (2001) is adjusted to make it 

representative of the bioaccumulation of MeHg. 

        The basic structure of the model is similar to that of Ashley (1999) and Chang 

(2001), with some modifications. Trophic levels are simplified compared to the 

previous models (Ashley. 1999; Chang, 2001) in order to simulate experiment 2, as 

mentioned above. The carbon model consists of 6 state variables in the water column 

and sediment respectively (Fig.1a). The model includes phytoplankton (PP) and two 

different size groups of zooplankton (ZP): ZP1 (> 210 µm) and ZP2 (63 - 210 µm) in 

the water column. In experiment 2, ZP samples were collected using mesh sizes of 63 

and 210 µm. However, only one group of ZP (>210 µm) was used for Hg analysis. 

Thus, two groups of ZP were modeled for comparison with the experimental data. 

The two groups of ZP feed on PP, as a primary food, and resuspended 



132

microphytobenthos (MPB), as it has been found that MBP could serve as a food 

source for ZP in estuarine environments (Kibirige et al., 2003). The model also 

included predation on small ZP (ZP2) by ZP1 as found in other modeling studies 

(Verity, 2000; Griffin et al., 2001). MPB and filter feeders (FF) (clams) were

included in the sediment. FF consumes PP, resuspended particulate organic carbon 

(RPOC), and MPB. There are two sediment layers in the model: the surface sediment 

(top 2 cm) and a deeper layer (> 2 cm). The final sediment depth in the STORM 

experiments was about 10 cm. The water column was 1 m deep with a surface area of 

1 m2 (total volume of 1000 L).     

        Particulate organic carbon (POC) in the water column was divided into two 

pools of carbon, RPOC and WPOC (water column particulate organic carbon) (Fig. 

4.1a). While RPOC was derived from sediment organic carbon (SPOC) during 

resuspension events, sources of WPOC were PP and ZP mortality as well as bacterial 

uptake. WPOC and PP sinking were connected to SPOC pool. Both WPOC and 

SPOC consisted of living (e.g. bacteria) and non-living organic matter in the model. 

The DOC pool in the water column gained carbon from excretion of biota and 

degradation of both WPOC and RPOC and lost DOC to these fractions due to 

bacterial uptake. POC degradation in both the water column and sediment was 

assumed to be the first-order reaction. Decay constants were obtained from Wainright 

and Hopkinson (1997). Overall, the model included vertical carbon exchange between 

the water column and sediment such as a) FF ingestion of PP, resuspended MPB and 

RPOC; b) sinking WPOC and PP; c) resuspension/deposition of SPOC to the water 
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column; d) porewater DOC (SDOC) diffusion between the water column and the 

sediment (Fig. 4.1a).                        

        It was assumed that the water column was well mixed (e.g. no stratification) and 

also that the system was spatially homogeneous. After initiating the system with 

unfiltered Patuxent River water, there was no particle input in experiment 2. In other 

words, the sediment and in situ plankton (derived from PP and ZP in the “seed” 

water) were the direct sources of particles in the water column. There were, however, 

dissolved inputs as filtered seawater was daily exchanged at 10 % of the total volume 

during experiment 2. Water exchange was always done during the off-cycle to 

minimize particle loss and it was modeled that losses of all the variables in the water 

column occurred only during the off-cycles. Since 10 % of the total water volume 

was flushed out every day, PP and ZP were also set to be lost at 10 % of their biomass 

per day in the model. In addition, the model assumed negligible bioturbation/

bioirrigation effects for simplicity as the sediments used in experiment 2 was 

defaunated prior to the beginning of the experiments.

        MeHg flows and accumulation was incorporated into the carbon model. There 

were additional state variables (e.g. dissolved MeHg in the water column and pore 

water) and processes such as adsorption/desorption in both the water column and 

sediment and methylation/ demethylation in the sediment (Fig. 4.1b). Gas exchange at 

the air-water interface was assumed to be negligible. Our results (Lawson, 

unpublished) and that of others (Sellers et al. 1996) suggest that, in the water column,

photodemethylation is only important in clear oligotrophic fresh waters, with the

photodemethylation rate being much lower in saline waters. Thus, photo-
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demethylation was assumed to be negligible in the model. No evidence has been 

found of water column methylation in oxic seawater. Thus, these processes were not 

included in the model. 

        All the state inventories in the sediments were normalized to the volume of the 

water column. All the standing stocks are in units of g m-3, flows are in g m-3 h-1. 

Initial PP biomass was estimated by the measurement of Chl a at the beginning of 

experiment 2. A carbon to Chl a ratio of 50:1 was assumed, as used in other studies 

(Bougis, 1976; Dagg and Wyman, 1983; Griffin et al., 2001; Harding et al., 2002). 

Dry weight of ZP and FF was obtained from published equations, based on length-

weight relationships (White & Roman 1992; Grizzle, 2001). The carbon content (dry 

weight) of ZP and FF was assumed to be 40 % (Gorsky, et al., 1988; Jerling and 

Wooldridge, 1995; Froneman, 2000; Siokou-Frangou et al., 2002). Model simulations 

were carried out for 576 hours (24 days) using STELLA II®. The time step used in the 

model was 0.25 hour with the Rung-Kutta Type II integration method. Input 

parameters and equations for standing stocks and flows in the model are summarized 

in Appendix II.
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4.2.2 Model Formulation

4.2.2.1. Carbon flow model

       In this study, the carbon model consists of 6 variables (PP, ZP1, ZP2, WPOC, 

RPOC, DOC) within the water column and 6 variables (MPB, FF, SDOC1, SDOC2, 

SPOC1, and sediment SPOC2) in the sediment. In general, each state variable is 

calculated as the difference between all the gain terms minus all the loss terms at each 

time step. For instance, the change in phytoplankton biomass is modeled using the 

following equation (Ashley, 1998):

   d(PP)  = PP(t - dt) + (Growth – Sinking – Respr – Excret – Mort – Graz ZP – Graz FF 

– Out) × dt 

where PP = phytoplankton biomass (g C m-3),
          Growth = phytoplankton growth (g C m-3 h-1),            
          Sinking = sinking of phytoplankton to the sediment layer (g C m-3 h-1),
          Respr = phytoplankton respiration (g C m-3 h-1),          
          Excret = phytoplankton excretion (g C m-3 h-1),

Mort = phytoplankton mortality (g C m-3 h-1),
          Gra zP = grazing on PP by ZP (g C m-3 h-1),
          Graz FF = grazing on PP by FF (g C m-3 h-1),
          Out = phytoplankton loss due to water exchange (g C m-3 h-1).

PP growth is based on light, temperature, and nutrients in the model. Although light 

availability is an important factor in photosynthesis, the light influence on PP growth 

was modeled here as only the duration of the day light time (10 hours per day), not 

light intensity. Thus, in this model, growth rate is not a function of light intensity. As 

the system is well-mixed, PP is not stratified and thus spends some portion of their 

time in the upper waters where light limitation is minimal. Similarly, Verity (2000) 

assumed that the effect of light intensity on PP growth was negligible in their 
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modeling study. PP growth rate was modeled using the following equation and was a 

function of temperature (modified from Angelini and Petrere, Jr., 2000):

           G = Gmax * e (0.0693*Temp)

       where G = growth rate (h-1),
                  Gmax = maximal growth rate of PP (h-1),
                  Temp = temperature data (°C). 

The effect of nutrients was expressed as a Michaelis-Menten equation: 

           Nutrient = nut/(K + nut)

 where nut = nutrient data (nitrate & nitrite), 
            K = half-saturation constant.

Thus, the overall PP growth was expressed as Growth = G * Nutrient * light * PP. 

The measurements of temperature and nutrients every 2-3 days from experiment 2 

were used in this model. Similar approaches to model PP growth have been used by 

Griffin et al. (2001) and Darrow et al. (2003). MPB growth was modeled using the 

same equations as PP in the water column. In experiment 2, secchi depth data showed 

that light did not reach to the sediment surface during resuspension cycles, suggesting 

that MPB growth may be lower than PP growth due to light limitation. Darrow et al. 

(2003) used 0.5 d-1of MPB Gmax and 1.5 d-1 of PP Gmax in their modeling study, based 

on field measurements and taking light limitation into account. Thus, a similar ratio 

was adopted to set MPB Gmax in this model.

        For organisms gaining carbon through food ingestion, carbon consumption was 

modeled using the following equation: 
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           Grazing = ZP (or FF) * FR * PP * AE * f 

where ZP (or FF)  = zooplankton (or filter feeder) biomass (g C m-3), 
           FR = weight-specific filtration rate 

(often referred as clearance rate, m3 h-1 g C-1),
           PP = phytoplankton (or microphytobenthos) biomass (g C m-3), 
           AE = carbon assimilation efficiency (unitless),

f = fraction of diet from a particular source (unitless).     

Filtration rate was represented using the equation modified from White and Roman 

(1992):

           FR  = FRmax (1– e-kTemp)

where FR  = weight specific filtration rate (m3 h-1 g C-1),
            k =  0.009 (White & Roman, 1992),   
           Temp = temperature.  

A different FRmax was used for ZP1 and ZP2 as carbon-specific ingestion rate 

increased with temperature but decreased with body size (White and Roman, 1992; 

Griffin et al., 2001). Carbon-specific FRmax values were determined from model 

calibration. Those values used in the model fell within the range of filtration rates for 

ZP found in the Chesapeake Bay (White and Roman, 1992). Similarly, FRmax for FF 

used in the model was within the range of filtration rates found in Grizzle et al. 

(2001). 

        For ZP and FF, carbon assimilation efficiencies (AE) used in the model were 0.7 

and 0.8, respectively (Halvorsen et al., 2001; Grizzle, 2001). It was assumed that ZP1 

fed on PP, ZP2, and MPB with fractions of diet of 0.9, 0.05 and 0.05, respectively, 

while ZP2 consumed PP and MPB with fractions of 0.9 and 0.1. Although a carbon 

stock of resuspended MPB was not included explicitly in the model, consumption of 

resuspended MPB by ZP and FF was included. Studies have shown that ZP feed on 
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resuspended MPB (Baillie and Welsh, 1980; de Jonge and van Beusekom, 1992). 

Kim et al. (2004, Chapter 2) found from the STORM experiments that MPB was not 

substantially resuspended to the water column. Similarly, a mesocosm experiment by 

Sloth et al. (1996) found that a small amount of MPB (< 2 %) was transported to the 

water column for a 2-h resuspension period. After the model was calibrated and 

compared with the data in experiment 2, it was assumed that 5 % of MPB was 

resuspended and consumed by both ZP and FF. It was modeled that FF filter PP, 

RPOC, and resuspended MPB in the water column with fractions of diet of 0.6, 0.3, 

and 0.1, respectively. Assimilation efficiency (AE) for carbon for RPOC was 

assumed to be 0.2, lower than that for PP and MPB. 

        Porter et al.(in preparation) found from clam gape experiments that clams feed 

about 62 % of the time, even during resuspension. Thus, in the model the multiplier 

of 0.62 was included to take non-constant clam feeding into account. Another 

modeling study has also used a similar value (0.67; Padilla et al., 1996). Similarly, it 

was found that filter feeders such as zebra mussels filter about 50 to 67 % of the time 

(Morton, 1969; Walze, 1978). In addition, filter feeders may cease filtering when 

algal concentration decreases below the threshold level of approximately 0.025 mg C 

L-1 (Riisgård et al., 2003). Thus, in the model, herbivores were set to stop filtering 

when PP concentration reached below the threshold level.    
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4.2.2.2. Modeling resuspension 

Physical processes (i.e. resuspension (erosion, E) and deposition, D) were 

modeled using the following equation (Sanford and Halka, 1993; Chang, 1999): 

D = Ws * C

                where D = deposition rate (g m-2 h-1)
              Ws = settling speed (m h-1)

                           C = particle concentration in the water column (g m-3)

When erosion occurs, it is assumed that deposition rate equals to erosion rate at 

equilibrium. Then, E = D, so E = Ws * Ceq. By rearranging the equation, the following 

equation is obtained: 

E – D = Ws * (Ceq – C(t))

where Ceq = 0 during the off-cycles and      
          Ceq = observed concentration during the on-cycles.

In order to determine a settling speed of particles, data from particle settling 

experiments were used (Porter et al. in preparation). Changes in TSS concentration 

over time were measured during the off-cycles. From the relationship between TSS 

and time, a settling speed of 1.66 m h-1 was obtained. In the model, a similar approach 

to Wainright and Hopkinson (1997) was adopted such that resuspension cycles were 

modeled using a resuspension timing parameter (either 1 or 0). In their model, 

resuspension and deposition did not occur simultaneously (e.g. when resuspension 

time was 1, deposition time was 0). However, in this model, continuous deposition

was assumed. Modeling studies have shown that a continuous deposition assumption 
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results in better agreement of models with data (Sanford and Halka, 1993; Sanford 

and Chang, 1997).  

4.2.2.3. Modeling bioaccumulation of MeHg  

        As seen in Fig. 4.1b, each state variable was represented as the time-variable 

MeHg inventory in response to each carbon state variable. There were two additional 

state variables, dissolved MeHg and dissolved porewater MeHg. Since dissolved 

MeHg is mostly associated with DOC (Mason et al., 1999; Ravichandran 2004), two 

fractions of dissolved MeHg were defined in the model, dissolved MeHg bound to 

DOC and MeHg bound to inorganic species or in the free MeHg form in both water 

and porewater. These fractions have different bioavailability to PP. The fractions of 

each species were calculated based on initial concentrations of MeHg and DOC, 

assuming that the species were at thermodynamic equilibrium. MeHg accumulation 

into PP was only from the dissolved phase. It was assumed that MeHg bound to DOC 

was available to PP with a lower uptake rate. Thus, the following equation was used 

to model MeHg accumulation in PP: 

d(MeHg PP) = MeHg PP (t – dt) + (MeHginorg du + MeHgDOC du – MeHg ZP – MeHg FF –

MeHgexcrt – MeHg WPOC – MeHg sink – MeHg out) × dt

where MeHg PP = MeHg concentration in phytoplankton (g m-3)
           MeHginorg du = dissolved MeHginorg transfer to phytoplankton (g m-3 h-1),

MeHgDOC du = dissolved MeHgDOC transfer to phytoplankton (g m-3 h-1),
           MeHg ZP = MeHg transfer to zooplankton by grazing on phytoplankton 
                              (g m-3 h-1),
           MeHg FF = MeHg transfer to filter feeder by feeding on phytoplankton 
                             (g m-3 h-1),
           MeHgexcrt = MeHg excretion (g m-3 h-1),
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           MeHg WPOC = MeHg transfer to WPOC by mortality (g m-3 h-1),
           MeHg sink = MeHg transfer to SPOC by sinking (g m-3 h-1),

     MeHg out = MeHg loss by water exchange (g m-3 h-1).   

Dissolved MeHg uptake into PP was modeled using the following equation: 

MeHginorg du(MeHgDOC du) = K * dissolved MeHginorg(MeHgDOC)

 where K = uptake rate (m3 h-1 cell-1) * PP (g m-3) / mass of cell (g cell-1).

Uptake rate of MeHg into PP was estimated from experimental data in Mason et al., 

(1996). It was assumed that PP was spherical and its radius was 5 µm. Most filter 

feeders have been found to be able to retain particles > 5 µm with maximum 

efficiency (Young et al., 1996; Grizzle et al., 2001).                          

4.2.2.4. Sorption processes for MeHg

Chang (1999) developed a 1-D numerical time and depth dependent water 

quality model in order to include reversible sorption processes for a hydrophobic 

organic contaminant (HOC). Most models to date have assumed equilibrium 

partitioning between the dissolved and particulate phases but this is unrealistic for 

strongly bound contaminants such as HOCs and Hg. Sorption processes were 

modeled here using the same approach as Chang (1999). A linear-reversible model 

for sorption processes was used: 

   Rsd = k1Cd – k-1Cs = - Rds
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where Rsd = net adsorption rate (g m-3 h-1),
           Rds = net desorption rate (g m-3 h-1),
           Cd = dissolved concentration (g m-3),          

Cs = particulate concentration (g m-3),
k1 = adsorption rate constant (m3 g-1 h-1), 

           k-1 = desorption rate constant (h-1).

STORM experiments showed that dissolved MeHg concentration did not change in 

concert with particulate MeHg in both the R and NR systems, indicating non-

equilibrium partitioning for MeHg. The desorption rate constant was calculated using 

the formulation outlined by Chang (1999) where k -1 is a function of distribution 

coefficient (Kd) and the particle /sediment physical properties. Effectively, k -1 

increases as particle size decreases. Then, k 1 is estimated as Kd k -1. A more detailed 

model description is given in Chang (1999). The desorption rate constant was 

obtained from Hintelmann and Harris (2004) and the organic-carbon based Kd from 

the actual data. In the model, sorption processes included adsorption and desorption 

between dissolved MeHginorg and WPOC as well as RPOC. There were adsorption 

and desorption processes between dissolved MeHgDOC, and WPOC as well as RPOC.

4.2.2.5. Modeling methylation/demethylation in the sediment 

        In the model, methylation/demethylation processes were treated as psuedo-first 

order reactions. Sediment total Hg (THg) concentration was used as a constant source 

to the MeHg pool in this model. As mentioned earlier, the rate constants were 

obtained from the measurements made in experiment 2 (Chapter 3, submitted). Thus, 

the model includes methylation/ demethylation in the sediment using the following 

equation: 
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                             d[MeHg]/dt = k1[Hg] - k2 [MeHg] 

where [MeHg] = sediment MeHg concentration (MeHgSPOC1, MeHgSPOC2) (g m-3),
           [Hg] = sediment THg concentration (g m-3),
           k1 = methylation rate (h-1),
           k2 = demethylation rate (h-1).

No attempt was made to model how resuspension changed methylation/demethylation 

rates over time as there were uncertainties in parameterizing microbial activity, 

sulfate reduction rate, bioavailable fraction of Hg, etc. However, methylation rate was 

varied during the model runs to examine the sensitivity of MeHg accumulation in 

biota to this parameter. 

4.2.2.6. Modeling MeHg flows in the sediment

The overall formulation of MeHg concentration in the sediment (SPOC) is given 

by: 

               d[MeHgSPOC1] =  MeHgSPOC1 (t – dt) + (MeHg fr WC + meth1+ ads 
PWMeHgDOC1 + ads PWMeHginorg1 + MeHgMPB to SPOC1+ MeHg fr RPOC – MeHg to WC –
demeth1 – MeHg to SPOC2 – des PWMeHgDOC1 – des PWMeHginorg1 – MeHgdegrad) × dt

where MeHgSPOC1 = sediment MeHg concentration (g m-3),
          MeHg fr WC = MeHgPP and MeHgWPOC sinking from the water column 

(g m-3 h-1), 
   meth1 = Hg methylation  (g m-3 h-1),

           ads PWMeHgDOC1 = adsorption of porewater MeHg bound to DOC (g m-3 h-1),
           ads PW MeHginorg1 = adsorption of porewater MeHg (g m-3 h-1),
           MeHgMPB to SPOC1 = MeHgMPB mortality (g m-3 h-1),

     MeHg fr RPOC = MeHgRPOC deposition (g m-3 h-1),
           MeHg to WC = resuspended MeHg (g m-3 h-1),
           demeth1 = MeHg demethylation (g m-3 h-1),  
           MeHg to SPOC2 =  MeHg burial to SPOC2 (g m-3 h-1),
           des PWMeHgDOC1 = desorption of MeHgSPOC1 (g m-3 h-1),
           des PWMeHginorg1 = desorption of MeHgSPOC1 (g m-3 h-1),
           MeHgdegrad = MeHgSPOC1 degradation(g m-3 h-1).
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The sources of MeHgSPOC1 were particle sinking (e.g. PP and WPOC), deposition of 

RPOC, Hg methylation in the top sediment (2 cm), adsorption of porewater MeHg 

(both fractions, porewater MeHg bound to DOC and MeHg bound to inorganic 

species), MeHg from MPB mortality, and MeHg from RPOC deposition. The loss 

terms of MeHgSPOC1 were sediment resuspension, burial to the deeper layer (SPOC2), 

desorption, and organic carbon degradation. A similar formulation was used for the 

deeper sediment layer (SPOC2). 

        Processes involving changes in porewater MeHg was modeled by the following 

equation:  

    d(PW MeHgDOC1) =  PW MeHgDOC1 (t – dt) + (diffusive flux1 + diffusive flux2 + 
des MeHgDOC1 + MeHgSPOC1degrad + MeHgMPBexcrt – ads to SPOC1) × dt

where  PW MeHgDOC1 = porewater MeHg bound to DOC (in the top sediment layer) 
(g m-3),

            diffusive flux1 = diffusive flux in or out of the sediment layer 1 (g m-3 h-1),
            diffusive flux 2 =  diffusive flux in or out of the sediment layer 2 (g m-3 h-1),

des MeHgDOC1 =  desorption (g m-3 h-1),
MeHgSPOC1degrad = MeHg gain from SPOC1 degradation (g m-3 h-1),

            MeHgMPBexcrt =  MeHg gain from MPB excretion (g m-3 h-1), 
            ads to SPOC1 = adsorption (g m-3 h-1). 

Diffusive flux was modeled as a bi-direction flow system where the direction of flows 

was determined by concentration gradients between the water column and the 

sediment as well as the two sediment layers. Diffusion coefficients for MeHg and 

organic matter were obtained from the literature (Gill et al., 1999). Details of the 

formulation and the parameters are listed in Appendix II. 
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4.2.3. Model calibration and sensitivity analysis 

        The carbon model was calibrated by variation of physiological parameters for 

biota within reasonable bounds based on the literature to find the best fit to the 

observed data from experiment 2. Calibration of the bioaccumulation model was 

performed in a similar manner. A sensitivity analysis was performed to examine the 

effect of changes in key parameters on the state variables of interest in the model 

(Jorgensen, 1994). The following equation was used for the sensitivity analysis 

(Simas et al., 2001):

              S = ∆ V/ V     

where S = sensitivity of each state variable to a chosen parameter,
          V = state variable under standard condition, 

∆V = variation in the state variable due to changes in the chosen parameter. 

Each parameter was changed at ± 20 % of its default value while keeping all other 

parameters the same as the standard condition. In the comparison, for variables that 

have a diurnal cycle, the maximum value of state variables of interest that occurred 

during the 24-day simulation were used within the model run.

4.2.4. Simulations of different scenarios

        After the model was calibrated, it was used to simulate other conditions such as 

a different season and different clam biomass. There were two more STORM 

experiments, which were conducted in July of 2002 and 2003 (experiments 3 and 4; 

see appendix I for details). The treatment of experiment 3 was R with FF vs. R 

without FF. The model simulations were aimed at examining the effect of FF on PP 
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and ZP growth and MeHg accumulation and examining how well the model, as 

developed, was capable of reproducing the results from these experiments. 

4.3. Results and discussion

4.3.1. Model outputs and comparison with observations         

4.3.1.1 Biota results

          The measured and modeled variations of the biomass in the water column and 

the benthic environment over time are shown in Fig. 4.2a-b. The oscillation of PP 

biomass in the model is due to the lack of growth at night. Modeled PP and ZP 

biomass was in relatively good agreement with the observed data. FF biomass slightly 

decreased with time. During experiment 2, there was no attempt to estimate the 

growth rate of FF or to measure changes in individual shell length. However, ash-free 

dry weight (AFDW) measurements of selected clams showed that clams did not grow

substantially during the course of experiment (Porter et al., in preparation). Thus, the 

model results are in agreement with observation. Modeled MPB biomass increased 

over time, which showed a similar pattern with the data. 

        Modeled and measured concentrations of MeHg in biota are presented in Fig. 

4.2c-d. Modeled MeHg concentration in PP reached a plateau after the first week and 

decreased slightly toward the end of the model run (Fig. 4.2c). A similar pattern was 

found in model results of dissolved MeHg (shown as MeHgDOC + MeHginorg) (Fig. 

4.3d) as MeHg uptake for PP was only from the dissolved MeHg pools. Modeled 

MeHg in both small and larger ZP (ZP1 & 2) increased gradually over time (Fig. 

4.2c). As mentioned above, MeHg in only ZP1 was determined during experiment 2 
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and the concentration compared well with the model results. Modeled MeHg in ZP1 

fell within the range of the observed data. Model results showed that MeHg 

concentration in FF and MPB slightly increased over time (Fig. 4.2d). Additionally, 

the model result was similar to the measured MeHg concentration in FF. Modeled 

MeHg accumulation in ZP and FF was mostly from food ingestion (> 95 %), not from 

dissolved MeHg uptake. Other studies have also shown that aquatic invertebrates 

accumulated contaminants mainly from food ingestion (Luoma et al., 1992; Wang et 

al., 1996; Lawrence and Mason, 2001; Chang and Reinfelder, 2002; Tsui and Wang, 

2004).  
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Figure 4.2. Model outputs: a) Biomass in the water column; b) Biomass in the 
sediment; c) MeHg in water column biota; d) MeHg in benthic biota. 

Lines and symbols represent the model outputs and the data from experiment 2, 
respectively. Error bars show standard deviations of 3 replicates.
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4.3.1.2. POC and DOC results                     

        Fig. 4.3 shows a comparison of modeled POC and DOC in the water column 

with the data. Since the measured values contained all the different particles types, 

water column POC pools in the model (e.g. PP, ZP, WPOC, and RPOC stocks) were 

added together for a direct comparison at each time step. As seen in Fig. 4.3a, model 

outputs were in good agreement with the observed data. POC in the model responds 

to the resuspension cycles (4 times a day). On average, POC in the water column 

consisted of 49 % RPOC, 42 % WPOC, 9 % PP and ZP, showing that sediments 

accounted for a significant amount of POC in the water column. In comparison, the 

data showed that 12 % of POM, on average, was PP and ZP (Appendix I). In 

experiment 2, total suspended solids (TSS) and particulate organic matter (POM) 

were significantly higher in the R tanks than in the NR tanks (Chapter 2, Kim et al., 

2004). Modeled DOC was in agreement with the measured DOC (within a factor of 

two) (Fig. 4.3b).    

        The model results for particulate MeHg are given in Fig. 4.3c. MeHg 

concentration in the model decreased slightly over time and varied in response to 

resuspension cycles. Observed MeHg concentrations were more variable compared to 

the model results. Dissolved MeHg in the model showed an increase in the beginning 

and a slight decrease over time (Fig. 4.3d). The model results were more comparable 

to the observed MeHg concentration in the later stages of the model run. From the 

STORM experiments, it was found that MeHg on particles per gram was higher 

during non-resuspension cycles compared to resuspension cycles (Chapter 2, Kim et 

al., 2004). The discrepancy between the model and the observed data is likely 
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explained by different particle sizes and settling speeds. This model did not include 

different sizes of particles and the same settling speed was used for all POC in the 

water column. In addition, dissolved MeHg flux from sediments was trivial. Flux 

experiments with Baltimore Harbor sediment showed that release of MeHg to the 

water column occurred only under anoxic conditions (Mason et al., submitted). 

Similarly, it has been shown that there is little flux of MeHg from sediments under 

oxic conditions (Covelli et al., 1999; Gill et al., 1999). Thus, the flux of MeHg from 

the sediment during resuspension is unlikely.  

4.3.2. Effects of sediment Hg methylation rate 

        In order to examine how sediment methylation may influence MeHg in biota, 

methylation rate were varied by ± 20 % of its fixed value in the model. As mentioned 

earlier, there was no attempt made to model resuspension effects on Hg methylation 

even though several factors such as sulfide levels, organic carbon, and temperature

could be involved in influencing Hg methylation in sediments. For instance, 

Hammerschmidt and Fitzgerald (2004) found that methylation potential was 

negatively related to organic carbon content of surface sediment in Long Island 

Sound, a large coastal embayment in the northeastern US. The model results are 

presented in Fig. 4.4. MeHg in PP and ZP1 varied approximately 12 % in accordance 

with the 20 % changes in methylation rate in the sediment (Fig. 4.4a-b and Table 

4.1a). MeHg in FF were less affected by varying sediment methylation rates (about 3 

% change of MeHg concentration), compared to MeHg in PP and ZP1 (Fig. 4.4c).
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        From the initial evaluation of the STORM experiment data, it was concluded 

that resuspension did not increase dissolved MeHg, suggesting that MeHg desorption 

was not important (Chapter 2, Kim et al., 2004). The model results, however, showed 

that increased sediment MeHg, which was resuspended, resulted in higher dissolved 

MeHg even though the desorption rate was the same (Table 4.1b). As a result, MeHg 

in PP increased and this led to higher MeHg in the herbivores. The effect of 

methylation rate is more profound on MeHg in ZP than in FF because FF biomass is 

dominant in the system and it requires a substantial change in sediment methylation 

or a longer run time to have a significant impact on MeHg burden in FF. Nonetheless, 

the model results seem to suggest an important implication that was not evident from 

the experimental results, that sediment resuspension may play a role in transferring 

sediment MeHg to aquatic food chains. Both ZP and FF can be an essential link in the 

trophic transfer of contaminants as they serve an important food source to upper 

levels of the food chain (Roper et al., 1996; Paterson et al., 1998; Cope et al., 1999; 

Fisher et al., 2000; Ni et al., 2000). 
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Figure 4.3. Model outputs: a) POC in the water column; b) DOC in the water column; 
c) particulate MeHg in the water column; d) dissolved MeHg in the water column.

Lines and symbols represent the model outputs and the data from experiment 2, 
respectively. Error bars show standard deviations of 3 replicates.



156

Time (hr)

0 48 96 144 192 240 288 336 384 432 480 528 576

PO
C

 c
on

c.
 (

m
g 

l-1
)

0

3

6

9

12

POC-model 
POC-data 

a

Time (hr)

0 48 96 144 192 240 288 336 384 432 480 528 576

D
O

C
 (

µM
)

0

100

200

300

400

500

 DOC-model  
DOC-data 

b



157

Time (hr)

0 48 96 144 192 240 288 336 384 432 480 528 576

P
ar

t. 
M

eH
g 

(p
m

ol
 g

 C
-1

)

0

30

60

90

120

150
Part. MeHg-model
Part. MeHg-data

c

Time (hr)

0 48 96 144 192 240 288 336 384 432 480 528 576

D
is

s.
 M

eH
g 

(p
M

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Diss. MeHg-model 
Diss. MeHg-data 

d



158

Figure 4.4. Model outputs: effect of methylation rate in a) PP; b) ZP1; c) FF.

M is the methylation rate determined from Hg stable isotope spike addition 
incubation experiments (experiment 2). 
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4.3.3. Simulations of different scenarios

4.3.3.1. Model runs under a different season (experiment 3)  

        As mentioned above, different scenarios were simulated with some changes in 

inputs from the previous model run. These scenarios were modeled to explore the 

results of the other experiments and to ascertain how well the model could simulate 

these conditions. Firstly, the model was run with inputs used from the data in 

experiment 3, which was conducted in summer (July), but in all other aspects was 

similar to experiment 2. The initial biomass of PP, ZP and MPB were used from the 

data in experiment 3. The same FF biomass was used because of the same density of 

FF in both experiment 2 and 3. Average temperature (27 ± 1.5°C) was higher in 

experiments 3, compared to experiment 2 (20 ± 1.9 °C). Initial concentrations of 

dissolved MeHg, DOC, POC and nutrient data were also obtained from experiment 3 

data. The organic-carbon based Kd for MeHg was used based on measurements from 

experiment 3. The results of this simulation are shown in Fig. 4.5.

        It is likely that FF have a significant impact on PP and ZP biomass due to their 

being the dominant biomass in the system. In order to examine the effect of FF, the 

model was run with half the biomass of FF and without FF. These conditions were 

comparable to those of experiments 4. The model results and the observed data 

available are presented in Fig. 4.6. 

        Comparison of the model results with data from experiment 3 shows the model 

results of PP biomass were in relatively good agreement with the data in the early 

stage of the run. The model, however, failed to simulate the later PP bloom seen in 

the observed data (Fig. 4.5a). Actual ZP biomass showed a similar pattern to that of 
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the model, but showed a better agreement with the data in the early stage of the model 

run. It should be noted that measured PP biomass in experiment 3 (average Chl a of 

6.9 µg L-1) was comparable to that in experiment 2 (average Chl a of 6.7 µg L-1) 

despite seasonal effects (mainly the higher water temperature in summer). Compared 

to the other experiments conducted in summer (experiments 1 and 4), the standing 

stock of PP was lower in experiment 3. This indicates that biomass was kept low by 

the likely competition between ZP and FF for limited food. The model results showed 

that ZP biomass varied in accordance with PP biomass (e.g. decreasing ZP biomass at 

the end of the model run). 

        The modeled FF biomass did not change substantially despite the PP biomass 

crash at the end of the model run. MPB biomass in the model increased over time. 

The observed data showed a similar pattern but increased to only about 2/3 of the 

modeled biomass (Fig. 4.5b). Although the same Gmax was used for both experiment 2 

and 3 conditions, it is likely that MPB production may have been different between 

the two experiments. Average concentration of TSS in experiment 3 (120 ± 45 mg 

L-1) was about twice that of experiment 2 (63 ± 22 mg L-1). Thus, one would expect 

that MPB production in experiment 3 might have been probably lower as MPB likely 

faced a more light-limited environment. However, this was not the case for 

experiment 3, suggesting that light limitation was likely not as important in MPB 

growth as initially expected.  

        The modeled MeHg in ZP showed a continuous increase over time while the 

observed data were in the lower range of the model results (Fig. 4.5c). One 

explanation for the discrepancy between the model and the observed data is likely 
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that the model did not simulate the later PP bloom and the corresponding increase in 

ZP2 at the end of the experiment. MeHg concentration in PP would have decreased as 

PP biomass increased. Pickhardt et al. (2002) found that an algal bloom reduced 

MeHg uptake by ZP because increasing algae decreased MeHg accumulation, 

resulting in a lower dietary inputs to ZP. Other studies have found similar results in 

that contaminant burden in algae decreased as biomass increased (Ashley, 1998; 

Winkels et al., 1998). Additionally, dissolved MeHg concentration was higher and 

more variable in experiment 3 (0.3 ± 0.1 pM), compared to experiment 2 (0.2 ± 0.05 

pM). Although uptake by ZP from dissolved MeHg was not significant, compared to 

food ingestion, a higher concentration of dissolved MeHg likely contributed to higher 

MeHg in ZP. The model results fell within the range of MeHg in ZP found in other 

field measurements with a broad range from 88 pmol g C-1 to 14 nmol  g C-1 (Plourde, 

et al., 1997; Paterson et al., 1998; Tremblay et al., 1998; Kainz et al., 2002). The 

model results of MeHg in FF slightly increased (by 37 %) with time and this was in 

good agreement with the observation (Fig. 4.5d). 
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Figure 4.5. Model outputs: a) biomass in the water column; b) biomass in the 
sediment; c) MeHg in water column biota; d) MeHg in benthic biota.

Lines and symbols represent the model outputs and the data from experiment 3, 
respectively. Error bars show standard deviations of 3 replicates.
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4.3.3.2. Effects of filter feeder biomass

        Fig. 4.6 shows the effects of FF on PP and ZP biomass and MeHg concentration. 

As seen in Fig. 4.6a, changes in FF biomass had a significant impact on PP biomass, 

especially in the early stage of the model run. As FF biomass increased, PP biomass 

dramatically decreased. A similar pattern was observed in the model for ZP biomass, 

which increased with decreasing FF biomass (Fig. 4.6b). This is because PP became 

more available to ZP as FF biomass decreased (i.e. reduction in FF filtering activity). 

Thus, the effect of changes in FF biomass on ZP is likely indirect. There was a time 

lag between PP and ZP peaks during the model runs probably because the grazing 

rate by ZP was slower than the PP growth rate. Although changes in FF biomass 

showed a great impact on PP and ZP biomass, MeHg burden in PP and ZP was 

affected by varying FF biomass to a lesser degree (Fig.4.6c-d). Similarly, model 

sensitivity analysis showed that increasing FF filtration rate by 20 % reduced PP 

biomass by 24 % while MeHg concentration in PP changed very little. It was also 

shown that MeHg burden in PP was governed more directly by dissolved MeHg 

uptake rate and PP growth compared to FF filtration rate (Table 4.1a). A similar 

pattern was found that MeHg in ZP was less affected by changes in FF biomass 

compared to ZP biomass. 

        Other modeling studies have shown that benthic filter feeders (e.g. zebra 

mussels) had a great impact on PP biomass. It was found that PP biomass decreased 

significantly due to grazing by filter feeders (Padilla et al., 1996; Caraco et al., 1997; 

Descy et al., 2003). Additionally, high zebra mussel density resulted in a decrease in 

small zooplankton such as rotifers especially in summer when mussels actively filter 
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(Viroux, 2000). However, in this model, grazing of ZP by FF was not included. 

Benthic filter feeders may not have impacts on different plankton communities in the 

same way. Padilla et al., (1996) found from their modeling study that mussel impact 

was greater on large PP than on small PP. It was likely that small PP compensated for 

grazing losses by enhanced growth due to increasing nutrient cycling and water 

clarity. As a result, ZP that consumed mainly small PP was less affected by mussels. 

Overall, the relation between benthic filter feeders and plankton can be more 

complicated than modeled here because of differences in size classes of prey and 

feeding preferences of ZP and FF and governed by other factors. PP biomass may not 

compensate by enhanced growth if there are nutrient-limited conditions and/or lower 

temperature. Filtration rate of FF can be affected by temperature, size of FF, 

hydrodynamic processes, and food availability (Riisgard, 1998; Grizzle et al., 2001; 

Riisgard et al., 2003; Newell, 2004). Those factors may influence MeHg 

accumulation in plankton as well as benthic filter feeders. 
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Figure 4.6. Model outputs: effects of FF biomass on a) PP biomass; b) ZP biomass; c) 
MeHg in PP; d) MeHg in ZP.

FF: the model run with biomass used in experiments 2 and 3; ½ FF: the model run 
with half the biomass; no FF: the model run without FF. 
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4.3.4. Sensitivity analysis results

        The results of sensitivity analysis are presented in Table 4.1. It appears that PP 

growth rate was a highly sensitive parameter to plankton biomass but less so to FF 

biomass. In another modeling study, it was shown that Gmax was the most sensitive 

component in the model, substantially altering the state variables (Angelini and 

Petrere Jr., 2000). Filtration rates of FF had also a great impact on plankton biomass 

and resulting MeHg burden in biota. Similarly, carbon AE for FF was a highly 

sensitive parameter in determining biomass and influencing MeHg accumulation 

more profoundly in ZP, compared to PP and FF. Increasing MeHg AE for ZP resulted 

in increasing MeHg burden in ZP. In addition, the results clearly show that increasing 

biomass leads to decreasing MeHg concentration in biota (dilution effect). The ZP 

biomass is two orders magnitude less than FF, resulting in ZP having a more sensitive 

response to varying parameters, compared to FF. For example, 20 % increase of PP 

growth rate changed ZP biomass to a large degree while the variation in FF biomass 

was very small. In addition, filtration rate of FF was one order magnitude lower than 

that of ZP. Thus, it would take longer time for FF biomass to change in response to 

food concentration. The model was run only for about a 4-week period (24-28 days) 

and this would be one explanation for the lesser impacts of PP growth on FF biomass.      

        Highly sensitive parameters to the dissolved MeHg state variable were organic 

carbon degradation rate in the water column, and sediment methylation rate (Table 

4.1b). Dissolved MeHg concentration in the water column increased as POC 

degradation rate increased due to MeHg associated with POC (both WPOC & RPOC) 

recycling between dissolved MeHg and MeHg in POC pools. Increasing methylation 
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rate in the sediment contributed to higher dissolved MeHg in the water column as 

elevated MeHg concentration in sediments was transported to the water column. As 

mentioned earlier, from the STORM experiments, it was found that sediment 

resuspension did not increase dissolved MeHg in the water column to a significant 

degree (Chapter 2, Kim et al., 2004). This could just reflect the fact that the change 

predicted by the model (~ 13 %) was not substantially greater than the inherent 

variability in the MeHg concentration due to both analytical error and variability 

between the three tanks in the experiments. However, the model results suggest that 

sediment resuspension can play a role in transferring elevated MeHg on particles to 

the water column, resulting in increasing dissolved MeHg. The model results showed 

that MeHg concentration in plankton increased as uptake rate of dissolved MeHg by 

PP increased (Table 4.1). MeHg accumulation in FF was less affected by varying 

MeHg uptake rate by PP and a similar pattern was found for MPB, likely due to 

larger biomass relative to PP and ZP.        
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Table 4.1. Model sensitivity analysis. 

Table 4.1a. Results are shown in percent.
PP ZP1 ZP2 FF MPB

PP growth rate       + 20 %
- 20 %

130
- 30

830
- 17

1300
- 72

2.8
NC

- 0.9
0.2

ZP1 filtration rate  + 20 %
- 20 %

- 3.4
2.5

96
- 17

- 18
14

NC
NC

NC
NC

ZP2 filtration rate  + 20 %
- 20 %

- 4.6
3.1

- 16
17

100
- 61

NC
NC

- 0.1
NC

FF filtration rate    + 20 %
- 20 %

- 24
55

- 17
380

- 71
620

0.7
- 0.1

- 0.7
0.5

PP AE for ZP         + 20 %
- 20 %

- 7.7
5.7

52
- 17

67
- 55

NC
NC

- 0.1
NC

PP AE for FF         + 20 %
- 20 %

- 24
53

- 17
350

- 71
580

0.2
- 0.1

- 0.6
0.5

RPOC AE for FF   + 20 %
- 20 %

- 1.8
1.8

- 6.7
7.8

- 9.2
10

0.4
- 0.1

NC
NC

MeHg AE for FF   + 20 %
- 20 %

NC
NC

NC
NC

NC
NC

NC
NC

NC
NC

MeHg AE for ZP + 20 %
- 20 %

NC
NC

NC
NC

NC
NC

NC
NC

NC
NC

MeHg PP MeHg ZP1 MeHg ZP2 MeHg FF
MeHg 

MPB

PP growth rate       + 20 %
- 20 %

- 15
26

- 7.3
78

- 5.7
94

- 6.0
7.0

- 11
6.8

ZP1 filtration rate  + 20 %
- 20 %

0.1
- 0.1

2.1
- 0.2

4.0
- 2.3

0.5
- 0.3

0.2
- 0.1

ZP2 filtration rate  + 20 %
- 20 %

0.2
- 0.1

7.6
- 4.0

6.7
- 1.5

0.8
- 0.5

0.1
- 0.1

FF filtration rate    + 20 %
- 20 %

1.1
- 1.0

31
- 13

36
- 13

3.3
- 2.1

- 0.9
- 0.5

PP AE for ZP         + 20 %
- 20 %

0.9
- 0.6

- 7.4
18

- 7.1
19

1.2
- 0.9

0.4
- 0.3

PP AE for FF         + 20 %
- 20 %

1.0
- 0.9

29
- 13

33
- 13

2.8
- 1.7

- 0.8
- 0.3

RPOC AE for FF   + 20 %
- 20 %

NC
NC

1.5
- 1.4

1.6
- 1.6

- 1.8
1.8

- 0.2
0.2

MeHg AE for FF   + 20 %
- 20 %

- 7.6
9.7

- 7.2
8.7

- 7.4
9.0

3.1
- 3.2

- 3.9
4.4

MeHg AE for ZP + 20 %
- 20 %

- 0.5
0.5

19
- 19

19
- 19

NC
NC

- 0.1
0.1

NC: no change.
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Table 4.1b. Results are shown in percent.
Diss.

MeHg
DOC

MeHg 
PP

MeHg
ZP1

MeHg
ZP2

MeHg 
FF

MeHg 
MPB

POC degradation rate
+ 20 %
- 20 %

11
- 11

13
- 11

11
- 10

9.9
- 9.8

9.9
- 9.8

1.0
- 1.0

10
- 10

Uptake by  Bacteria               
+ 20 %
- 20 %

- 1.2
1.5

- 8.9
12

- 1.1
1.3

- 0.9
1.1

- 0.8
1.1

- 0.1
0.1

- 0.9
1.2

Methylation rate        
 + 20 %
- 20 %

13
-13

NC
NC

12
- 12

12
- 12

12
- 12

3.4
- 3.4

12
-12

Dissolved MeHgDOC

uptake rate  by PP                
+ 20 %
- 20 %

- 1.4
1.5

NC
NC

18
- 18

9.4
- 9.8

9.5
- 9.8

0.4
- 0.4

- 1.7
1.8

NC: no change.
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4.4. Summary

The model derived produced comparable results with the observed data for both 

biomass and MeHg burden under varying scenarios. Sediment resuspension can 

induce changes in sediment chemistry to favor Hg methylation, resulting in the 

transport of elevated sediment MeHg to the water column. The modeling result 

showed that dissolved MeHg in the water column was increased by elevated sediment 

MeHg transported to the water column. As a result, MeHg burden in plankton 

increased. Benthic filter feeders with dominant biomass, however, were less affected 

than plankton in the water column likely as a result of the limited duration of the 

simulation. Changes in filter feeder biomass had a great impact on plankton biomass 

but less on MeHg burden in plankton but it still was an important parameter. Model 

outputs were highly sensitive to phytoplankton growth and filtration rate of filter 

feeders. While the model provides a reasonable simulation of the conditions in the 

mesocosms, the model could be expanded to include a longer simulation period to 

further investigate effects of sediment resuspension on the MeHg burden in biota.   
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Chapter 5: Studies on controlling factors in the distribution of total 

mercury and methylmercury in estuarine sediments and on model 

applications of methylmercury bioaccumulation into benthic and 

pelagic organisms 

5.1. Introduction

Estuaries provide an essential link in the global biogeochemical cycling of 

mercury (Hg) between the terrestrial and the marine environment. It has been 

reported that only a small fraction of the Hg transported in rivers is exported to the 

ocean due to the high retention of Hg in estuarine environments (Cossa et al., 1996; 

Benoit et al., 1998; Mason et al., 1999). Estuarine sediments serve as the principal 

location for Hg methylation (Gilmour and Henry, 1991; Benoit et al., 1998). As 

mentioned earlier, Hg is transformed to MeHg by sulfate reducing bacteria (SRB) in 

anaerobic environments. MeHg, a persistent and highly toxic contaminant, readily 

accumulates in aquatic food chains. Adverse effects of MeHg on higher trophic level 

organisms have been found such as neurological effects, reproductive effects, and 

behavioral effects (US EPA, 1995). MeHg accumulation into higher levels of food 

chains (e.g. fish) is of great concern for human health as humans are principally 

exposed to MeHg by fish consumption (Clarkson, 1990; Fitzgerald and Clarkson, 

1991). 
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        It has been shown that inorganic Hg, organic matter and sulfide were the most 

important factors in controlling MeHg levels in surface sediments (Benoit et al., 

1998; Mason and Lawrence, 1999; Conaway et al., 2003; Hammerschmidt and 

Fitzgerald, 2004). In oxidized sediments, Hg tends to associate with sediment organic 

matter or iron/manganese oxides through adsorption/coprecipitation reactions (Benoit 

et al., 1998; Mason and Lawrence, 1999). When metal oxides are reduced Hg can be 

released into porewater (and eventually to overlying water via diffusion) or be 

removed by adsorption and coprecipitation with sulfide minerals under anoxic 

conditions (Gobeil and Cossa, 1993; Gagnon et al., 1997).  In surface sediments, 

however, it is likely that both the oxidized solid iron (Fe) phases and reduced (e.g. 

FeS/AVS) coexist and thus the association of Hg and MeHg is complicated and 

depends on the relative concentrations of Fe, acid volatile sulfide (AVS), and organic 

carbon (Mason and Lawrence, 1999). Thus, the mobility and bioavailability of Hg 

and MeHg depends on the nature and concentration of the binding phases in the 

sediment, which appear to be controlled by sediment redox status. In addition, 

sediment-water partitioning of Hg and MeHg was positively related to organic matter 

in surface sediments with low levels of AVS (Hammerschmidt and Fitzgerald, 2004).   

        Benoit et al. (1999a; 1999b; 2001) demonstrated that sulfide influenced Hg 

methylation in sediment by controlling Hg speciation and its bioavailability to SRB. 

Additionally, it was found that organic matter and AVS had an inhibitory effect on 

Hg methylation in surface sediments by controlling the partitioning and subsequent 

availability of inorganic Hg in the pore water (Hammerschmidt and Fitzgerald, 2004).  

Temperature can be a controlling factor in Hg methylation and SRB activity (Korthals 
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and Winfrey, 1987; Winfrey and Rudd, 1990; Skyring, 1987). It was observed that 

Hg methylation was enhanced in August, compared to March and June, likely due to 

the effect of temperature influencing SRB activity (Hammerschmidt and Fitzgerald, 

2004). Similarly, the results from mesocosm experiments showed that in situ MeHg 

production was higher, especially in the top sediment layers, in July, compared to 

October, and that in situ production was negatively related to AVS concentration in 

July (Chapter 3, submitted). As discussed earlier, sediment resuspension can play a 

role in enhancing Hg methylation and subsequent MeHg accumulation into benthic 

and pelagic organisms (Chapters 3 and 4). It has shown that there was a strong 

correlation between sediment MeHg concentration and biota concentration for both 

benthic invertebrates and zooplankton in Lavaca Bay, Texas, USA, a shallow estuary, 

where resuspension frequently occurred (Bloom et al., 1999).      

        Sediment organic carbon has an influence on controlling bioavailability of Hg 

and MeHg and subsequent their bioaccumulation into benthic organisms. It was 

observed from field studies and laboratory exposure experiments that 

bioaccumulation factors (BAF) decreased with increasing sediment organic matter 

(Mason et al., 1998; Mason and Lawrence, 1999; Lawrence and Mason, 2001). 

Furthermore, digestive fluid solubilization studies with the intestinal fluid of benthic 

organisms have shown that sediment organic matter played an important role in Hg 

and MeHg bioavailability to benthic invertebrates (Lawrence et al., 1999). Similarly, 

Hg concentration in benthic organisms was negatively related to levels of 

Fe/manganese (Mn) oxides, and organic content in the lake sediment (Jackson, 1988). 

In addition to geochemical factors, Hg and MeHg bioaccumulation into benthic and 
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pelagic organisms can be influenced by their feeding rate, food availability, and Hg 

and MeHg concentrations in foods, as discussed in Chapters 3 and 4.     

The objective of this study was to examine the spatial distribution of Hg and 

MeHg and the factors controlling THg and MeHg distribution in surface sediments of 

the Chesapeake Bay, a large and productive estuary in the east coast of USA. 

Sediment samples and clams, Rangia cuneata were collected from Hart-Miller Island 

(HMI; Dredge Material Contaminant Facility) to investigate the role of organic matter 

in THg and MeHg distribution and bioaccumulation into R. cuneata. Sediments were 

also analyzed from a transect down the mainstem. Furthermore, the MeHg 

bioaccumulation model developed in Chapter 4 was applied to field situations to 

investigate the potential impact of sediment resuspension on MeHg bioaccumulation 

into benthic and pelagic organisms for a longer period of the model run. The model 

applications also included the effects of changes in sediment organic matter and Hg 

methylation on MeHg burden in biota.    
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5.2. Material and Methods

5.2.1. Sample locations and collection

        Sediment samples were collected using a Cedar type box corer from the 

mainstem Chesapeake Bay in May, 1993, as part of the NSF-LMER program. The 

location of sampling sites is shown in Fig.5.1a. Sediment samples were collected 

around HMI regions (September, 2000) as a part of a long-term monitoring program. 

The samples were taken using a standard Ponar grab sampler. Sampling stations are 

presented in Fig. 5.1b. Samples were stored in acid-cleaned plastic cups and 

transported on ice back to CBL. Clam samples were collected at stations where they 

were available and sieved on-board. The samples were placed in zip-lock bags and 

stored on ice until they were transported back to CBL. Clams were shucked 

immediately upon the return to the lab and homogenized in a blender. All samples 

were kept frozen until analysis.  
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Figure 5.1. Sampling stations (circled): a) the mainstem Chesapeake Bay; b) Hart-
Miller Island.

Sites Lat. Long. Sites Lat. Long.
NSS3 39 09.99 76 18.70 MDE-1 39 15.39 76 20.57
NSS2 39 04.87 76 19.49 MDE-3 39 15.54 76 19.90

MSS17 39 00.23 76 20.79 MDE-7 39 15.06 76 20.34
MSS18 38 59.92 76 22.67 MDE-9 39 14.76 76 20.58
MSS15 38 49.93 76 26.28 MDE-13 39 13.51 76 20.60
MSS16 38 49.07 76 24.63 MDE-16 39 14.54 76 21.45
MSS11 38 39.98 76 28.00 MDE-17 39 14.17 76 21.19
MSS12 38 39.97 76 24.82 MDE-22 39 13.19 76 22.47
MSS10 38 39.96 76 29.98 MDE-28 39 45.14 76 23.19
MSS9 38 30.02 76 22.42 MDE-34 39 15.76 76 20.54
MSS7 38 29.97 76 27.58 MDE-35 39 16.32 76 20.70
MSS4 38 20.03 76 22.18
MSS6 38 19.96 76 17.92
MSS1 38 09.97 76 18.84
SSS27 38 00.01 76 06.41
SSS25 37 59.99 76 12.49
SSSE 37 55.00 76 09.98
SSS21 37 49.97 76 13.52
SSSD 37 45.08 76 10.10
SSS19 37 39.96 76 03.37
SSS20 37 39.96 75 57.40
SSS17 37 39.94 76 16.45
SSSC 37 34.98 76 07.50
SSS14 37 30.02 76 07.58
SSS13 37 30.01 76 12.52
SSS15 37 29.99 76 02.89
SSS8 37 20.05 76 14.49
SSS10 37 20.03 76 07.47
SSS11 37 19.97 76 03.45
SSS9 37 19.91 76 10.65
SSS5 37 10.02 76 12.40
SSS7 37 10.00 76 00.42
SSS6 37 09.99 76 07.52
SSS4 37 09.97 76 15.51
SSS1 37 00.00 76 09.84
SSS2 36 59.86 76 04.95
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5.2.2. Sample analysis

5.2.2.1. Total Mercury

        Both sediment and biota samples were thawed and digested in a solution of 7:3 

sulfuric acid: nitric acid in Teflon vials in an oven at 60 °C overnight prior to BrCl 

oxidation (1/2-1 h). Then, excess oxidant was neutralized with 10 % hydroxylamine 

hydrochloride prior to analysis (Bloom and Crecelius, 1983). The samples were then 

reduced by tin chloride, sparged, and the elemental Hg trapped on gold traps. 

Quantification was done by dual-stage gold amalgamation/Cold Vapor Atomic 

Florescence detection (CVAFS) (Bloom and Fitzgerald, 1988) in accordance with 

protocols outlined in EPA method 1631 (EPA, 1995). Standard calibration curves 

with r 2 of > 0.99 for THg were achieved daily. THg concentration was determined by 

CVAFS. Analysis of standard reference material, estuarine sediments IAEA-405 (3.9 

– 4.3 nmol g-1), typically gave a 90 % recovery. Analysis of duplicate samples 

typically yielded a relative percent difference (RPD) of less than 15 %. Detection 

limits were based on 3 standard deviations of digestion blank measurements. 

Detection limits for THg were 1.1 pmol g-1 for sediments, and 0.1 pmol g-1 for biota.

5.2.2.2. Methyl mercury

Details of the analytical protocols are given elsewhere (Mason et al., 1999; 

Mason and Lawrence, 1999). Sediment and biota samples were distilled with a 50 % 

sulfuric acid and 20 % potassium chloride solution (Horvat et al., 1993). A sodium 

tetraethylborate solution was added to the distillate to convert the nonvolatile MeHg 

to gaseous methylethylmercury (Bloom, 1989). The volatile adduct was then purged 
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from solution and recollected on a graphitic carbon column at room temperature. The 

methylethylmercury was thermally desorbed from the column, and analyzed by 

isothermal gas chromatography with CVAFS. A calibration curve with an r2 of > 0.99 

was achieved on a daily basis. Analysis of duplicate samples typically gave a RPD of 

less than 20 %. Detection limits were based on 3 standard deviations of distillation 

blank measurements. Detection limits for MeHg were 0.02 pmol g-1 for sediments and 

0.005 pmol g-1 for biota. Analysis of SRM IAEA-405 (25 - 30 pmol g-1) generally 

gave a 90 % recovery. 

5.2.2.3. Trace metals

        A subsample of sediment or clams was placed in acid-cleaned flasks for 

digestion (EPA, 1996; Keith, 1991). Optima HNO3 was added and the flasks were 

covered with watch glasses. The samples were then heated to 95°C and allowed to 

reflux for 15 min without boiling. Once the samples were cooled, HNO3 was added, 

followed by refluxing for 30 min. This procedure was repeated in order to ensure 

complete oxidation. After the watch glasses were removed, the samples were allowed 

to evaporate to approximately 5 mL without boiling. When the samples were cooled, 

aliquots of 30 % H2O2 were added until the effervescence was minimal. Then, 

concentrated HCl and deionized water were added and the samples refluxed for 15 

min. Finally, the samples were allowed to cool and diluted to 50 mL with deionized 

water. The digestates were analyzed for trace metals by ICP-MS using a quadrapole 

Hewlett-Packard 4500. A calibration curve with an r2 of at least 0.99 was obtained 

daily. Analysis of duplicate samples generally gave a RPD of less than 10 %. 
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Detection limits for metals, based on 3 standard deviations of digestion blanks, were 

generally lower than 0.1 nmol g-1. Analysis of standard reference material, estuarine 

sediment NIST 1646a, typically yielded a recovery of 84 %. Spike recovery averaged 

83 %.

5.2.3. Model applications

        The model developed in Chapter 4 was run for a longer period (May – October) 

with some modifications. Fig. 5.2 presents data for nutrients, temperature, and 

phytoplankton (PP) biomass in 2001 from three stations, CB5.1, CB5.2, and CB 6.4, 

chosen among stations for the Chesapeake Bay Program in the mainstem of the 

Chesapeake Bay (www.chesapeakbay.net). Average nutrients and temperature of the 

three stations were used in this model application. The stations chosen here were 

within the mesohaline-polyhaline regions of the Bay, as salinity in experiment 2 (19 

ppt) was in a marginal range between the two regions. The three stations showed 

different ranges of sediment organic matter (e.g. low, medium, and high). 

Phytoplankton (PP) data was also presented for comparison with model results. 

Growth rate of PP was calibrated so that PP biomass in the model fell within the 

range of field data. As discussed in Chapter 4, the model results were highly sensitive 

to PP growth. Sediment resuspension was modeled in a similar way to the model 

developed in Chapter 4. However, the observed particle concentration in the water 

column was used a constant as total suspended solid (TSS) data showed a relatively 

constant pattern over time, averaging 6.9 ± 1.4 mg L-1. TSS concentration was much 

lower than for the mesocosm studies (Chapter 2, Kim et al., 2004).   
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Figure 5.2. Data used in the model applications: a) average temperature and nutrients; 
b) average PP biomass in the Chesapeake Bay in 2001. 

The data were obtained from three stations; CB5.1 (38º 32´ N), CB5.2 (38º 14´ N), 
and CB6.4(37º 24´ N). 
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        Additionally, as mentioned in Chapter 4, zooplankton (ZP1 and ZP2) and filter 

feeders (FF) fed on phytoplankton (PP) as the only food source in the model. Thus, 

loss terms for ZP and FF (e.g. excretion, respiration, and mortality) were decreased 

by 50 % from the values used in Chapter 4 to compensate for dramatic biomass 

reduction in ZP and FF due to food limitation during the longer period of model 

running, and to help the model stability. While the initial biomass of ZP1 and ZP2 

was the same as the previous model, half the FF biomass was used in this study, 

which fell within a range typically found in the field (Grizzle et al., 2001). 

Additionally, predation terms for ZP, FF, and MPB were added to simulate 

consumption by higher trophic level organisms as the model was applied to field 

situations and a longer period of the model run. Changes made to the model 

application are summarized in Appendix III.   

  The model applications were aimed at examining the effects of varying organic 

matter content in the sediment with subsequent changes in Hg methylation on MeHg 

bioaccumulation into benthic and pelagic organisms. Given the wide range of organic 

matter in the Chesapeake Bay sediments, a range of organic matter content were 

chosen, high (12 %), medium (6 %), and low (3 %) for the modeling study. Field 

studies have shown that percent organic matter was negatively related to Hg 

methylation potential and this fact was used. By applying the linear relationship given 

by Hammerschmidt and Fitzgerald (2004), Hg methylation rate was estimated with 

different organic matter content. The Hg methylation rates used were 6.7×10-4, 

2.3×10-3, and 3.1×10-3 h-1, corresponding to organic matter content of 12, 6, and 3 %, 

respectively. Based on the relationship of organic matter with THg and MeHg found 
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in the samples collected from the Bay, the initial concentrations of THg and MeHg 

were determined corresponding to changes in sediment organic matter content. The 

distribution coefficient (Kd) for MeHg in sediments was also a function of % organic 

matter (Hammerschmidt and Fitzgerald, 2004; Bloom et al., 1999) and the 

relationship between the two variables was also obtained from Hammerschmidt and 

Fitzgerald (2004) to obtain the initial MeHg concentration in the porewater.      

5.3. Results and discussion

5.3.1. Distribution and bioaccumulation of total mercury and methyl mercury

        The overall general distribution of THg concentrations showed a decrease from 

the head of the Bay to the mouth of the Bay, with an average concentration of THg 

being 420 ± 530 pmol g-1 (Fig. 5.3a). THg concentrations fell within the range of 

those found in the previous investigation of Hg distribution in the Chesapeake Bay 

and tributaries (Mason et al., 1999; Benoit et al., 1998) and other estuarine systems 

(Conaway et al., 2003; Sunderland et al., 2004). MeHg concentrations were overall 

high in the upper bay but there were some sites with elevated levels of MeHg in the 

lower bay (Fig. 5.3b). Average concentration of MeHg was 2.2 ± 2.2 pmol g-1, which 

was in a similar range of MeHg levels found by others (Mason et al., 1999; Conaway 

et al., 2003; Hammerschmidt and Fitzgerald, 2004; Sunderland et al., 2004). Percent 

organic matter in sediments showed, overall, a similar trend with THg and MeHg 

(Fig. 5.3c). Sediment organic matter was significantly correlated to THg (r2 = 0.60, n 

= 36) and MeHg (r2 = 0.61, n = 36) concentrations (Table 5.1).        
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Figure 5.3. The concentrations of a) THg; b) MeHg; c) organic matter in the 
mainstem Chesapeake Bay.



193

Latitude
36.537.037.538.038.539.0

T
H

g 
(p

m
ol

 g
-1

)

0

500

1000

1500

2000

2500

3000

a

Latitude
36.537.037.538.038.539.0

M
eH

g 
(p

m
ol

 g
-1

)

0

2

4

6

8

10

MeHg 
% MeHg 

b



194

Latitude
36.537.037.538.038.539.0

%
 O

M

0

2

4

6

8

10

12

14

16

c



195

Table 5.1. Correlation table for the mainstem of the Chesapeake Bay dataset.*

Al Fe Mn MeHg THg %  OM

Al
Fe
Mn

MeHg
THg

% OM

-
0.71
0.40
0.45
0.56
0.74

0.71
-

0.50
0.31
0.79
0.64

0.40
0.50

-
NS
0.32
NS

0.45
0.31
0.21

-
0.29
0.61

0.56
0.79
0.32
0.29

-
0.60

0.74
0.64
0.26
0.61
0.60

-
* Regression values (r2) are significant at p <0.01. NS means ‘not significant’.  

        Table 5.1 shows the correlations of THg, MeHg other metals, such as aluminum 

(Al), Fe, and Mn, as well as organic matter content that were found in samples 

collected from the Bay. In general, metal concentrations were significantly correlated 

to each other, suggesting an interaction or association of the oxide and organic matter 

phases. In comparison, however, the relationship between organic matter and Mn was 

weaker (r2 = 0.26, n = 36). Given the much lower concentration of Mn relative to Fe 

and Al (data not shown), it is clear that these inorganic phases are more important 

than Mn in providing a substrate for organic matter coating, or for metal binding. It 

has been demonstrated that sediment organic matter can enhance the adsorption of 

metals to the solid phase relative to the pure oxide phases by the formation of tertiary 

complexes. The organic matter coats the Fe surface and the metals are complexed to 

the organic matter rather than directly to the oxide phases (e.g. Fe-OM-Hg). 

However, at high organic matter content in the porewater, the competition between 

the dissolved organic matter and the particulate organic matter for the metal can lead 

to a decrease in metal binding due to competitive binding to the dissolved ligands. 

However, as the distribution coefficient (Kd) for organic matter is 10-1000, typically, 
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for sediments, this interaction is unlikely to have a strong influence except for metals 

that bind strongly to organic matter, such as Hg.    

        There was no significant relationship between Hg and MeHg concentrations and 

AVS (data not shown). The AVS concentrations observed were < 0.5 µmole/g in 

most sites with some exceptionally higher concentrations in some locations (1.3 – 6.7 

µmol/g). The lack of correlation between AVS and concentrations of Hg and MeHg is 

likely due to low AVS concentrations. There is a possibility that our AVS data could 

be affected by storage time. The AVS concentrations in other fresh and salt water 

systems ranged from 0.4 to 420 µmol/g (Hansen et al., 1996). Compared to our 

observation, Mason and Lawrence (1999) found higher AVS concentrations (1- 30 

µmol/g) and a linear correlation between AVS and MeHg in Hart-Miller Island 

sediments. In Chapter 3 (Kim et al., submitted), the mesocosm experiments showed a 

broad range of AVS concentrations with sediment depths (0.03 to 130 µmol/g). In 

addition, AVS concentrations have shown a large vertical and temporal variability 

(Van den Berg et al., 1998). During summer, high sediment temperature and more 

freshly deposited, highly degradable organic matter result in more reducing 

environment and the boundary layer between the suboxic and the anoxic layer moves 

toward the sediment-water interface. As a result, the build-up of AVS was found 

closer to the sediment-water interface (Van den Berg et al., 1998). While Fe and 

organic matter concentrations do not vary significantly seasonally, AVS 

concentrations can vary with redox status and thus low AVS may reflect the season of 

collection. Given the high Fe and organic matter concentrations in the Chesapeake 

Bay sediments, there is sufficient binding capacity for Hg and MeHg even in the 
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absence of AVS. Thus, in this system, the influence of AVS on Hg and MeHg 

distribution in sediments could be less important than organic matter or Fe, although 

it is likely to impact the bioavailability of Hg and MeHg.  

Fig. 5.4a presents the concentrations of THg and MeHg with % MeHg in HMI 

sediments. Organic matter was related to both MeHg (r2 = 0.57, n = 11, p< 0.01) and 

THg (r2 = 0.91, n = 11, p < 0.01). Average concentrations of THg and MeHg in HMI 

sediments were 790 ± 400 and 6.7 ± 3.9 pmol g-1, respectively. Concentrations of Fe, 

Mn, Al, and AVS were not measured for the sampling time of 2000. Mason and 

Lawrence (1999) found a relationship between AVS and MeHg in HMI sediments 

collected in 1997, although the relationship was tenuous because it relied, to a large 

degree, on the one high data point. These authors suggested that in situ MeHg 

production might have not controlled the concentration in these surface sediments as 

MeHg production was likely inhibited due to high AVS concentrations.           

        Fig. 5.4b shows the concentrations of THg and MeHg with % MeHg in clams, R. 

cuneata, averaging 190 ± 70 (THg) and 18 ± 8.5 (MeHg) pmol g-1, respectively. 

Similar MeHg concentration was found in clams (Macoma) collected from Baltimore 

Harbor where % carbon ranged from 0.2 to 3.5 (Mason and Lawrence, 1999). While 

THg concentration was comparable to the initial concentration in experiment 2 

(overall average of 230 ± 57 pmol g-1), MeHg in R. cuneata was much lower than that 

in M. mercenaria (overall average of 160 ± 37 pmol g-1) (Chapter 3, submitted). 

Similarly, % MeHg in R. cuneata was lower (11 ± 6.7 %) than that in M. mercenaria

(71 ± 12 %). MeHg typically accounts for 20-80 % of THg in invertebrates (Claisse et 

al., 2001). It has been shown that % MeHg in oysters and mussels collected in French 
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Coast ranged from 11 to 88 % (Claisse et al., 2001). Both species, R. cuneata and M. 

mercenaria, are suspension feeders (McConnell and Harrel, 1995; Grizzle et al., 

2001) and feed on large quantities of detritus and phytoplankton, heterotrophic 

microorganisms in the water column (LaSalle and de la Cruz, 1985; Grizzle, 2001). 

R. cuneata is an estuarine species occurring where salinity varies between 1-18 ppt. 

However, the planktonic larval stage is more vulnerable to salinity and adult R. 

cuneata can be tolerant to freshwater or higher salinity water (Cain, 1975). In 

contrast, M. mercenaria behaviors (e.g. feeding rate, burrowing, growth, and survival 

of juveniles and adults) are affected negatively by salinities lower than 15 ppt. It 

should be noted that M. mercenaria was obtained from aqua farms and the initial 

concentration of MeHg, after their acclimation period (Chapter 3), was higher than 

MeHg in R. cuneata collected in the field. Thus, different habitat conditions for both 

species could account for the difference in MeHg burden.    

BSAFs for MeHg and inorganic Hg (IHg) were calculated as the ratio between 

MeHg (IHg) concentration in the clam and MeHg (IHg) concentration in sediments. 

As discussed in Mason and Lawrence (1999), BSAF for inorganic Hg was calculated 

instead of BSAF for THg because % MeHg in sediment is typically lower (< 1 %) 

than that in invertebrate and vertebrate organisms (10 to 100 %). Thus, when BSAFs

based on THg are compared to those for MeHg, this will lead to an overestimation of 

the bioaccumulation of IHg. As seen in Fig. 5.4c, it is clear that organic matter plays

an important role in MeHg bioaccumulation. BSAF for MeHg decreased with 

increasing % OM in sediments. The BSAF values for R. cuneata were consistent with 

those found in the previous years (1996-1997) shown by Mason and Lawrence 
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(1999). Given that the clam is a suspension feeder, it could be expected that a 

relationship between BSAF and % OM may not be found. However, sediment 

resuspension is likely an explanation for this. HMI sampling sites are within the 

Chesapeake Bay ETM (Estuarine Turbidity Maximum Zone). The ETM is variably 

located between 39° 10′ and 39° 28′ N and usually extends 10 to 30 km along the N/S 

axis of the bay (Roman et al., 2001). Additionally, R. cuneata is a non-selective 

feeder (LaSalle and de la Cruz, 1985) and the clam likely feeds on resuspended 

particles. 

        As mentioned earlier, sediment organic content plays an important role in Hg 

methylation as it controls Hg distribution between particle and dissolved phases, 

resulting in determining Hg bioavailability to SRB. Hg methylaion was negatively 

correlated with Kd  (Hammerschmidt and Fitzgerald, 2004). Thus, our observations 

give insight into the role of organic matter content in controlling Hg methylation and 

subsequent MeHg accumulation into benthic organisms. Additionally, sediment 

resuspension can play a role in not only changing redox state to favor Hg methylaion 

but also transporting elevated MeHg to the water column, leading to uptake MeHg 

into organisms, as discussed in Chapters 3 and 4.        
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Figure 5.4. The concentrations of THg and MeHg a) in HMI sediments; b) in clams, 
R. cuneata collected from the vicinity of HMI; c) bioaccumulation factors (BSAF) for 
clams (R. cuneata) collected from MHI for inorganic Hg and MeHg. 



201

Sampling sites

M
DE-1

M
DE-3

M
DE-7

M
DE-9

M
DE-1

3

M
DE-1

6

M
DE-1

7

M
DE-2

2

M
DE-2

8

M
DE-3

4

M
DE-3

5

C
on

c.
 (

pm
ol

 g
-1

) 
or

 %
 M

eH
g

0

10

20

30

40

400

800

1200

1600 THg 
MeHg 
% MeHg 

a

Sampling sites

M
DE-1

M
DE-3

M
DE-7

M
DE-9

M
DE-1

3

M
DE-1

6

M
DE-1

7

M
DE-2

2

M
DE-2

8

M
DE-3

4

M
DE-3

5

M
DE-3

6

C
on

c.
 (

pm
ol

 g
-1

) 
or

 %
 M

eH
g

0

10

20

30

40

100

200

300

400
THg 
 MeHg 
 % MeHg b



202

% OM
0 2 4 6 8 10 12

B
SA

F

0

2

4

40

80

120

160

IHg 
 MeHg 

c



203

5.3.2 Modeling applications

5.3.2.1. Model results with a longer time simulation 

Fig. 5.5 presents the model results of a longer time simulation with the same 

organic content and Hg methylation rate as the model developed in Chapter 4. A 

similar pattern was observed that PP biomass decreased from May to July between 

the observations (Fig. 5.2b) and the model output (Fig. 5.5a). However, the modeled 

PP biomass increased from July to September in response to increases in temperature 

and, more likely, nutrient concentration, followed by a substantial decrease in 

October. Meanwhile, the data showed a continuous decrease. The discrepancy is 

likely because ZP and FF are the only predators for PP in the model. The structure of 

the community can be more complicated and variable in field situations. As seen in 

Fig. 5.2b, the PP data for the Bay have a relatively large standard deviation between 

the stations. Modeled ZP1 biomass remained relatively low throughout the model 

running time while model results of ZP2 showed an increase in accordance with an 

increase in PP biomass (Fig. 5.5a). As described in Chapter 4, the filtration rate for 

ZP2 was higher than that for ZP1 and, as a result, the response for ZP2 to increasing 

PP biomass was more immediate than ZP1. A time lag between the peaks in PP and 

ZP2 biomass was likely due to the difference in PP growth rate and ZP2 grazing rate, 

as mentioned in Chapter 4. It has been found that total zooplankton biomass in the 

mesohaline Chesapeake Bay is highest in March and October while lower in June and 

August (White and Roman, 1992). Thus, the model results showed a consistent 

pattern with the field data although the overall biomass was much lower than the field 

data. Zooplankton biomass was typically > 0.01 g C m-3 in the mesohaline
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Chesapeake Bay (White and Roman, 1992). As seen in Fig. 5.5b, FF biomass 

decreased continuously and more substantially over time for a longer simulation time, 

compared to the model result in Chapter 4. MPB showed a similar pattern with PP in 

that changes in MPB biomass corresponded to changes in nutrient concentration (Fig. 

5.5b).

        Fig. 5.5c shows the modeled MeHg concentration in biota in the water column. 

The modeled MeHg concentration in PP was higher than the model results under the 

experiment 2 conditions in Chapter 4. MeHg concentration in ZP1 and ZP2 increased 

during the summer months when PP and ZP biomass were decreasing. MeHg burden 

in ZP was similar to that in the model simulation for experiment 3. As discussed in 

Chapter 4, low biomass of ZP results in higher MeHg burden in ZP. The 

concentration of dissolved MeHg was somewhat higher than the model result 

(experiment 2) in Chapter 4 but the difference was about a factor of two or less (Fig. 

5e and Fig.3d in Chapter 4). Thus, the increase of MeHg burden in ZP was more 

likely due to the substantial decrease in ZP biomass during the summer months when 

PP biomass also decreased, which was a similar case for the model results (especially 

the later stage of the model run) under the experiment 3 condition (Fig. 5 in Chapter 

4). In fact, the modeled ZP biomass in both cases was much lower than the field data 

in the Chesapeake Bay, as mentioned above, and other estuarine environments 

(Froneman, 2000). 

        MeHg concentration in copepods collected from the mid bay (around 38 º N) 

was lower in April than August of 1997, averaging 39 and 130 pmol g C-1, 

respectively (Leaner, unpublished data). However, it is not clear weather higher 
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MeHg burden in ZP in April was related to lower ZP biomass at that time due to 

limited data. Dissolved MeHg concentration in the same sampling stations where ZP 

measurements were made averaged 0.09 and 0.04 pM in April and August of 1997, 

respectively (Leaner, unpublished data). Thus, given the lower concentration of 

dissolved MeHg and the findings that ZP biomass was typically lower in summer, 

higher MeHg burden in ZP in August may be likely attributed to low ZP biomass. 

Nonetheless, MeHg in ZP from the mesohaline bay (Leaner, unpublished data) was 

comparable to the data from experiment 2 as well as the model result in Chapter 4. 

MeHg burden in FF and MPB showed an opposite trend to their biomass (Fig. 5.5d). 

BSAF for FF in the model was obtained using a similar approach with BSAF for the 

clam, R. cuneata. The BSAF for FF in the model was 5.0, which was in the same 

order but slightly higher than BSAF values for R. cuneata at high organic matter 

content in sediments (12 %). As mentioned earlier, it is likely due to much higher 

MeHg concentration in FF (M. mercenaria in the model) than that in R. cuneata. 

        Fig. 5.5e presents the modeled MeHg concentrations in particulate and dissolved 

phases, which were in a similar range of the previous model results (Fig. 5.3c and d in 

Chapter 4). On average, particles in the water column were mostly RPOC (36 %) and 

WPOC (51 %), accounting for 13 % PP and ZP. In the previous model (Chapter 4), 

particles in the water column consisted of 49 % RPOC, 42 % WPOC, and 9 % PP and 

ZP. Percent RPOC in this model run was less than that in the previous one. It is likely 

that lower TSS concentration from the field data was applied to this model, compared 

to the previous model with higher TSS concentration. As mentioned in Chapter 4, 

water column particles included different particle types and MeHg on particles 
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presented here was normalized to the total particle concentration (MeHg pmol per Σ g 

C), not normalized to concentrations of each particle type. Total MeHg in the water 

column (particulate + dissolved MeHg) of the model was 0.3 pM and this was 

comparable to the average total MeHg, 0.3 ± 0.3 pM, found in the mainstem 

Chesapeake Bay (Mason et al., 1999).  

        The modeled dissolved MeHg increased in response to decreasing PP and MPB 

biomass during the summer months, as the dissolved MeHg was taken up by PP and 

MPB to a larger degree than ZP or FF. As mentioned in Chapter 4, resuspension can 

play a role in transferring sediment MeHg to the water column and in subsequent 

MeHg accumulation into benthic-pelagic organisms. When there was no sediment 

resuspension in the model (by shutting down all the flows in/out of the RPOC and 

MeHg in RPOC pools), the overall average concentration of dissolved MeHg 

decreased by about 70 %. A similar reduction (about 62 – 73 %) of MeHg burden in 

biota (PP, ZP1, ZP2, and MPB) was found while the effect was much less for FF 

(about 2 % decrease). This provides insight into why MeHg concentration in biota, 

especially the upper levels of food chains remains high even though Hg loadings to 

environments may be reduced. Sediment resuspension can play a role in reintroducing 

MeHg in sediments to the water column and food chains, as suggested by others 

(Sunderland et al., 2004; Sager, 2002).
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Figure 5.5. Model outputs: a) biomass in the water column; b) biomass in the 
sediment; c) MeHg in water column biota; d) MeHg in benthic biota; e) particulate 
and dissolved MeHg in the water column.



208

Months

May Jun Jul Aug Sep Oct

B
io

m
as

s 
(g

 C
 m

-3
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PP 
 ZP1 
ZP2 

a

Months

May Jun Jul Aug Sep Oct

B
io

m
as

s 
(g

 C
 m

-3
)

0

1

2

3

4

5

6

FF 
MPB 

b



209

Months

May Jun Jul Aug Sep Oct

M
eH

g 
in

 b
io

ta
 (

pm
ol

  g
 C

-1
)

0

400

800

1200

1600

2000

PP 
 ZP1 
ZP2 

c

Months

May Jun Jul Aug Sep Oct

M
eH

g 
in

 b
io

ta
 (

pm
ol

 g
 C

-1
)

0

500

1000

1500

2000

FF 
MPB 

d



210

Months

May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
or

 p
M

)

0.0

0.2

0.4

0.6
40.0

60.0

80.0

100.0

120.0

Part. MeHg  
Diss. MeHg 

e



211

5.3.2.2. Effects of sediment organic matter and Hg methylation on MeHg burden in 

biota

In this section, the model was applied under conditions of varied sediment 

organic matter. This influenced both the concentration of THg and MeHg and the 

corresponding Hg methylaion. As mentioned earlier, it has been found that Hg 

methylation varied inversely with % organic matter (Hammerschmidt and Fitzgerald, 

2004) and, as discussed above, THg and MeHg were found to increase with 

increasing % OM. As seen in Fig. 5.6a, the resulting sediment MeHg was lowest at 

12 % organic matter content with an overall average of 22 pmol g C-1. MeHg 

concentration in sediments averaged 61 and 84 pmol g C-1 at 6 % organic matter and 

3 % organic matter, respectively. The model result clearly showed an increase in 

sediment MeHg per g C as % organic matter decreased. Similarly, particulate MeHg 

in the water column increased with decreasing % organic matter (Fig. 5.6b). MeHg 

concentration on particles presented in Fig. 5.6b was normalized to the total particle 

concentrations, as done previously. Overall, water column particles consisted of 36 % 

RPOC, 51 % WPOC, and 8 % PP, and 5 % ZP, on average and the proportions were 

relatively constant, regardless of changes in sediment organic matter content. While 

MeHg on RPOC was comparable to MeHg concentration in sediments, MeHg on 

particles per Σ g C in the water column appeared to be lower than sediment MeHg. 

The ratios between MeHg on particles in the water column and sediment MeHg were 

0.67, 0.69, and 0.81 at 3 %, 6 %, and 12 % organic matter, respectively. A similar 

pattern was observed for dissolved MeHg in the water column (Fig. 5.6c), averaging 

0.19, 0.14, and 0.07 pM at 3 %, 6 %, and 12 % organic matter content.   
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Figure 5.6. Model outputs: a) MeHg in the sediment; b) particulate MeHg in the water 
column; c) dissolved MeHg in the water column with changes in sediment organic 
matter.
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        MeHg burden in biota was influenced by changes in organic matter and the 

subsequent Hg methylation (Fig. 5.7). However, biomass did not change upon 

sediment organic matter. MeHg concentration in PP, overall, averaged 67, 140, and 

180 pmol g C-1 at 12 %, 6 %, and 3 % organic matter, respectively (Fig. 5.7a). A 

similar trend was observed for ZP that MeHg burden increased with decreasing % 

organic matter (Fig. 5.6b,c), averaging 240, 430, and 540 pmol g C-1 for ZP1 and 170, 

300, and 380 pmol g C-1 for ZP2 at 12 %, 6 %, and 3 % organic matter, respectively. 

The model results were somewhat higher than MeHg in ZP found from the mid bay in 

April, as stated above, but these concentrations were of the same order of magnitude. 

Overall average MeHg in FF was 360, 420, and 460 pmol g C-1 at 12 %, 6 %, and 3 % 

organic matter, respectively (Fig. 5.7d). The modeled MeHg concentration in FF was 

quite higher than observed in MeHg in R. cuneata collected from HMI sites. 

However, the initial concentration used in the model was based on the measurement 

of M. mercenaria in experiment 2 (Chapter 3, submitted). Thus, the model result 

could have been comparable to MeHg concentration in R. cuneata, if the initial 

concentration for R. cuneata used and other parameters were kept the same. MeHg 

burden in MPB was similar to that in PP, averaging 91, 190, and 250 pmol g C-1 at 12 

%, 6 %, and 3 % organic matter (Fig. 5.7e).                  

        Studies have shown that in situ production in sediments is a significant source of 

MeHg in estuarine environments (Mason et al., 1999; Hammerschmidt et al., 2004; 

Sunderland et al., 2004). Similarly, a preliminary mass balance for the mesocosm 

experiments showed that in situ MeHg production occurred and this was confirmed 

by the Hg methylation experiments (Chapter 2, Kim et al., 2004; Chapter 3, 
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submitted). Sager (2002) has suggested that continued Hg release, resuspension 

and/or bioturbation of buried sediments with enhanced Hg contributed to elevated Hg 

levels in the higher trophic organisms. Similarly, it was determined that most MeHg 

concentration in PP of Long Island Sound was likely attributed to sedimentary flux 

and this could contribute to MeHg accumulation in higher trophic levels 

(Hammerschmidt et al., 2004). The modeling study with varying organic matter and 

the subsequent MeHg production demonstrated that the enhanced MeHg was 

transported to the water column by sediment resuspension, resulting in higher biotic 

MeHg burden in organisms mainly through dietary uptake. 

5.4. Summary

     Organic matter content played an important role in the distribution of Hg and 

MeHg in surface sediments as well as bioaccumulation into biota. The SBAF values 

for MeHg and IHg varied inversely with sediment organic matter. The model results 

with a longer simulation time appeared to be in agreement with the field data. The 

modeling studies demonstrated that MeHg levels in sediments were closely related to 

varying organic matter content, as organic matter was an important controlling factor 

in Hg methylation. The enhanced MeHg can be transferred to the water column by 

sediment resuspension. Thus, higher MeHg burden in benthic-pelagic organisms can 

be attributed to enhanced MeHg in sediment.    
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Figure 5.7. Model outputs: a) MeHg in PP; b) MeHg in ZP1; c) MeHg in ZP2; d) 
MeHg in FF; e) MeHg in MPB with changes in sediment organic matter. 



218

Months
May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
)

0

100

200

300

400

500

PP-12 % OM 
PP-6 % OM 
PP-3 % OM 

a

Months

May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
)

0

200

400

600

800

1000

1200

1400

ZP1-12 % OM 
ZP1-6 % OM 
ZP1-3 % OM 

b



219

Months
May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
)

0

200

400

600

800

1000

ZP2-12 % OM 
 ZP2-6 % OM 
 ZP2-3 % OM 

c

Months

May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
)

0

100

200

300

400

500

600

FF-12 % OM 
FF-6 % OM 
FF-3 % OM 

d



220

Months
May Jun Jul Aug Sep Oct

M
eH

g 
(p

m
ol

 g
 C

-1
)

0

100

200

300

400

500

600

 MPB-12 % OM 
MPB-6 % OM 
 MPB-3 % OM 

e



221

Chapter 6: Summary, conclusions, and recommendations

6.1. Summary

The contamination of mercury (Hg) in estuaries is a concern as most estuarine 

and coastal environments are in close proximity to urban centers. Additionally, 

estuaries are productive ecosystems and provide an important food source for humans 

as well as being nursery areas for young fish (Benoit et al., 1998; Mason et al., 1999). 

Sediments are the major repository of Hg in estuarine environments and only a small 

fraction of the Hg transported in rivers is exported to the ocean due to the high 

retention of Hg in estuaries (Cossa et al., 1996; Benoit et al., 1998; Mason et al., 

1999). Hg can be transformed to methyl mercury (MeHg) in anaerobic conditions by 

sulfate reducing bacteria (SRB), the principal mediators of Hg methylation (Gilmour 

and Henry, 1992). Hg in sediments constitutes an enriched pool potentially available 

to organisms. Interest in bioaccumulation of Hg and MeHg into lower trophic levels 

of benthic and pelagic organisms stems from public health concerns as these 

organisms provide essential links for higher trophic levels of food chains such as fish 

and larger invertebrates. Fish consumption is the major exposure route of MeHg to 

humans (Clarkson, 1990).    

        The mobility and bioavailability of Hg and MeHg is controlled by the nature and 

concentration of the binding phases in sediments. Hg associates with particulate 
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organic matter and iron (Fe)/manganese (Mn) oxides through adsorption and 

coprecipitation reactions in oxidized sediments. In contrast, Hg is adsorbed onto and 

coprecipitated with sulfide minerals in anoxic conditions (Gobeil and Cossa, 1993; 

Gagnon et al., 1997; Wang et al., 1998). When metal oxides are reduced Hg can be 

released into the porewater (or eventually to the overlying water via diffusion) or can 

be removed by adsorption and coprecipitation with sulfide minerals in anoxic 

environments. Additionally, Hg can be released as a result of the microbial 

degradation of organic matter and by chemical dissolution of sulfides due to redox 

changes during diagenesis.  

        Sediment resuspension plays an important role in reintroducing metals into the 

water column and in the cycling of particles and associated nutrients and 

contaminants at the sediment-water interface (Bloesch, 1995). It has shown that 

sulfide-associated trace metals could be a more bioavailable phase following a major 

oxidation event such as that caused by dredging, resuspension, and seasonal 

migration of the redoxcline (Copper and Morse, 1996). Sediment resuspension can be 

an important factor in controlling Hg methylation in sediments as resuspension can 

induce a change in sediment redox state. Recent studies have shown that in situ

MeHg production is a significant source to estuarine environments (Mason et al, 

1999; Sunderland et al., 2004; Hammerschmidt and Fitzgerald, 2004; Balcom et al., 

2004). There is, however, a paucity of information on the effects of sediment 

resuspension on the fate, transport, and bioaccumulation of Hg and MeHg. 

        This dissertation research was, therefore, aimed at investigating a) direct and 

indirect effects of sediment resuspension in shallow systems on the fate, transport,
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and bioavailability of Hg and MeHg; b) the importance of the various geochemical 

factors in contributing to the fate and bioavailability of Hg and MeHg. A model for 

MeHg bioaccumulation into benthic invertebrates was developed and tested using the 

results from these studies.           

        Two 4-week STORM experiments were conducted in July and October of 2001 

(experiments 1 and 2) with two treatments of resuspension (R) and no-resuspension 

(NR) (Chapters 2 and 3). A bioenergetic-based model was used to study MeHg 

transport between the water column and the sediment as well as MeHg 

bioaccumulation into benthic and pelagic organisms in representative shallow 

estuarine environments (Chapter 4). The model was applied to field situations to 

assess the role of sediment resuspension with varying sediment organic matter and the 

resulting Hg methylaion on MeHg accumulation into benthic and pelagic organisms 

(Chapter 5). Additionally, this research examined the spatial distribution of Hg and 

MeHg in sediments from the mainstem Chesapeake Bay and the importance of 

controlling factors in determining Hg and MeHg concentrations and their 

bioaccumulation (Chapter 5). 

        The results of mesocosm experiments in Chapter 2 showed that sediment 

resuspension introduced significant amounts of particulate total Hg (THg) to the 

water column as total suspended solids (TSS) increased. THg was strongly bound to 

the sediment particles and cycled between the water column and sediments, with little 

release during resuspension. In contrast, particulate MeHg was significantly lower in 

the R tanks, compared to particulate MeHg in the NR tanks. The introduction of a 

large amount of sediment particles containing lower MeHg concentration was likely 
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attributed to the lower MeHg concentration on particles in the water column with 

resuspension. Dissolved THg and MeHg concentrations did not vary in response to 

changes in particulate load, suggesting that the dissolved and particulate phases for 

both THg and MeHg cannot be explained solely by equilibrium partitioning, on a 

resuspension time basis in the experiments.      

        A mass balance based on the mesocosm experiments (Chapter 2) suggested that 

resuspension could enhance MeHg production. Sediment oxygenation resulting from 

resuspension can reduce sulfide levels in surface sediment and in the porewater and 

thus stimulate Hg methylation by enhancing Hg bioavailability to SRB, as proposed 

by Benoit et al. (1999a). The results of mesocosm experiments showed that sediment 

resuspension had a complex effect on the association of Hg with binding phases as 

well as Hg methylation and demethylation in surface sediments (Chapter 3). The 

results in experiment 1 showed that in situ MeHg production was inversely related to 

acid volatile sulfide (AVS) concentration, especially in the top sediment layers and 

MeHg production was likely enhanced by resuspension. However, the results in 

experiment 2 showed a less clear relationship between AVS and MeHg production, 

suggesting that while some sediment oxidation may lower sulfide levels and enhance 

Hg methylation, too much oxidation may hinder bacterial activity. Demethylation 

experiments gave a consistent relative comparison between experiment 1 and 2 as 

well as showed less variability between the R and NR tanks. Demethylation rates 

were relatively lower in the top sediment layers and remained fairly constant in 

deeper layers. 
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        The two experiments indicated that resuspension influenced system productivity 

and bioaccumulation indirectly (Chapters 2 and 3). Chl a concentration was 

significantly higher in the R tanks, compared to the NR tanks, which appeared to be 

counter-intuitive to expectation. Other studies have shown that planktonic microbial 

growth was stimulated by sediment resuspension (Wainright. 1987; Wainright, 1990). 

Zooplankton biomass (> 63 µm) was, overall, somewhat higher in the NR tanks, 

compared to the R tanks (Appendix I). In general, MeHg burden in zooplankton 

showed an increase over the course of experiment 2 and was slightly higher in the R 

tanks than the NR tanks (Chapter 3). MeHg concentration in phytoplankton was 

estimated based on Chl a data and some reasonable assumptions about phytoplankton 

size and growth rate (Mason et al., 1996) and ranged from 5 to 30 pmol g-1 for both R

and NR tanks. Given that dissolved MeHg concentration and MeHg concentration in 

phytoplankton were comparable between the two systems (R and NR), the results 

suggested that higher MeHg burden in zooplankton in the R tanks was likely 

attributed to lower zooplankton biomass. The modeling study confirmed that 

increasing biomass resulted in a decrease in MeHg burden in biota (dilution effect) 

(Chapter 4), as proposed by Ashley (1998). 

        The model further examined what factors control planktonic biomass and MeHg 

accumulation into biota. The results of model sensitivity analysis showed that overall 

biomass and MeHg burden in biota were highly sensitive to varying phytoplankton 

production and the filtration of filter feeders, whose biomass was dominant in the 

system. The model demonstrated that changes in filter feeder biomass had a 

significant effect on phytoplankton biomass (Chapter 4). As filter feeder biomass 
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increased, phytoplankton biomass was significantly reduced. Changes in filter feeder 

biomass appeared to have an influence on zooplankton biomass. However, it was 

likely an indirect effect due to limited food because phytoplankton became more 

available to zooplankton as filter feeder biomass decreased. Despite a great impact of 

filter feeder biomass on planktonic biomass, MeHg burden in phytoplankton and 

zooplankton were affected by changes in filter feeder biomass to a lesser degree. 

MeHg burden in phytoplankton was governed more directly by dissolved MeHg 

uptake rate and phytoplankton growth. A similar pattern was observed for 

zooplankton. 

        As shown in Chapter 5, THg and MeHg concentrations were significantly related 

to organic matter content in sediments from the mainstem Chesapeake Bay. The 

overall AVS concentration was low and there was no correlation found between AVS 

and levels of THg and MeHg. Hammerschmidt and Fitzgerald (2004) showed that 

methylation potential was inversely related to varying organic matter content of 

surface sediment in Long Island Sound, a large coastal embayment in the northeastern 

US. The model results demonstrated that increasing Hg methylation resulted in higher 

MeHg burden in biota (Chapter 4). Thus, the model was applied to situations of 

varying organic matter and associated changes in Hg methylation to investigate how 

organic matter content and the resulting MeHg production affect MeHg burden in 

benthic and pelagic organisms (Chapter 5). The model results showed that the 

elevated MeHg was transported to the water column by resuspension and resulted in 

higher dissolved MeHg and subsequently in higher MeHg burden in biota even 

though the desorption rate was the same. The model studies clearly demonstrated that 
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increasing MeHg accumulation into benthic and pelagic organisms could be attributed 

to the enhanced MeHg production in sediments, as suggested by others 

(Hammerschmidt et al., 2004; Sager, 2002; Sunderland et al., 2004).         

6.2. Conclusions

        The dissertation research can draw the following conclusions:

1) Sediment resuspension has complex effects on system productivity and Hg 

and MeHg dynamics through direct and indirect interactions;

2) Sediment resuspension plays a significant role in transferring sediment MeHg 

to the water column, resulting in increasing MeHg bioaccumulation into 

benthic and pelagic organisms; 

3) Organic matter content is an important factor in controlling the distribution of 

Hg and MeHg in surface sediments as well as their bioaccumulation into 

biota; and 

4) System productivity is an important variable in determining MeHg 

bioaccumulation in shallow ecosystems. 

It was hypothesized that resuspension would decrease MeHg sediment concentration 

through a series of direct and indirect interactions but increase MeHg flux at the 

sediment-water interface. However, the STORM experiment results showed that 

sediment resuspension had a complex effect on the association of Hg with binding 

phases and on in situ MeHg production. Additionally, other controlling factors (e.g. 
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temperature differences and organic matter content) can play a role in either

decreasing or increasing MeHg concentration in sediments. The STORM experiments 

and modeling efforts clearly supported that resuspension could lead to an 

enhancement of MeHg accumulation into higher trophic level organisms.

6.3. Implications and recommendations for future study   

        The modeling studies gave intriguing results that sediment resuspension could 

play an important role in transporting the elevated MeHg to the water column and 

resulting in higher MeHg burden in biota. However, the model was developed to 

mimic experiment 2 conditions which did not include benthic deposit feeders and 

higher trophic level organisms. Additionally, bioturbation effects on in situ MeHg 

production need to be included. There have been evidence that bioturbation can 

increase Hg methylation in sediments (Hammerschmidt et al., 2004; Benoit et al., 

2004). Impacts of Hg methylation on THg and MeHg bioaccumulation into deposit 

feeders can be critical as they are potentially exposed to THg and MeHg from both 

the porewater/overlying water and the sediments (solid phase). 

        In the model, the methylation rate was a function of THg concentration and the 

methylation rate, which was used as a constant. Although MeHg demethylation 

varied depending on a sediment MeHg pool, the demethylation rate was also used as 

a constant. As environmental factors such as temperature can play a role in 

controlling microbial activity involved in Hg methylation and MeHg demethylation, a 

better parameterization of both methylation and demethylation rates is necessary, 
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especially for a longer time of a model simulation. In the model applications, the 

effects of sulfide levels on Hg methylation were not included but the extension of the 

model to include such interactions would improve the predictive power of the model. 

Organic matter content in sediments was the principal control on MeHg production in 

low sulfide sediments (Hammerschmidt and Fitzgerald, 2004). However, the effects 

of sulfide may be as important as organic content in high sulfide sediments.  

        The modeling study gives insight into some potential management concerns. 

Firstly, the invasion of foreign species of filter feeder has been observed in many 

estuarine environments (Cope et al., 1997; Descy et al., 2003). Thus, these invaders 

likely influence phytoplankton productivity as well as may serve as an essential link 

in the trophic transfer of contaminants such as MeHg into the higher trophic levels of 

organisms. Secondly, changes in nutrient loadings could affect MeHg production by 

controlling the bioavailability of Hg in the sediment. Reduction in nutrient loadings 

could inadvertently lead to an enhancement of MeHg concentration in the sediments,

as suggested by Hammerschmidt and Fitzgerald (2004).

The overall results of this research showed a significance of physical mixing 

and geochemical factors in biogeochemical cycling and bioaccumulation of Hg and 

MeHg within shallow estuarine environments. For sediment management aspects, the 

results can provide useful insight into THg and MeHg mobilization, sedimentary 

MeHg production, and bioaccumulation of THg and MeHg into benthic and pelagic 

organisms. In addition, this research helps understand the links between high MeHg 

concentration in organisms, system productivity and in situ MeHg production in 

sediments. 
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Appendix I

        There are four STORM experiments (experiment 1-4). Experiment 1 was 

conducted in July of 2001 without clams (R vs NR) and experiment 2 with clams (RC 

vs NRC) in October of 2001. Experiment 3 was conducted in July of 2002 with clams 

and without clams (RC vs RNC). Experiment 4 was performed in July of 2003 with 

high density clams (RHC) and low density clams (RLC). Experiments 3 and 4 were 

aimed at examining effects of clams on plankton as well as Hg cycling with 

resuspension. This dissertation is mostly focused on the first two experiments 

(experiments1 and 2). Details of experiments 3 and 4 will be in Christine Bergeron’s 

MS dissertation. This appendix presents some of data from all the experiments in 

order to help understand ecological effects of clams on plankton biomass 

with/without resuspension. Phytoplankton (PP) biomass was obtained from Chl a data 

and the ratio between Chl a and carbon content, as stated in Chapter 4. Both 

phytoplankton and zooplankton (ZP) biomass are normalized to particulate organic 

matter (POM) in the water column. 
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Figure A. Average ratios of PP and POM (mg mg-1): a) experiment 1; b) experiment 
2; c) experiment 3; d) experiment 4. Error bars show standard deviations of 3 
replicates in each system.  
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Figure B. Average ratios of ZP (> 63 µm) and POM (mg mg-1): a) experiment 1; b) 
experiment 2; c) experiment 3; d) experiment 4. Error bars show standard deviations 
of 3 replicates in each system.  
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Table A. Water column data in experiments 1 and 2.  

Experiment 1 Experiment 2

Temperature
R (RC)

NR (NRC)
25 ± 1.2 °C
25 ± 1.3 °C

20 ± 1.9 °C
20 ± 2.0 °C

Salinity
R(RC)

NR (NRC)
14 ± 0.3 ppt
14 ± 0.3 ppt

19 ± 0.2 ppt
19 ± 0.2 ppt

TSS
R(RC)

NR (NRC)
150 ± 27 mg/L
10 ± 0.2 mg/L

63 ± 22 mg/L
4.5 ± 0.6 mg/L

POM
(% POM)

R(RC)
NR (NRC)

22 ± 3 mg/L (18 ±0.9 %)
5.4 ± 0.1 mg/L (53 ± 1 %)

10 ± 4.2 mg/L (16 ±0.7 %)
2.0 ± 0.2 mg/L (46 ± 2.3 %)

DOC
R(RC)

NR (NRC)
240 ± 8 µM
280 ± 3 µM

300 ± 54 µM
330 ± 10 µM

Chl a
R(RC)

NR (NRC)
24 ± 2 µg/L

13 ± 0.9 µg/L
6.7 ± 0.3 µg/L
3.6 ± 0.1 µg/L

Part. THg
R(RC)

NR (NRC)
2.3 ± 0.1 nmol/g

1.1 ± 0.05 nmol/g
2.3 ± 0.2 nmol/g

1.4 ± 0.05 nmol/g

Diss. THg
R(RC)

NR (NRC)
5.5 ± 1.0 pM
5.5 ± 1.0 pM

8.0 ± 1.0 pM
6.0 ± 1.0 pM

Part. MeHg
R(RC)

NR (NRC)
11 ± 2.0 pmol/g
34 ± 5.0 pmol/g

6.0 ± 1.0 pmol/g
26 ± 5.0 pmol/g

Diss. MeHg
R(RC)

NR (NRC)
0.3 ± 0.2 pM
0.3 ± 0.1 pM

0.2 ± 0.05 pM
0.2 ± 0.05 pM
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Table B. Water column data in experiments 3 and 4

Experiment 3 Experiment 4

Temperature
RC (RHC)
RNC(RLC)

26 ±  0.02°C
26 ± 0.01  °C

24 ± 0.1 °C
24 ± 0.08 °C

Salinity
RC (RHC)
RNC(RLC)

18 ± 0.2 ppt
18 ± 0.3 ppt

18 ± 0.4 ppt
18 ± 0.6 ppt

TSS
RC (RHC)
RNC(RLC)

130 ± 46 mg/L
49 ± 16 mg/L

90 ± 54 mg/L
52 ± 20 mg/L

POM
(% POM)

RC (RHC)
RNC(RLC)

17 ±  5.1mg/L (14 ± 1.4%)
9.2 ± 2.0 mg/L (20 ±4.3 %)

16 ± 7.4 mg/L (20 ± 5.7 %)
12 ± 3.8 mg/L (24 ± 5.3 %)

DOC
RC (RHC)
RNC(RLC)

280 ± 43 µM
290 ± 42 µM

300 ± 33 µM
300 ± 48 µM

Chl a
RC (RHC)
RNC(RLC)

6.9 ± 3.1 µg/L
19 ± 8.5 µg/L

12 ± 8.2 µg/L
23 ± 8.2 µg/L

Part. THg
RC (RHC)
RNC(RLC)

NA NA

Diss. THg
RC (RHC)
RNC(RLC)

9.7 ± 3.8 pM
9.2 ± 6.5 pM

5.1 ± 0.8 pM
4.0 ± 1.2 pM

Part. MeHg
RC (RHC)
RNC(RLC)

NA NA

Diss. MeHg
RC (RHC)
RNC(RLC)

0.3 ± 0.1 pM
0.3 ± 0.08 pM

0.3 ± 0.2 pM
0.3 ± 0.2 pM

NA: not analyzed.
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Appendix II.

A. Model parameters.

Parameter Value Unit Reference
Phytoplankton (PP)
Maximum growth rate (Gmax)
Excretion rate
Mortality rate
Respiration rate
Sinking rate
Half saturation constant for 
nutrients
Carbon assimilation efficiency 
(AE) for ZP
Carbon assimilation efficiency 
(AE) for FF
Fraction of PP ingestion by ZP1
Fraction of PP ingestion by ZP2
Fraction of PP ingestion by FF

Zooplankton (ZP)
Maximum filtration rate (Fmax) 
for ZP1
Maximum filtration rate for ZP2
Excretion rate
Mortality rate
Respiration rate
Fraction of ZP2 ingestion by ZP1
ZP2 AE for ZP1

Filter feeder(FF)
Maximum filtration rate for FF
Excretion rate
Respiration rate
Biodepostion rate

Microphytobenthos (MPB)
Maximum growth rate
Excretion rate
Mortality rate
Respiration rate
Fraction of MPB ingestion by 
ZP1
Fraction of MPB ingestion by 
ZP2
Fraction of MPB ingestion by FF

0.01
0.000417
0.000208
0.00208
0.00125

0.24

0.7

0.8

0.9
0.95
0.6

0.19

0.23
0.00167

0.000868
0.00167

0.05
0.3

0.015
0.00025
0.00025

0.000125

0.003
0.000417
0.000208
0.00208

0.05
0.05
0.1

h-1 

h-1 

h-1 

h-1 

h-1 

µmol L-1 

 

Unitless

Unitless

Unitless
Unitless
Unitless

m3 hr-1 C g-1 

 

m3 hr-1 C g-1 

h-1 

h-1 

h-1 

Unitless
Unitless

m3 hr-1 C g-1 

h-1 

h-1 

h-1 

 

h-1 

h-1 

h-1 

h-1 

Unitless
Unitless
Unitless

Calibration
Calibration
Ashley (1998)
Ashley (1998)
Bienfang (1981)
Schnoor (1996)

Halvorsen et al. (2001)

Grizzle (2001)

Calibration
Calibration
Calibration

Calibration

Calibration
Kiorbe (1985)
Calibration
Kiorbe (1985)
Calibration
Calibration

Calibration
Calibration
Calibration
Grizzle (2001)

Calibration
Calibration
Ashley (1998)
Ashley (1998)
Calibration
Calibration
Calibration
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Parameter Value Unit Reference
Particulate organic carbon in the 
water column (WPOC)
WPOC degradation rate

Sinking rate

Dissolved organic carbon in the 
water column (WDOC)
Bacterial uptake

Diffusion coefficient

DOC in the pore water (PW DOC)
Bacterial uptake

Resuspended organic carbon 
(RPOC)
RPOC AE for FF
Fraction of RPOC ingestion by 
FF
RPOC degradation rate

Deposition rate

Sediment organic carbon (SPOC)
SPOC degradation rate

Burial rate

Dissolved MeHg bound to DOC 
(MeHgDOC)
Uptake rate by PP
Uptake rate by ZP
Uptake rate by FF
Uptake rate by MPB
Adsorption rate1

Adsorption rate2
Desoprtion rate

Organic carbon based Kd

Fraction of MeHgDOC

0.00917

0.0107

0.0108

7.2E-7 
 

0.0190

0.2
0.3

0.00917

1.656

0.0001

8.33E-7 
 

2.0E-12
0.000115
0.0001

1.0E-12
0.00172

0.00150
0.00180

0.834
0.988

h-1

h-1

h-1

m2 h-1

h-1 

 

Unitless
Unitless

h-1 

 
m h-1 

 

h-1 

 
h-1 

 

m3 h-1 cell-1 
m3 hr-1 C g-1 

m3 hr-1 C g-1 

m3 h-1 cell-1 
m3 hr-1 C g-1 

 
m3 hr-1 C g-1 

h-1 

 
m3 C g-1 

Unitless

Wainright and 
Hopkinson (1997)

Calibration

Calibration

Gill et al.(1999)

Calibration

Calibration
Calibration

Wainright and 
Hopkinson (1997)

Data from experiment2

Wainright and 
Hopkinson (1997)

Calibration

Calibration
Calibration
Calibration

Mason et al. (1996)
Calculated using Kd and 

desorption rate
"

Hintelman and Harris 
(in press)

Data from experiment2
Calculated
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Parameter Value Unit Reference
Dissolved MeHg
Uptake rate by PP
Uptake rate by ZP
Uptake rate by FF
Uptake rate by MPB
Diffusion coefficient

Sediment MeHg (MeHgSPOC)
Methylation rate1
Methylation rate2
Demethylation rate
Total Hg concentration1
Total Hg concentration2
Organic carbon based Kd

Adsorption rate
Desorption rate

1.0E-11
0.000115
0.0001

5.0E-12
4.68E-6 

 

0.002
0.0014

0.7
0.0098
0.0091
0.0104
0.0015
0.144

m3 h-1 cell-1

m3 hr-1 C g-1 

m3 hr-1 C g-1 

m3 h-1 cell-1 
m2 h-1 

 

h-1 

h-1 

h-1 

g m-3 

g m-3

m3 C g-1 

m3 hr-1 C g-1

h-1 

 
Calibration
Calibration
Calibration
Calibration

Gill et al. (1999)

Data from experiment2
Data from experiment2
Data from experiment2
Data from experiment2
Data from experiment2

Bloom et al. (1999)
Calculated
Calculated
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B. Model equations.

PP: Phytoplankton,
ZP1: Zooplankton (> 210 µm),
ZP2: Zooplankton (63-210 µm),
WPOC: Water column particulate organic carbon,
WDOC: Water column dissolved organic carbon,
RPOC: Resuspended particulate organic carbon,
FF: Filter Feeder,
MPB: Microphytobenthos,
SPOC1: Sediment particulate organic carbon in sediment layer 1,
SPOC2 : Sediment Particluate organic carbon in sediment layer 2,
SDOC1 : Dissolved organic carbon in sediment layer 1,
SDOC2: Dissolved organic carbon in sediment layer 2,
MeHginorg: Dissolved MeHg bound to inorganic complexes or free dissolved MeHg,
MeHgWDOC: Dissolved MeHg bound to WDOC (Dissolve MeHg = MeHginorg +  
MeHgWDOC ),
MeHgPP: MeHg in phytoplankton,
MeHg ZP1: MeHg in zooplankton 1,
MeHg ZP2: MeHg in zooplankton 2,
MeHgWPOC: MeHg in water column particulate organic carbon,
MeHgRPOC: MeHg in resuspended particulate organic carbon,
MeHgFF: MeHg in filter feeder,
MeHgMPB: MeHg in microphytobenthos,
MeHgSPOC1: MeHg in sediment particulate organic carbon1,
MeHgSPOC2: MeHg in sediment particulate organic carbon2,
MeHgSDOC1: Dissolved MeHg bound to dissolved organic carbon in sediment layer1,
MeHgSDOC2: Dissolved MeHg bound to dissolved organic carbon in sediment layer2,
MeHgPW1inorg: Dissolved MeHg bound to inorganic complexes or free dissolved 
MeHg in sediment layer1,
MeHgPW2inorg: Dissolved MeHg bound to inorganic complexes or free dissolved 
MeHg in sediment layer1.
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Clams (FF)

FF(t) = FF(t - dt) + (C_fr_PP + fr_RPOC + C_FF_fr_MPB - clam_excret -
biodeposit_to_SPOC1 - FF_respr) * dt

INIT FF = 10.50

INFLOWS:

C_fr_PP = PP_C_to_FF
fr_RPOC = to_FF
C_FF_fr_MPB = MPB_to_FF

OUTFLOWS:

clam_excret = FF*FF_excret_rate
biodeposit_to_SPOC1 = FF*biodeposition_rate
FF_respr = FF*FF_respr_rate

MeHg_FF(t) = MeHg_FF(t - dt) + (diff_uptake_FF + MeHg_FF_fr_PP + 
MeHg_RPOC_to_FF + diff_MeHgDOC_FF + MeHg_MPB_to_FF - MeHg_FF_excrt) * dt

INIT MeHg_FF = 6.62E-7 
 
INFLOWS:

diff_uptake_FF = uptake_rate_FF*FF*diss_MeHg
MeHg_FF_fr_PP = MeHg_PP_to_FF
MeHg_RPOC_to_FF = RPOC_to_FF
diff_MeHgDOC_FF = uptake_rate_FF*FF*WMeHgDOC
MeHg_MPB_to_FF = MeHg_to_FF

OUTFLOWS:

MeHg_FF_excrt = clam_excret*MeHg_FF/FF
biodeposition_rate = 0.000125
FF_excret_rate = 0.03/24*0.2
FF_respr_rate = 0.03/24*0.2
MeHg_ng_per_g_C_FF = MeHg_FF/FF*1e9
uptake_rate_FF = 0.0001

Dissolved MeHginorg

diss_MeHginorg (t) = diss_MeHg(t - dt) + (MeHg_in + desorp_RMeHg + 
diff_flux_fr_PWMeHg1 + desorp_WMeHg - uptake_by_PP - uptake_by_ZP1 -
uptake_by_ZP2 - MeHg_diss_out - adsorp_WMeHg - adsorp_RMeHg - uptake_by_FF -
uptake_by_MPB) * dt

INIT diss_MeHg = 2.58E-10
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INFLOWS:

MeHg_in = 3.46E-10*0.1/24
desorp_RMeHg = des_RMeHg
diff_flux_fr_PWMeHg1 = -(diff_const_MeHg/1*(diss_MeHg-PW_MeHg1))
desorp_WMeHg = des_WMeHg

OUTFLOWS:

uptake_by_PP = diff_uptake_PP
uptake_by_ZP1 = diff_MeHg_ZP1
uptake_by_ZP2 = diff_MeHg_ZP2
MeHg_diss_out = IF(resuspn_timing=0) then diss_MeHg*0.1/8{hr-1} else 0
adsorp_WMeHg = ads_rate1*WPOC*diss_MeHg
adsorp_RMeHg = ads_rate2*Resuspd_POC*diss_MeHg
uptake_by_FF = diff_uptake_FF
uptake_by_MPB = diff_WMeHg_MPB
ads_rate1 = 1.72E-03
ads_rate2 = 1.50E-03
diff_const_MeHg = 4.68E-06
diss_MeHg_in_ng_per_L = diss_MeHg*1e6

DOC

WDOC(t) = WDOC(t - dt) + (DOC_fr_ZP1 + DOC_fr_input_water + DOC_fr_PP + 
DOC_fr_WPOC + DOC_fr_ZP2 + DOC_fr_RPOC + diff_flux_fr_PW_DOC1 + DOC_fr_FF 
- DOCout - DOC_loss_to_bacteria) * dt

INIT WDOC = 3.83

INFLOWS:

DOC_fr_ZP1 = ZP1_excret
DOC_fr_input_water = 3.70*0.1/24{hr-1}
DOC_fr_PP = PP_excret
DOC_fr_WPOC = WPOC_degrad
DOC_fr_ZP2 = ZP2_excret
DOC_fr_RPOC = RPOC_degrad
diff_flux_fr_PW_DOC1 = -(DOC_diff_coeff/1{m2;SA}*(WDOC-PW_DOC1))
DOC_fr_FF = clam_excret

OUTFLOWS:

DOCout = IF(resuspn_timing=0) then WDOC*0.1/8{hr-1} else 0
DOC_loss_to_bacteria = WDOC*0.005417*2

Dissolved MeHgDOC(t) = MeHgDOC(t - dt) + (MeHgDOC_in + 
diff_flux_fr_PWMeHgDOC1 + desorp_RMeHgDOC + desorp_WMeHgDOC + 
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fr_MeHgPOC + fr_MeHgRPOC + fr_ZP_excrt + fr_MeHg_PP_excrt + fr_MeHg_FF_excrt -
MeHgDOC_out - PP_uptake - ZP2_uptake - ZP1_uptake - FF_uptake - adsorp_WMeHgDOC 
- adsorp_RMeHgDOC - MPB_uptake) * dt

INIT WMeHgDOC = 2.05E-08

INFLOWS:

MeHgDOC_in = 2.75E-08*0.1/24
diff_flux_fr_PWMeHgDOC1 = diff_flux_fr_PW_DOC1/(WDOC-
PW_DOC1)*(WMeHgDOC-PW_MeHgDOC1)
desorp_RMeHgDOC = des_RMeHgDOC
desorp_WMeHgDOC = des_WMeHgDOC
fr_MeHgPOC = to_MeHgDOC
fr_MeHgRPOC = to__MeHgDOCa
fr_ZP_excrt = MeHgZP1_excrt+MeHg_ZP2_excrt
fr_MeHg_PP_excrt = MeHg_PP_excrt
fr_MeHg_FF_excrt = MeHg_FF_excrt

OUTFLOWS:

MeHgDOC_out = IF(resuspn_timing=0) then WMeHgDOC*0.1/8{hr-1} else 0
PP_uptake = diff_MeHgDOC_PP
ZP2_uptake = diff_MeHgDOC_ZP2
ZP1_uptake = diff_MeHgDOC_ZP1
FF_uptake = diff_MeHgDOC_FF
adsorp_WMeHgDOC = ads_rate1*WPOC*WMeHgDOC
adsorp_RMeHgDOC = ads_rate2*Resuspd_POC*WMeHgDOC
MPB_uptake = diff_WMeHgDOCMPB2
DOC_diff_coeff = 7.20E-07
MeHgDOC_ng_per_L = WMeHgDOC*1e6

Microphytobenthos (MPB)

MeHg_MPB(t) = MeHg_MPB(t - dt) + (diff_WMeHg_MPB + diff_WMeHgDOCMPB2 -
MeHg_MPB_mort - MeHg_to_ZP1 - MeHg_to_ZP2 - MeHg_to_FF - MeHg_MPB_excrt) * 
dt

INIT MeHg_MPB = 1.9E-9 
 
INFLOWS:

diff_WMeHg_MPB = K1'*diss_MeHg
diff_WMeHgDOCMPB2 = K2'*WMeHgDOC

OUTFLOWS:

MeHg_MPB_mort = MPB_mort/MPB*MeHg_MPB
MeHg_to_ZP1 = MPB_to_ZP1*MeHg_MPB/(MPB*0.05)*AE_ratio
MeHg_to_ZP2 = MPB_to_ZP2*MeHg_MPB/(MPB*0.05)*AE_ratio
MeHg_to_FF = (MPB_to_FF*MeHg_MPB/(MPB*0.05))*AE_ratio2
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MeHg_MPB_excrt = MPB_excrt*MeHg_MPB/MPB

MPB(t) = MPB(t - dt) + (MPB_growth - MPB_excrt - MPB_respr - MPB_mort -
MPB_to_FF - MPB_to_ZP1 - MPB_to_ZP2) * dt

INIT MPB = 1.37

INFLOWS:

MPB_growth = growth_max2*light*nut_effect*MPB

OUTFLOWS:

MPB_excrt = MPB*0.01/24
MPB_respr = MPB*0.05/24
MPB_mort = MPB*0.0002
MPB_to_FF = (MPB*0.05)*CR_FF*FF*AE_FF*MPB_frac_to_FF*clam_feeding
MPB_to_ZP1 = (MPB*0.05)*CR_ZP1*ZP1*PP_C_AE_ZP*MPB_frac_to_ZP1
MPB_to_ZP2 = (MPB*0.05)*CR_ZP2*ZP_2*PP_C_AE_ZP*MPB_frac_to_ZP2
growth_max2 = MPB_const*EXP(0.06933*temp)
K1' = uptake_rate_1'*MPB/mass_of_cell
K2' = uptake_rate_2'*MPB/mass_of_cell
MPB_const = 0.003
MPB_frac_to_FF = 0.1
MPB_frac_to_ZP1 = 0.05
MPB_frac_to_ZP2 = 0.05
ng_MeHg_per_g_C_MPB = MeHg_MPB/MPB*1e9
uptake_rate_1' = 1E-12*5
uptake_rate_2' = 1e-12

Phytoplankton

MeHg_PP(t) = MeHg_PP(t - dt) + (diff_uptake_PP + diff_MeHgDOC_PP -
MeHg_PP_to_ZP1 - MeHg_PP_out - MeHg_PP_to_ZP2 - MeHg_PP_to_FF -
MeHg_PP_to_WPOC - MeHg_PP_sinking - MeHg_PP_excrt) * dt

INIT MeHg_PP = 1.9E-9 
 
INFLOWS:

diff_uptake_PP = K1*diss_MeHg
diff_MeHgDOC_PP = K2*WMeHgDOC

OUTFLOWS:

MeHg_PP_to_ZP1 = PP_C_to_ZP1*MeHg_PP/PP*AE_ratio
MeHg_PP_out = PP_out*MeHg_PP/PP
MeHg_PP_to_ZP2 = PP_C_to_ZP2*MeHg_PP/PP*AE_ratio
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MeHg_PP_to_FF = PP_C_to_FF*MeHg_PP/PP *AE_ratio2
MeHg_PP_to_WPOC = PP_mort*MeHg_PP/PP
MeHg_PP_sinking = PP_sinking_to_SPOC1/PP*MeHg_PP
MeHg_PP_excrt = PP_excret*MeHg_PP/PP

PP(t) = PP(t - dt) + (PP_growth - PP_sinking_to_SPOC1 - PP_respr - PP_excret -
PP_C_to_FF - PP_C_to_ZP1 - PP_mort - PP_out - PP_C_to_ZP2) * dt

INIT PP = 0.314

INFLOWS:

PP_growth = growth_max*nut_effect*light*PP

OUTFLOWS:

PP_sinking_to_SPOC1 = PP*settling_sp1
PP_respr = PP*0.05/24
PP_excret = PP*0.01/24
PP_C_to_FF = IF(PP>= 0.025) then FF*CR_FF*PP*AE_FF*clam_feeding*PP_frac_to_FF 
else 0
PP_C_to_ZP1 = IF(PP>= 0.025) then ZP1*CR_ZP1*PP*PP_C_AE_ZP*PP_frac_to_ZP1 
else 0
PP_mort = PP*0.000208
PP_out = IF(resuspn_timing=0) then PP*0.1/8{hr-1} else 0
PP_C_to_ZP2 = IF(PP>= 0.025) then ZP_2*CR_ZP2*PP*PP_C_AE_ZP*PP_frac_to_ZP2 
else 0
AE_FF = 0.8
AE_ratio = MeHg_AE_ZP/PP_C_AE_ZP
AE_ratio2 = MeHg_AE_FF/AE_FF
clam_feeding = 0.62
const = 0.01
CR_FF = 0.015*(1-EXP(-0.009*temp))
CR_ZP1 = 0.19*(1-EXP(-0.009*temp))
CR_ZP2 = 0.23*(1-EXP(-0.009*temp))
growth_max = const*EXP(0.06933*temp)
K1 = uptake_rate1*PP/mass_of_cell
K2 = uptake_rate2*PP/mass_of_cell
mass_of_cell = 524E-12
MeHg_AE_FF = 0.8
MeHg_AE_ZP = 0.6
ng_MeHg_per_g_C_PP = MeHg_PP/PP*1e9
nut_effect = nut_data/(0.24+nut_data)
PP_C_AE_ZP = 0.7
PP_frac_to_FF = 0.6
PP_frac_to_ZP1 = 0.9
PP_frac_to_ZP2 = 0.95
settling_sp1 = 0.00125
uptake_rate1 = 1E-12*10
uptake_rate2 = 1e-12*2
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light = GRAPH(time_of_day)
(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00, 0.00), (6.00, 0.00), 
(7.00, 0.00), (8.00, 1.00), (9.00, 1.00), (10.0, 1.00), (11.0, 1.00), (12.0, 1.00), (13.0, 1.00), 
(14.0, 1.00), (15.0, 1.00), (16.0, 1.00), (17.0, 1.00), (18.0, 0.00), (19.0, 0.00), (20.0, 0.00), 
(21.0, 0.00), (22.0, 0.00), (23.0, 0.00)
nut_data = GRAPH(TIME)
(0.00, 2.58), (80.0, 11.0), (160, 6.46), (240, 8.67), (320, 3.54), (400, 2.78), (480, 1.62), (560, 
0.97)
temp = GRAPH(TIME)
(0.00, 20.7), (24.0, 22.0), (48.0, 22.3), (72.0, 20.2), (96.0, 17.7), (120, 15.8), (144, 16.5), 
(168, 18.2), (192, 20.6), (216, 20.6), (240, 21.2), (264, 21.2), (288, 20.8), (312, 19.8), (336, 
17.4), (360, 16.5), (384, 17.2), (408, 18.7), (432, 20.1), (456, 20.5), (480, 20.6), (504, 21.5), 
(528, 21.7), (552, 18.9)

POC in the water column (WPOC)

MeHg_WPOC(t) = MeHg_WPOC(t - dt) + (MeHg_WPOC_fr_ZP1 + 
MeHg_WPOC_fr_ZP2 + ads_WMeHg + ads_WMeHgDOC + MeHg_WPOC_fr_PP -
MeHg_WPOC_out - MeHg_WPOC_sinking - des_WMeHg - des_WMeHgDOC -
to_MeHgDOC) * dt

INIT MeHg_WPOC = 1.85e-8 
 
INFLOWS:

MeHg_WPOC_fr_ZP1 = MeHg_ZP1_to_WPOC
MeHg_WPOC_fr_ZP2 = MeHg_ZP2_to_WPOC
ads_WMeHg = adsorp_WMeHg
ads_WMeHgDOC = adsorp_WMeHgDOC
MeHg_WPOC_fr_PP = MeHg_PP_to_WPOC

OUTFLOWS:

MeHg_WPOC_out = WPOCout/WPOC*MeHg_WPOC
MeHg_WPOC_sinking = WPOC_sinking_to_SPOC1/WPOC*MeHg_WPOC
des_WMeHg = des_rate*MeHg_WPOC*(1-frac_MeHgDOC)
des_WMeHgDOC = des_rate*MeHg_WPOC*frac_MeHgDOC
to_MeHgDOC = WPOC_degrad*MeHg_WPOC/WPOC

WPOC(t) = WPOC(t - dt) + (ZP1_mort_to_WPOC + PP_mort_WPOC + uptake_by_bacteria 
+ ZP2_mort_to_WPOC - WPOC_sinking_to_SPOC1 - WPOCout - WPOC_degrad) * dt

INIT WPOC = 0.83

INFLOWS:

ZP1_mort_to_WPOC = ZP1_mort
PP_mort_WPOC = PP_mort
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uptake_by_bacteria = DOC_loss_to_bacteria
ZP2_mort_to_WPOC = ZP_2_mort

OUTFLOWS:

WPOC_sinking_to_SPOC1 = WPOC*settling_sp2
WPOCout = IF(resuspn_timing=0) then WPOC*0.1/8{hr-1} else 0
WPOC_degrad = WPOC*degrad_rate
degrad_rate = 0.22/24
MeHgWPOC_ng_per_g_WPOC = MeHg_WPOC/WPOC*1e9
MeHg_WPOC_ng_per_L = MeHg_WPOC*1e6
settling_sp2 = 0.02133*0.5

Porewater DOC1 (PW DOC1)

PW_DOC1(t) = PW_DOC1(t - dt) + (degrad_fr_SPOC1 + diff_flux_fr_WDOC + 
diff_flux_fr_PW_DOC2 + PW_DOC1_fr_MPB - PW_DOC1_uptake_by_bacteria) * dt

INIT PW_DOC1 = 7.81

INFLOWS:

degrad_fr_SPOC1 = SPOC1_degrad
diff_flux_fr_WDOC = DOC_diff_coeff*(WDOC-PW_DOC1)
diff_flux_fr_PW_DOC2 = -(DOC_diff_coeff/1*(PW_DOC1-PW_DOC2))
PW_DOC1_fr_MPB = MPB_excrt

OUTFLOWS:

PW_DOC1_uptake_by_bacteria = PW_DOC1*0.005417*3.5

PW_MeHgDOC1(t) = PW_MeHgDOC1(t - dt) + (diff_flux__fr_WMeHgDOC + 
diff_flux_fr_MeHgDOC2 + desorp_MeHgDOC1 + fr_SPOC1_degrad + 
fr_MeHg_MPB_excrt - adsorp_PWMeHgDOC1) * dt

INIT PW_MeHgDOC1 = 1.84E-06

INFLOWS:

diff_flux__fr_WMeHgDOC = diff_flux_fr_WDOC/(WDOC-PW_DOC1)*(WMeHgDOC-
PW_MeHgDOC1)
diff_flux_fr_MeHgDOC2 = diff_flux_fr_PW_DOC2/(PW_DOC1-
PW_DOC2)*(PW_MeHgDOC1-PW_MeHgDOC2)
desorp_MeHgDOC1 = des_PWMeHgDOC1
fr_SPOC1_degrad = to_PWMeHgDOC1
fr_MeHg_MPB_excrt = MeHg_MPB_excrt
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OUTFLOWS:

adsorp_PWMeHgDOC1 = adsorp_rateS*SPOC1*PW_MeHgDOC1
adsorp_rateS = 1.5e-3 
part_coeff_for_OC1 = (SPOC1/1.5e6)/PW_DOC1*1e3
PW_MeHgDOC1_ng_per_L = PW_MeHgDOC1*1e6

Porewater DOC2 (PW DOC2)

PW_DOC2(t) = PW_DOC2(t - dt) + (fr_SPOC2 + diff_flux_to_PW_DOC2 -
PW_DOC2_degrad) * dt

INIT PW_DOC2 = 7.96

INFLOWS:

fr_SPOC2 = SPOC2_degrad
diff_flux_to_PW_DOC2 = DOC_diff_coeff/1*(PW_DOC1-PW_DOC2)

OUTFLOWS:

PW_DOC2_degrad = PW_DOC2*0.005417*3.5

PW_MeHgDOC2(t) = PW_MeHgDOC2(t - dt) + (diff_flux_to_MeHgDOC2 + 
desorp_MeHgDOC2 + fr_SPOC2_degrad - adsorp_MeHgDOC2) * dt

INIT PW_MeHgDOC2 = 1.24E-06

INFLOWS:

diff_flux_to_MeHgDOC2 = diff_flux_to_PW_DOC2/(PW_DOC1-
PW_DOC2)*(PW_MeHgDOC1-PW_MeHgDOC2)
desorp_MeHgDOC2 = des_MeHgDOC2
fr_SPOC2_degrad = to_PW_MeHgDOC2

OUTFLOWS:

adsorp_MeHgDOC2 = adsorp_rateS*SPOC2*PW_MeHgDOC2
part_coeff_for_OC2 = (SPOC2/1.5e6)/PW_DOC2*1e3
PW_MeHgDOC2_ng_per_L = PW_MeHgDOC2*1e6

Porewater MeHg 1 (PW1 MeHginorg)

PW_MeHg1(t) = PW_MeHg1(t - dt) + (diff_flux_to_PW_MeHg1 + 
diff_flux_fr_PW_MeHg2 + desorpPWMeHg1 - adsorp_PWMeHg1) * dt

INIT PW_MeHg1 = 2.31E-08
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INFLOWS:

diff_flux_to_PW_MeHg1 = diff_const_MeHg/1*(diss_MeHg-PW_MeHg1)
diff_flux_fr_PW_MeHg2 = -diff_const_MeHg/1*(PW_MeHg1-PW_MeHg2)
desorpPWMeHg1 = des_PWMeHg1

OUTFLOWS:

adsorp_PWMeHg1 = adsorp_rateS*SPOC1*PW_MeHg1
Kd_S1MeHg = MeHg_SPOC1/(SPOC1*(PW_MeHgDOC1+PW_MeHg1))*1e6
log_Kd_S1MeHg = LOG10(Kd_S1MeHg)
PW_MeHg1_ng_per_L = PW_MeHg1*1e6

Porewater MeHg2 (PW2 MeHginorg)

PW_MeHg2(t) = PW_MeHg2(t - dt) + (diff_flux_to_PW_MeHg2 + desorp_PW_MeHg2 -
adsorp_PW_MeHg2) * dt

INIT PW_MeHg2 = 1.56E-08

INFLOWS:

diff_flux_to_PW_MeHg2 = diff_const_MeHg/1*(PW_MeHg1-PW_MeHg2)
desorp_PW_MeHg2 = des_PWMeHg2

OUTFLOWS:

adsorp_PW_MeHg2 = adsorp_rateS*SPOC2*PW_MeHg2
Kd_S2MeHg = MeHg_SPOC2/(SPOC2*(PW_MeHgDOC2+PW_MeHg2))*1e6
log_Kd_S2MeHg = LOG10(Kd_S2MeHg)
PW_MeHg2_ng_per_L = PW_MeHg2*1e6

Resuspended POC (RPOC)

MeHg_RPOC(t) = MeHg_RPOC(t - dt) + (MeHg_erosion_fr_SPOC1 + ads_RMeHg + 
ads_RMeHgDOC - MeHg_RPOC_out - RPOC_to_FF - MeHg_to_SPOC1 -
des_RMeHgDOC - des_RMeHg - to__MeHgDOCa) * dt

INIT MeHg_RPOC = 5.85E-08

INFLOWS:

MeHg_erosion_fr_SPOC1 = MeHg_to_water_col
ads_RMeHg = adsorp_RMeHg
ads_RMeHgDOC = adsorp_RMeHgDOC
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OUTFLOWS:

MeHg_RPOC_out = RPOCout/Resuspd_POC*MeHg_RPOC
RPOC_to_FF = to_FF*MeHg_RPOC/Resuspd_POC*MeHg_AE_FF/AE3
MeHg_to_SPOC1 = depositon/Resuspd_POC*MeHg_RPOC
des_RMeHgDOC = des_rate*MeHg_RPOC*frac_MeHgDOC
des_RMeHg = des_rate*MeHg_RPOC*(1-frac_MeHgDOC)
to__MeHgDOCa = RPOC_degrad*MeHg_RPOC/Resuspd_POC

Resuspd_POC(t) = Resuspd_POC(t - dt) + (erosion - depositon - to_FF - RPOCout -
RPOC_degrad) * dt

INIT Resuspd_POC = 3.03

INFLOWS:

erosion = SPOC1_to_water_column

OUTFLOWS:

depositon = RPOC_settling_rate/water_depth*Resuspd_POC
to_FF = FF*CR_FF*Resuspd_POC*AE3*clam_feeding*RPOC_frac_to_FF
RPOCout = IF(resuspn_timing=0) then Resuspd_POC*0.1/8{hr-1} else 0
RPOC_degrad = Resuspd_POC*degrad_rate
AE3 = 0.2
des_rate = 1.8e-3 
Kd_RMeHg = 
(MeHg_RPOC+MeHg_WPOC)/((Resuspd_POC+WPOC)*(WMeHgDOC+diss_MeHg))*1e6
log_Kd_RMeHg = LOG10(Kd_RMeHg)
MeHg_ng_per_g_RPOC = MeHg_RPOC/Resuspd_POC*1e9
RPOC_frac_to_FF = 0.3
time_of_day = MOD(time, 24)
water_depth = 1

Sediment POC 2 (SPOC2; below 2 cm)

MeHg_SPOC2(t) = MeHg_SPOC2(t - dt) + (fr_SPOC1 + meth2 + ads_MeHgDOC2 + 
ads_PWMeHg2 - demeth2 - des_PWMeHg2 - des_MeHgDOC2 - to_PW_MeHgDOC2) * dt

INIT MeHg_SPOC2 = 1.96E-05

INFLOWS:

fr_SPOC1 = MeHg_burial_to_SPOC2
meth2 = meth_rate2*THg2
ads_MeHgDOC2 = adsorp_MeHgDOC2
ads_PWMeHg2 = adsorp_PW_MeHg2
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OUTFLOWS:

demeth2 = MeHg_SPOC2*demeth_rate
des_PWMeHg2 = des_rate2*MeHg_SPOC2*(1-frac_MeHgDOC)
des_MeHgDOC2 = des_rate2*MeHg_SPOC2*frac_MeHgDOC
to_PW_MeHgDOC2 = SPOC2_degrad*MeHg_SPOC2/SPOC2

SPOC2(t) = SPOC2(t - dt) + (burial + fr_PW_DOC2 - SPOC2_degrad) * dt

INIT SPOC2 = 1492

INFLOWS:

burial = burial_to_SPOC2
fr_PW_DOC2 = PW_DOC2_degrad

OUTFLOWS:

SPOC2_degrad = SPOC2*SPOC__degrad
MeHg_ng_per_g_SPOC2 = MeHg_SPOC2/SPOC2*1e9
meth_rate2 = 0.0014
THg2 = 0.0091

Sediment POC1 (SPOC1; top 2 cm)

MeHg_SPOC1(t) = MeHg_SPOC1(t - dt) + (MeHg_sinking + meth1 + ads_PWMeHgDOC1 
+ ads_PWMeHg1 + MeHg_MPB_to_SPOC1 + MeHg_fr_RPOC - MeHg_to_water_col -
demeth1 - MeHg_burial_to_SPOC2 - des_PWMeHgDOC1 - des_PWMeHg1 -
to_PWMeHgDOC1) * dt

INIT MeHg_SPOC1 = 2.84E-5 
 
INFLOWS:

MeHg_sinking = MeHg_PP_sinking+MeHg_WPOC_sinking
meth1 = THg1*meth_rate1
ads_PWMeHgDOC1 = adsorp_PWMeHgDOC1
ads_PWMeHg1 = adsorp_PWMeHg1
MeHg_MPB_to_SPOC1 = MeHg_MPB_mort
MeHg_fr_RPOC = MeHg_to_SPOC1

OUTFLOWS:

MeHg_to_water_col = SPOC1_to_water_column/SPOC1*MeHg_SPOC1
demeth1 = MeHg_SPOC1*demeth_rate
MeHg_burial_to_SPOC2 = burial_to_SPOC2/SPOC1*MeHg_SPOC1
des_PWMeHgDOC1 = des_rate2*MeHg_SPOC1*frac_MeHgDOC
des_PWMeHg1 = des_rate2*MeHg_SPOC1*(1-frac_MeHgDOC)
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to_PWMeHgDOC1 = SPOC1_degrad*MeHg_SPOC1/SPOC1

SPOC1(t) = SPOC1(t - dt) + (POC_fr_PP&WPOC + deposition_fr_RPOC + fr_PW_DOC1 
+ MPB_to_SPOC1 + fr_clams_to_SPOC1 - SPOC1_degrad - SPOC1_to_water_column -
burial_to_SPOC2) * dt

INIT SPOC1 = 1465

INFLOWS:

POC_fr_PP&WPOC = (WPOC_sinking_to_SPOC1+PP_sinking_to_SPOC1)
deposition_fr_RPOC = depositon
fr_PW_DOC1 = PW_DOC1_uptake_by_bacteria
MPB_to_SPOC1 = MPB_mort
fr_clams_to_SPOC1 = biodeposit_to_SPOC1

OUTFLOWS:

SPOC1_degrad = SPOC1*SPOC__degrad
SPOC1_to_water_column = erosion_rate*resuspn_timing*obs_WPOCeq
burial_to_SPOC2 = SPOC1*burial_rate1
burial_rate1 = 0.00002/24
demeth_rate = 0.7
des_rate2 = 1.44E-01
erosion_rate = RPOC_settling_rate/water_depth
frac_MeHgDOC = 9.88E-01
MeHg_ng_per_g_SPOC1 = MeHg_SPOC1/SPOC1*1e9
meth_rate1 = 0.002
RPOC_settling_rate = 1.656
SPOC__degrad = 0.0024/24
THg1 = 0.0098
obs_WPOCeq = GRAPH(TIME)
(0.00, 6.12), (80.0, 4.51), (160, 3.90), (240, 3.52), (320, 2.56), (400, 2.64), (480, 2.26), (560, 
2.81)
resuspn_timing = GRAPH(time_of_day)
(0.00, 1.00), (1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 0.00), (5.00, 0.00), (6.00, 1.00), 
(7.00, 1.00), (8.00, 1.00), (9.00, 1.00), (10.0, 0.00), (11.0, 0.00), (12.0, 1.00), (13.0, 1.00), 
(14.0, 1.00), (15.0, 1.00), (16.0, 0.00), (17.0, 0.00), (18.0, 1.00), (19.0, 1.00), (20.0, 1.00), 
(21.0, 1.00), (22.0, 0.00), (23.0, 0.00)

Zooplankton 2 (ZP2; 63 - 210 um) 

MeHg_ZP2(t) = MeHg_ZP2(t - dt) + (MeHg_fr_PP_to_ZP2 + diff_MeHg_ZP2 + 
diff_MeHgDOC_ZP2 + MeHg_MPB_to_ZP2 - MeHg_ZP2_out -  MeHg_ZP2_to_WPOC -
grazed_by_ZP1 - MeHg_ZP2_excrt) * dt
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INIT MeHg_ZP2 = 6.90E-11

INFLOWS:

MeHg_fr_PP_to_ZP2 = MeHg_PP_to_ZP2
diff_MeHg_ZP2 = uptake_rate_ZP*ZP_2*diss_MeHg
diff_MeHgDOC_ZP2 = uptake_rate_ZP*ZP_2*WMeHgDOC
MeHg_MPB_to_ZP2 = MeHg_to_ZP2

OUTFLOWS:

MeHg_ZP2_out = (ZP2_out /ZP_2)*MeHg_ZP2
MeHg_ZP2_to_WPOC = ZP_2_mort/ZP_2*MeHg_ZP2
grazed_by_ZP1 = ZP2_grazing*MeHg_ZP2/ZP_2*MeHg_AE_ZP/AE_ZP2
MeHg_ZP2_excrt = ZP2_excret*MeHg_ZP2/ZP_2

ZP_2(t) = ZP_2(t - dt) + (ZP_2_C_fr_PP + C_fr_MPB_to_ZP2 - ZP2_excret - ZP_2_mort -
ZP2_out - ZP2_respr - ZP2_grazing) * dt

INIT ZP_2 = 0.008

INFLOWS:

ZP_2_C_fr_PP = PP_C_to_ZP2
C_fr_MPB_to_ZP2 = MPB_to_ZP2

OUTFLOWS:

ZP2_excret = ZP_2*excrt_rate
ZP_2_mort = ZP_2*0.02/24
ZP2_out = IF(resuspn_timing=0) then ZP_2*0.1/8{hr-1} else 0
ZP2_respr = ZP_2*respr_rate
ZP2_grazing = ZP1*CR_ZP1*ZP_2*AE_ZP2*ZP2_frac
AE_ZP2 = 0.3
MeHg_ng_per_g__C_ZP2 = MeHg_ZP2/ZP_2*1e9
ZP2_frac = 0.05

Zooplankton1 (ZP1; > 210 um)

MeHg_ZP1(t) = MeHg_ZP1(t - dt) + (MeHg_fr_PP_ZP1 + diff_MeHg_ZP1 + 
diff_MeHgDOC_ZP1 + MeHg_MPB_to_ZP1 + fr_MeHg_ZP2 - MeHg_ZP1_out -
MeHg_ZP1_to_WPOC - MeHgZP1_excrt) * dt

INIT MeHg_ZP1 = 6.90E-11

INFLOWS:

MeHg_fr_PP_ZP1 = MeHg_PP_to_ZP1
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diff_MeHg_ZP1 = uptake_rate_ZP*ZP1*diss_MeHg
diff_MeHgDOC_ZP1 = uptake_rate_ZP*ZP1*WMeHgDOC
MeHg_MPB_to_ZP1 = MeHg_to_ZP1
fr_MeHg_ZP2 = grazed_by_ZP1

OUTFLOWS:

MeHg_ZP1_out = (ZP1_out/ZP1)*MeHg_ZP1
MeHg_ZP1_to_WPOC = ZP1_mort*MeHg_ZP1/ZP1
MeHgZP1_excrt = ZP1_excret*MeHg_ZP1/ZP1

ZP1(t) = ZP1(t - dt) + (ZP1_C_fr_PP + C_fr_MPB_to_ZP1 + fr_ZP2 - ZP1_mort -
ZP1_respr - ZP1_excret - ZP1_out) * dt

INIT ZP1 = 0.013

INFLOWS:

ZP1_C_fr_PP = PP_C_to_ZP1
C_fr_MPB_to_ZP1 = MPB_to_ZP1
fr_ZP2 = ZP2_grazing

OUTFLOWS:

ZP1_mort = ZP1*0.02/24
ZP1_respr = ZP1*respr_rate
ZP1_excret = ZP1*excrt_rate
ZP1_out = IF(resuspn_timing=0) then ZP1*0.1/8{hr-1} else 0
excrt_rate = 0.04/24
MeHg_ng_per_g__C_ZP1 = MeHg_ZP1/ZP1*1e9
respr_rate = 0.04/24
uptake_rate_ZP = 0.00115*0.1

Not in a sector
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Appendix III.

Model parameters.

Parameter Value Unit Reference
Phytoplankton (PP)
Maximum growth rate (Gmax)
Fraction of PP ingestion by ZP1

Zooplankton (ZP)
Excretion rate
Mortality rate
Respiration rate
Predation rate

Filter feeder(FF)
Excretion rate
Respiration rate
Mortality rate
Predation rate

Microphytobenthos (MPB)
Predation rate
Fraction of MPB ingestion by ZP1

Sediment MeHg (MeHgSPOC)
Methylation rate (12 % OM)
Methylation rate (6 % OM)
Methylation rate (3 % OM)
Total Hg concentration (12 % OM)
Total Hg concentration (6 % OM)
Total Hg concentration (3 % OM)
Organic carbon based Kd (12 % 
OM)
Organic carbon based Kd (6 % 
OM)
Organic carbon based Kd (3 % 
OM)
Desorption rate (12 % OM)
Desorption rate (6 % OM)
Desorption rate (3 % OM)

4.0 × 10-3 
0.85

8.4 × 10-4 
4.3 × 10-4 
8.4 × 10-4 
1.0 × 10-3 

1.3 × 10-4

1.3 × 10-4 
2.1 × 10-4 
2.1 × 10-4 

2.1 × 10-3 
0.1

6.7 × 10-4 
2.3 × 10-3 
3.1 × 10-3 
1.4 × 10-3 
3.1 × 10-3 
6.5 × 10-3 

0.010
8.3 × 10-3 
5.3 × 10-3 

0.14
0.18
0.29

h-1 

Unitless

h-1 

h-1 

h-1 

h-1 

 

h-1

h-1 

h-1 

h-1 

 

h-1 

Unitless

h-1 

h-1 

h-1 

g m-3 
g m-3 
g m-3 

m3 C g-1 
m3 C g-1 
m3 C g-1 

h-1 

h-1 

h-1 

Calibration
Calibration

Calibration
Calibration
Calibration
Calibration

Calibration
Calibration
Calibration
Calibration

Calibration
Calibration

Calculated from 
Hammerschmidt and 

Fitzgerald (2004)
Data from 

the Chesapeake Bay 
samples

Calculated from 
Hammerschmidt and 

Fitzgerald (2004)
Calculated
Calculated
Calculated
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