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        Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a positive-

strand RNA virus. SatC, a satellite RNA associated with TCV, intensifies symptoms of 

TCV on all symptomatic hosts. Arabidopsis protoplast assays indicated that TCV virion 

levels are substantially reduced by the presence of satC or when two amino acids are 

inserted at the N-terminus of the coat protein (CP), resulting in similarly enhanced 

symptoms. Since the TCV CP is an RNA silencing suppressor, increased levels of the 

resultant free CP could augment silencing suppression resulting in enhanced colonization 

of the plant.   

        Cloning and sequencing of virus-derived small RNAs (vsRNAs) accumulating in 

Arabidopsis plants infected with TCV with or without satC showed that the majority of 



                                                                          

vsRNAs are ~21-nt, purine-rich sequences. One TCV vsRNA species, TvsRNA5, is 

complementary to 3’ UTR sequences in transcripts of 12 Arabidopsis genes. Transcript 

levels of 3 of these genes were reduced 2.4- to 4-fold by TCV infection, but restored to 

normal levels when infected with TCV containing a deletion in the TvsRNA5 sequence. 

This deletion did not affect levels of virus, but resulted in symptom attenuation in 

infected plants. These results suggest that at least some vsRNAs are specifically altering 

expression of host genes leading to phenotypic changes in host plants.   

          In addition, a technique has been established for detection of viral RNAs in whole 

plants, which makes use of the binding of the CP of MS2 bacteriophage (CPMS2) to a 19 

base hairpin (hp). Protoplast co-transfection of TCV containing the hairpin and a fusion 

protein construct consisting of CPMS2, GFP and a nuclear localization signal (NLS) 

relocated GFP from the nucleus to the cytoplasm, indicating the presence of virus. TCV 

movement was also tracked by observing cytoplasmic GFP fluorescence in infected 

transgenic plants expressing the fusion protein. This technique should be amenable for 

detection of any virus with a transformable host. 
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CHAPTER I 

 

THE ROLES OF RNA SILENCING IN VIRUS-PLANT 

INTERACTION: AN OVERVIEW 

 

Introduction 

 

           RNA silencing is an ancient, evolutionarily conserved process in eukaryotic 

organisms including plants, animals, and fungi, which suppresses or silences gene 

expression in nucleotide sequence-specific manner. RNA silencing is triggered by long 

double-stranded RNAs (dsRNAs) or single-stranded hairpin RNAs (hpRNAs), which are 

cleaved by cellular RNaseIII-like enzymes, termed Dicers, to generate 21–24 nucleotide 

(nt) small RNA duplexes (Bernstein et al., 2001; Fire et al., 1998; Hannon, 2002). One 

selected strand of the small RNA duplex is then incorporated into an effector 

endonuclease complex to direct sequence-specific degradation or inhibition of 

complementary DNA or RNA at transcriptional or post-transcriptional levels (Hammond 

et al., 2000; Liu et al., 2004a; Verdel et al., 2004). Through its involvement in regulating 

gene expression, RNA silencing plays important roles in diverse biological activities 

including development and chromatin remodeling (Carrington and Ambros, 2003; Kidner 

and Martienssen, 2005).  

          RNA silencing can also be triggered by viruses invading host cells, which are 

processed by Dicers into ~ 21 nt small RNAs, termed virus-derived small RNAs 

(vsRNAs). vsRNAs are loaded into effector endonuclease complexes and direct nuclease 
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cleavage of complementary viral RNAs. The vsRNAs may also direct degradation of 

complementary cellular mRNAs, thereby interfering with host gene expression. In the 

past 15 years, advances in studying RNA silencing have led to breakthroughs in our 

understanding of the interaction between viruses and their hosts. For example, protein 2b 

encoded by Cucumber mosaic virus (CMV) was originally identified as a pathogenicity 

factor, required for long-distance movement of the virus (Ding et al., 1995). However, 

further studies indicated that this requirement may be the result of the role of 2b in 

suppressing RNA silencing, thereby helping virus to spread in plants (Brigneti et al., 

1998). In this chapter, I will present the status of our knowledge of RNA silencing with 

an emphasis on how it is involved in the interaction between plant viruses and their hosts.  

    

RNA silencing pathways revealed in plants 

     

          Since the original discovery of RNA silencing in petunia in 1990 (Napoli et al., 

1990), RNA silencing has been extensively studied in plants, especially in the model 

plant Arabidopsis thaliana. Using various biochemical and genetic approaches, 

increasing evidence indicates that RNA silencing in plants operates through a group of 

interconnected pathways (Baulcombe, 2004; Herr, 2005; Qi and Hannon, 2005). As 

described below, RNA silencing pathways share the same basic reactions and are 

generally triggered by dsRNAs or hpRNAs derived from different sources. Furthermore, 

they may play different roles in plant developmental regulation.  
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Post-transcriptional gene silencing (PTGS) pathway 

           In 1990, Napoli et al. introduced a chimeric chalcone synthase gene into petunia in 

an attempt to generate more vibrant leaf color. Unexpectedly, the opposite effect was 

achieved, where forty-two percent of the transgenic plants generated white flowers and/or 

flowers with white sectors on a wild type pigmented background (Napoli et al., 1990). 

This phenomenon was originally termed co-suppression of the introduced transgene and 

homologous host gene copies, and was also found later in other transgenic plants (de 

Carvalho-Niebel et al., 1995b; Dorlhac de Borne et al., 1994; Hart et al., 1992; Smith et 

al., 1990; Van der Krol et al., 1990; Vaucheret et al., 1995). Co-suppression significantly 

decreased the steady-state levels of both host and transgene mRNAs. The transgenes 

were transcribed normally in the nucleus, indicating that this co-suppression was 

operating at post-transcriptional levels to silence gene expression, thereby termed post-

transcriptional gene silencing (PTGS) (de Carvalho-Niebel et al., 1995a; Vaucheret et al., 

1997).  

         Further chemical and genetic studies of PTGS determined that it is triggered by the 

long dsRNA derived from transgenic inverted repeats (Fire et al., 1998; Figure 1.1A). 

The dsRNA is processed by Dicer into ~21 nt RNA duplexes, termed small interfering 

RNAs (siRNA). One selected strand of the siRNA, which has the 5’ phosphate at the less 

stable end of the duplex, is loaded into an endonuclease complex termed RNA-induced 

silencing complex (RISC). This single-stranded siRNA can base pair with 

complementary mRNAs transcribed from transgenes or host genes to guide mRNA 

cleavage or degradation by RISC (Baumberger and Baulcombe, 2005).   
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Figure 1.1  RNA silencing pathways revealed in plants (see the text for details). (A) The 

PTGS pathway. The dsRNA are encoded by transgenes present as inverted repeats. (B) 

The miRNA pathway. The miRNAs originate from the RNA polymerase II transcripts 

from endogenous non-coding miRNA genes. (C) The trans-acting siRNA pathway. The 

dsRNAs are synthesized by cellular RdRp-mediated primer extension on mRNA 

templates using complementary siRNAs (primary siRNAs) as primers or de novo 

transcription from RNA fragments generated in the miRNA pathway. (D) The TGS 

pathway. The dsRNA are derived from transgenes present as inverted repeats. M, 

methylation of DNA that suppresses gene transcription.  
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Endogenous microRNA (miRNA) pathway  

          During cloning of siRNAs, it was found that eukaryotes generate another type of 

small RNA, termed microRNAs (miRNAs) (Bartel, 2004; Jones-Rhoades and Bartel, 

2004). Further studies revealed that miRNAs originate from RNA polymerase II 

transcription of endogenous non-coding miRNA genes (Bartel, 2004; Chen, 2005; Kim, 

2005; Figure 1.1B). miRNAs, which are similar in size (~21 nt) and structure to siRNAs, 

are generally contained within hairpin stems in transcripts that are capped, spliced, and 

polyadenylated. The miRNA gene transcripts (pri-miRNAs) are cleaved by Dicers in the 

nucleus to generate 60- to 70-nt intermediates, termed pre-miRNAs (Denli et al., 2004; 

Han et al., 2004; Lee et al., 2003; Zeng et al., 2005). The pre-miRNAs are then 

recognized and exported by an ortholog of exportin-5 in plants to the cytoplasm (Lund et 

al., 2004), where they are further processed by cytoplasmic Dicers into ~21-nt miRNAs 

(Chendrimada et al., 2005; Forstemann et al., 2005). One strand of the duplex (the 

miRNA) is incorporated into RISC and guides cleavage of complementary mRNAs 

transcribed from host genes (Bartel, 2004; Kidner and Martienssen, 2005). Through 

directing silencing of cellular mRNAs, the miRNAs negatively regulate genes expression 

required for various plant development processes including organ polarity, leaf growth, 

stem cell identity, and developmental transitions (Ambros, 2001; Pasquinelli and 

Ruvkun, 2002). 
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Trans-acting siRNA pathway  

         Genetic analyses of Arabidopsis siRNAs recently revealed one silencing pathway in 

plants, whose operation requires cellular RNA-dependent RNA polymerase (RdRp) 

(Yoshikawa et al., 2005). In this pathway, the long dsRNAs cleaved by Dicers are 

synthesized by cellular RdRp-mediated primer extension on mRNA using 

complementary siRNAs (primary siRNAs) as primers (Herr, 2005; Figure 1.1C) or de 

novo transcription from RNA fragments generated in the miRNA pathway (Yoshikawa et 

al., 2005). The siRNAs generated in this pathway incorporate into RISC and target 

mRNA sequences that may have no complementarities with the primary siRNAs or 

miRNAs. Therefore, these siRNAs are termed trans-acting siRNAs (Allen et al., 2005; 

Yoshikawa et al., 2005). In addition to RdRp, other proteins are also required for the 

trans-acting siRNA pathway. For example, a coiled-coil protein (SUPPRESSOR OF 

GENE SILENCING3, SGS3) in Arabidopsis functions to protect the single-stranded 

RNA fragments produced in the miRNA pathway from degradation by nucleases 

(Yoshikawa et al., 2005). The trans-acting siRNAs are involved in regulation of plant 

development because RdRp and SGS3-defective Arabidopsis mutants display defects in 

development such as altered leaf curvature and narrowed petioles (Peragine et al., 2004).  

 

Transcriptional gene silencing  (TGS) pathway 

         The three pathways described above involve RNA-RNA interactions between small 

RNAs and their complementary mRNAs. RNA silencing can also operate at the level of 

transcription (TGS). TGS was first discovered in plants infected with Potato spindle 

tuber viroid (PSTVd). PSTVd, a short pathogenic circular RNA, guides de novo DNA 
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methylation of DNA copies transgenetically integrated into the plant genome 

(Wassenegger et al., 1994). Further studies indicated that in this pathway, Dicer cleavage 

of the transgenic inverted RNA transcript in the nucleus generates 24-nt siRNAs, which 

are longer than siRNAs produced by other pathways (Figure 1.1D). The 24-nt siRNAs 

load into a nuclear effecter complex, termed RNA-induced initiation of transcriptional 

silencing (RITS) complex, to guide DNA methylation (cytosine-5) and histone 

modifications, thereby suppressing gene transcription (Verdel and Moazed, 2005; Verdel 

et al., 2004). TGS may also function to protect the DNA genome against damage caused 

by transposons (Baucombe, 2004). 

 

RNA silencing-related cellular proteins in plants 

 

        As described above, a number of different cellular proteins or protein complexes are 

involved in RNA silencing, including Dicers, RISC, and RdRps. The cellular proteins 

functioning in RNA silencing may vary among plant species, which provides tremendous 

flexibility in the initiation and execution of RNA silencing. For example, it has been 

found that Arabidopsis, poplar, and rice contain four, five, and six Dicer genes, 

respectively (reviewed by Watson et al., 2005). Since our knowledge of RNA silencing in 

plants mostly comes from studies of the pathways in Arabidopsis, proteins in Arabidopsis 

that play key roles in RNA silencing (Table 1.1) are discussed below.  
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Table 1.1 Arabidopsis proteins involved in RNA silencing 
Code Protein name Function References 
DCL1 DICER-LIKE1 Generation of miRNAs 

 
Park et al., 2002;  
Reinhart et al., 2002 

DCL2 DICER-LIKE2 Generation of vsRNAs in VIGS 
and 24-nt endogenous siRNAs   
  

Borsani et al., 2005; 
Xie et al., 2004  

DCL3 DICER-LIKE3 Generation of 24-nt siRNAs in the 
TGS 
 

Xie et al., 2004 

DCL4 DICER-LIKE4 Generation of trans-acting siRNAs 
in PTGS  
 

Dunoyer et al., 2005;  
Gasciolli et al., 2005;  
Yoshikawa et al., 2005 

AGO1  ARGONAUTE1 mRNA cleavage  Baumberger and Baulcombe, 
2005; Fagard et al., 2000; 
Qi et al., 2005; Vaucheret et 
al., 2004 

AGO4 ARGONAUTE4 chromatin modification Zilberman et al., 2004 
 

AGO7  ARGONAUTE7 mRNA cleavage 
 

Adenot et al., 2006 

RDR1 
 

RNA-DEPENDENT 
RNA POLYMERASE1 

Required in the PTGS and trans-
acting siRNA pathways 
 

Yu et al., 2003 

RDR2  
 

RNA-DEPENDENT 
RNA POLYMERASE2 

Involved in the TGS pathway 
occurring in the nuclear 
 

Herr et al., 2005; 
Xie et al., 2004 

RDR6  
 

RNA-DEPENDENT 
RNA POLYMERASE6 

 Required for operation of the 
trans-acting siRNA pathway 
 

Dalmay et al., 2000; 
Mourrain et al., 2000 

SDE3  SILENCING-
DEFECTIVE GENE3 

RNA helicase  Dalmay et al., 2001; 
Himber et al., 2003 

SGS3  
 

SUPPRESSOR OF 
GENE SILENCING3 

RNA stabilizer  
 

Mourrain et al., 2000; 
Yoshikawa et al., 2005 

HST  
 

HASTY Putative exportin  Park et al., 2005 

HEN1 HUA ENHANCER1 
 

RNA methylase  Li et al., 2005; 
Yu et al., 2005 

HYL1 HYPONASTIC 
LEAVES1  

dsRNA-binding protein  
 

Hiraguri et al., 2005; 
Lu and Federoff, 2000 
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Dicers 

          Using biochemical and genetic methods, four Dicer-like enzymes (DCLs) have 

been identified in Arabidopsis, which are responsible for generation of the different 

classes of small RNAs (Aravin and Tushl, 2005; Wang and Metzlaff, 2005). DCL1 

functions in the miRNA pathway to process polymerase II transcripts into miRNAs 

(Kurihara and Watanabe, 2004; Park et al., 2002; Reinhart et al., 2002). DCL2 is 

involved in generation of vsRNAs (Xie et al., 2004) and some endogenous siRNAs  

(Borsani et al., 2005). DCL3 is required for processing long dsRNA precursors into 24-nt 

siRNAs in the TGS pathway (Qi et al., 2005; Xie et al., 2004). DCL4 is required for 

generation of siRNAs involved in the PTGS pathway (Dunoyer et al., 2005) and the 

trans-acting siRNA pathway (Gasciolli et al., 2005).  

          These findings indicate that different Dicers are responsible for production of 

different small RNAs. However, complete blockage of siRNA biogenesis in the trans-

acting siRNA pathway requires mutation of both DCL3 and DCL4, suggesting that 

Dicers are functionally redundant to some degree (Gasciolli et al., 2005). Functional 

redundancy in siRNA production and DNA methylation of DCL2, DCL3 and DCL4 was 

further demonstrated by using transfer-DNA (T-DNA) insertional mutagenesis, which 

generated all possible double mutants as well as dcl2/dcl3/ dcl4 triple mutant (Henderson 

et al., 2006). When a specific Dicer is not available, other Dicers can substitute for it and 

switch silencing to another pathway (Herr, 2005). 

         Among the four DCLs in Arabidopsis, DCL1, DCL2, and DCL3 contain a RNA-

binding PAZ (Piwi/Argonaute/Zwille) domain that is structurally homologous with the 

active center of RNase H. Mutations within the PAZ domain result in decreased cleavage 
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efficiency, suggesting that the PAZ domain is important for the function of DCLs in 

RNA silencing (Zhang, 2004). However, DCL4 is unusual because it lacks a PAZ 

domain. It may utilize adaptor molecules to interact with the RNA templates in its 

silencing pathway. 

 

RISC 

          As mentioned above, siRNAs and miRNAs are incorporated into RISC to guide 

cleavage or degradation of their complementary mRNAs (Hutvagner, 2005; Schwarz et 

al., 2003). RISC is a cellular multisubunit protein complex, with its key component, an 

ARGONAUTE (AGO) protein, containing a PAZ RNA-binding domain and a PiWi 

RNase H-like domain (Jones-Rhoades et al., 2006; Liu, et al., 2004a; Song, et al., 2004). 

Among the proteins involved in RNA silencing, the PAZ domain is found only in Dicers 

and AGO proteins. Ten AGO homologues, termed AGO1-10, have been identified in 

Arabidopsis (Bohmert et al., 1998; Fagard et al., 2000; Hunter et al., 2003; Zilberman et 

al., 2003). AGO1 selectively recruits miRNAs, trans-acting siRNAs, and transgene-

derived siRNAs through its PAZ domain, but not the 24-nt siRNAs generated in the TGS 

pathway (Baumberger and Baulcombe, 2005; Qi et al., 2005; Vaucheret et al., 2004). 

AGO1 cleaves miRNA-targeted RNAs in vitro though its PiWi domain that is proposed 

to constitute an RNase catalytic center (Baumberger and Baulcombe, 2005). Mutation of 

Arabisopsis AGO4 substantially decreased maintenance of DNA methylation triggered 

by transgenes in the TGS pathway, without blocking DNA methylation initiation, 

suggesting that AGO4 may function in the 24-nt siRNA-directed chromatin modifications 

(Zilberman et al., 2003). In addition, some trans-acting siRNAs control leaf development 
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through the action of AGO7 (Adenot et al. 2006). Functions of other AGO proteins in 

Arabidopsis are currently not known. However, sequence similarities among AGO 

proteins suggest that they might have similar activities but recruit different subsets of 

small RNAs. 

 

RdRps 

          Arabidopsis has six cellular RdRps (RDR1-6), which synthesize dsRNAs that are 

processed by Dicers into siRNAs. These RdRps share common amino acid sequences that 

are distantly related to the catalytic domain of DNA-dependent RNA polymerases 

(DdRp) (Iyer et al., 2003). RDR1 is required in the PTGS and trans-acting siRNA 

pathways (Dalmay et al. 2000; Mourrain et al. 2000; Yu et al., 2003). RDR2 mutants are 

defective for production of endogenous 24-nt siRNAs, suggesting that RDR2 is involved 

in the TGS pathway occurring in the nucleus (Herr et al., 2005; Xie et al., 2004). RDR6 is 

required for operation of the trans-acting siRNA pathway as described above. Function 

of other RdRps in Arabidopsis is not yet clear. It is proposed that combination of various 

RdRps, Dicers, and AGO proteins contribute to functional diversification of silencing 

pathways. 

         RdRp synthesize dsRNAs by primer-dependent or primer-independent (de novo) 

mechanisms. For primer-dependent mechanisms, primary siRNAs are needed to serve as 

primers in RdRp-directed primer extension on single-stranded RNA (ssRNA) templates 

to generate dsRNA (Sijen et al., 2001; Vaistij et al., 2002; Voinnet et al., 1998). For 

primer-independent mechanisms, ssRNAs are converted to dsRNAs by RdRp-mediated 

de novo transcription. Consistent with this mechanism, it was found that tomato cellular 
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RdRp can catalyze de novo synthesis of complementary RNAs from ssRNA templates in 

vitro (Schiebel et al., 1993). In wheat germ extracts, ssRNAs can be converted into 

dsRNAs by putative cellular RdRp activity (Tang et al., 2002). It is not known how RdRp 

correctly differentiate the silenced transgene RNAs from the non-silenced endogenous 

RNAs. One possibility is that the silenced RNAs lack 5’ cap and/or 3’ poly(A) tails and 

therefore appear aberrant compared with “normal” non-silenced RNAs, which may make 

them accessible for RdRps. 

        

HEN1, HST, HYL1, SGS3, and SDE3 

            In addition to the four dicers, ten AGO proteins, and six RdRps, an increasing 

number of additional proteins have been recently identified in Arabidopsis that help to 

generate the different classes of small RNAs (Herr, 2005; Hutvagner, 2005; Kidner and 

Martienssen, 2005; Wang and Metzlaff, 2005). For example, HUA ENHANCER 1 

(HEN1) is a methyltransferase that methylates the 3’ terminal nucleoside of miRNA 

duplexes (Yu et al., 2005). HASTY (HST) is an ortholog of exportin-5 in Arabidopsis, 

which is necessary for export of pre-miRNAs into the cytoplasm from the nucleus (Park 

et al., 2005). HYPONASTIC LEAVES 1 (HYL1) is a dsRNA-binding protein that 

interacts with DCL1 for miRNA biogenesis (Hiraguri et al., 2005; Lu and Federoff, 

2000). SGS3 is a coiled-coil protein stabilizing the single-stranded RNA fragments 

cleaved in the miRNA pathway from degradation by nucleases as described above 

(Mourrain et al., 2000; Yoshikawa et al., 2005). SILENCING-DEFECTIVE GENE 3 

(SDE3) is an RNA helicase that may act to resolve secondary structures present in RdRp 

templates (Dalmay et al., 2001; Himber et al., 2003). 



 14

The antiviral defense role of VIGS in plants 

 

           Most plant viruses contain positive-strand RNA genomes that encode genetic 

information required for viral infection in hosts. Studies of plants infected by such 

positive-strand RNA virus as Tobacco etch virus (TEV), Potato virus X (PVX), and 

Potato virus Y (PVY) indicate that viral infection can be restricted or blocked by 

transgenic expression of portions of the viral genomic RNA (English et al., 1996; 

Goodwin et al., 1996; Lindbo and Dougherty, 1992; Mueller et al., 1995; Tanzer et al., 

1997). Further studies of this phenomena indicated that the overexpression of viral RNA 

fragments induces a PTGS-like silencing activity that targets viral RNAs, termed virus-

induced gene silencing (VIGS) (Kumagai et al., 1995; Ruiz, et al., 1998).          

         VIGS was originally considered to be PTGS because it was thought to be triggered 

by long dsRNAs generated in the process of viral replication. However, there is no direct 

evidence supporting the existence of dsRNA intermediates during replication of the vast 

majority of RNA viruses. Direct evidence that VIGS is not triggered by the dsRNA 

comes from sequencing of the vsRNAs cloned from plants infected with Cymbidium 

ringspot virus (CymRSV). The CymRSV-derived vsRNAs are not randomly distributed 

throughout the viral RNAs, which would be expected if they were generated by digestion 

of a long dsRNA like that in the PTGS pathway, but rather they are primarily derived 

from discrete “hotspot” regions (Molnar et al., 2005). Furthermore, the vsRNAs are 

mainly derived from plus-strands, which are present at levels 10-100 fold higher than 

those complementary minus-strands generated during virus replication (Molnar et al., 

2005). These results suggest that VIGS is triggered by the hairpin structures present in 
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the single-stranded viral RNA molecules, a mechanism similar to biogenesis of 

endogenous miRNAs (Rhoades et al., 2002; Szittya et al., 2002; Voinnet, 2005; Figure 

1.2A). The contribution of such intra-molecular base-pairing to vsRNA generation is 

strongly supported by the fact that inverted transgenic repeats, when inserted into 

recombinant virus, trigger more efficient VIGS than inserted linear RNA fragments 

(Lacomme et al., 2003). vsRNAs generated in PSTVd-infected plants are also mainly 

derived from intramolecular pairing region of their circular RNA genome (Denti et al., 

2004; Itaya et al., 2001; Papaefthimiou et al., 2001). 

         vsRNAs incorporate into RISC and guide cleavage of viral RNAs, thereby 

preventing accumulation of virus in plants. The antiviral role of VIGS is indicated by the 

“recovery” phenomena in nontransgenic plants. For example, the severe symptoms 

initially displayed by upper leaves of Nicotiana clevelandii infected with Tomato black 

ring nepovirus (TomBRV) were significantly attenuated after systemic spread of the 

virus (Ratcliff et al., 1997). Northern blot results indicated that virus content in recovered 

leaves was reduced significantly. Furthermore, the recovered leaves were resistant to 

secondary inoculation of TomBRV (Ratcliff et al., 1997). VIGS can also explain the 

phenomenon of cross-protection in which infection of a plant by a mild strain of a plant 

virus elicits resistance to a related severe strain (Ratcliff et al., 1999). This is caused by 

the VIGS induced by infection of the low-pathogenic virus, which targets homologous, 

high-pathogenic challenge viruses. The contribution of RNA silencing to plant resistance 

was also supported by finding that mutations in genes that encode proteins involved in 

RNA silencing pathways resulted in enhanced susceptibility to virus infection (Table 1.2). 

For example, loss-of-function mutation of RDR1 in Arabidopsis thaliana increases plant 
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Figure 1.2  RNA silencing induced by viruses in plants (see the text for details). (A) 

VIGS. (B) Secondary VIGS. (C) RISC cleavage of host mRNA directed by the vsRNA.  
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Table 1.2 Effects of host protein defects on plant susceptibility to viruses 
Plant Gene Mutant Enhanced plant 

susceptibility to viruses 
No effect on plant 
susceptibility to viruses 

References 

Tobacco RDR1 rdr1 Tobacco mosaic virus  Yu et al., 2003 
 

Arabidosis RDR1 rdr1 Tobamoviruses,  
Tobra viruses,  
Potexviruses 

Cucumber mosaic 
virus 

Yang et al., 2004; 
Yu et al., 2003 

Arabidosis RDR6 rdr6 Cucumber mosaic virus Tobacco rattle virus 
Tobacco mosaic virus 

Dalmay et al., 2001; 
Mourrain et al., 
2000 

Arabidosis DCL2 dcl2 Turnip crinkle virus  Xie et al., 2004 

Arabidosis AGO1 ago1 Cucumber mosaic virus 
 

 Boutet et al., 2003 

Arabidosis SGS3 sgs3 Cucumber mosaic virus 
 

 Dalmay et al., 2001 

Arabidosis SDE3 sde3 Cucumber mosaic virus 
 

 Dalmay et al., 2001 
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susceptibility to Tobamoviruses, Tobraviruses and Potexviruses, but not to CMV (Yang 

et al., 2004; Yu et al., 2003). The differential effects on plant susceptibility to different 

viruses might be caused by specialization of components of silencing pathways.  

           The antiviral effects of VIGS can be further amplified by the action of cellular 

RdRps involved in RNA silencing. Amplification occurs via at least two mechanisms. 

The first mechanism requires the presence of primary vsRNAs, which are proposed to 

prime cellular RdRp-mediated extension on viral RNA templates to synthesize new 

dsRNA. The dsRNAs are then recognized by Dicers to trigger further rounds of VIGS, 

termed secondary VIGS (Figure 1.2B). Occurrence of this process is supported by finding 

that VIGS initiated by a vsRNA that was complementary to one location of a targeted 

mRNA resulted in accumulation of secondary vsRNAs that corresponded to adjacent 

regions (Vaistij et al., 2002). In Arabidopsis, synthesis of secondary vsRNAs and 

operation of secondary VIGS requires activities of RDR6, AGO1, SGS3, and SDE3, the 

key components involved in the trans-acting siRNA pathway (Himber et al., 2003; 

Mourrain et al., 2000; Vaistij et al., 2002; Yoshikawa et al., 2005). These proteins might 

also be involved in a second mechanism in which these proteins are thought to recognize 

aberrant RNAs produced by viruses and transcribe them de novo into dsRNAs (Mourrain 

et al., 2000). Arabidopsis thaliana mutants lacking functional AGO1, RDR6, or SGS3 

were hypersusceptible to CMV, but not Tobacco rattle virus (TRV) and Tobacco mosaic 

virus (TMV) (Table 1.2) (Boutet et al., 2003; Dalmay et al., 2001; Muangsan et al., 

2004), suggesting that there is some specialization in components of secondary VIGS. 
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          Because of the specific and adaptive features as described above, RNA silencing is 

considered an antiviral defense mechanism in plants (Ahlquist, 2002; Gitlin and Andino, 

2003). This mechanism is primarily mediated by the RNA-RNA interaction between 

vsRNAs and their complementary viral RNAs. It differs from the protein-based native 

immune system in plants, which is dependent on expression of membrane-bound or 

cytosolic disease resistance proteins (R proteins). The R proteins interact with specific 

viral proteins, termed elicitors (Dangl and Jones, 2001), to trigger a cascade of salicylic 

acid-dependent resistance reactions that result in programmed cell death, known as the 

hypersensitive response. In compatible plant-virus interactions, the viral elicitor escapes 

recognition of R protein, leading to disease development. 

 

Counterdefense strategies of viruses to VIGS 

 

          As described above, when a virus enters a host cell, it induces RNA silencing that 

prevents its accumulation in plants. To successfully infect plants, viruses need to evolve 

strategies to overcome this antiviral mechanism. Viruses encode specific proteins, termed 

suppressors, which suppress silencing. Alternatively, viruses may evade silencing by 

replicating in nuclease-inaccessible sites. Studies of these strategies will help us 

understand regulation of RNA silencing. These strategies also provide us with examples 

of co-evolution between hosts and parasites.  
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Suppression of RNA silencing 

          Over the past several years, a large number of plant viruses have been found to 

encode silencing suppressors (Table 1.3). One of the best-characterized examples is the 

helper component proteinase (HcPro) of Potyviruses, which contains a proteinase domain 

catalyzing the autoproteolytic cleavage between HcPro and the adjacent protein within 

the large viral polyprotein. HcPro is a multifunctional protein, required for viral genome 

amplification, long-distance movement, and pathogenicity (Kasschau et al., 1997; Pruss 

et al., 1997). HcPro was the first silencing suppressor to be identified with early reports 

indicating that it suppresses VIGS, resulting in recovery of potyvirus-infected leaves 

(Anandalakshmi et al., 1998; Brigneti et al., 1998; Kasschau and Carrington, 1998). 

Overexpression of HcPro in tobacco dramatically reduced the levels of transgene-

triggered siRNAs, suggesting that HcPro may suppress RNA silencing by interfering with 

the biogenesis of siRNAs (Johansen and Carrington, 2001; Mallory et al., 2002; Figure 

1.2A). It was recently found that HcPro inhibits RNA silencing by binding to siRNAs in 

Drosophila embryo extracts, which requires a cellular factor that increases the affinity of 

HcPro binding to siRNA duplexes (Lakatos et al., 2006). Although the cellular factor is 

detectable in Arabidopsis extracts, it is currently not known whether it is required for 

efficient silencing suppression in plants (Lakatos et al., 2006). HcPro also interacts with 

the miRNA pathway by facilitating accumulation of miRNAs in transgenic Arabisopsis 

and tabacco plants (Dunoyer et al., 2004; Mallory et al., 2002) and reducing HEN1-

mediated 3’ terminal nucleoside methylation (Ebhardt et al., 2005). 

         The 2b protein of cucumoviruses, a small protein of about 100 amino acids encoded 

by an overlapping viral open reading frame, has also been identified as a silencing  
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Table 1.3 RNA silencing suppressors encoded by plant viruses  
 
 

Viral genus Virus Suppr-
essors 

Other functions References 

Carmovirus  
 

Turnip crinkle virus p38 Coat protein Qu et al, 2003;  
Thomas et al., 2003 

Cucumovirus  
 

Cucumber mosaic virus; 
Tomato aspermy virus 

2b Host-specific movement Brigneti et al., 1998 

Beet yellows virus 
 

p21 Replication enhancer Reed et al., 2003 

p20 Replication enhancer  

p23 Nucleic-acid binding 

Closterovirus  
 

Citrus tristeza virus 

CP CP Coat protein 

Lu et al., 2004 

Comovirus  
 

Cowpea mosaic virus  S Small coat protein Liu et al., 2004b 

Hordeivirus  
 

Barley yellow mosaic virus  γb Movement;  
Pathogenicity determinant; 
Replication enhancer;  
Seed transmission 

Yelina et al., 2002 

Pecluvirus  Peanut clump virus  p15 Movement   Dunoyer et al., 2002 

Polerovirus  
 

Beet western yellows virus;  p0 Pathogenicity determinant Pfeffer et al., 2002 

Potexvirus  Potato virus X  p25 Movement Voinnet et al., 2000 
Potyvirus  
 

Potato virus Y; 
Tobacco etch virus;  
Turnip mosaic virus  

HcPro Aphid transmission;  
Movement; 
Pathogenicity determinant; 
Polyprotein processing 

Anandalakshmi et al., 
1998; Brigneti et al, 
1998; Kasschau and 
Carrington, 1998  

Sobemovirus  
 

Rice yellow mottle virus  p1 Movement;  
Pathogenicity determinant  

Voinnet et al., 1999 

Tombusvirus  
 

Carnation Italian ringspot virus;  
Cymbidium ringspot virus; 
Tomato bushy stunt virus 

p19 Movement;  
Pathogenicity determinant  

Voinnet et al., 1999 

Tobamovirus  Tobacco mosaic virus;  
Tomato mosaic virus 

p30 Replication  Kubota et al., 2003 

(+)-
strand 
RNA 
viruses 

Tymovirus  
 

Turnip yellow mosaic virus  p69 Movement;  
Pathogenicity determinant 

Chen et al., 2004 

Tospovirus  
 

Tomato spotted wilt virus  NSs Pathogenicity determinant (-)-strand 
RNA 
viruses Tenuivirus  Rice hoja blanca virus  NS3 Unknown 

Bucher et al., 2003 

African cassava mosaic virus AC2 

Mungbean yellow mosaic virus  C2 

DNA 
viruses  
 

Geminivirus 
 

Tomato yellow leaf curl virus C2 

Transcriptional activator van Wezel et al., 
2002;  
Voinnet et al., 1999 
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suppressor. Initial evidence indicated that expression of CMV 2b from PVX vector in 

tobacco plants prevented initiation of VIGS (Brigneti et al., 1998). Unlike HcPro, 2b does 

not reverse silencing that is already established in plants, suggesting that 2b may target 

steps different from that of HcPro (Brigneti et al., 1998). Transgenic expression and 

grafting experiments provide strong evidence that 2b blocks the movement of the 

systemic silencing signal (Guo and Ding, 2002; Figure 1.2D). CMV 2b suppression of 

silencing is triggered by multiple inducers including siRNAs, dsRNAs, or DNA plasmids 

expressing dsRNAs in single cells, indicating that 2b may also function by inhibiting 

siRNA-directed mRNA degradation (Qi et al., 2004).    

         The p19 protein of tombusviruses, which is essential for systemic spread of the 

virus and symptom development in host plants (Russo et al., 1994), is also a silencing 

suppressor (Voinnet et al., 1999). In vitro binding assays indicated that p19 binds to 21-nt 

siRNAs in an RNA size-selective manner (Silhavy et al., 2002; Vargason et al., 2003; Ye 

et al., 2003). Further studies indicated that the affinity of p19 binding to siRNA correlates 

with viral infection severity, suggesting that p19 may suppress silencing by binding to 

siRNAs, therefore preventing their incorporation into the RISC (Chapman et al., 2004; 

Dunoyer et al., 2004; Lakatos et al., 2004, Silhavy et al., 2002; Figure 1.2A).  

          In addition to the suppressors described above, proteins encoded by other viruses, 

such as p25 of PVX, p69 of Turnip yellow mosaic virus (TYMV), and p21 of Beet 

yellows virus  (BYV) have also been identified as silencing suppressors (Chen et al., 

2004; Reed et al., 2003; Voinnet et al., 2000). As described above, the identified 

suppressors are diverse in sequence and structures and function to interfere with different 
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steps of RNA silencing, indicating that they might have evolved independently in 

different virus groups.     

          

Escape from RNA silencing  

         The susceptibility of individual viruses to RNA silencing strongly depends on the 

vsRNA-targeted sequences contained in the viral genome. Viruses may escape from 

silencing by imbedding the silencing-targeted sequences into high-order structures. This 

hypothesis is supported by the fact that viruses containing transgenes or other non-viral 

sequences are usually strongly targeted by VIGS (Mueller et al., 1995; Tanzer et al., 

1997), since the non-viral sequences have not evolved structural features to inhibit 

targeting of silencing. Viruses may also escape silencing by mutating vsRNA-targeted 

sequences. For example, insertion of host miRNA-targeted sequence into Plum pox virus 

(PPV) genome reduced virus replication, but the virus readily escaped silencing through 

mutations within the miRNA-targeted region (Simon-Mateo and Garcia, 2006). 

          Some viruses may resist cellular nucleases by replicating in nuclease-inaccessible 

sites. For example, it has been found that Brome mosaic virus (BMV) replication protein 

1a forms vesicles budding into the endoplasmic reticulum membrane (Sullivan and 

Ahlquist, 1999). The RNA templates and the replication protein 2a containing a central 

RdRp domain are then recruited into the vesicles, which therefore become sites of 

replication (Ahlquist, 2006; Chen et al., 2001; Sullivan and Ahlquist, 1999; Wang et al., 

2005). Replication occurring in membrane-bound vesicles is proposed to reduce the 

exposure of viral RNAs to the RNA silencing-mediated host defense mechanism. 

Additionally, other features of viruses, such as packaging of viral RNAs into capsids or 



 25

replication of dsRNA viruses within their capsids, can also be considered as strategies for 

resisting RNA silencing. 

 

Modulation of host gene expression by VIGS 

 

          Plants infected by viruses often display discernible symptoms such as 

discoloration, stunting, necrosis, and even death, which are caused by virus-triggered 

abnormal alterations of the developmental processes. As described above, some silencing 

pathways, such as the miRNA pathway, are involved in regulation of plant development. 

Since silencing pathways in plants are interconnected, mechanisms of viruses to suppress 

VIGS may also alter endogenous silencing pathways, affecting plant development and 

therefore contributing to symptom development. 

 

Silencing suppressors interfere with the regulatory roles of miRNAs in plant 

development           

        Some viral suppressors are involved in endogenous silencing pathways. For 

example, infection of Turnip mosaic virus (TuMV) resulted in severe developmental 

defects on vegetative and reproductive organ, which can be reproduced by 

overexpression of TuMV-encoded HcPro in transgenic plants or a loss-of-function 

mutation of DCL1 (Jacobsen et al., 1999; Kasschau et al, 2003; Robinson-Beers et al., 

1992). These results suggest that TuMV infection may cause symptoms by expressing 

HcPro, thus interfering with the regulatory role of miRNAs in plant development, since 

DCL1 is required for generation of miRNAs. This hypothesis is directly supported by 
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evidence that HcPro repressed the activity of miR171, an Arabidopsis miRNA that guides 

cleavage of at least eight mRNAs encoding Scarecrow-like transcription factors 

(Chapman et al., 2004; Kasschau et al, 2003). However, this hypothesis is not supported 

by findings that ectopic overexpression of DCL1 in HcPro transgenic Arabidopsis plants 

rescued phenotypic anomalies but not biogenesis of miRNAs and miRNA-directed 

mRNA cleavage (Mlotshwa et al., 2005). This result suggests that HcPro might interfere 

with an additional DCL1 activity that plays roles in plant developmental regulation but is 

independent of generation of miRNAs (Mlotshwa et al., 2005). 

         Studies of other RNA silencing suppressors indicated that overexpression of BYV 

p21 or TYMV p19 in transgenic Arabidopsis plants leads to significant increases in levels 

of three studied mRNAs (ARF8, ARF10, and SCL6-IV) (Reed et al. 2003; Silhavy et al. 

2002; Voinnet et al. 1999). These three Arabidopsis mRNAs are down-regulated by three 

endogenous miRNAs (miR167, miR160, and miR171), respectively, in normal 

developmental processes (Chapman et al., 2004). Co-immunoprecipitation of p21 and 

p19 with miRNA duplexes from transgenic Arabidopsis inflorescence suggested that p21 

and p19 might bind to the miRNA duplex, thereby inhibiting their incorporation into 

RISC during RNA silencing (Chapman et al., 2004). In general, the findings that proteins 

encoded by evolutionarily distinct viruses can affect the endogenous miRNA pathway 

indicate that it may be a general feature of silencing suppressors to contribute to symptom 

development.  
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vsRNAs may guide cleavage or degradation of homologous host mRNAs  

          As described above, endogenous siRNAs and miRNAs in plants regulate plant 

development by down-regulating levels of cellular mRNAs. Therefore, it is possible that 

vsRNAs contribute to symptom development by base pairing with complementary host 

mRNA transcripts to direct cleavage of host mRNAs (Figure 1.2C). This hypothesis is 

supported by evidence achieved from studies of non-coding CMV satellite RNA Y (satY) 

and PSTVd (Wang et al., 2004): (i) symptoms caused by CMV satY were significantly 

attenuated when silencing was suppressed by ectopic expression of HcPro; and (ii) 

transgenic expression of a short PSTVd hairpin RNA in tomato plants induced viroid-like 

symptoms. These results suggest that the vsRNAs derived from CMV satY and PSTVd, 

but not unprocessed subviral RNAs, may cause disease symptoms by directing silencing 

of cellular mRNAs transcribed from physiologically important genes.  

          The RISC-mediated mRNA degradation requires a minimum base pairing of ~19 nt 

between the small RNAs and their target RNAs (Vanitharani et al., 2003; Zamore, 2001). 

BLAST searches (Altschul et al., 1997) with full-length PSTVd revealed numerous genes 

from several plant species that contain 19- to 20-nt identities with the PSTVd sequence 

(Wang et al., 2004). Some of these plant genes, which encode transcription factors or 

chromodomain helicase DNA-binding proteins, contain sequence identities with the 

virulence modulation region of PSTVd. Therefore, it is possible that small RNAs derived 

from PSTVd direct silencing of these physiologically important host genes, resulting in 

symptoms (Wang et al., 2004). In addition to the evidence described above, miRNAs 

derived from animal DNA viruses, the herpesviruses, has also been proposed to modulate 

host gene expression by incorporating into RISC to guide host mRNA cleavage or 
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translational inhibition, although no host target genes have yet been identified (Cai et al., 

2005; 2006; Grey et al., 2005; Neilson and Sharp, 2005; Pfeffer et al., 2004; 2005; 

Sullivan and Ganem, 2005).  

 

vsRNAs may compete with endogenous small RNAs for interaction with silencing-

related proteins  

         Efficient amplification of viruses in plants produces high levels of viral RNAs, 

which are cleaved by Dicers to produce a large number of diverse vsRNAs in host cells. 

The majority of the vsRNAs may not be complementary with host mRNAs and therefore 

are not capable of directing RISC to cleave host mRNAs. However, it is possible that 

vsRNAs function as suppressors of RNA silencing by competing with host endogenous 

siRNAs and miRNAs for binding to silencing-related proteins, since vsRNAs are 

structurally similar to miRNAs and siRNAs (Dunoyer and Voinnet, 2005). This non-

specific protein-consumption strategy might contribute to symptom development, 

although supportive evidence from plant viruses is currently lacking. In addition to 

vsRNAs, larger viral or subviral RNAs associated with viruses are also potential 

competitors. For example, it was recently found that two non-coding RNAs associated 

with Adenovirus bind to exportin 5, which is required for export of the miRNA 

precursors from the nucleus to the cytoplasm (Andersson et al., 2005; Sano et al., 2006). 
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TCV as a useful system for studying virus-plant interaction 

    

         Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a 

positive-sense RNA virus with a 4054-nt single-stranded genome, which encodes five 

proteins (Figure 1.3A; Hacker et al., 1992). p28 and p88, a translational readthrough 

product of p28 that contains the GDD (Glycine/Aspartic acid/Aspartic acid) polymerase 

active site consensus sequence, are translated from the genomic RNA. These two 

proteins, which comprise the viral RdRp, are both required for replication of TCV and its 

associated RNAs. p8 and p9, two movement proteins required for cell-to-cell viral 

movement, are translated from the 1.7 kb subgenomic RNA (Hacker et al., 1992; Li et al., 

1998). The coat protein (CP), which is translated from the 1.45 kb subgenomic RNA, 

packages TCV-associated RNAs into 180-subunit, T=3 icosahedral virions (Heaton et al., 

1991; Wang and Simon, 1999).  

         To infect a plant, under natural conditions, TCV must enter an initial cell aided by 

its vector (flea beetle). In the lab, TCV can be inoculated into plants by rubbing leaves. 

Genomic RNAs released from dissociated virions in the cytoplasm serve as templates for 

translation of viral RdRp using the cellular translation machinery. The RdRp, possibly 

together with other viral proteins and/or host factors, comprises a replicase complex that 

is responsible for viral replication (Lai, 1998). During viral replication, the genomic RNA 

serves as template to transcribe complementary minus-strand RNAs and the newly 

synthesized minus strands are then used as templates for synthesis of large quantities of 

progeny plus strands. In host cells, the amounts of plus strands are usually 10-100 fold 

higher than those of minus strands (Buck, 1996).  



 30

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Genomic and subviral RNAs in the TCV system. (A) Genomic organization 

of TCV. p28 and p88 are expressed from the genomic RNA. p8 and p9 are expressed 

from the 1.7 kb subgenomic RNA. CP is translated from the 1.45 kb subgenomic RNA. 

(B) satC and satD are two satellite RNAs associated with TCV. satC is a chimeric RNA 

composed of satD and TCV sequences. diG is a defective inference RNA associated with 

TCV. Similar regions are shaded alike. 
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       To be systemically infectious, TCV must move out of the initially infected cell, enter 

neighboring cells, and spread throughout plants. Virus movement involves two different 

steps: (i) cell-to-cell movement through plasmodesmata, which generally needs virus-

encoded movement proteins to modify plasmodesmal size to allow viral transportation 

(Ghoshroy et al., 1997; Lazarowitz and Beachy, 1999; McLean et al., 1997); (ii) long-

distance (vascular) movement through the phloem sieve tube network, which may require 

the presence of viral movement protein, CP, and some specific host factors (Carrington et 

al., 1996; Cronin et al., 1995; Scholthof et al., 1993; Seron and Haenni, 1996). The 

detailed mechanisms of p8 and p9 functioning in TCV movement is currently not known, 

although the approximately 30 kDa movement proteins of TMV and Red clover necrotic 

mosaic virus (RCNMV) are proposed to function by binding to viral RNAs and targeting 

them to the plasmodesmata (Citovsky et al., 1990; Deom et al., 1987; Giesman-

Cookmeyer et al., 1995). TCV CP is required for virus systemic movement, but not cell-

to-cell movement, in Arabidopsis thaliana and Brassica campestris, and systemic and 

cell-to-cell movement in other hosts such as Nicotiana benthamiana (Hacker et al., 

1992).  

         Virion formation is essential for long-distance movement of some viruses such as 

TMV and CMV (Saito et al., 1990; Schmitz and Rao, 1998). However, it appears to be 

dispensable for viruses that are proposed to transport as the form of a ribonucleocomplex 

comprising viral RNAs and virus-encoded proteins (Dalmay et al., 1992; Dolja et al., 

1994; Kaplan et al., 1998; Schneider et al., 1997; Wang and Simon, 1999). Mutations in 

TCV CP prevented virion accumulation, but not viral systemic spread, suggesting that 
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virion formation is not required for TCV movement and it may move as a 

ribonucleocomplex (Wang and Simon, 1999). 

          TCV has a wide host range among crucifers and is highly pathogenic on nearly all 

ecotypes of Arabidopsis thaliana tested except for ecotype Dijon (Simon et al., 1992). 

The hypersensitive response in Dijon is elicited by the interaction between the N-terminal 

25 amino acids of TCV CP and a cellular transcription factor, termed TCV-interacting 

protein (TIP) (Kachroo et al., 2000; Ren et al., 2000). Infection of the susceptible 

Arabidopsis thaliana ecotype Columbia with TCV results in visible symptoms including 

stunting and delayed bolting leaves (Figure 1.4).  

        As described above, viruses are triggers and targets of VIGS. Therefore, to 

successfully establish an infection in plants, TCV must have evolved mechanisms to 

suppress VIGS in addition to failing to eliciting the plant’s hypersensitive resistance. 

Investigation of all five TCV-encoded proteins for their ability to suppress silencing 

triggered by transient expressed GFP gene in Nicotiana benthamiana plants indicated that 

only the CP suppresses silencing (Thomas et al., 2003). The silencing suppressor role of 

CP was also independently identified by another research group (Qu et al., 2003). Both 

groups found that the TCV CP is a very weak or ineffective suppressor when generated 

from the TCV genome whereas it is as strong as other suppressors (e.g. tombusviral p19 

and potyviral HcPro) when transiently expressed (Qu et al, 2003; Thomas et al., 2003). 

Further studies indicated that CP mRNAs transcribed from transient expression vectors 

accumulate earlier than those generated from infectious virus, suggesting that CP may be 

only effective when produced at an early step of RNA silencing.  

      Further studies of the suppressor role of TCV CP indicated that ectopic CP expression 
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Figure 1.4 Comparison of effects of subviral RNAs on symptom expression. Col-0 

seedlings at the six- to eight-leaf stage were inoculated on the oldest leaf pair with 

transcripts of TCV in the presence or absence of subviral RNAs. Plants were inoculated 

with buffer only (mock); TCV alone (TCV); TCV+satD (+D); TCV+diG (+G); 

TCV+satC (+C).   

 

Mock TCV (+D) (+C)(+G)
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substantially reduced levels of 21- and 24-nt siRNAs while enhancing at least one 

miRNA (Chapman et al., 2004; Dunoyer et al., 2004). The non-interference of CP with 

dsRNA processing suggests that it might interfere with a process downstream of dicer 

activity (Dunoyer et al., 2004). Alternatively, CP could interact with small RNAs 

directly, which may cause vsRNA instability. Recent gel mobility shift assays indicated 

that the TCV CP binds to siRNA duplexes in an RNA size-independent manner (Merai et 

al., 2006), which is in contrast to the size-dependent manner of tombusviral p19 (Silhavy 

et al., 2002; Vargason et al., 2003; Ye et al., 2003). While resulting in a substantial 

reduction in host siRNAs, expression of TCV CP in Arabidopsis had little (Chapman et 

al., 2004) or no effect on host morphology (Dunoyer et al., 2004).  

          Since TCV CP contributes to symptom development by functioning in multiple 

viral processes, symptoms of TCV expressing various levels of wild-type (wt) or mutant 

CP have been studied. A single-base U-to-C change in the initiation codon of the CP gene 

(construct CPm) produced CP containing two additional amino acids (glutamic acid and 

threonine) at its N terminus due to translation initiating at an upstream non-canonical 

CUG codon (Figure 1.5; Wang and Simon, 1999). CPm translates the defective CP to 

about 10% of wt levels with decreased accumulation of the genomic and subgenomic 

RNAs and undetectable levels of virions (Figure 1.6A; Wang and Simon, 1999). 

Symptoms of Arabidopsis plants infected with CPm were only slightly delayed and were 

similar, but not identical to the symptoms associated with wt TCV (Figure 1.6B) (Wang 

and Simon, 1999). When Arabidopsis was inoculated with TCV engineered to express wt 

levels of the defective CPm CP (the construct CPm3 with nucleotides specifying the two  
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Figure 1.5 Sequences surrounding the translation initiation site for the CP in wt TCV and 

mutants derived from TCV. Bases altered or inserted in TCV are underlined. Changes in 

N-terminal amino acids in the TCV CP are boxed.  

 

 

 

 

 

T C V         A C A  C U G  G A A  A U G  G A A  A A U  G A U  C C U  A G A  

M       E       N     D        P       R

C P m        A C A  C U G  G A A  A C G  G A A  A A U  G A U  C C U  A G A  

M         E T E       N        D       P       R

C P m 2      A C A  C U G  G A A  A U G  A C U G A A  A A U  G A U  C C U  A G A

M       T E      N        D       P       R

C P m 3      A C A  C U G  G A A  A U G  G A A A C U G A A  A A U  G A U  C C U  A G A  

M        E T E       N        D       P       R
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Figure 1.6 The effects of CP on  symptom expression. (A) RNA gel blot of total RNA 

and protein gel blots of total protein and virions accumulating in protoplasts inoculated 

with TCV or CPm at 40 hours post inoculation. CPm produced about 10% of wt levels of 

CP and no detectable virions. (B) Symptoms of Col-0 plants inoculated with TCV or 

CPm with or without satC.  
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additional amino acids inserted after the translation initiation site; Figure 1.5), symptoms 

were greatly enhanced over wt TCV-induced symptoms (Wang and Simon, 1999). These 

results suggest that the symptom modulation is related to both the levels of CP and the 

two additional amino acids inserted at the N terminus (Wang and Simon, 1999). Both 

CPm and CPm3 can systemically infect the TCV-resistant Arabidopsis ecotype Di-0, 

suggesting that the N-terminal amino acid insertions prevent the interaction between CP 

and TIP, which would otherwise elicit hypersensitive resistance in plants (Kachroo et al., 

2000; Ren et al., 2002).   

          Viral symptoms can also be modulated by the presence of unrelated, or partially 

related subviral RNAs, which require helper virus-encoded products for replication and 

systemic spread (Roossinck et al., 1992). TCV is naturally associated with several 

subviral RNAs including satellite RNA C (satC) (356 bases), satD (194 bases), and 

defective interfering RNA G (diG) (346 bases) (Figure 1.3B). satD, which appears to 

have originated from numerous short non-contiguous stretches of the TCV genomic 

RNA, has little contiguous sequence similarity with TCV beyond the 3’ terminal 7 bases, 

(Carpenter and Simon, 1996). satC is a chimeric molecule containing nearly full-length 

satD at its 5’ end and two discontinuous segments from TCV genomic RNA at its 3’ end 

(Figure 1.3B; Simon and Howell, 1986). satC is assumed to be generated by 

recombination events between satD and TCV. diG is a defective deletion version of TCV, 

consisting of (from 5’ to 3’) 10 bases from the 5’ end of satD, 12 bases of obscure origin, 

99 bases from near the 5’ end of TCV, and 225 bases that shares 94% sequence similarity 

with the 3’-terminal sequence of TCV including an imperfect repeat of 36 bases (Li et al., 

1989). 



 39

         While most satRNAs have no effect on, or attenuate the symptoms of their helper 

virus, satC is virulent, strongly intensifying the symptoms of TCV by changing the mild 

stunting and chlorotic symptoms of TCV-infected turnip leaves to severely stunted, 

crinkled, and dark green leaves (Simon and Howell, 1986). In A. thaliana, the stunting 

and delayed bolting attributed to infection by TCV alone turns into a lethal overall 

necrosis in the presence of satC, within 14- to 21-days postinoculation (dpi) (Figure 1.4; 

Simon et al., 1992). Symptom intensification by satC occurs despite a reduction in TCV 

RNA levels in the presence of satC (Li and Simon, 1990). All TCV-tolerant hosts 

accumulate similar levels of virus and satRNA as symptomatic hosts and remain 

symptomless in the presence of satC, suggesting that satC is not directly responsible for 

symptom production but rather creates conditions by which TCV symptom expression is 

enhanced (Li and Simon, 1990). In addition to satC, diG also intensifies the symptoms of 

TCV-infected plants, whereas satD is avirulent, without discernible effect on symptoms 

associated with TCV (Figure 1.4; Simon and Howell, 1986).  

         Comparison of the symptoms in Arabidopsis plants coinoculated with wt TCV and 

satC or inoculated with CPm3 indicated that the presence of satC and TCV leads to 

symptoms seemingly identical to those induced by CPm3 (Wang and Simon, 1999). 

Although satC and diG intensify the symptoms associated with wt TCV, both of them 

attenuate symptoms of the hybrid virus TCV-CPCCFV (TCV with its CP ORF precisely 

replaced with that of the related Cardamine chlorotic fleck virus [CCFV]) (Table 1.4; Oh 

et al., 1995). However, satC attenuates symptoms associated with CPm (Figure 1.6B) 

while diG had no effect on symptoms of CPm (Table 1.4; Kong et al., 1997a; 1997b; 

Wang and Simon, 1999).  
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Table 1.4 Symptom modulation of satC and diG in the presence of CP provided by wt or 

mutant TCV   

 TCV TCV-CPCCFV CPm 

satC Intensification Attenuation Attenuation 

diG Intensification Attenuation No effect 
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         Determinants for the differential symptom modulation of satC and diG are localized 

to their 3’-terminal regions that certain six positional differences when compared with the 

TCV genomic RNA (Figure 1.7A; Kong et al., 1997a). Further studies indicated that the 

positions 5 and 6 located within the 3’-terminal hairpin structures (Figure 1.7B) are 

essential for symptom modulation (Wang and Simon, 2000). Gel mobility shift assays of 

CP binding to RNA fragments showed that the affinity of CP for the 3’-terminal hairpin 

of diG is 2-fold greater than for that of the hairpin of satC or a nonviral RNA fragment 

(Wang and Simon, 2000). It was determined that the ability to attenuate symptoms was 

correlated with weakened binding of CP to the 3’-terminal hairpin structure (Wang and 

Simon, 2000).  

         In this dissertation, I report my findings about mechanisms underlying symptom 

modulation by satC and CP. In Chapter II, I show that satC and CPm3 symptom 

intensification correlates with wt levels of CP and decreased levels of virion 

accumulation. In Chapter III, I report the cloning and analysis of vsRNAs derived from 

TCV and satC. In Chapter IV, I describe a novel RNA tracking system that reports on 

TCV location within an infected plant.  
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Figure 1.7 Sequences and structures of the 3’ ends of satC, diG, and the TCV genomic 

RNA. (A) Alignment of the 3’-end sequences of satC, diG, and TCV. Only differences 

among the RNAs are shown. The six positional differences are shaded. Short lines 

indicate absence of the nucleotides in satC and diG when compared with TCV. (B) 

Computer prediction of the 3’-terminal secondary structures of satC, diG, and TCV 

(Zuker, 2003). The 3’-terminal structure of satC is supported by solution structure 

probing results (Zhang et al., 2004). Nucleotides in position 5 and 6 are underlined. V, 

location of the absent position 5 sequence in satC.  
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CHAPTER II 

 

ENHANCED PATHOGENESIS ASSOCIATED WITH A VIRULENT TCV 

MUTANT OR SATELLITE RNA C CORRELATES WITH REDUCED VIRION 

ACCUMULATION AND ABUNDANCE OF FREE COAT PROTEIN 

 

Introduction 

 

           Viral infection often affects a plant’s developmental regulation, resulting in 

diverse symptoms. Disease symptoms can be enhanced by the presence of unrelated 

viruses (Hull, 2002; Scheets, 1998), which generally involves an increase in the 

accumulation of one or both viruses. In addition, viral symptoms can be modulated by the 

presence of unrelated, or partially related satRNAs, which require helper virus-encoded 

products for replication and systemic spread (Roossinck et al., 1992). While most 

satRNAs have no effect on, or attenuate the symptoms of their helper virus, symptom 

enhancement by satRNAs can occur. For example, CMV satRNA D expresses necrotic 

symptoms in the absence of any helper virus by inducing programmed cell death (Xu and 

Roossinck, 2000). The satRNA of Panicum mosaic virus increases virus titer and 

enhances systemic spread of the virus allowing the virus to invade previously restricted 

tissues (Scholthof, 1999).  

         As described in Chapter I, satC, a non-coding molecule consisting of nearly full-

length satD at its 5’ end and two TCV segments at its 3’ end, intensifies symptoms 

associated with TCV. Avirulent satD, in contrast, has no discernable effect on symptoms 
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(Simon and Howell, 1986). In Arabidopsis thaliana, satC changes the stunting and 

delayed bolting symptoms due to infection by TCV alone to lethal overall necrosis 

(Simon et al., 1992). TCV symptoms can also be modulated by alterations in its 38 kDa 

CP (Heaton et al., 1991; Wang and Simon, 1999). The CP is involved in a wide variety of 

functions required for successful host invasion including (i) virion assembly; (ii) systemic 

movement, but not cell-to-cell movement, in Arabidopsis thaliana and Brassica 

campestris and systemic and cell-to-cell movement in other hosts such as Nicotiana 

benthamiana (Hacker et al., 1992); (iii) elicitation of the salicylic acid-dependent defense 

response in Arabidopsis ecotype Dijon (Kachroo et al., 2000); (iv) repression of satC 

replication (Kong et al., 1997a); (v) suppression of an early step in VIGS (Qu et al., 2003; 

Thomas et al., 2003); and (vi) modulation of satC-associated symptoms (Wang and 

Simon, 1999).   

As described in Chapter I, when Arabidopsis was inoculated with CPm3, which 

expresses wt levels of a mutant CP with two additional amino acids (glutamic acid and 

threonine) at the N-terminus (Figure 1.5), symptoms were greatly intensified compared to 

wt TCV-induced symptoms. The severe symptoms induced by CPm3 appear to be 

identical to those associated with the presence of satC in wt TCV infections. I now report 

that enhanced symptoms attributed to either the presence of satC or TCV expressing wt 

levels of mutant CP with two N-terminal additional amino acids is correlated with a 

substantial reduction in the level of detectable virions.  
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Materials and Methods 

 

DNA constructs and plant materials   

          The plasmids pTCV66, pT7C+, and pT7D+, which contain a T7 RNA polymerase 

promoter upstream of wt full-length plus-strand sequence of TCV, satC, and satD, 

respectively, were previously described (Oh et al., 1995; Song and Simon, 1994). CPm, 

CPm2, and CPm3 are TCV mutants containing base changes in or near the CP gene 

translation initiation site (Figure 1.5; Wang and Simon, 1999). C56G and Cm5 are satC 

mutants with mutations in the 3’-terminal hairpin (Wang and Simon, 1999; Stupina and 

Simon, 1997). All plasmids were linearized with SmaI and subjected to in vitro RNA 

transcription using T7 polymerase to generate RNA transcripts for inoculation of plants 

or protoplasts. Arabidopsis DCL2- and DCL3-defective plants (dcl2-1 and dcl3-1, 

respective) were kindly provided by Dr. James C. Carrington.  

 

Large-scale plasmid DNA isolation  

           Bacteria (E. coli) were grown in 250 ml L-broth (LB) culture at 37oC for 16 hours 

or overnight with continuous shaking. The cells were collected by centrifugation in a 

Sorvall GSA rotor at 6000 rpm for 10 minutes and resuspended in 2.5 ml of suspension 

buffer (25% sucrose and 50 mM Tris-HCl, pH 7.5). To remove the cell wall, 0.4 ml of 

freshly prepared 10 µg/µl lysozyme was added. The mixture was gently swirled and 

incubated on ice for 10 min, followed by addition of 0.7 ml of 0.5 M EDTA (pH 8.0). 

The mixture was incubated again on ice for 10 minutes, followed by addition of 5.3 ml of 

lysis buffer (0.1% Triton X-100, 62.5 mM EDTA, pH 8.0, and 50 mM Tris-HCl, pH 8.0). 
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After incubation at 37oC for 10 minutes or 42oC for 5 minutes, the mixture was 

centrifuged in a Sorvall SS34 rotor at 17,000 rpm for 20 minutes. The supernatant was 

collected into a 15 ml centrifuge tube and 8.8 g of CsCl and 200 µl of ethidium bromide 

(10 mg/ml) were added. The mixture was adjusted to a volume of 12 ml with distilled 

H2O and then transferred into a quick-seal tube (Beckman, 16 mm X 76 mm). After 

centrifugation at 20oC in a VTi 65.1 rotor (Beckman) at 65,000 rpm for 4.2 hours or at 

45,000 rpm for 12 hours, the lower DNA band was recovered with a 5 ml syringe and 

extracted 3 times with NaCl-saturated isopropanol. The solution was diluted with 2 

volumes of distilled H2O and then mixed with 6 volumes (original volume) of 100% 

ethanol. The mixture was incubated at –20oC for at least 2 hours and then centrifuged in a 

Sorvall SS34 rotor at 10,000 rpm for 10 minutes. The DNA pellet was redissolved in 0.4 

ml of distilled H2O and then transferred to a 1.5 ml eppendorf tube. The dissolved DNA 

was precipitated with 2.5 volume of 5 M NaOAc/ethanol (1:25), washed with 70% 

ethanol, dried, and dissolved in an appropriate amount of distilled H20. The concentration 

of DNA was estimated by measuring the absorbance at 260 nm.   

 

In vitro RNA transcription using T7 polymerase 

         Plasmid DNA was linearized with the appropriate restriction enzyme, extracted 

with phenol/chloroform, precipitated with 2.5 volume of 5 M NaOAc/ethanol (1:25), 

washed with 70% ethanol, dried, and dissolved in distilled H2O. The linearized DNA 

template (8 µg) was mixed with 6 µl of dithiothreitol (DTT), 12 µl of 5 mM each of ATP, 

CTP, GTP, UTP, 12 µl of 5X T7 buffer (125 mM NaCl, 40 mM MgCl2, 2mM 

spermidine, 40 mM Tris-HCl, pH8.0), 60 units of RNAsin (Invitrogen), 80 units of T7 



 48

polymerase (Invitrogen), and distilled H2O to get a final volume of 60 µl. The mixture 

was incubated at 37oC for 1 hour (genomic RNA) or 2 hours (satRNA).  

        The synthesized RNA transcripts were directly used for inoculation of plants. For 

inoculation of protoplasts, the RNA transcripts were extracted with phenol/chloroform, 

precipitated with 2.5 volume of 5 M NH4OAc (pH5.3)/isopropanol (1:5), washed with 

70% ethanol, and dissolved in distilled H2O. Plus-strand transcripts of TCV, satC, and 

satD were synthesized using T7 polymerase from SmaI-linearized pTCV66, pT7C+, and 

pT7D+, respectively (Oh et al., 1995; Song and Simon, 1994).  

 

Plant growth and inoculation 

       Arabidopsis thaliana plants (ecotype Col-0) were grown in a growth chamber at 

20oC under a 16-hour light/dark cycle as described by Li and Simon (1990). The oldest 

leaf pair of seedlings at the 6 to 8 leaf stage was mechanically inoculated with 2 µl (per 

leaf) of inoculation buffer containing plus-strand TCV RNA transcripts (0.15 µg/µl) with 

or without satC transcripts (0.015 µg/µl). The inoculation buffer contains 0.05 M glycine, 

0.03 M K2HPO4, pH 9.2, 1% Bentonite (clean), and 1% Celite. Plants were photographed 

at 14 and 21 dpi. Mock plants were treated with inoculation buffer.  

 

RNA extraction from Arabidopsis leaves  

          One gram of uninoculated leaves from infected Arabidopsis plants was ground in 

liquid nitrogen in a 50 ml beaker. Leaf powder was transferred into a 1.5 ml eppendorf 

tube and extracted with 0.5 ml of phenol and 0.5 ml of extraction buffer containing 0.2 M 

Tris-HCl, pH 9.0, 0.4 M LiCl, 1% SDS, and 25 mM EDTA. After centrifugation at 
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13,200 rpm for 5 minutes at 4oC, the aqueous phase was extracted once more with 0.5 ml 

of phenol/chloroform (1:1) and precipitated with 2.5 volume of 5 M NaOAc/ethanol 

(1:25). The pellet was resuspended in 300 µl of 2 M LiCl and vortexed well. The solution 

was then centrifuged at 13,000 rpm for 5 minutes at 4 oC and the pellet was dissolved in 

300 µl of distilled H2O. The RNA was precipitated using 2.5 volume of 5 M 

NaOAc/ethanol (1:25), rinsed with 70% ethanol, dried, dissolved in 40 µl H2O, and 

stored at -80oC.     

 

Preparation and inoculation of protoplasts  

          Protoplasts were prepared from callus cultures of Arabidopsis thaliana ecotype 

Col-0. The calli were produced from sterilized seeds placed on 1% MS (Murashige-

Skoog salts, Gibco BRL) agar media (pH 5.8) supplemented with 2 mg/ml kinetin, 2 

mg/ml 2, 4-D (2, 4-dichlorophenoxyacetic acid, Sigma), and 1X vitamins/glycine 

containing 1 µg/ml nicotinic acid, 10 µg/ml thiamine HCl, 1 µg/ml pyrodoxine, 0.1 

mg/ml myoinositol, and 4 µg/ml glycine. The calli were incubated in a growth chamber 

at 20°C under 35 µmol m-2 sec-1 lights with a cycle of 16-hour light and 8-hour-dark and 

passaged every 3 weeks.  

          To prepare protoplasts, calli in the 4th passage were collected and soaked in 40 ml 

of 0.6 M mannitol at 25°C for 20 minutes with shaking. The calli were recovered by 

centrifugation (Beckman GPR-type swinging bucket) at 930 rpm for 5 minutes at 4°C, 

and then suspended in 50 ml of freshly prepared protoplast isolation medium (PIM, pH 

5.8) containing 0.5 g of cellulase (11,900 U/g) and 0.1 g of pectinase (3,140 U/g) 

(Calbiochem, La Jolla, CA). One liter of PIM contains 1 ml of 1000X vitamin stock (1 
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mg/ml thiamine-HCl, 0.5 mg/ml pyridoxine-HCl, 0.5 mg/ml nicotinic acid, and 0.1 g/ml 

myo-inositol), 0.5 ml of 2000X hormone stock (0.4 mg/ml 2, 4-D, 0.4 mg/ml kinetin, and 

50 mM KOH), 4.3 g of MS plant salts, 0.1 M sucrose, 3 mM MES, 5 mM CaCl2, and 0.5 

M mannitol. The calli/PIM/enzyme mixture was incubated at 26-28°C in the dark for 4 

hours with shaking at 75 rpm. The solution was filtered through a 53-µm nylon mesh 

(Small Parts, Miami Lakes, FL), followed by centrifugation at 930 rpm for 5 minutes at 

4°C. The precipitated protoplasts were washed 3 times with 20 ml of 0.6 M mannitol 

(pre-cooled on ice). The number of cells was calculated using a microscope and 

hoemocytometer.  

         Protoplasts (~ 5 X 106 cells) in a volume of 100 µl were swirled with 20 µl of TCV 

genomic RNA transcripts (1 µg/µl), 2 µl of satRNAs (1 µg/µl), 8 µl of 1 M CaCl2, 400 µl 

of distilled H2O, and 2.17 ml of 50% PEG (prepared in 50 mM Tris-HCl, pH 7.5). The 

mixture was incubated at 25°C for 30 seconds, followed by addition of cold 0.6 M 

mannitol/1 mM CaCl2 and incubated on ice for 20 minutes. The protoplasts were 

collected by centrifugation at 930 rpm for 5 minutes at 4°C. After washing 3 times with 

25 ml of cold 0.6 M mannitol/1 mM CaCl2, protoplasts were resuspended in protoplast 

culture medium (PCM, pH 5.8) and incubated at 25°C for 40 hours in the dark. One liter 

of PCM contained 1 ml of 1000X vitamin stock (1 mg/ml thiamine-HCl, 0.5 mg/ml 

pyridoxine-HCl, 0.1 g/ml myo-inositol, and 0.5 mg/ml nicotinic acid), 0.5 ml of 2000X 

hormone stock (0.4 mg/ml 2, 4-D, 0.4 mg/ml kinetin, and 50 mM KOH), 4.3 g of MS 

plant salts, 0.1 M sucrose, 0.4 M mannitol, and 3 mM MES.  
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Total RNA isolation from protoplasts  

         Protoplasts in 1 ml of PCM (~1.67 X 106 cells) were collected into a 1.5 ml 

eppendorf tube at 40 hours postinoculation (hpi) and resuspended in 200 µl of extraction 

buffer (50 mM Tris-HCl, pH 7.5, 5 mM EDTA, 1% SDS, and 100 mM NaCl), followed 

by addition of 200 µl of phenol/chloroform (1:1) and vigorous vortexing. The mixture 

was then centrifuged at 13,000 rpm for 5 minutes at 4°C. The supernatant was 

precipitated with 2.5 volumes of 5 M NaOAc/ethanol (1:25), and washed with 70% 

ethanol.  Pellets were dissolved in 25 µl of distilled water.       

 

RNA gel blot analysis 

         Four micrograms of total RNA from plants or protoplasts was denatured by heating 

for 5 minutes at 65°C in 50% formamide and then subjected to electrophoresis through 

nondenaturing 1.2% agarose gels for detection of viral and subviral RNAs or denaturing 

8M urea-5% polyacrylamide gels for detection of vsRNAs and LssRNAs. The gel was 

treated for 1 hour in 6% formaldehyde with gentle shaking, and then soaked in 10X SSC 

containing 0.15 M NaCl and 0.015 M sodium citrate for 25 minutes followed by 

transferring of the RNAs to a NitroPlus membrane (Micron Separations Inc., Westboro, 

MA). The blot was placed on a UV light box (310 nm, Fotodyne Inc.) for 5 minutes to 

crosslink the RNA and then dried at 80oC for 10 minutes.     

          Oligo13 and Oligo16, which are oligonucleotides complementary to either 

positions 3950-3970 of TCV genomic RNA and positions 250-269 of satC or positions 

44-59 of satD (Table 2.1), were labeled with [γ-32P] ATP using T4 polynucleotide kinase 

and used as probes in the gel blotting analysis of TCV genomic RNA, satC, and satD.  



 52

 

 

 

 

 

Table 2.1 Oligonucleotides used in Chapter II 

Application 
 

Name Positiona Sequence Polarityb 

Oligo13 250-269 5’-GTTACCCAAAGAGCACTAGTT _ 

Oligo16 44-59 
 

5’-AGGGCAATGGGCGTCC _ 

OligoC3 206-356 5’-GGGCAGGCCCCCCGTCCGAGGAGGGA 
GGCTATCTATTGGTTCGGAGGGTCCCCA 
AAGCCCACCCTTTCGGGATTTTAGTGGT 
TACCCAGAGAGCACTAGTTTTCCAGGCT 
AATGCCCGCAGCTAGACGGTGCTGCCGC 
CGTTTTTGGTCCCATTTACCCTTTGGCTG 
GAGGGTCTGGGATTCTTTT 

_ 

OligoCPr 324-356 
 

5’-GGGCAGGCCCCCCGTCCGAGGAGG 
GAGGCTATC    

_ 

RNA gel 
blotting 

OligoCPrloop 332-346 
 

 5’-CCCGTCCGAGGAGGG _ 

a Coordinates correspond to those of satC. Oligo13 also corresponds to positions 3950-

3970 of TCV genomic RNA. Oligo16 corresponds to positions of satD. 

b  “-”refers to complementarity with satC or satD plus strands.  
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The [α-32P] UTP-labeled full-length TCV plus or minus strands, full-length satC minus 

strands, or minus-strand satC fragments in different sizes including OliogC3, OligoCPr, 

and OligoCPrloop (Table 2.1) were prepared using T7 polymerase and used as probes in 

the blotting analysis of virus-specific small RNAs. Blot prehybridization for 1 hour and 

hybridization for 2 hours at 42oC were performed in a hybridization buffer containing 5X 

SSPE, 10X Denhardt's reagent, 0.2% SDS, 0.2 mg/ml freshly denatured salmon sperm 

DNA, and 50% formamide (every 1% of formamide reduces the Tm by 0.7oC). After 

hybridization, the blot was washed in a high salt solution containing 6X SSPE and 0.1% 

SDS for 12 minutes, then washed in low salt solution containing 0.1X SSPE and 0.1% 

SDS for 20 and 15 minutes, respectively. The blot was covered with a saran wrap and 

subjected to autoradiography. One liter of 20X SSPE contains 175.3 g NaCl, 27.6 g 

NaH2PO4, 40 ml of 0.5 M EDTA (pH 8.0) and is adjusted to pH 7.4 using 10 M NaOH. 

The blots can be stripped in 200 ml of stripping buffer at 65 oC for 2 hours, and then 

rehybridized to new probes. Two hundreds of milliliters of the stripping buffer contain 1 

ml of 1M Tris-HCl, pH 8.0, 0.5 ml of 0.5 M EDTA, 0.2 ml of 10X Denhardt's reagent, 

and 198.3 ml of ddH20. 

 

Protein isolation from protoplasts and gel blot analysis  

         Protoplasts in 1 ml of PCM (~1.67 X 106 cells) were collected in a 1.5 ml eppendorf 

tube at 40 hpi and resuspended in 30 µl of protein analysis buffer containing 30 mM Tris-

HCl, pH 6.8, 2.5% β-mercaptoethanol, 1.5% SDS, and 5% glycerol, followed by 

vortexing for 5 minutes. The mixture was centrifuged at 13,000 rpm for 5 minutes to 

collect the supernatant containing proteins.  
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          Total proteins were separated on a 12% SDS-PAGE gel in a running buffer (pH 

8.3) containing 50 mM Tris base and 38 mM glycine, and transferred to a NitroPlus 

membrane (Micron Separations Inc.). Protein blot analysis was performed using the anti-

TCV CP polyclonal antibody generated in rabbits injected with purified TCV CP. The 

anti-CP antibody and the second antibody (anti-rabbit IgG horseradish peroxidase; Gibco 

BRL) were used in 1:5000 and 1:7500 dilutions, respectively. Dilutions were made in 

phosphate buffered saline (PBS) containing 6% milk (w/v). Chemiluminescent staining 

was performed with the Western Lighting Chemiluminescence Reagent kit (Perkin Elmer 

Life Sciences) using the method as recommended by the manufacture. Membrane 

incubated with the substrate was covered with plastic saran wrap and exposed to an X-ray 

film for 60-90 seconds before developing the film.   

 

Virion isolation from protoplasts and gel blot analysis   

         Protoplasts in 1 ml of PCM (~1.67 X 106 cells) were collected in a 1.5 ml eppendorf 

tube at 40 hpi and resuspended in 200 µl of 0.2 M NaOAc, pH 5.2, followed by addition 

of 30 µl of sterile glass beads (0.1-0.2 mm in diameter). The mixture was vortexed for 

three 15-second intervals and placed on ice between each interval. The aqueous phase 

was recovered by centrifugation at 13,000 rpm for 1 minute. The solid phase was re-

extracted twice with 200 µl of 0.2 M NaOAc, pH 5.2. The aqueous phases were 

combined and incubated on ice for 1 hour, followed by centrifugation at 13,000 rpm for 2 

minutes at 4oC. The supernatant was mixed with 1/4 volume of 40% polyethylene glycol 

(PEG, MW 8000)/1 M NaCl. The mixture was incubated on ice overnight, followed by 
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centrifugation at 13,000 rpm for 1 hour. The pellet (virions) was dissolved in 30 µl of 10 

mM NaOAc, pH 5.5, stored at 4oC. 

        For virion blotting analysis, 1 µl of virions were separated on a 1% agarose gel 

prepared in 50 mM Tris base/ 38 mM glycine (pH 8.3). The gel was soaked in 50 mM 

NaOH for 20 minutes and then in 0.2 M NaOAc pH 5.5 for 20 minutes before blotting to 

a NitroPlus membrane (Micron Separations Inc., Westborough, MA). Virion blotting 

analysis was performed using the same antibody and method as those used for the protein 

gel blotting described above.  

 

Results 

 

Symptom intensification of satC or CPm3 correlates with wt levels of CP and 

decreased accumulation levels of virion  

         Since Arabidopsis plants infected with CPm3 or wt TCV and satC expressed similar 

severe symptoms, it seemed possible that the presence of satC might be functionally 

equivalent to the presence of wt levels of mutant CP that contained an additional glutamic 

acid and threonine residue at the N-terminus (Figure 1.5). Therefore, I examined if wt 

levels of mutant CP produced by CPm3 affected the accumulation of virions, and whether 

virion and CP levels could be correlated with enhanced symptoms. An intermediate 

construct was included in this study (CPm2), which contained only a single additional 

amino acid (threonine) at the N-terminus (Figure 1.5). Like CPm3, CPm2 CP was 

translated from the wt initiation codon and was thus predicted to produce wt levels of a 

mutant CP.    
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To compare symptoms induced by mutant and wt TCV in the presence or absence 

of satRNAs, Arabidopsis ecotype Col-0 plants were inoculated with different virus 

combinations and photographed at 14 and 21 dpi (Figure 2.1). As previously described, 

wt TCV caused delayed bolting and reduced leaf size. Symptoms were enhanced by 

coinfection with satC to a spreading necrosis that killed the plants by 21 dpi. The 

avirulent satD had no discernable effect on symptoms. Plants infected with CPm2 

appeared very similar to wt TCV infected-plants at 14 and 21 dpi, and addition of satC, 

but not satD, intensified symptoms to a lethal necrosis by 21 dpi (Figure 2.1). In contrast, 

CPm3, in the absence or presence of satC or satD, displayed severe symptoms that were 

discernable at 14 dpi, and very similar to symptoms produced by wt TCV in the presence 

of satC at 21 dpi. The symptom modulation by TCV CP and satC is listed in Table 2.2.  

To examine virion and CP levels produced by TCV, CPm2 and CPm3 in the 

presence or absence of satC, protoplasts were prepared from callus cultures of 

Arabidopsis ecotype Col-0 and inoculated with transcripts of TCV genomic RNA alone 

or together with transcripts of satC or the avirulent satD. Protoplasts inoculated with 

TCV, CPm2 and CPm3 accumulated similar levels of CP (Figure 2.2, compare CP panel, 

lanes 1, 4 and 7). CPm3, unlike CPm2, did not generate detectable virions (Figure 2.2, 

lanes 4 and 7), indicating that the two additional amino acids at the N-terminus of the CP 

affect virion assembly or stability in host cells. Unexpectedly, the presence of satC in wt 

TCV infections also had a substantial effect on virion levels. Coinoculation of protoplasts 

with satC reduced virion levels below detection when the helper virus was wt TCV and 

by 94% when associated with CPm2 (Figure 2.2, virion panel, lanes 2 and 5). In contrast, 

virion accumulation was not reduced in the presence of avirulent satD (Figure 2.2, virion  
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Table 2.2 Summary of symptom modulation by the TCV CP and satC 

Constructs CP sequencesa CP levels Symptom severity Virion 
levelsb 

Free CP 
levels 

wt TCV MENDPR high mild high intermediate 

CPm METENDPR moderate mild low Moderate    
(10%) 

CPm2 MTENDPR high mild intermediate moderate 

CPm3 METENDPR high severe ND high 

wt TCV+C MENDPR high severe ND high 

CPm+C METENDPR moderate 30% mild 
70% symptomless 

low moderate 

CPm2+C MTENDPR high severe low high 

CPm3+C METENDPR high severe ND high 
a Bold amino acid residues denote changes in the N-terminus of the TCV CP. 

b ND, not detectable. 
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Figure 2.1 Symptoms of Arabidopsis plants inoculated with either TCV, CPm2 or CPm3 

with and without satC or satD. Upper plants were photographed at 14 dpi and lower 

plants were photographed at 21 dpi. Plants labeled “Mock” were treated with infection 

buffer alone.  
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Figure 2.2 Effect of different virus and satRNA combinations on CP and virion 

accumulation in protoplasts. Arabidopsis protoplasts were inoculated with wt TCV or 

mutant TCV transcripts alone or together with satC or satD transcripts. Total RNA, 

proteins and virions were extracted at 40 hpi. TCV genomic RNA (TCV gRNA) and 

satRNAs were detected by RNA gel blot analysis using oligonucleotide probes 

complementary to both TCV and satC or satD. CP and virions were subjected to 

electrophoresis on SDS-PAGE gels and detected by chemiluminescence following 

treatment with anti-TCV CP antibody.  
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panel, lanes 3 and 6). While the levels of TCV genomic RNA detected in this particular 

experiment were higher than normally found, the reduced levels of virions associated 

with the presence of satC or CPm3 is highly reproducible (data not shown). This result 

demonstrates a novel correlation between severe symptoms in Arabidopsis and reduced 

levels of virions. 

 

Increased levels of free TCV CP correlate with decreased levels of vsRNAs 

           As described above, CP alteration in CPm3 or the presence of satC interfered with 

virion accumulation, but did not detectably affect the total levels of CP. This would 

increase the amount of free CP, enhancing the ability of the virus to suppress RNA 

silencing since TCV CP is the silencing suppressor (Qu et al., 2003; Thomas et al., 2003). 

To examine if the additional free CP found with satC or CPm3 inhibits accumulation of 

vsRNAs, total RNAs were isolated from Arabidopsis plants infected with buffer (Mock), 

TCV, TCV along with satC, or CPm3 at 7 or 9 dpi and levels of the virus-specific RNAs 

were examined.  

         As shown in the agarose gel (Figure 2.3A), TCV genomic RNA was not found in 

Mock plants (lane 1). The wt TCV genomic RNA accumulated to levels that were 

comparable to those of the 26S ribosomal RNA (lane 2). The presence of satC in wt TCV 

infections resulted in about a 40% reduction in TCV RNA levels (compare lanes 2 and 3 

or lanes 5 and 6). While CPm3 accumulated less efficiently than TCV in protoplasts 

(Figure 2.2), it accumulated slightly more efficiently than TCV in plants at 7 and 9 dpi 

(compare lane 2 and 4 or lanes 5 and 7). This difference might be caused by the enhanced 

ability of the virus to suppress RNA silencing in the presence of the additional free CP  
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Figure 2.3 Accumulation of virus-specific RNAs in Arabidopsis plants infected with 

buffer (Mock), TCV alone, TCV along with satC, or CPm3. Total RNAs were isolated at 

7 or 9 dpi. (A) Agarose gel analysis of the genomic RNA and satC accumulating in 

infected plants. The total RNAs were separated in a 1.2% agarose gel. Following 

electrophoresis, the gel was stained with ethidium bromide. Positions of the genomic 

RNA (gRNA) and satC are indicated. The 26S ribosomal RNA (rRNA) was used as a 

loading control. (B) RNA gel blot analysis of the small RNAs (21- to 40-nt) derived from 

the viral and subviral RNAs. The total RNAs were separated through a denaturing 5% 

polyacrylamide gel-8M urea. The 5S rRNA on the polyacrylamide gel stained with 

ethidium bromide (prior to gel blotting) was used as a loading control. The blot was 

hybridized to full-length TCV minus-strand RNA for analysis of small RNAs derived 

from plus-strand viral and subviral RNAs. satC-specific small RNAs (24- to 40-nt) are 

indicated with red asterisks. (C) The blot analyzed in B was stripped and then hybridized 

to full-length TCV plus-strand RNA for detection of the small RNAs derived from 

minus-strand viral and subviral RNAs. 
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due to reduced virion accumulation in plants infected with CPm3. Enhanced silencing 

suppression would help the virus to invade new issues in plants, which is not available in 

protoplasts. The gel in Figure 2.3A also showed that the genomic and satC RNA levels 

were higher at 9 dpi than at 7 dpi.       

        The total RNAs were also separated through a denaturing 5% polyacrylamide gel-

8M urea and vsRNAs derived from the viral RNAs were detected by RNA gel blot 

analysis using full-length TCV minus-strand RNA as probe. The RNA gel blot 

hybridization results indicated that ~21-nt plus-sense vsRNAs were generated in all 

infected plants except the Mock plants (Figure 2.3B). Levels of the vsRNAs were higher 

at 9 dpi than 7 dpi, possibly due to continuing accumulation of TCV in plants, which 

would provide more targets of RNA silencing. In plants infected with TCV along with 

satC, or CPm3, levels of the 21-nt vsRNAs were about 40% (at either 7 or 9 dpi) of those 

of the vsRNAs found in the TCV-infected plants. RNA gel blot analysis using full-length 

TCV plus- strand RNA as probe indicated that minus-sense vsRNAs were also generated 

with levels higher at 9 dpi than at 7 dpi (Figure 2.3C). The minus-sense vsRNAs found in 

plants infected with either TCV and satC or CPm3 accumulated to about 40% (at either 7 

or 9 dpi) of the vsRNA levels in plants infected with TCV alone. Since CPm3 

accumulated slightly more efficiently than TCV in plants as determined at 7 and 9 dpi 

(Figure 2.3A), the accumulation reduction of vsRNA derived from CPm3 (Figure 2.3B 

and C) suggested that increased amount of free CP resulted from virion accumulation 

repression might correlate with decreased vsRNA accumulation.  
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Small RNAs processed from the 3’-terminal hairpin of satC   

           Figure 2.3B shows that RNA species of 24- to 40-nt were found in plants infected 

with TCV along with satC, but not plants infected with TCV alone or CPm3. These small 

RNAs were different from the 21-nt vsRNAs in at least three aspects. They were (i) 

larger than the vsRNAs; (ii) satC-specific; and (iii) plus-sense since they were not 

detectable when TCV plus strand RNA was used as probe (Figure 2.3C). To determine 

which region of satC gives rise to these new larger single-stranded small RNAs 

(LssRNAs), total RNAs isolated from plants infected by TCV with or without satC at 7 

dpi were analyzed by gel blotting using probes complementary to full-length satC plus-

strands or different regions in satC plus strands: the 3’-end 151 nts, the 3’-terminal 

hairpin, or the loop region of the 3’-terminal hairpin (Figure 2.4A). As shown in Figure 

2.4B-E, the LssRNAs were detectable by all of the probes with levels decreasing when 

shorter probes were used. The results indicate that at least some of these LssRNAs are 

processed from the loop region of the 3’-terminal hairpin of satC.       

      

Analysis of the putative correlation between LssRNA accumulation and symptom 

modulation 

          As described in Chapter I, the ability of satC to attenuate symptoms requires that 

CP binds only non-specifically to its 3’-terminal hairpin structure since stronger binding 

to a modified 3’-terminal hairpin eliminated attenuation (Wang and Simon, 2000). To test 

if accumulation of LssRNAs from the 3’-terminal hairpin is related to symptom 

modulation, wt satC and a satC mutant, C56G, were examined in plants with TCV-

CPCCFV or CPm providing CPs. C56G is satC containing the 3’-terminal hairpin of diG  
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Figure 2.4 Generation of LssRNA from the 3’ end of satC. (A) Probes used in RNA gel 

blot analysis of LssRNAs. The full-length satC minus-strand RNA, OliogC3, OligoCPr, 

and OligoCPrloop are represented by lines of different colors. OliogC3, OligoCPr, and 

OligoCPrloop are complementary to the 3’ 151 nts of satC, the 3’-terminal hairpin, and 

the loop region of the 3’-terminal hairpin, respectively. Sequence is shown in its plus-

sense, 5’-to-3’ orientation. Numbering is from the 5 end. (B) RNA gel blot analysis of the 

total RNAs isolated from plants infected with TCV alone (None) or together with satC 

(C) at 7 dpi. Full-length satC minus-strand RNA was used as probe. The 5S rRNA was 

used as a loading control. (C-E) The blot analyzed in (B) was stripped and then 

hybridized to probes as given in the Figure. Red asterisks indicate LssRNA species 

derived from satC. 
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(Figure 1.7). C56G accumulates as efficiently as wt satC in protoplasts, but modulates 

symptoms of TCV as effectively as diG (Wang and Simon, 2000). As described in 

Chapter I, TCV-CPCCFV expresses CCFV CP, which shares 65% similarity with that of 

TCV and accumulates genomic RNAs to levels comparable to those of TCV in 

inoculated leaves of Col-0 plants (Kong et al., 1997b).  

          The expectation (Figure 2.5) was that when CP was derived from TCV-CPCCFV or 

CPm, satC would generate LssRNAs in patterns and levels that would be different from 

those produced in the presence of wt TCV CP, because satC attenuates symptoms of 

TCV-CPCCFV and CPm, but intensifies symptoms of TCV (Table 1.4). C56G was 

expected to generate LssRNAs in different patterns when CPs were derived from TCV, 

TCV-CPCCFV or CPm, because C56G is phenotypically like diG (Wang and Simon, 2000) 

and diG intensifies, attenuates, and has no effects on symptoms associated with TCV, 

TCV-CPCCFV, and CPm, respectively (Table 1.4).  

             As shown by agarose gel electrophoresis (Figure 2.6A), in the presence of CP 

derived from TCV-CPCCFV and CPm, satC accumulates to about 50% and 40%, 

respectively, of the levels found with CP translated from wt TCV. A similar reduction in 

satC accumulation was also observed for C56G. As indicated in the RNA gel blot 

analysis (Figure 2.6B), satC generates LssRNAs that are in similar patterns (lanes 3, 6, 9; 

the LssRNA species are indicated with red asterisks), but LssRNA levels are reduced in 

the presence of CP provided by TCV-CPCCFV or CPm. These decreased LssRNA levels 

might be caused by the reduced satC accumulation in the presence of CP derived from 

TCV-CPCCFV and CPm (Figure 2.6A). Similar results were also found for LssRNAs  
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Figure 2.6 RNA gel blot analysis of LssRNAs generated in the presence of CP provided 

by TCV, TCV-CPCCFV, or CPm. Total RNAs were isolated from plants infected with 

the viral and subviral RNA combinations as given in the Figure at 7 dpi. (A) Agarose gel 

analysis of the viral and subviral RNAs accumulating in infected plants. The total RNAs 

were separated in a 1.2% agarose gel. Following electrophoresis, the gel was stained with 

ethidium bromide. Positions of the genomic RNA (gRNA) and wt satC or C56G are 

indicated. The 26S rRNA was used as a loading control. (B) RNA gel blot analysis of the 

LssRNA species derived from satC and C56G. The total RNAs were separated through a 

denaturing 5% polyacrylamide gel-8M urea. The 5S rRNA was used as a loading control. 

oligoCPr was used as probe. Single-stranded DNA size markers (M) are shown to the left 

of the blot. Red and orange asterisks indicate LssRNA species derived from satC and 

C56G, respectively.  
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derived from C56G (Figure 2.6B, lanes 4, 7, 10; the LssRNA species are indicated with 

orange asterisks). Therefore, the current results do not support a significant correlation 

between accumulation of these LssRNAs and symptom modulation. 

 

LssRNA generation is not related to activity of DCL2 or DCL3  

          Since LssRNAs have features of vsRNAs (i.e., single-stranded, mainly plus-sense 

small RNAs), I needed to determine if LssRNAs might be the vsRNA precursors 

processed by Dicers. To test this hypothesis, LssRNAs produced in DCL2- or DCL3-

defective Arabidopsis plants (dcl2-1 and dcl3-1, respectively) infected with TCV alone or 

TCV plus satC or C56G were examined. As shown by agarose gel eletrophoresis, satC or 

C56G accumulated to similar levels in the tested wt, dcl2-1, and dcl3-1 plants (Figure 

2.7A, compare lanes 2, 5, 8 for satC levels; compare lanes 3, 6, 9 for C56G levels). RNA 

gel blot analysis indicated that satC- or C56G-derived LssRNAs accumulate to similar 

levels and patterns in the tested wt, dcl2-1, and dcl3-1 plants (Figure 2.7B, compare lanes 

3, 6, 9 for satC-derived LssRNAs; and lanes 4, 7, 10 for C56G-derived LssRNAs). 

Altogether, the results described above suggest that DCL2 and DCL3 are not important 

for generation of these LssRNAs.   

 

Discussion 

  

           When Arabidopsis plants were infected with CPm3 or TCV along with satC, 

disease symptoms were greatly enhanced over those of wt TCV (Wang and Simon, 

1999). In this Chapter, I demostrate that the enhanced viral pathogenesis associated with  
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Figure 2.7 RNA gel blot analysis of LssRNAs generated in infected wt or DCL2- and 

DCL3-defective Arabidopsis plants (dcl2-1 and dcl3-1, respectively). The total RNAs 

were isolated from plants infected with TCV alone (None) or along with satC (C) or 

C56G at 7 dpi. (A) Agarose gel analysis of the viral and subviral RNAs accumulating in 

infected plants. The total RNAs were separated in a 1.2% agarose gel. Following 

electrophoresis, the gel was stained with ethidium bromide. Positions of gRNA and wt 

satC or C56G are indicated. The 26S rRNA was used as a loading control. (B) RNA gel 

blot analysis of the LssRNA species derived from satC and C56G. The total RNAs were 

separated through a denaturing 8M urea-5% polyacrylamide gel. The 5S rRNA was used 

as a loading control. oligoCPr was used as probe. M, single-stranded DNA size markers. 

Red and orange asterisks indicate LssRNA species derived from satC and C56G, 

respectively. 
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CPm3 or satC correlates with a reduction in virion accumulation and an increase in free 

CP levels. As described in Chapter I, TCV CP acts as a viral silencing suppressor to 

interfere with an early step in silencing, prior to the production of small interfering RNAs 

(Qu et al., 2003; Thomas et al., 2003). When expressed independently of the virus, TCV 

CP is one of the strongest silencing suppressors discovered to date, with suppressor 

activity requiring the N-terminal 25 amino acids. However, when CP is expressed from 

the viral genome, suppression activity associated with TCV is reduced, possibly due to 

sequestration of the N-terminal RNA-binding domain of the CP within assembling 

capsid, or a reduction in the amount of CP available at early times of infection when 

silencing suppression occurs (Qu et al., 2003; Thomas et al., 2003).  

         Based on these findings and my current results, Figure 2.8 presents a model that 

explains the virulence associated with satC, the enhanced symptoms associated with 

CPm3, and the satC-associated symptom attenuation of CPm. I propose that RNA 

silencing is induced by the presence of both TCV and satC. Infection by wt TCV alone 

provides only a limited amount of CP to suppress silencing due to the assembly of CP 

into virions that sequester the CP N-terminus making it unavailable for silencing 

suppression (Figure 2.8A). In the presence of satC (Figure 2.8B), TCV virion 

accumulation is substantially reduced providing additional free CP to repress silencing, 

which results in a more robust infection and enhanced symptom severity. Infection with 

CPm3 leads to identical effects, with N-terminal CP mutations interfering with assembly 

of stable virion and resulting in increased levels of free CP (Figure 2.8C). CPm, which 

contains the same N-terminal CP mutations as CPm3, is also associated with substantially 

reduced levels of virions (Wang and Simon, 1999). CPm produces only 10% of wt levels  
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Figure 2.8 Model for symptom intensification by satC and enhanced symptoms of CPm3. 

Dotted lines in A, D. and E denote weak suppression of VIGS due to reduced availability 

of CP. The enhanced availability of CP due to satC repression of virion accumulation (B) 

or reduced virions associated with CPm3 (C) result in increased levels of free CP that 

strongly suppress silencing leading to enhanced virus colonization of the plant and 

expressed symptoms. The low levels of CP synthesized by CPm create conditions (CP 

levels) similar to (A) since CPm CP do not form virions. In (E), symptoms of CPm are 

substantially reduced since low CP levels are insufficient to repress the additional 

silencing induced by satC.  
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CP, which apparently is sufficient to suppress silencing induced by CPm alone and 

results in conditions and symptoms similar (but not identical) to infections with wt TCV 

(compare Figure 2.8A and D). However, I propose that CPm produces insufficient CP to 

repress the enhanced silencing triggered by the presence of satC in infected cells (Figure 

2.8E), leading to symptom attenuation and low or undetectable virus outside the 

inoculated leaf (Kong et al., 1997a; Kong et al., 1997b).  

          The interrelationship between satC and TCV suggests that the satRNA is not a 

simple parasite of the virus. It benefits the helper virus by augmenting the natural ability 

of the virus to suppress RNA silencing, while also causing a reduction in TCV RNA 

levels (Li and Simon, 1990). Szittya et al. (2002) have demonstrated that symptom 

attenuation associated with satC-sized DI RNAs associated with CymRSV is caused by 

triggering of RNA silencing by the DI RNAs, thus providing precedent for a role of 

subviral RNAs in silencing. Another example of a satRNA beneficial to its helper virus is 

the satRNA associated with Groundnut rosette virus (GRV). GRV satRNA is required for 

transcapsidation of GRV by the CP of the assistor virus Groundnut rosette assistor virus 

(GRAV), and thus for transmission between hosts in nature (Robinson et al., 1999).  

        The region of satC involved in repressing virion accumulation was unexpectedly 

revealed during a study that used in vivo genetic selection (SELEX: Sytematic Evolution 

of Ligands by Exponential Enrichment) to study an internal hairpin (M1H) located on 

minus-strands of satC that serves as a replication enhancer and recombination hot-spot 

during synthesis of plus-strands (Sun and Simon, 2003; Zhang and Simon, 2003). Fitness 

of satC containing randomized sequences replacing M1H was correlated with enhanced 

replication due to the presence of promoter-like elements in the minus-strand and/or 
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enhanced virion inhibition due to formation of a sequence non-specific plus-strand 

hairpin flanked by CA-rich sequence. The most efficient satRNA at reducing virion 

accumulation contained either a deletion of the hairpin sequence, or inserts of CA-rich 

sequence flanking the hairpin, suggesting that the CA-rich sequences flanking M1H in 

satC are involved in virion suppression. 

         While ectopic expression of the TCV CP in Arabidopsis plants previously indicated 

that CP dramatically reduces levels of siRNAs generated by silencing (Chapman et al., 

2004; Dunoyer et al., 2004), direct evidence that the CP inhibits generation of TCV-

derived vsRNAs was lacking, because the CP translated from wt TCV is a weak 

suppressor (Qu et al., 2003; Thomas et al., 2003). I have found a 60% decrease of vsRNA 

levels in the presence of increased amounts of free CP in plants infected with CPm3 or 

TCV along with satC (Figure 2.3). This result strongly supports the model as described 

above (Figure 2.8), which explains the symptom modulation associated with satC or 

CPm3.  

          I also found a new group of small RNAs, the LssRNAs, which are 24- to 40-nt 

long, satC-specific, single-stranded plus-sense RNAs. RNA gel blot analyses using 

selected oligonucleotide probes indicated that at least some LssRNAs are processed from 

the 3’-terminal hairpin of satC, although exact cleavage sites are not currently known. 

My current data suggests that generation of LssRNAs is not related to either symptom 

modulation or activities of DCL2 and DCL3. Recent studies indicated that Adenovirus-

derived vsRNAs are preferentially generated from the 3’ side of the stem of a viral 

hairpin, like generation of the endogenous miRNAs (Sano et al., 2006). Since LssRNAs 

are also processed from the viral 3’-terminal hairpin, it is possible that DCL1, the Dicer 
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required for biogenesis of the miRNAs, is important for generation of LssRNAs. This 

possibility will be tested in the future. It is also possible that cellular nucleases other than 

Dicers are involved in this process. 
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CHAPTER III 

 

TARGETING OF HOST GENE EXPRESSION BY VIRAL-DERIVED 

SMALL RNAS 

 

Introduction 

 

         Viruses invading plants induce VIGS leading to the processing of viral RNAs by 

Dicers into ~21 nt vsRNAs that load into RISC to direct cleavage of complementary viral 

RNAs. These vsRNAs may also base pair with complementary host mRNAs to guide 

degradation of host mRNAs, which may alter the plant’s developmental regulation, 

generating discernible symptoms. As described in Chapter I, vsRNAs derived from non-

coding viroids and CMV satY appear able to promote pathogenesis (Wang et al., 2004) 

while a role in modulation of host gene expression has been proposed for small RNAs 

derived from animal DNA virus (the Herpesviruses and Adenoviruses) transcripts 

(Pfeffer et al., 2005; Sano et al., 2006; Sullivan and Ganem, 2005). vsRNAs derived from 

CymRSV are about 20- to 21-nt long and primarily derived from discrete “hotspot” 

regions on plus strands of the viral RNA (Molnar et al., 2005). Specific plant mRNAs 

targeted by vsRNAs, however, have not been identified. 

 As described in Chapter I, virus-encoded silencing suppressor proteins may 

interfere with endogenous silencing pathways, altering developmental regulation and thus 

contributing to symptom development. TCV CP is a viral suppressor of RNA silencing 

(Qu et al., 2003; Thomas, et al., 2003) and ectopic CP expression substantially reduced 
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levels of 21- and 24-nt siRNAs while enhancing at least one miRNA (Chapman et al., 

2004; Dunoyer et al., 2004). While ectopic expression of some viral silencing suppressors 

in infected cells can produce developmental abnormalities similar to those associated 

with viral infection (Kasschau et al., 2003) or silencing pathway mutants (Voinnet, 2005), 

expression of TCV CP had little (Chapman et al., 2004) or no effect (Dunoyer et al., 

2004) on host morphology.  

         To determine whether symptoms associated with TCV infection result from vsRNA 

targeting of host mRNAs, I cloned TCV- and satC-specific vsRNAs. Both sets of 

vsRNAs were purine-rich, and nearly all were derived from plus-strands. BLAST 

searching revealed 12 putative host mRNA targets for one of the TCV hotspot vsRNA, 

TvsRNA5, and six of seven genes selected for this study had transcript levels reduced 

2.4- to 4-fold by TCV infection. Plants infected with TCV containing a deletion in the 

TvsRNA5 region exhibited reduced symptoms despite wt levels of virus accumulation 

and retained near wt levels of the three TvsRNA5-targeted mRNAs tested. These results 

indicate that vsRNAs derived from invading RNA viruses can specifically target host 

gene expression, which affects virus symptom expression and may produce a more 

favorable environment for virus infection. 
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Materials and Methods 

 

Growth and inoculation of Arabidopsis plants  

          Arabidopsis plants (ecotype Col-0) were grown in a growth chamber at 20°C with 

a 16-h light/dark cycle as described in Chapter II. TCV or satC RNAs synthesized using 

T7 polymerase from SmaI-linearized DNA plasmids were inoculated into the oldest pair 

leaves of Arabidopsis seedlings at the 6 to 8 leaf-stage as described in Chapter II. Control 

(mock) plants were inoculated with inoculation buffer only. Systemically infected leaves 

were collected at 7 dpi, pooled, and then frozen at -80oC prior to RNA extraction.  

 

RNA extraction  

          About 500 mg of leaves of Arabidopsis plants systemically infected with TCV with 

or without satC were ground in liquid nitrogen and resuspended in 10 ml of TRIzol® 

Reagent (Invitrogen). The suspension was then mixed with 3 ml of cholorform followed 

by vortexing and centrifugation in a Sorvall SS34 rotor at 13,000 rpm for 10 minutes at 

4°C. The aqueous phase (~6 ml) was re-extracted with 6 ml of chloroform and 

precipitated with an equal volume of isopropanol. The RNA pellets were washed with 

70% ethanol, dried, and dissolved in 200 μl of RNase-free H2O. The RNA was then used 

for real-time PCR, 5’ RACE or subjected to further purification for cloning of small 

RNAs.  
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Cloning of small RNAs 

           To clone small RNAs, the RNAs extracted from Arabidopsis plants using the 

method described above were further purified using the RNA/DNA Midi kit (Qiagen) and 

the protocol supplied by the manufacturer to obtain low molecular mass RNAs. Twenty 

micrograms of low molecular mass RNAs was subjected to electrophoresis through an 

8% denaturing polyacrylamide gel followed by ethidium bromide staining. Using a 

denatured 10-nt DNA ladder for size standards, the 15- to 40-nt RNA region was excised 

from the gel, sliced, transferred into a 1.5 ml eppendorf tube, and incubated in 3 volumes 

of 0.3 M NaCl at 4°C overnight with vigorous shaking. After incubation, the solution was 

collected and mixed with an equal volume of phenol/chloroform (1:1), followed by 

vigorous vortexing and centrifugation at 13,000 rpm for 5 minutes at 4°C. The 

supernatant was precipitated with 2.5 volumes of 5 M NaOAc/ethanol (1:25). After 

washing with 70% ethanol, the RNA pellets were dried and dissolved in 25 µl of distilled 

water.       

         The small RNAs were cloned using previously described methods (Lau, et al., 

2001; Llave et al., 2002) with a few modifications (see Figure 3.1 for procedure flow 

chart). Briefly, gel-purified RNAs isolated using the method described above were 

ligated to a 5’ adaptor that contains hydroxyl groups (OH) at both ends to prevent adaptor 

self-ligation (Dharmacon; sequences of all oligonucleotides used in this Chapter are listed 

in Table 3.1) using T4 RNA ligase (Amersham). The ligation products were separated on 

an 8% denaturing polyacrylamide gel. RNAs of ~ 35-60 nt were gel-purified, precipitated 

with ethanol, and then ligated to a 3’ adaptor (Dharmacon) using T4 RNA ligase. The 3’ 

adaptor contains a 5’-monophosphate group and a 3’ inverted deoxy-thymidine (3’-idT)  
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Figure 3.1 Flow chart for cloning of vsRNAs from plants infected with TCV in the 

presence or absence of satC. Gel-purified RNAs were ligated to 5’ and 3’ adapters using 

T4 RNA ligase. The adapters were terminally modified to prevent self-ligation. Final 

ligation products were reverse transcribed and amplified by PCR. OH, hydroxyl group; P, 

monophosphate group; idT, inverted deoxythymidine group; RT, Superscript II reverse 

transcriptase; Taq, Taq DNA polymerase. See text for details. 
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Table 3.1 Oligonucleotides used in Chapter III 

Application 
 

Name Sequencea Polarityb 

5’ adaptor 5’-TACAATACGACTCACTAAA 
 

 

3’ adaptor 5’-P-UUUAACCGCATCCTTCTC-idT 
 

 

Oligo5F 5’-CGGCGGGGTACCCCGTACTAATACGA 
CTCACTAAA 

+ 

vsRNA 
cloning 

Oligo3R 
 

5’-GCGCTCTAGAGCGAGAAGGATGCGGT 
TAAA 

_ 

oligo(dT)20 5’-TTTTTTTTTTTTTTTTTTTT _ 

At2g22090F 5’-TCCATTATTTTTCCTTTTGTTGG + 

At2g22090R 5’-CAATATTCGTCCCCACCATC _ 

At2g24762F 5’-AAGAAACAACGAGTCAGTGAGC + 

At2g24762R 5’-ATTTCCCGTGAAAACACGAA _ 

At2g32960F 5’-TGAGTTACCTGAGGAATCATCAAA + 

At2g32960R 5’-GATTACAAATGAATCAAAAGAAAAGA _ 

At3g07810F 5’-TCATTGTTCCTCCTAGGCTTTT + 

At3g07810R 5’-CTCGCCGGAGACTGATACA _ 

At4g11010F 5’-TCCCTCTTCCTCTTGTCTTTTG + 

At4g11010R 5’-CCCGGAATGTGTTTGTATCC _ 

At4g19110F 5’-GTCTTTGCCTCGTCAATGGT + 

At4g19110R 5’-GACCCAAGTCGATCTTTATTGC _ 

At5g42860F 5’-ACCCCAAAGCAGAAGAATCA + 

At5g42860R 5’-GAATTTGATACTTTGCGTGAAAAA _ 

TCP4F 5’-GGTCCCCTTCAGTCCAGTTACAGTC + 

Real-time 
RT-PCR 

TCP4R 5’-AGGAAGGTGATGGTGGTGGTT _ 

AAP 5’-GGCCACGCGTCGACTAGTACGGGIIGGGII 
GGGIIG 

+ 

GSP1 5’-AATAAAAGATAAAAATAGTTTTTTCT 
 

_ 

5’ RACE 

GSP2 
 

5’-GTACATCAACAGAAACGAGTT _ 
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a Bold residues denote a KpnI site in Oligo5F and an XbalI site in Oligo3R. Bases in 

italics indicate the RNA residues in the 5’ and 3’ adapters. The 3’ portion of AAP is 

underlined, which is complementary to the homopolymeric tail of dCTP-tailed cDNA. I, 

deoxyinosine residue; P, monophosphate group; idT, inverted deoxythymidine group. 

b “+” and “-” polarities refer to homology and complementarity with Arabidopsis 

mRNAs, respectively. 
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to prevent 3’ end ligation. Final ligation products were subjected to reverse transcription 

using reverse transcriptase Superscript II (Invitrogen) and Oligo3R as primer. Reverse 

transcription products were amplified by PCR using primers Oligo5F and Oligo3R, 

which contain KpnI and XbalI sites, respectively. PCR products were digested with KpnI 

and XbalI, and separated on a 3% agarose gel. DNA fragments of 55-80 nt were eluted 

from the gel and ligated to pUC19 lacking its KpnI-XbalI fragment. The resulting clones 

were pre-screened for virus-specific sequences by hybridization to full-length TCV or 

satC plus- and minus-strand probes using the RNA gel blotting method described in 

Chapter II and then sequenced. 

  

Real-time RT-PCR   

         Real time RT-PCR was performed using Invitrogen’s SuperScript™ III Platinum® 

Two-Step qRT-PCR Kit with SYBR® Green according to the manufacturer’s protocol 

(see Figure 3.2 for procedure flow chart). Briefly, the oligo(dT)20-directed reverse 

transcription was carried out at 42°C for 50 minutes in a 20-µl reaction containing 10 μl 

of 2X RT Reaction Mix, 2 μl of RT Enzyme Mix, 1 μl of total RNA (1 μg/μl) extracted 

from plants infected with TCV alone or along with satC. The 2X RT Reaction Mix 

contains 2.5 μM oligo(dT)20, random hexamers (2.5 ng/μl), 10 mM MgCl2, and dNTPs 

(dATP, dCTP, dGTP, dTTP). The RT Enzyme Mix contains SuperScript™ III RT and 

RNaseOUT™. The reaction was terminated by heating at 85oC for 5 minutes, and then 

chilled on ice. The resulted cDNAs were treated with 1 μl of E. coli RNase H (2 U/ μl) at 

37oC for 20 minutes, and then diluted 10-fold. Each 8 µl of the diluted cDNA sample  

 



 92

 

 

 

 

Figure 3.2 Flow chart for real-time PCR of Arabidopsis mRNAs. RT, Superscript II 

reverse transcriptase; Taq, Taq DNA polymerase. See text for details. 
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(~40 ng of input RNA) was added to a 25-µl PCR reaction containing 12.5 μl of 

SuperMix-UDG, 0.5 μl of 10 μM forward primer, 0.5 μl of 10 μM reverse primer. The 

forward primers used for PCR assay of mRNAs of Arabidopsis genes At2g22090, 

At2g24762, At2g32960, At3g07810, At4g11010, At4g19110, At5g42860 and TCP4 are 

At2g22090F, At2g24762F, At2g32960F, At3g07810F, At4g11010F, At4g19110F, 

At5g42860F, and TCP4F, respectively. The corresponding reverse primers are 

At2g22090R, At2g24762R, At2g32960R, At3g07810R, At4g11010R, At4g19110R, 

At5g42860R and TCP4R, respectively. Primers were designed using OligoPerfect™, a 

primer design software program provided by Invitrogen. Amplification was carried out 

with a 3-Step Cycling program (50°C for 2 minutes; 95°C for 2 minutes; and 45 cycles 

of:  95°C for15 seconds, 55°C for 30 seconds, and 72°C for 30 seconds) in a Prism 7700 

Sequence Detection System (Applied Biosystems) in real time. The melting curves were 

analyzed as described in the instrument documentation provided by Invitrogen. Real time 

PCR data were analyzed using the delta-delta Ct method (Pfaffl, 2001). Ct represents the 

cycle threshold, e.g., the cycles necessary to detect a signal. Experiments were carried out 

in triplicate using three different preparations of RNA combined from 2 to 3 plants. 

Relative expression ratios of different samples and mock were normalized to actin-2, the 

constitutive marker gene (Sigma). The efficiencies of all primer pairs were between 99-

103% and standard curves were generated for all pairs. PCR products were also 

monitored following electrophoresis through 2% agarose gels stained with ethidium 

bromide for production of a single species.   
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5’-RACE  

          5’-RACE (rapid amplification of cDNA ends) PCR was carried out according to 

Invitrogen’s 5’-RACE PCR protocol (Catalog # 18374-058) with modifications (see 

Figure 3.3 for procedure flow chart). Briefly, 5 μl of total RNA (1 μg/μl) isolated from 

plants was mixed with 2.5 μl of 1 μM GSP1 (gene-specific primer 1) in a 0.5 ml 

eppendorf tube. The mixture was incubated at 70°C for 10 minutes and chilled on ice for 

1 minute to denature the RNA, which was followed by addition of 2.5 μl of 10X PCR 

buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl), 2.5 μl of 25 mM MgCl2, 1 μl of 10 mM 

each of dATP, dCTP, dGTP, dTTP, and 2.5 μl of 0.1 M DTT. The mixture was adjusted 

to a volume of 24 μl with distilled H2O and then incubated for 1 minute at 42°C. The 

mixture was collected by brief centrifugation and gently mixed with 1 μl of 

SuperScript™ II RT (200U/μl), followed by incubation at 42°C for 50 minutes to 

synthesize enough cDNA. The reverse transcription reaction was terminated by 

incubation at 70°C for 15 minutes and then cooled down to 37°C. The reaction mixture 

was treated with RNase A at a final concentration of 0.1 μg/μl and RNase H (1U/ μl) at 

37°C for 30 minutes. The first-strand cDNA was purified using a S.N.A.P. column 

(Invitrogen) and the method recommended by the manufacturer to eliminate unused 

primer and dNTPs. The purified cDNA was mixed with 5 μl of 5X tailing buffer (50 mM 

Tris-HCl, pH 8.4, 125 mM KCl, 7.5 mM MgCl2) and 2.5 μl of 2 mM dCTP. The mixture 

was adjusted to a volume of 24 μl with distilled H2O, heated at 94°C for 3 minutes, 

chilled on ice for 1 minute, and collected by brief centrifugation. After addition of 1 μl of 

terminal deoxynucleotidyl transferase (15 U/μl), the mixture was incubated at 37°C for  
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Figure 3.3 Flow chart for 5’ RACE of Arabidopsis mRNAs. RT, Superscript II reverse 

transcriptase; TDT, terminal deoxynucleotidyl transferase; Taq, Taq DNA polymerase; 

GSP1, gene-specific primer 1; AAP, abridged anchor primer; GSP2, gene-specific primer 

2. See text for details. 
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10 minutes to tail the cDNA. The reaction was terminated by incubation at 65°C for 10 

minutes. To amplify the dCTP-tailed cDNA by PCR, 5 μl of the tailed cDNA was mixed 

with 5 μl of 10X PCR buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl), 3 μl of 25 mM 

MgCl2, 1 μl of 10 mM each of dATP, dCTP, dGTP, dTTP, 2 μl of 10 μM nested GSP2 

(gene-specific primer 2), 2 μl of 10 μM AAP (abridged anchor primer), and 0.5 μl of Taq 

DNA polymerase (5 units/μl). The 3’ poly(G) portion of AAP (Table 3.1), which is 

complementary to the homopolymeric tail of dCTP-tailed cDNA, contains deoxyinosine 

residues (I) to create a melting temperature (Tm) for the 16-base anchor region (66.6°C) 

that is comparable to that of a typical 20-base primer with 50% GC content. 

Deoxyinosine basepairs with all four bases with different affinities. The mixture was 

adjusted to a volume of 50 μl with distilled H2O and PCR was carried out in a thermal 

cycler using the cycling protocol recommended by the manufacturer. Ten microliters of 

the 5’ RACE products were analyzed by 1.2% agarose gel electrophoresis using 

appropriate size standards.  

        

Results 

  

TCV and satC vsRNAs are mainly derived from plus-strand hotspot regions  

         To identify vsRNAs derived from TCV gRNA and satC, 10 Arabidopsis Col-0 

seedlings at the six to eight  leaf stage were inoculated with either TCV or TCV and satC.  

At 7 dpi, the onset of visible symptoms, leaves from infected plants were pooled, and 

small RNAs (under 50 nt) were isolated and cloned. To avoid sequencing non-viral 

siRNAs and miRNAs, clones were initially pre-screened for virus-specific sequences by 
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hybridization to full-length TCV or satC plus- and minus-strand probes. Approximately 

40% of the small RNA population that was amenable to cloning was virus-specific. Most 

of the TCV vsRNA clones contained sequence from plus-strands (57/62) and 45 of the 57 

plus-strand vsRNAs were derived from five hotspot regions containing at least six 

members each (labeled TvsRNAs1-5) (Table 3.2). Endpoints within each hotspot region 

were slightly staggered, denoting that the excision events were imprecise. TvsRNA 

sequences ranged in size from 19 to 24 nt, with the majority (52 of 62) being 20 to 22 nt. 

Nearly all sequences were purine-rich, with an average purine content of 68 ± 8.9% 

(hotspot sequences were only considered once), compared with a TCV genomic RNA 

purine content of 54%. In addition, there were 22 GGG(G) or AAA(A) elements 

compared with only five CCC(C) or UUU(U) elements.  All TvsRNAs appear to have 

been excised from hairpin or interior paired regions of TCV, as determined by mFold 

computer modeling (Zuker, 2003; Figure 3.4). 

Of the 37 satC vsRNA (CvsRNA) sequences cloned, all but three were from two 

regions of satC: positions 128-154 in plus-strands (CvsRNA1) and positions 21-40 in 

minus-strands (CvsRNA2) (Table 3.3). As with TCV vsRNAs, CvsRNAs were purine-

rich with an average purine content of 62 ± 5.6% compared with satC G/A content of 

54%. The lengths of CvsRNAs were also similar to those of TCV gRNA, with 35 of 37 

being 20 to 22 nt in length (Figure 3.5 B and C). Members of CvsRNA1 and CvsRNA2 

had slightly staggered ends, indicating similar imprecise excision as was found for TCV 

TvsRNAs. mFold RNA structure predictions (Zuker, 2003) combined with solution 

structure probing of the 5’ portion of satC (G. Zhang and A. E. Simon, unpublished) 

revealed that both hotspots lie within one strand in extensively paired regions (Figure 
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Table 3.2 The vsRNAs derived from plus- and minus-strands of TCV.   

Strand Position a Sequence  Copy 
 # 

Length  
(nt) 

Group 

310-331 AGCGGGGCGGAUAUAGAAAUAG  2 22 
311-332 GCGGGGCGGAUAUAGAAAUAGA 7 22 
312-333 CGGGGCAGAUAUAGAAAUAGACU 1 23 

TvsRNA1 
(10/60) 

375-395 CGGGGCGGAUAUAGAAAUAGAC  2 22 
376-396 UUUGGUGGAGGCGGUAGGUAG   10 21 
377-398 UGGUGGAGGCGGUAGGUAGUAC 1 22 
377-395 UCUGGUGGAGGCGGUAGGUAG   3 21 

TvsRNA2 
(16/60) 

1003-1022 GAAAGAGUCUUUUACGCUUGA   3 21 
1005-1025 AAAGAGUCUUUUACGUUGAAGC   2 22 
1005-1028 AAGAGUCUUUUACGUUGAAGAUGC 1 24 

TvsRNA3 
(6/60) 

2792-2812 UGGGCGAUAAAGUGGCAGAAG   3 21 
2796-2815 CGATAAAGTGGCAGAAGAAG       2 20 
2796-2817 CGATAAAGTGGCAGAAGAAGGG        1 22 

TvsRNA4 
(6/60) 

3850-3870 UAAGAAAAGAAAACAAAAAC   4 21 
3851-3870 AAGAAAAGAAAACAAAAACC    2 20 

TvsRNA5 
(6/60) 

616-636    CGCGGAAGACATTCAGGTCGT          1 21  
696-715 AAGUGCGGAAGUGGUGGGUC  1 20  
831-851 UGGUCGGGAGGGAGACUCAAA 1 21  
950-970 GACUUUGGAGUCCACAACAA  1 21  
1449-1467 UGAGUAACACCUGGGAUAA  1 19  
1801-1821 UGAUGAAGUCGACAGGGUGC  1 21  
2809-2830 AGAAGGGCUGGUCAACCCUAAC 1 22  
3093-3113 CAGCUCAUUAAGGAGGCGGCC 1 21  
3545-3564 CAAGGGGACAGCUGGGUGGG  1 20  
3603-3624 TTGACATTGTTCTACGAGAAGG         1 22  

Plus 

3755-3773 UGAGGAGCAGCCAAAGGGU  1 19  
42-63 AUCGUGAAUAGAGAGAAGGUUG 1 22  
766-786 UCAGGCAGUCGGCAUAAUCG  1 21  
2630-2650 AAGTAGGAGGACCAGTGAGAG          1 21  
3379-3360 ATGAGCTTGCCGAAATCGAC        1 20  

Minus 

2975-2995 CUUCUGGUUAUGCCGUCCCUG 1 21  
a Coordinates correspond to those of TCV. 
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Figure 3.4  Position of the TCV vsRNAs on local structures determined by mFold 

(Zuker, 2003). Arrowheads bracket the furthest endpoints of the encompassed TvsRNA 

sequences.  
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Table 3.3 The vsRNAs derived from plus- and minus-strands of satC.   
 
Strand Position a Sequence Copy 

 # 
Length 

(nt) 
Group 

128-147 CCAUCAAGUACGGGAGCGUG 1 20 
129-148 CAUCAAGUACGGGAGCGUGA 1 20 
130-151 AUCAAGUACGGGAGCGUGAAAA 1 22 
131-150 UCAAGUACGGGAGCGUGAAA 8 20 
131-152 UCAAGUACGGGAGCGUGAAAAC 2 22 
131-153 UCAAGUACGGGAGCGUGAAAACC 1 23 
132-153 CAAGUACGGGAGCGUGAAAACC 1 22 
133-153 AAGUACGGGAGCGUGAAAACC 6 21 
133-154 AAGUACGGGAGCGUGAAAACCU 2 22 
134-154 AGUACGGGAGCGUGAAAACCU 3 21 

CvsRNA1  
(26/40) 

140-160 GGAGCGUGAAAACCUGGCUGU 1 21  

Plus 
strand 

189-210 CAGCCAAAGGGUAAAUGGGACC 1 22  
21-40 CAUUAGUUGCGUAGUAUUGU 3 20 
22-40 CAUUAGUUGCGUAGUAUUGGU 5 21 
22-40 CAUUAGUUGCGUAGUAUUGGU 1 21 
25-40 UAGUUGCGUAGUAUUGGU 1 18 

CvsRN2 
(10/40) 

12-33 UGCGUAGUAUUGUAUGAAACCC 1 22  

Minus 
strand 

171-187 AGGGUCUGGGAUUCUUUUGAG 1 21  
a Coordinates correspond to those of satC.  
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3.5A and B). In addition, one CvsRNA (positions 189-210) was excised from the M1H 

hairpin region, which is a required hairpin in plus-strands (Sun and Simon, 2003). It is 

noted that no LssRNA-sized small RNAs (24- to 40-nt) were found among the satC-

derived small RNAs (Table 3.3), although 18- to 40-nt RNA species were eluted from the 

gel during the small RNA cloning (see Materials and Methods).  

 

TvsRNA5 downregulates complementary Arabidopsis mRNAs 

        TvsRNA5 (5’UAAGAAAAGAAAACAAAAACC), the most purine-rich of the 

TvsRNAs, is located between positions 3850 to 3969 in the 3’ untranslated region (UTR) 

of TCV. This sequence comprises the 3’ side of the well-studied M3H hairpin, which also 

contains a sequence repeat that acts as an enhancer and recombination hotspot in its 

minus-sense orientation (Carpenter et al., 1995). I chose to examine if this particular 

vsRNA targets host transcripts for the following reasons: small deletions in this region 

are not detrimental to TCV accumulation (Carpenter et al., 1995); the 3’ UTR location 

allows for sequence alterations without affecting viral ORFs; and the sequence had 

extensive complementary to the largest number of host genes.   

BLAST searching the Arabidopsis genome against the reverse complement of 

TvsRNA5 revealed complementarity (at least 16/16 or 19/20) to 12 genes, some of which 

encode RNA-binding proteins, protein kinases, senescence-associated proteins, protein 

phosphatases and specific transcription factors (Figure 3.6A). To determine if TCV 

infection affects the expression of some of these genes, seven were selected for analysis.  

For all seven, the complementary pyrimidine-rich sequence is located within the 3’ UTR.  

mRNAs from two genes (At4G19110.1 and At2G24762; all genes are identified by their  
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Figure 3.5 Position of the satC vsRNAs on structures determined by mFold (Zuker, 

2003). For the satC plus (+) strand, only the 5’ domain derived from satD, is presented. 

The putative structure for satC full length minus (-)-strand is shown. Arrowheads bracket 

the furthest endpoints of the encompassed CvsRNA sequences.  
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Figure 3.6 Expression of genes with sequences complementary to TvsRNA5 in virus-

infected plants. (A) Complementarity between TvsRNA5 and transcripts of seven 

Arabidopsis genes identified by BLAST. The accession numbers and encoded protein 

functions (if known) are given.  All sequences are located in the 3’ UTR of the mRNAs. 

mRNA sequences are shown in 5’ to 3’ orientation. (B) mRNA accumulation levels as 

determined by real-time PCR.  Plants were either mock inoculated (Mock) or inoculated 

with TCV alone or TCV and satC. RNA was extracted at 7 dpi from leaf tissue pooled 

from five plants, and subjected to real-time PCR using gene-specific primers. PCR was 

repeated three times. Error bars denote standard deviation.  

 

 

 

 

 

 

 

 



 108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

At4G19110

Putative hnRNP

At2G24762

At2G22090

Unknown chloroplast

Nucleoside diphosphate

At2G32960

2446  UGCUUUUGUUUUCUUUUCUUA 

TCV   CCAAAAACAAAAGAAAAGAAU  3850

568   CUUUUUUGUUUUCUUUUCUUC

TCV  CCAAAAACAAAAGAAAAGAAU   3850

2058  UAUUUUUGUUUUCUUUUCUUC

TCV   CCAAAAACAAAAGAAAAGAAU  3850

protein kinase

819  GGUUUUUCUUUUCUUUUCUUA

TCV CCAAAAACAAAAGAAAAGAAU    3850

1480 AUGUUUUGUUUUCUUUUCUUU

TCV  CCAAAAACAAAAGAAAAGAAU   3850

1107 GGUUUUUGUUUUCUUUUUCUG
:       :

TCV  CCAAAAACAAAAGAAAAGAAU   3850

1218 ACAUUUUGUUUUCUUUUUUUU
:

TCV  CCAAAAACAAAAGAAAAGAAU   3850

Unknown

At3G07810

At5G42860

UBP1 interacting

protein phosphatase          

Serine/threonine

At4G11010

RNA-binding protein

protein

kinase 3, mitochondrial

protein 1a                         

Tyrosine specific



 109

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

m
R

NA
 a

cc
um

ul
at

io
n

0

50

100

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

M
oc

k

TC
V

TC
V+

C

A
t2

G
24

76
2

A
t3

G
07

81
0

A
t4

G
11

01
0

A
t4

G
19

11
0

A
t2

G
22

09
0

A
t5

G
42

86
0

A
t2

G
32

96
0



 110

accession numbers) can pair 18/18 residues, while four (At3G07810.1, At2G22090, 

At5G42860 and At2G32960) can pair 17/17 residues (Figure 3.6A). mRNA from one 

gene (At4G11010) is complementary to  20 of 21 residues.   

To determine if genes complementary to TvsRNA5 have altered expression in the 

presence of the virus, Arabidopsis seedlings were inoculated with TCV, TCV and satC, 

or inoculation buffer (Mock). At 7 dpi, RNA was extracted and pooled from 2 to 3 plants 

each and mRNA transcripts quantified by real-time PCR. Accumulation of transcripts 

corresponding to six of the seven genes was 2.4- to 4-fold lower in virus-infected plants 

compared with levels of transcripts in control, mock-inoculated plants (Figure 3.6B).  

The expression of one gene, At2G32960 was unchanged by TCV infection (see 

Discussion for possible explanation). The additional presence of satC did not 

substantially affect the level of expression of any of the genes.  Since gene selection for 

analysis was based solely on sequence complementarity to TvsRNA5, these results 

suggest a possible connection between reduced gene expression and the presence of TCV 

vsRNA5 in the cellular small RNA population. 

 

TCV with a deletion in the TvsRNA5 region is unable to downregulate expression of 

three targeted genes 

       To confirm that reduced transcript levels were due to the presence of TvsRNA5, 

plants were inoculated with TCV containing a deletion of positions 3854-3860 in the 

TvsRNA5 region (the construct TCVΔvs5, which was generated by Dr. Clifford D. 

Carpenter) (Figure 3.7A). It had been previously show that TCV with this deletion 

accumulates to wt levels in turnip, while TCV with a deletion of four additional bases  
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Figure 3.7 Effect of deleting TvsRNA5 sequence in the TCV genome on expression of 

putative targeted genes. (A) Location of the deletion in TvsRNA5 sequence in TCVΔvs5. 

The deleted sequence is boxed. (B) Levels of TCV and TCVΔvsRNA5 gRNA 

accumulating in infected Arabidopsis leaves at 7 dpi. RNA was pooled from 2 to 3 plants. 

Following electrophoresis, the gel was stained with ethidium bromide. The position of 

genomic RNA (gRNA) is indicated. The two non-viral RNAs are cytoplasmic ribosomal 

RNAs, which can be used as loading controls. (C) Expression of genes with sequences 

complementary to TvsRNA5 in virus-infected plants. mRNA accumulation levels were 

determined by real-time PCR. Plants were either mock inoculated (Mock) or inoculated 

with wt TCV (TCV) or TCVΔvs5. RNA was extracted at 7 dpi from leaf tissue pooled 

from 2 to 3 plants, and subjected to real-time PCR using gene-specific primers. PCR was 

repeated twice with different sets of plants. (D) Phenotype of rosette leaves of mock-, wt 

TCV-, and TCVΔvs5-infected plants at 14 dpi. Two plants for each treatment are shown.  

Note that young rosette leaves in the center of the plant expand more fully in plant 

infected with TCVΔvs5 compared with plants infected with wt TCV. 
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(3854-3864) accumulated to less than 20% of wt levels (Carpenter et al., 1995). 

Arabidopsis plants were inoculated with TCV, TCVΔvs5, or inoculation buffer, and RNA 

extracted and pooled from 2-3 plants each at 7 dpi. TCV and TCVΔvs5 accumulated to 

very similar levels in infected leaf tissue as determined by electrophoresis of total RNA 

followed by ethidium bromide staining (Figure 3.7B). Real-time PCR analysis was 

conducted for transcripts of three genes that were downregulated by the presence of wt 

TCV (At2G24762, At3G07810 and At4G11010).  As found previously, transcript levels 

of the three genes were reduced in plants infected with wt TCV compared with mock-

inoculated plants (2.4- to 2.9-fold; Figure 3.7C). However, in plants infected with 

TCVΔvs5, transcript levels for all genes were at or above levels found in mock-

inoculated plants.  These results strongly suggest that TvsRNA5 is able to reduce levels 

of transcripts with complementary sequences. 

To ascertain if reduced accumulation of TvsRNA5-targeted genes affects 

symptom expression, plants infected with wt TCV or TCVΔvs5 were examined for 

symptoms at 10 and 14 dpi.  At both time points, plants infected with TCVΔvs5 exhibited 

attenuated symptoms compared with those infected with wt TCV (Figure 3.7D). In TCV-

infected Arabidopsis, young leaves failed to fully expand after 7 dpi and bolting was 

delayed or plants failed to bolt.  In contrast, TCVΔvs5-infected plants had leaves only 

slightly reduced in size at 10 and 14 dpi compared with mock-inoculated plants. In 

addition, all plants bolted, although the bolt was stunted compared with mock-inoculated 

plants. These results strongly suggest that TvsRNA5 reduces the expression of transcripts 

with complementary sequences, which either directly or indirectly are responsible for a 

subset of symptoms expressed by TCV. 
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5’ RACE assay of fragments produced by putative TvsRNA5-guided RISC cleavage 

of plant mRNA   

Since TvsRNA5 is able to reduce levels of transcripts with complementary 

sequences  (Figure 3.6 and 3.7) and its putative target sequence is in the 3’ UTR of all 

these mRNAs, it is possible that reductions in mRNA are caused by RISC-mediated 

cleavage or decreasing the stability of the mRNA. It was recently reported that an animal 

miRNA affects the AU-rich stability determinant in the 3’ UTR of an mRNA (Jing et al., 

2005). TvsRNA5-guided cleavage events should be in predicted locations of host 

mRNAs (Figure 3.6A) and produce fragments of shortened sizes. Therefore, 5’ RACE 

(see Materials and Methods) was performed to amplify the 3’ fragment generated by 

putative cleavage of At3G07810. The expectation was that the presence of full-length 

At3G07810 mRNA in plants would result in an approximately 2800-bp cDNA fragment, 

and that in wt TCV-infected plants, level of this cDNA would be much lower due to the 

RNA cleavage. Amplification of the 3’ fragment generated by putative cleavage of 

At3G07810 would generate a 450-bp cDNA fragment. 

          PCR products were separated on a 1.2% ethidium bromide-staining agarose gel 

along with 1kb and 100 bp ladders (M1 and M2, respectively, Figure 3.8). As shown in 

Figure 3.8, one 700-bp DNA fragment was amplified by the 5’ RACE PCR of the 700-nt 

control RNA (CK), which was provided by the manufacturer. However, no detectable 

products were found in other samples that do not contain the control RNA. Therefore, the 

current results cannot determine whether or not At3G07810 mRNA is cleaved or not. 
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Figure 3.8 5’ RACE assay of putative fragments produced by TvsRNA5-guided cleavage 

of Arabidopsis At3G07810 mRNA. Plants were either mock inoculated (Mock) or 

inoculated with wt TCV or TCVΔvs5. RNA was extracted at 7 dpi from leaf tissue 

pooled from five plants, and subjected to 5’ RACE. PCR products were separated on a 

1.2% ethidium bromide-staining agarose gel. M1, 1 kb DNA ladder; M2, 100 bp DNA 

ladder; CK, control.  
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The presence of satC reduces levels of TCP4 mRNA in infected Arabidopsis plants  

         As described in Chapter I, coinoculation of satC and TCV into plants leads to 

severe leaf crinkling, which is not visible in plants inoculated with TCV alone. Very 

similar leaf crinkling can be observed in Arabidopsis plants with mutations in its JAW 

locus that encodes an miRNA (miR-Jaw) (Palatnik et al., 2003). These mutations resulted 

in a substantial increase in levels of miR-JAW and a concomitant decrease in levels of 

miR-JAW-targeted gene transcripts, which are members of the TCP family of 

transcription factors (Palatnik et al., 2003). BLAST searches of the Arabidopsis genome 

against the reverse complement of CvsRNA1 revealed complementarity to TCP4, a 

member of the TCP family. The TCP4 mRNA is complementary to 19 of 22 CvsRNA1 

residues with several mismatches (Figure 3.9A).  

        To test whether the presence of satC affects levels of TCP4 mRNA, Arabidopsis 

plants were inoculated with TCV, TCV and satC, or inoculation buffer (Mock). At 7 dpi, 

RNA was extracted and pooled from 2 to 3 plants each and levels of TCP4 mRNA 

transcripts were assayed by real-time PCR. As shown in Figure 3.9B, TCP4 transcripts in 

the mock plants and the TCV-infected plants accumulated to similar levels, suggesting 

that TCV does not affect levels of TCP4 mRNA. However, in plants coinfected with 

TCV and satC, TCP4 transcripts accumulated to only about 25% of those in the mock 

plants, suggesting that satC affects TCP4 expression, possibly by CvsRNA1-directed 

cleavage of TCP4 transcripts. 
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Figure 3.9 The presence of satC affects accumulation levels of TCP4 mRNAs in infected 

plants. (A) Complementarity between CvsRNA1 and TCP4 mRNA revealed by BLAST. 

(B) Levels of TCP4 mRNA at 7 dpi as determined by real-time PCR. 
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Discussion 

 

In this Chapter, I cloned and sequenced vsRNAs derived from TCV or satC that 

are in comparable sizes and distribution to those previously reported for CymRSV 

(Molnár et al., 2005). TCV and satC vsRNAs ranged in size from 18-24 nt, similar to the 

size range of host miRNAs (18-25 nt) (Bartel, 2004; Kidner and Martienssen, 2005). The 

vast majority (92%) of TvsRNAs were derived from plus-strands, compared with 80% 

positive polarity for CymRSV vsRNAs (Molnár et al., 2005). Seventy-three percent of 

TCV vsRNAs were excised from one of five hotspot regions, with members containing 

slightly staggered ends. Many CymRSV vsRNAs were also clustered with slightly 

staggered ends, and duplexes accumulating in infected tissue contained mismatches 

indicating the two strands in excised RNA duplexes were not perfectly paired (Molnár et 

al., 2005). Results with TCV therefore support the hypothesis that vsRNAs are derived 

from structured regions of RNA viral genomes but not from fully dsRNA species. The 

enzyme responsible for biogenesis of vsRNAs in the cytoplasm where RNA viruses 

replicate is not known, although a transient reduction in TCV vsRNA levels was reported 

in TCV-infected dcl2-1 plants (Xie et al., 2004). Interestingly, vsRNAs have only been 

found associated with nuclear replicating DNA viruses in animal cells (Pfeffer et al., 

2005; Sullivan and Ganem, 2005). This could reflect differences in dicers and RNA 

silencing pathways in plants and animals (Chen, 2005; Du and Zamore, 2005).   

       Of the seven host genes with complementarity to TvsRNA5 selected for analysis, six 

showed reduction in mRNA levels from 2.6- to 4-fold in the presence of wt TCV. 

Microarray analysis of expression differences in Arabidopsis plants infected with TMV 
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revealed only 35 genes reduced between 1.9- and 4.6-fold among the 8,000 to 10,000 

mRNAs analyzed (Golem and Culver, 2003). Similar studies using CMV (Dinesh Kumar, 

personal communication) or TuMV (Steven Whitham, personal communication) revealed 

expression reductions for only 400 of 25,000 mRNAs or 220 of 24,000 mRNAs, 

respectively.   

The one gene that was not detectably altered in virus-infected plants (At2G32960) 

had 17 consecutive bases complementary to TvsRNA5, similar to the level of 

complementarity for other TvsRNA5-targeted mRNAs and for host miRNA targeting 

(Roades et al., 2002; Schwab et al., 2005). Analysis of known miRNA-mRNA pairs 

indicate that exact matches are uncommon at the very 5’ and 3’ ends, (Haley and Zamore, 

2004; Mallory et al., 2004). The poor complementarity between positions 1-4 at the 5’ 

end of TvsRNA5 and At2G32960 transcripts, with four mismatches or G:U pairs, may 

therefore account for lack of altered gene expression. Alternatively, the structural context 

of the target sequence in At2G32960 mRNA may make the region inaccessible for 

pairing with TvsRNA5.   

The sequences complementary to TvsRNA5 in all six targeted mRNAs are 

located in the 3’ UTR. In plants, target sequences for miRNAs are normally within the 

coding region (Roades et al., 2002), however, several sequence targets of Arabidopsis 

miR156 are within the 3’ UTR (Bartel, 2004). As shown in Figure 3.8, 5’ RACE was 

performed to test if TvsRNA5-specific reductions in mRNA levels are due to cleavage of 

the RNAs or involvement with 3’ UTR mRNA stability determinants. In this experiment, 

the failure of cDNA amplification might be caused by some suboptional PCR conditions 

such as primer designs, which need to be modified or corrected in the future. RNA decay 
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mediated by numerous intracellular mechanisms would shorten the fate of RNA in cells, 

which may prevent recovery of the fragments. To enhance the recovery of these potential 

fragments, Arabidopsis Xrn4 mutants, which are compromised in the miRNA-mediated 

decay pathway and thus contain elevated levels of 3’ ends following RISC-mediated 

cleavage events (Souret et al., 2004), may be used.  

The 5’ RACE can also be preformed to test if the TCP4 mRNA reduction in the 

presence of satC results from RNA cleavage guided by CvsRNA1 or other satC-derived 

vsRNAs. Although 18- to 40-nt RNA species were eluted from the gel during the small 

RNA cloning, satC-specific LssRNAs were not recovered. Explanations for this result are 

possible: (i) the single-stranded LssRNAs may be much more unstable than the vsRNAs 

generated by Dicer processing in cells; (ii) LssRNAs may not be completely denatured in 

8% denaturing polyacrylamide gel, which may inhibit the ligation to adapters by keeping 

some secondary structures folded; and (iii) LssRNAs may be terminally methylated by 

cellular enzymes, which may inhibit ligation to adapters. 
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CHAPTER IV 

 

A NOVEL PROCEDURE FOR THE LOCALIZATION OF VIRAL RNAS IN 

PROTOPLASTS AND WHOLE PLANTS 

 

Introduction 

 

       The ability to track the movement of viruses non-evasively using co-expressed 

reporter proteins has provided a wealth of information on cell-to-cell and long distance 

movement of some viruses in host plants (Baulcombe et al., 1995; Cheng et al., 2000; 

Roberts et al., 1997). Methods for co-expression of reporter proteins such as the 

Aequorea victoria green fluorescent protein (GFP) have relied on the engineering of new 

viral mRNA transcripts expressed from natural or ectopic subgenomic RNA promoters 

(Baulcombe et al., 1995), the fusion of reporter proteins to amenable viral proteins such 

as the CP or movement proteins (Heinlein et al., 1995; Santa Cruz et al., 1996), or the 

addition to, and subsequent cleavage from, viral expressed polyproteins (Dolja et al., 

1992; Verver et al., 1998). In addition, some viruses encode proteins not required for 

systemic movement within the host (as opposed to transfer between hosts) and such 

proteins can be replaced with reporter proteins (Gardiner et al., 1988; Scholthof et al., 

1993). Such methods require substantial modification of the viral genome and can lead to 

alterations in viral accumulation or pathogenesis (Cohen et al., 2000). Furthermore, such 

methods have only been successfully applied to a small percentage of RNA viruses, since 

many viruses, especially those packaged in size restrictive icosahedral capsids (Qu and 
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Morris, 1997), cannot tolerate insertion of large non-viral segments or loss of any open 

reading frames (ORFs). Thus, alternative procedures are necessary for the non-evasive 

detection of most viruses.   

 TCV is an example of an RNA virus that cannot tolerate added genomic 

sequences and requires all five of its ORFs for replication and systemic movement 

(Figure 4.1A). Unlike rod shaped viruses such as TMV or PVX that are relatively 

unaffected by the insertion of additionnal sequences, TCV has a strict genome size 

preference and cannot tolerate insertions of more than a few hundred bases (Qu and 

Morris, 1997). Furthermore, all TCV ORFs overlap, and encoded proteins are non-

functional when fused to GFP (Cohen et al., 2000). 

Recently, a novel technique was established for the direct real time visualization 

of mRNAs in living yeast cells. The technique made use of a well studied interaction 

between the CP of MS2 bacteriophage (CPMS2) and a 19 base MS2 hairpin (hp), which 

naturally results in repression of translation of the phage replicase (Fouts, et al., 1997; 

Valegard et al., 1997). By fusing CPMS2 to GFP and a nuclear localization signal (NLS), 

the fusion protein was transported into the nucleus upon expression in transfected yeast. 

However, addition of six CPMS2 hp binding sequences to the 3’ UTR of specific yeast 

mRNAs resulted in binding of the fusion protein to the mRNA thus relocating the fusion 

protein to the cytoplasmic environ containing the mRNA where GFP fluorescence was 

readily detectable (Bertrand et al., 1998). 

This technique has now been adapted for localization of viral RNAs within whole 

plants. Transgenic plants expressing the GFP-NLS-CPMS2 fusion protein were generated 

and GFP only became cytoplasmically localized when transgenic plants were infected  
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Figure 4.1 Basic components of the RNA tracking system. (A) Location of the inserted 

hp in the TCV genome. The 19 base hp (in blue) targeted by CPMS2 was inserted just 3’ 

of the TCV CP ORF. (B) Sequence of the 19 base hp (in blue) and flanking sequences in 

TCV-hp. TCV sequences are in black except for the stop codon of the CP ORF, which is 

in red.  Bases in green are linker sequences designed to allow multiple head-to-tail inserts 

of the hp, had it been required. (C) Schematic of the rationale behind the RNA tracking 

procedure. Large circles represent individual cells.  Expression of the GFP-NLS-CPMS2 

fusion protein alone leads to nuclear (N) sequestration of the fusion protein.  In the 

presence of TCV-hp, CPMS2 (red hexagon) binds to the 19 base hp in the TCV-hp 3’ 

UTR thus GFP (green hexagon) is retained in the cytoplasm.  
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with TCV containing a single CPMS2 binding hp (Figure 4.1 A and B). Neither the 

presence of the 19 base hp in the viral 3’ UTR, nor the interaction of the virus with the 

fusion protein, detectably impaired any viral function. Thus this technique should be 

amenable to the study of viruses with transformable plant (or animal) hosts and should 

also prove useful for the detection of host RNAs engineered to contain the 19 base hp.    

 

Materials and Methods 

 

Constructs 

          To insert the 19-base hp target (Figure 4.1B) of CPMS2 into the 3’ UTR of TCV, a 

linker (Table 4.1) with BssHII and MluI recognition sites was introduced into the TCV 

SnaBI site previously constructed at position 3802 by deletion of one base in pTCV66 

(Carpenter et al., 1995). The linker was used to ensure head-to-tail insertion of multiple 

hairpins, if more than one hp was necessary to sequester GFP in the cytoplasm. Insertion 

of the linker into SnaBI-digested pTCV66 was performed using T4 DNA ligase 

(Invitrogen) (see Figure 4.2 for procedure flow chart). The resulting ligation products 

were digested with BssHII and MluI, and gel purified to produce a linear plasmid 

molecule lacking the BssHII-MluI fragment. A DNA fragment containing the 19 base hp 

sequence flanked by BssHII and MluI sites was synthesized by Invitrogen, treated with 

BssHII and MluI, gel-purified, and then ligated to the plasmid lacking the BssHII-MluI 

fragment to generate pT7TCV-hp. pT7CPm3-hp was generated by using the same 

method to insert a hp into pT7CPm3, which contains a T7 RNA polymerase promoter 

upstream of full-length plus-strand sequence of CPm3 (Wang and Simon, 1999).  
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 Table 4.1 Oligonucleotides used in Chapter IV 

Application 
 

Name Sequencea 

Linker 5’-TTGGCGCGCCAACGACGCGTCG 
OliogMS2F 5’-GAAGATCTATGGCTCCAAAGAAGAAGAGAA 

AGGTCGCTTCTAACTTTACTCAG 

Plasmid 
construction 

OligoMS2R 5’-GAAGATCTCTAGTAGATGCCGGAGTTTGC 
 

 

a The SV40 NLS sequence in OliogMS2F is underlined. Bold residues denote BssHII and 

MluI sites in Linker and a BglII site in both OliogMS2F and OligoMS2R. 
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Figure 4.2 Flow chart for construction of pT7TCV-hp. See text for details. 
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       An expression vector for GFP-NLS-CPMS2 was constructed using pAVA321 

containing a dual Cauliflower mosaic virus (CaMV) 35S promoter, the TEV translational 

enhancer, GFP coding sequence and the CaMV 35S transcriptional terminator (Figure 

4.3, upper panel; von Arnim et al., 1998), which was kindly provided by A.G. von 

Arnim. The CPMS2 ORF was obtained from pG14-MS2-GFP/LEU (Bertrand et al., 1998), 

which was kindly provided by R.H. Singer. A fragment containing the CPMS2 ORF was 

amplified by PCR from pG14-MS2-GFP/LEU using OliogMS2F and OliogMS2F as 

primers (Table 4.1). The NLS of SV40, which is functional in Arabidopsis (Chiu et al., 

1996; Van der krol and Chua, 1995), is included in the sequence of OliogMS2F (Table 

4.1). The PCR products were digested with BglII, gel-purified, and then inserted into the 

BglII site at the 3’ end of the GFP ORF in pAVA321, generating pGNC (Figure 4.3, 

lower panel). The pGNC was transformed into E. coli competent cells (Invitrogen) using 

the method recommended by the manufacturer and selected for Kanamycin resistance. 

pGNC DNA was prepared using the large-scale plasmid DNA isolation method described 

in Chapter II.  

        For use in plant transformation, the GFP-NLS-CPMS2 expression cassette was 

removed from pGNC with PstI, gel-purified, and then inserted into the PstI site of the T-

DNA vector pCGN 1547 (Calgene, Davis, CA), generating pTGNC. pTGNC was then 

transformed into the Agrobacterium tumefaciens strain ASE competent cell (Monsanto) 

using an electroporation method as recommended by the manufacturer. The plasmids 

were selected for chloramphenicol and Kanamycin resistance. 
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Figure 4.3 The plasmids pAVA321 ans pGNC. Some of the restriction enzyme sites 

contained in the plasmids are shown. Arrows indicate the direction of transcription. P35S, 

a dual CaMV 35S promoter; TE, TEV translational enhancer; GFP, GFP coding 

sequence; T35S, CaMV 35S transcriptional terminator.  
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 Protoplast transfection   

         Arabidopsis protoplasts were freshly prepared using the method described in 

Chapter II. Protoplast transfections with a combination of plasmid DNA and viral RNA 

transcripts were performed as described previously for tobacco mesophyll protoplasts 

(Chiu et al., 1996; Liu et al., 1994). Briefly, 20 µg of pGNC or pAVA321 DNA with or 

without 20 µg of viral RNA transcripts, which were prepared using T7 RNA polymerase 

from SmaI-linearized pT7TCV-hp or pT7CPm3-hp, were mixed with protoplasts (0.5 X 

106 cells) in transfection buffer A containing 0.4 M mannitol, 20 mM CaCl2, and 5 mM 

MES, pH 5.7 to get a final volume of 250 µl. The mixture were then added to 250 µl of 

transfection buffer B (pH 10.0), which contains 40% polyethylene glycol (PEG) 4000, 

0.4 M mannitol, and 100 µM Ca(NO3)2. After incubation at 25°C for 10 minutes, the 

mixture was added to 3 ml of PCM, followed by incubation at 25°C for 18 to 24 hours in 

the dark.  

  

Plant transformation  

          Agrobacterium-mediated plant transformation with pTGNC was performed using 

the vacuum infiltration method as previously described (Clough and Bent, 1998) with 

modifications. Briefly, Arabidopsis ecotype Col-0 seeds were grown in a growth chamber 

at 20oC with a 16-hour light/8-hour-dark cycle as described in Chapter II. Primary bolts 

of plants starting to flower were removed to induce more secondary bolts. Plants 

containing the maximum number of immature flower clusters (about six-week old) were 

used for transformation. Agrobacterium containing pTGNC were grown in 250 ml LB 

containing chloramphenicol (30 μg /ml) and kanamycin (50 μg/ml) at 28oC for 24 hours 
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with continuous shaking (150 rpm). The bacterial cells were collected by centrifugation 

in a Sorvall GSA rotor at 3000 g for 15 minutes and resuspended in 5% sucrose solution 

with OD600 adjusted to 0.8. The resulting bacterium solution was then mixed thoroughly 

with Silwet L-77 with the concentration of Silwet L-77 adjusted to 0.02-0.05%. 

Infiltration was performed by placing the above-ground parts of plant in the prepared 

bacterium solution followed by application of a 20-second vacuum in a vacuum chamber. 

The infiltrated plants were covered with a plastic dome, placed at the dark overnight, and 

then moved to normal growth condition to set seeds. Putative transformed seeds were 

selected for kanamycin resistance on 0.5X MS agar media (pH 5.8) containing 0.5% MS, 

0.8% agar, and 100 mg/L kanamycin. Transgenic progeny were screened for GFP-

fluorescent nuclei using confocal microscopy.  

 

GFP visualization by confocal microscopy  

         Protoplasts transfected with plasmid DNA with or without viral RNA were 

observed in a Lab-Tek Chamber (SlideSystem-2 Well Chambered Cover-glass, Nunc, 

Nalgene, NY Catalog #, 155382). Transgenic Arabidopsis plants were inoculated with 

viral RNA transcripts using the methods described in Chapter II. At 14 dpi, leaves were 

excised from infected plants, mounted in water on a slide (Micro Slide, Corning Glass 

Works, Catalog # 2948), and covered with a coverslip (#1 micro cover glass, VWR 

Scientific, PA, Catalog # 48366067). This coverslip was used in order to focus a short 

working distance lens. The slide was sealed around the coverslip with nail polish to 

prevent evaporation of water and stabilize the coverslip. A Zeiss LSM510 laser scanning 

confocal microscopy equipped with an argon ion laser was used to visualize GFP 
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localization in living cells. GFP was excited with blue laser light at 488 nm and 

transmitted through a 505/550 nm band pass emission filter. Laser power between 5% 

and 30% was used.  

 

Results and Discussion 

 

Insertion of the CPMS2 binding sequence into the 3’ UTR of the TCV genome does 

not affect viral accumulation or pathogenicity 

 My rationale for adapting the Bertrand et al. (1998) procedure to detect RNA 

virus movement in whole plants was based on the fact that most plant cells having  

compact nuclei that would allow nuclear localized GFP to be easily distinguished from 

cytoplasmic GFP.  By constitutively expressing a fusion protein containing GFP, a NLS, 

and the CPMS2 (GFP-NLS-CPMS2), the protein should be sequestered in the nuclei of all 

cells capable of expressing the 35S promoter (Figure 4.1C, upper panel). However, a 

cytoplasmic RNA containing the 19 base hp target of CPMS2 should cause the GFP fusion 

protein to bind to the RNA and thus be localized mainly in the cytoplasmic venue of the 

bound RNA (Figure 4.1C, lower panel). 

      As detailed in Materials and Methods, the GFP-NLS-CPMS2 fusion protein expression 

plasmid pGNC contains dual CaMV 35S promoters, the TEV translational enhancer, an 

inframe fusion of the GFP ORF (von Arnim et al., 1998), an NLS functional in 

Arabidopsis (Chiu et al., 1996; Van der krol and Chua, 1991) and the CPMS2 ORF 

(Bertrand et al., 1998). Protoplasts transfected with this construct displayed bright green 

fluorescence in nuclei when examined by confocal microscopy under blue light at 18 to 
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24 hour post-transfection with only traces of fluorescence visible in the cytoplasm 

(Figure 4.4, D-F). This was in contrast to the overall fluorescence found in cells 

transfected with a construct containing the identical 35S promoter but expressing only 

GFP (Figure 4.4, B and C). 

        To achieve cytoplasmic localization of GFP-NLS-CPMS2, the 19 base MS2 hp 

needed to be inserted into the TCV genome without interfering with replication or 

movement of the virus. Although six hp were added to yeast mRNAs to achieve 

cytoplasmic relocalization of the fusion protein (Bertrand et al., 1998), the much higher 

levels of TCV RNA accumulation in infected cells (detectable by ethidium bromide 

staining following agarose gel electrophoresis of total cellular RNA) suggested that a 

single hp might suffice for relocalizing the fusion protein to the cytoplasm where TCV 

and other RNA viruses replicate. To avoid interfering with translation, the 19 base hp 

flanked by a linker sequence was inserted in the TCV 3’ UTR five bases downstream of 

the CP ORF termination codon at a SnaBI site in the corresponding cDNA, generating 

TCV-hp (Figure 4.1B). This enzyme recognition site was previously engineered into 

wtTCV genomic RNA by deletion of a single base at position 3802, and minor alterations 

at this location in the TCV genome did not disrupt TCV accumulation in plants and 

protoplasts (Carpenter et al., 1995).  

       To determine if insertion of the 19 base hp into this location in the TCV genome 

affected viral accumulation in Arabidopsis ecotype Col-0 protoplasts, in vitro synthesized 

transcripts of wt TCV and TCV-hp were inoculated into protoplasts and viral 

accumulation assayed at 40 hpi. As shown in Figure 4.5A, TCV-hp genomic RNA (lanes 

2 and 4) accumulated to a similar level as wt TCV genomic RNA (lanes 1 and 3). The  
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Figure 4.4 GFP fluorescence in Arabidopsis protoplasts. Protoplasts were transfected 

with buffer (A), pAVA321 expressing GFP alone (B and C), pGNC alone (D-F), pGNC 

and wtTCV transcripts (G-I), or pGNC and TCV-hp (J-L). The fluorescent signal was 

detected using a laser scanning confocal microscope under blue light at 18 to 24 hpi. Bar 

= 5 μm.  
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Figure 4.5 Accumulation of TCV-hp in protoplasts and virulence in plants. (A) 

Accumulation of wt TCV and TCV-hp in Arabidopsis protoplasts. Protoplasts were 

inoculated with wtTCV or TCV-hp transcripts and total RNA extracted at 40 hpi. RNA 

was subjected to electrophoresis and stained with ethidium bromide. Two repetitions of 

the experiment are shown. (B) Symptoms associated with infection of wt TCV or TCV-

hp in Arabidopsis plants at 14 dpi. Seedlings of Arabidopsis ecotype Col-0 were 

inoculated at the six to eight leaf stage with buffer alone (Mock), wt TCV or TCV-hp 

transcripts, as indicated.  
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inserted hp was also tested for affect on virus pathogenesis by inoculating wt TCV and 

TCV-hp RNA transcripts onto Arabidopsis Col-0 seedlings. At 14 dpi, there was no 

detectable difference in symptoms caused by wt TCV or TCV-hp (Figure 4.5B), 

indicating that the insertion did not substantially affect TCV interaction with the host 

plant.  

 

Replication of TCV-hp in protoplasts can relocate GFP-NLS-CPMS2 from the 

nucleus to the cytoplasm  

To test if the single hp insert in TCV-hp was able to localize the GFP-NLS-CPMS2 

fusion protein in the cytoplasm, protoplasts were transfected with pGNC and wt TCV or 

TCV-hp transcripts. As shown in Figure 4.4G-I, GFP fluorescence remained localized in 

the nuclei of protoplasts co-transfected with pGNC and wt TCV but became cytoplasmic 

when cells were co-transfected with TCV-hp RNA (Figure 4.4, J-L). This result indicated 

that the presence of wt TCV had no effect on GFP-NLS-CPMS2 localization and did not 

promote any detectable non-specific nuclear leakage or non-specific binding of the fusion 

protein to wt TCV RNA. In addition, binding of the fusion protein to the 3’ UTR of 

TCV-hp still permitted TCV-hp accumulation in the cytoplasm, indicating that the viral 

RNA-dependent RNA polymerase responsible for TCV replication was able to perform 

its function in the presence of the fusion protein.  If TCV-hp had been unable to 

accumulate in cells in the presence of GFP-NLS-CPMS2, I could have modified the 19 

base hp to reduce the binding efficiency of CPMS2 since mutations in the hp that either 

increase or decrease binding have been well characterized  (Lim et al., 1994; Romaniuk 

et al., 1987).   
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Generation of transgenic Arabidopsis constitutively expressing GFP-NLS-CPMS2  

To determine if this method could be used to detect virus in whole plants, the 

GFP-NLS-CPMS2 expression cassette was transformed into Arabidopsis ecotype Col-0 by 

Agrobacterium-mediated vacuum infiltration. Transformants were selected for 

kanamycin resistance and then examined by confocal microscopy for nuclear localized 

GFP, which was especially evident in transparent roots. As shown in Figure 4.6, GFP was 

also visible in nuclei of leaf epidermal cells, trichomes, and petioles of positive plants. 

This coincides with the constitutive CaMV 35S promoter-regulated gene expression in 

tissues as reported previously (Chytilova et al., 1999). GFP fluorescence was more 

readily detected in younger leaves than in older leaves, consistent with previous reports 

that younger tissue has higher levels of protein expression from the 35S promoter 

(Chytilova et al., 1999; Williamson et al., 1989). Positive plants were allowed to self-

fertilize and progeny were subjected to a similar selection strategy. Selected positive 

progeny were self-fertilized, and their progeny were screened for GFP-fluorescent nuclei.  

Homozygous progeny of a homozygous parent were selected for further analysis. These 

transgenic plants have been named “AtGNC ”. 

 

Visualization of TCV movement in AtGNC plants 

The oldest leaf pair (1st and 2nd real leaves) of AtGNC seedlings (six to eight leaf 

stage) was inoculated with TCV-hp RNA transcripts and leaves examined at 2 to 16 dpi. 

No differences in symptoms were expressed by the AtGNC-infected plants compared 

with wt Col-0-infected plants throughout the experiment (data not shown).  In inoculated 

leaves, cytoplasmic GFP fluorescence was readily detectable in small clusters of  
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Figure 4.6 GFP fluorescence in nuclei of transgenic AtGNC plants (two-week old) 

expressing the GFP-NLS-CPMS2 fusion protein. Green fluorescent nuclei were detected 

in leaf epidermal cells (A, bar = 20 μm); leaf epidermal cells under lower magnification 

(B, bar = 50 μm). The false red background is shown for easy detection of the signal; leaf 

trichome cell (C); petiole (D); and root (E). Bars (C-E) = 50 μm. All images were 

generated using composite fluorescent and transmitted light.  
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epidermal cells by 2 dpi (Figure 4.7, A-C), indicating that TCV was replicating and able 

to traffic cell-to-cell despite the cellular presence of a foreign binding protein. No 

cytoplasmic GFP fluorescence was detected in non-inoculated transfected leaves using 

identical imaging conditions (data not shown). Irregularly shaped fluorescent clusters of 

at least 20 cells were detected at 3 dpi (Figure 4.7, F-H). The irregular shapes of the 

infection sites may have resulted from directional cell-to-cell movement influenced by 

veins close to inoculated cells or the direction of the assimilate flow. Bright foci of GFP 

fluorescence were also detected at 2 dpi in some trichomes and trichome support cells (a 

collection of large, regularly shaped epidermal cells that surround the base of the 

unicellular trichome) (Figure 4.7, D and E). No cytoplasmic GFP fluorescence was 

detected in any cells adjacent to the trichome support cells. It is likely that trichome 

infection in the inoculated leaves resulted from the manual inoculation procedure 

(rubbing the leaf with viral transcripts and an abrasive) with the virus descending into the 

base support cells as opposed to movement into these cells from surrounding epidermal 

cells (see below).  

Individual leaves excised from one TCV-hp infected AtGNC plant and one mock-

inoculated AtGNC plant were observed for cytoplasmic GFP fluorescence at 16 dpi. As 

shown in Figure 4.8, top row, little, if any fluorescence was detected (cytoplasmic or 

nuclear) in uninfected leaves under the same imaging conditions used to detect the very 

strong cytoplasmic GFP fluorescent signals found in most infected leaves.  The levels and 

pervasiveness of cytoplasmic fluorescence in TCV-hp-infected leaves varied substantially 

depending on the age of the leaf, with weak fluorescence visible in the 3rd and 5th leaves 

and very strong fluorescence detected throughout the 9th leaf (Figure 4.8, middle and  
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Figure 4.7 GFP distribution in inoculated leaves of TCV-hp-infected AtGNC plants. 

Cytoplasmic fluorescence at 2 dpi in epidermal cells (A and C, bars = 50 μm; B, bar = 26 

μm) and trichomes support cells (D and E, bars = 80 μm). Red arrows denote the 

trichome branches and the regularly shaped support cells. Infection sites comprising at 

least 20 visible cells at 3 dpi. (F-H), bars = 100 μm. Images A, B, C, F, G, and H were 

generated using the fluorescent channel only. Images D and E were generated using 

composite fluorescent and transmitted light.  
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Figure 4.8 GFP distribution in systemically infected leaves of AtGNC plants. Individual 

leaves were removed from a single plant at 16 dpi and subjected to confocal microscopy. 

All images are produced by fluorescence and transmitted light. Bars = 400 μm. Top row 

are four leaves from one AtGNC plant at 16 days after mock inoculation with infection 

buffer. Numbers (3rd, 5th, 7th, 11th) refer to the age of the leaves, with the 3rd leaf being 

the oldest systemically infected leaf and the 11th being the youngest. Middle and bottom 

rows are the 3rd through the 11th leaf of a TCV-hp infected AtGNC plant. The 10th and 

11th leaves are composite images generated from three separate images to visualize most 

of the leaf. 10th (mag) is a magnified region in the vicinity of the midvein from the 10th 

leaf shown to the left (bar = 100 μm). Arrow in the 7th leaf points to trichome support 

cells clearly adjacent to a secondary vein. Bright, isolated fluorescent foci in the 10th leaf 

are also emanating from trichome support cells.  
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bottom rows).  The reduced levels of GFP cytoplasmic fluorescence in older leaves can 

be explained by a decline in TCV accumulation known to occur in older tissues (Simon, 

unpublished). However, reduced expression of the GFP-NLS-CPMS2 fusion protein in 

older leaves might also contribute to reduced GFP fluorescence, a possibility that is 

currently under investigation.  

Examination of the 10th and 11th (youngest) leaves showed a striking pattern of 

GFP fluorescence, with the majority in the vicinity of the midvein (see Figure 4.8, bottom 

row, 10th and 11th leaf). This result suggests that TCV is exiting the phloem through the 

primary vein and then spreading cell-to-cell. In addition, trichomes and their support cells 

that were visibly adjacent to secondary and tertiary veins showed extremely bright 

fluorescence (Figure 4.8, middle and bottom rows, 7th land 10th leaf).  This result suggests 

that TCV, when present in Arabidopsis minor veins, is unable to unload except into 

trichome support cells. From these cells, there was no detectable movement into 

surrounding epidermal cells, suggesting that trichome support cells may be 

symplastically isolated.  While virus movement in multicellular trichomes is known to 

occur (Angell et al., 1995; Derrick et al., 1992), little is known about the cells at the base 

of trichomes.  Restriction of virus movement from trichome support cells (also seen in 

inoculated leaves, Figure 4.8, D and E) may provide the plant with a means of containing 

viral infection following vector attack of protruding trichomes. 

TCV accumulation surrounding the midvein of newly infected systemic leaves 

was also found using a complementation strategy to track TCV movement in Arabidopsis 

(Cohen et al., 2000). GFP-tagged TCV was generated by fusing GFP to the TCV CP and 

then inoculating virus into Arabidopsis expressing TCV CP from the 35S promoter.   
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Although systemic movement of the virus was achieved, no symptoms were detected, 

suggesting that either low levels of TCV were accumulating or that the method affected 

virus-host interaction. This is in contrast to the current method, where no differences 

were discernable in the timing or expression of TCV-associated symptoms in AtGNC 

plants.  

 

Visualization of TCV movement in a virion-free form in AtGNC plants  

          As described in Chapter I, virion formation is not required for TCV movement and 

TCV may move as a ribonucleocomplex (Wang and Simon, 1999). Protoplast assays of 

CPm3 in Chapter II indicated that CPm3 does not generate detectable virions due to the 

two additional amino acids at the N-terminus of the CP that may affect virion assembly in 

host cells. Now AtGNC plants were used to study movement of virus in a virion-free 

form by comparing movement of TCV-hp and CPm3-hp, which is TCV-hp containing 

the CPm3 mutation. As shown in Figure 4.9A, cytoplasmic GFP fluorescence in 

inoculated leaves was readily detectable in more epidermal cells of CPm3-hp-infected 

plants than those infected with TCV-hp at 2 dpi. This result indicates that the cell-to-cell 

viral movement is enhanced when TCV infects hosts in a virion-free form. Systemically 

infected leaves excised from infected AtGNC plants were also observed for cytoplasmic 

GFP fluorescence at 17 dpi. The 10th (youngest) leaf of TCV-hp-infected plant showed a 

narrow pattern of GFP fluorescence, while GFP fluorescence in the 10th leaf of the plant 

infected with CPm3-hp had spread into the whole leave (Figure 4.9B), suggesting that 

long-distance movement of TCV were also enhanced in the absence of detectable virions.  
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Figure 4.9 GFP distribution in leaves of AtGNC plants infected with TCV-hp or CPm3-

hp. Individual leaves were removed from plants and subjected to confocal microscopy. 

All images are produced by fluorescence and transmitted light. (A) Inoculated leaf at 2 

dpi. Bars = 100 μm. (B) Systemically infected (youngest expanded) leaf at 17 dpi. Bars = 

500 μm. The composite images were generated from three separate images to visualize 

most of the leaf.   
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        The enhanced cell-to-cell and long-distance movement of CPm3 observed using 

AtGNC plants might be caused by multiple facts. As described in Chapter I, TCV may 

move as a ribonucleocomplex. Since CP is required for viral long-distance movement, 

increased levels of free CP due to reduced virion formation may help the virus to move in 

plants by facilitating formation of a ribonucleocomplex, which might consist of viral 

RNA, movement proteins and CP. Enhanced viral movement would benefit the virus by 

permitting it to rapidly colonize young host tissues. The TCV CP was previously found to 

be required for virus systemic movement, but not cell-to-cell movement, in Arabidopsis 

thaliana (Hacker et al., 1992). The observed cell-to-cell movement enhancement in 

AtGNC plants could also be caused by enhanced silencing suppression attributed to the 

higher level of free CP, since the CP is the RNA silencing suppressor (Qu and Morris, 

2003; Thomas et al., 2003). 

 

The potential usage of this technique 

My results demonstrate that AtGNC plants can be used to examine cell-to-cell and 

long-distance movement of viruses that are pathogens of Arabidopsis. Generation of 

other GNC transgenic plants should allow for examination of local and systemic 

movement of a large number of viruses recalcitrant to previous procedures. The viral 

genome requires minimal disruption, only the addition of a 19 base hp and a limited 

linker sequence to allow insertion of properly oriented multiple hps, if necessary. One 

possible limitation of the technique, however, is that detection of GFP fluorescence 

requires that cells express the GFP-NLS-CPMS2 fusion protein and such expression from 

the 35S promoter is not completely constitutive (Benfey and Chua, 1990). My initial use 
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of the system to examine TCV movement confirms previous findings that the virus only 

appears to move cell-to-cell after exiting from the primary vein in Arabidopsis and also 

provides novel information on trichome support cells. AtGNC plants have similar 

appearance, development and fertility as the parental ecotype and exhibit identical 

symptoms as wt plants when inoculated with TCV-hp. These plants, and other species of 

plants expressing GFP-NLS-CPMS2, should also prove useful for detection of host RNA 

movement intra- and intercellularly, tissue specific expression of mRNAs without 

modification of their ORFs, and possibly as a quick selection for transformed plants.  
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CONCLUSIONS 

 

            In this dissertation, I report my studies on the mechanisms involved in symptom 

modulation by TCV and satC. satC is not a simple parasite of the virus. It does compete 

with the viral genomic RNA for use of virus-encoded proteins for its amplification in 

plants. The presence of satC always results in a reduction in viral RNA levels in 

protoplasts and whole plants. Nevertheless, satC benefits infection of TCV and intensifies 

symptoms of TCV in all symptomic hosts. My finding that satC interferes with virion 

accumulation helps in understanding how satC benefits TCV, since increased levels of 

free CP that result from reduced levels of virions could augment the silencing suppressor 

activity of the CP and thus enhance viral colonization of plants.  

         As described in Chapter IV, increased levels of free CP due to a reduction in virion 

accumulation may help the virus to move in plants by facilitating formation of a 

ribonucleocomplex, possibly consisting of viral RNA, movement proteins, and CP. 

Enhanced viral movement would benefit the virus by permitting it to rapidly colonize 

young host tissues. Enhanced TCV cell-to-cell and long-distance movement has been 

observed in AtGNC plants using the virus-tracking method that I established. CPm3, 

which has reduced virion levels and severe symptoms, shows more rapid and extensive 

spread than wt TCV in inoculated and uninoculated leaves.  

            In addition to the indirect contribution to symptoms by affecting virion 

accumulation, satC may directly lead to symptoms, since co-infection of satC and TCV 

leads to severe leaf crinkling, which is not displayed in plants infected with TCV alone. 

The satC-associated leaf crinkling is very similar to that observed in Arabidopsis plants 
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with mutations in the JAW locus. This locus encodes a microRNA, miR-Jaw, which 

regulates expression of the TCP gene family (Palatnik et al., 2003). I found that mRNA 

of TCP4, a member of the TCP family, is complementary to 19 of 22 CvsRNA1 residues 

with several mismatches and that the presence of satC is associated with a reduction in 

mRNA levels of TCP4 in plants. These results suggest that satC may induce disease by 

producing vsRNAs, such as CvsRNA1, that may basepair with, and guide cleavage of, 

TCP4 transcripts. The putative phenotypic changes in plants caused by satC might 

provide a more amenable environment for successful infection of TCV.   

          The mutualistic relationship between satC and TCV suggests that both participants 

gain fitness from the interaction. An other interaction that benefits both virus and satellite 

RNA is observed for GRV and its satellite RNA. GRV does not encode a CP (Murant et 

al., 1995; Taliansky and Robinson, 2003) and is dependent on the CP of GRAV for virion 

assembly (Mayo et al., 1999). The 900-nt satRNA of GRV is dependent on GRV-

encoded protein for amplification, but required for GRV virion assembly and thus aphid 

transmission of virions (Mayo et al., 1999). It is not known whether decreased levels of 

TCV virions due to the presence of satC impede beetle-mediated transfer of virus 

between hosts in the field. Alternatively, more rapid and extensive colonization of the 

plant might help beetles transfer a limited, but sufficient amount of virions between hosts. 

The presence of PMV satRNA also enhances systemic spread of the virus by allowing the 

virus to invade previously restricted tissues, although the mechanisms involved are not 

clear (Scholthof, 1999).  

          As described in Chapter I, the TCV CP is a pathogenicity determinant involved in 

multiple processes such as facilitating viral movement, eliciting hypersensitive response 
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in Arabidopsis thaliana ecotype Dijon, suppressing RNA silencing in host plants, 

facilitating TCV accumulation and repressing satC replication (Kong et al., 1997a). 

Symptom modulation by changes in the levels of CP in the presence or absence of satC is 

shown in Table 2.2. When ectopically expressed in plants, CP is one of the strongest 

silencing suppressors discovered to date (Chapman et al., 2004; Dunoyer et al., 2004; Qu 

et al., 2003; Thomas et al., 2003), with suppressor activity requiring the N-terminal 25 

amino acids (Thomas et al., 2003). However, when CP is translated from the wt TCV 

genomic RNA, the suppression activity is dramatically reduced, possibly due to 

sequestration of the N-terminal 25 amino acids of the CP within assembling capsids at 

early times of infection when CP is necessary for silencing suppression (Qu et al., 2003; 

Thomas et al., 2003). This hypothesis is supported by my finding that reduced virion 

accumulation with satC or CPm3 is correlated with symptom enhancement. Symptom 

enhancement could result from enhanced silencing suppression and therefore increased 

viral colonization of the plant in the presence of high levels of free CPs when virion 

levels are reduced.  

           In addition to symptom modulation by CP, TCV appears to cause symptoms by 

generating vsRNAs. I found that expression of six of seven Arabidopsis genes tested was 

reduced 2.4- to 4-fold in TCV-infected plants at 7 dpi. Transcript levels of three of these 

genes were restored to normal in plants infected with TCV containing a deletion affecting 

generation of one TCV vsRNA, TvsRNA5. This deletion does not significantly affect 

viral accumulation, but leads to symptom attenuation. These results suggest that at least 

some vsRNAs excised from plant RNA viral genomes are specifically altering the 

expression of host genes leading to phenotypic changes in the plant. To my knowledge, 
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these are the first host gene transcripts whose levels are decreased in the presence of a 

complementary vsRNA.  

           Analysis of virus spread using co-expressed reporter proteins has provided 

important details on cell-to-cell and long distance movement of viruses in plants.  

However, most viruses cannot tolerate insertion of large non-viral segments or loss of any 

ORFs, procedures required to detect viruses non-evasively. As described in Chapter IV, I 

have modified a technique used to localize mRNAs in yeast (Bertrand et al., 1998) for 

detection of viral RNAs in AtGNC plants. This technique should be amenable for 

detection of any virus with a transformable plant (or animal) host and may also prove 

useful for localizing properly engineered host RNAs. 

           As summarized above, studies of symptom modulation by TCV and satC, as well 

as establishment of the novel virus-tracking method in plants help us to understand 

mechanisms underlying the interaction between plant viruses and their hosts. However, 

many questions remain to be answered. For example, (i) how many Arabisopsis genes are 

down-regulated by the presence of TCV and satC? (ii) Are some host genes up-regulated 

by TCV and satC? (iii) What is the function of LssRNA? To answer these questions, 5’ 

RACE assays need to be performed in the future to investigate the putative RISC 

cleavage of host mRNA guided by TCV- and satC-specific vsRNAs. 
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