ABSTRACT

Title of dissertation: PRIVATE INFORMATION RETRIEVAL
AND SECURITY IN NETWORKS

Karim Banawan, Doctor of Philosophy, 2018

Dissertation directed by: Professor Sennur Ulukus
Department of Electrical and Computer Engineering

This dissertation focuses on privacy and security issues in networks from an
information-theoretic perspective. Protecting privacy requires protecting the iden-
tity of the desired message from the data source. This is highly desirable in next-
generation networks, where data-mining techniques are present everywhere. Ensur-
ing security requires that the data content is not interpretable by non-authorized
nodes. This is critical in wireless networks, which are inherently open.

We first focus on the privacy issue via the private information retrieval (PIR)
problem. PIR is a canonical problem to study the privacy of the downloaded content
from public databases. In PIR, a user wishes to retrieve a file from distributed
databases, in such a way that no database can know the identity of the user’s
desired file. PIR schemes need to be designed to be more efficient than the trivial
scheme of downloading all the files stored in the databases. Fundamentally, PIR
lies at the intersection of computer science, information theory, coding theory, and
signal processing.

The classical PIR formulation makes the following assumptions: The con-



tent is exactly replicated across the databases; the user wishes to retrieve a single
file privately; the databases do not collude; the databases answer the user queries
truthfully; the database answers go through noiseless orthogonal channels; there are
no external security threats; and the answer strings have unconstrained symmetric
lengths. These assumptions are too idealistic to be practical in modern systems.
In this thesis, we introduce extended versions of the classical PIR problem to be
relevant to modern applications, namely: PIR from coded databases, multi-message
PIR, PIR from colluding and Byzantine databases, PIR under asymmetric traffic
constraints, noisy PIR, and PIR from wiretap channel II. We characterize the fun-
damental limits of such problems from an information-theoretic point of view. This
involves two parts for each setting: first, we devise a practical scheme that retrieves
the desired file(s) correctly and privately; second, we mathematically prove that no
other retrieval scheme can achieve any higher PIR rate than the proposed scheme.
The optimal PIR rate is called the PIR capacity reminiscent of the capacity of
communication channels.

First, we consider PIR from MDS-coded databases. Due to node failures and
erasures that arise naturally in any storage system, redundancy should be intro-
duced. However, replicating the content across the databases incurs high storage
cost. This motivates the content of the databases to be coded instead of merely
being replicated. We investigate the PIR problem from MDS-coded databases. We
determine the optimal retrieval scheme for this problem, and characterize the exact
PIR capacity. The result implies a fundamental tradeoff between the retrieval cost

and the storage cost.



Second, we consider multi-message PIR. In this problem, the user is interested
in retrieving multiple files from the databases without revealing the identities of
these files. We show that multiple messages can be retrieved more efficiently than
retrieving them one-by-one in a sequence. When the user wishes to retrieve at least
half of the files stored in the databases, we characterize the exact capacity of the
problem by proposing a novel scheme that downloads MDS-coded mixtures of all
messages. For all other cases, we develop a near-optimal scheme which is optimal
if the ratio between the total number of files and the number of desired files is an
integer.

Third, we consider PIR from colluding and Byzantine databases. In this prob-
lem, a subset of the databases, called Byzantine databases, can return arbitrarily
corrupted answers. In addition, a subset of the databases can collude by exchanging
user queries. The errors introduced by the Byzantine databases can be uninten-
tional (if databases store outdated message sets), or even worse, can be intentional
(as in the case of maliciously controlled databases). We propose a Byzantine and
collusion resilient retrieval scheme, and determine the exact PIR capacity for this
problem. The capacity expression reveals that the effect of the Byzantine databases
is equivalent to removing twice the number of Byzantine databases from the system.

Fourth, we consider PIR under asymmetric traffic constraints. A common
property of the schemes constructed for the existing PIR settings is that they exhibit
a symmetric structure across the databases. In practice, this may be infeasible, for
instance, when the links from the databases have different capacities. To that end,

we develop a novel upper bound for the PIR capacity that incorporates the traffic



asymmetry. We propose explicit achievability schemes for specific traffic ratios. For
any other traffic ratio, we employ time-sharing. Our results show that asymmetry
fundamentally hurts the retrieval rate.

Fifth, we consider noisy PIR, where the returned answers reach the user via
noisy channel(s). This is motivated by practical applications, such as, random packet
dropping, random packet corruption, and PIR over wireless networks. We consider
two variations of the problem, namely: noisy PIR with orthogonal links, and PIR
from multiple access channels. For noisy PIR with orthogonal links, we show that
channel coding and retrieval scheme are almost separable in the sense that the noisy
channels affect only the traffic ratios. For the PIR problem from multiple access
channels, the output of the channel is a mixture of all the answers returned by the
databases. In this case, we show explicit examples, where the channel coding and
the retrieval scheme are inseparable, and the privacy may be achieved for free.

Sixth, we consider PIR from wiretap channel II. In this problem, there is
an external eavesdropper who wishes to learn the contents of the databases by
observing portions of the traffic exchanged between the user and the databases
during the PIR process. The databases must (information theoretically) encrypt
their responses such that the eavesdropper learns nothing from its observation. We
design a retrieval code that satisfies the combined privacy and security constraints.
We show the necessity of using asymmetric retrieval schemes which build on our
work on PIR under asymmetric traffic constraints.

Next, we focus on the security problem in multi-user networks via physical

layer techniques. Physical layer security enables secure transmission of information



without need for encryption keys, thereby mitigating the problems associated with
exchanging encryption keys across open wireless networks. Existing work in physical
layer security makes the following assumptions: All nodes are altruistic and follow
a prescribed transmission policy to maximize the secure rate of the entire system;
the channel inputs to Gaussian channels are constrained by a total transmitter-side
power constraint; and in the secure degrees of freedom studies for the interference
channel, users have a single antenna each. We address these issues by investigating
the MIMO interference channel with confidential messages, security in networks with
user misbehavior, and MIMO wiretap channel under receiver-side power constraints.
We characterize the optimal secure transmission strategies in terms of the secrecy
capacity and its high-SNR approximation, the secure degrees of freedom (s.d.o.f.).

First, we determine the exact s.d.o.f. region of the two-user MIMO interfer-
ence channel with confidential messages (ICCM). To that end, we propose a novel
achievable scheme for the 2 x 2 ICCM system, which is a building block for any
other ICCM system. We show that the s.d.o.f. region starts as a square region, then
it takes the shape of an irregular polytope until it returns back to a square region
when the number of transmit antennas is at least twice the number of receiving
antennas.

Second, we investigate the security problem in the presence of user misbehav-
tor. We consider the following multi-user scenarios: Multiple access wiretap channel
with deviating users who do not follow agreed-upon optimum protocols, where we
quantify the effect of user deviations and propose counter-strategies for the honest

users; the broadcast channel with confidential messages in the presence of combating



helpers, where we show that the malicious intentions of the helpers are neutralized
and the full s.d.o.f. is retained; and interference channel with confidential messages
when the users are selfish and have conflicting interests, where we show that self-
ishness precludes secure communication and no s.d.o.f. is achieved.

Third, we consider the MIMO wiretap channel with a receiver-side minimum
power constraint in addition to the usual transmitter-side maximum power con-
straint. This problem is motivated by energy harvesting communications with wire-
less energy transfer, where an added goal is to deliver a minimum amount of energy
to a receiver in addition to delivering secure data to another receiver. We prove that
the problem is equivalent to solving a secrecy capacity problem with a double-sided
correlation matrix constraint on the channel input. We extend the channel enhance-
ment technique to our setting. We propose two optimum schemes that achieve the
optimum rate: Gaussian signaling with a fixed mean and Gaussian signaling with
Gaussian artificial noise. We extend our techniques to other related multi-user set-

tings.
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CHAPTER 1

Introduction

Privacy and security are challenging, yet crucial issues in the design of next gen-
eration networks. Preserving privacy entails protecting the identity of the desired
messages (files) from the content generator (e.g., a database). This is highly relevant
in the era of big data, where efficient data-mining techniques are present everywhere,
from social media to online-shopping to search history. On the other hand, ensuring
security entails guaranteeing that the data contents are not interpretable by non-
authorized nodes (e.g., external eavesdroppers). This is particularly vital in wireless
networks, where the openness of the wireless medium imposes a security risk on the
wireless transmission. Although the privacy and security problems are seemingly dif-
ferent, they share a deeper connection. Both problems require the user/transmitter
to create a form of confusion (i.e., obfuscation) in the queries/messages to satisfy
privacy/security constraints. In this dissertation, we investigate the privacy and se-
curity problems through the lens of information theory. Our goal is to characterize
the fundamental limits of retrieval /communication in networks subject to various

practical considerations and devise optimal schemes to achieve such limits.



In Chapters we focus solely on the privacy problem. Protecting the privacy
of downloaded information from curious publicly accessible databases has been the
focus of considerable research within the computer science community |1H5]. Private
information retrieval (PIR), introduced by Chor et al. [1], is a canonical problem to
study the privacy of the downloaded content from public databases. In the classical
PIR setting, a user requests to download a certain message (or file) out of M distinct
messages from N non-communicating (non-colluding) databases without leaking the
identity of the message to any individual database. The contents of these databases
are identical. To that end, the user prepares N queries, one for each database,
such that the queries do not reveal the user’s interest in the desired message. Upon
receiving these queries, each database responds truthfully with an answering string.
The user needs to be able to reconstruct the entire message by decoding the answer
strings from all databases. A straightforward solution for this seemingly challenging
task is to download all of the contents of the databases. However, this solution
is highly impractical, in particular for large number of messages which is the case
in modern storage systems. The aim of the PIR problem is to design efficient
retrieval schemes. The efficiency of PIR systems is assessed by the PIR rate, which
is the ratio between the desired message size and the total downloaded symbols.
Many practical applications are related to PIR, such as: protecting the identity
of stock market records reviewed by an investor, as showing interest in a specific
record may affect its value; ensuring the privacy of an inventor as they look up
existing patents in a database, since revealing what they are looking at leaks some

information about the current invention they are working on; and protecting the



nature of content browsed by activists on the internet in oppressive regimes. From
a technical standpoint, PIR lies at the intersection of computer science, information
theory, coding theory, and signal processing.

In the original formulation of the problem in the computer science literature [1],
the messages are assumed to have a size of one bit. The computer science formulation
considers optimizing two performance metrics, namely, the download cost, which is
the sum of the lengths of the answer strings, and the upload cost, which is the sum
of the lengths of the queries. Most of this work adopts computational guarantees
for the privacy constraint, where it is assumed that the databases cannot infer
any information about the identity of the desired message unless they solve certain
computationally hard problems [3,5]. Recently, there has been a growing interest in
the PIR problem in the information-theory society, with early examples [6-11]. The
information-theoretic reformulation of the problem assumes that the messages are of
arbitrarily large size and hence the upload cost can be neglected with respect to the
download cost [8]. This formulation provides an absolute, i.e., information-theoretic,
guarantee that no server participating in the protocol gets any information about
the user intent irrespective of their computational powers.

In the pioneering paper [12], Sun and Jafar introduce the PIR capacity notion
to characterize the fundamental limits of the PIR problem. The PIR capacity is de-
fined as the supremum of PIR rates over all achievable retrieval schemes (optimal re-
trieval rate) reminiscent of the capacity of communication channels. [12] determines

the exact capacity of the classical PIR model tobe C' = (1+x+3z+ - +53r1) ' =
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. The achievability scheme is a greedy algorithm that employs a symmetric
query structure, which is based on three principles: message symmetry, database
symmetry, and exploitation of side information. The achievable scheme hinges on
an interesting relationship between PIR and blind interference alignment introduced
for wireless networks in [13] as observed in [11].

Following [12], the fundamental limits of many interesting variants of the clas-
sical PIR problem have been considered, such as: PIR with 7" colluding databases
(TPIR) [14},|15], where any T' of N databases might collude; robust PIR (RPIR)
[14,|16], where some databases may fail to respond; symmetric PIR (SPIR) [17],
which adds the constraint that the user should learn only the desired message;
PIR under message size constraint L (LPIR) [18]; multi-round PIR, where the
queries are permitted to be a function of the answer strings collected in previ-
ous rounds [19]; MDS-coded symmetric PIR [20]; symmetric PIR from Byzantine
databases [21]; MDS-coded PIR with colluding databases [22-24], and its multi-
message [25], Byzantine [26], and symmetric [27] versions; cache-aided PIR where
additional side information is present [28-35]; private computation [36,37], where
the user is interested in retrieving a function of the database contents as opposed to
direct database content; private search [38], where the user searches for all records
that match a privately chosen value without revealing the chosen value; PIR from
storage constrained databases [39,40], where each database stores a fraction of the
messages instead of the complete copy of the content; secure PIR [41,42], where E of

the databases are captured and observed by an external eavesdropper and its sym-



metric version [21]; PIR from secure distributed storage [43,44], where the contents
of the databases need to be secured against X database collusion.

The classical PIR model imposes the following assumptions: First, it assumes
that the content is exactly replicated across the databases. Second, it assumes that
the user wishes to retrieve only a single file privately. Third, it assumes that the
databases do not collude and answer the user queries truthfully. Fourth, it assumes
that the database answers are received through noiseless orthogonal bit pipes (chan-
nels). Fifth, it ignores the security of the retrieved bits against external eavesdrop-
pers. Sixth, the answer strings have unconstrained lengths, which typically exhibit
a symmetric structure in most known PIR schemes. These assumptions are too
idealistic from a practical point of view. Consequently, in this thesis, we introduce
and investigate practically relevant extensions of the classical PIR problem, namely:
PIR from coded databases, multi-message PIR, PIR from colluding and Byzantine
databases, PIR under asymmetric traffic constraints, noisy PIR, and PIR from wire-
tap channel II. We aim at characterizing the fundamental limits of such problems
from an information-theoretic point of view. This task is two-fold, first, one should
devise a practical scheme that retrieves the desired file(s) correctly and privately,
then, one should mathematically prove that no other retrieval scheme can achieve
any higher rate than the proposed scheme by constructing a matching converse.

In Chapter 2] we consider the problem of MDS-coded PIR (CPIR). Due to node
failures and erasures that arise naturally in any storage system, redundancy should
be introduced [45]. The simplest form of redundancy is repetition coding. Although

repetition coding across databases offers the highest immunity against erasures and



simplicity in designing PIR schemes, it results in extremely large storage cost. This
motivates the use of erasure coding techniques that achieve the same level of relia-
bility with less storage cost. A common erasure coding technique is the MDS code
that achieves the optimal redundancy-reliability tradeoff. An (N, K) MDS code
maps K sub-packets of data into NV sub-packets of coded data. This code tolerates
upto N — K node failures (or erasures). Despite the ubiquity of work on the classical
PIR problem, little research exists for coded PIR with a few exceptions: [6] which
has initiated the work on coded databases and has designed an explicit erasure code
and PIR algorithm that requires only one extra bit of download to provide perfect
privacy. The result is achieved at the expense of having the number of storage nodes
N grow with the message size. [8] considers a general formulation for the coded PIR
problem, and obtains a tradeoff between storage and retrieval costs based on certain
sufficient conditions. [10] presents the best-known achievable scheme for the MDS-
coded PIR problem, which achieves a retrieval rate of R = 1 — R,., where R, is the
code rate of the storage system. The scheme is universal in that it depends only
on the code rate. Finally, [46] investigates the problem from the storage overhead
perspective and shows that information-theoretic PIR can be achieved with storage
overhead arbitrarily close to the optimal value of 1 by proposing new binary linear
codes called the k-server PIR codes.

In this chapter, we consider the PIR problem for non-colluding and MDS-
coded databases. We assume that the contents of the databases are coded using an
(N, K) MDS storage code. This formulation includes the models of [12] and [10]

as special cases. We show that the exact PIR capacity in this case is given by



C = (1+%+§—§+---+%>_1 =(1+ R+ RZ+---+ R = {5, The
PIR capacity depends only on the code rate R. and the number of messages M irre-
spective of the generator matrix structure or the number of nodes. Surprisingly, the
result implies the optimality of separation between the design of the PIR scheme and
the MDS storage code for a fixed code rate. The result outperforms the best-known
lower bound in [10], and reduces to the repetition-coded case (which is a special
case of MDS codes) in [12] by observing that R, = % in that case. The achievable
scheme is similar to the scheme in [12] with extra steps that entail decoding of the
interference and the desired message by solving K linearly independent equations.
The converse proof hinges on the fact that the contents of any K storage nodes
are independent and hence the answer strings in turn are independent. We present
two lemmas that capture the essence of the converse proof, namely, interference
lower bound lemma and induction lemma. The proof of the induction lemma uses
Han’s inequality to lower bound the entropy of any K answer strings. These lemmas
generalize the converse technique in [12, Lemmas 5, 6] to account for MDS coding.

In Chapter [3| we consider the problem of multi-message PIR (MPIR). In some
applications, the user may be interested in retrieving multiple messages from the
databases without revealing the identities of these messages. Returning to the ex-
amples presented earlier: The investor may be interested in comparing the values
of multiple records at the same time, and the inventor may be looking up several
patents that are closely related to their work. One possible solution to this problem

is to use single-message retrieval scheme in [12] successively. We show in this work



that multiple messages can be retrieved more efficiently than retrieving them one-
by-one in a sequence. This resembles superiority of joint decoding in multiple access
channels over multiple simultaneous single-user transmissions [47]. A few works ex-
ist in MPIR in the computer science literature, such as: Reference [48] proposes
a multi-block (multi-message) scheme and observes that if the user requests multi-
ple blocks (messages), it is possible to reuse randomly mixed data blocks (answer
strings) across multiple requests (queries). Reference [49] develops a multi-block
scheme which further reduces the communication overhead. An achievable scheme
for the multi-block PIR by designing k-safe binary matrices that uses XOR opera-
tions is developed in [50]. Reference [50] extends the scheme in [1] to multiple blocks.
Reference [51] designs an efficient non-trivial multi-query computational PIR proto-
col and gives a lower bound on the communication of any multi-query information
retrieval protocol. Reference [52] suggests using batch codes to allow a single client
to retrieve multiple records simultaneously while allowing the server computation to
scale sublinearly with the number of records fetched. This idea is extended further
in [53] to design a PIR server algorithm that achieves sublinear scaling in the num-
ber of records fetched, even when they are requested by distinct, non-collaborating
clients. These works do not consider determining the information-theoretic capacity.

In this chapter, we formulate the MPIR problem with non-colluding replicated
databases. Our goal is to characterize the sum capacity of the MPIR problem CF
which is defined as the maximum ratio of the number of retrieved symbols from
the P desired messages to the number of total downloaded symbols. When the

number of desired messages P is at least half of the total number of messages M,



ie, P> %, we determine the exact sum capacity of MPIR as C’f = HA% We use

PN

a novel achievable scheme which downloads MDS-coded mixtures of all messages.

For the case of P < %, we derive lower and upper bounds that match if the total

number of messages M is an integer multiple of the number of desired messages P,

1—L
N
w7p- Lhe result resembles

i.e., % € N. In this case, the sum capacity is Cf" = — %—

~—

the single-message capacity with % messages. In other cases, we show numerically
that the gap between the lower and upper bounds is monotonically decreasing in N
and is upper bounded by 0.0082. The achievable scheme when P < % is inspired by
the greedy algorithm in [12], which retrieves all possible combinations of messages.
The main difference of our scheme from the scheme in [12] is the number of stages
required in each download round. Interestingly, the number of stages for each round
is related to the output of a P-order IIR filter [54]. This intriguing connection to IIR
filtering is a result of constructing the scheme in [12] backwards and observing the
required side information needed in previous rounds. Our converse proof generalizes
the proof in [12] for P > 1. The essence of the proof is captured in two lemmas: the
first lemma lower bounds the uncertainty of the interference for the case P > %,
and the second lemma upper bounds the remaining uncertainty after conditioning
on P interfering messages.

In Chapter [4, we consider the problem of PIR from Byzantine databases
(BPIR). A common assumption in the literature is that the databases respond
truthfully with the correct answer strings. Using the correct answers, the user

can use the undesired symbols downloaded from one database as side information

at other databases, and distribute the requests for the desired symbols among the



N databases. In this chapter, we investigate how we can reconstruct the desired
message even if B databases (called Byzantine databases) respond with incorrect
answer strings. Returning to the examples presented earlier: The databases stor-
ing the stock market records may not be updated simultaneously, therefore some
of the databases may store outdated versions of the messages and can introduce
unintentional errors to the answering strings. This scenario is referred to in the lit-
erature as the unsynchronized PIR problem [7]. For the oppressive regime example,
some databases may be controlled by the regime, and these databases may return
incorrect answer strings on purpose to confuse the user. This scenario is referred
to in the literature as the PIR with adversarial databases problem [55/56]. In both
cases, the user needs to be able to reconstruct the desired message with no error,
irrespective of the actions performed by the Byzantine databases. The BPIR prob-
lem was introduced in [55], which proposes a generic transformation from schemes
of RPIR to robust protocols that tolerate Byzantine servers, and gives an explicit
N

Byzantine robust scheme when B < T < %. [57] presents a fault-tolerant PIR

scheme that can cope with malicious failures for B < T < N [56] observes that

5
allowing for list decoding instead of unique decoding enlarges the feasible set up
to B < N —T — 1. Their achievable scheme allows for a small failure probability.
The scheme depends on Shamir’s secret sharing algorithm [58] and Guruswami-
Sudan decoding algorithm [59]. The unsynchronized PIR problem is investigated
in [7], where they propose a two-round retrieval scheme. The scheme returns the
desired record by first identifying which records are mis-synchronized, and then by

constructing a PIR scheme that avoids these problematic records.
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In this chapter, we consider the single-round BPIR problem from N replicated
databases in the presence of B Byzantine databases. The remaining storage nodes
store the exact copy of the message set, and respond truthfully with the correct
answer strings. We consider the T-privacy constraint, which permits colluding be-
tween any 1" databases to exchange the queries submitted by the user. Our goal
is to characterize the single-round capacity of the BPIR problem under the zero-
error reliability constraint and the T-privacy constraint. To that end, we propose
an achievable scheme that is resilient to the worst-case errors that result from the
Byzantine databases. Our achievable scheme extends the optimal scheme for the
RPIR problem [14] to correct the errors resulted from the Byzantine databases, in
contrast to the erasures introduced by the unresponsive databases in RPIR. The
new ingredients to the achievable scheme are: encoding the undesired symbols via
a punctured MDS code, successive interference cancellation of the side information,
and encoding the desired symbols by an outer-layer MDS code. For the converse, we
extend the converse arguments developed for the network coding problem in [60] and
distributed storage systems in [61] to the PIR problem. This cut-set upper bound
can be thought of as a network version of the Singleton bound [62]. We determine

T

the exact capacity of the BPIR problem to be C' = N;VQB . 1( NT’QB)M ,if2B4+T < N.
~(~5==2m

The capacity expression shows the severe degradation of the retrieval rate due to the

presence of Byzantine databases. The capacity expression is equivalent the TPIR

N-2B
N

capacity with N —2B databases with a multiplicative factor of , which signifies
the ignorance of the user as to which N — 2B databases are honest. Our formula-

tion includes the special case of the single-round unsynchronized PIR problem, if the
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user has no knowledge about the number of mis-synchronized messages, and only
knows that the entirety of some B databases may be unsynchronized in contrast
to [7]. Under our assumptions, the single-round capacity of the unsynchronized PIR
problem and the BPIR problem are the same.

In Chapter [5] we introduce the problem of PIR under asymmetric traffic con-
straints. A common property of the achievability schemes in the PIR literature is
that they exhibit a symmetric structure across the databases. This enables the user
to balance the load of retrieval of the desired message equally among the databases,
and re-use the side information generated from one database equally in all the
remaining databases. Now, consider the following scenarios that render symme-
try assumption unworkable: Varying database availability: Certain databases are
available only a fraction of the time other databases are available for downloads.
Different capacities: The capacities of the links (bit pipes) from the databases to
the user have different capacities. This may be due to different physical locations
of the databases, e.g., the user may be able to access physically closer databases
more often than physically distant databases, or it may be due to the quality of the
physical layer communication channel, e.g., the bandwidths (rates) of the download
channels may be different for different databases. In these cases, the user is forced to
deal with each database differently, i.e., the user should utilize the databases which
have better quality links more often than the other databases. This breaks the
database symmetry assumption, makes load balancing of desired message and side
information more challenging, and poses the following interesting questions: Can we
perform efficient PIR without applying database symmetry? Is there a fundamental

12



PIR rate loss due to not being able to use symmetric schemes? Motivated by these
practical scenarios, we consider the classical PIR problem under asymmetric traffic
constraints. Formally, we assume that the nth database responds with a t,-length
answer string. We constrain the lengths of the answer strings such that ¢, = \,t;
for n € {2,---,N}. This, in turn, forces the ratios between the traffic from the

databases to be 1 : Ay : A3 : --- : Ay. We denote the traffic ratio with respect to

An

—2—. We aim at
N .
Zj:l Aj

the total download by a vector 7 = (7q,--- ,7n), where 7, =
characterizing the capacity of this PIR problem, C'(7), as a function of the given
traffic ratio vector T for arbitrary M and N.

In this chapter, we investigate the fundamental limits of the PIR problem
under asymmetric traffic constraints. To that end, we develop a novel upper bound
for the capacity C(7). This generalizes the converse proof of [12] to incorporate the
asymmetric traffic constraints. Originally, the proof in [12] exploits the database
symmetry. The rationale is that even if the optimal scheme is not symmetric, we can
transform it into a symmetric scheme without changing the retrieval rate by means
of time-sharing [12]. In our case, we cannot use this technique as we must deal with

the databases differently. We characterize the upper bound as a piece-wise affine

function in 7. The upper bound implies that asymmetry fundamentally hurts the

M+N-1

M ) corner

retrieval rate. Then, we propose explicit achievability schemes for (
points. Each corner point corresponds to a specific partitioning of the databases
according to the number of side information symbols that are used simultaneously
within the initial round of the download. We describe the achievability scheme

via a system of difference equations in the number of stages at each round of the
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download (in parallel to Chapter [3]). For any other traffic ratio vector 7, we employ
time-sharing between the corner points that enclose 7. We provide an explicit rate
expression for the case of N = 2 for arbitrary M. We show that the upper bound
and the lower bound exactly match for the cases of M = 2 and M = 3 messages for
any N and any 7, leading to the exact capacity C'(7) for these cases.

In Chapter [6] we introduce the problems of noisy PIR with orthogonal links
(NPIR) and PIR from multiple access channels (MAC-PIR). In all previous works,
the links from the databases to the user are assumed to be noiseless. Further, these
works assume that the answer strings are returned via orthogonal links, i.e., the user
receives N separate answer strings, which are not mixed. There are many practical
settings where these assumptions may not be valid. For instance, while browsing the
internet, some packets may be dropped randomly. This scenario can be abstracted
out as passing the answer strings through an erasure channel. Alternatively, the data
packets may be randomly corrupted, which can be modeled as a binary symmetric
channel that flips randomly some symbols in the answer strings. Hence, a more
realistic retrieval model may be to assume that the databases return their answer
strings through noisy channels with known transition probabilities. Yet, in other
applications, the answer strings may be mixed before reaching the user. For example:
if the user is retrieving the desired file from wireless base stations, the answer strings
would be combined in the air before reaching the user. Another example is retrieval
from a cloud, where the returned packets may collide and superimpose each other.
These practical settings can be represented with another abstract model, which is the
cooperative multiple access channel (MAC) model, where the databases cooperate to
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convey the desired message to the user, while the user receives a stochastic mapping
from the database responses in general. These two cases pose many interesting
questions, such as: How can we devise schemes that mitigate the errors introduced
by the channel with a small sacrifice from the private retrieval rate? Is there a
separation between the channel coding needed for reliable transmission over noisy
channels and the private retrieval scheme, or is there a necessity for joint processing?
How do the statistical properties of the noisy channels fundamentally affect the
private retrieval rate?

In this chapter, we first focus on the NPIR problem. In NPIR, the nth database
is connected to the user via a discrete memoryless channel with known transition
probability distribution p(y,|x,). Intuitively, since a channel with worse channel
condition needs a lower code rate to combat the channel errors, we do not expect
the lengths of the answer strings to be the same from all the databases. Therefore,
in this work, we allow the traffic from each database to be asymmetric as in Chap-
ter [ We first derive a general upper bound for the retrieval rate in the form of a
max-min problem. The converse proof is inspired by the converse proof in Chap-
ter o], in particular in the way the asymmetry is handled. We show the achievability
proof by random coding arguments and enforcing the uncoded responses to operate
at one of the corner points of the PIR problem under asymmetric traffic constraints.
The upper and lower bounds match for M = 2 and M = 3 messages, for arbitrary
N databases, and any noisy channel. Our results show that the channel coding
needed to mitigate the channel errors and the retrieval scheme are almost separable

in the sense that the noisy channels affect only the traffic ratio requested from each
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database and not the explicit coding technique. Interestingly, the upper and lower
bounds depend only on the capacity of the noisy channels and not on the explicit
transition probability of the channels. Next, we consider the MAC-PIR problem,
where the responses of the databases reach the user through a discrete memoryless
MAC with a known transition probability p(y|zi,---,zx). In this case, the out-
put of the channel is a mixture (possibly noisy mixture) of all database responses.
Interestingly, for this model, we show that channel coding and retrieval strategy
are inseparable unlike in the NPIR problem. We show this fact by deriving the
PIR capacity of two simple MACs, namely: additive MAC, and logical conjunc-
tion/disjunction MAC. In these two cases, we show that privacy for free can be
attained by designing retrieval strategies that exploit the properties of the channel
to maximize the retrieval rate. We show that for the additive MAC, the optimal
PIR scheme is linear, while for the logical conjunction/disjunction MAC, we show
that a non-linear PIR scheme that requires N > 2M~! is needed to achieve C' = 1.
We conclude this discussion by showing that full unconstrained capacity may not be
attainable for all MACs by giving a counterexample, which is the selection MAC.
Throughout Chapters we have confined ourselves to protecting the privacy
of the desired message from the databases in addition to satisfying the reliability
constraint. In Chapter [7], we tackle the problem of secure PIR. We impose an extra
constraint to the PIR problem, namely, the secrecy constraint in addition to the
usual privacy constraint. This ties together the two focuses of this dissertation. The
secrecy constraint ensures that the queries and the answer strings do not leak any

information about the contents of the databases to an external eavesdropper. Such
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systems are relevant in practice, for example, in the stock market example, consider
the case when the contents of the records themselves are confidential except for a
small subset of authorized investors. Thus, the queries and the answer strings should
be designed such that unauthorized entities who wiretap the retrieval process learn
absolutely nothing about the contents of these confidential records. A few works
exist on secure PIR: [63] considers the more general problem of information storage
and retrieval, guaranteeing that also the process of storing the information is secure
in the presence of failing servers. |21] considers a symmetric PIR setting where there
is a passive eavesdropper who can tap in on the incoming and outgoing transmissions
of any E servers. [21] derives the PIR capacity in this setting. Interestingly, the
secret key needed for the symmetric retrieval process is used as an encryption key to
secure the contents of the databases from the eavesdropper. This requires, as in the
underlying symmetric PIR, that databases exchange a secret key of at least a certain
size. This problem is investigated further in [41] for the classical PIR problem under
T-privacy constraint for the case of E < T. |41] derives inner and outer bounds for
this problem in addition to the minimum amount of common randomness required,
which is shared between the databases.

In Chapter [7], we study the secure PIR problem from a different angle than
[21,41,63] by investigating the problem of PIR through wiretap channel II (PIR-
WTC-II). Ozarow and Wyner [64] introduced the wiretap channel II (WTC-II)
model, which considers a noiseless main channel and a binary erasure channel to
the wiretapper, where the wiretapper is able to select the positions of erasures.

In PIR-WTC-II, the user observes the t,-length answer strings through a noiseless
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channel from the nth database. The eavesdropper can observe a fraction u, from
the nth answer string. The databases should encode the answer strings such that
the eavesdropper learns nothing from observing any p,, fraction of the traffic from
the nth database. Naturally, the nth database dedicates u,t, portion of the an-
swer string to confuse the eavesdropper, constraining the meaningful portion of the
answer to be (1 — f,,)t,. This fundamentally relates PIR-WTC-II to the PIR prob-
lem under asymmetric traffic constraints in Chapter [5] as the lengths of the answer
strings can no longer be symmetric. We raise the following questions: How can we
design a retrieval code that satisfies the combined privacy and security constraints
for the PIR-WTC-II problem? Does PIR-WTC-II problem necessitate the existence
of common randomness between the databases as in [41]?7 Should the databases
share any common randomness with the user (retriever)?

In this chapter, we obtain a general upper bound for the PIR-WTC-II problem,
when the eavesdropper can wiretap g = (pg,- -, puyn) fractions from the traffic
outgoing from every database. We show that this upper bound can be expressed as a
max-min problem. The inner minimization problem extends the converse techniques
for the PIR problem under asymmetric traffic constraints in Chapter |5 to the PIR-
WTC-II problem. The outer problem maximizes the retrieval rate over all possible
traffic ratio vectors. For the achievability, we extend the achievable scheme used in
Chapter [5| to achieve the corner points for the meaningful portions of the queries.
In the extension, to satisfy the security constraint, each database generates a secret
key with p,t, length and encodes it into an artificial noise vector using a (t,, fnt,)
MDS code and encrypts the returned answer strings with the artificial noise vector.
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Interestingly, our achievable rate does not need any shared randomness among the
databases or between the databases and the user. The keys used by the databases
are unknown to the user, but are decodable and canceled at the retriever; however,
the same keys are not extractable at the wiretapper due to the MDS code used. Our
upper and lower bounds match for M = 2 and M = 3, for any N, and any p.

In Chapters [§lI0, we shift our focus to security problems in multi-user net-
works by means of physical layer (information-theoretic) security techniques. Phys-
ical layer security provides unconditional and provable security schemes that are
quantifiable in terms of information-theoretic quantities and rates [65]. Physical
layer security techniques allow secure transmission of information (in absolute sense)
without the need for encryption keys. Consequently, the problems of exchanging
encryption keys across open wireless networks are mitigated. The wiretap channel
was first considered by Wyner in [66]. The canonical wiretap channel model con-
sists of a transmitter, a legitimate receiver and an eavesdropper. Wyner showed
the feasibility of attaining a positive secrecy rate in his degraded channel model,
and determined the rate-equivocation region of a degraded wiretap channel. This
model was generalized to arbitrary, not necessarily degraded, channels by Csiszar
and Korner in [67], where they determined the rate-equivocation region of the most
general wiretap channel. Leung-Yan-Cheong and Hellman considered SISO Gaus-
sian wiretap channel, which is degraded, under a transmitter-side power constraint
in [68]. They showed that Gaussian signalling is optimal. The physical layer secu-
rity framework is then extended to various multiuser settings such as: the multiple

access wiretap channel (MAC-WT) [69], broadcast channel with confidential mes-
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sages (BCCM) [70-74], interference channel with confidential messages (ICCM) [70],
multi-receiver wiretap channels [75]/76], and relay-eavesdropper channels [77]. The
secure degrees of freedom (s.d.o.f.) have been considered in the literature as a first
order approximation of the secure rates (the pre-log factor of the secure rate) in many
multiuser channel models, such as: helper wiretap channel [78,79], multiple-access
wiretap channel [78,80-82], interference channel [78,82-86], X-channel [87,88|, half-
duplex relay channel [89], compound wiretap channel [90], diamond channel [91],
multiuser channel models under imperfect CSIT [92-96].

The most relevant works to this dissertation are the s.d.o.f. characterization
of SISO one-hop networks [78,182,86] and the MIMO Gaussian wiretap channel
in [97H100]. [78] determines the exact s.d.o.f. of several SISO networks, including
the wiretap channel with helpers, MAC-WT, BCCM, and ICCM. For achievabil-
ity, [78] proposes real interference alignment [101] based achievable schemes that
use structured codes in the form of pulse amplitude modulation (PAM). For the
converse, [78] develops two converse lemmas, the secrecy penalty lemma and the role
of a helper lemma, which prove the optimality of the proposed achievable schemes.
Reference [86] generalizes the sum s.d.o.f. result of ICCM in [78] to the case of K-
users. The work in [86] shows that in order to achieve real interference alignment at
multiple receivers as in the case of the K-user interference channel, asymptotic real
interference alignment is needed. [82] generalizes 78], [86] to determine the entire
s.d.o.f. region; [82] shows that the s.d.o.f. region has a general polytope structure.
Reference [79] extends the result for the wiretap channel with helpers in [7§] to
the case of MIMO nodes for the special case of a single helper. To that end, [79)
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extends the role of a helper lemma of [78] for the MIMO case and provides multi-
ple achievable schemes for different regimes including spatial precoding/alignment,
transmission in the null space, and projecting onto a SISO dimension where real
interference alignment of [7§] is used. The MIMO Gaussian wiretap channel was
considered in [97-99], under a transmitter-side power constraint. These references
show that channel prefixing is not needed, and Gaussian signalling is optimal. An
interesting alternative proof is given in [100] based on the channel enhancement
technique developed in [102]. Reference [100] considers the MIMO wiretap channel
under a transmitter-side covariance matrix constraint which is more general than a
transmitter-side power constraint.

In all these works, the following assumptions are imposed: First, they assume
that all nodes are altruistic and follow a prescribed transmission policy in order to
maximize the sum secure rate of the entire system, even if that obliges the transmit-
ters to jam their own receivers as in the case of ICCM. Second, the channel inputs
to Gaussian channels are usually constrained by a total transmitter-side power con-
straint. Third, the transmitters and receivers have a single antenna in the secure
degrees of freedom studies of interference channels. That is, the optimal interplay
between interference, security, and multiple antennas is not fully understood even
in high SNR regimes. In this thesis, we address these issues in Chapters [B10]
namely, the MIMO interference channel with confidential messages, security in net-
works with user misbehavior, and MIMO wiretap channel under receiver-side power
constraints. The goal is to characterize the optimal secure transmission strategy in
terms of the secrecy capacity or its high-SNR approximation, the secure degrees of
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freedom (s.d.o.f.).

In Chapter , we consider the two-user MIMO ICCM [70], where two users
wish to send messages to their respective receivers reliably, while keeping them
secure from the unintended receiver in the information-theoretic sense. The secrecy
capacity region of the ICCM is unknown today. In fact, the capacity region of the
IC without secrecy constraints is known only within a constant gap [103]. Most of
the current work concentrates on the asymptotic behavior of the secrecy capacity
at high SNR in terms of s.d.o.f. The exact sum s.d.o.f. [78,86] and the entire
s.d.o.f. region [82] of the single-input single-output (SISO) ICCM are known for
an arbitrary number of transmitters and receivers. In this chapter, we extend the
s.d.o.f. results for the ICCM in [78,82,86] to the case of MIMO nodes, for the special
case of a two-user system with an equal number of antennas at both transmitters
(M) and both receivers (V).

We first focus on the optimal achievability schemes for the sum s.d.o.f. point.
We propose a novel achievable scheme for the 2 x 2 ICCM system. The 2 x 2 achiev-
able scheme is central in this chapter, since for the ICCM, the final sum s.d.o.f. num-
bers are multiples of 1/3. The required achievable scheme depends on the value of
the fractional (non-integer) part of the sum s.d.o.f. If it is 1/3, a projection onto a
single SISO dimension as in [79] is sufficient. In this SISO dimension, we use real
interference alignment scheme of [7§] for ICCM. However, if it is 2/3, the projection
strategy results in a 2 x 2 ICCM system. In this case, we use a combination of spatial
interference alignment scheme [104], which ensures security, and an asymptotic real
interference alignment scheme [86], which ensures efficient decodability. Any other
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antenna configuration (any M and N) can be reduced to either a 1 x 1 ICCM (i.e.,
SISO) or a 2 x 2 ICCM system after proper vector space operations for the integer
part of the sum s.d.o.f. These operations include transmission in the null space of
the cross-links and spatial alignment.

Next, we develop a matching converse by using three distinct outer bounds.
The first upper bound is the cooperative bound, in which we allow cooperative
stochastic encoding among the two users. The second upper bound uses the vec-
torized version of the upper bounding technique developed in 78] using the secrecy
penalty and role of a helper lemmas. The third upper bound is the decodability up-
per bound developed in [105] for the IC without secrecy constraints. The intersection
of these upper bounds gives a tight upper bound for any number of antennas.

Then, we characterize the complete s.d.o.f. region. We prove that the region is
a four-vertex polytope in general as in [82]. The non-trivial extreme points are the
sum s.d.o.f. point and the two symmetric maximum individual s.d.o.f. points. We
note that the s.d.o.f. region becomes a square if % <M< % or M > 2N, which
implies the feasibility of simultaneous secure transmission with a full s.d.o.f. in these
regimes. For other regimes, the s.d.o.f. region is a non-square polytope, since the sum
s.d.o.f. point and the maximum individual s.d.o.f. points evolve differently with the
number of transmit antennas M. After establishing the achievable schemes for the
non-trivial points of the polytope, the rest of the region is obtained via time-sharing.
Finally, we specialize the problem to the case of time-varying ICCM. We develop
simpler achievable schemes that depend on repeating the transmitted symbols over

multiple channel uses, which replaces the complicated asymptotic real interference
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alignment scheme, and exploits the time-diversity inherent in time-varying ICCM.
In Chapter [9] we investigate BCCM, ICCM, and MAC-WTC channel models in
the case of selfish and malicious behaviour, where the users/helpers do not perform
the system-wide-optimal altruistic behaviour but apply a selfish strategy and /or take
sides by aiming to help one user and potentially hurt the other. These new models
are extensions of the ones studied in [69}70,78] and are a step forward in studying
channel models with active adversaries. We use s.d.o.f. metric to quantify the effects
of these malicious behaviours. For BCCM and ICCM channel models, we note a
self-enforcing property: Even with the excessive capabilities of the helpers/users
(infinite power and all-knowing entities), these capabilities are naturally restricted
in these channel models due to the users/helpers’ interest in reliable communication
to/with their own receivers. That is, no entity can use infinite powered Gaussian
jamming signals which would wipe out the communication for everybody. This self-
enforcing property necessitates users to apply selective jamming via interference
alignment. This motivates studying such jamming techniques and analyzing their
effect on the s.d.o.f. of the users. In addition, a careful look at the achievable scheme
for the MAC-WTC in |78] reveals that the cooperative jamming signal of each user
protects parts of the message-carrying signals of the other users; and that no user
can protect its own signals. This creates an interesting ecosystem where each user
strictly depends on the rest of the users for its own security. The fact that a user’s
cooperative jamming transmission does not contribute to its own security, but at the
same time uses up its own transmit power, may motivate some selfish users not to
send cooperative jamming signals. In this chapter, we investigate the effects of such
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(and worse) deviations from the optimum signalling scheme on the system s.d.o.f.,
and the actions that the rest of the users can take to compensate for such behavior.

In the first model, which is the BCCM with combating helpers, there are two
helpers, where each helper takes the side of one of the receivers and at the same time
aims to hurt the secure communication to the other receiver. The two helpers have
contradicting objectives and hence are combating. Helpers in this model do not
coordinate with the transmitter as in [78]. We use a stringent objective function for
each helper: Each helper minimizes the s.d.o.f. of the other receiver, while not de-
creasing the s.d.o.f. of its own receiver by its action. We formulate the problem as an
extensive-form game [106], which is a sequential strategic game, where every player
(node) acts according to its information about the other nodes’ actions in previous
transmission frames. We investigate achievable schemes that use real interference
alignment [101] in a recursive way. We prove that under this stringent objective
function and recursive real interference alignment, the malicious behaviours of the
two combating helpers are neutralized, and the s.d.o.f. for each user converges to
the optimal s.d.o.f. of 1/2 per user [7§], as if both helpers are altruistic.

In the second model, which is the ICCM with selfish users, there is an external
system helper. In this model, the users do not coordinate as in the optimal strategy
in [78] instructs. The users are selfish and want to hurt the other receiver; each trans-
mitter’s goal is to maximize the difference of the s.d.o.f. between the two receivers.
This permits each user to jam its own receiver if this hurts the other receiver more,
making self-jamming more natural here than the optimum scheme in [78]. There is a
neutral helper in this system which aims to maximize the s.d.o.f. of the system. Us-
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ing the extensive-form game formulation and recursive real interference alignment,
we show that the selfishness of the users precludes any secure communication, and
drives the s.d.o.f. of both users to zero, despite the existence of a mediating helper.

In the third model, which is the MAC-WTC with deviating users, we first
consider the case where M out of K users deviate by not transmitting cooperative
jamming signals. We start by evaluating the achievable sum s.d.o.f. when the re-
maining users do not change their original optimum strategies. We show that the
sum s.d.o.f. of the system decreases, and deviating users do not benefit from their ac-
tions. Then, we consider two possible counter-strategies by the remaining users: In
the first strategy, all users decrease their rates to ensure that all message-carrying
signals are protected by the remaining cooperative jamming signals, and leakage
s.d.o.f. is zero. We show that, in this case, the individual s.d.o.f. of the deviating
users increase. Hence, deviating users gain at the expense of well-behaving users.
In the second strategy, we allow the leakage s.d.o.f. to be non-zero, but constrain
leakage in a single dimension. We show that, although the sum s.d.o.f. of the sys-
tem is lower than the case of the first counter-strategy, this strategy decreases the
individual s.d.o.f. of the deviating users and increases the s.d.o.f. of well-behaving
users. Next, we consider a more severe form of deviation by considering one user
turning malicious and sending intentional jamming signals. As this deviating user
has infinite power, it can wipe out all communication, secure or otherwise, if it sends
Gaussian signals. For the sake of a meaningful formulation, we restrict the strategy
set of this deviating user to be of structured signalling and alignment type. Under

this restriction, we formulate the problem as an extensive-form game [106]. We show
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that this deviating user can drive the s.d.o.f. of the system to zero. We then show
that, interestingly, the remaining users can utilize these intentional (malicious) jam-
ming signals to protect more message-carrying signals at the eavesdropper, achieving

asum s.d.o.f. of L=V We prove that this sum s.d.o.f. matches the sum s.d.o.f. of

(K-1)%+1°
a K — 1 user MAC-WTC with 1 external altruistic helper, thereby, show that the
system turns a malicious jammer into an altruistic helper, i.e., the deviating user
benefits the system against its intensions.

Finally, motivated by the emerging applications of wireless energy transfer and
cognitive radio, we investigate the MIMO wiretap channel under receiver-side power
constraints in Chapter Most existing literature on Gaussian channels is based on
a transmitter-side average power constraint. This constraint models the maximum
allowable power at the transmitter-side. Gastpar |[107] was the first to consider
a receiver-side power constraint. In [107], he considered a maximum receiver-side
power constraint motivated by the desire to limit the received interference in a
cognitive radio application. He observed that the solution changes significantly for
a MIMO channel. Subsequently, Varshney |108| considered a minimum receiver-
side power constraint motivated by the desire to transport both information and
energy simultaneously over a wireless channel. Varshney as well observed that the
solution changes significantly with respect to a classical transmitter-side amplitude
constrained SISO channel [109]. In this chapter, we consider a multi-user and multi-
objective version of the problem considered by Gastpar and Varshney. In particular,
we consider a MIMO wiretap channel where the transmitter wishes to have secure

communication with a legitimate receiver in the presence of an eavesdropper. In this
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model, messages need to be sent to the legitimate receiver with perfect secrecy from
the eavesdropper. We impose the usual transmitter-side power constraint in addition
to a receiver-side power constraint. Therefore, our model generalizes [107,|108] from
a single-user setting of two nodes to a multi-user scenario of a wiretap channel with
three nodes, and also to a multi-objective setting where we have both reliability and
security constraints.

We first characterize the secrecy capacity of the MIMO wiretap channel under
a minimum receiver-side power constraint at the eavesdropper only. To this end,
we first show that, solving the secrecy capacity of the MIMO wiretap channel under
a transmitter-side maximum power constraint and a receiver-side minimum power
constraint is equivalent to solving the secrecy capacity of a MIMO wiretap chan-
nel under a double-sided correlation matriz constraint on the channel input at the
transmitter. This is a generalization of the approach of [100,102]. We then gen-
eralize the channel enhancement technique of [100,|102] to the case of double-sided
correlation matrix constraint. This gives us the converse. We next show that the
rates given in the converse can be achieved by two different achievable schemes: a
mean based scheme where the transmitter uses a Gaussian codebook with a fixed
mean, and an artificial noise [110] (or cooperative jamming [111]) based scheme,
which uses Gaussian channel prefixing with a Gaussian codebook. The role of the
mean or the artificial noise is to enable energy transfer without sacrificing from the
secure rate. This is the first instance of a channel model where either the use of a
mean signal or the use of channel prefixing via artificial noise is strictly necessary
for the canonical MIMO wiretap channel. We note that, in a related work, refer-
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ences [112,|113] consider simultaneous information and energy transfer in a MISO
wiretap channel, and focus on optimizing the performance of a specific artificial
noise based achievable scheme with no claim of optimality. We also note a similar
set-up in [114,[115], where the authors consider the case of statistical channel state
information only at the transmitter and focus on optimizing asymptotic transmit
covariance matrix of Gaussian codebooks without artificial noise for the case of a
large number of transmit antennas.

We then extend the developed methodology to find the capacities of the follow-
ing related channels: We first consider the case that both receivers have minimum
receiver-side power constraints. Next, we impose maximum power constraints, which
corresponds to a cognitive radio setting where we control the received interference
power at users. In this case, we show that ordinary Gaussian signalling is suffi-
cient, and there is no need for mean or artificial noise signalling. Next, we drop the
secrecy constraint and consider the classical MIMO broadcast channel (BC) with
minimum receiver-side power constraints. We prove that dirty paper coding (DPC)
used in [102] is optimal to achieve the capacity. This result intuitively verifies that
neither mean nor artificial noise transmission is needed, because the freedom afforded
by the design of the covariance matrices of the DPC scheme suffices to achieve all
desired feasible receiver-side powers. Finally, we put back the secrecy constraints for
both users and consider the BC with confidential messages BCCM [72]. We show
that secure DPC (S-DPC) is optimal for the BCCM as in 72| without the need for
mean or artificial noise signalling.

In Chapter [T1], we provide conclusions to this dissertation.
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CHAPTER 2

Private Information Retrieval from Coded Databases

2.1 Introduction

In this chapter, we consider the PIR problem over a distributed storage system.
Due to node failures and erasures that arise naturally in any storage system, redun-
dancy should be introduced. However, replicating the content across the databases
incurs high storage cost. This motivates the content of the databases to be coded
instead of merely being replicated. In this chapter, the storage system consists
of N non-colluding databases, each storing an MDS-coded version of M messages.
We derive the information-theoretic capacity of the MDS-coded PIR problem to be
C = (1+%+§—§+~~+%)_1 = (14 R+ R4+ RM)7! = =l where
R, is the rate of the (NN, K) MDS code used. The capacity is a function of the
code rate and the number of messages only regardless of the explicit structure of
the storage code. The result implies a fundamental tradeoff between the optimal

retrieval cost and the storage cost when the storage code is restricted to the class

of MDS codes.
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2.2 System Model

Consider an (N, K') MDS-coded distributed storage system storing M messages (or

files). The messages are independent and identically distributed with

HW) =L, ie{l,--- M} (2.1)

HWy, Wy, -« [Wy) =ML (2.2)

The message W;, i € {1,--- M} is a IF(?XK matrix with sufficiently large field I,

such that L x K = L. The elements of WW; are picked uniformly and independently

(1]

from F,. We denote the jth row of message W; by w," € Ff . The generator matrix

of the (N, K) storage code H is a FX*N matrix such that

H= [h1 hy, --- th (2.3)
KxN

where h; € Ff, i € {1,---,N}. For an MDS code, any set K of columns of

H such that |[K| < K are linearly independent[] We do not assume any specific

structure on the distributed storage code other than that the encoding is performed

'For the converse proof, the linear independence requirement of every K columns in H is not
strictly needed. In fact, from the converse point of view, any storage code that enforces the contents
of every K databases to be statistically independent leads to the same upper bound even if the code
is not linear. In this chapter, the linear independence assumption, which is equivalent to having
an MDS code, is important for the construction of the achievable scheme (see Section that
relies on solving K linear equations, in addition to creating an instance of statistical independence
that is needed in the converse proof.

31



independently over the rows, i.e., the rows/messages are not mixedﬂﬂ. Hence, the

storage code f,, : W]m — yiﬂj on the nth database maps each ro of W; separately

into coded bit yiﬂj, see Fig.

yg]j = hgwjm (2.4)
Consequently, the stored bits y,, € IFSH on the nth database, n € {1,---, N} are
concatenated projections of all messages {Wy,--- W)y} and are given by
Wi
vo=1| : | h, (2.5)
W

2By non-mizing MDS code, we mean that each message is encoded separately. Furthermore,
we assume that each row within each message is encoded separately as well. This assumption is
made to enable the MDS code to be flexible enough so that the code structure makes sense for
every message size L, which is needed to characterize the capacity in the Shannon sense (i.e., as
L — o0). Here we give a concrete example: if Wy = (a1,--- ,a4), and Wy = (by,--- ,bs) and they
are encoded via a (3,2) non-mixing MDS code, then each message is arranged in 2 rows. Each row
is encoded separately, for example, row 1 is encoded as (a1, az,a; + az), and row 2 is encoded as
(a3, a4, a3 + a4), and similarly for W5. Note that this example MDS code neither mixes messages,
nor the rows of each message. The results of this chapter are restricted to such non-mixing code
structures and hence the qualifier “non-mixing” is dropped.

3We note that in [8, Example 2], an example for a mixing (3,2) MDS code for M = 2 is
presented. In this case, letting Wi = (a1, az2), Wa = (b1, b2), database 1 stores (a1, az), database 2
stores (b1, b2) and database 3 stores (aj + b1, as + bs). This code mixes Wy, W in database 3. [g]
provides a retrieval scheme for this specific code that achieves a retrieval rate of %, which is higher
than the capacity of non-mixing (3,2) MDS codes (C' = 2). The characterization of the capacity
of mixing MDS codes is an interesting open problem.

4We note that the assumption of encoding each row with the same generator matrix is indeed
without loss of generality and is made to simplify the presentation. If each row is encoded via a
different MDS generator matrix, i.e., the jth row of message ¢ is encoded via Hg.z], the capacity
is still given by Theorem For the achievable scheme, we note that the scheme downloads K
coded symbols directly from the databases with no further processing. This suffices to decode the
entire row because the MDS property is still valid for each row. The converse proof still holds
since the contents of every K databases are statistically independent and hence Lemma [2:1] is still
valid.
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coding every row via generator matrix H € Ff *N

Wi
( 7 N\
( w[f] ) (thwgi] hQngi] e o o h%w[f]
. w ) |
i N length codeword

Figure 2.1: Coding process for message W;.

= hgw[ll] hZW[L}} hZ:W[IQ] hgw[;] hZW[lM] hZWLM}

The explicit structure of the coded storage system is illustrated in Table 2.1 The
described storage code can tolerate up to N — K errors by connecting to any K

databases. Thus, we have for any set I such that |K] > K,

H(yglyx) =0 (2.7)

where yx are the stored bits on databases indexed by K, and K is the complement

of the set K. The code rate of this distributed storage system R, is given by

K
Ro=+ (2.8)
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Table 2.1: Explicit structure of (IV, K) code for distributed databases with M mes-
sages.

DB1 (y;) | DB2 (y2) DBN (yw)
= | hiw/! | hiw hw)'
go thwgl] hQng” e h%w[;]
g : : :

h{w[[:l] hQTW[El] . h%w[iu
~ | hiw? | hjw hiw)”
Foniwd | onwg e hw
g : : :

thW[;] hgw[g] . h%w[;]
S R R R
I I T I P
S
: hiwi | hwl hw!

The retrieval process over MDS-coded databases is illustrated in Fig. To retrieve
W;, the user generates a query Q%] and sends it to the nth database. Since the user
does not have knowledge about the messages in advance, the queries are independent

of the messages,

In order to ensure privacy, the retrieval strategy for the ¢th message should be

indistinguishable from the retrieval strategy of Wi, hence, for i € {1,--- M}, n €
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Database 1 Database 2 Database N

Wihy

WZhN

J

Wihy R Wihy

,
I..
\

Figure 2.2: The MDS-coded PIR problem.

{1,---N}

(QE}aAE}awlv e 7WM) ~ (Qg}’AL}]?Wb e ’WM) (210)

which implies that the queries and answers should be independent of the desired

message index i, i.e., the privacy constraint is,

I(QELA%LWIW” Wai) =0, ne{l,--- N} (2.11)

Each database responds with an answer string Ag], which is a deterministic functio

of the received query and the stored coded bits in the nth database. Hence, by the

5We note that the assumption that the answer strings are deterministic functions of the queries
and the stored information is indeed without loss of generality and is kept for the simplicity
of presentation. The converse proof can be extended to the case of allowing the databases to
use randomized strategies. In this case, a common randomness should be shared between the
user and the databases. More specifically, we can assume that there exists a random variable G
that is shared between the user and the databases such that G is independent of (i, W1.ps), and

H (A%]\Q%],yn,([}) = 0. This does not change the converse lemmas except for conditioning all
inequalities on G. A similar formulation of this idea can be found in .
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data processing inequality,
H(AUQW y,) = HAMQM Wy, -, W) =0 (2.12)

In addition, the user should be able to decode W reliably from all the answer strings
collected from the N databases with a small probability of error. Consequently, from

Fano’s inequality, we have the following reliability constraint,
HWiAD . A9 gl .. Q) = o(L) (2.13)

where % — 0 as L — o0o. The retrieval rate R for the PIR problem is the ratio
of the size of the desired message to the total download cost under the reliability

constraint ([2.13)) and the privacy constraint (2.10)) for some L € N, i.e.,

H(W;)

n=1 n

The PIR capacity C is the supremum of R over all retrieval schemes as L — co.
In this chapter, as in [12], we follow a Shannon theoretic formulation by as-
suming that the message size can be arbitrarily large. Also, we neglect the upload
cost with respect to the download cost as in |12].
We note that the described storage code is a generalization of the repetition-
coded problem in [12]. If K =1 and h, = 1, n € {1,---, N}, then the problem

reduces to the classical PIR in [12]. In addition, the systematic MDS-coded instanceﬂ

6We note that although the code structure presented in [10] is assumed to be systematic,
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presented in [10] is a special case of this setting with h, =e,, n € 1,--- | K, where

e, is the nth standard basis vector.

2.3 Main Result

Theorem 2.1 For an (N, K) MDS-coded distributed database system with coding

rate R, = % and M messages, the PIR capacity is given by

1-R.

1
" 1+ Rt -+ RV (2.16)
K K2 KM—I -1
:<1+N+m+"'+m> (2.17)

We have the following remarks about the main result. We first note that
the PIR capacity in is a function of the coding rate R, and the number
of messages M only, and does not depend on the explicit structure of the coding
scheme (i.e., the generator matrix) or the number of databases. This observation
implies the universality of the scheme over any MDS-coded database system with
the same coding rate and number of messages. The result also entails the optimality
of separation between distributed storage code design and PIR scheme design for a
fixed R.. We also note that the capacity C' decreases as R, increases. As R. — 0,
the PIR capacity approaches C' = 1. On the other hand, as R. — 1, the PIR

capacity approaches % which is the trivial retrieval rate obtained by downloading

this assumption is indeed without loss of generality. The scheme in [10] is universal and can be
applied for any (N, K) MDS code and was presented for systematic MDS codes for sake of simpler
exposition of the retrieval scheme.
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Figure 2.3: PIR capacity versus R..

the contents of all databases. This observation implies that a fundamental tradeoff
exists between storage cost and the retrieval download cost when the storage code
is restricted to the class of MDS codes. This tradeoff conforms with the result of .
The capacity expression in Theorem 1 is plotted in Fig. 2.3 as a function of the code
rate R. for various numbers of messages M.

The capacity in (2.15)) is strictly larger than the best-known achievable rate
in [10], where R = 1 — R, for any finite number of messages. We observe also that
the PIR capacity for a given fixed code rate R, is monotonically decreasing in M.
The rate in converges to 1 — R. as M — oo. Intuitively, as the number of
messages increases, the undesired download rate must increase to hide the identity
of the desired message; eventually, the gain from applying the greedy algorithm in

Section over the scheme in diminishes. This confirms that the achievable
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scheme in [10] is asymptotically optimal. Our capacity here generalizes the capacity

in |12] where R. = % That is, the classical PIR problem may be viewed as a
special case of the MDS-coded PIR problem with a specific code structure which is

repetition coding.

2.4 Achievability Proof

In this section, we present the general achievable scheme for Theorem [2.1 We
give a few specific examples in Section [2.5] Our achievable scheme generalizes the
achievable scheme in [12] which induces symmetry across databases and symmetry
across messages, and exploits the side information. The achievable scheme here
includes two extra steps due to the presence of coding: decoding of the interference

and decoding of the desired rows which are not present in [12].

2.4.1 Achievable Scheme

The scheme requires L = N™_ which implies that the size of message H(W;) = L =
KNM. The scheme is completed in M rounds, each corresponding to the sum of i

terms, i € {1,---, M}, and is repeated K times to decode the desired message; see

Tables [2.2 and [2.3] for examples.

1. Index preparation: The user interleaves the indices of rows for all messages

randomly and independently from each other, i.e., for any message W,

m 4 . T
x"M=wll o ie{l L} (2.18)

(]
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where 7,(+) is a random interleaver used for message ¢ and known privately
to the user only. In this case the rows chosen at any database appear to be

chosen at random and independent from the desired message index.

. Initialization: The user downloads K™~! desired coded bits from different
rows of the desired message W, from database 1 (DB1) and sets round index
[m]

i =1, i.e., the user starts by downloading the symbols h7x!™ ... Jhix,

from database 1.

. Symmetry across databases: The user downloads K*~! desired bits each

from a different row from each database, i.e., the user downloads from

database 2 the symbols hzTX[;{nL_lﬂ,--- ,hQTX[;L{]M_I, from database 3 the
symbols hgxg”;M,l IPTRRE ,hgxg";M,l, -+, similarly until the user downloads
h]TVX[(T]rVL]_l)KM,IH, e ,h]TVXEQ”I](M,I from database N. Then, the total number

of desired bits in the ith round is NKM-1,

. Message symmetry: To satisty the privacy constraint, the user needs to down-
load an equal amount of coded bits from all other messages. Consequently, the
user downloads (M) K™~*(N—K)"~! bits from each database. The undesired
equation is a sum of ¢ terms picked from the remaining undesired messages.

[€2]
+ Xj22

To be more specific, the user downloads the sum hZ (x[m i

J1
from the rows jy,--- ,j; € {1,---, L} of messages £1,--- ,6; € {1,--- ,M}\'m
from the nth database. The specification of rows will become clear in step 5.
Hence, the number of undesired equations downloaded in the ¢th round is

N(M Y KM(N — K)i,
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5. Decoding the interference: The main difference of the coded problem from the
uncoded PIR (i.e., repetition-coded counterpart) is that in order to exploit
the undesired coded bits in the form of side information, the interference
needs to be decoded first. Note that we are not interested in decoding the
individual components of each term of the sum, but rather the components
of the aligned sum. To perform this, we group each K undesired equations
to be from the same rows, i.e., the user downloads the same sum from the
rows ji,--- .7 € {1,--- ,I:} of messages f(1,---,¢; € {1,--- , M} \ m as
The rows are chosen in order starting from row 1, and the index of the
row is incremented whenever K symbols from the same row is downloaded.

(¢

1

For example: the user downloads hx ! from the undesired message ¢ from

]

database 1, then the user downloads hgx[f from database 2, --., until

the user downloads hﬂx[lﬂ from database K. Starting from this point the
user increments the index of the row to 2 and downloads h% +1x[2£] from
database K + 1, and so on. In this case, we have K linearly independent
equations that can be uniquely solved, and hence the corresponding row of
the interfering messages is decoded due to (2.7)). Therefore, this generates

N(Mi_l) KM=+)(N — K)"~! side information equations in the form of i term

sums.

6. Fxploiting side information: The side information generated in the previous

step can be exploited in the (i + 1)th round within the remaining N — K
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databases that did not participate in generating them. The side informa-
tion is used in 7 4+ 1 term sum that includes the desired message as one
of the terms. Since side information is successfully decoded, it can be

canceled from these equations to leave desired coded bits. Hence, we can

download N(Mgl) KM=+D)(N — K)? extra desired coded bits. More specifi-

cally, the user downloads the sums h; (Xg?] —|—XE€1] + xyf] + ngii])’ T
h” (x[m] +xld gl oy xw"]> from databases ni(n) = n + K
nn—rx(n) \RO0n_k J1 2 i 1

[m]

mod N, ---, ny_x(n) =n+N—1 mod N in the (i + 1)th round, where x;
is the row 6; from the desired message W,,, i.e., the user downloads the sum
of the row from the desired message to the side information generated in the

1th round.
. Repeat steps 4, 5, 6 after setting ¢ = ¢+ 1 until : = M — 1.

. Decoding the desired message: Till this point the scheme has downloaded one
bit from each row of the desired message. To reliably decode the desired
message, the scheme (precisely steps 2-7) is repeated K times. We repeat the
scheme exactly except for shifting the order of databases circularly at each
repetition for the desired coded bits. Note that the chosen indices for the
desired message is the same up to circular shift at each repetition, however
we download new undesired coded bits at each repetition. This creates K

different equations for each row of the message and hence decodable.

. Shuffling the order of queries: Since all databases know the retrieval scheme,
every database can identify the desired message by observing the first query
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only. By shuffling the order of queries uniformly, all possible queries can
be made equally likely regardless of the message index. This guarantees the

privacy.

2.4.2 Decodability, Privacy, and Calculation of the Achievable Rate

Decodability: The decodability follows from the MDS property of the storage code,
which states that in a K x N MDS generator matrix, any K x K submatrix is invert-
ible. To show decodability formally, let WW,,, be the desired message without loss of
generality. In each repetition, at the ¢th round, the user downloads (Mz.*l) KM={(N—
K)i=! symbols from the undesired messages from every database. These coded
symbols are constructed as the sums of ¢ coded symbols from some rows, i.e., the

+ X[?z]

user downloads the sum h! (X[m i, T +x£€i]> from the rows ji,---,7; €

J1
{1,---, L} of messages {1, - ,{; € {1,--- , M}\m from the nth database. The same

sum is downloaded from K different databases, i.e., the user downloads the same

sum from the rows ji, - ,j; € {1,---, L} of messages €,--- ,0; € {1,--- M} \'m

By o () BE i (4 20)
Since the submatrix [h, hpi1 moan -+ MNpik—1 moa ] I8 an invertible matrix

[£2]
2

by the MDS property, the sum of rows of xgiﬂ + x4+ ngi] is decodable. Note
that there are a total of N(Mfl) KM={(N — K)! of such symbols in the ith round,
therefore N (Y1) KM==}(N — K)'~! rows can be decoded as every K sums must
be derived from the same set of rows.

These rows are used as side information in the (i+1)th round at the remaining

43



N — K databases that do not contribute to the process of creating these side informa-

tion. The user downloads from databases ni(n) =n+ K mod N,--- ,ny_g(n) =

n + N — 1 mod N the sums h?” (x[m]—i—x[m x4 x[-m>
ni(n) \ 701 J1 J2 Ji ) )

b (X[QT;LK Fxi o xlh +x£fi]) in the (i + 1)th round, where x;" is

the row 0, from the desired message W,,, i.e., the user downloads the sum of rows
from the desired message with the side information generated in the ¢th round. Since

the user has decoded the sum x[.l;l] +xP gy x%i], all undesired symbols can be

J J2
canceled, and the user is left with the desired symbols only.

Now, for the desired symbols, we note that the user downloads from
different rows within each repetition. Since the scheme repeats itself K
times with the starting database shifted circularly, the user is left with
WIxi nT, ki T X for 6 € {1,--- L}, This creates K

linearly independent equations for each row from W,,, by the MDS property. There-

fore, all rows can be decoded reliably.

Privacy: The scheme downloads all combinations of the sums containing ¢ terms
in the ¢th round from each database. Therefore, the same number of symbols from
each message is queried from each database (specifically, K N*~! coded symbols).
Note that due to the fact that the user downloads the symbols (desired /undesired)
from K databases in a circular shift pattern, each row is queried once within the
same database. Thus, the user downloads from KN™~! distinct rows from each
database from every message. Since the indices of these rows are chosen randomly

and uniformly, and the order of the queries is shuffled randomly and uniformly, the
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privacy constraint (Q,[i], AB], Wi, s Way) ~ (Qn 1 A[l] S Wi, -+ Wy) is satisfied as

all the query realizations are equally likely regardless of the message index 1.

Achievable Rate Calculation: In each repetition, at the ith round, the user down-
loads the K coded symbols from N(Mgl)KM*ifl(N — K)=! different rows of
each message distributed among the N databases. From the described scheme,
we note that other than the initial download of NK™~! coded desired bits, at
each round the scheme downloads N (Mgl)K M=(+D)(N — K)' desired equations
and N (M ") KM~{(N — K)"! undesired equations. Hence, the total number of
desired equations is KN M1 (M KMAZH(N — K)?, and the total number of
undesired equations is KN ZM ! (M 1) KM={(N — K)i=! along the K repetitions

of the scheme. Therefore, the achievable rate is,

1 total undesired equations
— =1 2.1
R + total desired equations (2.19)
I UL SRRy v -
- + M 1 M 1 M—1—i ( . )
Mo M=1\ oM —1—i
K N-K
=1+ Z ( N])“’ - ( f (2.21)
( M 1 M 1)KM (N — K — KM—l)
=1+ NI (2.22)
K NM—l _ KM—I
=14 =K ( T ) (2.23)
=1+ 7 (- RY ) (2.24)
N — KRM-1
= "¢ 2.25
K (2.25)
1—RM
R — 2.2
=0 (2.26)
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Hence, R = 11_’@“\4. Note that if K = 1, our achievable scheme reduces to the one
presented in |12]. We note that our scheme inherits all the properties of the scheme

in [12], in particular, its optimality over any subset of messages.

2.5 Examples

In this section, we give two explicit examples for our scheme. Without loss of

generality, we assume that the desired message is Wj.

2.5.1 (5,3) Code with M = 2

Initially, sub-indices of all messages are randomly and independently interleaved.
For this case, we will have M = 2 rounds and then K = 3 repetitions; see Ta-
ble . We begin round one by downloading K™ ~! = 3 coded bits for the desired
message (message W) from every database, e.g., we download hTx!) hTxl!) h7x!"
from database 1, and similarly for databases 2-5 by database symmetry. By mes-
sage symmetry, we download another 3 coded bits from W, from each database.
Note that for the undesired message, we group every K = 3 databases to down-
load from the same row, e.g., we download h7x!) hTx!” hIx from databases 1-3,
hIx” hTxl” h7x? from databases 4,5,1, and similarly for the remaining databases.
By downloading 3 linearly independent equations for every row, we solve for the in-
terference generated by W5 and create 5 useful side information rows for round two,
(2]

which are rows x;~ to XE] from Ws.

In round two, we download sums of the coded bits from W7, W5. Since each of
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the rows x[lz] to x[52] is decoded from 3 databases, we can exploit these side information

to download further coded bits from W in the remaining N — K = 2 databases that
do not participate in decoding this row. For example, we use x[ Jin databases 4,5 by

downloading the sums h? (x|} +x!”), and h¥ (x}}] + x!") and similarly for the rows

[ (2]

I to x: . This creates extra 10 decodable equations in round two in the form of a
sum of the two messages. At this point symmetry exists across databases and within
messages, and all the interference from the undesired message W5 is decoded and
exploited. However, until this point, we downloaded one equation from every row of
Wy. To reliably decode Wi, we need to repeat the previous steps a total of K = 3
times by shifting the starting database in a circular pattern, e.g., in repetition 2,

(1 (1]

we download new equations for the rows x;', x5, x H from database 2 instead of
database 1 in repetition 1, and X4 ,x[51], X6 from database 3 instead of database 2,
etc. As a final step, we shuffle the order of the queries to preclude the databases
from identifying the message index from the index of the first downloaded bit.
Since we download symmetric amount of Wi, W5 from each database and
their indices are randomly chosen, privacy constraint is satisfied. Since vectors
[2] ;i € {1,---,5} are downloaded from K databases, their interference is com-
pletely decoded. Hence, they can be canceled from round two. Finally, we repeat

the scheme 3 times with circular shifts, every desired row is received from K dif-

ferent databases and hence reliably decoded. The explicit query table is shown in

1—
)2

S8

120 8

Table . The retrieval rate in this case is R = =3 =

—_
|
—
ol
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Table 2.2: PIR for code (5,3) and M = 2

DB1 DB2 DB3 DB4 DB[51]
h{x[ll] hgxgl] hgx[{] hTXlo hgxlg
—_ hipx[zl] hgx[;] hgxé | th11 th[1 14]
PR h!'x! h!x h!'x) n7xl! h!x!
2| B WT'x [ ] nl'x [ ] Wl'x [ ] hTx nlx2
2| h?x hfx}; hyx}; hYx}; hgxg
2
g nY'x! nl'x! Y x! Y x! ! x!
1 2] (1] 2]
E n?(xl + X[Q]) n?(xl + X[Q]) n?(xld + X[Q]) h?(xly +x) | h? leo] + X[Q])
3 hT (Xm + X[Q]) hT X[QIQ] + X[Q]) hl X[QIPJ + X[Q]) hT (X[Qli + X[Q]) hl X[25 +x3)
= i (1] 7 1] 7 1] h? (1]
h7x!} hlx; hlx} hlx: xio0
: [113] T, (1] T[] h? (1] hTX[l]
— h1TX14 h; x5 h; x; 4 Xﬁ] ; [111]
2 E thX[lls’} hzTX[a*l] h3TX<[51] h?fxg h; X122
2|5 h!x” hl'x!” hlx” h?x? hgxa
== . :
2, hflpx[f] hgxg] hgxg] hffx% h5T x%]
= thX[92] h2TX5] hgx[u} h4TX10 h[S]Xlo 3
1 2 1
E nT (xb] + x| nT(xl -+ xP hl x4 X[z]) hT (X[ll% + X;) hl X[lﬁ + X[2])
5 hT (x[;g + X[Q]) hl X[Qll] + X[Q]) hl X[;Q] + X[ ]) h (x5; + X ) | hi(xy, +1X )
4 B B By By P
1
IR I !
2= KTl hQTx[f% hgx% hi ng?]
S = 7,12 T2 hT h X x
18 h;x h; x 3%y 12 12
5| 7. b 7. b W) hTx? W5l
2, hj xj5 h; x13 3 X13 13 5T [1245
= thX[lzi hzTX[lzi hT3X15 h[T]X15 3 hﬁ]xw 3
1 2] 1
g hy (Xlllg + X[Q]) hy Xl;o] * X[?) by X%l% i X[2]) by (X[117] i X[2]) by X[lﬁ i X[2])
o hT (x[;i + X[2]) hl X[Qld] + X[ ]) hl'(xy +x717) | hT (x5 +x717) | hI' (x5 + x53)
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2.5.2 (3,2) Code with M =3

As in the previous example, the messages are randomly and independently inter-
leaved. For this case, the scheme is completed in M = 3 rounds and then repeated for

K = 2 repetitions, see Table In the first round, we download K¥~! = 4 coded

[1

bits for W, from each database, e.g., hTx },i € {1,---,4} from the first database.

Similarly, we download one equation from the rows x[ll] to X[llz] by applying the

database symmetry. We apply message symmetry to download N (M ") KM~1 = 24

undesired coded bits from W, W3. Every 2 coded bits from the undesired bits are
grouped together to generate single solved side information vector, e.g., we download

as thx[IQ], hgx[;} from databases 1,2, hng[;}, thx[f] from databases 3,1, and similarly

for rows xi™) to x™ where m = 2,3. Hence, we have N (M) K2 = 12 side
information rows to be used in round two.

In round two, we download sums of every two messages. We exploit the
generated side information within the N — K = 1 remaining database that does

not participate in generating them. For example, we decoded x[f] by downloading

equations from databases 1,2, then we use X[f} in database 3 by downloading the

sum hy(x\3 +x¥). Hence, we can download N(M Y KM=2(N - K) = 12 new coded
bits of W; by using every decoded side information in a sum of W; with one of W,
or Wj. These bits are reliably decoded, since the generated side information can be
canceled from the downloaded equation. It remains to add sums of Wy and Wj to

ensure the privacy. Therefore, we download N (M; 1) KM=2(N — K) = 6 undesired

equations, that will be grouped further to form N (Mz_ 1) KM=3(N — K) = 3 solved
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side information equations in the form of sums of W5 and W5. As an example,

we download th(x[f} + X[73}),h2T(x[72] + x[73]) from databases 1,2. In this case the

interference from the rows x[72] + x[73] is decoded. Note that we do not solve for the

3]
7

individual x[72] or x»' but we align them in the same subspace, and solve for their

suil.

In round three, we use the newly generated side information, e.g., X[72] +X[73], to

download extra N (', ") KM=3(N — K)? = 3 desired coded bits in the form of sum

(1] [3])

of three terms, e.g., h(xy; + x[72] + x;"). Finally, the previous steps are repeated

K = 2 times to reliably decode W; and the queries are shuffled for privacy. The

SIS

. . . . o ﬂ o 2 o 1—
retrieval rate in this case is R = 4= 19 = 1

=. The explicit query structure is

W)
~

shown in Table [2.3]

2.6  Converse Proof

In this section, we prove the converse for PIR from MDS-coded databases. The
proof extends the techniques in [12] to the case of MDS-coded databases. The proof
presented here does not use symmetrization arguments or fixing of an individual
query as in the conference version [116], which presents an alternative proof that
provides an alternative perspective.

We need the following lemma which states that in the PIR problem from
(N, K) MDS-coded databases, the answers from any K databases are statistically

independent.

Lemma 2.1 (Independence of answers of any K databases) In the PIR
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Table 2.3: PIR for code (3,2) and M =3
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problem from (N, K) MDS-coded databases, for any set KC of databases such that

Kl =

HAZQE) =Y HAMQM),  me{1,-- M} (2.27)

nek

Furthermore, is true if conditioned on any subset of messages Ws, i.e.,

HAMQM, Ws) =" HAMQM Ws),  me{l,--- M} (2.28)

nekl

Proof: Consider a set of databases K such that || = K. We prove first the
statistical independence between the vectors {y,,n € K} where y, represents the

contents of the nth database. The contents of set IC of databases can be written as

W1 Wl
[y, neKl=1| : |[h,,neK]=| : | Hg (2.29)
WM WM
where He = [h,, n € K] is a IF;( *K matrix. By construction of the distributed

storage code, the matrix Hy is an invertible matrix. Using [14, Lemma 1] and the

fact that elements of the messages are chosen independently and uniformly over
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FL*E e conclude that

Wi Wi

yn,me€K]=1| : |Hc~ | : (2.30)

W W

where A ~ B denotes that random variables A and B are identically distributed.
Therefore, the contents of the databases are statistically equivalent to the messages.
Hence, the columns of [y,, n € K| are statistically independent since the elements
of the messages are independent.

Since A" n € K are deterministic functions of (Yn, fm ]), {ALZ” line K} are
statistically independent as they are deterministic functions of independent random

variables. Therefore, if K = {ny,ns, -+ ,ng}

K
HAMQE) =3 H(AMAL Q) (2.31)
=1
K
=" H(AMQE) (2.32)
=1
= H(AMQIM) (2.33)

3
m
a

where follows from the independence of any K answer strings, follows
from the fact that Q%n} — Q,Lm 5 Al i a Markov chain. We note that since coding
is applied on individual messages, conditioning on any subset of messages Ws with
|[Ws| = S is equivalent to reducing the problem to storing M — S independent

messages instead of M messages. Hence, the statistical independence argument in

23



[2.28)) follows as before. W

We use Han’s inequality [47, Theorem 17.6.1] in a similar way to [14].

Lemma 2.2 (Han’s inequality) Let K C {1,---, N}, such that |[K| = K. Then,

for any subset of messages W,

H(AM | Ws, Q™) (2.34)

2l=

> HAS|Ws, Q) >

The following lemma characterizes a lower bound on the interference compo-
nents in A[II]N that result from the interfering messages Ws.5s which is represented
by % — L. The following lemma is exactly |12, Lemma 5]. The result does not
change due to the distributed storage code introduced in our problem. We include

the proof of this lemma here for completeness.

Lemma 2.3 (Interference lower bound) The interference from undesired mes-

sages within the answer strmgs = — L, 1s lower bounded by,
1 O(L) [1
L E—l—i—T ZI(WQ;M; 1N7A1N|W1> (235)

Proof: We start with the right hand side of (2.35)),

[(WZMa 1]N7 [II]N’WI): (WZMv 1}]V7A1N7W1) (236>
_[(W2M7Q1N7 ] )+[(W2MaW1|Q1N7 1]N) (237)

=T(Wanr; QUN) + T(Waar; AL Q1) + o(L) (2.38)
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=1(Wauns; AL Q) +o(L) (2.39)

=H (AU QM) — HA QM Wang) +0(L)  (2.40)

IA

N
ST HAD) — HWy, AR |Q, Waa)
n=1

+ H(W|QLN, ALk, Waun) + o(L) (2.41)
— 5 = HOWIQEA, Waar) — H(AILIQI Wian) +o(1)
(2.42)
L
=7 L+o(L) (2.43)
I (% 1+ O(LL)> (2.44)

where follows from the independence of messages, and follow
from the decodability of W; from ( [11]1\/7 [1] ), (2:39) follows from the independence
of the queries Q[luN and the messages Wa.ps, follows from the fact that condi-
tioning reduces entropy, and (2.43) follows from the fact that the answers A[1 _y are
deterministic functions of ( 1 N, Wi.) and the independence of (W7, Ql s Wanr).
|

In the following lemma, we prove an inductive relation for the mutual infor-

mation term on the right hand side of ([2.35)).

Lemma 2.4 (Induction lemma) We have the following inductive relationship,

% KL (1-42)
](WmMa [m ! Am ! |W1m 1) Z N-[(Wm+1MaQ[1mjl[7A[1m]1[|Wlm>+ N
(2.45)
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Proof: We start with the left hand side of ([2.45]),

[(WmMyQ[lm]\;l]u A[lm]\?l] |W1:m71)

1 m— m—
Z m Z [<WmM7 QEC 117 A][C lelszl) (246)
KJ K:|K|=K
1 — .
- I(Woear; AL Waimor, Q) (2.47)
K/ K:|K|=K
1 . .
= m H(AI[C 1]|VV1:m—17 EC 1]) (248)
KJ K:|K|=K
1 — -
- m H (AW, QY1) (2.49)
K) K:|K|=K nek
1 - "
K/ K:|K|=K nek
N K 1im—1, YK .
(x) K:|K|=K
1 m "
Z 7wy H(AL [ Wyn—1, Q1) (2.52)
(K) K:|K|=K
K m -
> NH(A[LJ“WLm—hQ[L]l[) (2.53)
K m m
= 7 Wanaar: QU AR W) (2.54)
K e o A Y oL -
N L ( m:Msy VVm, Ql:N’ 1:N| 1:m71) 0( ) ( : )
K [ m m
=~ T Wonrt; Won| Wi r) + T(Wiar; QI A ) — O(L)] (2.56)
= T Wh 1 Q7 AT W) — oL 2.57
Al + I(Wingrar; Q1.n s Ary [Wim) — o(L) (2.57)
K m] 4 0m] KL (1 ~ (TL)>
= NI(WTNA-IM’ er;n]\H AlmN|W1m) + N (258)

where (2.46) follows from the fact that for every subset K such that || = K we

have I(WmM7 Q[lm]\yl]a A[1m1\71] |W1:m—1) Z [(WmMa Q][énil}a AEglil] |W1:m—1) by the nomn-
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negativity of the mutual information, follows from the independence of the
messages and the queries, follows from the fact that the answers A%n_l] are
deterministic functions of (W7, m 1]), and follow from the inde-
pendence of any K answers as a consequence of Lemma follows from the
privacy constraint, follows from conditioning reduces entropy, follows
from Han’s inequality in Lemma follows from the fact that A[lm]l, is a de-
terministic function of (Wi, Q[lmll,) and the independence of the messages and the
queries, follows from the decodability of W,, from (QU™, A", and
follows from I(W,,.a; Win[Wiim—1) = H(W,,) = L from the independence of the
messages. W

Now, we are ready to complete the converse proof by applying Lemma and

Lemma successively. We have

1 L

L (ﬁ —1+ O(L )> > T(Waar; QU AW o) (2.59)

KL(1- 28

K L
NI<W3 M; 1N;A[12N|W1 2) ( N > (2.60)
> (2.61)

M=2 [M—1] M 1]
> W[(WM Ho%E A Win-1)

K K? KM L)
+(N+W+ +NM2)( o )L (2.62)

Z<K+£2+...+KM 1) (1_0(L> (2.63)

N N2 NM-1 L

where (2.59) follows from Lemma [2.3, and (2.60)-(2.63) follow from applying
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Lemma [2.4] successively for M — 1 times. Hence, we have

1 K K? KM-1 o(L)
EZ(l—I—N—Fm—F"‘-FW)(l— L> (2.64)
By taking L — oo, and noting % — 0, we have
1
RS ———+—— (2.65)
ik (%)
1 1-R,

— = 2.66
USRI 200

Remark 2.1 In the conference version of this work [116], we presented a different
converse proof. In this remark, we briefly describe this alternative proof for a more
complete and insightful exposition. The converse proof in [116] assumes without loss
of generality that the answer strings are symmetric across messages and databases,
and an individual answer string (e.g., A1) can be the same no matter what the desired
message is. The converse proof is obtained by induction over M. We start the proof
by considering the case of M = 2 messages as a base induction step. In this case,

we derive a lower bound on the interference from Wy to be (116, Lemma 3],

KL

H(ALN WA, Q) > ~ (2.67)

where Q = {QW :me{l,--- M}, ne{l,--- N}}. From (116, Lemma 3/, we
prove that R < ﬁ for M = 2, which proves the base induction step. For any M,
N

we prove that the remaining uncertainty on the answer strings after conditioning on
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one of the interfering messages is upper bounded by (116, Lemma 4],

(AW, Q) < = (NH(4,]Q) ~ 1) (2.68)

Consequently, we obtain an inductive relation for any M as,
K K?
H(AQ) > 1+N L+WH(A1]W1,W2,Q) (2.69)

Using the induction hypothesis,

H(A|Q) > MZ < ) (2.70)

and plugging it to the inductive relation concludes the converse proof.

2.7 Conclusions

In this chapter, we considered the private information retrieval (PIR) problem over
MDS-coded and non-colluding databases. We employed information-theoretic ar-
guments to derive the optimal retrieval rate for the desired message for any given
(N, K) storage code. We showed that the PIR capacity in this case is given by
C= %. The optimal retrieval rate is strictly higher than the best-known achiev-
able scheme in the literature for any finite number of messages. This result reduces

to the capacity of the classical PIR problem, i.e., with repetition-coded databases,

by observing that for repetition coding R, = le Our result shows that the optimal
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retrieval cost is independent of the explicit structure of the storage code, and the
number of databases, but depends only on the code rate R. and the number of
messages M. Interestingly, the result implies that there is no gain of joint design
of the MDS storage code and the retrieval procedure. The result also establishes
a fundamental tradeoff between the code rate and the PIR capacity for the MDS

codes.
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CHAPTER 3

Multi-Message Private Information Retrieval

3.1 Introduction

In this chapter, we consider the problem of multi-message private information re-
trieval (MPIR) from N non-communicating replicated databases. In MPIR, the user
is interested in retrieving P messages out of M stored messages without leaking the
identity of the retrieved messages. The information-theoretic sum capacity of MPIR
C?F is the maximum number of desired message symbols that can be retrieved pri-

vately per downloaded symbol, where the symbols are defined over the same field.

1

1+ M=E

For the case P > %, we determine the exact sum capacity of MPIR as C¥ =
The achievable scheme in this case is based on downloading MDS-coded mixtures of
all messages. For P < %, we develop lower and upper bounds for all M, P, N. These
bounds match if the total number of messages M is an integer multiple of the number
1

of desired messages P, i.e., % € N. In this case, C’f = (1 + % + -4 W)_ ,

1
ie, CP = —5% ~for N > 1, and CF = £ for N = 1. The achievable scheme

in this case generalizes the single-message capacity achieving scheme to have unbal-

anced number of stages per round of download. For all the remaining cases, the
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difference between the lower and upper bound is at most 0.0082, which occurs for
M =5, P=2 N = 2. Our results indicate that joint retrieval of desired messages
is more efficient than successive use of single-message retrieval schemes even after
considering the free savings that result from downloading undesired symbols in each

single-message retrieval round.

3.2 Problem Formulation

Consider a classical PIR setting storing M messages (or files). Each message is a
vector W; € FqL, i€{l,---, M}, whose elements are picked uniformly and indepen-
dently from sufficiently large ﬁeldﬂ F,. Denote the contents of message W, by the
vector [wp, (1), wm,(2), -+ ,w,(L)]T. The messages are independent and identically

distributed, and thus,

H(Wyy) =ML (3.2)
where L is measured in g-ary bits, Wy, = (W, Wy, -+ | W)). The messages are

stored in NV non-colluding (non-communicating) databases. Each database stores an
identical copy of all M messages, i.e., the databases encode the messages via (N, 1)
repetition storage code |117].

In the MPIR problem (see Fig. , the user aims to retrieve a subset of mes-

'We note that using ¢ = min {p™ > M : pis a prime,m € N} is sufficient to ensure the
existence of the P x M MDS generator matrix in Section 4. Furthermore, binary field suffices for
the achievable scheme in Section 5.
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Database 1 Database 2 Database N

1

2

HH

,
\

P messages
indexed by ip
P = {il7i27' o 77;P}

Figure 3.1: The multi-message PIR problem (MPIR).

sages indexed by the index set P = {iy, -+ ,ip} C {1,---, M} out of the available
messages, where |P| = P, without leaking the identity of the subset P. We assume
that the cardinality of the potential message set, P, is known to all databases. To
retrieve Wp = (W;,, Wi, -+, W;,), the user generates a query QLZ’ } and sends it to
the nth database. The user does not have any knowledge about the messages in

advance, hence the messages and the queries are statistically independent,

1 (Wla"' ,WM, [lp]a"' ) K]D]> =1 <W1M7 [1P]]\/

N allis
|

0 (3.3)

The privacy is satisfied by ensuring statistical independence between the queries
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and the message index set P = {iy,--- ,ip}, i.e., the privacy constraint is given by,

forallm e {1,--- ,N}.
The nth database responds with an answer string AlP ], which is a deterministic

function of the queries and the messages, hence
H(ATIQT, W) =0 (3.5)
We further note that by the data processing inequality and ,
I(APLP)=0, ne{l,--- N} (3.6)

In addition, the user should be able to reconstruct the messages Wp reliably from
the collected answers from all databases given the knowledge of the queries. Thus,

we write the reliability constraint as,
P Pl AP P P P
H(I/Vin"'vWiP|A[1}v"'>AEV}’ [1]7"" EV}):H<WP|A£[:J}\77 [1:J]V>:O (3'7)

We denote the retrieval rate of the ith message by R;, where ¢ € P. The

retrieval rate of the ith message is the ratio between the length of message ¢ and
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the total download cost of the message set P that includes W;. Hence,

H(W;
R — (%) (3.8)
YL H (A7)
The sum retrieval rate of Wp is given by,
& H(Wp) PL
D Ri= 7 P\ N [P (3:9)
i=1 Zn:l H (A” ) Zn:l H (An )
The sum capacity of the MPIR problem is given by
P
CP =sup Z R; (3.10)
i=1

where the sup is over all private retrieval schemes.

In this chapter, we follow the information-theoretic assumptions of large
enough message size, large enough field size, and ignore the upload cost as in
[8,112,/14,/117]. A formal treatment of the capacity under message and field size
constraints for P = 1 can be found in [18]. We note that the MPIR problem de-
scribed here reduces to the classical PIR problem when P = 1, whose capacity is

characterized in [12].

3.3 Main Results and Discussions

Our first result is the exact characterization of the sum capacity for the case P > %,

i.e., when the user wishes to privately retrieve at least half of the messages stored
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in the databases.

Theorem 3.1 For the MPIR problem with non-colluding and replicated databases,
if the number of desired messages P is at least half of the number of overall stored

messages M, i.e., if P> %, then the sum capacity is given by,

Cl =—>p (3.11)

The achievability proof for Theorem [3.1] is given in Section [3.4] and the con-
verse proof is given in Section [3.6.1. We note that when P = 1, the constraint of
Theorem is equivalent to M = 2, and the result in (3.11]) reduces to the known

result of [12] for P = 1, M = 2, which is —'+. We observe that the sum capacity

I+~
in (3.11]) is a strictly increasing function of N, and CF' — 1 as N — oo. We also
observe that the sum capacity in this regime is a strictly increasing function of P,
and approaches 1 asE| P — M.

The following corollary compares our result and the rate corresponding to the

repeated use of single-message retrieval scheme [12].

Corollary 3.1 For the MPIR problem with P > %, the repetition of the single-

message retrieval scheme of [12] P times in a row, which achieves a sum rate of,

(N-1)(NY' 4 P—1)
NM —1

R = (3.12)

2Note that in the degenerate case, when P = M, the privacy constraint is trivially satisfied as

HP)=H (”P|QQD ]) = 0 as there is no uncertainty about the identity of the desired messages if
P = M either with or without the knowledge of the queries. Thus, the optimal sum retrieval rate
is 1 which is achieved by downloading all the messages.
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15 strictly sub-optimal with respect to the exact capacity in .

Corollary implies that applying Sun-Jafar scheme [12] P times is sub-
optimal, even if the user uses the undesired symbols, which are downloaded as a
byproduct of Sun-Jafar scheme, as a head start in downloading the remaining mes-

sages because in this case the user would achieve R'? < CF.

Proof: In order to use the single-message capacity achieving PIR scheme as an
MPIR scheme, the user repeats the single-message achievable scheme for each in-
dividual message that belongs to P. We note that at each repetition, the scheme
downloads extra decodable symbols from other messages. By this argument, the

following rate R, is achievable using a repetition of the single-message scheme,

R'* = C' + A(M, P, N) (3.13)

where C' is the single-message capacity which is given by € = ——%
A(M, P,N) is the rate of the extra decodable symbols that belong to P. To calcu-

late A(M, P, N), we note that the total download cost D is given by D = é by def-

NMA—(F)M) _ yM+1_p

inition. Since L = NM in the single-message scheme, D = T = N1
N

The single-message scheme downloads one symbol from every message from every
database, i.e., the scheme downloads extra (P — 1)N symbols from the remaining

desired messages that belong to P, thus,

a@rpyy =TI (P DIV =) (3.14)
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Using this in (3.13]) gives the RL? expression in (3.12)).
Now, the difference between the capacity in (3.11)) and achievable rate in (3.12])

is,

P _ prep _ PN (N —1)(NM-1 4 P —1)

R i N1 (3.15)
_ n(P,M,N)

~ (NM 1) (P(N — 1)+ M) (3.16)

It suffices to prove that n(P, M, N) > 0 for all P, M, N when P > % and N > 2.

Note,

n(P,M,N)=2P — M)N" + (M — P)N"~! — P(P — 1)N?
+((P—1)(2P — M) — P)N+(M — P)(P — 1) (3.17)

M

5, coefficients of NM NM=1'NO are non-negative. Denote the

In the regime P >
negative terms in n(-) by v(P, N) which is v(P, N) = P(P — 1)N? + PN. We note

v(P,N) < P2N? when N > 1, which is the case here. Thus,

n(P,M,N)>2P—M)NM+(M—-P)NY'+(P-1)(2P—-M)N

+ (M — P)(P—1) — P>N? (3.18)
>(2P — M)N™ + (M — P)NM~1 — p2N? (3.19)
=N?((2P — M)NM=? 4+ (M — P)NM=? — p?) (3.20)
>N? (2P — M)2Y 2 + (M — P)2M =% — P?) (3.21)
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=N?(2Y73(3P — M) — P?) (3.22)

M
>N? (2M—3 . M2> (3.23)

=MN? (2Y* — M) (3.24)

where (3.21)) follows from the fact that (2P — M)NM~=2 4 (M — P)NM=3 — P2 is

monotone increasing in N > 2 for M > 3, and follows from % < P< M.
From , we conclude that n(M,P,N) > 0 forall M > 7, P > % and N > 2.
Examining the expression in for the remaining cases manually, i.e., when M <
6, we note that n(M, P, N) > 0 in these cases as well. Therefore, n(M, P, N) > 0 for
all possible cases, and the MPIR capacity is strictly larger than the rate achieved
by repeating the optimum single-message PIR scheme. B

For the example in the introduction, where M =3, P =2, N = 2, our MPIR
scheme achieves a sum capacity of % in lb which is strictly larger than the

repeating-based achievable sum rate of 2 in (3.12)).

The following corollary gives an achievable rate region for the MPIR problem.

Corollary 3.2 For the MPIR problem, for the case P > %, the following rate

region s achievable,

C =conv{(C,d,---,6),(6,C -+ ,6), - ,(d,---,6,C),
(070707”' 7O)a(07070a"' 70)7"' a(Oa()?"' 7C)a

(0,0,---,0), (C",C",---,CT)} (3.25)
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where

13
T
CP_O;D: N
P PN+ (M—-P)
A(M, P, N N -1
5= AL EN) (3.26)

and where conv denotes the convex hull, and all corner points lie in the P-

dimensional space.

Proof: This is a direct consequence of Theorem [3.1] and Corollary The corner

int (O AGLPN) A(M,P,N) AMPN)Y _ (_l=x N1 N1 N-1
poin 5 P—1 P—1 P—1 - 1—( )MaNMflaNMfla"' y NM 1

1
N
is achievable from the single-message achievable scheme. Due to the symmetry

of the problem any other permutation for the coordinates of this corner point

is also achievable by changing the roles of the desired messages. Theorem

gives the symmetric sum capacity corner point for the case of P > %, namely
cr ct cry _ N N N . )
( I I 7?) — <PN+(M7P)’ PNTRIE) ’W)' By time sharing of

these corner points along with the origin, the region in is achievable. W

As an example for this achievable region, consider again the example in the
introduction, where M = 3, P =2, N = 2. In this case, we have a two-dimensional
rate region with three corner points: (‘—;, %), which corresponds to the single-message
capacity achieving point that aims at retrieving Wh; (%, %), which corresponds to
single-message capacity achieving point that aims at retrieving Ws; and (%, %), which

corresponds to the symmetric sum capacity point. The convex hull of these corner
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Figure 3.2: The achievable rate region of M =3, P =2, N = 2.

points together with the points on the axes gives the achievable region in Fig.[3.2] We
note that in general, the rate region in Corollary is merely an achievable region.
The capacity region that characterizes the exact tradeoff between the retrieval rates
for the P messages remains an open problem despite the optimality of the corner
points. A converse argument is needed to show the optimality of time-sharing (if
the rate region is indeed the capacity region).

For the case P < %, we have the following result, where the lower and upper

bound match if % € N.

Theorem 3.2 For the MPIR problem with non-colluding and replicated databases,

when P < %, the sum capacity is lower and upper bounded as,

R, < CI <R, (3.27)
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where the upper bound R, is given by,

> 1
e = (3.28)
s 1 T i 7 -
l+y+ o+ (5 - P o
1
B ¥ (3.29)
=@ (M )y
R NE
For the lower bound, define r; as,
i2m(i=1)/P .
= NP gy (b P (3.30)

where j = +/—1, and denote ~;, i = 1,---, P, to be the solutions of the linear
equations S+ yir; T = (N = DM and Y0 v =0, k=1,--- P —1, then
R, is given by,

R, = ™ Kl +3) (1 %)M_T (3.31)

The achievability lower bound in Theorem [3.2]is shown in Section [3.5] and the
upper bound is derived in Section [3.6.2 The following corollary states that the
bounds in Theorem match if the total number of messages is an integer multiple

of the number of desired messages.

Corollary 3.3 For the MPIR problem with non-colluding and replicated databases,
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if % s an integer, then the bounds in match, and hence, fmﬂ N >1

CP_ 1_% %
1— ()7 P

S

eN, (3.32)

S

Proof: For the upper bound, observe that if % € N, then % = L%J Hence, 1}

becomes

Ry = = 3.33

G o
For the lower bound, consider the case % € N. From (3.30)),
1 M NI/P M M

<1 + T_Z> = <W> =NP (334)

o M-P
since e/2m("DM/P = 1 for & € N. Similarly, <1—i— %) = N7-!. Hence, if

M
M e,

Zil ,yi,r,pr [N% . N%—1:|

i

R,==— - (3.35)
> i1 %TzM_P [N? - 1}
N? — N¥-1
-7 (3.36)
-1

=N (3.37)

M

L= (3)"

Thus, R, = CF = R, if % € N, and we have an exact capacity result in this case.

[
3If N = 1, the optimal retrieval scheme is to download the contents of the database, hence
cr=2r.
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Sun-Jafar (8]

Figure 3.3: Summary of the state of the results.

Examining the result, we observe that when the total number of messages
is an integer multiple of the number of desired messages, the sum capacity of the
MPIR is the same as the capacity of the single-message PIR with the number of
messages equal to %. Note that, although at first the result may seem as if every
P messages can be lumped together as a single message, and the achievable scheme
in [12] can be used, this is not the case. The reason for this is that, we need to
ensure the privacy constraint for every subset of messages of sizd’| P. That is why,

in this chapter, we develop a new achievable scheme.

4We note that this is similar to the TPIR problem when % € N, in which case one cannot
simply lump every T databases together and apply the capacity-achieving scheme of PIR with
non-colluding databases for the new system that consists of % databases. In both problems, the
use of MDS codes is important to induce symmetry across the group of messages/databases.
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Figure 3.4: Deviation of the achievable sum rate from the upper bound.

The state of the results is summarized in Fig. Consider the (M, P) plane,
where naturally M > P. The valid part of the plane is divided into two regions.
The first region is confined between the lines P = % and P = M; the sum capacity
in this region is exactly characterized (Theorem . The second region is confined
between the lines P =1 and P = %; the sum capacity in this region is characterized
only for the cases when % € N (Corollary . The line P = 1 corresponds to the
previously known result for the single-message PIR . The exact capacity for

the rest of the cases is still an open problem; however, the achievable scheme in
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Figure 3.5: Effect of changing M for fixed P = 5,6, 10 and fixed N = 2.

Theorem yields near-optimal sum rates for all the remaining cases with the
largest difference of 0.0082 from the upper bound, as discussed next.

Fig. shows the difference of the achievable rate R, and the upper bound
R, in Theorem , i.e., Ry — R,. The figure shows that the difference decreases as
N increases. This difference in all cases is small and is upper bounded by 0.0082,
which occurs when M =5, P =2, N = 2. In addition, the difference is zero for the
cases P > & (Theorem or 4 € N (Corollary .

Fig. 3.5/ shows the effect of changing M for fixed (P, N). We observe that as
M increases, the sum rate monotonically decreases and has a limit oiﬂ 1— % In
addition, Fig. shows the effect of changing N for fixed (P, M). We observe that

as N increases, the sum rate increases and approaches 1, as expected.

®Although it seems at first that CF — 1 — % if M — oo, we emphasize that this is true
if only P = o(M), ie., P does not scale with M. If P = ~M, then as M — oo, we have

1
cP=_1 >1—%7whenﬁy>%,andCSP= L >1—%,When%22€N.

25 1=(§)'”
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Figure 3.6: Effect of changing N for fixed (M, P) = (5,2), (10, 5), (20, 3).

3.4 Achievability Proof for the Case P > %

In this section, we present the general achievable scheme that attains the upper
bound for the case P > % The scheme applies the concepts of message symmetry,
database symmetry, and exploiting side information as in . However, our scheme
requires the extra ingredient of MDS coding of the desired symbols and the side
information in its second stage. We note also that, here, by message symmetry,
we mean symmetry across group of messages of size P, which is realized by MDS

coding.
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3.4.1 Motivating Example: M = 3, P = 2 Messages, N = 2
Databases

We start with a simple motivating example in this sub-section. The scheme operates

over message size N2 = 4. For sake of clarity, we assume that the three messages

after interleaving their indices are Wi = (a1, - ,a4)", Wy = (by,--- ,bs)T, and
W3 = (c1,--- ,c4)T. We use Gaoy3 Reed-Solomon generator matrix over F3 as
1 11
G2X3 — (338)
1 20

The user picks a random permutation for the columns of Goys from the 6 possible
permutations, e.g., in this example we use the permutation 2, 1, 3. In the first round,
the user starts by downloading one symbol from each database and each message,
i.e., the user downloads (ay, by, c1) from the first database, and (as, be, ¢5) from the
second database. In the second round, the user encodes the side information from
database 2 which is ¢ with two new symbols from Wy, Wy which are (as, b3) using the
permuted generator matrix, i.e., the user downloads two equations from database 1

in the second round,

as 010 as
1 1 1 as + bg + Co
GSi | by | = 10 0] [bs| = (3.39)
1 20 2@3 + bg
(&) 0 01 (&)
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The user repeats this operation for the second database with (a4,bs) as desired
symbols and ¢; as the side information from the first database.

For the decodability: The user subtracts out ¢, from round two in the first
database, then the user can decode (ag,bs) from az + b3 and 2az + bs. Similarly,
by subtracting out ¢; from round two in the second database, the user can decode
(a4,by) from ay + by and 2ay + by.

For the privacy: Single bit retrievals of (a,by,c1) and (ag, by, ¢o) from the
two databases in the first round satisfy message symmetry and database symmetry,
and do not leak any information. In addition, due to the private shuffling of bit
indices, the different coefficients of 1, 2 and 0 in front of the bits in the MDS-coded
summations in the second round do not leak any information either; see a formal
proof in Section [3.4.3] To see the privacy constraint intuitively from another angle,
we note that the user can alter the queries for the second database when the queries
for the first database are fixed, when the user wishes to retrieve another set of two
messages. For instance, if the user wishes to retrieve (W3, W3) instead of (W5, W),
it can alter the queries for the second database by changing every ¢y in the queries
of the second database with ¢35, ¢; with ¢4, by with b3, and b, with b;.

The query table for this case is shown in Table|3.1|below. The scheme retrieves

ap,---,aq and by, -+ by, i.e., 8 bits in 10 downloads (5 from each database). Thus,
the achievable sum rate for this scheme is % = % = M% If we use the single-

PN

message optimal scheme in |12], which is given in |12, Example 4.3] for this specific
case, twice in a row to retrieve two messages, we achieve a sum rate of % = % < %

as discussed in the introduction.

79



Table 3.1: The query table for the case M =3, P =2, N = 2.

Database 1 | Database 2
al,bl,cl CLQ,bQ,CQ
a3+63+02 a4+b4+01
2&3 + b3 2&4 + b4

3.4.2 General Achievable Scheme

The scheme requires L = N2, and is completed in two rounds. The main ingredient
of the scheme is the MDS coding of the desired symbols and side information in the

second round. The details of the scheme are as follows.

1. Index preparation: The user interleaves the contents of each message randomly
and independently from the remaining messages using a random interleaver

Tm(.) which is known privately to the user only, i.e.,

2 (i) = win(m (i), i€ {1, L} (3.40)

where X,,, = [2,,(1), -+, 2,,(L)]T is the interleaved message. Thus, the down-
loaded symbol z,,(i) at any database appears to be chosen at random and

independent from the desired message subset P.

2. Round one: Asin [12], the user downloads one symbol from every message from
every database, i.e., the user downloads (x;(n), z2(n), - -, zp(n)) from the nth
database. This implements message symmetry, symmetry across databases,

and satisfies the privacy constraint.

3. Round two: The user downloads a coded mixture of new symbols from
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the desired messages and the undesired symbols downloaded from the other

databases. Specifically,

(a) The user picks an MDS generator matrix G € FZ*M which has the
property that every P x P submatrix is full-rank. This implies that
if the user can cancel out any M — P symbols from the mixture, the
remaining symbols can be decoded. One explicit MDS generator matrix
is the Reed-Solomon generator matrix over F,, where ¢ > M, [118,/119)].
The matrix is constructed by choosing M distinct elements of FF,. Let us

denote these elements by {6,0s,--- ,0y}. Then,

1 1 1 1
91 92 93 eM
G=| ¢ 62 32 62, (3.41)
ePfl ePfl ePfl . 9P71
i 1 2 3 M 1 penr

(b) The user picks uniformly and independently at random the permutation
matrices S1,So,--- ,Sy_1 of size M x M. These matrices shuffle the

order of the columns of G to be independent of P.

(c) At the first database, the user downloads an MDS-coded version of P
new symbols from the desired set P and M — P undesired symbols that

are already decoded from the second database in the first round, i.e., the
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straints.

user downloads P equations of the form

GSi[zi,(N+1) wip(N+1) - 2, (N+1) 2;,(2) 25(2) -+ 25,27

(3.42)
where P = {iy,ia,--- ,ip} are the indices of the desired messages and
P = {j1,72, -+ ,ju_p} are the indices of the undesired messages. In

this case, the user can cancel out the undesired messages and be left
with a P x P invertible system of equations that it can solve to get
[z;)(N4+1),2;,(N+1), -+ ,x;,(N +1)]. This implements ezploiting side

information as in [12].

The user repeats the last step for each set of side information from

database 3 to database N, each with different permutation matrix.

By database symmetry, the user repeats all steps of round two at all other

databases.

3.4.3 Decodability, Privacy, and Calculation of the Achievable Rate

Now, we verify that this achievable scheme satisfies the reliability and privacy con-

For the reliability: The user gets individual symbols from all databases in the

first round, and hence they are all decodable by definition. In the second round,
the user can subtract out all the undesired message symbols using the undesired

symbols downloaded from all other databases during the first round. Consequently,
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the user is left with a P x P system of equations which is guaranteed to be invertible
by the MDS property, hence all symbols that belong to Wy are decodable.

For the privacy: At each database, for every message subset P of size P, the
achievable scheme retrieves randomly interleaved symbols which are encoded by the

following matrix:

Ip Op Op Op
0r GL 0p 0p

Hp = Op Op G% Op (343)
0p Op Op -~ GR!

where G = GS,,(:,P) are the columns of the encoding matrix that correspond
to the message subset P after applying the random permutation S,,. Since the
permutation matrices are chosen uniformly and independently from each other, the
probability distribution of Hp is uniform irrespective to P (the probability of realiz-
ing such a matrix is (%)Nl). Furthermore, the symbols are chosen randomly
and uniformly by applying the random interleaver. Hence, the retrieval scheme is
private.

To calculate the achievable rate: We note that at each database, the user
downloads M individual symbols in the first round that includes P desired symbols.

The user exploits the side information from the remaining (N — 1) databases to

generate P equations for each side information set. Each set of P equations in turn
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generates P desired symbols. Hence, the achievable rate is calculated as,

_ total number of desired symbols

; "7 total downloaded equations (3.44)
N ]]VV((]\]j[:I]DD((]]\\[f__ 11)))) (3.45)
(M —};])V+ PN (3.46)
- @ (3.47)

3.4.4 Further Examples for the Case P > %

In this section, we illustrate our achievable scheme with two more basic examples.
In Section [3.4.1], we considered the case M = 3, P =2, N = 2. In the next two sub-

sections, we will consider examples with larger M, P (Section [3.4.4.1)), and larger

N (Section [3.4.4.2)).

3.4.4.1 M = 5 Messages, P = 3 Messages, N = 2 Databases

Let P = {1,2,3}, and a to e denote the contents of W; to Wi, respectively. The
achievable scheme is similar to the example in Section [3.4.1] The main difference is
that in this case, we use 5 x 5 permutation matrix for S; and Gsy5 Reed-Solomon

generator matrix over [F5 as:

11111

Gsxs=11 2 3 4 0 (3.48)

14410
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The query table is shown in Table below with the following random permutation
for the columns: 2,5,1,3,4. The reliability and privacy constraints are satisfied
due to the MDS property that implies that any subset of 3 messages corresponds
to a 3 x 3 invertible submatrix if the remaining symbols are decodable from the
other database. This scheme retrieves ay,--- ,ay, b1, -+ ,bs and cq,--- , ¢4, hence

12 bits in 16 downloads (8 from each database). Thus, the achievable sum rate is

% = % which equals the sum capacity H]‘% in (3.11)). This strictly outperforms
PN

the repetition-based achievable sum rate ;)—513 in (3.12).

Table 3.2: The query table for M =5, P =3, N = 2.

Database 1 Database 2
al,bl,cl,dl,el (lQ,bQ,CQ,dQ,eg
a3+b3+03+d2+62 a4+b4+C4+d1+61
2(13 +c3 + 3d2 + 462 20,4 +cq+ 3d1 + 461
das + c3 + 4dy + e day + cqy +4dy + €

3.4.4.2 M = 4 Messages, P = 2 Messages, N = 3 Databases

Next, we give an example with a larger N. Here, the message size is N2 = 9. With
a generator matrix Gaoyy = Gayxs([1 @ 2],[1 : 4]) to be the upper left submatrix
of the previous example and two set of random permutations (corresponding to

S1,S2) as 1,3,2,4, and 4,1,3,2. The query table is shown in Table below.

This scheme retrieves ay,--- ,a9 and by, --- , by, hence 18 bits in 24 downloads (8
from each database). Thus, the achievable rate is % = % = HA% This strictly
PN

outperforms the repetition-based achievable scheme sum rate 1—70 in (3.12]).
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Table 3.3: The query table for the case M =4, P =2, N = 3.

Database 1 Database 2 Database 3
ai, by, ci,dy ag, by, ca, dy as, bs, c3, ds
ay + by + co 4+ ds ag + b +c1 + dy ag +bg +c1 4+ d;
ay + 3b4 + 262 + 4d2 Qg + 3b6 + 261 + 4d1 as + 3b8 + 201 + 4d1
a5+b5+03+d3 a7+b7—|—03—|—d3 &9+bg+02+d2
4&5 + b5 + 363 + 2d3 40,7 + b7 + 303 + 2d3 4&9 + bg + 362 + 2d2

3.5 Achievability Proof for the Case P < %

In this section, we describe an achievable scheme for the case P < % We show that
this scheme is optimal when the total number of messages M is an integer multiple
of the number of desired messages P. The scheme incurs a small loss from the
upper bound for all other cases. The scheme generalizes the ideas in [12]. Different
than [12], our scheme uses unequal number of stages for each round of download.
Interestingly, the number of stages at each round can be thought of as the output of
an all-poles IIR filter. Our scheme reduces to [12] if we let P = 1. In the sequel, we
define the ith round as the download queries that retrieve sum of ¢ different symbols.
We define the stage as a block of queries that exhausts all (]\f ) combinations of the

sum of ¢ symbols in the ith round.

3.5.1 Motivating Example: M = 5, P = 2 Messages, N = 2
Databases

To motivate our achievable scheme, consider the case of retrieving two messages
denoted by letters (a,b) from five stored messages denoted by letters (a, b, c,d, e).

Instead of designing the queries beginning from the top as usual, i.e., beginning by
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downloading individual symbols, we design the scheme backwards starting from the
last round that corresponds to downloading sums of all five messages and trace back
to identify the side information needed at each round from the other database. Our
steps described below can be followed through in the query table in Table [3.4]

Now, let us fix the number of stages in the 5th round to be 1 as in |12] since
N = 2. Round 5 corresponds to downloading the sum of all five messages and
contains one combination of symbols a + b + ¢ + d + e; please see the last line in
Table[3.4l Since we wish to retrieve (a, b), we need one side information equation in
the form of ¢+ d + e from earlier rounds. The combination ¢+ d + e can be created
directly from round 3 without using round 4. Hence, we suppress round 4, as it does
not create any useful side information in our case, and download one stage from
round 3 to generate one side information equation ¢ + d + e.

In round 3, we download sums of 3 messages. Each stage of round 3 consists
of (g) = 10 equations. One of those 10 equations is in the desired ¢ + d + e form,
and the remaining 9 of them have either a or b or both a,b in them. In tabulating
all these 9 combinations, we recognize two categories of side information equations
needed from earlier rounds. The first category corresponds to equations of the form
a+b+(c,d, e), where (¢, d, e) means possible choices for the rest of the equation, i.e.,
these equations have both a and b in them and plus one more symbol in the form of
cor d or e. This category requires downloading one stage of individual symbols (i.e.,
an individual ¢ or d or e), that is, one stage of round 1. We note also that one of
the symbols (a,b) should be known as a side information from the second database

in order to solve for the remaining new symbol. The second category corresponds
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to equations of the form a+ (c+d,c+e,d+e) and b+ (c+d,c+e,d+e), i.e., these
equations have only one of a or b but not both. This category requires two stages of
round 2, as we need different side information equations that contain sum of twos,
eg.,c+d,c+e, d+e.

In round 2, we download sums of 2 messages. Each stage of the second round
contains (g) = 10 equations. In each stage, we need one category of side information
equations, which is a+ (¢, d, e) and b+ (¢, d, e). This necessitates two different stages
of individual symbols, i.e., two stages of round 1 for each stage of round 2.

Denoting «; to be the number of stages needed for the ith round, we sum all
the required stages for round 1 to be ay = 2-2 4 1 = 5 stages. Hence, the user
identifies the number stages as a; = 5, a0 = 2, a3 = 1,4 = 0, a5 = 1. These can be
observed in the query table in Table[3.4] Note that, we have c; = 5 stages in round
1 where we download individual bits; then we have as = 2 stages in round 2 where
we download sums of two symbols; then we have a3 = 1 stage in round 3 where we
download sums of three symbols; we skip round 4 as ay = 0; and we have a5 = 1
stage of round 5 where we download sum of all five symbols.

Now, after designing the structure of the queries and the number of stages
needed for each round, we apply the rest of the scheme described in [12]. The user
randomly interleaves the messages as usual. In the first round, the user downloads
one symbol from each message at each database. This is repeated ay; = 5 times
for each database. Hence, the user downloads aq.19, b1.10, C1:10, d1.10, €1:10 from the
two databases. In the second round, the user downloads sums of two messages.

Each stage contains (g) = 10 equations. This is repeated as = 2 times. For
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example, in database 1, user exploits cg, dg, €6 to get ais, ai3,a14 and c7,dr, e to
obtain b1y, by2, b13. These are from round 1. Round 2 generates c;; + di1, c12 + €11,
dis + e1o from stage 1, and ci3 + di3, c14 + €13, dis + e14 from stage 2 as side
information for round 3. In round 3, the user downloads sum of three symbols.
There are (g) = 10 of them. Symbols ¢y, dyo, €10 downloaded from round 1 in
database 2 are used to be summed with mixtures of a + b. The two sets of side
information generated in the second round are exploited in the equations that have
one a or b. Note that for each such equation, one of a or b is new and the other one is
decoded from database 2. Round 3 generates one side information as ci19 + dyg + €19
that is used in round 5. This last round includes the sum of all five messages.
Therefore, as seen in Table [3.4] we have retrieved aq,--- ,az4 and by - - -, bay,
i.e., 68 bits in a total of 112 downloads (56 from each database). Thus, the achievable
sum rate is 9 = 17 This is R, in Theorem whereas the upper bound R, in

112 28"

_ 8 Do 3~
TIoL T The gap between R, and R; is equal to 55 ~ 0.0082,

Theorem [3.2/is ;— 1
which also is the largest possible gap between R, and R, over all possible values of

M, P and N.

3.5.2 Calculation of the Number of Stages

The main new ingredient of our scheme in comparison to the scheme in [12] is the
unequal number of stages in each round. In [12], the scheme is completed in M
rounds, and each round contains only 1 stage only when N = 2. To generalize the

ideas in Section and calculate the number of stages needed per round, we use
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Table 3.4: The query table for the case M =5 P =2 N = 2.

Database 1 Database 2
Stg 1 al,bl,cl,dl,el aﬁ,bﬁ,cﬁ,dﬁ,eG
— Stg 2 CLQ,bg,CQ,dQ,GQ a7,b7,c7,d7,e7
g Stg 3 ag,b3,63,d3,€3 CLg,bg,Cg,dg,Gg
o | stg4 (g, by, Cq,dy, ey ayg, by, cg, dgy, €9
stg 5 as, bs, cs, ds, €5 a0, b1o, €10, dio, €10
ap + b@ a1g + b1
a2 + Cg aig + C1
a13 + d(; a0 + d1
_ a14 + € as1 + €1
%}3 b11 + c7 b18 + C
8 bis + d7 big + ds
= 1)13 + e7 bzo + €9
ci1 +di 15 + dis
~ C12 + €11 Ci6 1 €15
= di2 + €12 dis + €16
g ag + bia ay + by
= a1y -+ Cg 99 + C3
16 + dg 23 + dg
~ a17 + esg (4 + €3
o bis + cg bao + ¢4
f_§ b16 + dg b23 + d4
= 1917 + €9 b24 + ey
c13 + di3 ci7 + diy
C14 1 €13 Ci1g + €17
dia + €14 dig + €13
a25 + b7 + C10 a9 + bgg + Cs
ar + bos + dio azo + by + ds
QAo + bg “+ e1o as + b30 + e5
o~ | azy + C15 + dis az + ¢+ dig
2l g a8 + C16 + €15 as2 + C12 + €11
5| £ agg + dig + €16 ass + diz + €12
- bas + c17 + di7 b3y + c13 + di3
b7 + c18 + €17 bsy + c14 + €13
bag + d1s + €13 bsz + dis + €14
C19 + dig + €19 C20 + dao + €29
2 stg 1 | ag + bzs + Coo + dao + €20 | a3q + b3 + 19 + dig + €19
e
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Vandermonde’s identity

(]\f) - kng <]/:) (Aj__ kP) (3.49)

The relation in states that any combination of ¢ objects from a group of M
objects must have k objects from a group of size P and i — k objects from a group of
size M — P. In our context, the first group is the subset of the desired messages and
the second group is the subset of the undesired messages. Then, the relation can be
interpreted in our setting as follows: In the ¢th round, the (Af) combinations of all
possible sums of ¢ terms can be sorted into P + 1 categories: The first category (i.e.,
k = 0), contains no terms from the desired messages, the second category contains
1 term from the desired messages and 7 — 1 terms from the undesired messages, etc.
The relation gives also the number of query subgroups of each category (1;) and the

"0

number of queries in each subgroup (

Let us consider the following concrete example for clarification: Consider that
we have 6 messages denoted by (a, b, c,d, e, f), and the desired group to be retrieved
is (a,b). Consider round 4 that consists of all combinations of sums of 4 symbols.
From Vandermonde’s identity, we know that (2) = (g) (j) + (f) (3) + (g) (;1) Which
means that there are three categories of sums: First category is with only undesired

messages; we have ((2)) = 1 query subgroup of the form ¢+ d + e + f. The second

category is to have 1 term from the desired group and the remaining are undesired;

2

1) = 2 query subgroups, one corresponds to a with combinations of 3

we have (

terms from ¢, d, e, f, and the other to b with combinations of 3 terms from ¢, d, e, f.
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Each query subgroup contains (;1) queries, i.e., the first query subgroup is of the
forma+ (c+d+e,c+d+ f,c+e+ f,d+ e+ f) and the second query subgroup
is of the form b+ (c+d+e,c+d+ f,c+ e+ f,d+ e+ f). Third category is to
have 2 terms from the desired group and 2 terms from the undesired group; we have
(3) = 1 query subgroup of this category that takes the form a+b+ (c+d,c+e,---).
The number of queries of this group is (;) corresponding to all combinations of 2
undesired symbols.

Back to the calculation of the number of stages: To be able to cancel the un-
desired symbols from an i-term sum, the user needs to download these undesired

symbols as side information in the previous rounds. Hence, round ¢ requires down-

P

;) stages in round (i —2), etc. Note that these

loading (113) stages in round (i — 1), (
stages need to be downloaded from the remaining (N — 1) databases. Then, each
database needs to download ﬁ (}1D ) stages in round (i — 1), ﬁ (5 ) stages in round
(1 — 2), etc.

From this observation, we can trace back the number of stages needed at each
round. Denote «; to be the number of stages in round i. Fix the number of stages in
the last round (round M) to be ap; = (N — 1)M=F stages. This choice ensures that
the number of stages in any round is an integer. Note that in round M, the user
downloads a sum of all M messages, this requires side information in the form of the
sum of the undesired M — P messages. Hence, we suppress the rounds M — P + 1
through M — 1 since they do not generate any useful side information. Note that
the side information equations in round M at each database are collected from the

remaining (N — 1) databases. Then, the number of stages in round (M — P) should
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be (N — 1)Y=P=1 Therefore, we write

ay = (N —1)M=F (3.50)
Apr—1 = - = Qp—py1 =0 (351)
P
1 1 P

Now, in round (M — P), each stage requires (}13 ) stages from round (M —P—1),
(1; ) stages from round (M — P —2), and so on so forth, and these stages are divided
across (N — 1) databases. Continuing with the same argument, for each round, we

write

P
1 P 1 P
AM-P-1 = 7 ( 1 ) AM-P = 57 Z ( ; )OéM—P—Hi (3.53)
P
1 P
= —N 1 Z (Z.>05MP2+1' (3'54>

P
1 P

Interestingly, this pattern closely resembles the output of an IIR filter y[n] [54], with

the difference equation,

sl = Y (P )y[n — ) (3.56)
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and with the initial conditions y[—P] = (N — )M =F y[-P+1] =--- =y[-1] = 0.
Note that the only difference between the two seemingly different settings is the
orientation of the time axis. The calculation of the number of stages is obtained
backwards in contrast to the output of this IIR filter. Hence, we can systematically
obtain the number of stages at each round by observing the output of the IIR
filter characterized by , and mapping it to the number of stages via o =
yl(M — P) — k].

We note that for the special case P = 1, the number of stages can be obtained
from the first order filter y[n] = =5y[n—1]. The output of this filter is y[n] = (N —
1)M=2=n_Then, the number of stages in round k is a = y[M —1—k] = (N —1)*1,
which is exactly the number of stages used in |12]; in particular if N = 2, then

ap = 1 for all k.

3.5.3 General Achievable Scheme

1. Index preparation: The user interleaves the contents of each message randomly
and independently from the remaining messages using a random interleaver

Tm(.) which is known privately to the user only, i.e.,

(i) = Wi (M (i), i€ {1, L} (3.57)

2. Number of stages: We calculate the number of stages needed in each round.

This can be done systematically by finding the output of the IIR filter char-
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acterized by,

Jln] = ﬁi (V)otn - (359

with the initial conditions y[—P] = (N —1)M=F y[-P+1]=--- =y[-1] = 0.
The number of stages in round i is oy = y[(M — P) — i| as discussed in
Section [3.5.2

3. Initialization: From the first database, the user downloads one symbol from
each message that belongs to the desired message set P. The user sets the

round index to 7 = 1.

4. Message symmetry: In round 4, the user downloads sums of i terms from
different symbols from the first database. To satisfy the privacy constraint,

the user should download an equal amount of symbols from all messages.

Therefore, the user downloads the remaining (M ;P ) combinations in round %
from the undesired symbol set P. For example: In round 1, the user downloads
one symbol from every undesired message with a total of (M 1_P ) = M — P such

symbols.

5. Repetition of stages: In the first database, the user repeats the operation in
round ¢ according to the number of calculated stages «;. This in total results
in downloading «; (M ;P ) undesired equations, and «; ((1\14 ) — (M ;P )) desired

equations.

6. Symmetry across databases: The user implements symmetry across databases
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M—-P

by downloading «; (M ;P ) new undesired equations, and «; ((Af ) — ( ;

}) new
desired equations from each database. These undesired equations will be used
as side information in subsequent rounds. For example: In round 1, each
database generates a1(M — P) undesired equations in the form of individual

symbols. Hence, each database can exploit up to a;(N — 1)(M — P) side

information equations from other (N — 1) databases.

. Ezploiting side information: Until now, we did not specify how the desired
equations are constructed. Since each stage in round i can be categorized
using Vandermonde’s identity as in the previous section, we form the desired
equations as a sum of the desired symbols and the undesired symbols that can
be decoded from other databases in the former (i — 1) rounds. If the user sums
two or more symbols from P, the user downloads one new symbol from one
message only and the remaining symbols from P should be derived from other
databases. Thus, in round (i + 1), the user mixes one symbol of P with the
sum of ¢ undesired symbols from round 7. This should be repeated for all (113 )
desired symbols. Then, the user mixes each sum of 2 desired symbols with the
sum of (i — 1) undesired symbols generated in the (i — 1)th round. This should

be repeated for all the (123 ) combinations of the desired symbols, and so on.

. Repeating steps: Repeat steps 4, 5, 6, 7 by setting ¢ =¢+1 untili = M — P—1.

. Last round: We note that rounds M — P + 1 to M — 1 do not generate useful
side information. Hence, apr_py1 = -+ = apy—1 = 0. In round M, which
corresponds to summing all M messages, the user mixes P symbols from P
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(only one of them is new and the remaining are previously decoded from the
other (N — 1) databases) and M — P undesired symbol mixture that was

generated in round (M — P).

10. Shuffling the order of queries: After preparing the query table, the order of
the queries are shuffled uniformly, so that all possible orders of queries are

equally likely regardless of P.

3.5.4 Decodability, Privacy, and Calculation of the Achievable Rate

Now, we verify that the proposed scheme satisfies the reliability and privacy con-
straints.

For the reliability: The scheme is designed to download the exact number of
undesired equations that will be used as side information equation at subsequent
rounds in other databasesﬁ Hence, each desired symbol at any round is mixed with
a known mixture of symbols that can be decoded from other databases. Note that if
the scheme encounters the case of having a mixture of desired symbols, one of them
only is chosen to be new and the remaining symbols are downloaded previously from
other databases. Thus, the reliability constraint is satisfied by canceling out the side
information.

For the privacy: The randomized mapping of message bits and the random-

ization of the order of queries guarantees privacy as in [12]. It can be checked that

6Check for instance in Table that all of the downloads (equations) involving undesired
symbols from database 2 are used in database 1: singles cg, ds, €6, C7,d7, €7, C8,ds, €8, Cy,dg, €9,
c10, d1g, €10; sums of twos ¢15 +di5, c16 + €15, dig + €16, C17 +di7, 18 + €17, dig + e1g; sum of threes
Co0 + dog + €29, all downloaded from database 2 are all used as side information in database 1.
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when we fix the queries for one database, we can adjust the queries for the remain-
ing databases such that the user can decode any P subset of messages. This is true
since all combinations of messages are generated by our scheme.

To calculate the achievable rate: From Vandermonde’s identity (Af ) =
Z,I::o (};) (Af:pp), round ¢ requires downloading (5 ) stages in round (i — p). These
stages should be downloaded from the remaining (N —1) databases. Hence, as shown
in the previous section, the number of stages at each round is calculated as the out-
put of an IIR filter whose input-output relation is given in (3.56)) with the initial
conditions y[—P] = (N — 1)M=" y[-P+1] = --- = y[—1] = 0, with the conversion
of time index of the filter to the round index of the schemes as «; = y[(M — P) —i].

M=P stages in the

These initial conditions imply that the user downloads (N — 1)
last round that corresponds to downloading the sum of all messages. The (P — 1)
rounds before the last round are suppressed because we only need to form sums of
(M — P) messages to be used in the last round.

Now, to calculate the number of stages for round ¢, we first solve for the roots

of the characteristic equation of (3.56|) [54],

P ﬁ > (IZ) PP (3.59)

=1

which is equivalent to

P NT_ - ZP: (J;) P =0 (3.60)
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which further reduces to

(1+%>P—1]:0 (3.61)

using the binomial theorem. Simplifying (3.61]), we have
Nrf —(r+1)7 =0 (3.62)

. .. . . . 1 P r . . P _
By applying the bijective mapping t = N/ . 1 (3.62) is equivalent to t© = 1.

The roots for this equation are the normal roots of unity, i.e., t, = e/27*k=D/P | =
1,---, P, where j = /—1. Hence, the roots of the characteristic equation are given
by,

t pi2n(k=1)/P

- NP — ¢, - N1/P _ egj2n(k—1)/P’

Tk

k=1, ,P (3.63)

Thus, the complete response of the IIR filter is given by y[n] = Zf:l virl, where ;
are constants that result from solving the initial conditions, i.e., ¥ = (71, -+ ,7vp)?

is the solution of the system of equations,

R SR = I 7 (N —1M=F
T;PJrl 7,2—P+1 T;)PJrl Yo 0

= (3.64)
R e o N 7 0
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Now, we are ready to calculate the number of stages oy in round k. Since

ar = y[(M — P) — k] by construction, then

P
ap =Y (3.65)
=1

In round k£, the user downloads sums of k£ symbols. The user repeats this round for
oy stages. Each stage contains all the combinations of any & symbols which there

are (]\]:[ ) of them. Hence, the total download cost D is,

(J‘g ) o (3.66)
1 ; (]Z ) M- Pk (3.67)
pM=P Z ( ) K (3.68)

(1 + %)M - 1] (3.69)

Considering the undesired equations: in round k, the user downloads all combina-

v
WE

i
I

-

k

19207

M—P
YiT;

tions of the (M — P) undesired messages which there are (M P ) of them. Therefore,

similar to the above calculation, the total number of undesired equations U is,

( :@)M—P _ 1] (3.70)

U= Z%
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Hence, the achievable rate R, is

Ry=——— (3.71)

= (3.72)

which is (3.31)) in Theorem [3.2]

3.5.5 Further Examples for the Case P < %

In this section, we illustrate our proposed scheme with a few additional basic ex-
amples. In Section |3.5.1, we considered the case M =5, P =2, N = 2. In the
next three sub-sections, we consider three more examples. In the example in Sec-
tion , the ratio % is exactly equal to 2, thus, both the achievable scheme
here and the achievable scheme in Section [3.4] can be used; we comment about the
differences and advantages of both schemes. In the example in Section [3.5.5.2] we
present the case of a larger N for the example in Section [3.5.1] In the example in

Section [3.5.5.3 we present a case with larger M, P and N.

3.5.5.1 M = 4 Messages, P = 2 Messages, N = 2 Databases

The first step of the achievable scheme is to identify the number of stages needed

for each round of download. The IIR filter in (3.56) that determines the number of
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stages reduces in this case to

y[n] = 2y[n — 1] + y[n — 2] (3.73)

with the initial conditions y[—2] = 1,y[—1] = 0. The number of stages in round k
is ap = y[2 — k|. Since M is small, we can calculate the output iteratively without

using the canonical filter output as,

as=y[-2] =1 (3.74)
a3 =y[-1] =0 (3.75)
ay = y[0] = 2y[—1] +y[-2] =1 (3.76)
ay = y[l] = 2[0] + y[-1] = 2 (3.77)

Hence, we should download 2 stages of individual symbols (round 1), and 1 stage of
sums of two symbols (round 2). We should suppress the round that retrieves sums
of three symbols (round 3), and have 1 stage of sums of all four symbols (round 4).

The user initializes the scheme by randomly and independently interleaving the
symbols of each message. The query table for this example is shown in Table In
round 1, the user downloads individual symbols from all messages at each database.
The user downloads aq, by, ¢1,dy and as, by, o, do from database 1, as o = 2. This is
repeated for database 2. In round 2, the user downloads sums of two symbols. There
are (3) = 6 such equations. At database 1, the undesired symbols from database 2

in the first round are exploited in some of these sums. These equations are either
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in the form a + (¢, d) or in the form b+ (¢, d). This necessitates two sets of different
individual symbols to be downloaded from database 2 in the first round, or otherwise
the symbols are repeated and privacy is compromised. Moreover, we note that the
user downloads as + b3 which uses b3 as side information even though W5 is desired;
this is reversed in database 2 to download a; + b; with a; as a side information to
have a symmetric scheme. Round 2 concludes with downloading c5+d5 and cg+dg at
the two databases, which will be used as side information in the last round. Round
3 is skipped and the user proceeds to round 4 (last round) directly. In round 4, the
user downloads sum of four symbols, and uses the side information downloaded in
round 2 and any decoded symbols for the other desired message. For example, in
database 1, the user downloads az + big + ¢ + dg, hence, the side information cg + dg

is exploited in this round as well as a3. The user finishes the scheme by shuffling the

order of all queries randomly. The user retrieves aq, - -- , a9 and by, - - - , byg privately
in 30 downloads (15 from each database) and achieves a sum rate of % = % = 1+1 T,
N

which matches the upper bound in Theorem [3.2] This sum rate outperforms the
repetition-based achievable rate which is % in (3.12).

We note that this case can be solved using the achievable scheme presented in
Section as well since % = 2 in this case. In fact, this is equivalent to the case
considered in Section [3.4.4.2] if the number of databases is reduced from N = 3
to N = 2. Starting from Table in Section [3.4.4.2] and removing the downloads
from database 3, we obtain the query table which uses MDS-coded queries shown
in Table below. Via the scheme in Table below, the user retrieves aq,--- ,ay4

and by, - - , by privately in 12 downloads (6 from each database), therefore achieving
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Table 3.5: The query table for the case M =4, P =2, N = 2.

Database 1 Database 2
— Stg 1 al,bl,cl,dl a3,b3,03,d3
'E stg 2 G,Q,bg,CQ,dQ a4,b4,c4,d4
as + bs ai + by
~ | ag + C3 ag + ¢
<ol o ar +d ag +d
5| 8 bZ te bZ o
ol bg + dy by + ds
cs + ds 6 + dg
,_;rj stgl a3+b10—|—06~|—d6 a10+b1+05+d5

1
1+4

the same optimal sum rate of 18—2 = % =

Table 3.6: Alternative query table for the case M =4, P =2 N = 2.

Database 1 Database 2
al,bl,cl,dl CLQ,bQ,CQ,dQ
a3+b3—|—02—|—d2 (l4+b4+01+d1
as + 363 + 202 + 4d2 ag + 3b4 + 201 + 4d1

We presented this case here even though it could be solved using the scheme in
Section in order to give an example where the second achievable scheme achieves
the upper bound in Theorem and yields a capacity result since % is an integer.
Interestingly, we observe that for all cases where P = %, the two achievable schemes
are both optimal. The two schemes present an interesting trade-off between the
field size and the upload cost: The first achievable scheme in Section requires
using an MDS code with field size ¢ > M but the number of queries for each
database is limited to M + P. On the other hand, the second achievable scheme
here in Section does not use any coding and can work with the storage field size,
however, the number of queries increase exponentially since the number of stages
for each round is related to an unstable IIR filter.
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3.5.5.2 M =5 Messages, P = 2 Messages, N = 3 Databases

In this example, we show an explicit query structure for N > 2. In this case the

corresponding difference equation for the IIR filter is
1
yln] = yln — 1 + 5yln — 2] (3.78)

with the initial conditions y[—1] = 0, y[—2] = (N —1)~F = 8. Thus, the number of
stages in each round are: a; =6, as =4, a3 = 4, ay = 0, a5 = 8. The query table is
shown in Tables [3.7] and [3.91 This scheme retrieves ay, -+, a126 and by, - - - , byag
privately in 354 downloads (177 from each database), therefore, achieving a sum

252 _ 42 1 _ 18 o 12
rate of £23 = =5 < I % The gap is 1,7 =~ 0.0081.

3.5.5.3 M =T Messages, P = 3 Messages, N = 3 Databases

Finally, in this section, we consider an example with N = 3 databases and larger
M and P than in previous examples, where we describe the structure and the
calculation of the number of queries without specifying the explicit query table as
it grows quite large. We first calculate the number of stages at each round. The

corresponding IIR filter is

ylin) = 53yl — 1 + 3yl — 2] + yln — 3) (3.79)
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Table 3.7: The query table for the case M =5, P =2 N = 3.

Database 1 Database 2 Database 3

stg 1 | ay,by,c1,d1,eq ar,by,cr,dz,er | aig, big, c13,dis, €13
— | stg 2 | as, by, co,d, e9 as, bg, s, dg, g 14, D14, C4, d1a, €14
"g stg 3 | as, b3, c3,d3, €3 ay, by, g, dy, €9 ais, bis, C15, dis, €15
5 | stg 4 | ag, by, ¢4,dy, 4 | aro, bio, 10, dios €10 | @16, bie, C16, dis, €16
“ | stg 5 | as, bs,c5,ds5, €5 | a1, b, cir, din, e | air, biz, iz, diz, ear
stg 6 | as, bs, s, ds, €6 | Q12, D12, C12, d12, €12 | aig, big, C18, dig, €18

ag + by asz + by ag7 + by

oy + C7 asq + C1 a8 + C1

ao1 + d7 Q35 + d1 Q49 + d1

_ a2 + €7 aze + €1 aso + €1

o big + c3 b3z + ¢z bar + 2

8 bao + dg bay + dy byg + da

. ba1 + eg bss + e bag + €

19 + dyg Co7 + da7 35 + dss

C20 1 €19 Cog + €27 C36 T €35

dao + e dag + €28 d3e + €36

ar + bao ay + bsg ay + bsg

(23 + Cg asr + C3 as1 + c3

24 + dg as3g + d3 Q59 + d3

~ ass + €9 asg -+ €3 ass -+ €3

Ty bas + c1o by + ¢4 bs1 + ¢4

A bas + dio bss + dy bs2 + dy

- bas + €10 b3g + €4 bss + €4

Co1 + dyy Ca9 + dag c37 + dsy

C22 1+ €21 C30 1 €29 C3g 1 €37

da + €22 d3o + €30 dsg + €33

age + b3 as + bis asq + by

a27 + C13 a41 + C13 ass + ¢

ags + di3 g + di3 ase + dr

- a29 + €13 (43 + €13 as7 + €7

o bas + C14 bao + C14 bsq + cg

= bar + dia by + dra bss + dg

- bag + €14 bas + €14 bse + €3

Co3 + da3 31+ da3y C39 + d3g

C24 1 €23 C32 1 €31 C40 1 €39

day + €4 d3p + €32 dao + €40
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Table 3.8: The query table for the case M =5, P =2, N = 3 (cont.).

br1 + c37 + da7
bro + c38 + €37
brs + d3g + €33
Cas + dus + €5

bgg + c37 + d37
boo + c38 + €37
bo1 + d3g + €33
Cag + dag + €49

Database 1 Database 2 Database 3
a1z + bag a1z + bys ar + bsy
ago + C15 Q44 + C15 asg + Cg
azi + dis ags + dis asg + dy
~ | a2 + €15 (46 + €15 a0 + €9
= b3o + c16 bas + C16 bsg + c1o
5| £ bs1 + dis bis + dis bsg + dio
- bsa + €16 bss + €16 beo + €10
Cos + das C33 + d33 Cq1 + dy
C26 1 €25 C34 1 €33 Cq2 1 €41
dae + €26 d34 + €34 da + €42
ag1 + bg + C11 arg + b2 + ¢5 g7 + bQ + ¢5
as + b61 + d11 ag + b7g + d5 as + b97 + d5
g2 + bg + €11 aso + b3 + €5 98 + b3 + €x
_, | Ge3 T o7t dy7 | ag1 + cig +dig | agg + c19 + dig
o | o4 + Cog + €97 | gz + Coo + €19 | @100 + C20 + €19
g ags + dog + €28 | agg + dog + €20 | aip1 + dao + €20
bz + Cag + dag | bgo + Co1 +da1 | bog + co1 + doy
bz + c30 + €29 | bg1 + Coa + €21 | bog + Con + €21
bea + dso + €30 | bgp + dag + €22 | bigo + dao + €22
Caz + daz + eq3 | car + dar +eqr | 51+ dsi + 5
ag + 665 + C19 as + bgg + ¢cg as + b101 + Cg
aee + b10 + d12 ag4 + b4 + d6 a102 -+ b4 + d6
aio + bes + €12 | as + bga + €5 as + bip2 + €6
o | oy | Q67 T C31 d31 | ags + Co3 + da3 | aioz + Coz + da3
T g | s + C32 + €31 | Gge + Cog + €23 | Q104 + C24 + €23
2| & | aco +ds2 + €32 | as7 + day + €24 | @105 + dog + €24
Sl )
ber + c33 + d3g | bgs + Co5 + das | bio3 + o5 + dos
beg + C34 + €33 | bgg + Cog + €25 | bios + Cos + €25
beo + d3s + €34 | bgr + dog + €26 | bios + dae + €26
Cag + dag + €44 | Cyg +dyg + €48 | sz + dsz + €52
aro + by +ci7 | ags + by +ci7 | aps + bs + cin
aiy + byo + di7 | aig + bgg +di7 | ag + bios + dis
ary + bis + €17 | agg +bis +e17 | ar + by + e
o | @72 T C35+ dss | ago + c35 + dss | aios + ca7 + day
o | s + C36 + €35 | ag1 + C36 + €35 | Q109 + Cog + €27
g a7y + dze + €36 | g2 + dsg + €36 | @110 + dag + €28

bio7 + C29 + dag
bios + €30 + €29
biog + d3o + €30
Cs3 + ds3 + €53
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Table 3.9: The query table for the case M =5, P =2, N = 3 (cont.).

Database 1

Database 2

Database 3

round 3
stage 4

a5 + by + cig
ars + big + dig
a6 + brs + €13
76 + C39 + dag
a7 + cq0 + €39
arg + dao + €0
bre + ca1 + da
br7 + cy2 + eq1
brg + daz + €42
Ca + dug + €46

ais + boy + c18
ag3 + big + dig
a6 + bgz + €13
gy + C39 + d3g
ags + €40 + €39
ags + dao + €40
bog + c41 + dy
bgs + ca2 + €41
bos + daz + €42
cs0 + dso + es0

ag + biyo + ci2
aiyy + bio + diz
aio + by +er2
a2 + 31+ ds
@113 + €32 + €31
a114 + d32 + €32
bi12 + ¢33 + ds3
b113 + c34 + €33
bi14 + d3s + €34
Cs4 + dsq + €54

stg 1 | as + b1y + car + dag +ear | arig + bs + cyz + dyz +eq3 | araz + bs + cag + diz + ey3
stg 2 | ai +biis + cug +dag +eag | a5+ brig + cas + dyg +eqy | as + bioz + cag + dyg + ey
o | 868 3 | ar1e + bia + cyg + dyg + €49 | @120 + b + Ca5 + das + €45 | @124 + bg + cy5 + dys + eus
"g Stg 4 a9 + b116 + C50 + d50 + e50 ag + b120 + cy46 + d46 + €46 ag + b124 + cy46 + d46 + €46
2| stg 5 | anr +bir 4+ cs1 + dsi + €51 | @i +bir + 51+ dsi + €51 | anos + b+ car +dar + ey
T stg 6 | air + biir + 5o + dso + €5 | air + bion + s + dso + €50 | arn + bios + cus + dag + eas
stg 7 | aiig + big + Cs3 + ds3 + €53 | Q12 + big + 53 + ds3 + €53 | G126 + D12 + a9 + dyg + e49
stg 8 | ai1g + biig + 54 + dsa + €54 | a1g + bioo + 54 + dsg + €54 | @12 + bizg + C50 + dso + eso

with the initial conditions y[—3]

the number of stages for each round aj =

(N —1)M=F =16, y[-2] = 0, y[—1] = 0. Hence,

yld — k], k = 1,--- 7, are calculated

iteratively as a;y = 67, g = 30, a3 =12, ay = 8, a5 = 0, ag = 0, ay = 16.

In round 1, the user downloads 67 individual symbols from each message and
from each database. Each database can use the side information generated by
the other two databases. Hence, each database has 67 - 2 = 134 side information
equations in the form of single symbols from round 1 to exploit. In round 2, the
user downloads sums of two symbols. Each stage in round 2 requires 3 stages from
round 1, since the user faces with a+ (d, e, f, g), b+ (d, e, f,g) or c+(d, e, f, g) cases.
Then, round 2 requires 30 - 3 = 90 stages from the generated side information in
round 1, and we are left with 134 — 90 = 44 more stages of round 1. Each database

can use the side information stages from the other two databases, i.e., each can use

up to 2 - 30 = 60 stages of side information in the form of sums of two.
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In round 3, the user downloads sums of three symbols, which can be either
of a+b+ (dye, f,9), a+c+ (de f,g),b+c+(de f,g),at+ (d+ed+ f,---),
and similarly for b, c. Therefore, each stage in round 3 requires 3 stages from round
2, and 3 stages from round 1. This in total requires 12 - 3 = 36 stages from round
1 and 36 stages from round 2, and we will be left with 8 stages from round 1 and
24 stages from round 2. Round 3 generates 2 - 12 = 24 stages of side information
in the form of sums of threes. In round 4, the user downloads sums of 4 symbols,
which can be either a +b + (d +e,d + f,---), and similarly for b + ¢ and a + ¢,
a+(d+e+ f,d+e+g,---) and similarly for b, ¢, or a + b+ c+ (d,e, f,g). This
means that for each stage of round 3, the user needs 1 stage of round 1, 3 stages of
round 2, and 3 stages of round 3. This in total requires 8 - 3 = 24 stages from round
2 and 3 and 8 - 1 stages from round 1 and hence, we exhaust all the generated side
information by round 4. Round 4 generates 8 stages of side information in the form
of sums of fours. This will be used in the last round to get 8 - 2 new symbols from
the desired messages.
3933 _ 437 1

The achievable sum rate in this case is 2222 = =2£

_
5445 — 605 It 4.1, 3T The gap

is 5295 ~ (0.0074.

22385 T

3.6 Converse Proof

In this section, we derive an upper bound for the MPIR problemﬂ. The derived

upper bound is tight when P > % and when % € N. We follow the notations and

"We note that the assumption that W; € IFqL is indeed unnecessary in terms of converse argu-

ments. Consequently, our converse proof is valid for any storage alphabet.
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simplifications in [12,/117], and we define

Q2. Pc {1, M}, |P|=P,ne{l-- N}} (3.80)
and
AL, 2 { AL AT, AT (3.81)
for ny < ng, ny,me € {1,--- ,N}.

Without loss of generality, the following simplifications hold for the MPIR

problem:

1. We can assume that the MPIR scheme is symmetric. Since for every asym-
metric scheme, there exists an equal rate symmetric scheme that can be con-

structed by replicating all permutations of databases and messages.

2. To invoke the privacy constraint, we fix the response of one database to be
the same irrespective of the desired set of messages P, i.e., AEZ’ i = A,,, where
|P;| = P foreveryi € {1,2,---, 3} forsomen € {1,--- N}, and 5 = (Alf) No
loss of generality is incurred due to the fact that the queries and the answers
are statistically independent from P. In the sequel, we fix the answer string

of the first database, i.e.,

APV = 4, wp (3.82)
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The following lemma is a consequence of the symmetry assumption; its proof

can be found in [12].

Lemma 3.1 (Symmetry [12]) For any Ws ={W, :i € S}

H(AP\Ws, Q) = H(AT|Ws,Q), ne{l,-- N} (3.83)

H(A|Q) = H(ATNQ), ne{l:-- N}, VP (3.84)

We construct the converse proof by induction over L%J in a similar way to
[12/117]. The base induction step is obtained for 1 < % < 2 (this is the case P > %
as it was referred to so far, where the user wants to retrieve at least half of the
messages). We obtain an inductive relation for the case % > 2. The converse proof

extends the proof in [12] for P > 1.

3.6.1 Converse Proof for the Case 1 < % < 2

To prove the converse for the case 1 <

% < 2, we need the following lemma which

gives a lower bound on the interference within an answer string.
Lemma 3.2 (Interference Lower Bound) For the MPIR problem with P > L,

the uncertainty of the interfering messages Wpi 1.y within the answer string A[ILP]

18 lower bounded as,

H(A[ll:P}\WLp, 0) (M —P)L

v

(3.85)
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Furthermore, is true for any set of desired messages P with |P| = P, i.e.,

M — P)L
(A, @) > M (3.56)
Proof: For clarity of presentation, we assume that P = {1,--- , P} without loss of
generality. Hence,
(M —P)L=HWpi1.m) (3.87)
= H(Wpi1.m[Wip, Q) (3.88)

= HWpi1.m|[Wip, Q) — H(WP+1;M|A[1%7PH:M], Wi.p, Q) (3.89)

= I(Wpy1r; A%{PH:MHWLP, Q) (3.90)

= H(ALY MW, 9) (3.91)
N

<> HAMPHMI b, Q) (3.92)
n=1

= NH(A|[Wy.p, Q) (3.93)

where follows from the independence of the messages Wp,1.p from the mes-
sages Wi.p and the queries as in and ; follows from the reliability
constraint (3.7)), since messages Wp,1.ps can be decoded correctly from the answer
strings A%{PH:M] if P> % as{P+1,--- M} C{M—P+1,--- , M} in this regime;
follows from the fact that the answer strings are deterministic functions of all

messages and queries (Q, Wi.y); and (3.93) follows from the independence bound

and Lemma B.11
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(M—P)L

Consequently, H(A;|Wi.p, Q) >

. The proof of the general statement
can be done replacing Wi.p by Wp, Wp1.s by Ws which corresponds to the com-

AWM g AP where

plement set of messages of Wp, and the answer strings
PCP|P|=P W

Now, we are ready to prove the converse of the case P > % We use a similar

converse technique to the case of M =2, P =1 in [12],

ML= H(Wy.y) (3.94)
= H(Wi.m|Q) (3.95)
= H(Win|Q)— HWa|ATY, AT ATY 0) (3.96)
= I(Wias ALY, AT - ald)0) (3.97)
= H(ATL ATY - ATY19) (3.98)
= H(A, AL AT - A7) (3.99)
= H(AL AL Q)+ H(ATY - AT AL ATY, Q) (3.100)
= H(A, ATNQ) + H(ATH - AT Ay, AT W, Q) (3.101)
éi H(APY Q)+ H(ATE - AT A1 Wp,, Q) (3.102)

H(APQ) + H(ATY, - ALY W, Q) — H(A|[Wp,, Q) (3.103)

Mz I

3
Il
—

where [ = (A}f) represents the total number of message subsets of size P that can
be constructed from M messages; (3.95] follows from the independence between the
messages and the queries; (3.96)) follows from the reliability constraint in (3.7)) with

noting that Alpji,],Alpi,], e ,A[f]f,] represent all answer strings from all databases
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to every possible subset of messages P; C {1,--- , M}, i = 1,2,--- /3, hence all
messages can be correctly decoded as all possible answer strings are known; ((3.98))
follows from the fact that answer strings are deterministic functions of the messages
and the queries; follows from simplification (3.82)) without loss of generality;
follows from the fact that the messages Wp = (W;,, W,,--- ,W,,) can be
reconstructed from A[f]]v, and is a consequence of the fact that conditioning

does not increase entropy and Lemma |3.1

M-1

P—l) different message subsets of size P,

Now, every message appears in (
therefore the answer strings (A[lpﬁ,], cee A[lpﬁ,]) are sufficient to construct all messages

Wi irrespective of Py. Therefore,

AT AT W, Q) = (M - P)L (3.104)

Using this and Lemma in (3.103)) yields

N
M — P)L

ML < H(AP M—PL—(— 1

_; (ATIQ) + (M — P) ¥ (3.105)
which can be written as,
(M-P)L &

PL+ 2 <N " (AP 1

+ _;<n|9> (3.106)
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which further can be written as,

(1 LM P) PL < ZN:H(ALZ’IUQ) (3.107)

which leads to the desired converse result,

" PL
2 (AT

< PL
ST H(ale)

< (3.108)

3.6.2 Converse Proof for the Case % > 2

In the sequel, we derive an inductive relation that can be used in addition to the
base induction step of 1 < % < 2 derived in the previous sub-section to obtain an
upper bound for the MPIR problem. The idea we pursue here is similar in spirit
to the one in [12], where the authors developed a base converse step for M = 2
messages, and developed an induction over the number of messages M for the case
M > 2. Here, we have developed a base converse step for 1 < % < 2, and now
develop an induction over L%J for the case % > 2.

The following lemma upper bounds the remaining uncertainty of the answer

strings after knowing a subset of size P of the interference messages.

Lemma 3.3 (Interference Conditioning Lemma) The remaining uncertainty
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[7’2

in the answer strings Ay after conditioning on the messages indexed by Py, such

that Py NPy = ¢, |P1| = |Pa| = P is upper bounded by,

H(AP W, , Q) < (N —1)[NH(A,|Q) — PL] (3.109)

Proof: We begin with

H(AT W, Q)

(AP Wp,, Q) (3.110)

WE

i
[N}

N
<N H(ATL AP AT (W, Q) (3.111)
n=2
N
=D HALL AP AT W, |Q) — H(Wp Q) (3.112)
n=2
N
=S" H(AD) AP AT 10) + H(Wp, | AT AP AP ) — H (W)
n=2
(3.113)
N
<Y NH(A|Q) — H(Wp,) (3.114)
n=2
= (N —1)[NH(A|Q) — PL] (3.115)

where follows from the independence bound; follows from

the non-negativity of entropy; follows from the statistical in-

dependence between the messages and the queries; and follows
[P1]

from the decodability of Wp, given the answer strings (Alm_l,Ag) 2

AZ’;L ~); which is tantamount to the privacy constraint as in the second simpli-
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fication. W
Now, we derive the inductive relation for % > 2. Without loss of generality,
let P, = {1,---,P} and P, = {P + 1,--- ,2P}. Then, starting from (3.99)), we

write

ML =H(Ay, AT, AT AT ) (3.116)
=H (A, AT1Q)+H (AL A1, AN, Q)
732] Pl]
SNH(A1|Q)+H( |A17 2N7W1P7Q)
H(ATY - AT A, AT AT Wp,0) (3.118)
7’2] [Ps] [PB]
<NH(A|Q) + HATWyp, Q)+ H(AT .. AT AL, Wiap, Q) (3.119)
—NH(A|Q) + H(ATA | Wi.p, Q)= H(A|Wyap, Q)
FHATY - AT Whap, Q) (3.120)
=NH(A|Q) + H(ATWy.p, Q) — H(A|Wyap, Q) + (M —2P)L  (3.121)
<NH(A|Q) + (N — 1)[NH(4,|Q) — PL]

— H(A1|Wyap, Q) + (M — 2P)L (3.122)

where follows from the decodability of Wiop given (Al,AQN,A[QPﬁ,)
the symmetry lemma and the independence bound; follows from
the fact that conditioning does not increase entropy. In (3.121), we
note that subsets (Ps,---,Pz) include all messages (Wy,---,Wy) be-

cause every message appears in (1\;_—11) subsets.  Hence, H (A[ff{,], A[Pﬁ]|
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Wiap, Q) = (M — 2P)L since Wap,1.p is decodable from (A[f]f,], . ,A[Ef,}) after
knowing Wi.op. Finally, (3.122)) follows from the interference conditioning lemma.

Consequently, (3.122)) can be written as
N?H(A|Q) > (N +1)PL + H(A;|[Wyap, Q) (3.123)
which is equivalent to

NH(A,|Q) > (1 + %) PL + %H(Allwmp, o)) (3.124)

Now, constructs an inductive relation, since evaluating N H(A;|Wi.2p, Q) is
the same as NH(A;|Q) with (M — 2P) messages, i.e., the problem of MPIR with
M messages for fixed P is reduced to an MPIR problem with (M — 2P) messages
for the same fixed P. We note that generalizes the inductive relation in [12]
for P =1.

We can write the induction hypothesis for MPIR with M messages as

141

NH(A|Q) >PL ;Ni+ (%— {%D ﬁ (3.125)

Next, we proceed with proving this relation for M + 1 messages. From the

induction hypothesis, we have

NH(A:1[Wiap, Q)
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M—-2P+1
I_ pJr J_

1 (M—2P+1
>PL| ) ﬁ+(—+

P
=0
M—-2P+1 1
_{ 2 J NLM%P“J] (3.126)
M-8
1 M+1 | M+1 1
= PL — — 3.127
SIS SR
1=0
substituting this in (3.124)),
NH(A|Q)
| M-8
1 PL 1 M +1 M +1 1
>|1+—=)PL+— — —
S SR o P ) e
(3.128)
S VAR R Vs 1
= PL — — 3.129
X (1)) o @120

which concludes the induction argument.

Consequently, the upper bound for the MPIR problem can be obtained as,

& PL
;Ri = = 7 (AW) (3.130)
PL 3.131
= NH(4,]Q) (3.131)

1
= — (3.132)
SH o (- %)
11— (D v M 1)

- (—1— o (r[7)) Nuﬂ) 1)
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where (3.132]) follows from (3.129); and (3.133)) follows from evaluating the sum in
(3.132).

3.7 Conclusions

In this chapter, we introduced the multi-message private information retrieval
(MPIR) problem from an information-theoretic perspective. The problem gener-
alizes the PIR problem in |12] which retrieves a single message privately. We deter-
mined the exact sum capacity for this problem when the number of desired messages

is at least half of the number of total stored messages to be C¥ = l—i-”% We showed
PN

that joint retrieval of the desired messages strictly outperforms repeating the single-

message capacity achieving scheme for each message. Furthermore, we showed that

if the total number of messages is an integer multiple of the number of desired mes-
1

_1
sages, then the sum capacity is C' = W, which resembles the single-message
N

PIR capacity expression when the number of messages is %.

For the remaining
cases, we derived lower and upper bounds. We observed numerically that the gap
between the lower and upper bounds decreases monotonically in N, and the worst
case gap is 0.0082 which occurs for the case N =2 when M =5, P = 2.

The MPIR problem can be extended in several interesting directions. First, we
recall from earlier remarks in the chapter that the sum capacity for M/P ¢ N is still
an open problem, in addition to characterizing the optimal capacity region. Second,

the MDS-coded MPIR as an extension of [117] is an interesting open problem, as the

contents of the databases are themselves coded via an MDS code in [117]. This is
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M

5 » because our achievable scheme here

a challenging problem, in particular if P >
uses a Px M MDS code; it would be interesting to see how the storage MDS code and
the retrieval MDS code would interact. Similar difficulties would exist in the MPIR
problem with colluding databases (extending [14]), robust MPIR problem (extending
[14]), and MPIR problem with Byzantine databases (extending [120]), as all these
problems adopt some version of MDS coding for retrieval purposes. Furthermore,
one can examine whether multiround MPIR enhances the MPIR retrieval rate or
not (extending the case of single-message retrieval in [19]), and study the effects
of limited message size on MPIR (extending [18]). Our converse techniques may

be generalized to be applicable to these scenarios. Some progress in these MPIR

problems has been made recently in [25].
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CHAPTER 4

Private Information Retrieval from Byzantine and Colluding

Databases

4.1 Introduction

In this chapter, we consider the problem of single-round PIR from N replicated
databases, where B databases are outdated (unsynchronized), or even worse, adver-
sarial (Byzantine), and therefore, can return incorrect answers. In the PIR problem
with Byzantine databases (BPIR), a user wishes to retrieve a specific message from
a set of M messages with zero-error, irrespective of the actions performed by the
Byzantine databases. We consider the T-privacy constraint in this chapter, where
any T databases can collude, and exchange the queries submitted by the user. We
derive the information-theoretic capacity of this problem, which is the maximum
number of correct symbols that can be retrieved privately (under the T-privacy con-

straint) for every symbol of the downloaded data. We determine the exact BPIR

1——T
N-2B N—2B
T
N 1_(N—QB)M’

if 2B + T < N. This capacity expression

capacity to be C' =

shows that the effect of Byzantine databases on the retrieval rate is equivalent to

N-2B
N

removing 2B databases from the system, with a penalty factor of , which signi-
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fies that even though the number of databases needed for PIR is effectively N —2B,
the user still needs to access the entire N databases. The result shows that for the
unsynchronized PIR problem, if the user does not have any knowledge about the
fraction of the messages that are mis-synchronized, the single-round capacity is the
same as the BPIR capacity. Our achievable scheme extends the optimal achievable
scheme for the robust PIR (RPIR) problem to correct the errors introduced by the
Byzantine databases as opposed to erasures in the RPIR problem. Our converse
proof uses the idea of the cut-set bound in the network coding problem against

adversarial nodes.

4.2 Problem Formulation

Consider a single-round PIR setting with N replicated databases storing M mes-
sages (or files). The messages W = {W,--- , Wy} are independent and uniformly
distributed over a large enough finite field F,. Each message W; € IF{]: is a vector of

length L (g-ary symbols),

HW) =L, i=1--,M (4.1)

HOW) = H(Wy, - Wy) =ML (4.2)

Each database stores a copy from the complete set of messages W, i.e., this dis-
tributed storage system applies an (N, 1) repetition code [117]. Denote the contents
of the nth database by ,. Ideally, Q, =W for all n € {1,--- | N}.

In the PIR problem, a user wishes to retrieve a message W; € W without
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revealing any information about the message index i. The user submits a single-
round query Qw to the nth database. The user does not know the stored messages in

advance, therefore, the message set VW and the queries are statistically independent,
1(Wi Q) = 1(Wi,-+ Wi @y ) =0 (4.3)

where Q[f:]N = {Q[f],Q[Qﬂ, e ,QE@} is the set of all queries to the N databases for
message 1.

Ideally, the classical PIR formulation assumes that all databases store the
correct database contents (i.e., up-to-date contents), and respond truthfully with
the correct answering strings A[fJN = {Al ... ,AE@}. In the BPIR setting, on the
other hand, there exists a set B of databases, that is unknown to the user, such
that |B| = B, which are called Byzantine databases. These databases can respond

arbitrarily to the user by introducing errors to the answer strings AZJ = {Ag-i] 1 j €

B}, i.e.,
H (ANQY, W) >0, neB, B =B (4.4)

We assume that these Byzantine databases can coordinate upon submitting the
answers. In this chapter, we do not assume a specific pattern to the errors. The
remaining set of databases B = {1,---, N} \ B respond truthfully to the user, i.e.,

the answer strings of B are a deterministic function of the queries and the correct
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contents of the databases W,
H (ADQY, W) =0, neB, |Bj=N-B (4.5)

We consider a T-privacy constraint as in the TPIR problem in |14], where any
T databases can communicate and exchange the queries submitted by the user. To
ensure the T-privacy constraint, the queries to any set 7 C {1,--- , N} of databases,
such that | 7] = T', need to be statistically independent of the desired message index

1, i.e.,
I (@ Qﬁ) —0, forall7 C{l,--- N}, [T|=T (4.6)

where Qg are the queries submitted to the set T of databases.

We remark here to differentiate the actions of colluding between the databases
which is done to figure out the desired message, and coordination between the Byzan-
tine databases which is done to introduce errors in the answer strings. In addition
to the difference in their purposes, these two actions differ in the manner they are
performed: colluding between any 71" databases occurs upon receiving the queries
from the user, while coordination between the B Byzantine databases occurs upon
submitting the answers to the user. We do not assume any specific relation between
the T colluding databases and the B Byzantine databases. This is a more general
formulation of the problem; the user in this case has the knowledge that there are

B Byzantine databases and T colluding databases, but does not know anything fur-
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ther. In general, these two sets may be identical, one may be a subset of the other,
they may be disjoint, or they may have a non-trivial intersectionﬂ

The user should be able to reconstruct the desired message W;, no matter
what the Byzantine databases do, i.e., if there exists a set of databases B, that is

unknown to the user, such that (4.5) holds, then the reliability constraint is given

by,

HW|AL . Qlly) =0 (4.7)

We define the resilient PIR rate R for the BPIR problem as the ratio between
the message size L and the total download cost under the reliability constraint in

(4.7)) for any possible action of the Byzantine databases, and the T-privacy constraint

in (4.6)), i.e.,

S — (45)

SN H(AY)

The capacity of BPIR is C' = sup R over all possible single-round retrieval schemes.
In this chapter, we follow the information-theoretic assumptions of large

enough message size, large enough field size, and ignore the upload cost as in

IFor instance, they may be disjoint if the intentions of these databases are different, e.g., if the
T colluding databases are only curious to learn the interests of the user without disrupting the
retrieval process, while the B Byzantine databases do not care about the identity of the desired
message but just want to block the retrieval process itself. An example where Byzantine behavior
may not require collusion, or even communication, is when B databases become outdated (unsyn-
chronized) with the same outdated content. This happens without a communication between the
databases, but results in errors at the user’s side as if these B databases are coordinating, as they
have the same wrong content. This discussion clarifies that collusion (which requires communica-
tion between databases) and Byzantine behavior (which may or may not require communication
or coordination between databases) can be completely different.
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[8,14,/117]. A formal treatment of the capacity under message size constraints can
be found in [18]. The BPIR with colluding databases reduces to the TPIR problem
in [14] if B =0.

Some scenarios that fit our formulation include:

e Unsynchronized setting [7]: In this case, there exists a set B of databases, such

that |B| = B, in which they store different versions of the database contents

(see Fig. [A.1)), i.e.,

0, AW, neB, |B=B (4.9)

Note that unlike 7], we assume that the user has no knowledge about the frac-
tion of the messages that are mis-synchronized. Hence, our achievable schemes
must be resilient against the worst-case that the entirety of the database is mis-
synchronized. Furthermore, the scheme in [7] is a two-round scheme, hence we
cannot compare our rates with the rates in [7]; we consider only single-round

schemes here.

o Adversarial attacks [55-57]: In this case, the databases in B intend to pre-
clude the retrieval process at the user by introducing a carefully-designed
error sequence (see Fig. [4.2). This can be done by altering the contents of
the databases to an erroneous version as in the unsynchronized setting; or by

altering the answering strings themselves, i.e., the nth database returns the
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. . .
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Figure 4.1: PIR from unsynchronized databases.

answer string A such that,

Al £ AW e B, |Bl=B (4.10)

or by doing both.

4.3 Main Result and Discussions

The main result of this chapter is to characterize the capacity of the BPIR problem
under T-privacy constraint, where B databases are adversarial (Byzantine) and can
return malicious answers, and at the same time the privacy should be kept against

any T' colluding databases.
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Database 1 Database 2 Database N
Wy Wi Wi
W Wy Wa

' || '

B databases return errorneous answer strings

Figure 4.2: PIR under adversarial attacks.

Theorem 4.1 For the single-round BPIR problem with B Byzantine databases, and

T colluding databases, such that 2B + T < N, the capacity is given by,

N —-2B ~ N-3B
C— . N8 (4.11)

T T2 TMfl -1
— 1 T S 412
N ( TN 2B T w_2Be " +(N—2B)M—1> (4.12)

On the other hand, if 2B+1 < N < 2B +T, then the user is forced to download the
entire database from at least from (2B + 1) different databases, hence C' = m,

which is the trivial rate in the BPIR problem. Otherwise, the problem is infeasible

and C = 0.
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The achievability proof for Theorem [4.1] is given in Section [£.4] and the con-

verse proof is given in Section [£.5] We have a few remarks.

Remark 4.1 The BPIR capacity in 1s the same as the capacity of PIR with
T colluding databases if the number of databases is N — 2B with a penalty factor
of %. This means that the harm introduced by the B Byzantine databases is
equivalent to removing a part from the storage system of size 2B, but the user still
needs to download from all N databases, as it does not know which N —2B databases
are honest. This results in the penalty term %. If B =0, the expression in

reduces to

C(colluded = (4 13)

which is the capacity expression in [14)] as expected. Fig. shows the severe effect
of the Byzantine databases on the retrieval rate for fixed T' = 2 and M = 3 as a

function of N.

Remark 4.2 Comparing the BPIR capacity in Theorem[]. 1| with the robust capacity

Chrobust in [14)], where U databases are merely unresponsive,
Crobust = NU (414)
1

we note that the number of redundant databases, which are needed to correct the

errors introduced by the Byzantine databases, is twice the number of redundant
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Figure 4.3: The effect of Byzantine databases on the BPIR capacity as a function
of N for fixed T'=2, M = 3.

databases meeded to correct the erasures introduced in the case of unresponsive
databases. We also note that the penalty factor is missing in the RPIR problem,
since in the RPIR problem, the user does not get the chance to download from
the unresponsive databases, in contrast to the BPIR problem, in which the user
downloads answer strings from all databases. This is due to the fact that the user
cannot identify the Byzantine databases before decoding the entire answer strings in
the BPIR setting, while in the RPIR setting, the user identifies the unresponsive

databases as they simply do not return answer strings.

Remark 4.3 The trivial rate for the BPIR problem 1is which is much less

1
(2B+1)M’

1

than the trivial rate without the Byzantine databases, 5;. The reason for this is that

the user cannot download the entire database only once in BPIR, but it must down-
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load (2B + 1) different copies of the database in order to decode the desired message
via magority decoding. If N < 2B + 1, the capacity is C' = 0, as the Byzantine

databases can always confuse the user to decode the desired message incorrectly.

Remark 4.4 When the number of messages is large, i.e., as M — oo, the BPIR

capacity C' — (N;VZB)(l — ﬁ) =1- 2BT+T, i.e., for large enough number of
messages, the capacity expression acts as if there are no Byzantine databases and

2B + T databases are colluding.

Remark 4.5 If T and B are fized and do not scale with N, i.e., T = B = o(N),
then the capacity is a strictly increasing function in N and C — 1 as N — oo.
If the number of the Byzantine databases scales with N, i.e., B = yN, where v €

[0,%(1—%)), then C —-1—2v as N —o00. If2yv+ + <1< 27+%, then the

1
N

As N — oo, then v — L, and C — 0.

only possible rate is the trivial rate 5

e
This entails that the asymptotic behaviour of the BPIR capacily is a linear function
with a slope of —2 as in Fig.[{.4], i.e., the asymptotic rate as N — oo is decreased
by twice the ratio of the Byzantine databases. A similar behaviour is observed for
secure distributed storage systems against Byzantine attacks in [61]. The problem is

infeasible if v > %, i.e., C'=0. This feasibility result conforms with the best result

of a uniquely decodable BPIR scheme in [57] which needs B < 5.

Remark 4.6 Surprisingly, our retrieval scheme in Section[{.4] is a linear scheme in
contrast to the network coding problem in [60] that states that linear coding schemes

are not sufficient. We note that although the retrieval process is itself linear, the
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Figure 4.4: The asymptotic BPIR capacity C' as N — oo as a function of v = %.
decoding process employs a successive interference cancellation decoder, which is

non-linear.

Remark 4.7 The capacity expression in Theorem [4.1)is also the capacity result for
the unsychronized PIR problem [7]. This occurs under the restriction to single-round
schemes and the assumption that the user only knows that there exist B databases
that are unsynchronized, but does not know the fraction of messages that are mis-
synchronized. The achievability scheme in Section[{.4] is a valid achievable scheme
for the unsynchronized PIR problem, since the adversary in the Byzantine setting
1s stronger. For the converse proof, we restricted the actions of the adversarial
databases to changing the contents of the stored messages, i.e., altering 2, from VW
to W, which is the same setting as the unsynchronized PIR with no restriction on

the fraction of messages that can be mis-synchronized.
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4.4 Achievability Proof

In this section, we present an achievable scheme that is resilient to the errors in-
troduced by the Byzantine databases. The achievable scheme does not assume any
specific error pattern. Hence, our achievable scheme enables correct decoding of any
desired message if any B databases become outdated, or even worse, intentionally
commit an adversarial attack to confuse the user. The achievable scheme generalizes
the RPIR scheme presented in [14]. Our scheme has two new ingredients, namely,
correcting errors in the side information using punctured MDS codes, and correcting
errors in the desired message by an outer layer of MDS code. Error correction in

both cases is performed via a nearest-codeword decoder.

4.4.1 Preliminaries

We start by presenting some preliminary results that will be needed. The following
lemma states that if an MDS code is punctured by a puncture pattern whose length
is smaller than the minimum distance of the original MDS code, then it remains an

MDS code [121].

Lemma 4.1 (MDS code puncturing [121]) IfC is an (n, k) MDS code, then by
puncturing the code by a sequence of length z, i.e., deleting a sequence of size z from

output codewords of C, such that z < n — k, the resulting punctured code C, is an

(n—z,k) MDS code.
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The second lemma is regarding the statistical effect of operating on a random matrix

by a deterministic full-rank matrix. The proof of this lemma can be found in [14].

Lemma 4.2 (Statistical effect of full-rank matrices [14]) Let

S1,82,++,Su € Fg** be M random matrices, drawn independently and umni-
formly from all o X « full-rank matrices over F,. Let G, G, , Gy € ]ngﬁ be
M invertible square matrices of dimension 3 x [ over F,. Let Iy,--- Iy € NP be

M index vectors, each containing 5 distinct indices from {1,---  «a}, then

{Glsl(zlv :>> T 7GMSM(IM7 )} ~ {(Sl([l : ﬁ]v :>7 T JSM([l : 5]7 )} (415>

where ~ denotes statistical equivalence, S;(Z;,:), S;([1 : B],:) denote 5 X a matrices

with rows indezed by Z; and {1,2,--- , B}, respectively.

The next lemma summarizes the code capabilities of handling errors and erasures

for linear block codes [122, Theorem 1.7].

Lemma 4.3 (Code capabilities [122]) LetC be an [n,k,d| linear block code over
F,. Let p be the number of erasures introduced by the channel. Let T € N, such that
27+ p < d —1, then there exists a nearest-codeword decoder that recovers all errors

and erasures if the number or errors (excluding erasures) is T or less.

Lemma implies that in the case of no erasures, the maximum number of errors

rels)
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4.4.2 Motivating Example: M = 2 Messages, N =5,T =2, B =1
Databases

Assume without loss of generality that WW; is the desired message. Let a; and
b; be the ith symbol mixture of messages Wi and Wy, respectively. The specific
construction of these mixtures will be presented shortly. We begin the retrieval
process by downloading T™~! = 2 symbols from Wy, which are a;,as as in [14]. By
message symmetry, we download 2 symbols from Wy, which are b1, by. By database
symmetry, we download 2 symbols from W; and 2 symbols from W5 from all other
databases.

Now, we want to generate the maximum number of side information equations
in order to maximize the retrieval rate. From Lemma 4.3 we see that the number
of errors that can be corrected increases with d. We know that MDS codes meet
the Singleton bound [62] with equality, hence encoding both desired and undesired
messages by MDS codes is desirable. In addition, Lemma [4.3| implies a doubling
effect, which suggests that in order to correct the errors introduced by the Byzantine
database, we should effectively consider N—2B = 3 honest databases. Consequently,
considering any 3 databases, the number of undesired symbols is 6. We note that
any T = 2 of them can collude, therefore, we are left with 2 undesired symbols that
can be used to generate side information among the 2 colluding databases. Hence,
each database should get 1 side information equation bj;1.15. These side-information

symbols can be added to new desired symbols aj;1.15. The complete query structure

is shown in Table 4.1l
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Table 4.1: The query table for the case M =2, N =5,T =2, B =1.

DB 1 DB 2 DB 3 DB 4 DB 5
aq as as az Qg
a2 Q4 Qg as a10
b b3 bs by bo
by by be bs bio
ajy + by | a1z + 012 | @13+ 013 | a4+ b1 | a15 + bys

Now, we specialize the query structure in Table 4.1 and identify the specific
construction of the mixtures ap.15 and by;.15. For the desired message Wi, consid-
ering any N — 2B = 3 honest databases, we see 9 distinct symbols. Therefore, the
length of W7 is L = 9, and we use Sy, which is a 9 x 9 random mixing matrix picked
uniformly from the full-rank matrices over F)*?. These 9 mixed symbols are further

mapped to af.15 by a (15,9) MDS code generator matrix MIDS5,9, therefore,

aps) = MDSq 5,95, W) (4.16)

For the undesired message W5, considering again any N —2B = 3 honest databases,
we have 6 individual symbols from W5 in round 1. We should be able to reconstruct
the side information equations bjjy.15 in round 2 from any 6 individual symbols,
hence we get 6 random symbols from W,. This can be done by considering the first
6 rows of the random mixing matrix S, € F)*?. These randomly mixed symbols are

further mapped to byi.15 via and MDS code with generator matrix MDS;5g, i.e.,
bjas) = MDS;5.6S2([1 : 6], :) W,

(4.17)

To see the decodability: the worst-case scenario is that the Byzantine database
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commits errors in all the symbols returned to the user. This means that the database
commits 2 errors in the individual symbols from W;, 2 errors in the individual
symbols from W5, and 1 extra error in the sum of a + b.

Consider the codeword bj.1: this codeword belongs to (15,6) MDS code
with a sequence of length z = 5 removed. Hence, this codeword belongs to (10, 6)
punctured MDS code. Since z =5 < 15 — 6 = 9, the (10,6) punctured MDS code
is still an MDS code. Denote the minimum distance of the (10,6) punctured MDS
code that results in by.19) by d;’,. Then, dll; =10 -6+ 1 = 5. Consequently, from

Lemma the (10,6) punctured MDS code can tolerate errors up to 7, such that

b —

Therefore, this code can correct all errors that can be introduced to the individual

undesired symbols bj1.19. Let b>[k1:10] be the correct codeword of byy.1g). Choose any 6
symbols from b>[k1:1o]- Now, since MDS;5.¢ matrix has the property that any 6 x 6
matrix is an invertible matrix, then from any 6 symbols from bfmo}a the correct side
information equations bf11:15] are determined and canceled from the sums of a and
b in round 2.

For the desired message W;: after removing the interference from W, we
are left with ap.15. Note that this is not exactly afi.15, because we canceled the
correct side information and not byi.15. However, the total errors in ay.15 still is
upper bounded by 3, since aj.15 can differ from ap.15 only in the positions that

correspond to Byzantine databases. The desired message W is coded via (15,9)
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MDS code. Then, the minimum distance for this code is d* = 15 -9+ 1 = T.

Consequently, this code can tolerate errors up to 7,, such that

Ty < Va; 1J =3 (4.19)

Hence, all the errors in ap;.15 can be corrected, and we can obtain true af‘l,m. Con-

sider the first 9 symbols from 115 without loss of generality, then
Wi = (MDS5,([1 : 9],:)S1) a1 (4.20)

since MDS5,9([1 : 9],:)S1 is a 9 x 9 invertible matrix.

Therefore, despite Byzantine behaviour of B = 1 database, we decode the de-
sired message correctly. In addition, our achievable scheme can identify the Byzan-
tine database as does the scheme in [7] by comparing afmo] with ap.10, and bfmo]
with bj1.10) and see which database has introduced errors.

To see the privacy: we note that from any T = 2 databases, our achievable
scheme collects 6 symbols from ajfi.15) and 6 symbols from bj;.;5 indexed by Z such

that |Z| = 6. For the undesired message, we collect bz,

bI = MDSl5X6<I, )SQ([l . 6], f)WQ (421)

where (4.22)) follows from Lemma as any 6 x 6 matrix in MDS;5, matrix is
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full-rank. Therefore, the symbols b7 are independent and uniformly distributed. For

az, we have

az = MDSl5X9(I, :)81W1 (423)

= Wgy oW1 (4.24)

where W = MDS5.9(Z,:)S; is a full row-rank matrix as any 6 rows in MDS 5,9
are linearly independent. Consequently, the symbols a7 are also independent and
uniformly distributed, and az ~ bz for every 2 databases, where ~ means that the
involved random vectors are statistically identical. Thus, the proposed scheme is
2-private; that is, despite colluding behaviour of T' = 2 databases, we have privacy.

. . - . . 1-wZL—=
Finally, the achievable resilient retrieval rate is R = % = ¥=28.. A2l

25 N 1_(N—TQB)M B
C. In comparison, the trivial rate for this system is m = %, as the user must

download the entire database from 3 different databases for correct decoding.

4.4.3 General Achievable Scheme

The general achievable scheme is performed in M rounds. The ith round includes
all the (]\f ) combinations of the sums of any ¢ messages. In our constructio, we use
L = (N —2B)M. The construction resembles the optimal scheme for RPIR in [14].
The new key ingredient in our achievable scheme is the decoding procedure, which

includes correcting the undesired symbols by punctured MDS codes, successive in-

ZWe note that we do not claim that L = (N — 2B)™ is the minimum message length needed
to achieve the capacity. The reason we choose this specific L is that it enables us to realize our
achievable scheme for general N, B, T, M. The problem of obtaining the minimum capacity-
achieving L is an interesting open problem.
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terference cancellation to cancel the interfering messages, and correcting the errors

in the desired message by an outer layer MDS code.

4.4.3.1 General Description for the Scheme

1. Initialization: The scheme starts with downloading 7™ ~! mixed symbols from
the desired message from the first database. The specific construction of the

mixture will be specified shortly. The scheme sets the round index ¢ = 1.

2. Message symmetry: To satisfy the privacy constraint, the user downloads
the same number of mixed symbols from the undesired messages with all the
possible combinations, i.e., in the ith round, the user downloads (Mi_l) (N —
2B — T)='T™~% mixed symbols from the remaining M — 1 messages. The

specific construction of the undesired mixture will be specified shortly.

3. Database symmetry: The user repeats the same steps at all the databases.

Specifically, the user downloads (¥ ")(N — 2B — T)"'TM~ equations in the

form of a desired message mixture symbol and ¢ — 1 mixed symbols from the

undesired messages, and (") (N — 2B — T)""'T™~" mixed symbols from the

undesired messages only, from each database.

4. Fxploiting side information: The specific construction of the undesired mix-

tures should be done such that in the (i 4+ 1)th round, the user should be able

N—-2B-T

= side information equations for each undesired symbol in

to generate
the sth round. This fraction is a consequence of considering N = N — 2B

honest databases only, and dividing the undesired symbols from the N — T
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databases among the T colluding databases. The side information generated

is added to a new mixed symbol from the desired message.

5. Repeat steps 2, 3, 4 after setting ¢ = ¢+ 1 until e = M — 1.

4.4.3.2 Specific Construction of the Symbol Mixtures

)]VI

Let W,, € FgNﬁZB ,m € {l,--- M} be the message vectors, and S,,, m €

{1,---, M} be random mixing matrices picked independently and uniformly from
the full-rank matrices in F EIN*QB)MX(NJB)M. From the general description of the
scheme, we note that at the ith round, the user downloads all possible combinations
of the sums of any ¢ messages. In the following specific construction, we enumerate
all the sets that contain a symbol from the desired message and assign them labels
Ly, -+, Ls. For each undesired message, we further enumerate also all the sets that
contain symbols from this undesired message and do not include any desired sym-
bols and assign them labels Ky, --- , Ka. These sets construct the undesired symbol
mixtures and the corresponding side information.

For the desired message: Assume that the desired message is W,. Let ¢ be
the number of the distinct subsets of {1,---, M} that contain ¢, then § = 2M-1,
Let £;, i € {1,---,0} be the ith subset that contains ¢. Assume without loss of
generality, that these sets are arranged in ascending order in the sizes of the sets
|L;|. According to this order, we note that £, = {¢} and belongs to round 1. Round

2 contains sets Lo, - - - ,E(]Mfl) and so on. Let X ¢ FéV(Nsz)M be the vector of
1

+10

mixtures that should be obtained from the desired message W,. Divide X into §
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partitions denoted by :E[é_, each corresponds to a distinct set £;. Now, encode the

desired message by a (N(N —2B)M~! (N — 2B)M) MDS code as,

4
24

10
[B[Q
Xl — = MDS y(y_ap)v-1x(v_28 S W) (4.25)

4
)

where x%] is a vector of length N(N — 2B — T)I&I=1TM =11 in .
For any other undesired message: Consider the undesired message Wy, k €
{1,--- M} \ {¢}. Let A =2M=2 be the number of distinct subsets that contain k

and do not contain ¢. Let C;, i € {1,--- , A} be the ith subset that contains k& and

does not contain ¢ with indices in ascending order in the size of set |IC;|. Define u@

to be the undesired symbol mixtures in the |/C;|th round corresponding to message

k among the IC; set. Define a,[g to be the side information symbols from message k
among the K; subset of undesired messages. These side information equations are

added to a desired message symbol in the (|IC;| + 1)th round. For each subset iC;,

the undesired symbols and side information symbols are related via,

(<] i—1 i
Up

Ki — MDS%aixaiSk ([ E Qa +1: E ozj] ,Z) W, (426)
O_I[éf] j=1 j=1

where a; = (N —2B)(N—2B—T)Kil=1pM=IKil 4, ig o vector of length sy, and

i

a,[g is a vector of length Y=28=-1. _N

(]
T N—2B K

;. This implies that the side information oy,
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in the (|/;| + 1)th round is completely determined by u%ﬂb in the |K;|th round. We
note that these choices of the dimensions ensure that the same number of desired and

undesired symbols exist in the |KC;|th round, and they are both equal to N(N —2B —

Tl M=IKil  We further note that the N_QTB_T factor in the length of a,[g, implies

N-2B-T
T

that we generate side information symbols for each undesired symbol. We

note that the same MDS matrix is used for all messages k # ¢ that belong to the

same subset K;. This is critical to enable interference alignment, and joint error

(] c Fév(N_QB)M7

1
correction. Let X be the vector of mixtures corresponding to

message k # (. Then, X is given by,

MDS~x 0 0

Tal Xoay

0 MDS . 0,
k] | = T Sk([1: T(N-2B)M~1, )Wy

0 0 0 MDSw

[k] L TQAXQA_

(4.27)

Now, we are ready to specify the queries. For every non-empty set M C
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{1,---, M}, define Q[/ﬂt to be all queries related to set M,

2, M =L, ={}
V4
U= o+ Suaw o] 3 M=K =6, (02)
kek; ugg Ell . M = ICZ

We distribute the queries randomly and evenly among the N databases for each

subset M, and the construction is now complete.

4.4.4 Decodability, Privacy, and the Achievable Rate

First, we show how the decoding is performed. The first step is to correct the errors
in the undesired symbols in the /C; set in the |K;|th round, so that we can generate

the correct side information in the (|/;| 4+ 1)th round. Consider again the encoding,

(K]
Uy,
== MDSﬁaixaiSk (LZ, Z) Wk (429)
K !
where J; = Z;;ll a;+1: 23:1 a;|. Since the sum of linear codes is also a linear
code, for the every set KC;, i € {1,--- , A}, we have
kek u%]
efc Ui | MDSx,, 00 Y Sk (Jir:) Wi (4.30)
ZkelC- Ul[éﬂ keki

This enables joint error correction on the aligned sum. The minimum distance of

this MDS code is dX = %ai —o;+ 1= %ai + 1.
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Now, in the |KC;[th round, the user downloads ;. u%@]b which is a vector of

length = QBOQ from all databases. The vector Zke/c %] belongs to (NNQBOCZ,O(Z)

punctured MDS code with a puncturing sequence corresponding to the side informa-

[k]| _ N—2B-T _N

tion symbols, i.e., with a puncturing sequence of length z = ’O,Ci ~ 55 M-
Therefore,
N-T N—-2B-T N
N T T N —2B" (4:31)
2B
=" 4.32
N-—2B" (4:32)
= 2B(N — 2B — T)kI=ipM-Ikil 5 (4.33)
Thus, the ( ~o5p Mis ozz) punctured MDS code remains an MDS code with a minimum

distance d"“, such that

N
Ui S v 1 4.34
d N g% a; + (4.34)
2B
= g% 1 (4.35)

Hence, the punctured code can correct upto 7,, errors, such that

v — 1 B
< = ; .
““—{ 2 J N _2B™ (4.36)

Each database contributes —==a; symbols from Zkelc u,C , hence the Byzantine

1
N-2B

databases can introduce at most —==aq; errors. Consequently, the punctured MDS

N2B

code can correct all errors in ), . uEQ This results in a corrected undesired
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message vector <Zk€,ci uyé]>* Choose any «; symbols from (Zkem u%])* By the
MDS property of the (%ai, a;) MDS code, any «; X a; submatrix is invertible, hence
a correct version of the side information vector, which is used in the (|C;| + 1)th
round, can be generated. Denote this correct version by (Z rek; a,[g) *.

Now, we cancel the correct side information successively from each set IC;. Note
that the successive correction of side information gives rise to non-linearity in the
decoding. After interference cancellation, we are left with XY, which is not exactly
X as we cancelled the correct side information from the sum and not the side
information provided by the Byzantine databases. This is not a problem, because
X and X differ in codeword positions if and only if these positions belong to the
Byzantine databases, hence the worst-case number of errors in X cannot increase.
The desired message is encoded by (N(N — 2B)M~1 (N — 2B)™) MDS code with

minimum distance d*, such that

d®* = N(N —2B)M~' — (N —2B)M +1 (4.37)

=2B(N —2B)M-1 41 (4.38)

Each database returns (N — 2B)*~! symbols from the desired message. The B
Byzantine databases can at most introduce B(N — 2B)M~1 errors. The outer MDS

code can correct up to 7, errors, such that

Ty < sz_ IJ = B(N —2B)M~! (4.39)
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Thus, the user can correct all the errors introduced by the Byzantine databases to

get a correct vector (X[e])* c IFQV(N_QB)Wl

. Consider any (N —2B)™ symbols from
(X [e])*. Denote these symbols by 7, and index them by Z,. Then, the user can

decode W, with zero error via

W[ - (MDSN(N72B)JM—1 x(N—2B)M (Im7 :)Sl)_lxz (440)

This is true as matrix MDS y(v_op)m-1x(nv—28)m (Zs, :)S1 is invertible by the MDS

property.

In addition, the user can identify the Byzantine databases by comparing the
correct versions of the undesired symbols at each cancellation step (3 ;. u,@ ),
and the desired symbols (X [Z])* by their counterparts from the retrieval process.
Any change between the correct vector and the retrieved vector implies that this
database is a Byzantine database (or unsynchronized). The user can expurgate the
malicious nodes in this case as in [7},60,61].

Next, we show how the privacy is achieved. The queries for any T' colluding
databases are comprised of T'(N — 2B)M~1 mixed symbols from each message W;,
i € {1,---,M}. Let these symbols be indexed by Z. Denote the kth message

symbols by xgd. For the desired symbols, we have

x[zzl = MDSy(v-2p)v-1x(v-28)m (L, :)SeWi (441)

Since |Z| = T(N —2B)M~! < (N —2B)" as 2B+ T < N by construction, and due
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to the MDS property, the symbols x[lli] have full-rank. Hence, they are independent

and uniformly distributed. Furthermore, for any undesired message Wy, k # ¢, we

have,

MDS%MXM(L,:) 0

K 0 0 M-1

Ty = Sk([1: T(N—-2B)" ], :)Wy

I 0 0 MDS¥%MA(IA, :)_

®
(4.42)

where 7 = UjA:le, and |Z;| = «;. Therefore, each submatrix in ® is an o; X «;

invertible matrix by the MDS property. Hence, ® is also an invertible matrix because

it is a block-diagonal matrix. By Lemma 4.2 we have

2w Sy ([1: T(N=2BYM1, )W, (4.43)

Thus, symbols ng] are independent and uniformly distributed, and the privacy is
guaranteed.

We next calculate the achievable resilient rate. We note that the scheme
operates in M rounds. At the ith round, the scheme downloads (]\;:1)(]\7 — 2B —
T)=1TM=% equations in the form of one desired symbol added to i — 1 symbols from

the undesired messages, and (", ") (N — 2B — T)""'T™~" undesired symbols only.

Then, the total download in the ith round is (Af) (N — 2B — T)=TM=% from each
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database, i.e., the total download of the scheme, D, is D = N "M, (") (N —2B -
T)=1TM=i The scheme decodes correctly the desired message, which has length

L = (N —2B)M. Thus, the resilient retrieval rate is,

" % (4.44)
(N —2B)M
NS (N —2B = Ty (4.45)
N-28 (N —2B)M-!
TN SN ()N 2B - Ty (4.46)
_N-28 (N — 2B)M-1 .
N m Zi]\il (Af) (N — 2B — T)iTM—i
N —2B (N —2B)M-1
TN = (N=2B)M =TV (4.48)
N —2B (N —2BM —T(N —2B)M-!
SN (N —2B)M —TM (4.49)
- 1T
— N NQB . - (%B)M (4‘50)

which is the expression in Theorem .1 We have some additional remarks about

the achievable scheme.

Remark 4.8 We note that our achievable scheme is capable of identifying the
Byzantine databases by observing discrepancies between the corrected codewords of
desired and undesired messages and their counterparts from the retrieval process.
Therefore, if multiple-rounds are allowed in the achievable scheme, we can remove
the databases that introduce errors at each retrieval round, and achieve larger re-
trieval rates in future rounds. For instance, assume that B < B databases commit

errors and are identified to be Byzantine in the kth retrieval round, then removing
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these databases from the system and downloading only from the remaining (N — B)

databases, we can achieve the following retrieval rate in the (k + 1)th round

~ - T
RO _ N-B-2B-B) = 35mms 151
B N-B 1 (=L M (4.51)
B

_N+B-2B 1= w5
N-B 1= (g

(4.52)

In particular, if all B Byzantine databases act maliciously in the kth retrieval round
and get identified, i.e., B = B, then we can achieve the following retrieval rate in

the (k + 1)th round

RO+ _ N-B (4.53)

which 1s the retrieval rate if B databases are just unresponsive.

Remark 4.9 Our achievable scheme can be seamlessly extended to the case of BPIR
with U unresponsive databases (as in the case of RPIR [14)]) — also known in the
literature as T-private B-Byzantine (N —U)-out-of-N PIR as in [56]. The construc-
tion of the achievable scheme can be done by replacing every N —2B with N—2B—U
in the general achievable scheme. Using Lemmalf.3, that states that correct decod-
ing is possible if 21 + p < d — 1, and considering the effect of the unresponsive

databases as erasures, i.e., via p, the decodability holds for the BPIR problem with
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unresponsive databases. The retrieval rate in this case 1is,

1 — T

N-2B-U N 2B U
R= : (4.54)
N-U 11— (3=

The retrieval expression is the same as the BPIR capacity in if the number of
databases 1s N —U. This in turn implies that the expression in 18 the capacity
of the BPIR problem with unresponsive databases. The details of the construction

and the analysis are omitted to avoid repetition.

4.4.5 Further Examples

In this section, we present some further simple examples with tractable parameters
of M, N, T, B for better understanding of the achievable scheme. Here, we use
increased number of messages (M = 3) and databases (N = 6) compared to the
selections M = 2, N = 5 in the motivating example in Section[£.4.2] In the following
two subsections, we choose T'=1, B =2 and T' = 2, B = 1, respectively, to show
the different effects of colluding and Byzantine behavior. We assume without loss

of generality that the desired message is Wj.

4.4.5.1 M = 3 Messages, N =6, T =1, B =2 Databases

We denote the mixed symbols of messages Wy, Wy, W5 by a, b, ¢, respectively. In
this example L = (N — 2B)M = 8, hence we use 8 x 8 random mixing matrices
denoted by Si,S2,S3. We have £, = {1}, L, = {1,2}, L3 = {1,3}, L4 = {1,2,3}.

Also, for the undesired message Ws, we have K; = {2}, Ky = {2,3}, and sim-
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ilarly for W5. The scheme starts with downloading 7M~! = 1 symbol from
each message from each database. Therefore, in round 1, the scheme downloads

x%] = ap.e, u%]l = bp.¢, and ugg]l = cp.6); see Table For every undesired sym-

1 —=

bol in round 1, we generate % = 1 side information symbols to be used
in round 2. The scheme constructs the side information symbols 0,[3}1 = Dpr.1g]
based on the downloaded symbols bj1.6, and similarly for ‘71[3]1 = ([.12)- Round

2 contains all combinations of the sums of 2 messages. Round 2 adds one new

symbol from the desired message with one symbol of the generated side informa-

tion from b, c. This results in the sums x[ﬁll + a,[g}l = a[r.12) + brrag), and the sums

x[ﬁlla + 0,[?]1 = apns.ag) + Cr12). By message symmetry, we must include the undesired

symbol sum Zke/cg uyél = bpzas) + cpaagy; see Table . We note that these unde-
sired information equation is in the form of aligned sums. The undesired symbols

in round 2 generate the side information equations » 7, . a,[g = bpig:24) + Cl19:24]-

These side information equations are added to new symbols from the desired mes-

(1]

sage to have z,, + Zke,c2 0,@ = ap19:24] + b19:24] + Cp19:24). The query table is shown

in Table [£.2]

Table 4.2: The query table for the case M =3, N =6,T =1, B =2.

DB 1 DB 2 DB 3 DB 4 DB 5 DB 6

ay ag as as as Qg

by ba bs by bs be

C1 C2 C3 Cq Cs Ce
ay + b7 ag + bg ag + bg aig + b10 a; + b11 ao + b12
aiz +cr a14 + Cs a5 + Cy a16 + C1o a7 +cu a1g + C12
b1z + c13 biy + c14 bis + ci5 bis + 16 bi7 + ci7 big + ci8

a19+big+cig | ao+ba+con | ao1+bar+car | Gz+boatcan | azs+baz+cas | any+boy+coy
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The specific construction of the symbol mixtures are,

ai:24] = MDS24x85:1 W1 (4.55)

O-I[CZ}l MDSlgxg 0
biog) = = Sa([1:4],:)W2 (4.56)

UI[S]Q 0 MDSlQXZ

O'I[g]l MDSlQXQ 0
Cl1:24] = = Sa([1:4],:)W; (4.57)

UI[SL 0 MD812><2

For the decodability, we note that B = 2 Byzantine databases can introduce
at most 2 errors in byy.g), 2 errors in c[i.g), 2 errors in byyz.1g + Cf13:18), and 8 errors in
ap:24. We note that by is encoded via (6,2) punctured MDS code, which still is
an MDS code because z = 6 < 12 — 2 = 10. The (6,2) punctured MDS code can
correct errors up to |%52] = 2 errors. Then, the 2 errors in by can be corrected.
The same argument holds for cp.s). For bps.s) + cus.ag), since the same generator
matrix is used for bj13.15], ¢j13:15, and because of the linearity of the code, the aligned
sum is a codeword from (6,2) punctured MDS code as well. Thus, we can correct
all the errors in the aligned sum bp3.18 + cpi3.15). Knowing the correct undesired
symbols results in decoding the correct side information symbols by7.12], ¢[7.12) and

b19:24) +Cp19:24), T€sPectively, by the MDS property. Cancelling these side information
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from the answer strings, we are left with aj;.04), which are coded with an outer (24,8)
MDS code, which is capable of correcting [242—_8j = 8 errors. Hence, the user can
correct all the errors introduced by the Byzantine databases and W, is decodable.
For the privacy, from any individual database, the user asks for 4 mixed sym-
bols from each message. Because of the MDS property, the symbols from all mes-
sages are full-rank, and hence they are independent and uniformly distributed. Thus,

the scheme is private.

S K . . — 1_L
The resilient achievable rate is R = £ = - = -2 = 828 o =C
1_<NT2B)

4.4.5.2 M = 3 Messages, N =6, T =2, B =1 Databases

In this case L = (N — 2B)M = 64, and we use random mixing matrices S, Ss, S3
of size 64 x 64. The scheme starts by downloading T~ = 4 symbols from each

message from each database, namely, api.04, bji:24], C[1:24); see Table . The un-

N-2B-T

= = 1 side information symbol

desired symbols from bp.04) and cj1:04) create
for each undesired symbol in a single database. Therefore, the scheme generates
the side information bjgs.4g), Cj25:45- In round 2, these side information are added to
[25:48), A[49:72], respectively. Round 2 concludes by applying message symmetry, and
downloads bysg.79) + Cag:72). These undesired symbols produce byrs.o6) + C[73:06) as side

information symbols for round 3. The query table is shown in Table .3

The specific construction of the symbol mixtures are,

ajr.06) = MDSggx64S1 W1 (4.58)
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Table 4.3: The query table for the case M =3, N =6,T =2, B =1.

DB 1 DB 2 DB 3 DB 4 DB 5 DB 6
ay, Gz, a3, G4 as, e, a7, ag | ag, @10, A11, A12 | 13, A14, A15, A16 | A17, A18, @19, A20 | A21, A22, @23, A24
bi,b2, 03,04 | bs,b6,b7,b8 | by, b0, b11,b12 | b13, 014,15, b16 | D17, b1s, big, bao | Doy, bao, bz, by
C1,C2,C3,Cy4 Cs, C6, C7, C8 C9, C10, C11, C12 | C13, C14,C15,C16 | C17, C18, C19, C20 | C21, C22, C23, C24
ags + bas a9 + bag ass + bsz azy + bsy ag + by g5 + bys
aze + bas azo + bso azq + bsy azg + bsg g2 + byo g6 + bso
a7 + bar azy + b3 azs + bss azg + bsg 43 + byz aq7 + byz
g + bog a3 + b3y azg + bsg 40 + bao g4 ~+ byy 48 + byg
a49 + Co5 as3 + Ca9 as7 + C33 ag1 + C37 Ges + Cq1 ae9 + C45
aso + C26 as4 + C30 a5s + C34 ag2 + C3s Qg6 + Ca2 aro + C30
as1 + Co7 G55 + C31 as9 + C35 a3 + C39 Qg7 + Ca3 ar1 + Car
a2 + Cag a56 + C32 ago + C36 ag4 + Ca0 aes + Caa Q72 + C48
bag + c49 bss + c53 bs7 + cs7 be1 + ce1 bes + ce5 beg + Ce9
bso + cs0 bss + Cs4 bsg + cs8 be2 + ce2 bes + co6 bro + c7o
bs1 + cs1 bss + cs5 bsg + cs9 bes + ce3 ber + co7 b1 + cn
bsa + Cs2 bse + Cs6 beo + Ceo bes + Co4 bes + Cos bra + C72
ar3+brztcrs | arr+brr+c | agit+bsi+csy | ags+bgs+ces agg+bgg+csg ag3+bg3+co3
ara+bratcry | azgtbrg+crs | aga+bgatcgy | ags+bss+Cse ago +bgo+ o g4 +bgs+Coy
ars+brs+cr5 | arg+brg+crg | agz+bgz+cs3 | agr+bsrtcsy agy +bg1 +Co1 ags +bgs+Cos
76 +br6+Cr6 | ago+bso+Co | asat+bsatcgy | ags+bsg+Cro gz +bgz+Coo g6 +bgs +Cos
MDS5x16 0
b[1;96] = SQ([l : 32], I)WQ (459)
0 MDS 5516
MDS 45516 0
C[1:96] = S3([1 : 32], I)Wg (460)
0 MDS 5516

For the decodability, the Byzantine database can commit 4 errors in by.o4),

4 errors in cp.04, 4 errors in byg.7a) + Cuo.72), and 16 errors in ap.gq. All layers of

the undesired symbols are encoded via (24, 16) punctured MDS code, which is still

MDS code, and can correct up to [@J = 4 errors. Therefore, all the undesired

symbols can be corrected, which in turn generate the correct side information in all

layers. By canceling the side information, we are left with .96, Which is encoded

by (96, 64) outer MDS code. This code can correct up to L%;QMJ = 16 errors. Hence,
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the user can decode W7 reliably.

For the privacy, from any 2 databases, the user asks for 16 symbols from each
message. By the MDS property and Lemma [4.2) all these symbols are full-rank,
and hence they are independent and uniformly distributed. Therefore, the scheme

is 2-private.

1——_T
15 : : __ 64 _ 8 __ 4 4 _ N=2B N—2B _
The resilient achievable rate is R = 2 = &+ = 2 - 2 = &= Tl C.
N-2B

Note that, for the same M, N, the achievable rate with 7" =1, B = 2 in the

previous subsection, %, is smaller than the achievable rate with T'= 2, B = 1 in this

8

subsection, 57, which signifies that Byzantine behavior is a more severe adversarial

behavior to cope with compared to colluding behavior.

4.5 Converse Proof

In this section, we develop an upper bound for the BPIR problem. We adapt the
cut-set upper bound proof in [60,/61] to the PIR setting. The upper bound can
be thought of as a network version of the Singleton bound [62]. The upper bound
intuitively asserts that the effect of the Byzantine databases on the retrieval rate
is harmful as if 2B databases are removed from the retrieval process, but the user
still needs to access them. The settings of PIR and network coding problem in |60]
share that they are both planar networks, and they both lack backward edges, as we
consider here a single-round retrieval, and hence the answer strings from the honest
databases are not affected by the answers of the Byzantine databases. However,

some technical differences arise in the PIR setting:
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1. Unlike the adversarial nodes in [60,/61], the Byzantine databases in PIR are
not fully omniscient, since they do not know which message the user wishes to
retrieve (by definition of PIR). Consequently, we assume in the following that

the Byzantine databases alter the contents of the entire database.

2. In the PIR setting, the user does not know the entire codebook in advance, in

contrast to the network coding problem in [60].
For sake of deriving an upper bound, we make the following simplifications:

1. We assume that the actions of the Byzantine databases are restricted to al-
tering the contents of the entire database, i.e., the nth Byzantine database
changes its contents 2, from W to W, where W # W. This restriction is
valid from the converse point of view, since it potentially results in a weaker
adversary, which in turn results in a higher rate. Note that, in this sense
the Byzantine databases are reduced to being unsynchronized databases (with

unknown number of mis-synchronized messages).

2. We further restrict the answering string from the nth database to be a de-
terministic function f,(+), i.e., Al = Fr(Qn, QE]), of the altered database €Q,,.
This restriction also limits the capabilities of the Byzantine databases. This
results in a further upper bound on rate. Since we restrict the actions of the
Byzantine databases to altering €2,, only, we signify this dependence on €2,, by

writing the answering string Al as A%](Qn).
3. We can assume that the retrieval scheme is symmetric. This is without loss
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of generality, since any asymmetric PIR scheme can be made symmetric by

proper time sharing without changing the retrieval rate [12,117,|123], i.e.,

H(AQ) = H(AD1Q) = - = H(A]Q) (4.61)

This assumption remains true in the BPIR problem, because if the nth Byzan-
tine database returned an answering string which has H (A%]]Q) #H (AE]\Q)
for some honest database 7, i.e., the answering string has a different length as a
response to a symmetric retrieval scheme, this database will be identified as a
Byzantine database. Hence, the errors introduced by the Byzantine databases
can be mitigated and these databases will be removed from the system after-
wards. In addition, the restrictions in assumptions 1 and 2 above imply that
the Byzantine databases answer truthfully to the queries based on their own
(altered) €2,,. Therefore, the lengths of the answer strings will be symmetric

in response to a symmetric scheme.

The main argument of the converse proof is summarized in the following lemma.

Lemma 4.4 Fiz a set of honest databasesU C {1,--- , N} such that U] = N —2B,
and Q, =W, for everyn € U. Then, for correct decoding of W;, the answer strings

AE(W) 1s unique for every realization of W, i.e., there cannot exist two realizations

of the message set W, W, such that W # W, and AE](W) = AE(W)

We have this following remark about Lemma first, before we give its proof next.
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Remark 4.10 Lemmal{.4] implies that the answer strings from any N — 2B honest
databases are enough to reconstruct the desired message, since every realization of
the message set produces different answering strings from any N — 2B databases.
This argument was previously used by [60, Theorem 1] and [61, Theorem 6], as they
show that the capacity of the adversarial network coding problem and the adversarial
distributed storage problem, respectively, is upper bounded by the capacity of the
edges of any cut in the network after removing 2B edges from this cut. These edges
correspond to the set U in our problem. The proof in [60,61)] relies on the fact that
in the presence of an adversary controlling B nodes, and for any distinct messages
w1 # wsy, a necessary condition for the receiver to not make a decoding error is to

have Xy(wy) # Xy(we).

Proof: Divide the set &/ = {1,---, N} \ U into two sets By, B, such that |B;| =
|B2| = B. In the BPIR problem, we must guarantee correct decoding if the Byzan-
tine databases are any subset B C {1,---, N}, such that |B| = B, in particular, if
the Byzantine databases are either B; or Bs.

Now, assume for sake of contradiction, that there exists a valid retrieval scheme

that achieves correct decoding of W;, and there exist two realizations of the message

set W, W such that W # W, and

AW = A W) (4.62)

Two scenarios can arise:
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1. The true realization of the database contents is V. In this case, if the adver-
sarial nodes are the databases indexed by B, and they flip their contents {2z,

into W, the user collects the answer strings (A[Bi]l(W), AE;]Q(VV), AE] (W))

2. The true realization of the database contents is W. In this case, if the adver-
sarial nodes are the databases indexed by B;, and they flip their contents (2,

into W, the user collects the answer strings (A%}I(W), AE?Q(VNV), Az[/,ﬂ (W))

Since A[;](W) = A{? (W), there is no way for the user to differentiate between the
two scenarios. Hence, the user commits an error either directly (if W and W differ
in W;) or indirectly (if YW and W differ in any message other than W;, as the user
fails in canceling the interference from the answer strings). This is a contradiction
to the reliability constraint H(VVi]A[f:]N, [f}N) =0. H

Now, we continue with the main body of the converse proof. From Lemma 4.4}
the answers A[Li] (W) are unique for every W, hence restricting the decoding function
to these answers uniquely determine W;, i.e., there exists no further confusion about
the correct database contents W, and the answering strings are designed to retrieve
W; from this WW. Consequently, if the true realization of the database is W, we can

write

L
R=——"——— (4.63)
SN H(AY)
L
< : (4.64)
SN H(AY]Q)
_N-2B L (4.65)

N (N-2B)H(A]|Q)
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TN s HAT W) 9) o
N -2B

< — o)) (4.67)
N -2B

=~ Cr(N - 2B) (4.68)

_N-28 l-53p (4.69)

where Cp(-) is the capacity of the PIR problem with 7' colluding databases as
a function of the number of databases. Here, (4.65) follows from the symmetry

assumption, 1} follows from the fact that Ag,} (W) can decode W; correctly and

then L 0 is a valid upper bound on the retrieval rate under the T-
2oneu H(AZ(W)[Q)

privacy constraint if the accessed databases are restricted to U, which is further
upper bounded by the TPIR capacity Cr(|U|) in (4.67) as Cr(|U]) is the supremum
of all rates that can be achieved using the set of databases & under the T-privacy

constraint, and (4.69)) follows from the capacity expression in [14].

4.6 Conclusions

In this chapter, we investigated the PIR problem from N replicated databases in the
presence of B Byzantine databases, and T-colluding databases from an information-

theoretic perspective. We determined the exact capacity of the BPIR problem to be

N—-2B 1_NT23
C = : -

N 1_(NEQB)

—. The capacity expression shows the severe degradation in the

retrieval rate in the presence of Byzantine databases. The expression shows that in
order to correct the errors introduced by the adversarial databases, the system needs

to have 2B redundant storage nodes. The retrieval rate is further penalized by the
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N-2B
N

factor , which reflects the ignorance of the user which N — 2B databases are
honest. The BPIR capacity converges to C — 1—2v as B, N — oo, B = yN, where

v is the fraction of Byzantine databases. For large enough number of messages, the

26+4+T

- We extended the optimal scheme for

BPIR capacity approaches C' — 1 —
the RPIR problem to permit error correction of any error pattern introduced by
the Byzantine databases. The new key ingredients in the achievable scheme are:
encoding the undesired messages via a punctured MDS code, successive interference
cancellation to remove the interfering messages, and encoding the desired message
by an outer-layer MDS code. For the converse, we adapted the cut-set bound, which
was originally derived for the network coding problem against adversarial nodes, for
the PIR setting.

The BPIR problem can be extended in several interesting directions. Accord-
ing to our formulation here, the capacities of unsynchronized and Byzantine PIR
problems are the same. However, in the unsynchronized PIR problem, if the user
knows in advance that at most S messages are mis-synchronized, and if S is small
with respect to M, the user can potentially achieve higher rates than our formu-
lation here, in particular, if it uses a multi-round scheme as in |7]. In addition, in
modeling the mis-synchronization, if we consider some specific attack/error patterns
(e.g., during mis-synchronization the stored data goes through a noisy channel with
a known model), then the user can tailor an error mitigation procedure that fits
these attack/error models explicitly, in contrast to our formulation here, where we
assumed that the user is prepared for the worst-case errors of any structure. Finally,

while we assumed that the B Byzantine databases can be any one of the (g) pOs-
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sible subsets, the problem can be extended to the case where only a certain subset
of all possible (g) Byzantine configurations is possible as in |15] which considered

a limited collusion model.
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CHAPTER 5

Private Information Retrieval Under Asymmetric Traffic

Constraints

5.1 Introduction

In this chapter, we consider the classical setting of PIR of a single message (file) out
of M messages from N distributed databases under the new constraint of asymmetric
traffic from databases. In this problem, the ratios between the traffic from the
databases are constrained, i.e., the ratio of the length of the answer string that
the user (retriever) receives from the nth database to the total length of all answer
strings from all databases is constrained to be 7,,. This may happen if the user’s
access to the databases is restricted due to database availability, channel quality to
the databases, and other factors. For this problem, for fixed M, N, we develop a
general upper bound C(7), which generalizes the converse proof of Sun-Jafar [12],
where database symmetry was inherently used. Our converse bound is a piece-wise

affine function in the traffic ratio vector 7 = (71, -+, 7y). For the lower bound, we

M+N-1

o ) corner points. For the remaining traffic

explicitly show the achievability of (

ratio vectors, we perform time-sharing between these corner points. The recursive
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structure of our achievability scheme is captured via a system of difference equations.
The upper and lower bounds exactly match for M = 2 and M = 3 for any N and
any 7. The results show strict loss of PIR capacity due to the asymmetric traffic
constraints compared with the symmetric case of Sun-Jafar |12] which implicitly

uses 7, = % for all n.

5.2 System Model

Consider a classical PIR model with N non-communicating and replicated databases
storing M messages (or files). Each database stores the same set of messages Wi,y =
{Wh,-- W }. Messages Wi,y are independent and identically distributed over all

vectors of size L picked from a finite field F}, i.e.,

HW) =L, ie{l,--- M} (5.1)

HWy,--- ,Wy) =ML, (g-ary units) (5.2)

In the PIR problem, a user wants to retrieve a message W; € Wi.,, correctly
without revealing any information about the identity of the message ¢ to any indi-
vidual database. To that end, the user submits a query Q%} to the nth database.
The messages and the queries are statistically independent due to the fact that the

user does not know the message realizations in advance, i.e.,

(Wi Q) =0 (5.3)
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where Q[f]N = {Q[f], e ,QR}} The nth database responds truthfully by an answer
string A The answer string Al is a deterministic function of the query Q[rf] and

all the messages W1.)s, hence
H(AIQY, Wia) =0, ne{l,-+ N} (5.4)

In the PIR model with asymmetric traffic constraints, the lengths of the an-
swer strings are different (see Fig. . More specifically, we assume that the nth
database responds with a t,-length answer string, such that ¢, = \,t;, where A\,
is the ratio between the traffic from the nth database to the traffic from the first
database. Without loss of generality, we assume that the first database has the
highest traffic and the remaining databases are ordered descendingly in \,,. Hence,

{2, is a non-increasing monotone sequence with A\; = 1, and A, € [0,1], i.e.,
HANY < \t, ie{l,--- M}, ne{l,--- N}, 1>X>--->Ay (55)

We define the traffic ratio of the nth database 7, as the ratio between the

traffic from the nth database and the total traffic from all databases, i.e.,

An

—Zj\; y (5.6)

Tn =

We note that there is a one-to-one transformation between the vector A =
(A1, A2, -+, Ax) and the vector T = (71,79, ,7n). Thus, XA and 7 are used inter-

changeably within the context of this chapter.
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Database 1 Database 2 Database N

1

z

H(A) <4 ! ! H(Ay) < Ayt

Figure 5.1: PIR under asymmetric traffic constraints.

In order to ensure the privacy, at the nth database, the query Q%] designed
to retrieve W; should be indistinguishable from the queries designed to retrieve any

other message, i.e.,

(Qg]vAz]vwlM) ~ (QM?AL{]:WlM)? Vj € {1’ T ’M} (57)

where ~ denotes statistical equivalence.
In addition, the user should be able to reconstruct W; from the collected
answer strings A[f:]N with arbitrarily small probability of error. By Fano’s inequality,

we have the following reliability constraint,

HW,|QM, Ay = o(L) (5.8)

Where¥—>0asL—>oo.
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For a fixed N, M, and a traffic ratio vector 7, a retrieval rate R(7) is achievable
if there exists a PIR scheme which satisfies the privacy constraint (5.7) and the
reliability constraint (5.8)) for some message lengths L(7) and answer strings of

lengths {t,(7)})_, that satisfy the asymmetric traffic constraint ((5.5)), such that

TS () (59)

We note that in this problem, we do not constrain either the message length
L(7) or the lengths of the answer strings t,,(7), but we rather constrain the ratios of
the traffic of each database with respect to the traffic of the first database. The pair
(L(7),t1(7)) can grow arbitrarily large to conform with the information-theoretic
framework.

The capacity of the PIR problem under asymmetric traffic constraints C'(7)

is defined as the supremum of all achievable retrieval rates, i.e., C(1) = sup R(T).

5.3 Main Results and Discussions
Our first result is an upper bound on C(7) as a function of 7 for any fixed M, N.

Theorem 5.1 (Upper bound) For the PIR problem wunder monotone non-

increasing asymmetric traffic constraints T = (11,--+ ,7n), the PIR capacity C (1)
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15 upper bounded by

N N n
Zn:nl +1Tn Zn:'l’l2+1 Tn Z":"]\J—l+1 ™
) 14 == L rr e H i v r—
C(r)<C(r) = min - — S
= 1 1 1 1
ni,emay—1€{1, N} + n1 + ning Tt N1 M -1

(5.10)

The proof of this upper bound is given in Section [5.4. We have the following

remarks.

Remark 5.1 The minimization in s performed to obtain the tightest bound,
i.e., the bound in is valid for any sequence of {n;}Y., C {1,--- N}~ In
particular, restricting the minimization in the bound in (5.10) to monotone non-
decreasing sequences {n;} 7t C {1,--- N}M=1 such that ny < ny < -+ < npr_y is
still a valid upper bound. For fived M, N, the number of such monotone bounds is

(M)

Remark 5.2 The upper bound for the capacity function C (1) in 1S a piece-

wise affine function in the traffic ratio vector T.

Remark 5.3 The upper bound in (5.10) generalizes the known results about the

PIR problem. By pickingny = --- =ny1 = N, (5.10)) leads to
1
C(r) <+ : (5.11)

T l4xtar ot e

which is the capacity of PIR with symmetric traffic (no traffic constraints) in [12].

On the other hand, if T = (1,0,0,---,0), which implies that no traffic is returned
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from any database except for the first one, by picking ny = --- = ny_1 = 1, the
upper bound in ((5.10)) leads to ﬁ, which s the capacity of the PIR problem with one

database [1].

The following corollary is a direct consequence of Theorem [5.1 The corollary
asserts that there is a strict capacity loss due to the asymmetric traffic constraints

if the traffic ratio of the weakest link falls below a certain threshold.

Corollary 5.1 (Asymmetry hurts) For the PIR problem under monotone non-

increasing asymmetric traffic constraints T = (1, ,Tn), if TN < T, such that
NM-1 _1
f=———— N>1 5.12
T NM _ 1"’ ( )

then C(1) < C, where C = is the PIR capacity without the asymmet-

1
R ——

ric traffic constraints in [12).

Proof: From Theorem [5.1} the upper bound corresponding to n; = N — 1, and
ng = -+ = ny_1 = N is strictly tighter than the capacity without asymmetric

traffic constraints C' if

-1 - <C (5.13)
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which leads to

(5.14)
which further simplifies to
M—-2 ari
™ T L1y Mg T '
(1 ty oo T NM—I) diico N

which implies that the upper bound for the capacity under the asymmetric traffic
constraint is strictly less than C', which in turn implies that any achievable rate is

strictly less than the unconstrained capacity. W

Remark 5.4 As the number of messages M becomes large enough, i.e., as M — oo,
the traffic ratio threshold in T — % This implies that as M — oo, any

asymmetric traffic constraint incurs strict capacity loss.

Our second result is a lower bound on C(7) as a function of 7 for any fixed

M, N.

Y

Theorem 5.2 (Lower bound) For the PIR problem under asymmetric traffic
constraints, for a monotone non-decreasing sequence n = {n; i]\io_l cq1,--- ,N}M,
letn_y =0, and S ={i > 0:n; —n;_1 > 0}. Denote y,[k] as the number of stages

of the achievable scheme that downloads k-sums from the nth database, such that

ne1 <n<ng and l €S. Let & = [[ics\n (M*Q). The number of stages y,[k| is

s—1
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characterized by the following system of difference equations:

volk] = (no—Dyalk—1] + > (ny—n;_1)y;[k—1]
JES\{0}
yilk] = (m—no—Dwlk—11+ > (nj—n;1)y;[k—1]
JES\{1}

yelk] = no&eblk—0—=1] + (ng=ng s —Vyelk = 1+ D (ny=—n;_1)y;[k—1], £>2
jes\{¢}

(5.16)

where §|-| denotes the Kronecker delta function. The initial conditions of (5.16) are

voll] = [],es (1\5:12); and y;[k] = 0 for k < j. Consequently, the traffic ratio vector

7(n) = (1(n),- -, 7x(n)) corresponding to the sequence n = {n;}}25" is given by:
M (M
|k
To(n) = %k:}\/{(;@)%[ ] . njo1+1<n<n; (5.17)
D res Dk—1 (k )W[k] (ne — ne-1)
and the achievable rate corresponding to T(n) is given by:
R(r(n)) = D es Zk 1 ( )Z/z[k](né — My1) (5.18)

Zees Zk:l ( )W[k] Ny — Ng_1)

Moreover, for T = vazl ;7 (n;) fora; >0, for alli, and vazl a; = 1, the following

is a lower bound on C(1),

C(r) > R(T) = Z o R(T(n;)) (5.19)
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The proof of Theorem can be found in Section [5.5, The theorem charac-
terizes an achievable rate for the corner points 7(n) corresponding to any monotone
non-decreasing sequence n = {n;}2;1 C {1,---, N}™. For any other traffic ratio
vector T, the achievability scheme is obtained by time-sharing between the nearest
corner points. We note that due to the large number of corner points, we do not
provide an explicit achievable rate for each corner point but we rather describe the
achievable rate by a system of difference equations. The solution of this system of
difference equations specifies the traffic ratio vector 7(n) and the achievable rate
R(7(n)) corresponding to the monotone non-decreasing sequence {n;}225*. We have

the following remarks.

Remark 5.5 Ifn; = N for alli € {0,--- ,M — 1}, then S = {0} and the number

of stages of k-sums is described by the following difference equation for any database

ylk] = (N = Dylk —1] (5.20)

with initial condition of y[1] = 1. In this case 7, = + for all n, and R =

W, i.e., the scheme in Theorem reduces to the symmetric scheme
N T NM-I

in [12] if the sequence n = (N, N,--- | N) is used.

Remark 5.6 We note that the sequence {ni}f\ial suffices to completely specify the

traffic ratio vector T(n) for every corner point as a consequence of the monotonicity
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of the sequence, i.e.,

M-1 ~ - - - ~ -
{ni i=0 :>(7-07"' yT0s T1ym 5 TL 500, IM*D'" 7TM*L ) (521>
—_———  ——— P
ng elements (ni—ng) elements (nar—1—mar—2) elements

ks (3)vs k]
Yies Soner () uikl(ne—ne_1)”

where T; =

Remark 5.7 For fived M, N, the number of corner points in Theorem corre-

sponds to the number of monotone non-decreasing sequences n = {ni}f\igl, which is

().

The next corollary asserts that the achievable scheme in Theorem [5.2]is optimal
for M = 2 and M = 3 messages for any traffic ratio vector 7 and any number of

databases N.

Corollary 5.2 (Capacity for M =2 and M = 3 messages) For the PIR prob-
lem with asymmetric traffic constraints T, the capacity C (1) for M =2 and M = 3,

and for any arbitrary N is given by:

N

. 1+L Z7L:n0+l Tn

mlnnoe{l,--- N} 1+L 5
C(r) = "0 (5.22)

1+ L N 1 N
. +n0 Zn:n0+1 Tn+n0n1 n=ni+1 Tn M _

MmNy, <ny {1, ,N} 1+ LI ) =3

ng - noni

The proof of Corollary [5.2] is given in Section [5.6]
Fig. shows the PIR capacity under asymmetric constraints C'(A2) as a
function of Ay (which is bijective to 7) for the case of M = 3 messages and N = 2

databases. We note that the capacity C'()\2) is a piece-wise monotone curve in Ao,

M+N-—2

M+N-1
M—-1 M

which consists of ( ) = 3 regimes. There exist ( ) = 4 corner points.
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Figure 5.2: Capacity function C'(\g) for M =3, N = 2.

Specific achievable schemes for the case of M = 3 and N = 2 are given in Sec-
tion[5.5.1] Each corner point shown in Fig. [5.2] corresponds to an explicit achievable
scheme given in Section [5.5.1.1f For any other point, time-sharing between corner
points is used to achieve these points as shown in Section [5.5.1.2

Fig. m shows the capacity region C'(Ag, A3) for the case of M = 3 messages
and N = 3 databases as a function of the pair (Ag, A3) (which is bijective to 7).
Fig. shows that there exist (M+A]4V_1) = 10 corner points, and (MAZ]XJQ) =6
regions. We show the capacity regions in terms of the triple (Ag, A3, C'(A2, A3)).
Furthermore, for every region we show the corresponding (ng,n;) to be plugged in

(5.22)). The capacity for any point (A, A3) other than the corner points is obtained

by time-sharing between the corner points that enclose (A9, A\3). Specific achievable
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(0,0, 1) (10,1 Ao (%,0,3) (1,0,%)

Figure 5.3: Illustration of corner points and regions of C'(Ag, A3) for M =3, N = 3.

schemes for M = 3, N = 3 are given in Section [5.8.2
Finally, in the following corollary, we specialize the achievable scheme in The-

orem [5.2 to the case of N = 2 for any arbitrary M.

Corollary 5.3 (Achievable traffic versus retrieval rate tradeoff for N = 2)
For the PIR problem with N = 2 and an arbitrary M under asymmetric traffic
constraints T = (1 — 173, 73), 7o < %, let so € {1,--- M — 1}, for the traffic ratio

To(S2), where

LM—sg—l

sL A )

Ta(82) = _ o
M7+ X5 (L)

(5.23)
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the PIR capacity C(1o(s2)) is lower bounded by:

(9 2 e G

() + X507 (i)

C(TQ(SQ)) Z R(TQ(SQ)) = M (524)

Moreover, if T5(s2) < 7o < Ta(s2 + 1), and o € (0, 1), such that 75 = ata(sz) + (1 —

a)7e(se + 1), then
C(12) > R(m2) = aR(1e(s2)) + (1 — a)R(1a(s2 + 1)) (5.25)

The proof of Corollary [5.3]is given in Section [5.7]

Remark 5.8 Fig. shows the tradeoff between the traffic ratio 7o and the achiev-
able retrieval rate R(19). We note that as M increases R(1e) decreases pointwise.
We observe that as M — oo, the rate-traffic tradeoff converges to R(ts) = 1o. This
implies that for large enough M, our achievable scheme reduces to time-sharing be-
tween the trivial achievable scheme of downloading all the messages from database 1
which achieves a rate of %, and the asymptotically-optimal achievable scheme in [6]

which achieves R =1 — %

5.4 Converse Proof

In this section, we derive an upper bound for the PIR problem with asymmetric
traffic constraints. We extend the converse techniques introduced in |12] to account

for the asymmetry of the returned answer strings.
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Figure 5.4: Achievable rate-traffic ratio tradeoff for N = 2.

We first need the following lemma, which characterizes a fundamental lower
bound on the interference from the undesired messages within the answer strings,
i.e., a lower bound on ZnN:1 t, — L, as a consequence of the privacy constraint. The
proof of this lemma can be found in , Lemma 5]. The proof follows for our case
since the privacy constraint does not change in the PIR with asymmetric traffic
constraints, and the fact that the proof in Lemma 5] deals with the length of
the entire downloaded answer strings A[ll]N and not the individual lengths of each

answer string, see |12, equations (46)-(47)].

Lemma 5.1 (Interference lower bound) For the PIR problem under asymmet-

ric traffic constraints {t,}_,, the interference from undesired messages within the
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answer strings fo:l t, — L is lower bounded as,
N
S ta—Lto(L)>1 <W2:M; w A[ﬂN\Wl) (5.26)
n=1

In the following lemma, we prove an inductive relation for the mutual infor-
mation term on the right hand side of . In this lemma, the interference lower
bound in is expanded into two parts. The first part, which contains the an-
swer strings from the first n,,_; databases A[f?ﬁm_l, is dealt with as in the proof
of |12, Lemma 6]. For the second part, which contains the remaining answer strings

[m]

A, 11.n each answer string Al™ is bounded trivially by the length of the answer

string ¢,,.

Lemma 5.2 (Induction lemma) For all m € {2,...,M} and for an arbitrary
N1 € {1,--+, N}, the mutual information term in Lemma can be inductively

lower bounded as,

1 (WmMa Q[lm];ua A[1m]\71] |W1:m—1>

1 1 Y o(L)
> 1 (Winsrars Qb ALY Wi ) + (L—u 2. M)—

Nm—1 m—1 Nm—1

n=nm-1+1

(5.27)

We note that |12, Lemma 6] can be interpreted as a special case of Lemma
with setting n,,_; = N. Intuitively, n,,_; represents the number of databases that
can apply the optimal symmetric scheme in [12] if the user wants to retrieve message

Wy—1 from the set of W, 1., messages (i.e., conditioned on Wy, 1).
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Proof: We start with the left hand side of (5.27)) after multiplying by n,,_1,

Nm—1 I (WmMu Q[lm]\;l]u A[lm]\?l] |W1:m71)

> g1 1 (Wanar; Q1 AL Wi )
Nm—1

> Z mMaQ[m 1 Am 1H/Vlm l)

Nm—1

" ( mMaQ[m] A7[;n]|W1:m71)
n=1
Nm—1

©.3) m m

I (Wooar: AP QY W)
n=1
Nm—1

IR
]

H (Agn”an}a Wl:mfl)

—_

?:
=l

Z Z <A1[:n] |A[17:72—17 Q[{:’ﬁm_lv Wl:m71>

Nm—1

—_

3

I <WmM7 Agn} |A[17;71]717 Q[lirgm_p Wl:m71>

IR
Il M

m M5 A[lnjl]m 1 |Q[17:7;L1]m_17 Wl:m—l)

| |
’\' /\

(Wm:M;Q[lr;rgm_p [lnﬁm 1|W1m 1)

i
o)

5.4)) m m
t I (WmMa Q[l;]lh A[l;jlfywlszl>

- I <Wm M5 Azn}_l—ﬁ-l N|Q1 N> A[ln;bz]m 19 Wl:m—1>

ISy
I

VE

N

n=nm,_1+1
N
2 1 <WmManaQ1 s AU W 1) —t Z An —o(L)

n=nm—1+1

5
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I (WmiM; Q[lmllf’ A[lTJ“Wl:m—l) - H <A7[I:L,1]_1+1:N|Q[17?11lh A[lrz:z]m,p Wl:m—

(5.28)

(5.29)
(5.30)
(5.31)
(5.32)
(5.33)
(5.34)

(5.35)

(5.36)

(5.37)

)

(5.38)

(5.39)

(5.40)



N

n=nm—1+1

(5.41)

N
-y <Wm+1:M; QTJ]V,AQ’?}VWM) + (L -ty An) — o(L) (5.42)

n=nm—1+1

where , follow from the non-negativity of mutual information, ([5.30))
follows from the privacy constraint, follows from the independence of
(Wm:M, LI” ]>, , follow from the fact that the answer string Al{” Vis a
deterministic function of <QZ" },WLM), follows from conditioning reduces
entropy, follows from the independence of (Wm;M,Q[ﬁm_l), follows
from the chain rule, the independence of the queries and the messages, and the
fact that Q[lm]l, — Qmm_l — Amm_l forms a Markov chain by ,

follows from the fact that the answer strings A[f’:l are fully determined from

m—1

<Q[1i"]1,, Wh. M), 5.39)) follows from the fact that conditioning reduces entropy and

H(A,, ,+1n) < ery:nm,1+1 t, which is equal to t; SN

nen, 141 An from the asym-

metric traffic constraints, follows from the reliability constraint. Finally,
dividing both sides by n,,_; leads to . |

Now, we are ready to derive an explicit upper bound for the retrieval rate under
asymmetric traffic constraints. Applying Lemma [5.I] and Lemma [5.2] successively
for an arbitrary sequence {n;}M7* c {1,--- , N}*~1 and observing that 32 ¢, =

ty Zgil A, under the asymmetric traffic constraints, we have the following

N
ty Ao —L+06(L)
n=1
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Z I<W2M7 [11]N7A[1”N|W1> (543)
1 |
n=ni+1 1
BG27) 1
> — |L-t Z An L—t Z An
m n=ni+1 n1n2 n=ns+1
1
1 (Waar Q2 AN Wis) (5.45)
2
15.27)
>
(o 2 )
> —(L-t Z A L—t Z An
i n=ni+1 nin n=ns+1
1 N
+ot = | Lt Z An (5.46)
Hifl ! Us n=np_1+1

where 6(L) = (1—1— +

et ﬁ) o(L), (5.43)) follows from Lemma ,

and the remaining bounding steps follow from successive application of Lemma |5.2]

Ordering terms, we have,

N

<1+i+ ! +---+%)L§(1+7(n1)+-~~+%>tlen+6(L)

s [ n=1

1=

(5.47)

M:ZN

S5 n—t41 Tn corresponds to the sum of the traffic ratios

where y(¢) =
from databases [( + 1 : NJ.

We conclude the proof by taking L — oo. Thus, for an arbitrary sequence
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{n }M71) we have

I 1+ 'Y( 1) + 1(:;22) 4+ 4 1'1[(”]\4 1)
i=1 T4
R(T) = < (5.48)
tlz )\ 1+ +n1n2+” +HM o
=1 ?

Finally, we get the tightest bound by minimizing over the sequence {nl}f\i 1! over

the set {1,---, N}, as

1 + ’Y(nl) + 7(”2) + -4+ 'Y(;LJ]\LII—l)

R(T) < min in2 [L27 (549)
ni,np—1€{1,~,N} 1 + = _|_ 4+ 4

ninz 1L
N N N
1+ Z"=”1+1Tn + Lonzng+1 T I Zn=np 41T
. n1 ning I
= min N T (5.50)
RTEN _1€ 17...7]\[ PR —_—
m e a1 {1 N} ot T

Remark 5.9 From the converse proof, we note that we can intuitively interpret n;
as the number of databases that can apply the symmetric traffic scheme in [12] if the
number of messages is reduced to be M — i+ 1. We point out that in the absence of
asymmetric traffic constraints as in [12], all databases can apply symmetric schemes,
therefore n; = N for alli € {1,--- M — 1}. Now, since reducing the number of
messages cannot decrease the number of databases that apply the symmetric scheme
as the problem would be less constrained (in terms of the privacy constraint), which
leads to more flexibility in terms of satisfying the traffic constraints, it suffices to

M 1

evaluate the bound in (5.10)) for monotone non-decreasing sequences {n;};—;" C

{1, N1 such that ng <ny < -+~ < np_y.
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5.5 Achievability Proof

The achievability scheme for the PIR problem under asymmetric traffic constraints
is inspired by the PIR schemes in [12,29]. Our achievable scheme applies message
symmetry, and side information exploitation as in [12,29]. However, due to the
asymmetric traffic constraints, database symmetry cannot be applied. In an al-
ternative view, we use the side information in an asymmetric fashion among the
databases. The most relevant achievable scheme to our achievable scheme here is
the scheme in [29], in which the bits stored in the user’s cache is exploited differently
depending on the caching ratio. We begin the discussion by presenting the M = 3,

N = 2 case as a concrete example to illustrate the main concepts of the scheme.

5.5.1 Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we show the achievability scheme for M = 3, N = 2. We first carry
out the minimization in over ni,ne € {1,2}. In this case, we have 4 upper
bounds (or effectively 3 bounds if n; < ng restriction is applied). By taking the
minimum of these bounds for every Ay € [0, 1], we have the following explicit upper

bound on the capacity as a function of Ay (which is in bijection to 73)

143\ 1
3(1+,\§)= 0<A<3
< 2(142X2) 1 3 .
Clh) < 5(1+>\22) , 35 Mg (5-51)
4 3
7 1 S )\2 S 1
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To show the achievability of the upper bound in , let a;, b;, ¢; denote
randomly and independently permuted symbols of messages Wi, Wy, W3, respec-
tively. Define so € {0,1,2} to be the number of side information symbols that
are used simultaneously in database 2 within the initial round of downloads. First,
we show the achievability of the corner points, i.e., the achievability of the points

corresponding to A, € {0, 3,3, 1}.

5.5.1.1 Achievability of the Corner Points

The Ay = 0 Corner Point: Ay = 0 means that the second database does not return
any answer strings. The optimal achievable scheme is to download all files from the
first database (see Table . This scheme achieves R = 5 = C(0).

Table 5.1: The query table for M =3, N =2, Ay = 0.

Database 1 | Database 2
ai, b17 C1

The Ay = 1 Corner Point: Since A\; = 1 by definition, Ay = 1 means that a
symmetric scheme can be applied to both databases. Thus, the optimal achievable
scheme is the optimal symmetric scheme in [12] (see Table [5.2). We present the
scheme here for completeness. In this scheme, the user starts with downloading the
individual symbols aq, by, ¢; from database 1. Since Ay = 1, database symmetry can
be applied, hence the user downloads as, by, co from database 2. Note that in this
case, the user does not exploit the side information generated from database 1 in

the first round of downloads, but rather downloads new individual symbols, hence
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ss = 0 in this case. The undesired symbols b;,c;, © = 1,2 can be exploited in the
other database. This can be done by downloading as + by, a4 + ¢ from database 1,
and similarly by applying database symmetry, the user downloads as + b1, ag + 1
from database 2. In order to satisfy the privacy constraint, the user applies the
message symmetry and downloads bz + c3 from database 1, and by + ¢4 from database
2. Finally, the user exploits the newly generated side information by downloading
a7 + by + ¢4 from database 1, and ag + b3 + c¢3 from database 2. Consequently, the
8

user downloads L = 8 symbols in 14 downloads which results in R = & = 2 = C(1).

Table 5.2: The query table for M =3, N =2, \y = 1.

Database 1 | Database 2
ai, by, c ag, by, 3
as + bg as + bl
a4 + Co ag + 1
bs + c3 by + ¢4

ar +bs+cq | ag+ b3+ c3

The Ay = % Corner Point: The user can cut the first round of downloads in database
2 and exploit the side information generated from database 1 directly in the form of
sums of 2, i.e., the user downloads ay, by, ¢; from database 1 and then exploits the
undesired symbols as side information by downloading as + by, a3+ c; from database
2. The user then applies message symmetry and downloads by + ¢5. Since the user
uses 1 bit of side information in the initial download round from database 2, so = 1
in this case. Finally, the user exploits the undesired sum b, + ¢y from database 2
as a side information in database 1 and downloads a4 + by 4+ ¢5. Using this scheme

the user downloads 4 symbols from database 1 and 3 symbols from database 2,
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hence \y = %. The user downloads L = 4 desired symbols out of 7 downloads, thus
R = % =C (%) The privacy is satisfied since Wy, Wy, W3 are independently and
randomly permuted, and since the scheme includes all the possible combinations of
the sums in any round. The query table for this scheme is given in Table [5.3] We
note that this scheme is exactly the asymmetric achievable scheme presented in [1§].

Table 5.3: The query table for M =3, N =2, Ay = %.

Database 1 | Database 2
ai, by, c
as + by
asz + ¢
ba + ¢
as + b + ¢y

The Ay = % Corner Point: In this case, the user downloads aq, b1, ¢; from database
1. In database 2, the user exploits the side information by, ¢; simultaneously and
downloads as + by + ¢1. Due to the fact that 2 side information symbols are used
simultaneously in the initial round of download from database 2, s = 2 in this case.
Using this scheme the user downloads 3 symbols from database 1 and 1 symbol

from database 2, therefore Ay = % The user downloads L = 2 desired symbols in 4

1

downloads, hence R = 3

=C (%) The privacy follows by the same argument as in

the previous case. The query table for this case is given in Table [5.4]

Table 5.4: The query table for M =3, N =2, \y = %

Database 1 | Database 2
ai, by, ¢y

as+ b+ a1
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5.5.1.2 Achievability of Non-Corner Points

In the following, we show that by combining the achievable schemes of the corner
points over different symbols, the upper bound in is tight for any \y. We note
that the privacy constraint is still satisfied after this combination as each scheme
operates over different sets of symbols and the fact that each scheme satisfies the
privacy constraint individually. A formal argument for proving that combination of
private schemes remains private can be found in [18, Theorem 4]. Let v,,, where sy =
0,1, 2, denote the number of repetitions of the scheme that uses ss side information
symbols simultaneously in the first round of download in database 2. By convention,
let 53 denote the number of repetitions of the trivial retrieval scheme, i.e., when the

retrieval is solely done from database 1.

The 0 < Ny < % Regime: We combine the achievable scheme of Ay = 0 corner

1

5 corner point. The achievable scheme of

point with the achievable scheme of Ay =
Ay = 0 downloads 3 symbols from database 1 and 0 symbols from database 2. We
perform this scheme v3 repetitions. The achievable scheme of Ay = % downloads 3
symbols from database 1 and 1 symbol from database 2. We perform this scheme 5

repetitions. Under the asymmetric traffic constraints, this results in the following

system of equations

3V3 + 3V2 = tl (552)

Vo = )\Qtl (553)
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This system has a unique solution (parametrized by t1) of vy = A\ot; and v3 = %tl.
Note that v3 > 0 in the regime of 0 < Ay < % Since the scheme of Ay = 0 downloads
1 symbol from the desired message and the scheme of Ay = % downloads 2 symbols

from the desired message. The achievable rate R()\y) is given by

21/2 —|— V3 1 + 3)\2
o) = = = A <)\ <

The % < Ay < % Regime: Similarly, the user combines the achievable schemes of

Ay = % and Ay = % corner points. The user applies the scheme of Ay = % for vs
repetitions, which downloads 3 symbols from database 1 and 1 symbol from database
2 and has L = 2. The user applies the scheme of \y = % for 14 repetitions, which

downloads 4 symbols from database 1 and 3 symbols from database 2 and has L = 4.

This results in the following system of equations

4V1 + 3V2 = tl (555)
31/1 + 1y = )\Qtl (556)
which has the following solution: v; = _123’\2 t1 > 0 and vy = 3‘;’\2 t; > 0 in the

regime of % <)< %. Consequently, the achievable rate is given by

4V1 + 21/2 2(1 + 2)\2)
pu— pu— pu— C A y
(1+ X))t 51+ A) ()

R()2)
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The % < Xy <1 Regime: The user combines the achievable schemes of \y = % and
Ao = 1 corner points. The user repeats the scheme of \y = % for vy repetitions,
and the scheme of Ay = 1 for 1 repetitions. This results in the following system of

equations

4V1 + 7V0 = tl (558)

31/1 —+ 7V0 = )\2151 (559)

The solution for this system is given by: 14 = (1 — Ag)t; > 0 and vy = _3%4’\2151 >0

in the regime of % < Ay < 1. The corresponding rate is given by

dn 480 4 3
_ T 2 o), S<h<l (5.60)

R(x) = (L+ Xty 7

Specific Example for Non-Corner Points, Ay = %: The query table for this case is

given in Table . The user applies the scheme of \y = % for v, = _1+T3’\2t1 = %tl

3—;‘*2251 = 1t, repetitions. Choosing

repetitions, and the scheme of Ay =  for vy = =&

t; = 10, we have 1 = 1 and v, = 2. The scheme downloads 10 symbols from

database 1 and 5 symbols from database 2, thus, Ay = % The scheme downloads 8

8 _ 2(142X2) _ O(l)
3)-

symbols in 15 downloads, hence R(3) = & = T

5.5.2 Description of the General Scheme

In this section, we describe the general achievable scheme that achieves the retrieval

rates in Theorem [5.2] We first show explicitly the achievability schemes for corner
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Table 5.5: The query table for M =3, N =2, Ay = %

Database 1 | Database 2
ai, by, c as + by
as + ¢
b2 + Co
ay + by + co

’ a5,b3,63 ‘ a6+bg+03 ‘

’ az, by, cy ‘ ag + by + ¢y ‘

points, i.e., the achievability scheme for every monotone non-decreasing sequence
{n M5t ¢ {1,---, N}M. We note that our achievability scheme is different in two
key steps: First regarding the database symmetry, we note that it is not applied over
all databases directly as in [12], but rather it is applied over groups of databases,
such as, group 0 includes databases 1 through ng, group 1 includes databases ng+ 1
through n;, etc. Second, regarding the exploitation of side information step, we
note that each group of databases exploits side information differently in the nitial
round of downloading. More specifically, we note that group 0 of databases do not
exploit any side information in the initial round of the download, group 1 exploits 1
side information symbol in the initial round of the download, group 2 exploits sums
of 2 side information symbols in the initial round of the download, and so on.
Next, we show that for non-corner points, time-sharing between corner points

is achievable and this concludes the achievability proof of Theorem [5.2]

5.5.2.1 Achievability Scheme for the Corner Points

Let s, € {0,1,---, M — 1} denote the number of side information symbols that

are used simultaneously in the initial round of downloads at the nth database.
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For a given non-decreasing sequence {n;}2;' c {1,--- ,N}M let s, = i for all
ni_1+ 1 <n <n; with n_; =0 by convention. Denote S = {i : s,, = i for somen €
{1,---,N}}. We follow the round and stage definitions in [123]. The kth round
is the download queries that admit a sum of k different messages (k-sum in [12]).
A stage of the kth round is a query block of the kth round that exhausts all (]\: )
combinations of the k-sum. Denote yy[k] to be the number of stages in round k
downloaded from the nth database, such that n,_1 +1 < n < n,. The details of the

achievable scheme are as follows:

1. Initialization: The user permutes each message independently and uniformly

using a random interleaver, i.e.,

2 (i) = Win(mm(i)), i€ {l,-- L} (5.61)

where z,,(7) is the ¢th symbol of the permuted W,,, m,(:) is a random in-
terleaver for the mth message that is chosen independently, uniformly, and

privately at the user’s side. From the nth database where 1 < n < ng, the

M-2

e ) symbols from the desired message. The user sets

user downloads [], s (
the round index & = 1. I.e., the user starts downloading the desired symbols

from yo[1] = [I,cs (V7)) different stages.

2. Message symmetry: To satisfy the privacy constraint, for each stage initiated
in the previous step, the user completes the stage by downloading the remain-

ing (A,f__ll) k-sum combinations that do not include the desired symbols, in
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M—-2

s—l) individual symbols from

particular, if & = 1, the user downloads [, g (

each undesired message.

. Database symmetry: Due to the asymmetric traffic constraints, the original
database symmetry step in [12] cannot be applied directly to our problem.
Instead, we divide the databases into groups. Group ¢ € S corresponds to
databases ny,_1 + 1 to ny. Database symmetry is applied within each group

only. Consequently, the user repeats step 2 over each group of databases, in

M-2

"~?) individual symbols from

particular, if & = 1, the user downloads J], (

each message from the first ny databases (group 1).

. Exploitation of side information: This step is also different from [12] because
of the asymmetric traffic constraints. In order to create different lengths of the
answer strings, the initial exploitation of side information is group-dependent
as well. More specifically, the undesired symbols downloaded within the kth
round (the k-sums that do not include the desired message) are used as side
information in the (k + 1)th round. This exploitation of side information is
performed by downloading (k 4 1)-sum consisting of 1 desired symbol and
a k-sum of undesired symbols only that were generated in the kth round.
However, the main difference from [12] is that for the nth database, if s, > k,
then this database does not exploit the side information generated in the kth
round. Thus, the nth database belonging to the fth group exploits the side
information generated in the kth round from all databases except itself if

sn < k. Moreover, for s,, = k, extra side information can be used in the nth
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database. This is because the user can form ng [, S\{sn} (]S\/[__f) extra stages
of side information by constructing k-sums of the undesired symbols in round

1 from the databases in group 0.
5. Repeat steps 2, 3, 4 after setting k = k + 1 until k = M.

6. Shuffling the order of the queries: By shuffling the order of the queries uni-
formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

5.5.2.2 Achievability Scheme for Non-Corner Points

In this section, we show that achievability schemes for non-corner points can be de-
rived by time-sharing between the nearest corner points, i.e., the achievable scheme
under 7 constraints is performed by time-sharing between the corner points of an
N-dimensional polytope that enclose the traffic vector 7. The following lemma for-
malizes the time-sharing argument. Lemma can be thought of as an adaptation
of [18, Theorem 4] and [28, Lemma 1] to the PIR problem under asymmetric traffic

constraints.

Lemma 5.3 (Time-sharing) For the PIR problem under asymmetric traffic con-
straints T, let the retrieval rate R(T;) be achievable for the traffic ratio vector T; for
all i € {1,--- | N}. Moreover, assume that T = S a;7; for some {a;}Y, such

that «; > 0, for all i, and Zf\il a; = 1. Then, the following retrieval rate R(T) is
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achievable,

R(t) =Y a;R(r) (5.62)

Proof: Let PIR; denote the PIR scheme that achieves retrieval rate R(7;) for a traf-
fic ratio vector ;. Denote the total download of PIR; by D; and the corresponding
message length by L;.

Now, construct the following PIR scheme with total download D and message
length L. For each database, concatenate the queries from the N PIR schemes with
ensuring that each symbol is queried by one PIR scheme only. Hence, D = Zfil D;,
such that D; = oD, for i € {1,--- , N}, and the download from the nth database is
to(T) = Zfil t,(7;). This concatenation of the achievable schemes is feasible under
asymmetric traffic constraints since 7 = Zfil a;T;. To see this, we note that the

nth element of the traffic ratio vector 7, is given by

Tn: = = —=

i i N
tn(T) sz\il tn(Ti) Zz]\il ™ )Di fo\; ™ )O‘iD _ Z 7@ (5.63)
D D D D o '

where 7. denotes the nth element in T;. Since these implications are true for each

element in 7, we have 7 =) ._ | oy 7; as required.

PIR; scheme downloads L; symbols from the desired messages, such that
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Hence, the total message length by concatenating all the achievable schemes together

is
N N
L=) Li=> a;R(r;)D (5.65)
=1 i=1

and the corresponding achievable rate is given by

R(T) = % = Z%R(n) (5.66)

The reliability constraint follows from the reliability of each PIR scheme. The
privacy constraint is satisfied due to the fact that each PIR scheme operates on
a different portion of the messages and these portions are picked uniformly and
independently. Hence, the privacy constraint for the concatenated scheme follows
from the privacy of each PIR scheme. A formal treatment of the privacy constraint
of concatenated schemes can be found in [18]. W

Thus, Lemma provides an achievability proof for any traffic ratio vector
7 that is not a corner point. Finally, we have the following remark regarding this

time-sharing lemma.

Remark 5.10 We note that although the vector X = (A\y,--- ,Ax) is in bijection
with T = (11, -+ ,7n), the time-sharing argument in Lemma does not hold for
R(X). This is due to the fact that R(X) is a non-linear function of X whereas R(T)

1s an affine function of T.
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5.5.3 Decodability, Privacy, and Calculation of the Achievable Rate

In this section, we prove the decodability, privacy and the achievable rate in Theo-
rem We note that it suffices to consider the corner points only, as Lemma [5.3
settles the decodability, privacy and achievable rate for non-corner points based on

the existence of feasible PIR schemes that achieve the corner points.

Decodability: By construction, in the (k + 1)th round at the nth database, the
user exploits the side information generated in the kth round in the remaining
active databases by adding 1 symbol of the desired message with (k — 1)-sum of
undesired messages which was downloaded previously in the kth round. Moreover,
for the nth database belonging to the (th group at the (¢ + 1)th round, the user
adds every ¢ symbols of the undesired symbols downloaded from group 0 to make
one side information symbol. Since the user downloads [, s (Af__f) symbols from
every database in the first ng databases (group 0), the user can exploit such side
information to initiate ng [[,c S\ (1‘21_12) stages in the (¢ + 1)th round from every
database in group /. Since all side information symbols used in the (k + 1)th round
are decodable in the kth round or from round 1, the user cancels out these side

information symbols and is left with symbols from the desired message.

Privacy: For every stage of the kth round initiated in the exploitation of the side

M—l)

information step, the user completes the stage by including all the remaining ( 1

undesired symbols. This implies that all (Alf) combinations of the k-sum are in-

cluded at each round. Thus, the structure of the queries is the same for any desired
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message. The privacy constraint in ([5.7)) is satisfied by the random and independent
permutation of each message and the random shuffling of the order of the queries.
This ensures that all queries are equally likely independent of the desired message

index.

Calculation of the Achievable Rate: For a corner point characterized by the non-
decreasing sequence {n;} !, as mentioned before, we denote y,[k] to be the number
of stages that admit k-sums downloaded from any database belonging to the ¢th
group, i.e., the nth database such that n,_y +1 < n < ny. By construction, we
observe that all databases belonging to the ¢th group are inactive until the (¢4 1)th
round as the user initiates download in such databases by exploiting ¢ bits of side
information simultaneously by definition of the group. Consequently, we have the
initial condition y,[k] = 0 for & < . Since the user downloads [ ], ¢ (Aj__f) individual

symbols (i.e., from round 1) from group 0, we have the following initial condition
woll] = TTes (V)

Now, we note from the side information exploitation step that the user initiates
new stages in the kth round from the nth database depending on the number of
stages of the (k — 1)th round for group 0 and group 1 (i.e., for 1 < n < ny). More
specifically, for the nth database belonging to group 0, the user considers all the
undesired symbols downloaded from all databases (except the nth database) in the
(k — 1)th round as side information. Since database symmetry applies over each

group, and from the fact that each stage in the (k — 1)th round initiates a stage in

199



the kth round, we have

volk] = (no — Dyolk — 11+ > (ne — ner)yelk — 1] (5.67)
(€5\{0}

where the left side is the total number of stages in the (k — 1)th round from all the
N — 1 databases (i.e., except for the nth database that belongs to group 0). The

same argument holds for group 1 as well, hence

yilk] = (1 —no — Dinlk = 1]+ Y (ne — ne_y)yelk — 1] (5.68)
LeS\{1}

where (n; —ng — 1) denotes the number of databases in group 1 other than the nth
database.
For a database belonging to the ¢th group such that ¢ > 2, the user can

generate extra stages by exploiting the symbols downloaded in round 1. To initiate

M-—1
one stage in the (¢ 4 1)th round, the user needs to combine symbols from % =
(]\Z__f) stages. Therefore, the number of stages initiated in the (¢ + 1)th round as

a consequence of the side information in round 1 is & = (%‘}—[_?) = [Lies\iny (

/—

M—Z)
s—1/"

Since these extra side information can be used once (at the (¢+1)th round only) and
after that for the kth round, the database exploits the side information generated in
the (k—1)th round only. We represent this one-time exploitation of side information
in the (¢ + 1)th round by the Kronecker delta function [k — ¢ — 1]. Consequently,

the number of stages for the th group, ¢ > 2 is related via the following difference
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equation:

yelk) = no&udlk—C=1] + (ng=ne s =Dyelk — 11+ D (nj—n;1)y;[k—1] (5.69)
jes\{¢}

Now, we are ready to characterize 7(n) and R(7(n)) in terms of y,[k]|, where

¢ e S and k =1,---,M. For any stage in the kth round, the user downloads

(M—l

k—l) desired symbols from a total of (]\,f ) downloads. Therefore, from a database

belonging to the ¢th group, the user downloads 22\4:1 (A,fjll)yg[k] desired symbols
from a total of 22/21 (Akl) yelk]. The number of databases belonging to the ¢th group

is given by n, — ny_1. Therefore, the total download is given by,

PAGCIEDSS (]\,f) yelk](ne — ne-y) (5.70)

Thus, the traffic ratio of the nth database belonging to the ¢th group (i.e.,

ne_1 +1 < n < ny) corresponding to n = {n;}5! is given by

Zl]cw:l (]\l:[> YelF]
Sres oty (D) el k) (e — ne—y)

Furthermore, the total desired symbols from all databases is given by

Lir(n) =) "> (]‘Z _‘f) e[k (ne — ne_1) (5.72)

LeS k=1
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which further leads to the following achievable rate

_ > tes 224:1 (J‘l;[—_ll)yf[k] (¢ —ng-1)
Zees ZQ/[:l (]\I:[) Yelk](ne — ng_1)

R(1(n)) (5.73)

5.6 Optimality of M =2 and M = 3 Cases

In this section, we prove Corollary [5.2] i.e., we prove that the capacity of the PIR
problem under asymmetric traffic constraints C'(7) for M = 2,3 is given by .
We note that since the upper bound in Theorem is affine in 7 and time-sharing
rates are achievable from Lemma[5.3] it suffices to prove the optimality of all corner
points to settle the PIR capacity C(7) for M = 2,3. In the following, we use

Theorem [5.1] and Theorem [5.2] to show the optimality of these corner points.

5.6.1 M = 2 Messages

We start the proof from the achievability side. From Theorem [5.2] the corner points
are specified by the non-decreasing sequence n = (ng,n;). In this case, the system

of difference equations in ({5.16f) is reduced to

Yolk] = (no — )yo[k — 1] (5.74)

n [k] = noyo[k - 1] (5-75)
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for k = 1,2, where yo[1] = 1, and y;[1] = 0. Hence, yo[2] = no — 1, and y;[2] = ny.

Hence, the total downloads for the corner point n = (ng, n;) is

N 1

E:ukﬂn»::E:Ez(Z)W%Km—ﬂWA):ndny+D (5.76)

n=1 (=0 k=1

Thus, from Theorem [5.2} the traffic-ratio vector 7(n) is given by

~ Q)+ B)wl2l _ ne+1

TS (e alm 1) (5.77)
C Qull+ Qw2 1 -
o Zfzvzl tn(T(n)) o +1 :

where 7, = 7y, for 1 < n < ng,and 7, = 7, forng+1 <n <nq, and 7,, = 0
otherwise. For the desired symbols, the user downloads Ly(7(n)) symbols from the
nth database when 1 < n < ng, and L;(7(n)) symbols from the nth database when

no+1<n<n

Lo(7(n)) = yo[1] + yo[2] = no (5.79)

Li(m(n)) = wn[1] + 11 [2] = no (5.80)

Consequently, L = ngLg + (ny — ng)L; = ngni, and the achievable retrieval rate

R(7(n)) is given by

(5.81)
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For the converse, we evaluate the bound in (5.10)) (without the minimization)
for ny = nyg, i.e., we substitute with ngy in the argument of the upper bound. Then,

we have the following upper bound

N
Zn:n0+l Tn

R(r(n)) < (5.8
T(n)) < ———3— )
1+ L
1+ (n1—mo)71
no
—— m (5.83)
1+
(51
= (5.84)

This concludes the optimality of our achievable scheme for M = 2.

5.6.2 M = 3 Messages

Similarly, for the corner point specified by the non-decreasing sequence n =

(ng,n1,nz), we have the following system of difference equations for k = 1,2, 3

yolk] = (no — D)yolk — 1] + (n1 — no)ya [k — 1] + (ng — ny)y2[k — 1] (5.85)
y1[k] = noyolk — 1] + (n1 — no — D)n[k — 1] + (ng — ny)ye[k — 1] (5.86)
Yalk] = nod[k — 3] + noyolk — 1] + (n1 — no)yr [k — 1] + (n2 — n1 — D)ya[k — 1]

(5.87)

with the initial conditions yo[1] = 1, y1[1] = 0, and y»[1] = y2[2] = 0. Evaluating
yelk], for £ = 0,1,2, and k = 1,2,3 recursively leads to yo[2] = ng — 1, 11[2] = no,

Yo[3] = ming — 2no + 1, 11[3] = ning — 2ng, and y2[3] = ning. This leads to the
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following total download

E:LJT@»::§:§:<§)W%KW—wu1):ndnm2+n1+1) (5.88)

The sequence n = (ng, ny, ng) specifies the traffic ratio vector 7(n) such that

1
5y — oM ot (5.89)
no(neny +nq + 1)
N nq + 1
= - 5.90
n Nany + N1 + 1 ( )
~ n1
= — 5.91
Nnany +np + 1 ( )

where 7,, = Tofor 1 <n < ng, 7, =71 forng+1 <n <ny, 7=nHforni+1 <n < no,
and 7,, = 0 otherwise.

For the desired symbols, the user downloads Lo(7(n)) symbols from the nth
database if 1 < n < ng, Li(7(n)) symbols if ng+1 < n < ny, and Ls(7(n)) symbols

if n1 +1 <n < ny, hence

Ly(r(n)) =)

3
k=1

2
(k— 1)ye[k’] =nony, €=0,1,2 (5.92)

Consequently, the following rate is achievable

ning

R(T<n)) - ning + np + 1

(5.93)

For the converse, pick (nj,ny) in the converse bound to be (ng,ny), which
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leads to the following bound

{4 Bl | Dl
R(7(n)) < A R B (5.94)
L+ no T mom
(n1—no)7 (n2—n1)7 (ng—n1)7:
B 1+ (u noo 1y (n2 nol 2 4 2n0n11 2 (5 95)
= T T .
1+ no T mom
(ARLD)
P e B 5.96
ning +ni + 1 ( )

This concludes the optimality of our achievable scheme for M = 3.

Remark 5.11 We note that, surprisingly, for the corner points of the cases M = 2
and M = 3, the number of desired symbols downloaded from each active database
1s the same irrespective to the traffic ratio of the database; see — for
M =2 and for M = 3. This suggests that at these corner points, the optimal
scheme performs combinatorial water-filling for the undesired symbols first, i.e., the
nth active database downloads t,, — ng undesired symbols for M = 2 and t, — ngnq
undesired symbols for M = 3, and then downloads the same number of desired

symbols from all active databases.

5.7 Achievable Tradeoff for N = 2 and Arbitrary M

For the special case of N = 2, and an arbitrary M, the retrieval rate calculation
in Theorem is significantly simplified. Let sy € {0,---, M — 1} be the number
of side information symbols that are used simultaneously in the initial round of
download at the second database. Note that there is a bijection between sy, and
the non-decreasing sequence n as ng = n; = -+ = ng, 1 = 1, and n,, = 2 for
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any corner point other than the corner point corresponding to the trivial scheme of

downloading the contents of the first database.

M-2

_1) stages of individual symbols (i.e.,

The user starts with downloading (
the user downloads M (i\;[:f) symbols in round 1 from all messages) from the first

database to create 1 stage in the (so+1)th round. After the initial exploitation of side

information, the two databases exchange side information. More specifically, from

database 1 in the (s + 2k)th round, where k =1,--- | LM;‘”J, the user exploits the

side information generated in database 2 in the (s + 2k — 1)th round to download

( M—-1

o +2k71) desired symbols (by adding one symbol of the desired symbols to the

(s9+2k—1)-sum of undesired symbols generated in database 2) from total download

in the (s2 + 2k)th round of (| Similarly from database 2, in the (so 42k + 1)th

+2k)

LM—SQ—l

5 J, the user exploits the side information generated

round, where £ =0, --- |

in database 1 in the (s + 2k)th round, and downloads ( desired symbols from

+2k)

M

total of (52+2k+1

) downloads in the (s; + 2k + 1)th round.

Consequently, we have

252
2

k=1

o =u(M -2

(o) (597
==

ta(s5) = ( M > (5.98)

=0 82+2]€+1

which further leads to the following total download

M—s9—1

t1(s2) + ta(sy) = M(Z:f) + % <32 +]\Z+ 1> (5.99)
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Thus, the traffic ratio m3(sz) is given by

LM 59 71J M
- to(s2) B k=0 (52+2k+1)
m2(52) = t1(s2) + t2(s2) B (52 1) + ZM = (sg-i]-\i—i—l) (5100

The total number of desired symbols is given by

o

s

LM

]
M—-1 M—-1
101
1 (82+2k— 1) + 0 (82+2k5> (5 O )

M =2 +M (M- (5.102)
82—1 82+k )

k=

hE

L(sy) = (M a 2) +

82—1

|
» |

o

Thus, the following rate is achievable for N = 2 and arbitrary M

R(sy) = L(s2) _ (82 RS (sa) (5.103)

t1(s2) + ta(s2) (32 D+ (SQ%H)

5.8 Further Examples

In this section, we present further examples to clarify the achievable scheme for

some additional tractable values of M, N.

5.8.1 M =4 Messages, N = 2 Databases

In this example, we show that the achievable rate R(72) does not match the upper
bound C(7y) for all traffic ratios 7. For M = 4, we have M + 1 = 5 corner
points, corresponding to sy = {0, 1,2,3} and another corner point corresponding

to the trivial scheme of downloading the contents of database 1. Let a;,b;, ¢, d;
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denote the randomly permuted symbols of messages Wy, Wy, W3, Wy, respectively.

Then, R(0) = }l by trivially downloading a4, b1, ¢, d; from database 1. In addition,

1
)= i = £ using the symmetric scheme in [12].
2

Corner Point s; = 1:  (See the query table in Table |5.6,) The user uses 1 bit of
side information in database 2, hence the user starts downloading from round 2
(that admits 2-sums). The user exploits the side information generated in round
1 by downloading as + by, as + ¢1, and a4 + d;. The user completes the stage by
downloading undesired symbols consisting of 2-sums that do not include a;, hence
the user downloads by + ¢9, bs + ds, c3 + d3. The undesired symbols are exploited
in database 1, thus the user downloads as + by + co, ag + b3 + do, and a; + c3 + ds.
The user completes the stage by downloading b4 + ¢4 + d4, which can be exploited
in database 2 by downloading ag + by 4+ ¢4 + dy. In this case, the user downloads 8

symbols from database 1 and 7 symbols from database 2, hence we have 7, = 1—75

Since the user downloads L = 8 desired symbols, the achievable rate R(7%) = 1¢.

Table 5.6: The query table for M =4, N = 2, s, = 1 (corresponding to 7 = %)

Database 1 Database 2

ar, by, c1,dy
as + by
as + ¢1
ay + dy
b2 + C2
bs + do
c3 + d3

as + bg + Co

ag + bz + d

ar + c3 + d3

b4 +c4 + d4

ag + b4 + ¢y + d4
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Corner Point s; = 2: (See the query table in Table [5.7)) The user downloads
(]SZ:?) = 2 stages of individual symbols (1-sum) from database 1, so that the user
forms 2-sums that can be used in database 2 as side information to start round 3
directly, i.e., by forming 2-sums as side information from the individual symbols,
the user effectively skips round 2. More specifically, the user downloads as + b + ¢4,
ag + by + dy, as + co + dy from database 2 taking into considerations that all these
undesired symbols are decodable from database 1. The user completes the stage by
downloading b3 + c3 + d3 that can be further exploited in database 1 by downloading
ag + b3 + c3 + ds. In this case, the user downloads 9 symbols from database 1 and
4 symbols from database 2, therefore 7 = %. The user downloads L = 6 desired

symbols, thus, R(14—3) = 1%.

Table 5.7: The query table for M =4, N = 2, s, = 2 (corresponding to 7 = %)

Database 1 Database 2
ai, bla C1, dl
as, b2a Co, d2

as+ b+
as + by + dy
a5+02+d2
b3+03+d3

(I6+b3+03+d3

Corner Point s, = 3: (See the query table in Table [5.8]) In this case, the user
skips rounds 2, 3 and jumps directly to round 4 at database 2. Therefore, the user
downloads as+b1 41 +d; from database 2, which uses b +c¢; +d; as side information
which is decodable from database 1. Thus, we have 75 = %, and the corresponding
rate R(3) = 2.
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Table 5.8: The query table for M =4, N = 2, s, = 3 (corresponding to 7 = %)

Database 1 Database 2
ai, bla C1, dl

a2+b1+61+d1

Comparison with the Upper Bound: The upper bound in Theorem can be

explicitly expressed as:

(
1 3T 1
Z—i_ 42a O<7—2§5
2 4T 1 3
T, 5ST=g§

R(m) < (5.104)

4 4T 3 7
Tt ST S g
8 7 1

[ 157 5 S <3

We observe that for all the corner points of the achievable scheme, the upper and
lower bounds match. However, the upper bound has an extra corner point (g, %)

which is not achievable using time-sharing. This is illustrated in Fig. |5.5

5.8.2 M = 3 Messages, N = 3 Databases

In this example, we show the capacity-achieving scheme for M = 3, N = 3 (the
capacity region is illustrated in Fig. as a function of C'(Ag, A\3)). Let a;,b;,¢;
denote the permuted symbols of messages Wi, Wy, W3, respectively. We show here
only the query tables for achieving non-trivial corner points. In this case, we have
(MJerl

> ) = 10 corner points corresponding to non-decreasing sequences (ng, ny,n2).

For the pair (72, 73) = (0,0), the achievable scheme is the trivial scheme that
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Figure 5.5: Upper and lower bounds for R(7y) for M =4, N = 2.

downloads aq, by, ¢; from the first database only achieving R(0,0) = % For the cor-
ner point (%l, 0), this is exactly the same corner point presented in Section (for
Ay = %) as 73 = 0, which effectively reduces the problem to N = 2 databases. The
achievable scheme for this corner point is illustrated in Table , hence R( }1, 0) =1
For the corner point (%, 0), again this point reduces to 2 databases. The achievable
scheme is given in Table and R(2,0) = 2. For the corner point (3, 3), which is

the symmetric-traffic point, the achievable scheme is the symmetric scheme in [12],

which achieves R(%, %) = %. For the corner point (%,0), we can apply the sym-

metric achievable scheme for N = 2 databases only as 73 = 0 in this case, hence

R(%,0) = 1.

1
2

Now, we focus on the non-trivial corner points. As mentioned previously, the
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pair (sg,$3) is in bijection with the sequence (ng, ni,ng). Therefore, we enumerate

the remaining cases using the pair (sg, s3).

Corner Point (s2,s3) = (0,1): In this case, the user does not use the side infor-
mation generated in database 1 within the initial download of database 2 (s, = 0),
hence the user downloads new individual symbols from database 2. The user uses
1 bit of side information in database 3 in its round of download (round 2). These
side information symbols come from database 1 and database 2. The query table

for this case is shown in Table . In this case, we have (72, 73) = (5%, 15), and the

267

[~

achievable rate is R(%, 1) = 3

w

Table 5.9: The query table for M = 3, N = 3, (s9,s3) = (0,1) (i.e., (12,73) =

(36 73)):

Corner Point (s9, s3) = (0,2):

Database 1 | Database 2 | Database 3
ar, by, c az, by,
(13+b2 Cl5—|—b1 a7—|—b1
ay + Co ag + €1 as + ¢
bz + c3 by + ¢4 bs + ¢5
ag + bg
aip + Co
bﬁ + Cg
Cl11+b4+C4 a14+b3—|—03 a17+b3—i—03
a12+b5+c5 CL15+b5+C5 a18+b4+c4
a13—|—bﬁ+c6 a16+b6—|—c6

The user does not exploit the side information gen-

erated from database 1 in the first round of download at database 2. The user
uses 2 side information symbols simultaneously in the initial round (round 3) of
download at database 3. Note that in round 3 database 3 receives side information
from rounds 1 and 2 of databases 1 and 2. The query table for this case is shown
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in Table [5.10] In this case, we have (73,73) = (5, 2), and the achievable rate is

R(55,5)

9

&l
©o

Table 5.10: The query table for M = 3, N = 3, (s2,53) = (0,2) (i.e., (19,73) =

(55 5)-

Corner Point (s9,s3) = (1,1):
information generated from database 1 in their initial round of download (round
1). The query table for this case is shown in Table |5.11] In this case, we have

(72,73) = (35, 75), and the achievable rate is R(75, 15) = 5.

Wi

187

Database 1 | Database 2 | Database 3
ai, by, c ag, by, ¢
as + b2 as + b1
ay + Co Qg + C1
bs + c3 by + ¢4

CL7+b4+C4 G8+bg+03 a9+b1+01

aio + by + 2

a1 + bg + C3

19 + b4 + Cy

In this case, both databases 2 and 3 exploit the side

9
13

Table 5.11: The query table for M = 3, N = 3, (s9,83) =

(57 13))-
Database 1 | Database 2 | Database 3
ai, b, c
as + by as + by
as + ¢ as + ¢1
b2 + Co bg + c3
a6+62+02 CLg—Fbg-{-Cg a9+bQ+CQ
a7 + by + c3

(1,].) (i.e., (7'2,7'3) =

Corner Point (sy, s3) = (1,2): In this case, database 2 exploits 1 side information in
its initial download (round 2), while database 3 skips to round 3 directly. Database

3 receives side information from the round 1 of database 1 and round 2 of database
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2. The query table for this case is shown in Table |5.12l In this case, we have
(72,73) = (3, 3), and the achievable rate is R(3,3) = 3.

Table 5.12: The query table for M = 3, N = 3, (sq,53) = (1,2) (i.e., (12,73) =
(3:5)):

Database 1 | Database 2 | Database 3
ai, by, ¢
as + by
as + ¢
b2 + Co
(I4‘|‘b2+02 a5+bl+01
Qg + bQ + (&)

Corner Point (s2,s3) = (2,2): Both databases 2 and 3 skip round 1 and 2 of
downloads and go directly to round 3, in which they exploits 2 side information
symbols simultaneously. The query table for this case is shown in Table 5.13] In
this case, we have (73, 73) = (3, 1), and the achievable rate is R(3,1) = 2.

Table 5.13: The query table for M = 3, N = 3, (sq,53) = (2,2) (i.e., (12,73) =
(5:5)):

Database 1 | Database 2 | Database 3
ay, bi,c

ay+bi+c | azs+b+a1

5.9 Conclusions

In this chapter, we introduced the PIR problem under asymmetric traffic constraints

7. We investigated the fundamental limits of this problem by developing the novel

N
1 E'{lv:nl+17n 27]:7:”2+1T7L Zn:nA471+IT”
b d C‘v o . + ny Ty T Thgni
upper bound C(7) = ming, ..y e{1, N} I SR S ESE— — ’
ny " ning nonynaL 1
for some integer sequence {n;}¥, C {1,---, N}*~1. The upper bound generalizes
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the converse proof in [12], which inherently utilizes database symmetry. The upper
bound is a piece-wise affine function in 7. The upper bound implies a strict capacity

loss due to the asymmetric traffic constraints for certain cases. We developed explicit

M+N-1

o ) corner points, and achieved the remaining points by

achievable schemes for (
time-sharing. We described the achievable scheme by means of a system of difference
equations. We explicitly derived the achievable rate for N = 2 and arbitrary M.
We proved that the upper bound and the lower bound exactly match for every 7

for the cases of M =2 and M = 3 for any N.
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CHAPTER 6

Noisy Private Information Retrieval

6.1 Introduction

In this chapter, we consider the problem of noisy private information retrieval
(NPIR) from N non-communicating databases, each storing the same set of M
messages. In this model, the answer strings are not returned through noiseless bit
pipes, but rather through noisy memoryless channels. We aim at characterizing the
PIR capacity for this model as a function of the statistical information measures of
the noisy channels such as entropy and mutual information. We derive a general
upper bound for the retrieval rate in the form of a max-min optimization. We use
the achievable schemes for the PIR problem under asymmetric traffic constraints
and random coding arguments to derive a general lower bound for the retrieval rate.
The upper and lower bounds match for M = 2 and M = 3, for any N, and any noisy
channel. The results imply that separation between channel coding and retrieval is
optimal except for adapting the traffic ratio from the databases. We refer to this as
almost separation.

Next, we consider the private information retrieval problem from multiple
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access channels (MAC-PIR). In MAC-PIR, the database responses reach the user
through a multiple access channel (MAC) that mixes the responses together in a
stochastic way. We show that for the additive MAC and the conjunction/disjunction
MAC, channel coding and retrieval scheme are inseparable unlike in NPIR. We show
that the retrieval scheme depends on the properties of the MAC, in particular on the
linearity aspect. For both cases, we provide schemes that achieve the full capacity
without any loss due to the privacy constraint, which implies that the user can
exploit the nature of the channel to improve privacy. Finally, we show that the full
unconstrained capacity is not always attainable by determining the capacity of the

selection channel.

6.2 System Model

We consider a classical PIR model with N replicated and non-communicating
databases storing M messages. Each database stores the same set of messages
Wi = {Wh,--+ , Wy }. The mth message W, is an L-length binary (without loss
of generality) vector picked uniformly from F%. The messages Wy.js are independent

and identically distributed, i.e.,

H(W,) =L, me{l,-- M} (6.1)

H(Wya) =ML (6.2)

In PIR, a user wants to retrieve a message W, reliably and privately. To that
end, the user submits N queries Q[f}N = {Q[f], e Eﬁ;}, one for each database.
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Since the user does not have any information about the message set in advance, the

queries and the messages are statistically independent,

The nth database responds to Qw with a {¢,-length answer string Al =
(X [17]1’ e ,X}f}tn). The nth answer string is a deterministic function of the mes-

n

sages Wi.,r and the query Qg], hence,
H(AB]’WIMaQB]):Oa nE{177N}7 Ze{lvaM} (64)

In noisy PIR with orthogonal links (NPIR, see Fig. , the user receives
the nth answer string via a discrete memoryless channel (response channel) with a
transition probability p(y,|z,). In this model, the noisy channels are orthogonal,
in the sense that the noisy answer strings do not interact (mix). Thus, the user
yld

i, ). Therefore, we have,

receives a noisy answer string AZ] = (Ynml, S

tn
P (A8 = 1Al = @l ) = T e (6, 16,)  (65)

=1

Consequently, (Wi, %]) — A — A forms a Markov chain. Let us denote the

channel capacity of the nth response channel by C,,, denote,

C, =max I(X,;Y,) (6.6)

p(zn)

219



= oxft o b = e xty L= X
p(yiler) p(yo|z2) p(ynlzn)
[40= ot vl i) A=l vl

Figure 6.1: The noisy PIR (NPIR) problem.

where X,,, Y,, are the single-letter input and output pair for the nth response channel.
Without loss of generality, assume that the channel capacities are ordered such that
Cy > Cy > --- > (Cl, ie., the channel capacities form a non-increasing sequence.
Let C = (C4,---,Cy) be the vector of the channel capacities.

We note that, in general, the user and the databases can agree on suitable
lengths {t,}_, for the answer strings, which may not be equal in general, such

that they maximize the retrieval rate. Let us define the traffic ratio vector = =

(7_17"' aTN) as,

tn
Tn:N—’ nG{l,---,N} (67)

Zj:l tj

To ensure privacy, the queries Q[f:]N should be designed such that the query to

220



the nth database does not reveal any information about ¢. We can write the privacy

constraint as

(QL??AE];WIM) ~ (QELAM,MGM), \V/Zaj S {]-a T 7M} (68)

We note that from privacy constraint and due to the Markov chain
(WLM,QE]) oAl AZ], we may write that (Q%],Ag],fm], Wi, Wing) ~
Q1 AYL AR W), Vije {1,---, M)

In addition, the user should be able to reconstruct the desired message W; by
observing the noisy answer strings zzl[f:]N with arbitrarily small probability of error

P.(L),i.e., P.(L) — 0 as L — oo. Hence, from Fano’s inequality, we have,

HW,|QVy, A <1+ P.(L) - L =o(L) (6.9)

Where%AOasL%oo.

For a fixed traffic ratio vector 7, the retrieval rate R(7,C) is achievable if
there exists a sequence of retrieval schemes, indexed by the message length L, that
satisfy the privacy constraint and the reliability constraint with answer

string lengths {t,}2_, that conform with (6.7), thus,

R(T,C) = lim

L—oo 27]:[:1 tn

(6.10)

Consequently, the retrieval rate R(C) is the supremum of R(7,C) over all
traffic ratio vectors in T = {(r, -+ ,7n) : 7, > 0 Vn, ZTJLI 7, = 1}. The PIR

221



capacity for this model Cpir(C) is given by

CPIR(C) = sup R(C) (611)

where the supermum is over all achievable retrieval schemes.

6.3 Main Results and Discussions on NPIR

In this section, we present the main results of the NPIR problem. The first result

gives an upper bound for the NPIR problem.

Theorem 6.1 (Upper bound) For NPIR with noisy links of capacities C =

(Cy,--+,Cy), the retrieval rate is upper bounded by,

N N
N D= 1 ™Cn Zn:n 41
E: TnCn—l—L—F"'—F M-—1

_ . n=1 ny 125 s

C C)<cC C)=m m 1 —
Pir(C) <Cprr(C) Tg%nie{ll,EN} l—l—nll-i-' . '+1—IM£1TL_
i=1 4

where T = {TITn >0 Vne[l:N], N 7= 1}.

The proof of this upper bound is given in Section [6.4 The second result gives

an achievability scheme for the NPIR problem.

Theorem 6.2 (Lower bound) For NPIR with noisy links of capacities C =
(Cy,--+,Cn), for a monotone non-decreasing sequence n = {n; f\io’l C
{1, N} letny =0, and S = {i > 0 : n; —n;_1 > 0}. Denote y[k] to
be the number of stages of the achievable scheme that downloads k-sums from the
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nth database in one repetition of the scheme, such that ny_1 <n <mny, and { € S.

Let & = Hses\{g} (]\f:f). The number of stages y,[k| is characterized by the following

system of difference equations:

yolk] = (no—1)yolk—1] + Z —nj_1)y;[k—1]
jes\{0}

yi1lk] = (n1—no—1)y[k—1] + Z (nj—mnj-1)y;[k—1]
JjeS\{1}

Yelk] = no&edlk—L—1] + (ng—ng_1—1)ye[k — 1] + Z (nj—nj-1)y;lk—1], €>2
jesS\{¢}

(6.13)

where §[-] is the Kronecker delta function. The initial conditions of (6.13]) are yo[1] =

[Lics (]\s/[:f), and y;[k] = 0 for k < j. Then, the achievable rate corresponding to n

s given by:

> tes Zkle (A;f:ll)yz[k] (ne — ny_q)

R(Il, C) = M (M (614)
2 k=1 (g Jvelk]
ZEES Zn ng_1+1 : é:) :
Consequently, the capacity Cpir(C) is lower bounded by:
> = .
Crir(C) 2 R(C) = B S R(n,C) (6.15)
D es 224:1 (M:ll)?lé [k](ne —n—1)

T e<e< Lna}ég N} SrLy (B yelk] (6.16)

nox-snNpm—1 3 = k

ZZGS Zn ne_1+1 Ch

The proof of this lower bound is given in Section [6.5] We have the following

remarks.
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Remark 6.1 The upper and lower bounds for the retrieval rate are similar to the
corresponding bounds for the PIR-WTC-II problem [12])] after replacing the secrecy
capacity of WTC-1I, 1 — u,,, with the capacity of the noisy link C,,. Thus, the NPIR

problem inherits all the structural remarks of the PIR-WTC-II problem.

Remark 6.2 The upper and lower bounds for the retrieval rate do not depend explic-
itly on the transition probabilities of the noisy channels p(y,|z,), but rather depend

on the capacities of the noisy channels C,,.

Remark 6.3 Theorem and Theorem imply that the channel coding needed
for combating channel errors is “almost seperable” from the retrieval scheme. The
channel coding problem and the retrieval problem are coupled only through agreeing
on a traffic ratio vector T. Other than T, the channel coding acts as an outer code
for the responses of the databases to the user queries. Interestingly, the result implies
that our schemes work even for heterogeneous channels, e.g., if N = 2, the channel

from one database can be a BSC, and the channel from the other database can be a

BEC.

Remark 6.4 Our results imply that randomized strategies for PIR cannot increase
the retrieval rate. We can view the noisy channel between the user and the database
as a randomizer for the actions of the databases, which is available to the databases
but not available to the user. Since the capacity expression does not depend on
P(Ynlxn) and is always mazimized by C, = 1, any randomizing strateqy p(yn|Tn)

cannot enhance the retrieval rate.
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Corollary 6.1 (Exact capacity for M = 2 and M = 3 messages) For NPIR,

the capacity Cpir(C) for M = 2,3, and an arbitrary N is given by:

non R
maxno,n1€{1 N} Zno n0+1izl ng M - 2
Cpir(C)= nenott Cn
noning _
max M =3
no,n1,n2€{1l, N} ST, n0"1+”0+1 o ”on1+no S N O
(6.17)

The proof of Corollary follows from the optimality of the PIR-WTC-II
scheme in [124] for M = 2 and M = 3 messages by replacing 1 — p,, by C,,.
Example: The capacity for NPIR from BSC(p;), BSC(p2), N =2, M = 3:
To show how Theorem [6.1]reduces to Corollary [6.1]for M = 3, we apply Theorem
to the case of M =3, N = 2, and the links to the user are BSC(p;), and BSC(p,).
From Theorem [6.1} we can write the upper bound for the achievable retrieval rate

as:

TnCn ZN: 1TnCn
TnC _I_ n n1+1 _I_ n=no-+
R(C) < max min Zomt - m (6.18)
T€T n;e{1,2} I+~ +

nin2

where C,, =1 — H(p,).
By observing 7, = 1 — 77 and the fact that C, is monotonically decreasing
in p, for p, € (0, 2) (which implies that p; < py satisfies C; > C5), (6 can be

explicitly written as the following linear program:

max R
72,R
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st RS 3(1=Hipo)+ (L= Hipm) - 301 - How)|

R <20 Ho) + 50— How) - 30 - 1) |
RS20 Hip)+ [0~ Hlpm) ~ 20~ Hip)
Osm<l (6.19)

The bound corresponding to n; = 2, ny = 1 is inactive for all values of (p;, p2). Since

(6.19) is a linear program, its solution resides at the corner points of the feasible
region. The first corner point occurs at 72(1) = 0, which corresponds to the upper

bound R < %@1). The second corner point is at the intersection of the first two

constraints, i.e.,

30— HO) + (= Hpw) = 30 - 1) | 7

= 20— Hlpw) + |50 Hm) - 30— H)| 7

(6.20)

which leads to,

@) _ 1—H(p1)
> = 3= Hp)) + (L= H () (6.21)

which corresponds to the upper bound R < —5—2——. Similarly, by observing

1-H(py) ' 1-H(p2)

the intersection between the last two constraints, we have the following upper bound

R < ——34 which is achieved at 72(3) = I H:()’](Dl)_)i[é’(’i)_)H(m)).

3
T—HGD T T-Ho)

Consequently,
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Figure 6.2: Partitions of (p1,p2) space according to retrieval rate expression for
M =3 N=2.

an explicit upper bound for the retrieval rate is:

3 1
3 THGp) T~ T-H@s) 1T-Hp) T 1-H{s)

1-H 2 4
Rgmax{ (p1). — . } (6.22)

In Section [6.5.1, we will show how these rates can be achieved, hence (6.22)) is
the exact capacity. This capacity result is illustrated in Fig. The figure shows

the partitioning of the (p1, p2) (by convention p; < py) space according to the active

capacity expression. When the ratio 2 < ng U < 3, Cpr(p1,p2) = —= i —.

1-H(py) ' 1-H(p2)

When the ratio HE’”) 2, Opir(p1, p2) = —5———5—, otherwise, Cprr(p1, p2) =
p2) T=H(py) T T-H(pz)

%(m)' Interestingly, Fig. shows that the dominant strategy for most (pi,p2)
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Figure 6.3: Capacity function Cpgr(p1,pe) for M =3, N = 2.

pairs is to rely only on database 1 for the retrieval process. The capacity function
Cpir(p1, p2) is shown in Fig. [6.3] The figure shows that the maximum value for the
capacity is Cpir(0,0) = %, which is consistent with . The figure also shows that
Cpir(0.5,0.5) = 0, as the answer strings become independent of the user queries.
We observe that Cpir(0,p2) = 3 for p, > H(%) = 0.1737, since the retrieval is

performed only from database 1, which is connected to the user via a noiseless link.

Remark 6.5 We will show in Section[6.5 that channel coding and retrieval schemes
for NPIR are almost separable. Nevertheless, the final capacity expression couples
the capacity of the noisy channels and the retrieval rates from databases with noise-

less links in a non-trivial way. We illustrate the capacity expression in (6.22)) by
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+ + +
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PIR = 3 1—H(py) ' 1-H(p2) T—H(py) ' 1-H(p2)

Figure 6.4: Circuit analogy for the capacity expression of PIR from BSC(p,),
BSC(p2).

means of circuit theory analogy in Fig.[0.4] The current from the current source rep-
resents the number of desired bits, the voltage across the current source corresponds
to the achievable retrieval rate, and the channel effect of the link connected to the nth
database is abstracted via a parallel resistor, whose value depends on the capacity of
the channel and the total download from the nth database. Intuitively, to mazximize
the retrieval rate, the user chooses one of the three circuits in Fig.[6.4 The circuits
are arranged ascendingly in the number of the desired bits (namely, 1, 2, 4 bits),
while the values of the resistors decrease, as the total download increases and/or due
to adding extra parallel branch. This results in a tension between conveying more de-
sired bits and decreasing the equivalent resistor of the circuit. The capacity-achieving
scheme is the one which maximizes the product of these contradictory effects (i.e.,

the wvoltage).

6.4 Converse Proof for NPIR

In this section, we derive a general upper bound for the NPIR problem. The main
idea of the converse hinges on the fact that the traffic from the databases should be
dependent on the relative channel qualities (i.e., channel capacities) of the response
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channels. Thus, we extend the converse proof in Chapter [5| to account for the noisy
observations.

We will need the following lemma, which characterizes the channel effect on
the noisy answer strings. The lemma states that the remaining uncertainty on a
subset of answer strings after revealing the queries and the message set is a sum of
single-letter conditional entropies of the noisy channels over the lengths of the answer
strings. The lemma is a consequence of the Markov chain (Wi, Qm,, flmfl) —

Al Al

Lemma 6.1 (Channel effect) For any subset S C {1,--- N} for all m €

{1,---, M}, the remaining uncertainty on the noisy answer strings A?’] given

(Whaar, Q1y) is given by,

H(AF Wiar, Q%) = Z H (v xlm (6.23)

neS =1

Furthermore, (6.23)) is true if conditioned on the complementary subset of the noisy

answer strings flgn], i.€.,
H(Agn”Wl:M,Q[ﬂn]lmA[m] Z Z H(ymxn (6.24)

nes 'r]n_l

where S = {1,--- ,N}\ S.
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Proof: We start with the left hand side of (6.23]),

HAZ W, Qi) = > H(AMAT | Wi, Q1) (6.25)
nes
nes
=" H(AM| Al (6.27)
nes
LSS HE X v ) (6as)
nes 77n_1
@y Z H(Ym X[ (6.29)
nes Mn= 1

where follows from the fact that AM™ is a deterministic function of
(WLM,QW), follows from the fact that (Wl:M,Q[lm]]V,A[f’;] ) = — Al AL
is a Markov chain, follows from the fact that the channel is memoryless.
The  proof of (6.24) follows similarly by  observing that
(Wi, Q[lmll,, A[f?j}_l, Agn]) — AlM — A" is a Markov chain as well. W
We need the following lemma which upper bounds the mutual information
between the noisy answer strings and the interfering messages with a linear function

of the channel capacities.

Lemma 6.2 (Noisy interference bound) For NPIR, the mutual information be-
tween the interfering messages Wo.p; and the noisy answer strings A[ll]N given the

desired message Wy is upper bounded by,

J(WQM, m Al ) ZtC’ ~L+o(L) (6.30)
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Proof: We start with the left hand side of (6.30]),

[<W2M7 1N7 ’Wl)

62, <W2:M;W1, 1N,A51N> (6.31)
_] (WQM, AU >+I<W2M,W1|Q1N,A ) (6.32)
21 (Waar QU AL ) + ol (6:3)
D1 (Waar ALNIQLY ) + o(1) (6.34)
=H (ANIQEN) — H (AW, QL) +o(2) (6.:35)

=H (A[ll}N|Q[11]N) - H (A[11N7W1|W2 M, 1]1\7)

+ H (Wi Waar, Qflh, ALy ) + (L) (6.36)

< i (AlLIQLN) = H (AN, WaWaur, QL ) +o(L) (6.37)

H (A[ll:}N|Q[11:]N>_H <W1|W2:M, [11}N>_H (A[ll;}N|W1:M, H >+0(L)

(6.38)

N tn
<N S [HEM)-HEL XN )]~ L+o(L) (6.39)

n=1n,=1

N tn

:Z Z (X Yah,) = L+o(L) (6.40)

]; —
< Z nCn — L+ O(L) (6.41)

3
Il
—

where (| - ) follows from the independence of the messages, - ) follow
from the decodability of W; given (Q[ll}N,le[ll]N), (6.34) follows from the indepen-
dence of (Wa. M,Ql ), (6:39) follows from the independence of (W, W, M,Q[l] ),

Lemma, , and the fact that conditioning cannot increase entropy, (6.41)) follows

232



from the fact that I (me}n; YJTZL) < (), by the definition of the nth channel capac-
ity. l

Finally, in order to capture the recursive structure of the problem in terms of
the messages and to express the potential asymmetry of the optimal scheme, we will
need the following lemma, which inductively lower bounds the mutual information
term in Lemmal6.2] The lemma implies that n,,_; databases can apply a symmetric
scheme when the retrieval problem is reduced to retrieving message W,,_; from the
set of W,,,_1.,s messages. For the remaining answer strings, we directly bound them

by their corresponding length of the unobserved portion Z t,Ch.

n=nm—1+1

Lemma 6.3 (Noisy induction lemma) For all m € {2,..., M} and for an ar-
bitrary n,—, € {1,---, N}, the mutual information term in Lemma can be

inductively lower bounded as,

f( Wonears Qe s A W 1>

1 m TIm ( )
Z N1 I (Wm-i-l:M; Q[l:]lﬁ A[1137|W1m> <L Z jlc > N1
(6.42)
Proof: We start with the left hand side of (6.42)) after multiplying by n,, 1,
Nim—1 I ( m:M; Q[lmN ! A[m 1]H/Vl m— 1)
2 Nm—1 I (WmMa Q[lr:):;nl_]la 177:1m1] 1 |W1 m— 1) (643>
Nm—1
2 Z I (WmMa anil]aleznil]ywlszl> (644)
n=1
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Nm—1
= Z (Wonear: AL QU Wi ) (6.46)
= (AWQW,WLm—l) — H (A1QL, Wi ) (6.47)
1
Nm—1
> Z H(ALZ [1723 17anm s Wi 1) - (A[m]|A1n 17Q[17?;03m,17W1:M>
n=1
(6.48)
= 3 1 (Waars ATATL QU Wi ) (6.49)
n=1
=1 (Wm M5 A[{ﬂ — 1’Q[1733m—1’ Wl:m—1> (650)
6.3) m
' I( m:M;Q[l:n]m_la lnm 1|W1m 1) (651)
©3), 64 " -
: [ (Wm:M;Q[l;Na [ ] |W1m 1>
-1 (Wm:M; Am_lJrl:N’Q[lleh A[l?gm_la Wl:mfl) (652)
=71 (WmMaQ[lmAva[lm]lAWlm—l) - (Am 1+11N|Q[1m]JJ7A[1m73m 17W1:m—1>
(A[m] 141 N|Q1 N,A[ﬁlm 1aW1:M> (6.53)
m Alm
= 1 (Waar; Q% AT Wi 1)

N tn
— > D HEE) "X )] (6.54)

n=nm—1+1np=1

m 1Tim
2 I (WmM>Wm7 [1;]l77A[1;]1/|W1:m71) - Z Z X7[1Tr7z7] s 7”7 ) — O(L)

n=nm—1+1np=1

=1 (Wm:M; Wm|W1:m—1) + 1 (Wm:M§ Q[lmjlfa A[1m11/|W1m>

tn

- Z >V —o(L) (6.56)

n=nm—1+1 =1
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=1 (Wm+1:M;Q[1m]1IJA[m] Wi, m) (L - Z Z I( nnn7Y7£TZ])> —o(L)

n=nm—1+t,=1

(6.57)

2]<Wm+1:M; bl A 1y, ) (L— 3 tnCn) —o(L) (6.58)

n=nm—1+1

where , follow from the non-negativity of mutual information, (|6.45|)
follows from the privacy constraint, follows from the independence of
(Wm:M, Zn ]>, follows from the fact that conditioning cannot increase en-
tropy and from the fact that (Wi.yy, Qmmfl, Am_l) — (Wi, [m ]) — A" forms
a Markov chain, follows from the independence of the messages and the
queries, follows from the chain rule, the independence of the queries and the
messages, and the fact that Q[m] — Qmm_l — flmm_l forms a Markov chain by
, follows from the fact that conditioning reduces entropy and Lemma ,
follows from the reliability constraint, follows from the definition of the
channel capacity. Finally, dividing both sides by n,,_; leads to . [

Now, we are ready to derive an explicit upper bound for the retrieval rate
from noisy channels. Fixing the length of the nth answer string to ¢, and apply-

M—1

ing Lemma and Lemma successively for an arbitrary sequence {n;};2;" C

{1,---, N}M~1 we have the following,

N
n=1

(16.30) . ~[1
1 (Waar: Q1. AL 7) (6.59)
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6.42 1
> (L Zt C ) 1 (W&M; 1N,A[12N|W12) (6.60)
n=ni+1 1
@42 q
> — Z t,C. Z taC. )
i ( n=ni+1 ) n1n2< n=nz+1
1
> .
1
> t
> ( Z C) nm( ZtC)
n=n1+1 n=ng+1
1 N
+ot e (L= ) G (6.62)

where 6(L) = (1 el SRR ﬁ) o(L), (6.59) follows from Lemma ,

and the remaining bounding steps follow from successive application of Lemma |6.3]

Ordering terms, we have,

<1+i+ ! +~~+%>L§(9(0)+9(n1)+---+%)Ztn+6@)

n=1

(6.63)

where 6(¢) = ZLZH 7.Ch
We conclude the proof by taking L — oo. Thus, for an arbitrary sequence

{n}M71) we have

L 6(0) + Q%) - —i?;ﬁ oot g
RO =S = T (6.64)
anl tn + + mins + o+ HI\iIl -

Finally, we get the tightest bound by minimizing over the sequence {ni}f\il_l over
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the set {1,--- N}, as

0(0) + a4 Sn2) oy g o))

M—1
. ny ninz =1 i
pr < min - 1 1;[1_1 i (6.65)
n;€{1;-4N} + ny + ning Tt m
N
ZN o ZQ’:MJFI TnChn + Zg:nngl TnCn 4+ 4 Zn:nM*l+l e
. n=1Tnbn ni mnz 1=,
= min Ly 1 )
n;€{1;--N} 1+ ny + ning T HMT”
i=1

(6.66)

The user and the databases can agree on a traffic ratio vector 7 € T =
{(r1,-++,7n) 1 7w > 0¥n, 2N 7, = 1} that maximizes R(, C), hence the retrieval

rate R(C) is upper bounded by,

R(C)<max R(r,C) o
N S 11 ™Chr PO 11 ™Chn iLV:nM—l“ nCn
. Zn:l TnCn+ lnl + n21n2 o 125 ns
—Imax min
7€T n;e{l,,N} 1+n_11+n11n2+. s @

(6.68)

6.5 Achievability Proof for NPIR

In this section, we present the achievability proof for the NPIR problem. We show
that by means of the random coding argument, each database can independently
encode its response such that the probability of error can be made vanishingly

small. The databases use the uncoded responses as an indexing mechanism for
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choosing codewords from a randomly generated codebook. The uncoded responses,
which are the truthful responses to the user queries, vary in length to maximize the
retrieval rate. The query structure builds on the achievability proofs for PIR under

asymmetric traffic constraints [125].

6.5.1 Motivating Example: M = 3, N = 2, via BSC(p;), BSC(p2)

We illustrate the retrieval scheme for N = 2 databases, M = 3 messages when the
answer strings pass through BSC(p;) and BSC(py). We show that the channel coding
(using linear block codes) is almost separable from the retrieval scheme (which hinges
on the result of [125]). We begin with the case when (p1,ps) = (0.1,0.2), then we
extend this technique for all (py, p2) pairs. We will need the following lemma, which
shows the achievability of Shannon’s channel coding theorem for BSC using linear

block codes [122] Theorem 4.17, Corollary 4.18].

Lemma 6.4 (Shannon’s coding theorem for BSC [122]) For BSC(p) with

crossover probability p € (0,3). Let n, k be integers such that R = % <1-H(p),

and let E¢[P.(C)] denote the expected probability of error P.(C) calculated over all

linear [n, k] codes C, assuming a nearest-codeword decoder. Then,

Ec[P.(C)] < 2- 2 "APR) (6.69)

for some A(p, R) > 0. Moreover, for all p € (0,1], all but less than p of the linear
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[n, k] codes satisfy,

2
P.(C) < = -2 "A®R) (6.70)
P

The result implies that as long as the rate of the linear [n, k| code is strictly less
than the capacity, then there exists a linear [n, k] code with exponentially decreasing

probability of error in n with high probability.

6.5.1.1 Achievable Scheme for BSC(0.1), BSC(0.2)

Now, we focus on the case when (py, p2) = (0.1,0.2). Using the explicit upper bound

in (6.22)), we infer that R < —r—2—5— which is 0.2183 for p; = 0.1, p, = 0.2.

1-H(py) ' 1-H(p2)

3) 3(1—H(p1))

To operate at 7, = 7,77 = A B0-men) Ve enforce the ratio between the

uncoded traffic, i.e., before channel coding, to be 4 : 3. This results in coded traffic

4 . 3
H(p1) ~ 1-H(p2)’

ratio of — which appears in the denominator of the upper bound.
Concurrently, this results in retrieving 4 desired bits per scheme repetition, which
appears in the numerator.

To that end, the user repeats the following retrieval scheme for v times. Each
repetition of the scheme operates over blocks of L* = 4 bits from all messages
Wi.3. The user permutes the indices of the bits of each message independently and
uniformly. Let a;(j), b;(j), ¢i(j) denote the ith bit of block j from the permuted
message Wy, Wy, Wjs, respectively. Assume without loss of generality that the

desired file is Wj. In block j, the user requests to download a single bit from each

message from database 1, i.e., the user requests to download a;(j), b1(j), and ¢;1(5)
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from database 1. From database 2, the user exploits the side information generated
from database 1 by requesting to download the sums as(j) + b1(j), as(j) + c1(4),
and bo(j) + co(j). Finally, the user exploits the side information generated from
database 1 by downloading a4(j) + b2(j) + c2(j) from database 2. The query table
for the jth block is summarized in Table Denote the number of uncoded bits
requested from the nth database by D,,, then D; = 4, D, = 3. This guarantees
that the ratio between the uncoded traffic is 4 : 3 (for any number of repetitions
v). This query structure is private, as all combinations of the sums are included
in the queries and the indices of the message bits are uniformly and independently
permuted for each block of messages (which operate on different set of bits), the

privacy constraint is satisfied.

Table 6.1: The query table for the jth block of M =3, N =2, p; = 0.1, p, = 0.2.

Database 1 Database 2
a(j) az(j) + b1(4)
b1(7) az(j) + c1(4)
c1(4) ba(j) + c2(j)

as(j) + ba(j) + c2(j)

After receiving the queries of the user, the nth database concatenates the

uncoded binary answer strings into a vector Ul of length vD,,, i.e.,

UM =[a;(1) bi(1) cr(1) ag(1) + bo(1) + (1)
a (V) bi(v) a(v) as(v)+bo(v) + co(v)]" (6.71)
U =[ax(1) +0:1(1)  as(1) +cr(1) ba(1) + 2(1)

as(V) + by (v) as(v) +ci(v) bo(v) + ca(v)]F (6.72)
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The nth database encodes the vector UL to a coded answer string Al of length

t, using a (t,,vD,,) linear block code (which belongs to the set of good codes that

satisfy (6.70])) such that:

tn = [#D?(Lm)w (6.73)

This ensures that % < 1— H(p,). The nth database responds with A via the
noisy channel BSC(p,,). The user receives the noisy answer string A" from the nth
database.

To perform the decoding, the user employs the nearest-codeword decoder to
find an estimate of Al based on the observation Al Since % < 1— H(pn),

using Lemma [6.4] and the union bound, the probability of error in decoding is upper

bounded by:

Pe(L) < Pe(Cr) + Pe(Co) (6.74)

2*t1A<P17%) + 2*152A<p27%> (675)

N

As v — oo, L — o0 and t, — oo, we have P,(L) — 0. This ensures the
decodability of Ug] with high probability. Since the vectors Ulm, U2[2] are designed to
exploit the side information, the user can cancel the effect of the undesired messages
and be left only with the correct W, with probability of error P,(L). This satisfies
the reliability constraint.

Finally, we calculate the achievable retrieval rate. The retrieval scheme de-
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codes L = vL* = 4v bits from the desired messages. The retrieval scheme downloads

t, = {%-‘ bits from the nth database, hence as v — oo, we have

L
R— (6.76)
t1 + 1o
vL*
= — 5 s (6.77)
1-H(p1) 1-H(p2)
4
= 1 3 = 0.2183 (6.78)

1-H(p1) + 1-H(p2)

which matches the upper bound.

6.5.1.2 Achieving the Upper Bound for Arbitrary (p1,p2)

Now, we show that the upper bound in (6.22)) is achievable for any (p;,p2). The
idea is to design the uncoded response vectors Ulm, UQ[Q} such that the ratio of their
traffic matches one of the corner points of the PIR problem under asymmetric traffic

constraints as in Chapter [3]

For R = %@1): For this rate, the user requests to download from database 1
only and does not access database 2. Thus, the user downloads all the contents
of database 1 to satisfy the privacy constraint. Specifically, the user downloads

a1(j),b1(j),c1(j) at the jth block of the retrieval process. Database 1 encodes the

responses Ulm into t;-length answer string using (¢1,vD;), where D; = 3, and t; =

[17’}[[)(;1)—‘ . The user decodes v desired symbols from v repetitions with vanishingly

small probability of error. Consequently, R = %(pl).
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For R = —5—2——: For this rate, the user designs the queries such that the
T=HpD T T=H(p2)

traffic ratio between the uncoded responses is 3 : 1. Thus, in the jth block, the user

requests to download one bit from each message, i.e., the user requests to download

a1(7),01(j),c1(y) from database 1. The user mixes the undesired information ob-

tained from database 1 into one combined symbol by (j) -+ ¢1(j) and uses this symbol

as a side information in database 2 by requesting to download as(j) + b1(j) + ¢1(J)-

The query table for the jth block of the scheme is depicted in Table [6.2]

Table 6.2: The query table for the jth block of M = 3, N = 2 to achieve R =
2

3 T
1*H(:D1)+1*H(P2)

Database 1 Database 2
a1(7),01(7), c1(4) | a2(j) + b1(4) + 1 ()

After repeating the retrieval process v times, database 1 encodes the responses
using a linear (t1,vD;) = q%-‘ ,31/) code, while database 2 encodes its re-
sponses using a linear (ty,vDs) = ([#@2)—‘ ,1/) code. Using Lemma 4, the user
can decode the correct W; with vanishingly small probability of error. The user

decodes L = 2v bits from W7, hence, as v — oo

L 2
R= = — : (6.79)
bt —HG) T T-H()
For R = —4—2%——: An instance for this scheme is the (p1,p2) = (0.1,0.2)

1-H(py) ' 1-H(p2)

example. Please refer to Section [6.5.1.1] for the details.

Therefore, the capacity of the PIR problem from BSC(p;), BSC(ps) is given

243



by:

1-H 2
Cpr(p1, p2) = max { 3 (p1)7 3 T 1 3 } (6.80)

1-H(p1) + 1-H(p2) 1-H(p1) 1-H(p2)

SRS

6.5.2 General Achievable Scheme

In this section, we present a general achievable scheme for the NPIR problem. The
main idea of the scheme is to use the uncoded response from the nth database to
user’s query as an index for choosing the transmitted codeword from a codebook
generated according to the optimal probability distribution. The query structure
maps to one of the corner points of PIR under asymmetric traffic constraints [125]
in order to maximize the retrieval rate.

Following the notations in [125], we denote the number of side information
symbols that are used simultaneously in the initial round of downloads at the nth
database by s, € {0,1,--- M — 1}, e.g., if s, = 1, then the user requests to
download a sum of 1 desired symbol and 1 undesired symbol as a side information
in the form of a + b, a + ¢, ... etc., while s, = 2 implies that the user mixes every
two undesired symbols to form one side information symbol, i.e., the user requests
to download a + b+ ¢, a + c+ d, ... etc. For a given non-decreasing sequence
{n M5t < {1,--- ,N}M | the databases are divided into groups, such that group
0 contains database 1 through database ng, group 1 contains n; — ny databases
starting from database ng + 1, and so on.

Hence, let s, = ¢ for all n;_y +1 < n < n; with n_y = 0 by convention.
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Denote § = {i : s, = i for somen € {1,--- ,N}}. We follow the round and stage
definitions in [123]. The kth round is the download queries that admit a sum of
k different messages (k-sum in [12]). A stage of the kth round is a query block of
the kth round that exhausts all (%) combinations of the k-sum. Denote y,[k] to
be the number of stages in round k£ downloaded from the nth database, such that
ne—1 +1 < n < ny Our scheme is repeated for v repetitions. Each repetition has
the same query structure and operates over a block of message symbols of length
L*. Denote the total requested symbols from the nth database in one repetition of

the scheme by D,,(n). The details of the achievable scheme are as follows:

1. Codebook construction:  According to the optimal probability distribu-
tion p*(x,) (that maximizes the mutual information 1(X,;Y,)), the
nth database constructs a (2”D"(“),tn(n)) codebook C, at random, i.e.,

P(Tp1,  Tnam)) = H;’;g P*(Tnp, ). Specifically, the codebook C,, can be

written as:
xl(l) x2(1) xtn(n)(l)
Cn = (6.81)
xl(QVDn(n)) x2(2VDn(n)) o (n)<2an(n))
L n Jd ovDn(n) Xty (n)
where

ta(n) = [”D ”(“)W (6.82)
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vDy (n)

This ensures that the rate of C,, T ()

< (), to ensure reliable transmission

over the noisy channel. The nth database reveals the codebook C,, to the user.

. Initialization at the user side: The user permutes each message independently

and uniformly using a random interleaver, i.e.,

wn(i) = Wi (mm(i)), i€ {1,--- L} (6.83)

where w,,(7) is the ith symbol of the permuted W,,, m,(:) is a random in-
terleaver for the mth message that is chosen independently, uniformly, and

privately at the user’s side.

. Initial download: From the nth database where 1 < n < ng, the user requests

to download [[, ¢ (M 712) symbols from the desired message. The user sets

S—

the round index k£ = 1. l.e., the user requests the desired symbols from

Yo[l] = [Les (V77) different stages.

. Message symmetry: To satisfy the privacy constraint, for each stage initiated

in the previous step, the user completes the stage by requesting the remaining

(Mfl

kfl) k-sum combinations that do not include the desired symbols, in par-

M-2

s—l) individual symbols from each

ticular, if & = 1, the user requests [ ], ¢ (

undesired message.

. Database symmetry: We divide the databases into groups. Group ¢ € S
corresponds to databases n,_1 41 to ny. Database symmetry is applied within
each group only. Consequently, the user repeats step 2 over each group of
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10.

databases, in particular, if k¥ = 1, the user downloads [, ¢ (]\f__f) individual

symbols from each message from the first ny databases (group 1).

Ezxploitation of side information: The undesired symbols downloaded within
the kth round (the k-sums that do not include the desired message) are used as
side information in the (k + 1)th round. This exploitation of side information
is performed by requesting to download (k + 1)-sum consisting of 1 desired
symbol and a k-sum of undesired symbols only that were generated in the kth
round. Note that for the nth database, if s,, > k, then this database does not
exploit the side information generated in the kth round. Consequently, the nth
database belonging to the fth group exploits the side information generated in
the kth round from all databases except itself if s,, < k. Moreover, for s, = k,
extra side information can be used in the nth database. This is due to the fact
that the user can form ng [] . S\{sn} (]Z[:f) extra stages of side information by
constructing k-sums of the undesired symbols in round 1 from the databases

in group 0.
Repeat steps 4, 5, 6 after setting &k = k + 1 until £k = M.
Repetition of the scheme: Repeat steps 3,---,7 for a total of v repetitions.

Shuffling the order of the queries: By shuffling the order of the queries uni-
formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

Encoding the responses to the user’s queries: The nth database responds to
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the user queries truthfully. The nth database concatenates all the responses to
the user’s queries in a vector Ul of length vD,,(n). The nth database uses Ul
as an index for choosing a codeword from C,, i.e., the index of the codeword
and U} should be in bijection (e.g., by transforming U into a decimal value).

Consequently, the nth database responds with,

Al =) U)o wmU)T (6.84)

6.5.3 Privacy, Reliability, and Achievable Rate

Privacy: The privacy of the scheme follows from the privacy of the inherent PIR
scheme under asymmetric traffic constraints. Specifically, for every stage of the kth
round initiated, all (A,f ) combinations of the k-sum are included at each round. Thus,
the structure of the queries is the same for any desired message at any repetition
of the achievable scheme. Due to the random and independent permutation of each
message and the random shuffling of the order of the queries, all queries are equally

likely independent of the desired message index, and thus the privacy constraint in

is guaranteed.

Reliability: The user employs joint typicality decoder for every noisy answer string

Al to decode the codeword index. From the channel coding theorem [47, The-

vDy, (n)

. < Ch, there exists a sequence of (2vPn(®) ¢, (n))

orem 7.7.1], for every rate

with maximum probability of error P,(C,) — 0 ast,(n) — oo. By letting v — oo, we

vDy(n)

have t,(n) — oo, e

< C,, and hence we ensure the existence of a good code such
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that P.(C,) — 0. By union bound, the probability of error in decoding the indices
of the codewords from every database is upper bounded by P, < Zgil P.(C,) — 0.

Since the index of the codeword is bijective to U,[f], the probability of error
in decoding Ul for n = 1,---, N is vanishingly small. Now, by construction of
the queries as in [125], all side information symbols used in the (k + 1)th round
are decodable in the kth round or from round 1, the user cancels out these side
information and is left with symbols from the desired message. Consequently, there

is no error in the decoding given that Ur[ﬂ is correct for every n.

Achievable Rate: The structure of one repetition of our scheme is exactly as [125].
The recursive structure is described using the following system of difference equa-
tions that relate the number of stages in the databases belonging to a specific group

as shown in [125, Theorem 2]:

yolk] = (no—1D)yolk—1] + Z —n,_1)y;lk—1]
jes\{o}
yilk] = (ni—no—1D)y [k—1] + Z (nj—mnj_1)y;[k—1]
jes\{1}

yelk) = no&udlk—C—1] + (ng=ne = Dyelk — 11+ D (nj—n;1)y;[k—1], £>2
jeS\{4}

(6.85)

where yy[k] is the number of stages in the kth round in a database belonging to the
(th group, i.e., for the nth database, such that n,_; +1 < n < n,.

To calculate D,,(n) where n,—; < n < n,, we note that for any stage in the kth
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round, the user downloads (1\21_—11) desired symbols from a total of (]I\f ) downloads.

Therefore,

MM
= kz:; (k: )ye[k?L ne—1 <n < ny (6.86)

Thus, the total download 25:1 t,(n) from all databases from all repetitions

is calculated by observing ((6.82)) and ignoring the ceiling operator as v — oo,

étn(n) = an VDC"§H> (6.87)
_, ZZ“ Z Zkl Julkl (6.88)

n=ng+1

s z“ welk) 659

LeS n=ny_1+1

Furthermore, the total desired symbols from all databases from all repetitions is

given by,

_, f: (1\; __11) el (ne — me_s) (6.90)

leS k=1

Consequently, the following rate is achievable corresponding to the sequence n,

> tes 224:1 (]I\:[—_ll)yf[k] (¢ — np-1)

R(n,C) =
7 Srly () welk)
ZZGS Zn =ng_1+1 - 1é:)

(6.91)

Since this scheme is achievable for every monotone non-decreasing sequence
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n = {n;}M;*, the following rate is achievable,

R(C) = max 2563 D k-1 (Alj—_ll)yf[k] (ne —ne_1)

no<-<npr—1€{1,-- ,N} Z an POy (i{>y‘~’[k]
eS TL:TLg71+1 Cn

(6.92)

6.6 PIR from Multiple Access Channel

In this section, we consider the MAC-PIR problem. This problem is an extension
of the NPIR model presented in Section [6.2] which consists of N non-colluding and
replicated databases storing M messages. In MAC-PIR (see Fig. , the user sends
a query Q,[i] for the nth database to retrieve W; privately and correctly. The nth
database responds with an answer string Al = (X,[f}l, e ,Xﬂt). The user receives
a noisy observation Al = (Yl[i], e ,Y;m), where the responses of the databases

(A[li],A[Qﬂ, e ,AE@) pass through a discrete memoryless channel with a transition

probability distribution p(y|xy,--- ,zn), i.e.,

t

P </~1[i]|A[11]7 AU ’Ag@ ~1I» (ygum[f}n, U ,;CE’V]W> (6.93)

n=1

In this sense, the retrieval is performed via a cooperative multiple access chan-
nel, as the databases cooperate to convey the message W; to a common receiver (the
user). The full cooperation is realized via the user queries. Furthermore, in MAC-
PIR, the database responses are mixed together to have the noisy observation Al
in contrast to the noisy PIR problem with orthogonal links presented in Section [6.2]

In MAC-PIR, the user should be able to reconstruct W; with vanishingly small
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Al = (v vl
L ow ]

Figure 6.5: The MAC-PIR problem.

probability of error by observing the noisy and mixed output Al i.e., the reliability

constraint is written as:

H(Wi|Q1ly, A) < o(L) (6.94)

and the privacy constraint is written as:

We observe that the main difference between (6.95) and is that we cannot
claim that A ~ AU in the MAC-PIR problem. This is due to the fact that the

user cannot statistically differentiate between the responses corresponding to each
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message and hence the user cannot decode the desired message. This is in contrast
to the NPIR problem with orthogonal links, where All ~ AUl due to the Markov
chain (W7y.py, %]) — Al Al

The retrieval rate for the MAC-PIR is given by:

(6.96)

~+ |

and the MAC-PIR capacity is Cpir = sup R over all retrieval schemes. We note
that, without loss of generality, we can assume that all responses from the databases
have the same length ¢ in contrast to the NPIR problem with orthogonal links. The
reason is that the retrieval rate depends only on the output of the channel and not
on the individual responses of the databases. Hence, even if the database responses
are different in lengths, we can choose t = max,c[n) t, by appending the remaining
responses by dummy symbols.

In the sequel, we discuss the issue of separability of channel coding and the in-
formation retrieval in MAC-PIR via some examples. Interestingly, we show that the
optimal PIR scheme for the additive MAC and logic conjunction/disjunction MAC,
the channel coding and the retrieval scheme are dependent on the channel transition

probability, and hence channel coding and retrieval procedure are inseparable.

6.6.1 Additive MAC

In the first special case, we consider the additive MAC. In the additive MAC, at

each time instant 7, the responses of the databases are added together (in modulo-
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2) in addition to a random variable Z, ~ Bernoulli(p), which is independent of

(Wi, Q[IZ]N) and corresponds to a random additive noise, i.e.,

N
Y, =Y Xuu+ 2, (6.97)

n=1

The following theorem characterizes the capacity of the MAC-PIR problem if

the channel is restricted to additive MACs.

Theorem 6.3 The additive MAC-PIR capacity is,

where p € [0,0.5) is the flipping probability of the additive noise.

We have the following remarks.

Remark 6.6 For noiseless additive MAC, i.e., p = 0 and Y, = 22;1 Xny, the
MAC-PIR capacity is Cprr = 1. This implies that there is no penalty due to the
privacy constraint, i.e., the user can have privacy for free. Interestingly, this is the
first instance where the PIR capacity is independent of the number of databases N

and the number of messages M.

Remark 6.7 For noiseless additive MAC, i.e., p = 0, separation between channel
coding and retrieval process is not optimal unlike the NPIR problem with orthogonal
links. In fact, the retrieval scheme is dependent on the structure of the channel. To

see this, the user generates a random binary vector h = [hy hy -+ hy] € {0,1}M.
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The user sends h to database 1, flips the ith position of h and sends it to database 2,
and does not send anything to the remaining databases. Thus, the responses of the

databases are,

M
AV =" bW (6.99)
m=1
M
AL =" h W + W (6.100)
m=1

This is exactly the retrieval scheme in [1]. Since the channel is additive and noise-
less, Al = A[f] + Al = W;. Hence, the user downloads 1 bit from the channel in
order to get 1 bit from the desired file and R = 1. Here, we note that, the channel
performs the processing at the user for free. This implies that by careful design of

queries, the user can exploit the channel in its favor to maximize the retrieval rate.

Proof: We prove the converse and achievability.

The converse proof: To show the converse, we assume that W, is the desired mes-

sage without loss of generality. Then, we have the following implications,

L =HW) (6.101)
6.2)),(6.3!
H(Wr|Waa, Qi) (6.102)
[6.94) n 0
< HWi|Wan, Qriy) — HWi[Waing, Q1 AY) 4 o(L) (6.103)
= I(Wy; A|QLy, Wauns) + o(L) (6.104)
= H(AY|QUy, Wans) — H(AM|Q, Wiar) + o(L) (6.105)
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(6.4)

< H(AY) — HAW|QEN, Wi, ALly) + o(L) (6.106)
=t — HAYAN ) + o(L) (6.107)
t
=t > HYMXP XD X +oe(D) (6.108)
n=1

1] 1 1
—f— ZH (ZX[” + Zy | X{h X ,X}V]n> +o(L) (6.109)
J—Zﬂzmwﬁw XN +o(L) (6.110)

=t(1—H(p))+o(L) (6.111)

where follows from the independence of the messages and the queries,
follows from the reliability constraint, follows from the fact that the answer
string A is a deterministic function of the messages and the queries, fol-
lows from the fact that (WWy.pr, [1] ) — A[1 — Al is a Markov chain,
follows from the fact that the channel is memoryless, and follows from the
independence of Z, and (X 1[17]7, Xg;], e X ][\1,]”) as a consequence of the independence
of (Zp, Wi, Q1 }N)

Hence, by reordering terms and taking L — oo, we have R =

“Ih

<1-H(p).
Note that we can interpret the upper bound as the cooperative MAC bound, i.e.,

R<I(Y; X1, Xs, -+, Xy)=1—H(p).

The achievability proof: To show the general achievability, the user submits queries
to database 1 and database 2 only and ignores the remaining databases. We note

that the additive MAC in this case boils down to Y, = X , + Xy, + Z,,, which means
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that the channel p(y|zy, z5) is BSC(p). Consequently, we use again Shannon’s coding
theorem for BSC in Lemma [6.4

To that end, let the mth message be a vector W, =
(W(1) W,(2) -+ Wy(L)] of length L. The user repeats the following
scheme L times. For the jth repetition of the scheme, the user generates a random
binary vector h(j) = [h1(j) ho(j) -+ ha(4)] € {0,1}M. The user sends the

following queries to the databases:

'(j) = h(j) (6.112)

J(j) =h(j) +e (6.113)

where e; is the unit vector containing 1 only at the ¢th position. The queries are
private since Qq[i] is a vector picked uniformly from {0, 1} for any message i.

For the jth repetition of the scheme, the database uses the received query
vector as a combining vector for the jth element of all messages. The nth database

concatenates all responses in a vector UT[ﬂ of length L, hence

M

0 = ) hn(Wn(1) D hn(@Wa(2) o Y ha(D)Win(L)|  (6.114)

m=1 =1

=

m=1

' M
U = |3 hu(D)Wa(1) +

m=1

(1) Y hn(2)Win(2) + Wi(2)

=1

f: hon (LYW (L) + Wi(L) (6.115)

m=1

From Lemma [6.4] for p € (0,0.5), all but p linear [¢, L] block codes C, where
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L' = R <1- H(p) that have P,(C) < 2-27*A®R)_ Then, the databases agree on
p
the same [t, L] code from the family of good codes, where ¢t = m. The nth

database encodes UJf] independently by the same [t, L] linear block code to output
Al

After passing through the noisy channel, the noisy observation is given by:

A6 — AV 4 AT 4 7, (6.116)

= Al 4 7, (6.117)

Since the two databases employ the same linear block code, the sum of the two
codewords All = A[f] + A[Qi] is also a valid codeword corresponding to the sum
vy + Uy,

Consequently, as L — oo, t — o0, the probability of error in decoding the sum
Ulm + UQM is P.(L) — 0. By observing that Ul[i] + Uzm = W, the reliability proof

follows. W

Remark 6.8 In the achievability proof, the PIR scheme relies on the additivity of
the channel. In particular, the scheme uses a linear block code to exploit the fact that
the sum of two codewords from a linear block code is also a valid codeword. Conse-
quently, the retrieval process depends on the channel transition probability explicitly

as opposed to the NPIR problem with orthogonal links.
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6.6.2 Logic Conjunction/Disjunction MACs

In this section, we show that we can achieve privacy for free for MACs other than
the additive MACs. We illustrate this result by considering the MAC-PIR problem
through channels that output the logical conjunctions (logic AND)/disjunctions
(logic OR) of the inputs. Let A denote the logical conjunction operator, V denote
the logical disjunction operator, and — denote the logical negation operator. The
input-output relation of the discrete memoryless logical conjunction channel is given

as:

Y, =\ Xun (6.118)

For the logical conjunction channel, we have the following capacity result.

Theorem 6.4 In the logical conjunction MAC-PIR problem, if N > 2M~1 then the

MAC-PIR capacity is Cpir = 1, where M is the number of messages.

We have the following observations:

Remark 6.9 Similar to the additive MAC, there is no loss due to the privacy con-
straint for the conjunction MAC. In this case, the capacity depends on the number
of messages M, and the number of databases N unlike the additive MAC. Interest-
ingly, the result shows the first instance of a threshold for the number of databases at
— 9M-1

which the full unconstrained capacity can be achieved N , which is dependent

on the number of messages M .
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Remark 6.10 We note that the minimum number of databases N that results in

2M71

Cpir = 1 is still an open problem. In fact, the capacity for N < 1s also an

interesting open problem.

Proof: It suffices to show only the achievability for this problem as the retrieval
rate is trivially upper bounded by 1. To that end, the user submits queries to 2*~!
databases and submits nothing to the remaining databases. The user generates
the random variables (Z3,---,Z)) independently, privately, and uniformly from
{0,1}. The random variable Z,, ~ Bernoulli(3) is a Bernoulli random variable that
represents the negation state of the mth message literal in the first query Q[f], ie., if
Zm = 1, this means that the user requests W, in Q[lﬂ, while Z,, = 0 means that the

user requests =WV, in Q[li]. Let W,, be the requested literal from the mth message

in Q[f] , hence,

Wy = (6.119)

Now, without loss of generality, assume that 1 is the desired message. From
database 1, the user requests to download the disjunction X; = \/r]\;[:1 W,,. From
every other database, the user requests the same literal T; with a new disjunction
of the remaining messages with different negation pattern than what is requested
from database 1. l.e., from database 2, the user requests the disjunction X, =
Wl V —|W2 V vmé[M]\{l,?} Wm. From database 3, the user requests the disjunction

X3 = Wl V ﬂV~V3 V \/me[M]\{l,B} Wm, -+ etc. Denote the disjunction of messages
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Wo.yr requested from the nth database by F,, where n € {1,--- 271} then the

received observation at the user is

M
Y:(\/Wm>/\ Wiv-Wav \/ W | Al Wiv=lsy \/ Wi | A
m=1

me[M]\{1,2} me[M]\{1,3}
(6.120)
2]%—1
=wv \ F (6.121)
=1
=W (6.122)

where follows from successively applying the Boolean relation (W V Gy) A
(Wl V Gy) = W, v (G1 N G) for any logical expressions Gy, Gs. follows
from the fact that there exist 2M~! different negation states for the literals from
Wa.ar, each negation state is requested from one database in the form of logical
expression F;, hence the conjunction of all these logical expressions /\?fl_1 F,=0
as all possible product of sums of Ws.;; exist in the conjunction. This satisfies the
reliability constraint. Another way to see this result is that the queries are designed
such that they cover ezactly half the M-dimensional Karnaugh map, which can be
reduced to either Wy or —Wj.

Furthermore, since the negation state for every message is chosen uniformly,
independently, and uniformly for each message, the probability of receiving specific
query from the user is 2% irrespective to the desired message, which guarantees the

privacy. H
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Mlustrative example: M = 3 messages, N = 4 databases with conjunction channel:

As an explicit example, let M = 3, N = 2M~1 = 4 then the user requests the
following:
Xl == Wl V WQ V Wg (6123)
Xy =W V=W, VIV, (6.124)
X3 =Wy VW,V =V, (6.125)
Xy =Wy V=W, V= (6.126)
Hence, the output of the channel is,
Y=X1 AN XoNX3N X, (6.127)

= (W Vo VW) A (W V=W VIV A (W VIV, V=) A (W V=TV, V= T)

(6.128)

= (W V (Wy VIW3) A (=Wy VIVE)) A (W V (Wa V=TWs) A (TWa V =TV3))

(6.129)
= (Wh Vv Wa) A (Wi v —TW3) (6.130)
=W (6.131)

Thus, the user can decode W; from Y as the user knows the correct negation pat-
tern for W privately. The scheme is private as all queries are equally likely with

probability % irrespective to the desired message. Since the user downloads 1 bit to
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retrieve 1 bit from the desired message, the retrieval rate R = 1.

Remark 6.11 We note that the result is still valid if the channel is replaced by a

disjunction channel, i.e.,

Y, =\ Xun (6.132)

In this case, the user submits the same queries for the databases with replacing every
disjunction operator with a conjunction operator. The proof of reliability follows from

the duality of the product-of-sum and the sum-of-product.

Remark 6.12 The achievable scheme for the conjunction channel is a non-linear
retrieval scheme that depends on the non-linear characteristics of the channel in
contrast to the linear retrieval scheme used for the additive channel. This confirms
the non-separability between the retrieval scheme and the channel coding needed for

reliable communication through the channel.

6.6.3 Selection Channel

In this example, we illustrate the fact that the privacy for free phenomenon may not
be always feasible for any arbitrary channel in the MAC-PIR problem. To illustrate
this, we consider the selection channel. In this channel, the user selects to connect
to one database only at random and sticks to it throughout the transmission, i.e.,

Y, =X,,, n~ uniform{1,--- N} (6.133)
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In this channel, the user is connected to the same database at every channel
use. This implies that the user faces a single-database (N = 1) PIR problem at
every channel use. The optimal PIR strategy for N = 1 is to download all the
messages (M messages) from the connected database. Thus, the PIR capacity is
given by Cpgr = ﬁ

It is worth noting that there is another slight variant of the selection channel,
in which the user selects to connect to one database at random at every channel

use, i.e.,
Y, = Xu@)m,  n(n) ~uniform {1,--- N} (6.134)

where n(n) corresponds to the database index at channel use 1. Then, Cp;p < C' =
(1+ =+ + 5ar=r) " trivially as the capacity of the classical PIR C' [12], in which
all the databases are connected to the user, is an upper bound for this problem, as
the user can choose to ignore all the responses except the ones in the classical PIR

problem. For the achievability, the user can repeat the achievable scheme in [12] v

N(NM_1)

1 At channel

times, which results in using the selection channel ¢ = y(—Lj =v
use 7, the user chooses a new query element from Q[Yf](n) and submits it to database
n(n). As v — oo, by strong law of large numbers, each database will be visited ¢,
times, where t, — % in the limit for every n. Hence, all bits are decodable by the

decodability of the scheme in [12] and Cpjp =C = (14« + - + o) ' < 1 as

well.
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6.7 Conclusions

In this chapter, we introduced noisy PIR with orthogonal links (NPIR), and PIR
from multiple access channels (MAC-PIR). We focused on the issue of the separa-
bility of the channel coding and the retrieval scheme. For the NPIR problem, we
proved that the channel coding and the retrieval scheme are almost separable in the
sense that every database implements its own channel coding independently from
other databases. The problem is coupled only through agreeing on a suitable traffic
ratio vector to maximize the retrieval rate. On the other hand, these conclusions are
not valid for the MAC-PIR problem. We showed two examples, namely: PIR from
additive MAC and PIR from logical conjunction/disjunction MAC. In these exam-
ples, we showed that the channel coding and retrieval schemes are indeed inseparable
unlike in the NPIR problem. In both cases, we showed that by careful design of
joint retrieval and coding schemes, we can attain the full capacity Cp;r =1 — H(p)

and Cprgr = 1, respectively, with no loss due to the privacy constraint.
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CHAPTER 7

Private Information Retrieval Through Wiretap Channel II

7.1 Introduction

In this chapter, we consider the problem of private information retrieval through
wiretap channel II (PIR-WTC-II). In PIR-WTC-II, a user wants to retrieve a single
message (file) privately out of M messages, which are stored in N replicated and
non-communicating databases. An external eavesdropper observes a fraction ,
(of its choice) of the traffic exchanged between the nth database and the user. In
addition to the privacy constraint, the databases should encode the returned answer
strings such that the eavesdropper learns absolutely nothing about the contents of
the databases. We aim at characterizing the capacity of the PIR-WTC-II under
the combined privacy and security constraints. We obtain a general upper bound
for the problem in the form of a max-min optimization problem, which extends the
converse proof of the PIR problem under asymmetric traffic constraints. We propose
an achievability scheme that satisfies the security constraint by encoding a secret
key, which is generated securely at each database, into an artificial noise vector using

an MDS code. The user and the databases operate at one of the corner points of
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the achievable scheme for the PIR under asymmetric traffic constraints such that
the retrieval rate is maximized under the imposed security constraint. The upper

bound and the lower bound match for the case of M =2 and M = 3 messages, for

any N, and any p = (g1, , fin)-

7.2 System Model

Consider a classical PIR model, in which there are N non-colluding and replicated
databases, each storing the same content of M messages (or files). The message
W, is represented as a vector of length L, whose elements are picked from a finite
field IFqL with a sufficiently large alphabet. The messages Wiy = {Wh, -, Wy}

are independent and identically distributed, hence,

H(Wyn) =L, me{l,--- M} (7.1)

HWy.) =ML, (g-ary bits) (7.2)

We assume that the messages are uncoded and fixed, i.e., we assume that the con-
tents of the databases cannot be coded to satisfy the security constraint during the
storage phase.

In classical PIR, a user wants to retrieve a message W; from the N databases
without revealing the identity of the message i to any individual database. The user
prepares N queries, one for each database. The user sends QE] to the nth database.

Since the user has no knowledge about the realization of W7.,,, the queries and the
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messages are statistically independent, i.e.,

I(QY W) =0, ie{l,---, M} (7.3)

where Q[f:]N = {Q[f], e ,QK;}. Furthermore, to ensure the privacy of W;, the user
should constrain the query intended to retrieve W; to be indistinguishable from the
query intended to retrieve any other message W; at any individual database. Thus,

the privacy constraint is formalized as,

(@R AT Wiaar) ~ (QR) AL Waaar), - Vi € {1+, M} (7.4)

where ~ denotes statistical equivalence.

The nth database, after receiving the query QE}, responds with a t¢,-length
answering string Al Note that we allow the user and the databases to choose
arbitrary lengths for the answer strings such that they maximize the retrieval rate.
The answer string is generally a stochastic mapping of the messages Wi.pr and the

received query Qg], hence,

HANQY Wiy, G,) =0, ne{l,---,N} (7.5)

where G, is a random variable independent of all other random variables, whose
realization is known at the nth database only and not shared with any other database

or the user a priori of the transmission. We denote the traffic ratio vector by
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T = (1, -+ ,7n). The traffic ratio at the nth database 7, is given by,

(7.6)

We assume that the answer strings are transmitted through a WTC-II (see
Fig. |7.1). In this case, an external eavesdropper (wiretapper) wishes to learn
about the contents of the databases by observing the queries and answer strings
exchanged by the user and the databases. In PIR-WTC-II, the user observes the
t,-length answer string A from the nth database through a noiseless channel. On
the other hand, the eavesdropper can observe a fraction u, from the nth answer
string. More specifically, the eavesdropper arbitrarily chooses any set of positions
S, C{1,--- ,t,} to observe from the nth answer string, such that |S,| = pnt,, i.e.,

the output of the eavesdropper channel is given by,

We denote the unobserved portion of the answer string by vl = Al (S,), where
S, ={1,--- ,N}\S,, thus, Al = (Yn[i], Zy[f}). We write the eavesdropping ratios as a
vector = (p1, -+, un). Without loss of generality, we assume that the databases
are arranged ascendingly in pu,, i.e., 1 < o < --- < uy, i.e., the first database
is the least threatened (most secure) and the Nth database is the most threatened
(least secure).

Upon preparing the answer string, the databases should encode the answer
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Database 1 Database 2 Database N

1

2

Al A Al
I ] I I
S c{l,- i} Sy C{l,- -} Sy C{L - tx ]
[S1] =t [Sa| = pots |Sn| = pntn
Z = A(S) Zy = A(S) Zy = Al(Sy)
T T T
' ' )

Figure 7.1: Secure PIR problem through wiretap channel II.

strings such that the eavesdropper learns nothing from observing any pu,, fraction
from the traffic from the nth database even with observing the queries submitted

by the user. Consequently, we write the security constraint as,

I(Waars Zily, Qily) = 0 (7.8)

Additionally, the user should be able to reconstruct the desired message W;
from the collected answer strings with arbitrarily small probability of error. Using

Fano’s inequality, we write the reliability constraint as,

HWi|Qy, Ally) = o(L) (7.9)
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Where%AOasL%oo.
For a fixed N, M, traffic ratio vector 7, and eavesdropping ratio vector u, a

retrieval rate R(7, p) is achievable if there exists a PIR scheme which satisfies the

privacy constraint (7.4)), security constraint (|7.8)), and the reliability constraint ([7.9)

for some message length L(7, ) and answer strings of lengths {t, (7, )}, such
that 7, = %, where the retrieval rate is therefore given by,
i=1ilT,
L(7, 1)
R(T, 1) = —x (7.10)

Zn:1 tn(’r, l’/)

We note that in this problem, the user and the databases can agree on a traffic ratio
vector 7 to maximize the retrieval rate, thus, we can express the secure retrieval

rate under eavesdropping capabilities p, R(p), as,

R(p) = max R(T, ) (7.11)

Note that the message lengths can grow arbitrarily large to conform with standard
information-theoretic arguments. The capacity of the PIR-WTC-II problem C(p) is
defined as the supremum of all achievable retrieval rates over all achievable schemes,

i.e., C(p) =sup R(p).

7.3 Main Results and Discussions

In this section, we present the main results of this chapter. Our first result charac-

terizes a general upper bound for the PIR-WTC-II problem for fixed M, N, and an
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arbitrary p.

Theorem 7.1 (Upper bound) For the PIR-WTC-II problem under eavesdrop-

ping capabilities pp = (p1, -+ , i), the capacity is upper bounded by,

N

ZN (1_/~L )7_ + 711V:n1+1(1_u'ﬂ)7—n+. . .+Zn=nM7]\41+1(17/"'n)Tn
~ n=1 n)'n m -,
C(p)<C(p)=max min " : I s
T7ET n;e{l;-N} 1—{—n—1_|_ . +WT”
i=1 T

(7.12)

whereT:{T:TnZO VYnel[l:N], N Tnzl}.

n=1

The proof of this upper bound is given in Section [7.4. We have the following

remarks.

Remark 7.1 When p = (0,---,0), i.e., without any security constraints, the upper

bound reduces to:

N N
SN g ST ST
_ . n=1"'"1" ni Hi:_ n;
Clp) =max min TR Srr— ! (7.13)
n; N n o .. Hi\i;lnl
1+ —ZSJZEH ™ 4+ e+ Z’]yl:[’;’\y_f:l n
= max min T R (7.14)
7€T n;e{l,,N} 1+ - 4+ 4 T
i=1 g
=max C(7) (7.15)
1
- - 1 (7.16)

where the inner problem in (7.14) is precisely the upper bound of the PIR problem
under asymmetric traffic T [125]. From , we know that C(7) is mazimized

by adopting symmetric schemes, i.e., T, = which achieves the PIR capacity C

L
N’
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m [12/.

Remark 7.2 If the PIR-WTC-II problem is further constrained by the asymmetric

traffic constraints T, the corresponding upper bound C(p,T) is given by the inner
problem of (7.12), i.e.,

N

N_ 1—pin)mn n=n
SN (1 = gy 4 Zrmme T S

n=1 n1i i=1 T

(1_.“n)7'n

C(p, )= min
(1, 7) ni{1,- ,N} 1_|_n_11_|_...+ 1

M-—-1
H¢:1 g

(7.17)

Hence, without the asymmetric traffic constraints, the user and the databases can
agree on T that maximizes the retrieval rate, which results in the outer maximization
over T. This is reminiscent of the classical converse proof for the channel coding
theorem, where a converse arqgument is constructed for an arbitrary input distribu-
tion of the transmission codebook, and then the converse proof is concluded with a

maximization step over all the input distributions.

Remark 7.3 The upper bound C(p) in Theorem can be written as the following

linear programming problem:

C(p) =max R

R
N Erly:n +1(1_ru")7—71 Zg:n]y[,1+1(1_ﬂn)7—n
| g T R e T
5 1+L+.. 04 1 i
m PR
T, >0, n=1, , N
N
Y m=1 (7.18)
n=1
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where n = (ny, -+ ,ny_1) C {1,--- , N}~ e, the number of constraints are fi-
nite (at most NM=142 constraints). Hence, the optimal solution of this optimization

problem is attained at one of the corner points of the feasible set.

Next, we present a general lower bound on C'(u) for fixed M, N.

Theorem 7.2 (Lower bound) For PIR-WTC-II, for a monotone non-decreasing
sequencen = {n}Mt C {1,--- N} letn_ 1 =0, andS = {i > 0:n;—n;_; > 0}.
Denote yilk] to be the number of stages of the achievable scheme that downloads k-
sums from the nth database in one repetition of the scheme, such thatn,_1 < n < ny,
and £ € S. Let & = [[ies\ (0 (Aj:f). The number of stages y,[k] is characterized by

the following system of difference equations:

volk] = (no—Dgolk—1]+ Y (nj—n;1)y;[k—1]
jes\{o}

yi[k] = (n1—no—1)y [k—1] + Z (nj—n;_1)y;[k—1]
jesS\{1}

yelk] = no&edlk—0—1] + (ng—ny —Dyelk — 1+ > (my—ny_1)ys[k—1], £ >2
JES\{4}

(7.19)

where §|-] denotes the Kronecker delta function. The initial conditions of (7.19) are
Yoll] = [ses (]\f__f), and y;[k] = 0 for k < j. Consequently, the traffic ratio vector

7(n) = (r.(n),--- , 75 (n)) corresponding to the sequence n = {n;}15* is given by:

e () wslk]

Tn(n) - Zzeg 2211 (A;;[) yé[k] (nf — nz—l)’

nj_1+1<n<n; (7.20)
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Then, the achievable rate corresponding to n is given by:

D res 224:1 (Aij—_ll)y@[k] (ne — ne-1)

R(n, p) = — (7.21)
n k= Ye[k]
Consequently, the capacity C(p) is lower bounded by:
Cln) 2 R(p) = R 7.22
(1) = R(p) ... S (n, p) (7.22)
Zées Zl]cwzl (A::11)y€[k] (ne —ng-1)
= n0<...<nglaﬁ}é{1 N} B S () welk] (7.23)
T o ZZES Zne:ng_l—l—l #

The proof of Theorem [7.2] can be found in Section We have the following

remarks.

Remark 7.4 For fizted M, N, the number of the achievable rates R(n,p) in
Theorem corresponds to the number of monotone non-decreasing sequences

M—-1

n={n;};—,", which is equal to (M+AJ4V_1).

Remark 7.5 After achieving the corner points in Theorem which achieve
R(n, i), one can perform time-sharing between the corner points to obtain an achiev-
able R(T, ) for any T. The highest possible achievable rate can be obtained by maz-
imizing over T. However, this is not needed as time-sharing results in a piece-wise
affine function in 7. Hence, mazximizing over T would result in operating directly at

one of the corner points.

Remark 7.6 We note that the core of the achievability scheme is the PIR scheme

under asymmetric traffic constraints in Chapter 3. Hence, the recursive structure
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described by is directly inherited from [125]. Nevertheless, two main differ-
ences appear in the final rate expression. First, the answer string length from every
database belonging to the same group is different in contrast to [125]. This is due
to the fact that every database experiences a different eavesdropping capability i,
in general, hence the nth database encrypts its responses with a key, whose length
depends on p,, thus the key lengths are different in general. Second, there is no need

for time-sharing over the corner points as shown in Remark 7.5,

In the following corollary, we settle the capacity C'(u) for M =2, M = 3, and

arbitrary N.

Corollary 7.1 (Exact capacity for M =2 and M = 3 messages) For PIR-

WTC-11, the capacity C(w) for M = 2,3, and an arbitrary N is given by:

noni —
ma‘Xno,nle{17~~~,N} Zno no+1 +Zn1 ng 9 M - 2
C(IJ’) — n=1T1—pn n=ng+l 1—un
ngning _
ma‘Xno ni,no€{l,-- N ng  ngngtngtl n F n M — 3
0 0 1 ngny+n 2 ngny )
’ ’ { T } En:l 11_“’” +Zn:n0+1 1—1H'n 0+Zn:n1+l 1_NiL

The proof of Corollary [7.1] can be found in Section [7.5.4]

Remark 7.7 The explicit capacity expressions in Corollary can be interpreted
using basic circuit theory. To see that for M = 2 for a given (ng,ny), consider
the circuit in Fig. [7.3. The circuit has a current source of nony units. The circuit

consists of ng + ny parallel resistors. The nth resistor has the value of R, = ;ﬁ

if1 <n<ng, and R, = =£2 ifng +1 < n < ny. Hence, the capacity C(p) 1s

no
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Figure 7.3: Circuit interpretation of C'(u) for M = 3.

the voltage across the current source. A similar interpretation can be inferred from
Fig. for the case of M = 3. Interestingly, this interpretation implies that in
order to mazimize the retrieval rate (the voltage across the equivalent resistance of
the circuit), one should pick ng,n1,ny such that the resistance of each parallel branch
is as symmetric as possible. This is due to the fact that the equivalent resistance of

parallel resistors is less than the resistance of the least resistor.

Finally, in the next corollary, we present an explicit achievable rate for R(u)
when N = 2, and an arbitrary M. The proof of the corollary can be found in

Section [7.5.5]

Corollary 7.2 (Achievable retrieval rate for N =2) For PIR-WTC-II with
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N =2 and an arbitrary M, let sy = {1,--- , M — 1}, then the secure PIR capacity

C(p) is lower bounded by:

max max (g:f) + 224:552_1 (i\;t;)
M—so M—sg—1

s2€{0,--- ,M—1} _ —2
O Lol (]2 (ST ()

Y

1=

7 (7.25)

Remark 7.8 We note the strong connection between the PIR-WTC-II problem and
the PIR problem under asymmetric traffic constraints in Chapter[d. In PIR-WTC-
II problem, the nth database uses a secret key of length p,t, to span the entire
space of the eavesdropper. This in turn leaves (1 — pp)t, symbols for meaningful
queries. Since the eavesdropping vulnerabilities of the databases are different in
general (different p,), the meaningful queries are naturally constrained, e.g., we
expect the first database (the most secure) to support more meaningful queries than
the remaining databases. However, the main difference between the two problems
is that in the PIR problem under asymmetric traffic constraints [125], the traffic
ratio vector T is fixed (by the problem formulation) in contrast to the PIR-WTC-II
problem, where the user and the databases can agree on a traffic ratio vector T to

maximize the retrieval rate under the fived eavesdropping capabilities .

Remark 7.9 We now compare our model with the PIR model in [21|41)]. In [21,41],
there is an eavesdropper, which observes all communication of E out of N databases,

whose identities are unknown to the user. We restrict the comparison to the case
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T =1 (i.e., no collusion between the databases). In this case, the capacity of
the secure PIR problem in [41] (abbreviated as T-EPIR problem) is 1 — % This
requires a common randomness, which is shared between the databases and unknown
to the user, of length % /41, Theorem 1]. We note that the capacity expression
is independent of the number of messages in [41]. For the symmetric version of
the problem in [21], the capacity expression is also 1 — % Interestingly, in the
symmetric version of the problem, the common randomness among the databases is
used to satisfy both the database privacy and the security constraints simultaneously.

On the other hand, in our model, the eavesdropper wiretaps all N databases
according to the given p = (1, ,un). The user knows the ratio of the traffic
which is observed by the eavesdropper from each database, i.e., p = (u1,--- , pun),
but does not know which positions are being observed. Surprisingly, our model does
not need any shared randomness among the databases or with the user, i.e., here we
are able to achieve nontrivial PIR rates with zero shared randomness rates.

As a concrete ezample, let M = 3, and for a fair comparison, let u, = % for
alln € {1,--- , N} in our model. The rationale for this choice of w, is that in |41],

the eavesdropper has access to a total of E -t observations, where t is the length of

m oour

Zl=

the answer string from any database in [41]. Now, for symmetric j, =
model, all answer string lengths need to be symmetric, i.e., t, = t for all n, and
therefore, the eavesdropper accesses a total of % -N -t = E -t observations here
as it does in [41]. The capacity for this case in our model, from Corollary 18
—%, which s attained with ng = ny = no = N in the corollary. This rate is

strictly less than the rate in [41], which is 1 — £, however, [{1] requires a shared
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_E_

~—F, Wwhile in our case no

randomness between the databases at a rate of at least

shared randommness is required.

7.4 Converse Proof

In this section, we derive a general upper bound for the retrieval rate under the
privacy and security constraints , for the PIR-WTC-II problem. Our
converse proof extends the techniques of [12] to incorporate the security constraint.
In addition, since the eavesdropper observes a different fraction of the traffic from
each database, we do not expect that the answer strings (and consequently the
traffic ratios) from each database to be symmetric in length. Thus, we modify the
converse proof in [12] to account for this prospected traffic asymmetry along the lines
of Chapter [f| However, different from [125], traffic ratios are not given, and must
be chosen; the eavesdropping ratios g = (1, -+ , i) are given here. Our converse
proof extends the proof in [125] to account for the imposed security constraint.

In the next lemma, we discuss some consequences of the security constraint in
(7.8). The security constraint introduces some interesting conditional independence

properties which simplify the converse proof.

Lemma 7.1 (Security consequences) In the PIR-WTC-II problem, the follow-

ing implications are true due to the security constraint (7.8)):

1. Messages are conditionally independent given the observed part of the answer
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strings at the eavesdropper Z{l]N, i.e.,

I(Wo; W gmy | Z00) = 0, i, me {1,---, M} (7.26)

2. There is no leakage of W, from all the queries Q[f:]N, the eavesdropper ob-

servations Z{?N, and any subset of messages Ws = {W; : i € S} such that

mé¢S,

In particular,

I(Wo: Wt Wian—1, Z20) =L, i, me{1,--- M} (7.28)

3. The eavesdropper’s observations Z{Z]N and the messages are conditionally in-

dependent given the queries Q[fJN, i.e., for sets 81, Sy, such that S; NSy = 0,

I(ng; ZIMN|Q[11]N7 WSQ) =0, 1€ {17 T 7M} (729)

In particular,

I(WmMa ZK?V_IHWI:m—I) = 07 m e {27 e 7M} (730)

4. The messages and the queries are conditionally independent given the eaves-
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dropper’s observations, i.e., for sets Si, Sa, such that S NSy =0,

I(Ws; QU W, Z20) =0, ie {1, , M} (7.31)

5. The messages W,,.ar and the queries QEZ-]I:N for any k € {1,--- N} are con-

ditionally independent given (lem_l, ZE'}\],, Q[ln,ﬂ, Yl[f,z]), 1.e.,
T(Woeats Q| Wi, 28, Q13 Vi) = 0 (7.32)

Proof:

1. From the security constraint (7.8), we have [ (WLM;Z{Z;]N, [11]N) = 0, which

further implies that I(Wy.; Z{I]N) = (. This can be expanded as:

0= (Wi, Witaaspgmy: Z1y) (7.33)
= I(Wos Z{0) + I(Wia gy Ziow| W) (7.34)
= (Wi pmy; Zoon) + LWy Z305 Winea ) (7.35)

which implies that all four terms in ((7.34)), (7.35)) are zero. Then, consider

I(Woi; Wi fmy s Zin) = L(Wins Z) + T(Wons Wiy gmy | Z10) - (7.36)

= I(Wo; Wiaagpmy) + L(Wins ZE  Wianp o))

(7.37)
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which together with ([7.34])), (7.35)) and the independence of the messages imply

(7-26).

. From the security constraint (|7.8)), we have I(W,,, Ws; Q[f:]N, Z{Z]N) =0 by the

non-negativity of mutual information. This can be further expanded as

0= I(W, Ws; Q. Zh) = I(Ws; QVly, ZV05) + T(Wos QY 204 Ws)

(7.38)

From the second term on the right hand side, we have I(W,,; Q[li:]N, Z{Z]N\Wg) =
0, which implies (7.27) by the independence of the messages, as

I(Wis Ws, 2005, QU = T(Wis W)+ T(W; 2V, QU [ Ws).

For ([7.28), we note that (7.27) implies that I(Wm;WLm_l,Zﬁ]N) =0

by the non-negativity of mutual information, which further implies that

I(Wm’ Zl[l]]\/'|W1m—1) == O NOW,

I(Wos Wonant W1, Z00) =H (W[ Win1, Z10) (7.39)
=H (W[ Wiin—1) — I(Wi; Z2 [ Wiim_1)  (7.40)

=L (7.41)

where the last equality follows from the independence of the messages.

. From the security constraint (7.8) and the non-negativity of mutual in-
formation, we have I (WSI,WSQ;ZE]N, [f]N) = 0, which can be expanded
as I(Ws,; ZUn, Q) + I(Ws,; 20, QU [Ws,) = 0, which implies that

283



I(Ws,; ZF}N, Q[f]N|W52) = 0. We futher expand it as:

0= I(Ws,; QU [Ws,) + I(Ws,; 20 |1QM, W,) (7.42)

which leads to ((7.29) by the non-negativity of mutual information.

For we note from (7.29) that I(W,.u;Z |Q[1le] Wim-1) = 0,
hence
0= I(Woaars Zin s QU IWine1) = I(Woanr; QU [ Wianr)  (7.43)

Now, I(W.ar; Q[lm]\? 1}|I/V1;m_1) = 0 by the independence of the messages and
the queries in ([7.3), and this implies (7.30)) by the non-negativity of mutual

information.

4. Using the same argument as in item 3 above and reversing the order of the

chain rule in ([7.42)) leads to (7.31]).

5. We have

I(WmM7 QEZELN‘lemflv Z{n;b\]fa Q[{’Z}) }/1[7;])
:[(W 'Q[m] Y[m]’W Z[m] [m])
m:My g 1Ny L 1k Im—1, Z1:N»s W 1:k
— I(Wart: Y Wi, Zy, Q1) (7.44)
=I(Wat; QU W1, Zi QU3 + T(Wonears Y W1, Z1, Q)

— I (Woart; Y W1, 200, QI (7.45)
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0 (7.46)

where I(Wm:M;QL@1:N|W1M_1,ZE\},,Q[{ZJ) = 0 from (7.31) and the
non-negativity of mutual information, and since Q[lmjlf — Q[lnz] —

Yl[f,?] is a Markov chain, we have ](Wm;M;Yl[mel;m_l,Zl[?}\],,Qm,) =

I(WmMaYVl[?”Wlm—le{n]L\]D [{'Z])

We will need the following lemma, which characterizes a lower bound on the
interference from the undesired messages within the portion of answers that is un-
observed by the eavesdropper (and hence secure). Since the user must download at
least L symbols to retrieve the desired message, the difference 32 (1 — 1, )t, — L
denotes the interference terms within the unobserved (by the eavesdropper) portion

of the answers.

Lemma 7.2 (Interference lower bound) For the PIR-WTC-II problem, the in-
terference from undesired messages within the unobserved portion of the answer

strings by the eavesdropper Ziv:l(l — pn)t, — L is lower bounded by,

N
> (= )ty = Lto(L) = 1 (Waars Qi Vi, 28Y)  (7.47)

n=1

We note that Lemma[7.2]is a generalization of [12, Lemma 5] to the problem of
PIR-WTC-IL. If p,, = O for all n € [1 : NJ, then Lemmal7.2 reduces to [12, Lemma 5]

as ZHV (the eavesdropper observations) is absent and Yl[:lj}v = A[f;]]v in that case.
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Proof: We start with the right hand side of ((7.47)),

I<W2M7 1N7 |W17Z{1N>

€29, (Waunrs W1, QU Vi 28D (7.48)
I( 1N7Y1[1N‘Z ) +1 <W2 M,W1|A[11]N7 11]1\/) (7.49)
O (Wz s Qi Vi |21 ) +o(L) (7.50)
1 (WaasviklQlk. 2EL ) +o(2) (7.51)
—H (V] |Q1N,ZPN) — H (Y}l 28k Waar) +o(L) (7.52)
siu = )t —H (W0, YU IQEN 28 Waar) +-H (Wil ALY QLN Waar) +o(L)

n=1
(7.53)

IR
WE

(1= pa)tn = H (W1, QU Z1 Waunr) + (L) (7.54)

3
Il
—

M-

(1= )t —H (WalQU, 2L, Waar ) = H (VI IQU, 21N, Waaar ) +0(L)

(7.55)
Z(l — Hn)tn— <W1|Q[11]N7 Z{lNa W, M) +o(L) (7.56)
=571 - )t — L+ o(L) (7.57)

3
Il
—

where ((7.48) follows from the conditional independence of messages in Lemma ,

(7.50), (7.54]) follow from the decodability of W; given ( 1 N, ), (7-51) follows

from the conditional independence of the messages and the queries in Lemma [7.1]

(7.53|) follows from conditioning reduces entropy and the fact that H (Yl[lj]v) <
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ZnNzl(l — fin)t, from the WTC-II model, follows from the non-negativity
of the entropy function, and follows from zero leakage property of Wy from
which implies H(W1|QU, ZM Won ) = HW) =L. ®

In the following lemma, we derive an induction relation for the right hand
side of the expression in ((7.47). This lemma extends |12, Lemma 6] in two major
ways. First, we incorporate the security constraint in the proof by observing that
(Wins Zl["}é) are independent. Second, and more significantly, the main difference
between this lemma and [12, Lemma 6] is the fact that not all databases can use
a symmetric scheme due to the asymmetry of the fraction that the eavesdropper
can observe. Consequently, we denote n,,_; to be the number of databases that
can apply a symmetric scheme when the retrieval problem is reduced to retrieving
message W,,_1 from the set of W,,_1.); messages. For the remaining answer strings,

we directly bound them by their corresponding length of the unobserved portion

N
Zn:nm,ﬂrl(l - M”)tn

Lemma 7.3 (Induction lemma) For all m € {2,...,M} and for an arbitrary
Nm—1 € {1,--+, N}, the mutual information term in Lemma can be inductively

lower bounded as,

1 (Wanaars QU Vi Wi, 205
1 N
Z [I (Wm-i-l:M; Q[lmjlfa YV1[7]r\Lf}|W1m> Z{Tr]l\][> + (L - Z (1 - ;un)tn) - O(L)

Ty —
m—1 n=nm_1+1

(7.58)
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Proof: We start with the left hand side of (7.58]), after multiplying by n,,_1,

nmflj(WmMngm]\? ) 1N |Wlm lvz{n}\/ 1]>

(7-30) m
— nm71[< mMaQ[lNl] A |Wlm 1) (759)
> nm—1[ <WmM,Q[1n;;l,]17 1nm 1|VV1m 1) (760)
Nm—1
> s QU A, ) (7.61)
" Nm—1
n=1
Nm—1
(7.3) m]| Alm
[(WmM A[ ]|Q[ I W _1) (7.63)
n=1
779) —
= I (W Y, QU Wiy, ZM) (7.64)
n=1
Nm—1
= (Yn[m”an], Wim—-1, ZLm]) - H (Yr[m]‘QW, Wims ZLm]) (7.65)
n=1
> (YW VI QU Wi, 2L
n=1
Nm—1
= 3 T (Waass VIV QL W, 20 (7.67)
n=1
= 1 (W VI3 IQU Wi, 2 (7.68)
(7.31) m m
@30 ; ( Woarr; Q7 vy, 1,2{13) (7.69)
1' m
— ( mManNa 1N‘Wlm laZ{]\]]>
-1 (Wm :M YJZ‘] 141 N|Q[1mzlr> Yl[rsln o Wi, ZW[) (7.70)
o (Vo QU VIR Z8) 1 (V1 o) <m>
N
> 1 (Wanaars QU ViR W1, Z00) = 32 (1= )ty (7.72)

n=nm—1+1
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=1 (WmMa Wm7 [1m]1[a Yi[rjn\[} |W1:m—17 Z{WJL\][> -1 (WmMa Wm|W1:m—17 Q[lmjlfa A[1m11[>
N

_ Z (1 — pin)tn (7.73)

n=nm_1+1

N
O (Waar W, QU YW1, Z00) = 2 (1= )t = o(L) (7.74)

n=nm—_1+1

=1 (Wm:M; Wm|W1:m—17 Z[m]) + I < m:M > Q[lmjlh Y[m] |W1:m7 Zl[nll\}/>
N

= Y (1= )ty —o(L) (7.75)

n=nm-1+1

N
(7.28) m m m
! I (Wm+1:M; Q[L]lf? le[:N}‘Wl:ma Z{]\]7> + (L - Z (1 - Mn)tn> - O(L)

n=nm-—1+1

(7.76)

where follows from the conditional independence of the messages and Z{ZL{”
in (7.30) as a consequence of the security constraint, , follow from
the non-negativity of mutual information, follows from the privacy con-
straint, follows from the independence of the queries and the messages,
follows from the conditional independence of the messages and Z" i
and the non-negativity of mutual information, follows from condi-
tioning reduces entropy and ( Qi’i}m_l,Zm,WhM,}q[ﬁl) — ( ™ Wi, Z "]> —
Yn[m], follows from (|7.31) and the non-negativity of mutual information,
follows from the chain rule and , follows from the fact that
I (Wm;M, vl v I,lem_l,z[ml) < H( i ) ([772) follows from
the fact that conditioning reduces entropy and H (Y, } L) < Zn a1 (1= fin) Ty

in the WTC-IT model, ([7.74]) follows from the reliability constraint, ((7.76) follows

from the no leakage property of W, from (7.28|) as a consequence of the security
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constraint. Finally, dividing both sides by n,, 1 leads to (7.58)). W
Now, we are ready to prove an explicit upper bound for the retrieval rate in

the PIR-WTC-II problem R(u) by applying Lemma and Lemma succes-

sively. For a pre-specified answer string lengths {t,}2_,, and an arbitrary sequence

{n 371 we can write

N
> (1= pin)tn — L+ 6(L)
n=1
Ta7)
> 1 (Waurs QU Vi, 211 (7.77)
N
(S| 1
> —(L—Zu—un)tn =1 (Waars Q. ViR 2E)  (778)
1 n=ni+1 1
N N
™58 1 1
P L (150 )+ (250
n=ni+1 n=ns+1
1
+n—f <W4:M§ [13?]1\/ay1[3]\/|W1:37ZE\7> (7.79)
2
[753)
>
1 al 1 =
> — [ L-— 1 — u,)t, L — 1— )ty
P (220w 4 (230 ) 4
n=ni+1 n=ns+1
N
1
Hi:l n; n=np_1+1

where o(L) = (1 + 'r% + mlm +--+ m> o(L), (7.77) follows from Lemma H,

and the remaining bounding steps follow from successive application of Lemma [7.3|
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where ¢(f) = N, +1(1 = 1n)7, corresponds to the sum of the unobserved traffic
ratios by the eavesdropper from databases [¢ + 1 : N]J.
We conclude the proof by taking L — oo. Thus, for an arbitrary sequence

{n}M 71 we have

L _owslisele g
R(t.p) = =x < 1 + L TR N (7.82)
anl tn ning I

The bound in (7.82)) for R(7, ) is valid for any arbitrary sequence {n;}}2;*. Hence,
we obtain the tightest upper bound for R(7,u) by minimizing over the sequence

{n} M1 over the set {1,--- , N} to get

¢(0) + ¢(n1) + o(n2) 4t ¢(”M 1)
R(T,p) < min e N 7.83
( u) B nlv"'vn]\/f—le{lv"'vN} 1 + + _I_ b _|_ 1 ( )

ning Hf” 1 1 n;

Finally, since the user and the databases can choose any suitable traffic ratio

vector T in the set T such that:

T:{TZTnZO Vn € [1: N, ZTn:1} (7.84)

n=1
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by maximizing over T = (71,7, -+, 7y) in the set T, we obtain the following upper

bound for R(u),

0 ¢(n1) o(n2) | . B(n 1& 1)
$(0) + == + +o T T,

R < max min mre iy s 7.85
() 7€l n;e{l,,N} 1 —|— R SRR HMlln ( )
=1 T
Sy (1= )7 + Enzny1 (ot NI Zg:"]\/l_l\}[+1l(1_ﬂn)7n
n=1 n)in ” T
— max min . 1 HZ:1

T7€T n;e{l,- ,N} 1+ e 4+ 4 HM—ln.
=1 K

(7.86)

7.5 Achievable Scheme

In this section, we present a general achievable scheme for PIR-WTC-II. The scheme
builds on the achievable scheme in Chapter The main idea of the achievable
scheme is that since the databases are eavesdropped by varying eavesdropping ca-
pabilities p, then it would be beneficial for the user to query the databases using
the PIR scheme under asymmetric traffic constraints. Furthermore, the databases
should encrypt the answers such that the user can decode the meaningful trans-
mission by observing the entire answer string, while the encryption keys span the
eavesdropper’s entire observation space, ensuring the security of downloaded con-
tent. The user and the databases agree on the traffic ratio vector 7 that maximizes
the achievable secure PIR rate.

In the following, we illustrate the main ingredients of the achievable scheme

by presenting the case of M = 3 messages and N = 2 databases for an arbitrary p.
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7.5.1 Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we first show an explicit upper bound for the capacity expression
C(p). Then, we show the capacity-achieving scheme for the concrete example of
p = (3,3). We conclude this section by showing how to extend the achievable

scheme for arbitrary p.

7.5.1.1 Explicit Upper Bound for M = 3 Messages, N = 2 Databases

From Theorem , the upper bound of C'(u) is given by:

_ S22 (1= pn) T + Enem 1 hn)n | Snengin (i)

C(p) = max min =" - L (7.87)

1 1
T€T n;e{1,2} 14+ a + P

By observing that 7 = 1 — 7, this can be explicitly written as the following

linear program:

max R
T9,R
. _
s.t Rﬁg(l—ﬂl)‘i‘ (1_/@)__(1_“1)} 72
2 [4
Rgg(l—,ul)Jr 5(1—/@)——(1—#1)} 2
4 [4
RS?(l—,Uzl)‘i‘ 7(1—,“2)——(1—/11)} 72
0<n <1 (7.88)

Note that the bound corresponding to n; = 2,ny = 1 is not included in ([7.88)) as it
would be inactive for any p. Since ([7.88)) is a linear program, the optimal solution
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exists among the corner points of the feasible region. The first corner point, is

7'2(1) = 0, which leads to the bound C'(u) < 1;“ L. The second corner point occurs at

the intersection of the first two constraints, i.e., 72(2) satisfies:

1 1 2 4 2
g+ | (=) = 5= ) | 77 = (=) + | 5= ) = S (1= ) | 77
(7.89)
which leads to,
1—
P = (=) (7.90)

3(1 = p2) + (1 — )

2(1—p1)(1—po2)

with a corresponding bound of C(u) < TR

Similarly, the third corner

o

point occurs at the intersection of the second and third constraints, hence 72(3) =

3(L—p1)

4(1—p1)(1—p2)
4(1—p2)+3(1—p1)

with the corresponding bound of C'(u) < ) )

. Finally, at

75 = 1, we have the bound C(u) < 4(1;”2) which is no larger than % by

the monotonicity of u, hence it can be ignored.

Consequently, the explicit upper bound for M = 3, N = 2 is given by

= L= 21— u)(d — po) 41— p) (1 — po)
) = m{ 3" 30— i) - (1~ )’ 41— ua) +3(1 —m} (7:91)

7.5.1.2 Concrete Example: p; = }1, o = %

Before the retrieval process, the user permutes the indices of the symbols of W7,

W5, W3 independently, uniformly, and privately. Assume without loss of generality
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that W, is the desired message. Let a;, b;, ¢; be the permuted symbols from W7y,
Wy, W3, respectively. In the case of pu; = }l, o = %, the explicit upper bound in
is C(p) = % = £. To achieve this bound, we focus first on the
meaningful queries, i.e., the queries without the randomness that is added to satisfy
the security constraint. From the first database, the user asks for an individual
symbol from every message, i.e., asks for aq, b, c;. From database 2, the user does
not ask for new individual symbols but rather exploits the side information that is
generated from database 1 to query for 2-sums from database 2, i.e., the user asks
for as + b1, az + ¢1, by + ¢ from database 2. Then, the user exploits by + ¢ as side
information to ask for a4 + by + co from database 1. To get an integer number of
downloads for the meaningful queries, which covers (1 — u,)t, from the downloaded
symbols from the nth database, the scheme is repeated v times. Since this scheme

gets 4 symbols from database 1 and 3 symbols from database 2, we choose the

repetition factor of the scheme v such that:

16

(1 — ,Ug)tg =3v = ty =06v (793)

Then, the minimal v is ¥ = 3. Database 1 generates the independent keys K; =
<k§1), R kfll)> , such that K is picked uniformly from ]F;’L. Database 1 encodes these

random keys using a (16,4) MDS code, to get ufi.1q), i.€.,

U:16) = MDS 64K (7-94)
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Similarly, database 2 generates K, = <k§2),--- ,k52)> uniformly from Fg.

Database 2 encodes the keys using an (18,9) MDS code, to get v, i-€.,
Ul:18) = MDS 5.9 K> (7-95)

Now, all the meaningful downloads are encrypted by the coded keys. Fur-
thermore, the user downloads wu[i3.16) separately from database 1, and wvfi.15 from

database 2. The query table is shown in Table. [7.1]

Table 7.1: The query table for M =3, N =2, u; = %, Lo = %

Database 1 Database 2
a; + uy a2+b1+?)1
bl+U2 as + ¢1 + Vg
c1 + us b2+C2—|—U3

as + bz + Co + Uy
as + us ag + bs + vy
b3+U6 a7y + ¢c3 + vy
c3 + uy b4+C4—|—U6

as + b4 + ¢4 1+ usg
g + Ug a10+b5—l—v7
b5 + U0 aijl + ¢s5 + vg
Cs + U1 bﬁ+C6+U9

aio + bﬁ + Cg + Up2

U13, U4, U1, U16 V10, U11, U12, U13, V14
V15, U16, U7, U1g

For the decodability, since database 1 encodes its keys K; using a (16,4) MDS
code, by the MDS property, any 4 symbols suffice to reconstruct u(.16). The user
downloads u13.16] separately, hence u[;.19) can be reconstructed and canceled from the
downloads to get the meaningful information only. Similarly, database 2 encodes

the keys K, using an (18,9) MDS code, hence vpig.15 suffice to reconstruct vp.g
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and can be canceled from the meaningful downloads. Furthermore, since the side
information at any database is obtained from the undesired symbols downloaded
from the second database, all undesired symbols can be canceled and the user is left

only with a.19, which are the desired symbols.

1

7 and po = %, the eavesdropper can obtain any

For the security, since p; =
4 symbols out of total 16 downloaded symbols from database 1, and any 9 symbols
out of total 18 downloaded symbols from database 2. Since K;, K, are generated

uniformly and independently from IE';1

, ), respectively, any 4 symbols (u;,, - -+, u;,)
from (1,16 are independent and uniformly distributed over IF,, and similarly for any

9 symbols (vj,,- -+ ,vj,) from wvj.1g. Consequently, the leakage at the eavesdropper

is upper bounded by:

I(Wh.3; ZP]Q) = H(Z12) — H(Z1.2|Wh.3) (7.96)
'Lbil
U,i4

<log, 13— H —0 (7.97)
Ujl

For the privacy, as all combinations of the sums are included in the queries
and the indices of the message symbols are uniformly and independently permuted,

the privacy constraint is satisfied. Hence, the user downloads ¢; = 16 symbols from
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database 1, and t, = 18 symbols from database 2. From these downloads, the user

12 _ 6

3 = 10 which matches the upper

can decode L = 12 symbols from W;. Hence, R =

bound.

7.5.1.3 Achieving the Upper Bound for Arbitrary p

Now, we show how to achieve the upper bound in for general pu. As shown
in the example of p; = }L, fo = %, the user downloads ;¢ as individual symbols
from the coded keys from database 1, and ust, as individual symbols from the coded
keys from database 2. This leaves (1 — pu1)t1, (1 — us)ts, respectively for meaningful
symbols. Furthermore, each scheme should be repeated v times to ensure that
t1, to € N. In the following, we focus on the meaningful symbols without the coded

keys. We show only one repetition of the scheme.

For R(p) = 1_3“1: To achieve this rate, the user applies the trivial retrieval scheme

[1], and downloads all messages from database 1, i.e., the user downloads ay, by, ¢;

from database 1. Hence, t5 = 0 and

3v

l—m)ty =3v = ¢ =
( Ml)l 1 1—

(7.98)

where v is chosen such that t; € N. From every repetition, the user gets 1 symbol

from W;. Hence, L = v. The user asks for pt; = lé_l% individual coded symbols

from the keys, and the database encrypts the downloads with coded keys constructed

3v v

e 1—u1) MDS code. This ensures the security. The achievable rate in

from a (
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this case is

L 1 -
- = =" (7.99)
htty 2% 3
For R(u) = %: To achieve this rate, the user downloads individual

symbols from all messages from database 1, i.e., the user downloads aq, by, ¢; from
database 1. The user combines the two undesired symbols by, ¢; into a 2-sum b; 4 ¢;
and uses it as a side information in database 2. The query table for one repetition

of the scheme for the meaningful symbols (without showing the keys) is shown in

Table [T.2

Table 7.2: The meaningful symbols for M = 3, N = 2 to achieve 3%51—721)—%

Database 1 | Database 2
Cthl,Cl a2+b1+01

In this case, the scheme is repeated v times such that ¢, t; € N,

3
(1 — ,u1)t1 =3r = t1 = v (7100)
L=
(1—po)to=1v = ty= —2 (7.101)
1 — M2

Database 1 encodes pit; = f’i‘:l independent and uniformly distributed keys

using a (2%, 3y MDS code to obtain the coded keys that are added to each
1—p1? 1—py

download. Similarly, database 2 encodes pgty = ﬁ% keys using a (1fu2, 1—’:%) MDS

code to obtain the coded symbols. Using this scheme, the user decodes L = 2v from
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the desired messages. Consequently,

L 2 2(1 — 11—
— — = 4 ” — ( :ul)< /‘LQ) (7102)
t1+ 1t o + T~ 3(1 — ,LLQ) + (1 — /Ll)
For R(p) = —20—ml—pe) . Ay jpstance for this scheme is the py = L, pp = 1
4(1=p2)+3(1—p1) 1 4 H2 2

example. To avoid repetition, we give only the general rate. As shown in the

example, t; = %, and 1y = IE—ZQ From every repetition, the user can decode 4
symbols, hence L = 4v. Thus,
L 4 4(1 — 1—
— — - v = — ( Iul)< /JLQ) (7103)
tl + t2 —m + 1 4(1 - MQ) + 3(1 — /,61)

This completes the description of the capacity-achieving scheme for PIR-WTC-
I for M = 3, N = 2, and arbitrary . The capacity region C'(u) is shown in
Fig. [7.4 In Fig. [7.5], we illustrate the partitioning of the g space in terms of the

active capacity expression; note by convention g > 1.

7.5.2 General Achievable Scheme

In this section, we present the general achievable scheme for PIR-WTC-II that
achieves the retrieval rate in Theorem [L.2l The core of the achievable scheme is
the achievable scheme of the corner points in the PIR problem under asymmetric
traffic constraints in Chapter 5] A new ingredient is needed to satisfy the security
constraint, namely, encrypting the answer strings by random keys. The nth database

uses a random key K, of length p,t, that is sufficient to span the space of the
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Figure 7.4: Capacity for M = 3, N = 2 as a function of p; and ps.

eavesdropper’s observations. The nth database encodes K, using a (t,, p,t,) MDS
code and uses the resulting codeword to encrypt each downloaded symbol from the
meaningful downloads in addition to u,t, individual symbols of coded key symbols
only. For completeness, we include all related details of the scheme in [125] in
addition to the new ingredients.

We use the same terminology as in [125]. Let s, € {0,1,---, M —1} denote the
number of side information symbols that are used simultaneously in the initial round
of downloads at the nth database. For a given non-decreasing sequence {n;}X ;' C
{1,--- N} the databases are divided into groups, such that group 0 contains

database 1 through database ng, group 1 contains n; — ng databases starting from

database ng + 1, and so on.
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Figure 7.5: Partitions of pu space according to the active capacity expression for
M =3 N=2

Hence, let s, =i for allm;_1+1 < n < n; with n_; = 0 by convention. Denote
S={i:s,=ifor somen € {1,--- ,N}}. We follow the round and stage definitions
in [123]. The kth round is the download queries that admit a sum of k different
messages (k-sum in ) A stage of the kth round is a query block of the kth round
that exhausts all (') combinations of the k-sum. Denote y,[k] to be the number of
stages in round k downloaded from the nth database, such that ny 1 +1 <n < ny.

The details of the achievable scheme are as follows:

1. Calculation of the number of repetitions: The user and the databases agree

on appropriate answer string lengths t,,(n, ), n = 1,--- | N. To that end, the
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scheme associated with n = {n;}/;! is repeated v times such that:

vD,(n)
1— pn

to(n, p) = eN, VYne{l,--- N} (7.104)

where D,,(n) is the number of meaningful downloads corresponding to one rep-
etition of the achievable scheme associated with the monotone non-decreasing

sequence n = {n; } M 1.

2. Preparation of the keys: The nth database generates a random key K,,. The
random key K, is of length u,t,, such that elements of K, are independent and
uniformly distributed over F,. The nth database encodes K, to an artificial

(n)
1:

1:,) Using a (tn, tntn) MDS code, i.e.,

noise vector u

(n)

Ut = MDS; it K (7.105)

3. Initialization at the user side: The user permutes each message independently

and uniformly using a random interleaver, i.e.,

2m(i) = Win(mm(i)), i€ {l,-- L} (7.106)

where x,,(7) is the ith symbol of the permuted W,,, m,(:) is a random in-
terleaver for the mth message that is chosen independently, uniformly, and
privately at the user’s side.

4. Initial download: From the nth database where 1 < n < ng, the user down-
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loads [[,cs (Aj__f) symbols from the desired message. The user sets the round
index £ = 1. l.e., the user starts downloading the desired symbols from

voll] = [],es (Af__f) different stages.

. Message symmetry: To satisfy the privacy constraint, for each stage initiated
in the previous step, the user completes the stage by downloading the remain-

ing (Alf:ll) k-sum combinations that do not include the desired symbols, in

M—-2

s—l) individual symbols from

particular, if & = 1, the user downloads [, g (

each undesired message.

. Database symmetry: We divide the databases into groups. Group ¢ € S
corresponds to databases n,_1 41 to ny. Database symmetry is applied within
each group only. Consequently, the user repeats step 2 over each group of
databases, in particular, if & = 1, the user downloads [ ¢ (1\5:12) individual

symbols from each message from the first ny databases (group 1).

. Ezploitation of side information: The initial exploitation of side information
is group-dependent as well. Specifically, the undesired symbols downloaded
within the kth round (the k-sums that do not include the desired message)
are used as side information in the (k + 1)th round. This exploitation of side
information is performed by downloading (k + 1)-sum consisting of 1 desired
symbol and a k-sum of undesired symbols only that were generated in the kth
round. However, the main difference from [12] is that, for the nth database,
if s, > k, then this database does not exploit the side information generated
in the kth round. Consequently, the nth database belonging to the ¢th group
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exploits the side information generated in the kth round from all databases
except itself if s, < k. Moreover, for s, = k, extra side information can be
used in the nth database. This is due to the fact that the user can form
no [ [4e S\{sn} (Af:f) extra stages of side information by constructing k-sums of

the undesired symbols in round 1 from the databases in group 0.
8. Repeat steps b, 6, 7 after setting k =k + 1 until &k = M.
9. Repetition of the scheme: Repeat steps 4,--- ,8 for a total of v repetitions.

10. Shuffling the order of the queries: By shuffling the order of the queries uni-
formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

11. Encryption of the downloads: The database encrypts each meaningful down-

load by adding one symbol from uﬁl )(1_ i,

sin)tn] Furthermore, the user downloads

(n)

Ul 15t coded key symbols individually. This guarantees the security.

7.5.3 Decodability, Privacy, Security, and Achievable Rate

Decodability: To see the decodability, we note that the user receives p,t, individ-

(n)

ual artificial noise symbols Ul(1— ) +15t] from the nth database. From the MDS

property of the (¢, u,t,) MDS code, any pu,t, coded symbols suffice to reconstruct

the entire ¢,, coded symbols. Hence, the user can reconstruct and cancel uﬁl 171] by

the knowledge of U/E(nl)*#n) Consequently, after canceling the artificial noise

tn+1ity]”

symbols, the user is left with only the meaningful symbols in the answer strings.
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Now, by construction, in the (k + 1)th round at the nth database, the user
exploits the side information generated in the kth round in the remaining active
databases by adding 1 symbol of the desired message with k-sum of undesired mes-
sages which was downloaded previously in the kth round. Moreover, for the nth
database belonging to the ¢th group at the (¢ + 1)th round, the user adds every ¢
symbols of the undesired symbols downloaded from group 0 to make one side infor-
mation symbol. Since the user downloads ], g (1\@4:12) from every database in the
first ny databases (group 0), the user can exploit such side information to initiate
10 [Tres 1y (477 stages in the (¢ 4 1)th round from every database in group (.
Since all side information symbols used in the (k + 1)th round is decodable in the

kth round or from round 1, the user cancels out these side information and is left

with symbols from the desired message.

Privacy: The privacy of the scheme follows from the privacy of the inherent PIR
scheme under asymmetric traffic constraints. Specifically, for every stage of the kth
round initiated in the exploitation of the side information step, all (1\: ) combinations
of the k-sum are included at each round. Thus, the structure of the queries is the
same for any desired message. The privacy constraint in is satisfied by the
random and independent permutation of each message and the random shuffling of
the order of the queries. This ensures that all queries are equally likely independent

of the desired message index.
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Security: From the nth database key K, is of length u,t,. The elements of K,
are independent and uniformly distributed in F,. The nth database encodes K,
(n)
1:

into the artificial noise vector Upyg ) using a (t,, nt,) MDS code. Since any p,t,

columns of the generator matrix of the MDS code are full rank, the mapping from
(n) .,

K,, to any pu,t, symbols from the artificial noise vector U, = [uil , YU

] is
a bijection, and consequently, U, ~ K,, where ~ denotes statistical equivalence.
Moreover, since there is no shared randomness between databases, the elements of
(K1, -+, Ky), and consequently the elements of (Uy,--- ,Uy) are independent and
uniformly distributed in F,.

Now, the eavesdropper chooses to observe p,t, symbols from the nth answer
string A%]. Denote the eavesdropper observations by ZE] € Ffl‘"tn. Since all down-
loaded symbols are encrypted using uff L] (counting the downloads that contain

solely the artificial noise). Denote the artificial noise symbols within Zl1 by U,.

Hence, the leakage at the eavesdropper can be upper bounded by:

I(Wiars Ziiy) = H(Ziy) = H(Z{ [ Wi) (7.107)
Uy
N U,
<Y ptntn — H (7.108)
n=1 .
Uy
N N i i
= fintn = > fintn =0 (7.109)
n=1 n=1

where ((7.109)) follows from the fact that any pu,t, artificial noise symbols are inde-
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pendent. Note that the units of calculation is g-ary symbols.

Achievable Rate: For the calculation of the achievable rate, we focus first on one
repetition of the scheme. Without adding the artificial noise symbols, the structure
of one repetition of our scheme is exactly as |125]. The recursive structure of the
achievable scheme can be described using the following system of difference equations
that relate the number of stages in the databases belonging to a specific group as

shown in |125, Theorem 2|:

yolk] = (no—1D)yolk—1] + Z —n;_1)y;[k—1]
jes\{o}
yl[k] = (nl—no—l)yl[k—1]+ Z (nj—nj,l)yj[k’—l]
jes\{1}

yelk] = no&eblk—0=1] + (ng=ne = Vyelk — 1+ D (ny—n;1)y;[k—1], €>2
jesS\{¢}

(7.110)

where yy[k] is the number of stages in the kth round in a database belonging to the
(th group, i.e., for the nth database, such that n,_; +1 < n < n,.

Hence, to calculate D, (n) such that n,—; < n < ny, which is the number
of meaningful downloads from the nth database belonging to the fth group, corre-
sponding to one repetition of the achievable scheme associated with the sequence

n = {n;}M;', we note that for any stage in the kth round, the user downloads (M _1)

k—1
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desired symbols from a total of (A,f ) downloads. Therefore,

D,(n) = ; (]\lf) yelk], me—1 <n <ny (7.111)

Consequently, the total download 3> ¢, (n) from all databases from all rep-

etitions is calculated by observing ([7.104]),

N N
ST s e
n=1 n=1 "

no M M ni M M

n=1 fn n=ng+1 Hn

—vy i o1 (3)welk (7.114)

]_ —
leS n=ny_1+1 Hn

Furthermore, the total desired symbols from all databases from all repetitions is

given by,

Ln)=v) Y <A]f __11) Yol k) (g — ne_y) (7.115)

leS k=1

Thus, the following rate is achievable corresponding to the sequence n,

_ Des Sy (o )yelk](ne = ney)

R(n, p) T
n D= ye k]
Sies S,y il

(7.116)

Since this scheme is achievable for every monotone non-decreasing sequence
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n = {n;}M;*, the following rate is achievable,

M _
ZZGS Zk:l (Alf—ll)yé[k] (ng —ne—y)
R(:u') = o gla)é{l Ny 2241(M>y£[k}
no<--<npr_1 R (4
ZEGS En ng_1+1 " 1—p,

1—pn

(7.117)

7.5.4 Optimality for M = 2 and M = 3 Messages

In this section, we prove the optimality of our scheme for M = 2 and M = 3.
The proof relies on relating the upper bound for the PIR-WTC-II problem with the
upper bound for the PIR problem under asymmetric traffic constraints. From the
settled optimality of the achievable scheme of the meaningful symbols for M = 2,
M = 3 for the PIR problem under asymmetric traffic constraints, we conclude the
optimality of our scheme for PIR—WTC-HH

We return to the upper bound in Theorem [7.1]

N_ L—pin)Tn g:n (1_ n)Tn
_ Ziv:l<1 - ,Un)Tn + Zn_n1+;bi pn) + 4 ]\IJ_[_J\}[willn e
C(p) =max min . i—1 M
T7€T n;e{l,- ,N} 14+ L ... e
1 Hi:l ng
(7.118)
Z'fz\]:n +1(1_Mn)7'n Zﬁ;n B _,'_1(17#”)7-”
N : e M—1
Z 1 — K - min t nl.anzl(liun)T" + * Hzl\ifl anival(l—un)m
= nnmdhw} 1+ L4 =
71 Hizl ng
(7.119)
- 1+ nil Ziv:n +17Zn oot r[M+1n Z'fl\[:n]wfl'i'l%n
= max Z(l — Mn)Tn . min - i=1 i
T ni€{l,~,N} 14+ 2 4+ =
n=1 ™ Hi,l o
(7.120)

! Alternatively, for a specified N, u, we can prove the optimality by showing that the KKT
conditions of the upper bound optimization problem are satisfied by our achievable scheme.
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N

= max ;(1 — 1) T - C(7) (7.121)
where 7, is obtained by the change of variable 7, = —&=22)™  and the inner

Ziﬁl(lfﬂi)ﬁ‘

problem C(7) is defined as:

~ 1+nLZ£LV:n +1%"++ﬁzrjj:n _+17~_n
C(7)= min : B T i (7.122)
miEfl N 1+L+. ¥

The inner problem is precisely the upper bound for the PIR problem under asym-
metric traffic constraints 7 in [125, Theorem 1].
In the following lemma, we show that the solution of C'(p) exists at one of the

corner points of C/(7).

Lemma 7.4 The solution of C(p) exists at one of the corner points of C(F) after

SN (A—p)Ti

the change of variables T, = )

Proof: To show this, we note that the upper bound in Theorem can be written

as the following linear program as discussed in Remark [7.3}

max R
R
N o Sncnyer(mpn)rn Dy ()™
st. R< 2onma (1 = i) n tooe 0 Vn
o = 14+ L 1 ’
™ [J R
N
 m=1 m>0n=1-- N (7.123)
n=1

Equivalently, from ([7.120]), we can write the optimization problem correspond-
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ing to the upper bound as:

N
max 1-— nTn'R
T€T,R 7 nz_:l( M)
N ~ N ~
ot R - 1+ nll Zn:'rn—&—lTn + ﬁ Zn:nM,ri-lTn vn
s R R i ’
N
S A=l A0 n=1-- N
n=1
1_ n)in
- (=) =1 N (7.124)

Tn <~ /1 N\ n PE
>l — )T

We note that the constraints of this equivalent problem is the same as constraints
of the upper bounds of the PIR problem under the asymmetric traffic constraints
T.

Since there are a finite number of constraints (N*~! 4+ 2 constraints), the
feasible region is a polyhedron, thus, the solution for C'(u) resides at a corner point
of this polyhedron.

For any corner point of this optimization problem, (N + 1) constraints are
active (i.e., met with equality) and linearly independent.

Since these constraints take the form of

N7 1—pn)mn Z,,];f:n (17 n)Tn
(L= g SR g T
= 1+ L+ F 1 = (7.125)
" T
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by dividing both sides by S_N (1 — u;)7; > 0, the constraint become

LN ~ 1 N .

é - R B 1 + n_1 Zn:n1+17-n + .-+ —Hf\iflnl Zn:nﬂ[,1+l’7—n 7 126

YA a 1 T (7.126)
Yo (I = pi)7 T+ s

Hence, the condition of intersection of the active constraints of the C(u) is the
same as the condition of the intersection of the bounds of C/(F) after the change of

variables. Thus, it suffices to consider the corner points of the inner problem and

N . .
map the solution using the change of variables 7,, = _Zi:(i (71;1/;1)71' u

Consequently, for a corner point of the inner problem (7*, C'(7*)), we have the

reverse change of variables

N
N (1 — )T

T{i:?i‘zz:l( )7, (7.127)
1— pn

. N N - N Q—p)y .
Now, since > 7r=1,% " 7r- # = 1, which leads to

N

S (1= )i = (7.128)

Tn
i=1 anl 1—pn

Denote C(7*, pt) to be the upper bound of the PIR-WTC-II problem corresponding

to the corner point (7*, C(#*)) of the inner problem, hence from (7.121]), we have

C(T",p) = Z(l — )i - C(77) (7.129)
_ —5(72 (7.130)

ZRZI lfp,n

Thus, the upper bound can be written in terms of the corner points of the inner
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problem {7W}?_ where 6 is the total number of corner points as

_ (50
C(p) = max e ?)
7’6{17 79} Z T

n=1 T—pn

(7.131)

7.5.4.1 M = 2 Messages

From [125], we know that for M = 2, all the corner points of the inner problem are in

fact optimal. For an increasing sequence (ng, n1), the corner points are characterized

by:
.
no+1
no(gz—li_-‘rl)’ 1 S n S no
- X~ ny
=94 Lo me+l<n<n = CO)= S (7.132)
0, m+1<n<N
\

Hence, the upper bound for M = 2 can be explicitly written as:

ni

C(p)=  max no+1 L T (7.133)
no,n1€{1, ,N} Zn 1 W1+01— + Zn no+1 (n14+1)(1—pn)

Nony
= max
] n0+1
no,n1€{1, ,N} Zn 11—, +Zn no+1 1— pn

(7.134)

From the achievability side, for a sequence (ng,n1), the system of difference

equations in Theorem [7.2) reduces to

yo[k] = (no — 1)yolk — 1] (7.135)

yilk] = noyolk — 1] (7.136)
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for k = 1,2, where yo[1] = 1, and y;[1] = 0. Hence, yo[2] = no — 1, and y;[2] = ny.
Consequently, the achievable rate in Theorem is explicitly evaluated for M = 2

as:

M _
Zees Zk:l (Aif_ll)yé[k] (e —nu—1)
Rp) = n07n1rél{a1?~(--,N} Srly (W) velk]
ZZES Zn =ng_1+1 1—fin

nony

_ _ (7.138)
7L0,'rL1€{17 - ,N} ZTL 1 10;";71L + Zn no+1 1— Hn

(7.137)

which matches the upper bound and concludes the optimality for M = 2.

7.5.4.2 M = 3 Messages

Similarly, from [125], the corner points of the inner problem occur for an increasing

sequence (ng,ni,nz). The corner points are characterized by:

.
_nonitnotl
no(neni+ni+1)’ 1 S n S n
_ m+l
L _ ) metemr metlsnsme L ny (7.139)
n gx <n< ning +mny + 1 :
nani+tng+1 n+1<n<n,
0, no+1<n<N
\
Hence, the upper bound in (|7.131]) is explicitly written as:
K) = max
nom1,nz€{l, N} Z n0n11+;7:+1 + Zn no+1 nolnl!j‘nno + Zn n1+1 1%7431
(7.140)

From the achievability side, we have the following system of difference equa-
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tions for kK =1,2,3:

yolk] = (no — Dyolk — 1] + (n1 — no)yr [k — 1] + (ng — ny)y2[k — 1] (7.141)
y1[k] = noyolk — 1] + (n1 — nop — D[k — 1] 4+ (ng — ny)ye[k — 1] (7.142)
yz[k‘] = noé[]{ — 3] + noyg[k’ — 1] + (nl — ng)yl [/{5 — 1] + (ng — Ny — 1)y2[k‘ — 1]

(7.143)

with the initial conditions yo[1] = 1, y1[1] = 0, and ys[1] = y2[2] = 0. Evaluating
yelk], for £ = 0,1,2, and k = 1,2, 3 recursively leads to yo[2] = ng — 1, 11[2] = no,
Yo[3] = ning — 2ng + 1, y1[3] = ning — 2ng, and y5[3] = nyng. Consequently, the

achievable rate from Theorem is explicitly expressed as:

D ies 224:1 (11\5:11)912%]("6 — 1)

R(p) =  max I (7.144)
no,n1€{1,-,N} Z Zn[ D k=1 ( k )yé[ ]
leS n=ng_1+1 1—pp
o max nonyT2
- n 1 n n
no,n1,n2€{1,, N} Znozl % + anzn0+1 %}T + Znin1+1 %

(7.145)

which matches the upper bound and concludes the optimality for M = 3.

Remark 7.10 We note that the meaningful portion of the answer strings follows the
combinatorial water-filling shown in [125] for M = 2 and M = 3. This means that
the less threatened (more secure) databases are returning more meaningful symbols
than the less secure ones, hence, T, > Tk, if n < k. However, the length of the
entire answer string including the artificial noise symbols may not follow the same

structure, e.q., in the example in Section |7.5.1.2, we see that t; = 16 and t, = 18,
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1.e., Ty > Tq, while 79 < T1.

7.5.5 Achievable Rate for N = 2 and Arbitrary M

Following the analysis of this case in [125], let s5 € {0,--- , M —1} be the number of
side information symbols that are used simultaneously in the initial round download

in the second database.

—2

_1) stages of individual symbols

Hence, the user starts with downloading (i\f
(i.e., the user downloads M (Z:f) symbols from round 1 from all messages) from
the first database to create 1 stage of side information in the (s2 + 1)th round.

After the initial exploitation of side information, the two databases exchange side

information. More specifically, from database 1 in the (so + 2k)th round, where

k=1,---, [M ;Szj , the user exploits the side information generated in database 2 in
the (s9+2k—1)th round to download (521/[2;171) desired symbols from total download

in the (s2+2k)th round of (32]-\{%)' Similarly from database 2, in the (sy + 2k + 1)th

M—s9—1
2

round, where £ =0, - - - | L J, the user exploits the side information generated

M-1

in database 1 in the (s + 2k)th round, and downloads (52+2k

) desired symbols from

total of ( ) downloads in the (s34 2k+1)th round. Thus, using the calculation

M
so+2k+1

in [125], we have

LAIQSQJ

Di(s3) = M(Z - f) + 2 (52 J_\f%) (7.146)
b= 3 (L) o

k=0
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where D,,(s9) corresponds to the length of the meaningful downloads within the nth
database from one repetition of the scheme, therefore, the total download of the

scheme is given by:

~ Di(s2) | Dofs2)
= +
L—pr 1= p

t1(s2) + ta(s1) (7.148)

LA{—SQJ
1 M -2 : M
= M +
1-— 1 S9 — 1 S9 + 2k
k=1
==
1 M
14

k=0

+

The message length does not change due to the security constraint, hence, directly

from [125], we have
M—so—1
M -2 M -1
L = 7.150
A ) KD o Gy (150
Consequently, the achievable rate is explicitly given as:

R(p) =  max (D) + e ()
SR R IV =Y Iy IR Y =y
1—p1 M(52—1)+Zk:1 (82+2k) + -1 k=0 (82+2k+1)

(7.151)

including the corner point corresponding to the trivial rate, i.e., when the user

deactivates the retrieval process from the second database, leading to ([7.25)).
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7.5.6 Further Examples

In this section, we present further examples to clarify the achievable scheme for

additional tractable values of M, N.

7.5.6.1 M = 4 Messages, N = 2 Databases

In this example, we show the achievable scheme for M = 4, N = 2, and arbitrary
p. This example helps us to show that our achievable scheme does not achieve the
capacity for all pu. For M = 4, we have M + 1 = 5 possible achievable schemes,
corresponding to se = {0,1,--- 3} and one other achievable scheme corresponding
to the trivial scheme of downloading the contents of database 1. Let a;,b;,¢;,d;
denote the randomly permuted symbols from Wy, Wy, W3, Wy, respectively. In all
achievable schemes, the nth database generates a key K, with length p,t, and
encodes it to generate an artificial noise vector uff LL] using a (t,, fint,) MDS code.
The nth database provides p,t, individual symbols of artificial noise. In all cases,
the scheme is repeated v times such that:

vD,(n)
1—pup

to(n, p) = eN, Vne{l,?2} (7.152)

Now, we focus on one repetition of the achievable scheme. We further concen-

trate on the meaningful queries, i.e., before adding the artificial noise vector.

The trivial scheme corresponding ton = (1,1,1,1): In one repetition of the scheme,
the user downloads ay, by, ¢1,d; from database 1. Hence, Dy(n) = 4. Consequently,
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t1(n, p) = 131. As the user decodes 1 symbol from W in each repetition, Li(n) =

v. Hence, R(n, p) = 1=/ is achievable.

The scheme corresponding to n = (1,1,1,2): In this case, s = 3, i.e., the user
exploits 3 side-information symbols simultaneously in database 2, i.e., focusing on
one repetition of the scheme, from database 1, the user downloads a1, by, ¢y, d;. The
user combines by + ¢ + d; and uses this side information to get a, from database 2,

i.e., the user downloads as+b;+c¢;+d;. Hence, Dy(n) =4, Dy(n) = 1. Consequently,

ti(n,p) = lle, and to(n, p) = 1:’#2. As the user decodes 2 symbols from W in
each repetition, Li(n) = 2v. Hence, R(n, p) = 42? is achievable. The query
I—py " 1-pg

table of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table [7.3]
Table 7.3: Meaningful queries for M =4, N =2, s9 = 3.

Database 1 Database 2
a,bi,ci,dy | ag+01 +cp +dy

The scheme corresponding to n = (1,1,2,2): In this case s, = 2, hence the user
combines every 2 undesired symbols from database 1 to form one side information

symbol. To that end, the user downloads (ﬂgj

) = 2 stages of individual symbols
(1-sum) from database 1, so that the user forms 2-sums that can be used in database
2 as side information to start round 3 directly. More specifically, the user downloads
az + by + c1, ag + by + dy, a5 + co + dy from database 2 taking into considerations
that all these undesired symbols are decodable from database 1. The user completes

the stage by downloading b3 + c3 + d3 that can be further exploited in database 1
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by downloading ag + b3 + ¢3 + d3. Hence, Di(n) = 9, Dy(n) = 4. Consequently,

9v _ 4v

ti(n,p) = e and ta(n, p) = T As the user decodes 6 symbols from Wj in

each repetition, L(n) = 6v. Hence, R(n,p) = ————
1=py " 1-pa

is achievable. The query

table of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table [7.4]

Table 7.4: Meaningful queries for M =4, N = 2, s9 = 2.

Database 1 Database 2
al,bl,cl,dl CL3+b1+Cl
CLQ,bg,CQ,dQ a4+b2—|—d1
as + c2 + do
bz + c3 + d3

a6+b3+03+d3

The scheme corresponding to n = (1,2,2,2): In this case s, = 1, hence the user
exploits the individual undesired symbols downloaded from database 1 directly as a
side information in database 2. To that end, the user exploits the side information
generated in round 1 by downloading as+ b, as+c;, and ay+d;. The user completes
the stage by downloading undesired symbols consisting of 2-sums that do not include
a;, hence the user downloads by + co, b3 + do, c3 + d3. The undesired symbols are
exploited in database 1, thus the user downloads as + by + ¢2, ag + b3 + do, and
a7 + c3 + dz. The user completes the stage by downloading by + ¢4 + d4, which can

be exploited in database 2 by downloading ag + by + ¢4 + d4. Hence, Di(n) = 8,

Dsy(n) = 7. Consequently, t1(n, p) = lf’l’“, and to(n, pu) = % As the user decodes
8 symbols from W; in each repetition, L(n) = 8v. Hence, R(n, u) = %7— is
I=p1 * 1—p2

achievable. The query table of the meaningful queries (without the artificial noise)
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for one repetition of the scheme is shown in Table [7.5]

Table 7.5: The query table for M =4, N =2, s = 1.

Database 1 Database 2

ai, by, cr,dy as + by
as + 1
ay + dy
b2 + C2
bs + ds
c3 + d3

a5+b2+02 &8+b4+C4+d4

ag + b3 + dg

ar + c3 + d3

by +cy+dy

As in the case of M = 3, under the assumption that p; < po, the symmetric
scheme in [12] does not achieve any larger retrieval rates at any p. Hence, the

following rate is achievable,

+ | oo

1—pu 2 6
R(p,):max{ 1 17 1 1 5 9 7 ) T8 7 } (7-153)

1—p1 + l—p2  1-m + 1—p2  1-m 1—p2

In Fig. [7.6] we illustrate the partitioning of the p space in terms of the active
achievable scheme. In Fig. [7.7, we plot the gap versus p for M = 4, N = 2. We
note that the gap is upper bounded by 0.0051 and this gap exists only for specific

regimes of pu.

7.5.6.2 M = 2 Messages, N = 3 Databases

In this example, we show the achievable scheme for M = 2, N = 3, and arbitrary
p. Again we focus on the meaningful queries in our exposition to avoid repetition.
The artificial noise incorporation is exactly as in the previous examples. Let a;, b;
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(1,1)

g 1—pq + 1—py

(0,0)

Figure 7.6: Partitions of p space according to retrieval rate expression for M = 4,
N = 2.

denote the randomly permuted symbols from Wy, Wy, respectively.

The trivial scheme corresponding to (ng,n1) = (1,1): In this case, the user deac-
tivates the retrieval from database 2. Hence, in one repetition, the user downloads

a1, by from database 1 only. Therefore, D;(1,1) = 2 which leads to ¢;(1,1, ) = 13—21

From one repetition of the scheme, the user decodes 1 symbol from W7, hence L = v

symbols. This gives the rate R(1,1,u) = 1_2“1.

The scheme corresponding to (ng,n1) = (1,2): In this case, the user exploits the
undesired symbols in database 1 as a side information in database 2 only and deacti-

vates database 3. Hence, in one repetition, the user downloads aq, b; from database
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Figure 7.7: Capacity gap for the case of M =4, N = 2.

1, and uses b; as side information in database 2 by downloading as 4 b;. Therefore,

Di(1,2) =2, Dy(1,2) = 1 which leads to t;(1,2, p) = 2, and t5(1,2, p) = =~

©1 —p2’

From one repetition of the scheme, the user decodes 2 symbols from W, hence

L = 2v symbols. This gives the rate R(1,2, pu) = ﬁ The query table of the

1=pg * 1=po

meaningful queries (without the artificial noise) for one repetition of the scheme is

shown in Table [Z.6
Table 7.6: Meaningful queries for M =2, N =3, n = (1,2).

Database 1 | Database 2 | Database 3
ai, by as + by

The scheme corresponding to (ng,n1) = (1,3): Since n; = 3, the user exploits the
side information in database 2 and database 3. Hence, in one repetition, the user
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downloads aq,b; from database 1. The user downloads as + b; from database 2,
and as + by from database 3. Therefore, Di(1,3) = 2, Dy(1,3) = 1, D3(1,3) =1

. From one

which leads to t1(1,3,pu) = %, to(1,3, 1) = t3(1,3, 1) =

= 1= = T

repetition of the scheme, the user decodes 3 symbols from W7, hence L = 3v symbols.

This corresponds to the rate R(1,3,p) = ————

1—p1 + 1—pg

—- The query table of the
1—pg

meaningful queries (without the artificial noise) for one repetition of the scheme is

shown in Table [.7
Table 7.7: Meaningful queries for M =2, N =3, n = (1,3).

Database 1
ay, bl

Database 3
as + bl

Database 2
as + bl

The scheme corresponding to (ng,n1) = (2,2): In this case, the user applies the
symmetric scheme at databases 1 and 2, and deactivates database 3. Consequently,
the user downloads aq, b; from database 1. From database 2, the user downloads new
symbols as, by. The user exploits the side information generated in the first round of

download by downloading as + by, and a4+ b;. Therefore, D;(2,2) = 3, D9(2,2) = 3

which leads to #,(2,2,u) = 3%

T t2(2,2, 1) = % From one repetition of the
scheme, the user decodes 4 symbols from W7, hence L = 4v symbols. This gives the
rate R(2,2, ) = ﬁ. The query table of the meaningful queries (without the

artificial noise) for one repetition of the scheme is shown in Table [7.8]

Table 7.8: Meaningful queries for M =2, N =3, n = (2,2).

Database 1 | Database 2 | Database 3
ar, by ag, by
as + bo as + by
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The scheme corresponding to (ng,n1) = (2,3): In this case, the user further exploits
the side information generated in databases 1 and 2 in database 3. Hence, the user

downloads ag + by, a4 + by from database 3. Therefore, D;(2,3) = 3, Dy(2,3) = 3,

t3<27 37 IJ’> = 2

1—ps”

D3(2,3) = 2 which leads to t1(2,3, ) = 131;1, £(2,3, ) = £

7/'1127

From one repetition of the scheme, the user decodes 6 symbols from Wj, hence

L = 6v symbols. This gives the rate R(2,3, ) = ———2

2
1—pq + 1—p2 + 1—p3

. The query table

of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table [7.9]

Table 7.9: Meaningful queries for M =2, N =3, n = (2, 3).

Database 1 | Database 2 | Database 3
ai, b1 as, b2 as -+ bl
ay + bQ
as + bQ Qg + bl

The scheme corresponding to (ng,ni) = (3,3):

In this case, the user applies the

symmetric scheme in [12]. Therefore, D,,(3,3) = 4, where n = 1,2, 3 which leads to

ta(3,3,p) = £

T From one repetition of the scheme, the user decodes 9 symbols

from W7, hence L = 9v symbols. This gives the rate R(3,3,u) = —

1—p

1 +1*4u2 +174u3 '
The query table of the meaningful queries (without the artificial noise) for one
repetition of the scheme is shown in Table [7.10]

Table 7.10: Meaningful queries for M =2, N =3, n = (3, 3).

Database 1 | Database 2 | Database 3
as, b1 as, b2 as, b3
CL4+bQ a6+b1 CLg"i‘bl
a5+b3 a7+b3 CLg"i‘bQ
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Consequently, the following rate is achievable:

1 — M1 2 3
R(l"’):max D) 1 2 1 1
2 + 1

4 6 9
51 3 0 3 3 2 0 _4 1 4}(7-154)

7.6 Conclusions

In this chapter, we investigated the PIR-WTC-II problem. We showed that the
problem is a concrete example of the PIR problem under asymmetric traffic con-
straints. We obtained a general upper bound that extends the converse techniques in
Chapter [l The converse proof takes the form of a max-min optimization problem.
The inner minimization problem derives the tightest upper bound for the retrieval
rate for an arbitrary traffic ratio vector 7, while the outer maximization problem
optimizes over 7. The core of the achievability proof is the achievability proof of
the corner points of the PIR problem under asymmetric traffic constraints. The
security constraint is satisfied by encrypting each returned answering string by an
artificial noise vector. To generate the artificial noise vector, the nth database gen-
erates a secret key and encodes it into artificial noise by a (¢, i,t,) MDS code. The
upper and lower bounds match for M = 2 and M = 3, for any N, and for every

eavesdropping capability vector g = (1, -+, pw)-
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CHAPTER 8

Secure Degrees of Freedom Region of Gaussian MIMO In-

terference Channel

8.1 Introduction

In this chapter, we consider the two-user multiple-input multiple-output (MIMO)
interference channel with confidential messages (ICCM). We determine the exact
secure degrees of freedom (s.d.o.f.) region for the symmetric case of M antennas
at both transmitters and N antennas at both receivers. We develop the converse
by combining the broadcast channel with confidential messages (BCCM) coopera-
tive upper bound, decodability upper bound for the interference channel with no
secrecy constraints, and vector extensions of the secrecy penalty and role of a helper
lemmas. For the achievability, we first show that the s.d.o.f. region is a four-vertex
polytope. For the sum s.d.o.f. point, we propose a novel achievable scheme for the
2 x 2 ICCM, which combines asymptotic real interference alignment with spatial in-
terference alignment. Using this scheme, we provide achievable schemes for any M
and N by proper vector space operations. We achieve the other non-trivial extreme

polytope points by employing one of the transmitters as a deaf helper for assisting
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2

Hy,

Figure 8.1: Two-user MIMO ICCM.

the secure transmission of the other user. We present simplified achievable schemes
for the special case of time-varying MIMO ICCM. The achievable schemes, in this
case, make use of the time-varying nature of the channel to construct vector-space
alignment counterpart of the real interference alignment used in the static channel

case.

8.2 System Model

We consider a two-user symmetric Gaussian MIMO ICCM. Each transmitter has
M transmit antennas, and each receiver has N receive antennas. The input-output

relationships of a two-user MIMO ICCM (see Fig. are:

Y (1) = Hyy ()X (£) + Hoy (H)Xo(t) + Ny (2) (8.1)

Yo (t) = Hyp(6) X, (1) + Hao ()Xo (t) + Na(t) (8.2)

where H;;(t) € RV*M is the channel gain matrix from transmitter ¢ to receiver
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J (where 4,5 € {1,2}) at channel use t. We call the ICCM static, if H;;(t) = H;; for
all channel uses ¢, Vi, j. The ICCM is time-varying, if H;;(t) takes an independent
realization at every channel use ¢, Vi, j. We assume that H;;(¢) is picked from a
continuous distribution. Hence, H;;(¢) admits rationally independent elements with
probability 1. Furthermore, any finite collection of the channel gains are linearly
independent with probability{] 1. X;(t) € RM is the channel input of transmitter i
at channel use ¢, Y;(t) € RY is the channel output of receiver i at channel use t,
and N;(¢) € R is i.i.d. Gaussian noise vector with a finite variance at receiver i.
Transmitter ¢ € {1,2} sends a message W; chosen uniformly from a message
set W; by encoding it into an n-letter channel input X?(¢). The message W; is to
be conveyed reliably to receiver ¢ and to be kept secret from receiver j, where j # 1.
Transmitter ¢ performs stochastic encoding f; over n channel uses f; : W; — X(¢)

such that for any € > 0, the following reliability and security constraints are satisfied:

A 1
]P)(Wl 7é Wl) S €, E[(Wl,Yg) S € (83)
A 1

where W, is the estimate of W; at receiver i. The channel inputs are subject to
average power constraints tr(E[X;(¢)X;(t)"]) < P, i = 1,2. The rate of user 7 is
R; = %log IW;|. The s.d.o.f. d; of user i is:

di =1

= 111m 1
P—oo log P

(8.5)

In the exposition of the results, the phrase “for almost all” refers to the rational/linear inde-
pendence, which occurs with probability 1.
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The sum s.d.o.f. d is given by dy = dy + ds.

8.3 Preliminaries

In this section, we review the real interference alignment and spatial alignment
techniques as they are the main ingredients of our achievable scheme. In this work,

we combine both techniques for MIMO ICCM with static channels.

8.3.1 Real Interference Alignment

The real interference alignment technique, which is introduced in [101] and employed
in [78] for achieving the s.d.o.f. for one-hop networks, relies on transmitting multiple
data streams of PAM signals. Specifically, let {b;}2; be a sequence of L symbols.
The symbol b; is picked from PAM constellation C(a, @), where a is the separation
between any two symbols in the constellation set and the number of symbols in the
constellation set is given by 2Q + 1, i.e., C(a,Q) = a{—-Q,—Q +1,--- ,Q — 1,Q}.

Now, consider transmitting these L symbols simultaneously in the form of a linear

combination,

L

i=1
where {o; : i = 1,---, L} are rationally independent real numbers. The rational
independence means that if 25:1 a;q; = 0 for some q1,---,qr which are rational

numbers, then ¢; = 0 for all 7.
Although the signal z is a mixture of {b;}1,, these symbols lie in separate
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rational dimensions if we choose,

1-6 P%
Q=P+, q= y—

0 (8.7)

for some 6 > 0, a positive constant vy which is independent of P that is chosen
to satisfy the power constraint |[101]. In this case, the constellation observed at
the receiver side consists of (2Q) + 1)* points and the probability of error can be
upper bounded P, < exp (-1, P?°). To summarize: by careful choice of C(a, Q) (e.g.,
by choosing the number of points as a function of L as in (8.7))), one can send L
separable data streams that satisfy the average power and the reliability constraints.
This is done by creating and exploiting rational dimensions.

This technique can be effectively used for security as in |7§]. To achieve this,
the transmitted signals in general consist of two components, namely, the secure
signal V', and the cooperative jamming signal U. The cooperative jamming compo-
nent U; from transmitter ¢ is utilized to satisfy the security constraint of transmitter
J by being aligned with V; in the same rational dimension. This can be done by
scaling both U; and V; by real coefficients such that their scaling is the same at the
receiver after passing through the channel. More specifically, the ith transmitter
sends X; = o;U; and the jth transmitter sends X; = «;V}, such that o;h;; = ajhyj,
where h;; is the channel gain from transmitter ¢ to receiver j and hj; is the channel
gain from transmitter j to receiver j. This satisfies the security at the jth receiver
as the received signal will have a component a,h;;(U; + V;), i.e., the secure signal

and the cooperative jamming signal lie in the same rational dimension and hence

332



the leakage is upper bounded by a constant.

8.3.2 Spatial Alignment

The spatial alignment technique, introduced in [104], can be used for security as well
if the system is equipped by multiple antennas. Spatial alignment does not require
a specific signaling scheme, i.e., it does not require transmitting PAM signals as in
the real interference alignment scheme, instead Gaussian signaling can be used. The
spatial alignment exploits the spatial dimensions offered by the multiple antennas
in contrast to the rational dimensions in the real interference alignment scheme.

To achieve this, the 7th transmitter transmits precoded version of the coop-
erative jamming signal U; by transmitting X; = Q;U;, where Q; is a precoding
matrix for the cooperative jamming components from the ith transmitter. Further-
more, the jth transmitter sends X; = P;V;, where P; is the precoding matrix
for the secure signal component from the jth transmitter. This is achievable since
both transmitters are equipped by multiple transmit antennas. By ensuring that
Q;H;; = P;H,;, both signal components are aligned in the same spatial dimension
at the jth receiver, i.e., the received signal has a component P,H;;(U; + V). This
satisfies the security constraint as well.

Note that in order to ensure reliable decoding at the receiver by a zero forcing
decoder, the total number of spatial dimensions spanned by the signal components
must be at most N (the number of receive antennas). This is parallel to choosing

(@ in the real interference alignment scheme. Furthermore, this precoding idea can
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be extended as in [104] for time-varying SISO channels by symbol extension, i.e.,
completing the transmission over multiple time slots and dealing with the transmit-
ted symbols across time as a spatial vector. In this case, the alignment technique

exploits the time dimension.

8.3.3 Comparison of the Two Alignment Techniques

We note that the main strength of the real interference alignment technique is that
it creates a potential of performing interference alignment even for SISO channels
which do not enjoy time-varying diversity. This technique requires rational indepen-
dence of the channel coefficients. However, the decoding procedure of this scheme
is generally more complex than spatial alignment that uses simple zero-forcing de-
coder.

On the other hand, the spatial alignment technique requires either the presence
of multiple antennas and /or time-varying channels. This hinders the usage of spatial

alignment for static channels despite its simplicity.

8.4 Main Results and Discussions

The first result of this chapter characterizes the sum s.d.o.f. d, of the two-user

M x N MIMO ICCM for arbitrary M and N.
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Theorem 8.1 The sum s.d.o.f. of the two user M x N MIMO ICCM is given by,

min{2¥, [4M —2N]*}, M <N
ds = (8.8)
min{2N, 42N M >N

3

for almost all channel gains.

Remark 8.1 For a fixed number of receive antennas N, the sum s.d.o.f. ds is a
piece-wise non-decreasing function of the number of transmitting antennas M. d

mn consists of five regimes that can be written explicitly as,

0, M<E
AM —2N, ¥ <M <@
dy=14 2 W< M<N (8.9)
AN N <M< 2N
\2N, M > 2N

i.€., ds increases linearly with M if % <M< % with slope 4. Then, ds becomes
a constant value of % in the regime % < M < N. Neat, ds increases linearly
again with slope % until it hits M = 2N and continues as 2N afterwards. The sum

s.d.o.f. as a function of M for an arbitrary N is shown in Fig.[8.3. We note that

when M = N =1 (SISO ICCM), our result reduces to ds = 2/3 in [78].

Remark 8.2 The term “for almost all channel gains” in Theorem refers to

the fact that our achievable schemes for the static ICCM depends on real interfer-
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Figure 8.2: Sum s.d.o.f. of M x N two-user ICCM for a given N.
ence alignment, which necessitates that the channel gains are rationally independent.
Since the channel gains are assumed to be drawn randomly from a continuous dis-
tribution over RN*M  the achievable schemes are feasible for almost all channel
gains. The same comment holds true for the time-varying ICCM, as the achievable

schemes, in this case, assume linear independence of channel gains.

Remark 8.3 The sum s.d.o.f. in the regime % <M< % coincides with the sum
s.d.o.f. of the MIMO BCCM with the transmitter having 2M antennas. This implies
that, in this regime, there is no loss in the sum s.d.o.f. due to independent coding of
the users with respect to the sum s.d.o.f. obtained if cooperation (joint encoding) is

allowed.

Remark 8.4 The sum s.d.o.f. in the regime % < M < N s constant. This implies
that there is no gain in the sum s.d.o.f. that can be obtained by increasing the number

of transmit antennas in this regime.
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Remark 8.5 The sum s.d.o.f. in the regime M > 2N coincides with the sum degrees
of freedom (d.o.f.) of the IC with no security constraints. This implies that there is
no loss in the sum s.d.o.f. due to enforcing the security constraint, i.e., we achieve

security for free in this regime.

The second result characterizes the entire s.d.o.f. region for the two-user M x N

ICCM.

Theorem 8.2 The s.d.o.f. region of the two-user M x N ICCM is given by the set

of all pairs (dy,dy) that lie in the four-vertex polytope, which is defined as

C= {(dl,dg) € conv {(0,0), (dm, 0), (0, dy), (% %) }} (8.10)

where conv denotes the conver hull, and d,, is the maximum individual s.d.o.f.,

which 1s given by,

min{Z,[2M — N]*}, M <N
dy, = (8.11)

min{N, 228} M >N

and dg 1s defined as in . The result holds for almost all channel gains.
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Remark 8.6 The s.d.o.f. region C can be written in an explicit form as

{(d1,d2) : d1 =0, da = 0}, M<%
{(d1,d2) : dy <2M — N, dp <2M — N, d1 >0, dz > 0}, T <M<y
{(d1,d2) : Nd;+(6M —4N)d; <N(2M — N), d; > 0, 4, j = 1,2}, W <pm<
{(di,d2) : d1 +2dy < N, 2dy +dy < N, dy >0, da > 0}, SN <M<N
{(d17d2)1d1+2d2 <2M — N, 2d1 +dy <2M — N, dy > 0, ngO}, ]VS]W_M
2
{(di,d2) : 2M —=N)d;+(4N—2M)d; <N(2M—N), d; > 0, i,j = 1,2}, 3N < M<2N
{(d1,d2) :d1 < N, d2 < N dy >0, da > 0}, M>2N
(8.12)

for almost all channel gains.

Remark 8.7 The mazximum individual s.d.o.f. of each user d,, follows a pattern
similar to the sum s.d.o.f. in Remark[8.1] d,, coincides with the s.d.o.f. of the MIMO
wiretap channel with 2M antennas at the transmitter and N receive antennas for
% <M< %. Then, d,, is constant at % for the regime % < M < N. Nezt,
d,, increases linearly with M with slope 1 until M = % The maximum individual

s.d.o.f. is constant at N afterwards, which coincides with the mazimum individual

d.o.f. of MIMO channel with N receive antennas with no security constraints.

338



dy

vz

<=

2M — N

ﬁ (2M — N]2M — N)

\ 1 >
oM -N¥ X N d,
3 2
(a) F <M<
2 g
N1l
N
2
N
3
>
N d

5
(e) 3 <

i vl

< 2N

dy )

wl=

o
=
|

wlz

2M—-N
2

ol

=

o (N, )

vl

Figure 8.3: Evolution of the s.d.o.f. region with M for a fixed N. The dashed lines
in each sub-figure correspond to the rate region in the previous regime for better
viewing of how the region evolves.
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Remark 8.8 From Remarks and we can track the evolution of the
s.d.o.f. region by moting the evolution of the extreme points of the corresponding
polytope as in Fig. [8.3. We start with a square region with d,, = 2M — N, this
region increases in size while keeping its square shape with the increase of M until
M = % Starting from this point, we cannot support a sum s.d.o.f. larger than
%. Consequently, the sum s.d.o.f. point is kept constant, while the maximum indi-

vidual s.d.o.f. points can still increase and the s.d.o.f. region is no longer a square

region. This continues until M = %, then the maximum s.d.o.f. points are kept

N
5 -

constant to This implies that the s.d.o.f. region does not grow in the regime
% < M < N. The s.d.o.f. region starts increasing in size again from M = N. The
mazimum individual s.d.o.f. points increase linearly with slope 1, while, the sum
s.d.o.f. point increases with slope % Since slopes are different, the maximum indi-
vidual s.d.o.f. point hits the N bound first at M = 23X while the sum s.d.o.f. point

2

hits this bound at M = 2N and we are back to a square region again.

Remark 8.9 For the regimes % <M< % and M > 2N, the s.d.o.f. region is a
square, which implies that both users can transmit with their corresponding maximum

s.d.o.f. without sacrificing from their indiwvidual s.d.o.f.
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8.5 Outer Bounds for MIMO ICCM

8.5.1 For M < N

Allowing cooperation between transmitters yields an upper bound. This results in
a BCCM with a single transmitter with 2M antennas and two receivers with N

antennas each. The s.d.o.f. region of this BCCM is a square whose corner points are
(min{[2M — N|*,N},0), (min{[2M — N|*, N}, min{[2M — N|*, N}), (0, min{[2M —

NJ]*,N}) [93]. Hence, the individual s.d.o.f. of the two users is upper bounded by:

d; < min{N,[2M — N]*}, i=1,2 (8.13)

and the sum s.d.o.f. is upper bounded by:

ds <2min{N, [2M — N|*} = min{2N, [4M — 2N]"} (8.14)

Therefore, for M < N, the s.d.o.f. region of the MIMO ICCM, C, is upper bounded

by the region {(dy,ds) : d; > 0, d; <2M — N}.

85.2 For M > N

We have two distinct upper bounds for the MIMO ICCM when M > N. From the

sum d.o.f. of the two-user IC with no secrecy constraints, d, we have the following
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bound [105]:

dy < d =min{M; + My, Ny + Ny, max{M;, No}, max{ M, N, }} (8.15)
=min{2M, 2N, max{M, N}} (8.16)
=min{2N, M} (8.17)

This above upper bound corresponds to the decodability of IC without secrecy
constraints. In addition, for the individual s.d.o.f. d,,, we have d,,, < N if M > N
from the single-user MIMO channel.

In order to derive an upper bound using the secrecy constraints, we follow the

techniques in [78], [79]. From the secrecy penalty lemma in 78], we have:

nR; < h(X7) + h(X5) — h(Y]}) 4 ney (8.18)

where i # j, and X? = X? 4+ N? is a finite-variance Gaussian perturbed channel
input; here small Gaussian perturbation is introduced in order to avoid mixing con-
tinuous and discrete entropies, see |78]. In addition, we have the following vectorized

version of the role of a helper lemma of 78] (see also [79)]).

Lemma 8.1 (MIMO role of a helper lemma) For M > N, reliable decoding of
the jth transmitter at the ith receiver, i # j, is guaranteed if the perturbed channel

input X satisfies

h(XD) < BXPY) + h(YD) = nR; +ncy, i # (8.19)
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where X7 = [XMN +1) XM(N+2) ... X»(M)].

Remark 8.10 X" = [X"(1) X"(2) ... X*(N)] represents the first N (per-
turbed) antenna inputs, and X7 = [XP(N +1) X'(N+2) ... XMM)] rep-
resents the M — N extra (perturbed) antenna inputs that can be used for null space
transmaission. Note that, here we have M > N, therefore, X?(Q) 15 well-defined. We
note also that intuitively we should separate the upper bounding of differential en-
tropies of X?m and X?m because the null space components do not hurt the other
receiver (in fact, they are invisible to the other receiver) as X?(l) components do.

Consequently, we upper bound the differential entropy of these components directly

using Gaussian entropy bounds.

Proof: Let X7 = [X7"X"®]. Using Fano’s inequality, the rate of user j, where

j # 1, is upper bounded by

ni; < I(X7;Y]) + nes (8.20)
= h(Y}) — h(Y}|X7) + ncs (8.21)
< h(Y?) = h(Y?X7, X)) + ney (8.22)

n n n n(2) n n ~n®
= h(Y?) — h(H;;X? + HPOX" - HPOX + N2 X2 X0Y) 4ne; (8.23)

(2

< h(Y?) — h(EPX™ + HOX2? X0, X) + ne (8.24)

J

= h(Y") — (X2 |X2?) + ne (8.25)

where X7 = X” + N” such that N? ~ N(0, p;I), where p; < min, m 8.24

follows from considering a stochastically equivalent version of Y; given by ?j =
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Hijj —|—H”X7’—|—N], where Nj ~ N(O, IM—pZH”Hz;), hence h(H]]X?—FHZ(]l)X?(l) —|—

HYX 4+ Ny X7, Xp?) > h(HXe + HYXeY + HO X |Xe, X7%) L (8.25

follows from the scaling property of the differential entropy which results in an
additional constant that does not depend on P. Hence, the conditional entropy of

the 7th user’s channel input is upper bounded by
h(X XY < h(Y?) — nR; + ney (8.26)

By applying chain rule for users’ inputs h(X?) = A(X2™) + (X2 |X"™), we have

E1).

By applying the secrecy penalty and MIMO role of a helper lemmas in (8.18)),

for user 1, we have the following upper bound
nR; < h(f(’f(z)) + h(fcg(”) + (YY) —nRy — nRy 4 ney (8.27)
which is equivalent to
n(2R; + Ry) < h(X2™) + (XY + h(YD) + ney (8.28)

Using the fact that Gaussian random variables maximize the differential entropy,

we obtain:

n(2R; + Ry) <h(X?™) + h(X2™) + h(YT) + ney (8.29)
n n n
§(M—N)-§logP—|—(M—N)-ElogP+N-§logP+nc5 (8.30)
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—(2M — N) - g log P + nes (8.31)
Dividing by n yields,
2Ry + Ry < (2M—N)-%logP—|—c5 (8.32)
and by dividing by %log P and taking the limit as P — oo, we obtain:
2dy +dy <2M — N (8.33)

By symmetry, we obtain the following upper bound by writing the secrecy penalty

and role of a helper lemmas for user 2
di 4+ 2dy <2M — N (8.34)

Also, adding (8.33)) and (8.34), we obtain the following upper bound on the sum

s.d.o.f. dj

AM — 2N
di+dy < ——— (8.35)

Consequently, the s.d.o.f. region C is upper bounded by the region {(dy,ds) : d; +
2d; <2M — N, d; >0, i, j=1,27#4i}for M > N.

Focusing on the sum s.d.o.f., from (8.35)) and (8.17) we have the upper bound
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on the sum s.d.o.f. as

ds < min

AM — 2N
{—, M, QN} (8.36)

If the first term in the upper bound is not active, then M < M or 2N < M,
which both lead to M > 2N and hence the M term in the upper bound is never
active, and the sum s.d.o.f. upper bound is

AM — 2N
d, < min {T QN} (8.37)

Focusing on the maximum individual s.d.o.f. points, from (8.33)) and (8.34)),
we have d,,, < w Including the maximum d.o.f. upper bound for the MIMO

channel, we have

2M — N
dy, < min {T’ N} (8.38)

8.5.3 Combining Both Bounds

First, we note that since the outer bounds in (8.13)-(8.14)) and (8.36)-(8.37]) define

a bounded polyhedron in R?, the outer bounds form a polytope as in [82]. Thus, it
is sufficient to characterize upper bounds for its extreme points.
Now, we note that increasing the number of transmit antennas of both trans-

mitters cannot decrease the s.d.o.f. of ICCM for a fixed number of receiver anten-

2N

nas. Therefore, d; < =

corresponding to the case of M = N for both the sum
s.d.o.f. point and the maximum individual s.d.o.f. point. For the sum s.d.o.f. point,

the upper bound in 1) is % for the case M = N. Combining the bounds 1)
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and d, < 2, we have d; < min{2¥,4M — 2N} for M < N. Consequently, the

upper bound for the sum s.d.o.f. of the ICCM for any arbitrary M and N is,

min{2¥ [4M —2N]*}, M <N
d, = (8.39)

min{2N, 228} M >N

Similarly, for the maximum individual s.d.o.f. point, the upper bound in (8.38))
for the case M = N is % Hence, combining this with (8.13), d,, < min{%, 2M —
NJ]*} for M < N. Consequently, the maximum individual s.d.o.f. of the ICCM for
any arbitrary M and N is,

min{Z,[2M — N]*}, M <N
dy = (8.40)

min{N, 25} M >N
Since the problem is symmetric with respect to the two users, there exists a

symmetric sum s.d.o.f. point (%, %) and two maximum individual s.d.o.f. points

(0,dm), (dm,0).

8.6 Achievable Scheme for Sum s.d.o.f. of the 2 x 2 ICCM for Static

Channels

In this section, we develop optimal achievable schemes to match the presented upper

bounds. First, we focus on the sum s.d.o.f. point (%, %) for the case of static
channels, i.e., H;;(t) = H;;, Vt. We start by proposing a novel achievable scheme

for the 2 x 2 ICCM system using asymptotic real interference alignment. Then,
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we build on this achievable scheme to obtain achievable schemes for any M, N by
combining spatial alignment and exploiting the null space (whenever possible, i.e.,
M > N) with the 2 x 2 scheme. Real interference alignment is not needed in regimes
that correspond to integer s.d.o.f., i.e., it suffices to use Gaussian codebooks along
with spatial alignment and/or null space transmission in these cases. To carry out
the secure rate calculation, we use the following result from [70] which states that

the following secure rates are achievable for the ICCMP}

8.6.1 Basic System: 2 x 2 MIMO ICCM

The basic building blocks of all achievable schemes for the sum s.d.o.f. point when
the channel is static are the 1 x 1 SISO ICCM and the 2 x 2 MIMO ICCM systems.
We can reduce all other regimes to one of these cases by proper vector space manip-
ulations. The achievable scheme for the 1 x 1 SISO ICCM is given in [78]. In this
section, we give an achievable scheme for the 2 x 2 MIMO ICCM. The achievable
scheme for the 2 x 2 system combines spatial alignment with asymptotic real inter-
ference alignment. To use asymptotic real interference alignment, the secure signal

V,; and the cooperative jamming signal U; are constructed as a linear combination

ZInterestingly, the rate region in is also achievable under the strong security constraint
as shown in [126, Theorem 1] and [127, Remark 1]. This implies that our s.d.o.f. region is in fact
valid if we changed the security constraint to the strong security constraint, i.e., I(W;; Y;’) <, for
i,7 € {1, 2} without normalization with n. Note that any scheme that achieves the strong security
constraint is a valid achievable scheme under the weak security constraint as well.
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of structured signals picked from PAM constellation C'(a, Q) with proper parameters

that will be identified shortly. The transmitted signals are:

X, =HV,+H U, (8.43)

X, = Hy'Vy + Hy, Uy (8.44)

The received signals are:

Y, =H H;V, + (U +V,y) + HyH,, Uy + N,y

and

Y2 - (Vl + U2> + H12HI11U1 + H22H511V2 + N2

Considering the first receiver without loss of generality, we note that A =
H, H;,', B = Hy H,, are generally non-diagonal with rationally independent ele-
ments almost surely. Using exact real interference alignment requires constructing 5
irrational dimensions in order to decode V; with arbitrary small probability of error.
However, this wastes the observation space of the second antenna and achieves an
s.d.o.f. of 2/5 from only one antenna.

To see this, let a;j, 7,7 € {1,2} be the (i,7)th element of matrix A, and
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similarly for the other matrices B, A = HyyH,,', B = H;oH ', Then, the received
signal at receiver 1 is

a11v11 + 12012 + (U11 + Vo1) + briusr + biause

Y, = + N, (8.47)
a91V11 + A22v12 + (U1 + V22) + bartiar + bagtian

where Vi = [v1; v12]”, Uy = [ug; ug]”. The scaling factors {a;;}ij—1.2,{bij}ij=1.2,
and 1 are rationally independent almost surely. Thus, in order to decode wvq1,v1o
with arbitrarily small probability of error using exact real interference alignment as
in [101], [78], we need to construct at least 5 irrational dimensions. We note also
that from antenna 2, the same symbols v, v15 can be decoded. Hence, by using
exact real interference alignment, we exploit the observation of the first antenna
only, as the second antenna does not give any new information. Consequently, from
the first antenna, we achieve an s.d.o.f. of 2/5, as 2 components of the secure signal
can be decoded out of the 5 irrational dimensions needed for correct decoding. To
minimize the required irrational dimensions, we need to leave one of vy; or vy to
be in a separate irrational dimension at each antenna, while the other component is
aligned with wug1, ugs. This type of alignment can be done asymptotically by break-
ing {vi; }ij=1.2, {wi;}i =12 into sufficiently large number of components. Hence, for
the first antenna, the components of signal v{; are in separate irrational dimensions
that cover 1/3 of the total dimensions, and the signal components of (w1 +wv2;) cover
1/3 of the total dimensions, while the signal components of vy, ug1, ugg are asymp-

totically aligned together and cover slightly larger than 1/3 of the total irrational
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Figure 8.4: Illustration of asymptotic real interference alignment for the 2 x 2 system.
dimensions. Consequently, user 1 can achieve 1/3 s.d.o.f. from the first antenna. A
similar argument holds for the second antenna with switching the roles of v1; and
v12. This scheme is illustrated in Fig. [8.4]

We begin discussing the details of the asymptotic real interference alignment

[86] by defining sets of irrational dimensions T;

{ H _m H bslﬂ Tijy Sij = 1, .. ,m} (848)

1,j=1,i#j 1,7=1
2
:{ H T” H bff FTigy Sip = 1, ,m} (8.49)
1,j=1,i#] 1,j=1

We define tq, ts to be the vectors constructed by enumerating all elements of 77, T5
sets, respectively. The cardinality of T; (which is also the length of the t; vector) is
given by

My =|T;| =mb i=1,2 (8.50)

We note that T; set does not contain the gains a;;, a; and hence multiplying by these

channel gains produces new M7y irrational dimensions. On the other hand, multi-
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plying with any channel gain that appears in 7; results in asymptotically aligning

this signal within 7; set which is defined as

2 2
'f'lz{ H ELZ-j H Bls]” I’I“Z‘j78ij:1,...,m+1} (851)
1,7=1,i#7j i,j=1

2 2
T2:{ H a:;'j Hbfj’}j:rij,sijZL...,m—i—l} (8.52)

17]2177'7£j 4,j=1

with cardinality of

Mp=|Ti|=(m+1)°% i=1,2 (8.53)

Now, we give the explicit structure of the transmitted signals. The vectors
V;, U; are 2 x 1 vectors. Each component is constructed out of irrational com-
binations of My PAM signals v;; = [v;j1 vija - vijumy| representing secure signal
components of user i from antenna j. Generate w; = [u;j1 Uijo - - Uijnrg]’ as cooper-

ative jamming signal as follows

t2TV11 t{un

V= , U= (8.54)
t2vio i,
t{Vgl th21

V2 - 5 U2 == (855)
t{Vgg thQQ

This means that the alignment of V; and Uy is carried over the T5 set, while that of

V, and U, over the T set. Using this construction, the received signal at receiver
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1is

aptd vy +t7 (wg + vor) + t2 (a1avie + bijugy + bigugs)
V= TN, (8.56)

A9t vig + t7 (g + vag) + t2 (a9 vy + bagugy + boguiny)

Lemma 8.2 The sum s.d.o.f. of% 1s achievable using the combination of asymptotic
alignment and spatial alignment shown in this section with signals picked from PAM
1 1
constellation C(a, Q) with () = P>™Mst9) q = 7%, where My, = 2m® + (m +1)¢ for

arbitrarily large integer m, and any 6 > 0.

Remark 8.11 From , we first note that using this type of alignment ensures
exact alignment of user 2’s secure signals with cooperative jamming signal generated
by user 1 as in (g + vor) terms. This exact alignment guarantees security as
in the SISO case in [7§]. In addition, at each antenna, only one secure signal
component lies in a separate irrational dimension for decodability as in autgvu and
agatlvyg, while the other component aligns with user 2’s cooperative jamming signal
over the set Ty. Therefore, the intended secure signal at each antenna covers My

dimensions out of My, dimensions. Consequently, achievable s.d.o.f. per antenna is

Mr

approzimately e which approaches 1/3 as m gets large. Hence, we achieve a total

of 2/3 s.d.o.f. per user, and a total of dy = 4/3 s.d.o.f. for the system.

Proof: The total number of dimensions at antenna 1 (and similarly antenna 2)

needed in this case is

My = |a;y Ty UT, UTy| = 2mb + (m + 1)° (8.57)
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By choosing the parameters of the PAM constellation as

Q= PO, =~ (8.58)

the average power constraint is satisfied, and the probability of error can be made
arbitrarily small as P — oo as in [101], [78]. We can also decode U, perfectly at

receiver 1 after decoding V. By subtracting V; from Y, we have

Y| =(U;+Vy) +BU, + Ny (8.59)

By filtering the received observations using C = B™!, we have

Y/ =B Y (U; + Vy) + Uy + N/ (8.60)

c11t? (uyy + var) + crat] (wgn + va) + t3uyy
= + INY (8.61)

CortT (Wy1 + Vor) + coot? (Wyo + Vo) + tTug,
where NY = B7!N;. Since no specific alignment procedure has been designed for
the C matrix, all these signals are received in separate irrational dimensions. The
total required dimensions in this case is 3Mp = 3m% < My, and hence decodable.
Now, we evaluate the rates in focusing on user 1. Using the parameters
chosen in , V is received with asymptotically vanishing probability of error.

Consequently, the first term of (8.41)) can be lower bounded using data processing
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and Fano’s inequality as

I(V;Yy) > I(Vy; V) (8.62)
= H(V,) — H(V,|V)) (8.63)
> (1 - P.)log(2Q +1)*M7 — 1 (8.64)
- (1- PQ% : % log P + o(log P) (8.65)

We can upper bound the leakage as

I(V1;Y5[V2) < I(Vi; (Vi +Us) + BU; + AV,[Vy) (8.66)

= H((V, +U,) + BU;) — H(U, + BU,) (8.67)

The first term in can be upper bounded by

H(V,i+Uy)+BU,) = H(B YV, +U,) +U)) (8.68)

o entd(ugy + vip) + eptd (ugy + viz) + tTuyy

Co1t3 (Wa1 + vi1) + Cootd (ugg + vi2) + t upe
(8.69)

Vv, + U,
—H (8.70)
U,

=log ((4Q + 1)*7(2Q + 1)*'7) (8.71)

where C = B!, (8.68) holds since C is invertible, and (8.70)) follows from the fact
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that all signal components lie in different irrational dimensions with a total number

of dimensions of 3Mp < My, which in turn makes these signals decodable for large

enough P. Thus, the transformation [Bl I] is invertible. Similarly, the second

term in (8.67) which solely contains cooperative jamming signals, is

H(U,+BU,) = H = log ((2Q + 1)**'7)

Then, the leakage in is upper bounded by

4Q+ 1)2MT

< 2Mr7 + o(log P)
Therefore, user 1’s rate is lower bounded by

Ry > 1(V1;Y1) —I(V1; Y| Vs)

(1-5) 1
Ms,+46 2

= 2My ((1 —P) log P — 1) + o(log P)

By normalizing by %log P and taking P — oo,

i > 2Mr(1 — 6)
My, + 06
2m°(1 — 4)
2mb + (m+ 1) +46
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(8.72)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.78)



2(1 — 4)
T2+ (1+ )49

(8.79)

As m — oo and 6 — 0, the achievable s.d.o.f is 2/3 for each user, and hence the

sum s.d.o.f. is % .

Remark 8.12 We note that for the SISO system, we do not need any asymptotic
alignment. By specializing the spatial alignment presented here to the SISO case,

1.€.,

1 1
X =—Vi+ —U 8.80
e T (8.80)
Xy = 2V 4 U (8.81)
2T hy 2 hy C ‘

we see that the received signals fit exactly into 3 irrational dimensions. Hence, 1/3
s.d.o.f. per user is achievable as in [78]. Therefore, we focus our attention to the
presentation of achievable schemes for the cases that result in a 2 x 2 system, since
the SISO case can be obtained as a special case of the 2 x 2 achievable scheme by
1gnoring the asymptotic alignment step and replacing with an exact real interference

alignment step.

8.7 Achievable Scheme for Sum s.d.o.f. of the M x N MIMO ICCM

N 2N
871 Y¥<p<2N

In this case, the sum s.d.o.f. is an integer. Hence, we use Gaussian codebooks for
transmission of the secure signal V; and the cooperative jamming signal U;. We
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precode these signals such that the secure signal of one user lies in the same subspace
as the cooperative jamming signal of the other user.

Transmitted Signals: Each user transmits a Gaussian secure signal V;, and
a Gaussian cooperative jamming signal U;. The signals V;, U; ~ N(0, 7, Plyy_n)
are of 2M — N dimensions, and independent from each other, where 7, is a constant,
which is chosen to satisfy the power constraint. Let P;, Q; € RM*CM=N) he the

precoding matrices for V;, U;, respectively. Then, the transmitted signals are,

X1 = P1V1 + Q1U1 (882)

X, = P,V, + QU (8.83)

The received signals in this case are:

Y, =H;P,V, + (H;1Q,U; + Hy»P,V,) + HyQ.Us + N,

Y2 == <H12P1V1 + H22Q2U2) + H12Q1U1 + H22P2V2 + NQ (884)

We choose the precoding matrices P;, Q; such that they satisfy the following align-

ment equations

span{Hy; Py} C span{H;;Q;} (8.85)

Span{ngPl} g Span{HQQQQ} (886)

Feasibility of Alignment: The alignment can be achieved by choosing P;, Q;
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such that

Q.

[Hu —Hz1] =0 (8.87)
P,
P,

[Hm _H22] =0 (8.88)
Q:

i.e., by choosing P;, Q; to be in the null space of the combined channel of the
two users. Note that {Hn _H21:| is an RV*2M matrix. Hence, the null space of

an R2M><2M—N

I
this matrix, {Hn —H21] , 1s matrix. Thus, choosing P;, Q; as

RM>2M=N iq feasible.

Decodability: By this alignment scheme, we have

Y, =H, PV, + H;Q,(U; + V) + Hy1Q,Us + Ny (8.89)
] v _
= |H P, H;1Q, HyQol| |U +V,y| + Ny (8.90)
U,

Similarly, for receiver 2, we have

V,+ U,
Y2 = |HyQ, H12Q, HyP, U, + N, (8.91)

Vs

In order to decode Y; using a zero forcing receiver, the total dimensions 3(2M — N)
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should be at most N. This holds true since

2=
IN
wiN

2. Thus, we can decode V; using
zero forcing as

Vi
T

U, +V,| = [H,P, H;Q H;Q,| Y: (8.92)

U,

where (.)T is the pseudo-inverse of a matrix.

Security: Since each secure signal is aligned with a cooperative jamming
signal from the other user, the leakage rate is upper bounded by a constant, and
hence the system is secure from the s.d.o.f. perspective, i.e., for user 1 without loss

of generality, using Fano’s and data processing inequality,

> I(V1; V1) — h(Y3| Vo) + h(Y,| V1, Vs) (8.94)
R V, + U,
> h(Vi) = h(Vi|Vi) = h [H22Q2 H12Q1]
U,
U,
+h {Hle HQQPQ} (8.95)
U,
1 V1 + UQ U2
2(1—Pe)(2M—N)-§logP—h +h + o(log P)
U, U,

(8.96)

1 1
=(1-PF.)(2M —N) - §logP—2(2M—N) : élogP
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2
+2(2M —N) - 5 log P + o(log P) (8.97)
By dividing by %logP and taking P — oo, the P. — 0 and hence d; > 2M — N.

872 2L <M<N

In this regime, we combine the achievable scheme of the previous regime with the

achievable scheme of the basic 2 x 2 system (or the 1 x 1 SISO system).

V(l) U(l)
‘ ‘ M 1
Transmitted Signals: Let V,; = and U; = VU~
VZ(Z) UEZ)
N(O,ngPIL%J) are Gaussian signals of size L%J Vgl), UZ(-l) correspond to the part

that can be protected using spatial alignment only without any real interference

alignment. The vectors VZ@),UZ@) are structured signals of size N mod 3 which is

either 1 or 2. VEQ),U(Q) are picked from PAM constellation C(a, @), with proper

parameters. This separation effectively reduces the problem into designing spatial
alignment pr