
ABSTRACT

Title of dissertation: PRIVATE INFORMATION RETRIEVAL
AND SECURITY IN NETWORKS

Karim Banawan, Doctor of Philosophy, 2018

Dissertation directed by: Professor Şennur Ulukuş
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This dissertation focuses on privacy and security issues in networks from an

information-theoretic perspective. Protecting privacy requires protecting the iden-

tity of the desired message from the data source. This is highly desirable in next-

generation networks, where data-mining techniques are present everywhere. Ensur-

ing security requires that the data content is not interpretable by non-authorized

nodes. This is critical in wireless networks, which are inherently open.

We first focus on the privacy issue via the private information retrieval (PIR)

problem. PIR is a canonical problem to study the privacy of the downloaded content

from public databases. In PIR, a user wishes to retrieve a file from distributed

databases, in such a way that no database can know the identity of the user’s

desired file. PIR schemes need to be designed to be more efficient than the trivial

scheme of downloading all the files stored in the databases. Fundamentally, PIR

lies at the intersection of computer science, information theory, coding theory, and

signal processing.

The classical PIR formulation makes the following assumptions: The con-



tent is exactly replicated across the databases; the user wishes to retrieve a single

file privately; the databases do not collude; the databases answer the user queries

truthfully ; the database answers go through noiseless orthogonal channels; there are

no external security threats; and the answer strings have unconstrained symmetric

lengths. These assumptions are too idealistic to be practical in modern systems.

In this thesis, we introduce extended versions of the classical PIR problem to be

relevant to modern applications, namely: PIR from coded databases, multi-message

PIR, PIR from colluding and Byzantine databases, PIR under asymmetric traffic

constraints, noisy PIR, and PIR from wiretap channel II. We characterize the fun-

damental limits of such problems from an information-theoretic point of view. This

involves two parts for each setting: first, we devise a practical scheme that retrieves

the desired file(s) correctly and privately; second, we mathematically prove that no

other retrieval scheme can achieve any higher PIR rate than the proposed scheme.

The optimal PIR rate is called the PIR capacity reminiscent of the capacity of

communication channels.

First, we consider PIR from MDS-coded databases. Due to node failures and

erasures that arise naturally in any storage system, redundancy should be intro-

duced. However, replicating the content across the databases incurs high storage

cost. This motivates the content of the databases to be coded instead of merely

being replicated. We investigate the PIR problem from MDS-coded databases. We

determine the optimal retrieval scheme for this problem, and characterize the exact

PIR capacity. The result implies a fundamental tradeoff between the retrieval cost

and the storage cost.



Second, we consider multi-message PIR. In this problem, the user is interested

in retrieving multiple files from the databases without revealing the identities of

these files. We show that multiple messages can be retrieved more efficiently than

retrieving them one-by-one in a sequence. When the user wishes to retrieve at least

half of the files stored in the databases, we characterize the exact capacity of the

problem by proposing a novel scheme that downloads MDS-coded mixtures of all

messages. For all other cases, we develop a near-optimal scheme which is optimal

if the ratio between the total number of files and the number of desired files is an

integer.

Third, we consider PIR from colluding and Byzantine databases. In this prob-

lem, a subset of the databases, called Byzantine databases, can return arbitrarily

corrupted answers. In addition, a subset of the databases can collude by exchanging

user queries. The errors introduced by the Byzantine databases can be uninten-

tional (if databases store outdated message sets), or even worse, can be intentional

(as in the case of maliciously controlled databases). We propose a Byzantine and

collusion resilient retrieval scheme, and determine the exact PIR capacity for this

problem. The capacity expression reveals that the effect of the Byzantine databases

is equivalent to removing twice the number of Byzantine databases from the system.

Fourth, we consider PIR under asymmetric traffic constraints. A common

property of the schemes constructed for the existing PIR settings is that they exhibit

a symmetric structure across the databases. In practice, this may be infeasible, for

instance, when the links from the databases have different capacities. To that end,

we develop a novel upper bound for the PIR capacity that incorporates the traffic



asymmetry. We propose explicit achievability schemes for specific traffic ratios. For

any other traffic ratio, we employ time-sharing. Our results show that asymmetry

fundamentally hurts the retrieval rate.

Fifth, we consider noisy PIR, where the returned answers reach the user via

noisy channel(s). This is motivated by practical applications, such as, random packet

dropping, random packet corruption, and PIR over wireless networks. We consider

two variations of the problem, namely: noisy PIR with orthogonal links, and PIR

from multiple access channels. For noisy PIR with orthogonal links, we show that

channel coding and retrieval scheme are almost separable in the sense that the noisy

channels affect only the traffic ratios. For the PIR problem from multiple access

channels, the output of the channel is a mixture of all the answers returned by the

databases. In this case, we show explicit examples, where the channel coding and

the retrieval scheme are inseparable, and the privacy may be achieved for free.

Sixth, we consider PIR from wiretap channel II. In this problem, there is

an external eavesdropper who wishes to learn the contents of the databases by

observing portions of the traffic exchanged between the user and the databases

during the PIR process. The databases must (information theoretically) encrypt

their responses such that the eavesdropper learns nothing from its observation. We

design a retrieval code that satisfies the combined privacy and security constraints.

We show the necessity of using asymmetric retrieval schemes which build on our

work on PIR under asymmetric traffic constraints.

Next, we focus on the security problem in multi-user networks via physical

layer techniques. Physical layer security enables secure transmission of information



without need for encryption keys, thereby mitigating the problems associated with

exchanging encryption keys across open wireless networks. Existing work in physical

layer security makes the following assumptions: All nodes are altruistic and follow

a prescribed transmission policy to maximize the secure rate of the entire system;

the channel inputs to Gaussian channels are constrained by a total transmitter-side

power constraint; and in the secure degrees of freedom studies for the interference

channel, users have a single antenna each. We address these issues by investigating

the MIMO interference channel with confidential messages, security in networks with

user misbehavior, and MIMO wiretap channel under receiver-side power constraints.

We characterize the optimal secure transmission strategies in terms of the secrecy

capacity and its high-SNR approximation, the secure degrees of freedom (s.d.o.f.).

First, we determine the exact s.d.o.f. region of the two-user MIMO interfer-

ence channel with confidential messages (ICCM). To that end, we propose a novel

achievable scheme for the 2 × 2 ICCM system, which is a building block for any

other ICCM system. We show that the s.d.o.f. region starts as a square region, then

it takes the shape of an irregular polytope until it returns back to a square region

when the number of transmit antennas is at least twice the number of receiving

antennas.

Second, we investigate the security problem in the presence of user misbehav-

ior. We consider the following multi-user scenarios: Multiple access wiretap channel

with deviating users who do not follow agreed-upon optimum protocols, where we

quantify the effect of user deviations and propose counter-strategies for the honest

users; the broadcast channel with confidential messages in the presence of combating



helpers, where we show that the malicious intentions of the helpers are neutralized

and the full s.d.o.f. is retained; and interference channel with confidential messages

when the users are selfish and have conflicting interests, where we show that self-

ishness precludes secure communication and no s.d.o.f. is achieved.

Third, we consider the MIMO wiretap channel with a receiver-side minimum

power constraint in addition to the usual transmitter-side maximum power con-

straint. This problem is motivated by energy harvesting communications with wire-

less energy transfer, where an added goal is to deliver a minimum amount of energy

to a receiver in addition to delivering secure data to another receiver. We prove that

the problem is equivalent to solving a secrecy capacity problem with a double-sided

correlation matrix constraint on the channel input. We extend the channel enhance-

ment technique to our setting. We propose two optimum schemes that achieve the

optimum rate: Gaussian signaling with a fixed mean and Gaussian signaling with

Gaussian artificial noise. We extend our techniques to other related multi-user set-

tings.
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CHAPTER 1

Introduction

Privacy and security are challenging, yet crucial issues in the design of next gen-

eration networks. Preserving privacy entails protecting the identity of the desired

messages (files) from the content generator (e.g., a database). This is highly relevant

in the era of big data, where efficient data-mining techniques are present everywhere,

from social media to online-shopping to search history. On the other hand, ensuring

security entails guaranteeing that the data contents are not interpretable by non-

authorized nodes (e.g., external eavesdroppers). This is particularly vital in wireless

networks, where the openness of the wireless medium imposes a security risk on the

wireless transmission. Although the privacy and security problems are seemingly dif-

ferent, they share a deeper connection. Both problems require the user/transmitter

to create a form of confusion (i.e., obfuscation) in the queries/messages to satisfy

privacy/security constraints. In this dissertation, we investigate the privacy and se-

curity problems through the lens of information theory. Our goal is to characterize

the fundamental limits of retrieval/communication in networks subject to various

practical considerations and devise optimal schemes to achieve such limits.
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In Chapters 2-6, we focus solely on the privacy problem. Protecting the privacy

of downloaded information from curious publicly accessible databases has been the

focus of considerable research within the computer science community [1–5]. Private

information retrieval (PIR), introduced by Chor et al. [1], is a canonical problem to

study the privacy of the downloaded content from public databases. In the classical

PIR setting, a user requests to download a certain message (or file) out of M distinct

messages from N non-communicating (non-colluding) databases without leaking the

identity of the message to any individual database. The contents of these databases

are identical. To that end, the user prepares N queries, one for each database,

such that the queries do not reveal the user’s interest in the desired message. Upon

receiving these queries, each database responds truthfully with an answering string.

The user needs to be able to reconstruct the entire message by decoding the answer

strings from all databases. A straightforward solution for this seemingly challenging

task is to download all of the contents of the databases. However, this solution

is highly impractical, in particular for large number of messages which is the case

in modern storage systems. The aim of the PIR problem is to design efficient

retrieval schemes. The efficiency of PIR systems is assessed by the PIR rate, which

is the ratio between the desired message size and the total downloaded symbols.

Many practical applications are related to PIR, such as: protecting the identity

of stock market records reviewed by an investor, as showing interest in a specific

record may affect its value; ensuring the privacy of an inventor as they look up

existing patents in a database, since revealing what they are looking at leaks some

information about the current invention they are working on; and protecting the

2



nature of content browsed by activists on the internet in oppressive regimes. From

a technical standpoint, PIR lies at the intersection of computer science, information

theory, coding theory, and signal processing.

In the original formulation of the problem in the computer science literature [1],

the messages are assumed to have a size of one bit. The computer science formulation

considers optimizing two performance metrics, namely, the download cost, which is

the sum of the lengths of the answer strings, and the upload cost, which is the sum

of the lengths of the queries. Most of this work adopts computational guarantees

for the privacy constraint, where it is assumed that the databases cannot infer

any information about the identity of the desired message unless they solve certain

computationally hard problems [3,5]. Recently, there has been a growing interest in

the PIR problem in the information-theory society, with early examples [6–11]. The

information-theoretic reformulation of the problem assumes that the messages are of

arbitrarily large size and hence the upload cost can be neglected with respect to the

download cost [8]. This formulation provides an absolute, i.e., information-theoretic,

guarantee that no server participating in the protocol gets any information about

the user intent irrespective of their computational powers.

In the pioneering paper [12], Sun and Jafar introduce the PIR capacity notion

to characterize the fundamental limits of the PIR problem. The PIR capacity is de-

fined as the supremum of PIR rates over all achievable retrieval schemes (optimal re-

trieval rate) reminiscent of the capacity of communication channels. [12] determines

the exact capacity of the classical PIR model to be C = (1+ 1
N

+ 1
N2 +· · ·+ 1

NM−1 )−1 =

3



1− 1
N

1−( 1
N

)M
. The achievability scheme is a greedy algorithm that employs a symmetric

query structure, which is based on three principles: message symmetry, database

symmetry, and exploitation of side information. The achievable scheme hinges on

an interesting relationship between PIR and blind interference alignment introduced

for wireless networks in [13] as observed in [11].

Following [12], the fundamental limits of many interesting variants of the clas-

sical PIR problem have been considered, such as: PIR with T colluding databases

(TPIR) [14, 15], where any T of N databases might collude; robust PIR (RPIR)

[14, 16], where some databases may fail to respond; symmetric PIR (SPIR) [17],

which adds the constraint that the user should learn only the desired message;

PIR under message size constraint L (LPIR) [18]; multi-round PIR, where the

queries are permitted to be a function of the answer strings collected in previ-

ous rounds [19]; MDS-coded symmetric PIR [20]; symmetric PIR from Byzantine

databases [21]; MDS-coded PIR with colluding databases [22–24], and its multi-

message [25], Byzantine [26], and symmetric [27] versions; cache-aided PIR where

additional side information is present [28–35]; private computation [36, 37], where

the user is interested in retrieving a function of the database contents as opposed to

direct database content; private search [38], where the user searches for all records

that match a privately chosen value without revealing the chosen value; PIR from

storage constrained databases [39, 40], where each database stores a fraction of the

messages instead of the complete copy of the content; secure PIR [41,42], where E of

the databases are captured and observed by an external eavesdropper and its sym-

4



metric version [21]; PIR from secure distributed storage [43,44], where the contents

of the databases need to be secured against X database collusion.

The classical PIR model imposes the following assumptions: First, it assumes

that the content is exactly replicated across the databases. Second, it assumes that

the user wishes to retrieve only a single file privately. Third, it assumes that the

databases do not collude and answer the user queries truthfully. Fourth, it assumes

that the database answers are received through noiseless orthogonal bit pipes (chan-

nels). Fifth, it ignores the security of the retrieved bits against external eavesdrop-

pers. Sixth, the answer strings have unconstrained lengths, which typically exhibit

a symmetric structure in most known PIR schemes. These assumptions are too

idealistic from a practical point of view. Consequently, in this thesis, we introduce

and investigate practically relevant extensions of the classical PIR problem, namely:

PIR from coded databases, multi-message PIR, PIR from colluding and Byzantine

databases, PIR under asymmetric traffic constraints, noisy PIR, and PIR from wire-

tap channel II. We aim at characterizing the fundamental limits of such problems

from an information-theoretic point of view. This task is two-fold, first, one should

devise a practical scheme that retrieves the desired file(s) correctly and privately,

then, one should mathematically prove that no other retrieval scheme can achieve

any higher rate than the proposed scheme by constructing a matching converse.

In Chapter 2, we consider the problem of MDS-coded PIR (CPIR). Due to node

failures and erasures that arise naturally in any storage system, redundancy should

be introduced [45]. The simplest form of redundancy is repetition coding. Although

repetition coding across databases offers the highest immunity against erasures and

5



simplicity in designing PIR schemes, it results in extremely large storage cost. This

motivates the use of erasure coding techniques that achieve the same level of relia-

bility with less storage cost. A common erasure coding technique is the MDS code

that achieves the optimal redundancy-reliability tradeoff. An (N,K) MDS code

maps K sub-packets of data into N sub-packets of coded data. This code tolerates

upto N−K node failures (or erasures). Despite the ubiquity of work on the classical

PIR problem, little research exists for coded PIR with a few exceptions: [6] which

has initiated the work on coded databases and has designed an explicit erasure code

and PIR algorithm that requires only one extra bit of download to provide perfect

privacy. The result is achieved at the expense of having the number of storage nodes

N grow with the message size. [8] considers a general formulation for the coded PIR

problem, and obtains a tradeoff between storage and retrieval costs based on certain

sufficient conditions. [10] presents the best-known achievable scheme for the MDS-

coded PIR problem, which achieves a retrieval rate of R = 1− Rc, where Rc is the

code rate of the storage system. The scheme is universal in that it depends only

on the code rate. Finally, [46] investigates the problem from the storage overhead

perspective and shows that information-theoretic PIR can be achieved with storage

overhead arbitrarily close to the optimal value of 1 by proposing new binary linear

codes called the k-server PIR codes.

In this chapter, we consider the PIR problem for non-colluding and MDS-

coded databases. We assume that the contents of the databases are coded using an

(N,K) MDS storage code. This formulation includes the models of [12] and [10]

as special cases. We show that the exact PIR capacity in this case is given by
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C =
(

1 + K
N

+ K2

N2 + · · ·+ KM−1

NM−1

)−1

= (1 + Rc + R2
c + · · · + RM−1

c )−1 = 1−Rc
1−RMc . The

PIR capacity depends only on the code rate Rc and the number of messages M irre-

spective of the generator matrix structure or the number of nodes. Surprisingly, the

result implies the optimality of separation between the design of the PIR scheme and

the MDS storage code for a fixed code rate. The result outperforms the best-known

lower bound in [10], and reduces to the repetition-coded case (which is a special

case of MDS codes) in [12] by observing that Rc = 1
N

in that case. The achievable

scheme is similar to the scheme in [12] with extra steps that entail decoding of the

interference and the desired message by solving K linearly independent equations.

The converse proof hinges on the fact that the contents of any K storage nodes

are independent and hence the answer strings in turn are independent. We present

two lemmas that capture the essence of the converse proof, namely, interference

lower bound lemma and induction lemma. The proof of the induction lemma uses

Han’s inequality to lower bound the entropy of any K answer strings. These lemmas

generalize the converse technique in [12, Lemmas 5, 6] to account for MDS coding.

In Chapter 3, we consider the problem of multi-message PIR (MPIR). In some

applications, the user may be interested in retrieving multiple messages from the

databases without revealing the identities of these messages. Returning to the ex-

amples presented earlier: The investor may be interested in comparing the values

of multiple records at the same time, and the inventor may be looking up several

patents that are closely related to their work. One possible solution to this problem

is to use single-message retrieval scheme in [12] successively. We show in this work
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that multiple messages can be retrieved more efficiently than retrieving them one-

by-one in a sequence. This resembles superiority of joint decoding in multiple access

channels over multiple simultaneous single-user transmissions [47]. A few works ex-

ist in MPIR in the computer science literature, such as: Reference [48] proposes

a multi-block (multi-message) scheme and observes that if the user requests multi-

ple blocks (messages), it is possible to reuse randomly mixed data blocks (answer

strings) across multiple requests (queries). Reference [49] develops a multi-block

scheme which further reduces the communication overhead. An achievable scheme

for the multi-block PIR by designing k-safe binary matrices that uses XOR opera-

tions is developed in [50]. Reference [50] extends the scheme in [1] to multiple blocks.

Reference [51] designs an efficient non-trivial multi-query computational PIR proto-

col and gives a lower bound on the communication of any multi-query information

retrieval protocol. Reference [52] suggests using batch codes to allow a single client

to retrieve multiple records simultaneously while allowing the server computation to

scale sublinearly with the number of records fetched. This idea is extended further

in [53] to design a PIR server algorithm that achieves sublinear scaling in the num-

ber of records fetched, even when they are requested by distinct, non-collaborating

clients. These works do not consider determining the information-theoretic capacity.

In this chapter, we formulate the MPIR problem with non-colluding replicated

databases. Our goal is to characterize the sum capacity of the MPIR problem CP
s ,

which is defined as the maximum ratio of the number of retrieved symbols from

the P desired messages to the number of total downloaded symbols. When the

number of desired messages P is at least half of the total number of messages M ,
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i.e., P ≥ M
2

, we determine the exact sum capacity of MPIR as CP
s = 1

1+M−P
PN

. We use

a novel achievable scheme which downloads MDS-coded mixtures of all messages.

For the case of P ≤ M
2

, we derive lower and upper bounds that match if the total

number of messages M is an integer multiple of the number of desired messages P ,

i.e., M
P
∈ N. In this case, the sum capacity is CP

s =
1− 1

N

1−( 1
N

)M/P
. The result resembles

the single-message capacity with M
P

messages. In other cases, we show numerically

that the gap between the lower and upper bounds is monotonically decreasing in N

and is upper bounded by 0.0082. The achievable scheme when P ≤ M
2

is inspired by

the greedy algorithm in [12], which retrieves all possible combinations of messages.

The main difference of our scheme from the scheme in [12] is the number of stages

required in each download round. Interestingly, the number of stages for each round

is related to the output of a P -order IIR filter [54]. This intriguing connection to IIR

filtering is a result of constructing the scheme in [12] backwards and observing the

required side information needed in previous rounds. Our converse proof generalizes

the proof in [12] for P ≥ 1. The essence of the proof is captured in two lemmas: the

first lemma lower bounds the uncertainty of the interference for the case P ≥ M
2

,

and the second lemma upper bounds the remaining uncertainty after conditioning

on P interfering messages.

In Chapter 4, we consider the problem of PIR from Byzantine databases

(BPIR). A common assumption in the literature is that the databases respond

truthfully with the correct answer strings. Using the correct answers, the user

can use the undesired symbols downloaded from one database as side information

at other databases, and distribute the requests for the desired symbols among the
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N databases. In this chapter, we investigate how we can reconstruct the desired

message even if B databases (called Byzantine databases) respond with incorrect

answer strings. Returning to the examples presented earlier: The databases stor-

ing the stock market records may not be updated simultaneously, therefore some

of the databases may store outdated versions of the messages and can introduce

unintentional errors to the answering strings. This scenario is referred to in the lit-

erature as the unsynchronized PIR problem [7]. For the oppressive regime example,

some databases may be controlled by the regime, and these databases may return

incorrect answer strings on purpose to confuse the user. This scenario is referred

to in the literature as the PIR with adversarial databases problem [55,56]. In both

cases, the user needs to be able to reconstruct the desired message with no error,

irrespective of the actions performed by the Byzantine databases. The BPIR prob-

lem was introduced in [55], which proposes a generic transformation from schemes

of RPIR to robust protocols that tolerate Byzantine servers, and gives an explicit

Byzantine robust scheme when B ≤ T ≤ N
3

. [57] presents a fault-tolerant PIR

scheme that can cope with malicious failures for B ≤ T ≤ N
2

. [56] observes that

allowing for list decoding instead of unique decoding enlarges the feasible set up

to B < N − T − 1. Their achievable scheme allows for a small failure probability.

The scheme depends on Shamir’s secret sharing algorithm [58] and Guruswami-

Sudan decoding algorithm [59]. The unsynchronized PIR problem is investigated

in [7], where they propose a two-round retrieval scheme. The scheme returns the

desired record by first identifying which records are mis-synchronized, and then by

constructing a PIR scheme that avoids these problematic records.
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In this chapter, we consider the single-round BPIR problem from N replicated

databases in the presence of B Byzantine databases. The remaining storage nodes

store the exact copy of the message set, and respond truthfully with the correct

answer strings. We consider the T -privacy constraint, which permits colluding be-

tween any T databases to exchange the queries submitted by the user. Our goal

is to characterize the single-round capacity of the BPIR problem under the zero-

error reliability constraint and the T -privacy constraint. To that end, we propose

an achievable scheme that is resilient to the worst-case errors that result from the

Byzantine databases. Our achievable scheme extends the optimal scheme for the

RPIR problem [14] to correct the errors resulted from the Byzantine databases, in

contrast to the erasures introduced by the unresponsive databases in RPIR. The

new ingredients to the achievable scheme are: encoding the undesired symbols via

a punctured MDS code, successive interference cancellation of the side information,

and encoding the desired symbols by an outer-layer MDS code. For the converse, we

extend the converse arguments developed for the network coding problem in [60] and

distributed storage systems in [61] to the PIR problem. This cut-set upper bound

can be thought of as a network version of the Singleton bound [62]. We determine

the exact capacity of the BPIR problem to be C = N−2B
N
· 1− T

N−2B

1−( T
N−2B )

M , if 2B+T < N .

The capacity expression shows the severe degradation of the retrieval rate due to the

presence of Byzantine databases. The capacity expression is equivalent the TPIR

capacity with N−2B databases with a multiplicative factor of N−2B
N

, which signifies

the ignorance of the user as to which N − 2B databases are honest. Our formula-

tion includes the special case of the single-round unsynchronized PIR problem, if the

11



user has no knowledge about the number of mis-synchronized messages, and only

knows that the entirety of some B databases may be unsynchronized in contrast

to [7]. Under our assumptions, the single-round capacity of the unsynchronized PIR

problem and the BPIR problem are the same.

In Chapter 5, we introduce the problem of PIR under asymmetric traffic con-

straints. A common property of the achievability schemes in the PIR literature is

that they exhibit a symmetric structure across the databases. This enables the user

to balance the load of retrieval of the desired message equally among the databases,

and re-use the side information generated from one database equally in all the

remaining databases. Now, consider the following scenarios that render symme-

try assumption unworkable: Varying database availability: Certain databases are

available only a fraction of the time other databases are available for downloads.

Different capacities: The capacities of the links (bit pipes) from the databases to

the user have different capacities. This may be due to different physical locations

of the databases, e.g., the user may be able to access physically closer databases

more often than physically distant databases, or it may be due to the quality of the

physical layer communication channel, e.g., the bandwidths (rates) of the download

channels may be different for different databases. In these cases, the user is forced to

deal with each database differently, i.e., the user should utilize the databases which

have better quality links more often than the other databases. This breaks the

database symmetry assumption, makes load balancing of desired message and side

information more challenging, and poses the following interesting questions: Can we

perform efficient PIR without applying database symmetry? Is there a fundamental
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PIR rate loss due to not being able to use symmetric schemes? Motivated by these

practical scenarios, we consider the classical PIR problem under asymmetric traffic

constraints. Formally, we assume that the nth database responds with a tn-length

answer string. We constrain the lengths of the answer strings such that tn = λnt1

for n ∈ {2, · · · , N}. This, in turn, forces the ratios between the traffic from the

databases to be 1 : λ2 : λ3 : · · · : λN . We denote the traffic ratio with respect to

the total download by a vector τ = (τ1, · · · , τN), where τn = λn∑N
j=1 λj

. We aim at

characterizing the capacity of this PIR problem, C(τ ), as a function of the given

traffic ratio vector τ for arbitrary M and N .

In this chapter, we investigate the fundamental limits of the PIR problem

under asymmetric traffic constraints. To that end, we develop a novel upper bound

for the capacity C̄(τ ). This generalizes the converse proof of [12] to incorporate the

asymmetric traffic constraints. Originally, the proof in [12] exploits the database

symmetry. The rationale is that even if the optimal scheme is not symmetric, we can

transform it into a symmetric scheme without changing the retrieval rate by means

of time-sharing [12]. In our case, we cannot use this technique as we must deal with

the databases differently. We characterize the upper bound as a piece-wise affine

function in τ . The upper bound implies that asymmetry fundamentally hurts the

retrieval rate. Then, we propose explicit achievability schemes for
(
M+N−1

M

)
corner

points. Each corner point corresponds to a specific partitioning of the databases

according to the number of side information symbols that are used simultaneously

within the initial round of the download. We describe the achievability scheme

via a system of difference equations in the number of stages at each round of the
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download (in parallel to Chapter 3). For any other traffic ratio vector τ , we employ

time-sharing between the corner points that enclose τ . We provide an explicit rate

expression for the case of N = 2 for arbitrary M . We show that the upper bound

and the lower bound exactly match for the cases of M = 2 and M = 3 messages for

any N and any τ , leading to the exact capacity C(τ ) for these cases.

In Chapter 6, we introduce the problems of noisy PIR with orthogonal links

(NPIR) and PIR from multiple access channels (MAC-PIR). In all previous works,

the links from the databases to the user are assumed to be noiseless. Further, these

works assume that the answer strings are returned via orthogonal links, i.e., the user

receives N separate answer strings, which are not mixed. There are many practical

settings where these assumptions may not be valid. For instance, while browsing the

internet, some packets may be dropped randomly. This scenario can be abstracted

out as passing the answer strings through an erasure channel. Alternatively, the data

packets may be randomly corrupted, which can be modeled as a binary symmetric

channel that flips randomly some symbols in the answer strings. Hence, a more

realistic retrieval model may be to assume that the databases return their answer

strings through noisy channels with known transition probabilities. Yet, in other

applications, the answer strings may be mixed before reaching the user. For example:

if the user is retrieving the desired file from wireless base stations, the answer strings

would be combined in the air before reaching the user. Another example is retrieval

from a cloud, where the returned packets may collide and superimpose each other.

These practical settings can be represented with another abstract model, which is the

cooperative multiple access channel (MAC) model, where the databases cooperate to
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convey the desired message to the user, while the user receives a stochastic mapping

from the database responses in general. These two cases pose many interesting

questions, such as: How can we devise schemes that mitigate the errors introduced

by the channel with a small sacrifice from the private retrieval rate? Is there a

separation between the channel coding needed for reliable transmission over noisy

channels and the private retrieval scheme, or is there a necessity for joint processing?

How do the statistical properties of the noisy channels fundamentally affect the

private retrieval rate?

In this chapter, we first focus on the NPIR problem. In NPIR, the nth database

is connected to the user via a discrete memoryless channel with known transition

probability distribution p(yn|xn). Intuitively, since a channel with worse channel

condition needs a lower code rate to combat the channel errors, we do not expect

the lengths of the answer strings to be the same from all the databases. Therefore,

in this work, we allow the traffic from each database to be asymmetric as in Chap-

ter 5. We first derive a general upper bound for the retrieval rate in the form of a

max-min problem. The converse proof is inspired by the converse proof in Chap-

ter 5, in particular in the way the asymmetry is handled. We show the achievability

proof by random coding arguments and enforcing the uncoded responses to operate

at one of the corner points of the PIR problem under asymmetric traffic constraints.

The upper and lower bounds match for M = 2 and M = 3 messages, for arbitrary

N databases, and any noisy channel. Our results show that the channel coding

needed to mitigate the channel errors and the retrieval scheme are almost separable

in the sense that the noisy channels affect only the traffic ratio requested from each
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database and not the explicit coding technique. Interestingly, the upper and lower

bounds depend only on the capacity of the noisy channels and not on the explicit

transition probability of the channels. Next, we consider the MAC-PIR problem,

where the responses of the databases reach the user through a discrete memoryless

MAC with a known transition probability p(y|x1, · · · , xN). In this case, the out-

put of the channel is a mixture (possibly noisy mixture) of all database responses.

Interestingly, for this model, we show that channel coding and retrieval strategy

are inseparable unlike in the NPIR problem. We show this fact by deriving the

PIR capacity of two simple MACs, namely: additive MAC, and logical conjunc-

tion/disjunction MAC. In these two cases, we show that privacy for free can be

attained by designing retrieval strategies that exploit the properties of the channel

to maximize the retrieval rate. We show that for the additive MAC, the optimal

PIR scheme is linear, while for the logical conjunction/disjunction MAC, we show

that a non-linear PIR scheme that requires N ≥ 2M−1 is needed to achieve C = 1.

We conclude this discussion by showing that full unconstrained capacity may not be

attainable for all MACs by giving a counterexample, which is the selection MAC.

Throughout Chapters 2-6, we have confined ourselves to protecting the privacy

of the desired message from the databases in addition to satisfying the reliability

constraint. In Chapter 7, we tackle the problem of secure PIR. We impose an extra

constraint to the PIR problem, namely, the secrecy constraint in addition to the

usual privacy constraint. This ties together the two focuses of this dissertation. The

secrecy constraint ensures that the queries and the answer strings do not leak any

information about the contents of the databases to an external eavesdropper. Such
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systems are relevant in practice, for example, in the stock market example, consider

the case when the contents of the records themselves are confidential except for a

small subset of authorized investors. Thus, the queries and the answer strings should

be designed such that unauthorized entities who wiretap the retrieval process learn

absolutely nothing about the contents of these confidential records. A few works

exist on secure PIR: [63] considers the more general problem of information storage

and retrieval, guaranteeing that also the process of storing the information is secure

in the presence of failing servers. [21] considers a symmetric PIR setting where there

is a passive eavesdropper who can tap in on the incoming and outgoing transmissions

of any E servers. [21] derives the PIR capacity in this setting. Interestingly, the

secret key needed for the symmetric retrieval process is used as an encryption key to

secure the contents of the databases from the eavesdropper. This requires, as in the

underlying symmetric PIR, that databases exchange a secret key of at least a certain

size. This problem is investigated further in [41] for the classical PIR problem under

T -privacy constraint for the case of E ≤ T . [41] derives inner and outer bounds for

this problem in addition to the minimum amount of common randomness required,

which is shared between the databases.

In Chapter 7, we study the secure PIR problem from a different angle than

[21, 41, 63] by investigating the problem of PIR through wiretap channel II (PIR-

WTC-II). Ozarow and Wyner [64] introduced the wiretap channel II (WTC-II)

model, which considers a noiseless main channel and a binary erasure channel to

the wiretapper, where the wiretapper is able to select the positions of erasures.

In PIR-WTC-II, the user observes the tn-length answer strings through a noiseless
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channel from the nth database. The eavesdropper can observe a fraction µn from

the nth answer string. The databases should encode the answer strings such that

the eavesdropper learns nothing from observing any µn fraction of the traffic from

the nth database. Naturally, the nth database dedicates µntn portion of the an-

swer string to confuse the eavesdropper, constraining the meaningful portion of the

answer to be (1− µn)tn. This fundamentally relates PIR-WTC-II to the PIR prob-

lem under asymmetric traffic constraints in Chapter 5, as the lengths of the answer

strings can no longer be symmetric. We raise the following questions: How can we

design a retrieval code that satisfies the combined privacy and security constraints

for the PIR-WTC-II problem? Does PIR-WTC-II problem necessitate the existence

of common randomness between the databases as in [41]? Should the databases

share any common randomness with the user (retriever)?

In this chapter, we obtain a general upper bound for the PIR-WTC-II problem,

when the eavesdropper can wiretap µ = (µ1, · · · , µN) fractions from the traffic

outgoing from every database. We show that this upper bound can be expressed as a

max-min problem. The inner minimization problem extends the converse techniques

for the PIR problem under asymmetric traffic constraints in Chapter 5 to the PIR-

WTC-II problem. The outer problem maximizes the retrieval rate over all possible

traffic ratio vectors. For the achievability, we extend the achievable scheme used in

Chapter 5 to achieve the corner points for the meaningful portions of the queries.

In the extension, to satisfy the security constraint, each database generates a secret

key with µntn length and encodes it into an artificial noise vector using a (tn, µntn)

MDS code and encrypts the returned answer strings with the artificial noise vector.
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Interestingly, our achievable rate does not need any shared randomness among the

databases or between the databases and the user. The keys used by the databases

are unknown to the user, but are decodable and canceled at the retriever; however,

the same keys are not extractable at the wiretapper due to the MDS code used. Our

upper and lower bounds match for M = 2 and M = 3, for any N , and any µ.

In Chapters 8-10, we shift our focus to security problems in multi-user net-

works by means of physical layer (information-theoretic) security techniques. Phys-

ical layer security provides unconditional and provable security schemes that are

quantifiable in terms of information-theoretic quantities and rates [65]. Physical

layer security techniques allow secure transmission of information (in absolute sense)

without the need for encryption keys. Consequently, the problems of exchanging

encryption keys across open wireless networks are mitigated. The wiretap channel

was first considered by Wyner in [66]. The canonical wiretap channel model con-

sists of a transmitter, a legitimate receiver and an eavesdropper. Wyner showed

the feasibility of attaining a positive secrecy rate in his degraded channel model,

and determined the rate-equivocation region of a degraded wiretap channel. This

model was generalized to arbitrary, not necessarily degraded, channels by Csiszar

and Korner in [67], where they determined the rate-equivocation region of the most

general wiretap channel. Leung-Yan-Cheong and Hellman considered SISO Gaus-

sian wiretap channel, which is degraded, under a transmitter-side power constraint

in [68]. They showed that Gaussian signalling is optimal. The physical layer secu-

rity framework is then extended to various multiuser settings such as: the multiple

access wiretap channel (MAC-WT) [69], broadcast channel with confidential mes-
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sages (BCCM) [70–74], interference channel with confidential messages (ICCM) [70],

multi-receiver wiretap channels [75, 76], and relay-eavesdropper channels [77]. The

secure degrees of freedom (s.d.o.f.) have been considered in the literature as a first

order approximation of the secure rates (the pre-log factor of the secure rate) in many

multiuser channel models, such as: helper wiretap channel [78, 79], multiple-access

wiretap channel [78,80–82], interference channel [78,82–86], X-channel [87,88], half-

duplex relay channel [89], compound wiretap channel [90], diamond channel [91],

multiuser channel models under imperfect CSIT [92–96].

The most relevant works to this dissertation are the s.d.o.f. characterization

of SISO one-hop networks [78, 82, 86] and the MIMO Gaussian wiretap channel

in [97–100]. [78] determines the exact s.d.o.f. of several SISO networks, including

the wiretap channel with helpers, MAC-WT, BCCM, and ICCM. For achievabil-

ity, [78] proposes real interference alignment [101] based achievable schemes that

use structured codes in the form of pulse amplitude modulation (PAM). For the

converse, [78] develops two converse lemmas, the secrecy penalty lemma and the role

of a helper lemma, which prove the optimality of the proposed achievable schemes.

Reference [86] generalizes the sum s.d.o.f. result of ICCM in [78] to the case of K-

users. The work in [86] shows that in order to achieve real interference alignment at

multiple receivers as in the case of the K-user interference channel, asymptotic real

interference alignment is needed. [82] generalizes [78], [86] to determine the entire

s.d.o.f. region; [82] shows that the s.d.o.f. region has a general polytope structure.

Reference [79] extends the result for the wiretap channel with helpers in [78] to

the case of MIMO nodes for the special case of a single helper. To that end, [79]
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extends the role of a helper lemma of [78] for the MIMO case and provides multi-

ple achievable schemes for different regimes including spatial precoding/alignment,

transmission in the null space, and projecting onto a SISO dimension where real

interference alignment of [78] is used. The MIMO Gaussian wiretap channel was

considered in [97–99], under a transmitter-side power constraint. These references

show that channel prefixing is not needed, and Gaussian signalling is optimal. An

interesting alternative proof is given in [100] based on the channel enhancement

technique developed in [102]. Reference [100] considers the MIMO wiretap channel

under a transmitter-side covariance matrix constraint which is more general than a

transmitter-side power constraint.

In all these works, the following assumptions are imposed: First, they assume

that all nodes are altruistic and follow a prescribed transmission policy in order to

maximize the sum secure rate of the entire system, even if that obliges the transmit-

ters to jam their own receivers as in the case of ICCM. Second, the channel inputs

to Gaussian channels are usually constrained by a total transmitter-side power con-

straint. Third, the transmitters and receivers have a single antenna in the secure

degrees of freedom studies of interference channels. That is, the optimal interplay

between interference, security, and multiple antennas is not fully understood even

in high SNR regimes. In this thesis, we address these issues in Chapters 8-10,

namely, the MIMO interference channel with confidential messages, security in net-

works with user misbehavior, and MIMO wiretap channel under receiver-side power

constraints. The goal is to characterize the optimal secure transmission strategy in

terms of the secrecy capacity or its high-SNR approximation, the secure degrees of
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freedom (s.d.o.f.).

In Chapter 8, we consider the two-user MIMO ICCM [70], where two users

wish to send messages to their respective receivers reliably, while keeping them

secure from the unintended receiver in the information-theoretic sense. The secrecy

capacity region of the ICCM is unknown today. In fact, the capacity region of the

IC without secrecy constraints is known only within a constant gap [103]. Most of

the current work concentrates on the asymptotic behavior of the secrecy capacity

at high SNR in terms of s.d.o.f. The exact sum s.d.o.f. [78, 86] and the entire

s.d.o.f. region [82] of the single-input single-output (SISO) ICCM are known for

an arbitrary number of transmitters and receivers. In this chapter, we extend the

s.d.o.f. results for the ICCM in [78,82,86] to the case of MIMO nodes, for the special

case of a two-user system with an equal number of antennas at both transmitters

(M) and both receivers (N).

We first focus on the optimal achievability schemes for the sum s.d.o.f. point.

We propose a novel achievable scheme for the 2×2 ICCM system. The 2×2 achiev-

able scheme is central in this chapter, since for the ICCM, the final sum s.d.o.f. num-

bers are multiples of 1/3. The required achievable scheme depends on the value of

the fractional (non-integer) part of the sum s.d.o.f. If it is 1/3, a projection onto a

single SISO dimension as in [79] is sufficient. In this SISO dimension, we use real

interference alignment scheme of [78] for ICCM. However, if it is 2/3, the projection

strategy results in a 2×2 ICCM system. In this case, we use a combination of spatial

interference alignment scheme [104], which ensures security, and an asymptotic real

interference alignment scheme [86], which ensures efficient decodability. Any other
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antenna configuration (any M and N) can be reduced to either a 1× 1 ICCM (i.e.,

SISO) or a 2× 2 ICCM system after proper vector space operations for the integer

part of the sum s.d.o.f. These operations include transmission in the null space of

the cross-links and spatial alignment.

Next, we develop a matching converse by using three distinct outer bounds.

The first upper bound is the cooperative bound, in which we allow cooperative

stochastic encoding among the two users. The second upper bound uses the vec-

torized version of the upper bounding technique developed in [78] using the secrecy

penalty and role of a helper lemmas. The third upper bound is the decodability up-

per bound developed in [105] for the IC without secrecy constraints. The intersection

of these upper bounds gives a tight upper bound for any number of antennas.

Then, we characterize the complete s.d.o.f. region. We prove that the region is

a four-vertex polytope in general as in [82]. The non-trivial extreme points are the

sum s.d.o.f. point and the two symmetric maximum individual s.d.o.f. points. We

note that the s.d.o.f. region becomes a square if N
2
≤ M ≤ 2N

3
or M ≥ 2N , which

implies the feasibility of simultaneous secure transmission with a full s.d.o.f. in these

regimes. For other regimes, the s.d.o.f. region is a non-square polytope, since the sum

s.d.o.f. point and the maximum individual s.d.o.f. points evolve differently with the

number of transmit antennas M . After establishing the achievable schemes for the

non-trivial points of the polytope, the rest of the region is obtained via time-sharing.

Finally, we specialize the problem to the case of time-varying ICCM. We develop

simpler achievable schemes that depend on repeating the transmitted symbols over

multiple channel uses, which replaces the complicated asymptotic real interference
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alignment scheme, and exploits the time-diversity inherent in time-varying ICCM.

In Chapter 9, we investigate BCCM, ICCM, and MAC-WTC channel models in

the case of selfish and malicious behaviour, where the users/helpers do not perform

the system-wide-optimal altruistic behaviour but apply a selfish strategy and/or take

sides by aiming to help one user and potentially hurt the other. These new models

are extensions of the ones studied in [69, 70, 78] and are a step forward in studying

channel models with active adversaries. We use s.d.o.f. metric to quantify the effects

of these malicious behaviours. For BCCM and ICCM channel models, we note a

self-enforcing property: Even with the excessive capabilities of the helpers/users

(infinite power and all-knowing entities), these capabilities are naturally restricted

in these channel models due to the users/helpers’ interest in reliable communication

to/with their own receivers. That is, no entity can use infinite powered Gaussian

jamming signals which would wipe out the communication for everybody. This self-

enforcing property necessitates users to apply selective jamming via interference

alignment. This motivates studying such jamming techniques and analyzing their

effect on the s.d.o.f. of the users. In addition, a careful look at the achievable scheme

for the MAC-WTC in [78] reveals that the cooperative jamming signal of each user

protects parts of the message-carrying signals of the other users; and that no user

can protect its own signals. This creates an interesting ecosystem where each user

strictly depends on the rest of the users for its own security. The fact that a user’s

cooperative jamming transmission does not contribute to its own security, but at the

same time uses up its own transmit power, may motivate some selfish users not to

send cooperative jamming signals. In this chapter, we investigate the effects of such
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(and worse) deviations from the optimum signalling scheme on the system s.d.o.f.,

and the actions that the rest of the users can take to compensate for such behavior.

In the first model, which is the BCCM with combating helpers, there are two

helpers, where each helper takes the side of one of the receivers and at the same time

aims to hurt the secure communication to the other receiver. The two helpers have

contradicting objectives and hence are combating. Helpers in this model do not

coordinate with the transmitter as in [78]. We use a stringent objective function for

each helper: Each helper minimizes the s.d.o.f. of the other receiver, while not de-

creasing the s.d.o.f. of its own receiver by its action. We formulate the problem as an

extensive-form game [106], which is a sequential strategic game, where every player

(node) acts according to its information about the other nodes’ actions in previous

transmission frames. We investigate achievable schemes that use real interference

alignment [101] in a recursive way. We prove that under this stringent objective

function and recursive real interference alignment, the malicious behaviours of the

two combating helpers are neutralized, and the s.d.o.f. for each user converges to

the optimal s.d.o.f. of 1/2 per user [78], as if both helpers are altruistic.

In the second model, which is the ICCM with selfish users, there is an external

system helper. In this model, the users do not coordinate as in the optimal strategy

in [78] instructs. The users are selfish and want to hurt the other receiver; each trans-

mitter’s goal is to maximize the difference of the s.d.o.f. between the two receivers.

This permits each user to jam its own receiver if this hurts the other receiver more,

making self-jamming more natural here than the optimum scheme in [78]. There is a

neutral helper in this system which aims to maximize the s.d.o.f. of the system. Us-
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ing the extensive-form game formulation and recursive real interference alignment,

we show that the selfishness of the users precludes any secure communication, and

drives the s.d.o.f. of both users to zero, despite the existence of a mediating helper.

In the third model, which is the MAC-WTC with deviating users, we first

consider the case where M out of K users deviate by not transmitting cooperative

jamming signals. We start by evaluating the achievable sum s.d.o.f. when the re-

maining users do not change their original optimum strategies. We show that the

sum s.d.o.f. of the system decreases, and deviating users do not benefit from their ac-

tions. Then, we consider two possible counter-strategies by the remaining users: In

the first strategy, all users decrease their rates to ensure that all message-carrying

signals are protected by the remaining cooperative jamming signals, and leakage

s.d.o.f. is zero. We show that, in this case, the individual s.d.o.f. of the deviating

users increase. Hence, deviating users gain at the expense of well-behaving users.

In the second strategy, we allow the leakage s.d.o.f. to be non-zero, but constrain

leakage in a single dimension. We show that, although the sum s.d.o.f. of the sys-

tem is lower than the case of the first counter-strategy, this strategy decreases the

individual s.d.o.f. of the deviating users and increases the s.d.o.f. of well-behaving

users. Next, we consider a more severe form of deviation by considering one user

turning malicious and sending intentional jamming signals. As this deviating user

has infinite power, it can wipe out all communication, secure or otherwise, if it sends

Gaussian signals. For the sake of a meaningful formulation, we restrict the strategy

set of this deviating user to be of structured signalling and alignment type. Under

this restriction, we formulate the problem as an extensive-form game [106]. We show
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that this deviating user can drive the s.d.o.f. of the system to zero. We then show

that, interestingly, the remaining users can utilize these intentional (malicious) jam-

ming signals to protect more message-carrying signals at the eavesdropper, achieving

a sum s.d.o.f. of (K−1)2

(K−1)2+1
. We prove that this sum s.d.o.f. matches the sum s.d.o.f. of

a K − 1 user MAC-WTC with 1 external altruistic helper, thereby, show that the

system turns a malicious jammer into an altruistic helper, i.e., the deviating user

benefits the system against its intensions.

Finally, motivated by the emerging applications of wireless energy transfer and

cognitive radio, we investigate the MIMO wiretap channel under receiver-side power

constraints in Chapter 10. Most existing literature on Gaussian channels is based on

a transmitter-side average power constraint. This constraint models the maximum

allowable power at the transmitter-side. Gastpar [107] was the first to consider

a receiver-side power constraint. In [107], he considered a maximum receiver-side

power constraint motivated by the desire to limit the received interference in a

cognitive radio application. He observed that the solution changes significantly for

a MIMO channel. Subsequently, Varshney [108] considered a minimum receiver-

side power constraint motivated by the desire to transport both information and

energy simultaneously over a wireless channel. Varshney as well observed that the

solution changes significantly with respect to a classical transmitter-side amplitude

constrained SISO channel [109]. In this chapter, we consider a multi-user and multi-

objective version of the problem considered by Gastpar and Varshney. In particular,

we consider a MIMO wiretap channel where the transmitter wishes to have secure

communication with a legitimate receiver in the presence of an eavesdropper. In this
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model, messages need to be sent to the legitimate receiver with perfect secrecy from

the eavesdropper. We impose the usual transmitter-side power constraint in addition

to a receiver-side power constraint. Therefore, our model generalizes [107,108] from

a single-user setting of two nodes to a multi-user scenario of a wiretap channel with

three nodes, and also to a multi-objective setting where we have both reliability and

security constraints.

We first characterize the secrecy capacity of the MIMO wiretap channel under

a minimum receiver-side power constraint at the eavesdropper only. To this end,

we first show that, solving the secrecy capacity of the MIMO wiretap channel under

a transmitter-side maximum power constraint and a receiver-side minimum power

constraint is equivalent to solving the secrecy capacity of a MIMO wiretap chan-

nel under a double-sided correlation matrix constraint on the channel input at the

transmitter. This is a generalization of the approach of [100, 102]. We then gen-

eralize the channel enhancement technique of [100, 102] to the case of double-sided

correlation matrix constraint. This gives us the converse. We next show that the

rates given in the converse can be achieved by two different achievable schemes: a

mean based scheme where the transmitter uses a Gaussian codebook with a fixed

mean, and an artificial noise [110] (or cooperative jamming [111]) based scheme,

which uses Gaussian channel prefixing with a Gaussian codebook. The role of the

mean or the artificial noise is to enable energy transfer without sacrificing from the

secure rate. This is the first instance of a channel model where either the use of a

mean signal or the use of channel prefixing via artificial noise is strictly necessary

for the canonical MIMO wiretap channel. We note that, in a related work, refer-
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ences [112, 113] consider simultaneous information and energy transfer in a MISO

wiretap channel, and focus on optimizing the performance of a specific artificial

noise based achievable scheme with no claim of optimality. We also note a similar

set-up in [114, 115], where the authors consider the case of statistical channel state

information only at the transmitter and focus on optimizing asymptotic transmit

covariance matrix of Gaussian codebooks without artificial noise for the case of a

large number of transmit antennas.

We then extend the developed methodology to find the capacities of the follow-

ing related channels: We first consider the case that both receivers have minimum

receiver-side power constraints. Next, we impose maximum power constraints, which

corresponds to a cognitive radio setting where we control the received interference

power at users. In this case, we show that ordinary Gaussian signalling is suffi-

cient, and there is no need for mean or artificial noise signalling. Next, we drop the

secrecy constraint and consider the classical MIMO broadcast channel (BC) with

minimum receiver-side power constraints. We prove that dirty paper coding (DPC)

used in [102] is optimal to achieve the capacity. This result intuitively verifies that

neither mean nor artificial noise transmission is needed, because the freedom afforded

by the design of the covariance matrices of the DPC scheme suffices to achieve all

desired feasible receiver-side powers. Finally, we put back the secrecy constraints for

both users and consider the BC with confidential messages BCCM [72]. We show

that secure DPC (S-DPC) is optimal for the BCCM as in [72] without the need for

mean or artificial noise signalling.

In Chapter 11, we provide conclusions to this dissertation.
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CHAPTER 2

Private Information Retrieval from Coded Databases

2.1 Introduction

In this chapter, we consider the PIR problem over a distributed storage system.

Due to node failures and erasures that arise naturally in any storage system, redun-

dancy should be introduced. However, replicating the content across the databases

incurs high storage cost. This motivates the content of the databases to be coded

instead of merely being replicated. In this chapter, the storage system consists

of N non-colluding databases, each storing an MDS-coded version of M messages.

We derive the information-theoretic capacity of the MDS-coded PIR problem to be

C =
(

1 + K
N

+ K2

N2 + · · ·+ KM−1

NM−1

)−1

= (1 +Rc +R2
c + · · ·+RM−1

c )−1 = 1−Rc
1−RMc , where

Rc is the rate of the (N,K) MDS code used. The capacity is a function of the

code rate and the number of messages only regardless of the explicit structure of

the storage code. The result implies a fundamental tradeoff between the optimal

retrieval cost and the storage cost when the storage code is restricted to the class

of MDS codes.
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2.2 System Model

Consider an (N,K) MDS-coded distributed storage system storing M messages (or

files). The messages are independent and identically distributed with

H(Wi) = L, i ∈ {1, · · · ,M} (2.1)

H(W1,W2, · · · ,WM) = ML (2.2)

The message Wi, i ∈ {1, · · · ,M} is a FL̃×Kq matrix with sufficiently large field Fq,

such that L̃×K = L. The elements of Wi are picked uniformly and independently

from Fq. We denote the jth row of message Wi by w
[i]
j ∈ FKq . The generator matrix

of the (N,K) storage code H is a FK×Nq matrix such that

H =

[
h1 h2 · · · hN

]

K×N
(2.3)

where hi ∈ FKq , i ∈ {1, · · · , N}. For an MDS code, any set K of columns of

H such that |K| ≤ K are linearly independent.1 We do not assume any specific

structure on the distributed storage code other than that the encoding is performed

1For the converse proof, the linear independence requirement of every K columns in H is not
strictly needed. In fact, from the converse point of view, any storage code that enforces the contents
of every K databases to be statistically independent leads to the same upper bound even if the code
is not linear. In this chapter, the linear independence assumption, which is equivalent to having
an MDS code, is important for the construction of the achievable scheme (see Section 2.4) that
relies on solving K linear equations, in addition to creating an instance of statistical independence
that is needed in the converse proof.
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independently over the rows, i.e., the rows/messages are not mixed2,3. Hence, the

storage code fn : w
[i]
j → y

[i]
n,j on the nth database maps each row4 of Wi separately

into coded bit y
[i]
n,j, see Fig. 2.1,

y
[i]
n,j = hTnw

[i]
j (2.4)

Consequently, the stored bits yn ∈ FML̃
q on the nth database, n ∈ {1, · · · , N} are

concatenated projections of all messages {W1, · · · ,WM} and are given by

yn =




W1

...

WM




hn (2.5)

2By non-mixing MDS code, we mean that each message is encoded separately. Furthermore,
we assume that each row within each message is encoded separately as well. This assumption is
made to enable the MDS code to be flexible enough so that the code structure makes sense for
every message size L, which is needed to characterize the capacity in the Shannon sense (i.e., as
L→∞). Here we give a concrete example: if W1 = (a1, · · · , a4), and W2 = (b1, · · · , b4) and they
are encoded via a (3, 2) non-mixing MDS code, then each message is arranged in 2 rows. Each row
is encoded separately, for example, row 1 is encoded as (a1, a2, a1 + a2), and row 2 is encoded as
(a3, a4, a3 + a4), and similarly for W2. Note that this example MDS code neither mixes messages,
nor the rows of each message. The results of this chapter are restricted to such non-mixing code
structures and hence the qualifier “non-mixing” is dropped.

3We note that in [8, Example 2], an example for a mixing (3, 2) MDS code for M = 2 is
presented. In this case, letting W1 = (a1, a2), W2 = (b1, b2), database 1 stores (a1, a2), database 2
stores (b1, b2) and database 3 stores (a1 + b1, a2 + b2). This code mixes W1, W2 in database 3. [8]
provides a retrieval scheme for this specific code that achieves a retrieval rate of 2

3 , which is higher
than the capacity of non-mixing (3, 2) MDS codes (C = 3

5 ). The characterization of the capacity
of mixing MDS codes is an interesting open problem.

4We note that the assumption of encoding each row with the same generator matrix is indeed
without loss of generality and is made to simplify the presentation. If each row is encoded via a

different MDS generator matrix, i.e., the jth row of message i is encoded via H
[i]
j , the capacity

is still given by Theorem 2.1. For the achievable scheme, we note that the scheme downloads K
coded symbols directly from the databases with no further processing. This suffices to decode the
entire row because the MDS property is still valid for each row. The converse proof still holds
since the contents of every K databases are statistically independent and hence Lemma 2.1 is still
valid.
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...

H ∈ FK×N
q

. . .
L̃

K

N length codeword
w

[i]
2

w
[i]
1

w
[i]

L̃

hT
Nw

[i]
1hT

1w
[i]
1 hT

2w
[i]
1

Wi

coding every row via generator matrix

Figure 2.1: Coding process for message Wi.

=

[
hTnw

[1]
1 . . . hTnw

[1]

L̃
hTnw

[2]
1 . . . hTnw

[2]

L̃
. . . hTnw

[M ]
1 . . . hTnw

[M ]

L̃

]T

(2.6)

The explicit structure of the coded storage system is illustrated in Table 2.1. The

described storage code can tolerate up to N − K errors by connecting to any K

databases. Thus, we have for any set K such that |K| ≥ K,

H(yK̄|yK) = 0 (2.7)

where yK are the stored bits on databases indexed by K, and K̄ is the complement

of the set K. The code rate of this distributed storage system Rc is given by

Rc =
K

N
(2.8)
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Table 2.1: Explicit structure of (N,K) code for distributed databases with M mes-
sages.

DB1 (y1) DB2 (y2) · · · DBN (yN)

m
es

sa
ge

1 hT1 w
[1]
1 hT2 w

[1]
1 · · · hTNw

[1]
1

hT1 w
[1]
2 hT2 w

[1]
2 · · · hTNw

[1]
2

...
... · · · ...

hT1 w
[1]

L̃
hT2 w

[1]

L̃
· · · hTNw

[1]

L̃
m

es
sa

ge
2 hT1 w

[2]
1 hT2 w

[2]
1 · · · hTNw

[2]
1

hT1 w
[2]
2 hT2 w

[2]
2 · · · hTNw

[2]
2

...
... · · · ...

hT1 w
[2]

L̃
hT2 w

[2]

L̃
· · · hTNw

[2]

L̃

...
...

... · · · ...

m
es

sa
ge
M

hT1 w
[M ]
1 hT2 w

[M ]
1 · · · hTNw

[M ]
1

hT1 w
[M ]
2 hT2 w

[M ]
2 · · · hTNw

[M ]
2

...
... · · · ...

hT1 w
[M ]

L̃
hT2 w

[M ]

L̃
· · · hTNw

[M ]

L̃

The retrieval process over MDS-coded databases is illustrated in Fig. 2.2. To retrieve

Wi, the user generates a query Q
[i]
n and sends it to the nth database. Since the user

does not have knowledge about the messages in advance, the queries are independent

of the messages,

I(Q
[i]
1 , · · · , Q[i]

N ;W1, · · · ,WM) = 0 (2.9)

In order to ensure privacy, the retrieval strategy for the ith message should be

indistinguishable from the retrieval strategy of W1, hence, for i ∈ {1, · · · ,M}, n ∈
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Figure 2.2: The MDS-coded PIR problem.

{1, · · ·N}

(Q[i]
n , A

[i]
n ,W1, · · · ,WM) ∼ (Q[1]

n , A
[1]
n ,W1, · · · ,WM) (2.10)

which implies that the queries and answers should be independent of the desired

message index i, i.e., the privacy constraint is,

I(Q[i]
n , A

[i]
n ,W1, · · · ,WM ; i) = 0, n ∈ {1, · · · , N} (2.11)

Each database responds with an answer string A
[i]
n , which is a deterministic function5

of the received query and the stored coded bits in the nth database. Hence, by the

5We note that the assumption that the answer strings are deterministic functions of the queries
and the stored information is indeed without loss of generality and is kept for the simplicity
of presentation. The converse proof can be extended to the case of allowing the databases to
use randomized strategies. In this case, a common randomness should be shared between the
user and the databases. More specifically, we can assume that there exists a random variable G
that is shared between the user and the databases such that G is independent of (i,W1:M ), and

H(A
[i]
n |Q[i]

n ,yn,G) = 0. This does not change the converse lemmas except for conditioning all
inequalities on G. A similar formulation of this idea can be found in [19].
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data processing inequality,

H(A[i]
n |Q[i]

n ,yn) = H(A[i]
n |Q[i]

n ,W1, · · · ,WM) = 0 (2.12)

In addition, the user should be able to decode Wi reliably from all the answer strings

collected from the N databases with a small probability of error. Consequently, from

Fano’s inequality, we have the following reliability constraint,

H(Wi|A[i]
1 , · · · , A[i]

N , Q
[i]
1 , · · · , Q[i]

N) = o(L) (2.13)

where o(L)
L
→ 0 as L → ∞. The retrieval rate R for the PIR problem is the ratio

of the size of the desired message to the total download cost under the reliability

constraint (2.13) and the privacy constraint (2.10) for some L ∈ N, i.e.,

R =
H(Wi)∑N
n=1 H(A

[i]
n )
, subject to (2.10), (2.13) (2.14)

The PIR capacity C is the supremum of R over all retrieval schemes as L→∞.

In this chapter, as in [12], we follow a Shannon theoretic formulation by as-

suming that the message size can be arbitrarily large. Also, we neglect the upload

cost with respect to the download cost as in [12].

We note that the described storage code is a generalization of the repetition-

coded problem in [12]. If K = 1 and hn = 1, n ∈ {1, · · · , N}, then the problem

reduces to the classical PIR in [12]. In addition, the systematic MDS-coded instance6

6We note that although the code structure presented in [10] is assumed to be systematic,
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presented in [10] is a special case of this setting with hn = en, n ∈ 1, · · · , K, where

en is the nth standard basis vector.

2.3 Main Result

Theorem 2.1 For an (N,K) MDS-coded distributed database system with coding

rate Rc = K
N

and M messages, the PIR capacity is given by

C =
1−Rc

1−RM
c

(2.15)

=
1

1 +Rc + · · ·+RM−1
c

(2.16)

=

(
1 +

K

N
+
K2

N2
+ · · ·+ KM−1

NM−1

)−1

(2.17)

We have the following remarks about the main result. We first note that

the PIR capacity in (2.15) is a function of the coding rate Rc and the number

of messages M only, and does not depend on the explicit structure of the coding

scheme (i.e., the generator matrix) or the number of databases. This observation

implies the universality of the scheme over any MDS-coded database system with

the same coding rate and number of messages. The result also entails the optimality

of separation between distributed storage code design and PIR scheme design for a

fixed Rc. We also note that the capacity C decreases as Rc increases. As Rc → 0,

the PIR capacity approaches C = 1. On the other hand, as Rc → 1, the PIR

capacity approaches 1
M

which is the trivial retrieval rate obtained by downloading

this assumption is indeed without loss of generality. The scheme in [10] is universal and can be
applied for any (N,K) MDS code and was presented for systematic MDS codes for sake of simpler
exposition of the retrieval scheme.
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Figure 2.3: PIR capacity versus Rc.

the contents of all databases. This observation implies that a fundamental tradeoff

exists between storage cost and the retrieval download cost when the storage code

is restricted to the class of MDS codes. This tradeoff conforms with the result of [8].

The capacity expression in Theorem 1 is plotted in Fig. 2.3 as a function of the code

rate Rc for various numbers of messages M .

The capacity in (2.15) is strictly larger than the best-known achievable rate

in [10], where R = 1− Rc for any finite number of messages. We observe also that

the PIR capacity for a given fixed code rate Rc is monotonically decreasing in M .

The rate in (2.15) converges to 1 − Rc as M → ∞. Intuitively, as the number of

messages increases, the undesired download rate must increase to hide the identity

of the desired message; eventually, the gain from applying the greedy algorithm in

Section 2.4 over the scheme in [10] diminishes. This confirms that the achievable
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scheme in [10] is asymptotically optimal. Our capacity here generalizes the capacity

in [12] where Rc = 1
N

. That is, the classical PIR problem may be viewed as a

special case of the MDS-coded PIR problem with a specific code structure which is

repetition coding.

2.4 Achievability Proof

In this section, we present the general achievable scheme for Theorem 2.1. We

give a few specific examples in Section 2.5. Our achievable scheme generalizes the

achievable scheme in [12] which induces symmetry across databases and symmetry

across messages, and exploits the side information. The achievable scheme here

includes two extra steps due to the presence of coding: decoding of the interference

and decoding of the desired rows which are not present in [12].

2.4.1 Achievable Scheme

The scheme requires L̃ = NM , which implies that the size of message H(Wi) = L =

KNM . The scheme is completed in M rounds, each corresponding to the sum of i

terms, i ∈ {1, · · · ,M}, and is repeated K times to decode the desired message; see

Tables 2.2 and 2.3 for examples.

1. Index preparation: The user interleaves the indices of rows for all messages

randomly and independently from each other, i.e., for any message W`,

x
[m]
i = w

[`]
π`(i)

, i ∈ {1, · · · , L̃} (2.18)
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where π`(·) is a random interleaver used for message ` and known privately

to the user only. In this case the rows chosen at any database appear to be

chosen at random and independent from the desired message index.

2. Initialization: The user downloads KM−1 desired coded bits from different

rows of the desired message Wm from database 1 (DB1) and sets round index

i = 1, i.e., the user starts by downloading the symbols hT1 x
[m]
1 , · · · ,hT1 x

[m]

KM−1

from database 1.

3. Symmetry across databases: The user downloads KM−1 desired bits each

from a different row from each database, i.e., the user downloads from

database 2 the symbols hT2 x
[m]

KM−1+1
, · · · ,hT2 x

[m]

2KM−1 , from database 3 the

symbols hT3 x
[m]

2KM−1+1
, · · · ,hT3 x

[m]

3KM−1 , · · · , similarly until the user downloads

hTNx
[m]

(N−1)KM−1+1
, · · · ,hTNx

[m]

NKM−1 from database N . Then, the total number

of desired bits in the ith round is NKM−1.

4. Message symmetry: To satisfy the privacy constraint, the user needs to down-

load an equal amount of coded bits from all other messages. Consequently, the

user downloads
(
M−1
i

)
KM−i(N−K)i−1 bits from each database. The undesired

equation is a sum of i terms picked from the remaining undesired messages.

To be more specific, the user downloads the sum hTn

(
x

[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)

from the rows j1, · · · , ji ∈ {1, · · · , L̃} of messages `1, · · · , `i ∈ {1, · · · ,M} \m

from the nth database. The specification of rows will become clear in step 5.

Hence, the number of undesired equations downloaded in the ith round is

N
(
M−1
i

)
KM−i(N −K)i−1.
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5. Decoding the interference: The main difference of the coded problem from the

uncoded PIR (i.e., repetition-coded counterpart) is that in order to exploit

the undesired coded bits in the form of side information, the interference

needs to be decoded first. Note that we are not interested in decoding the

individual components of each term of the sum, but rather the components

of the aligned sum. To perform this, we group each K undesired equations

to be from the same rows, i.e., the user downloads the same sum from the

rows j1, · · · , ji ∈ {1, · · · , L̃} of messages `1, · · · , `i ∈ {1, · · · ,M} \ m as

hTn mod N

(
x

[`1]
j1

+x
[`2]
j2

+· · ·+x
[`i]
ji

)
, · · · ,hTn+K−1 mod N

(
x

[`1]
j1

+x
[`2]
j2

+· · ·+ x
[`i]
ji

)
.

The rows are chosen in order starting from row 1, and the index of the

row is incremented whenever K symbols from the same row is downloaded.

For example: the user downloads hT1 x
[`]
1 from the undesired message ` from

database 1, then the user downloads hT2 x
[`]
1 from database 2, · · · , until

the user downloads hTKx
[`]
1 from database K. Starting from this point the

user increments the index of the row to 2 and downloads hTK+1x
[`]
2 from

database K + 1, and so on. In this case, we have K linearly independent

equations that can be uniquely solved, and hence the corresponding row of

the interfering messages is decoded due to (2.7). Therefore, this generates

N
(
M−1
i

)
KM−(i+1)(N −K)i−1 side information equations in the form of i term

sums.

6. Exploiting side information: The side information generated in the previous

step can be exploited in the (i + 1)th round within the remaining N − K

41



databases that did not participate in generating them. The side informa-

tion is used in i + 1 term sum that includes the desired message as one

of the terms. Since side information is successfully decoded, it can be

canceled from these equations to leave desired coded bits. Hence, we can

download N
(
M−1
i

)
KM−(i+1)(N − K)i extra desired coded bits. More specifi-

cally, the user downloads the sums hTn1(n)

(
x

[m]
θ1

+x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)
, · · · ,

hTnN−K(n)

(
x

[m]
θN−K

+ x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)
from databases n1(n) = n + K

mod N , · · · , nN−K(n) = n+N − 1 mod N in the (i+ 1)th round, where x
[m]
θl

is the row θl from the desired message Wm, i.e., the user downloads the sum

of the row from the desired message to the side information generated in the

ith round.

7. Repeat steps 4, 5, 6 after setting i = i+ 1 until i = M − 1.

8. Decoding the desired message: Till this point the scheme has downloaded one

bit from each row of the desired message. To reliably decode the desired

message, the scheme (precisely steps 2-7) is repeated K times. We repeat the

scheme exactly except for shifting the order of databases circularly at each

repetition for the desired coded bits. Note that the chosen indices for the

desired message is the same up to circular shift at each repetition, however

we download new undesired coded bits at each repetition. This creates K

different equations for each row of the message and hence decodable.

9. Shuffling the order of queries: Since all databases know the retrieval scheme,

every database can identify the desired message by observing the first query
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only. By shuffling the order of queries uniformly, all possible queries can

be made equally likely regardless of the message index. This guarantees the

privacy.

2.4.2 Decodability, Privacy, and Calculation of the Achievable Rate

Decodability: The decodability follows from the MDS property of the storage code,

which states that in a K×N MDS generator matrix, any K×K submatrix is invert-

ible. To show decodability formally, let Wm be the desired message without loss of

generality. In each repetition, at the ith round, the user downloads
(
M−1
i

)
KM−i(N−

K)i−1 symbols from the undesired messages from every database. These coded

symbols are constructed as the sums of i coded symbols from some rows, i.e., the

user downloads the sum hTn

(
x

[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)
from the rows j1, · · · , ji ∈

{1, · · · , L̃} of messages `1, · · · , `i ∈ {1, · · · ,M}\m from the nth database. The same

sum is downloaded from K different databases, i.e., the user downloads the same

sum from the rows j1, · · · , ji ∈ {1, · · · , L̃} of messages `1, · · · , `i ∈ {1, · · · ,M} \m

as hTn+1 mod N

(
x

[`1]
j1

+x
[`2]
j2

+· · ·+ x
[`i]
ji

)
, · · · ,hTn+K−1 mod N

(
x

[`1]
j1

+x
[`2]
j2

+· · ·+ x
[`i]
ji

)
.

Since the submatrix [hn hn+1 mod N · · · hn+K−1 mod N ] is an invertible matrix

by the MDS property, the sum of rows of x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

is decodable. Note

that there are a total of N
(
M−1
i

)
KM−i(N −K)i−1 of such symbols in the ith round,

therefore N
(
M−1
i

)
KM−i−1(N − K)i−1 rows can be decoded as every K sums must

be derived from the same set of rows.

These rows are used as side information in the (i+1)th round at the remaining
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N−K databases that do not contribute to the process of creating these side informa-

tion. The user downloads from databases n1(n) = n + K mod N, · · · , nN−K(n) =

n + N − 1 mod N the sums hTn1(n)

(
x

[m]
θ1

+x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)
, · · · ,

hTnN−K(n)

(
x

[m]
θN−K

+ x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

)
in the (i + 1)th round, where x

[m]
θl

is

the row θl from the desired message Wm, i.e., the user downloads the sum of rows

from the desired message with the side information generated in the ith round. Since

the user has decoded the sum x
[`1]
j1

+ x
[`2]
j2

+ · · ·+ x
[`i]
ji

, all undesired symbols can be

canceled, and the user is left with the desired symbols only.

Now, for the desired symbols, we note that the user downloads from

different rows within each repetition. Since the scheme repeats itself K

times with the starting database shifted circularly, the user is left with

hTnx
[m]
θ ,hTn+1 mod Nx

[m]
θ , · · · ,hTn+K−1 mod Nx

[m]
θ for θ ∈ {1, · · · , L̃}. This creates K

linearly independent equations for each row from Wm by the MDS property. There-

fore, all rows can be decoded reliably.

Privacy: The scheme downloads all combinations of the sums containing i terms

in the ith round from each database. Therefore, the same number of symbols from

each message is queried from each database (specifically, KNM−1 coded symbols).

Note that due to the fact that the user downloads the symbols (desired/undesired)

from K databases in a circular shift pattern, each row is queried once within the

same database. Thus, the user downloads from KNM−1 distinct rows from each

database from every message. Since the indices of these rows are chosen randomly

and uniformly, and the order of the queries is shuffled randomly and uniformly, the

44



privacy constraint (Q
[i]
n , A

[i]
n ,W1, · · · ,WM) ∼ (Q

[1]
n , A

[1]
n ,W1, · · · ,WM) is satisfied as

all the query realizations are equally likely regardless of the message index i.

Achievable Rate Calculation: In each repetition, at the ith round, the user down-

loads the K coded symbols from N
(
M−1
i

)
KM−i−1(N − K)i−1 different rows of

each message distributed among the N databases. From the described scheme,

we note that other than the initial download of NKM−1 coded desired bits, at

each round the scheme downloads N
(
M−1
i

)
KM−(i+1)(N − K)i desired equations

and N
(
M−1
i

)
KM−i(N − K)i−1 undesired equations. Hence, the total number of

desired equations is KN
∑M−1

i=0

(
M−1
i

)
KM−1−i(N − K)i, and the total number of

undesired equations is KN
∑M−1

i=1

(
M−1
i

)
KM−i(N − K)i−1 along the K repetitions

of the scheme. Therefore, the achievable rate is,

1

R
= 1 +

total undesired equations

total desired equations
(2.19)

= 1 +

∑M−1
i=1

(
M−1
i

)
KM−i(N −K)i−1

∑M−1
i=0

(
M−1
i

)
KM−1−i(N −K)i

(2.20)

= 1 +
K

N−K
∑M−1

i=1

(
M−1
i

)
KM−1−i(N −K)i

NM−1
(2.21)

= 1 +

K
N−K

(∑M−1
i=0

(
M−1
i

)
KM−1−i(N −K)i −KM−1

)

NM−1
(2.22)

= 1 +
K

N−K
(
NM−1 −KM−1

)

NM−1
(2.23)

= 1 +
K

N −K
(
1−RM−1

c

)
(2.24)

=
N −KRM−1

c

N −K (2.25)

=
1−RM

c

1−Rc

(2.26)

45



Hence, R = 1−Rc
1−RMc . Note that if K = 1, our achievable scheme reduces to the one

presented in [12]. We note that our scheme inherits all the properties of the scheme

in [12], in particular, its optimality over any subset of messages.

2.5 Examples

In this section, we give two explicit examples for our scheme. Without loss of

generality, we assume that the desired message is W1.

2.5.1 (5,3) Code with M = 2

Initially, sub-indices of all messages are randomly and independently interleaved.

For this case, we will have M = 2 rounds and then K = 3 repetitions; see Ta-

ble 2.2. We begin round one by downloading KM−1 = 3 coded bits for the desired

message (message W1) from every database, e.g., we download hT1 x
[1]
1 ,h

T
1 x

[1]
2 ,h

T
1 x

[1]
3

from database 1, and similarly for databases 2-5 by database symmetry. By mes-

sage symmetry, we download another 3 coded bits from W2 from each database.

Note that for the undesired message, we group every K = 3 databases to down-

load from the same row, e.g., we download hT1 x
[2]
1 ,h

T
2 x

[2]
1 ,h

T
3 x

[2]
1 from databases 1-3,

hT4 x
[2]
2 ,h

T
5 x

[2]
2 ,h

T
1 x

[2]
2 from databases 4,5,1, and similarly for the remaining databases.

By downloading 3 linearly independent equations for every row, we solve for the in-

terference generated by W2 and create 5 useful side information rows for round two,

which are rows x
[2]
1 to x

[2]
5 from W2.

In round two, we download sums of the coded bits from W1,W2. Since each of

46



the rows x
[2]
1 to x

[2]
5 is decoded from 3 databases, we can exploit these side information

to download further coded bits from W1 in the remaining N−K = 2 databases that

do not participate in decoding this row. For example, we use x
[2]
1 in databases 4,5 by

downloading the sums hT4 (x
[1]
19 + x

[2]
1 ), and hT5 (x

[1]
20 + x

[2]
1 ) and similarly for the rows

x
[2]
2 to x

[2]
5 . This creates extra 10 decodable equations in round two in the form of a

sum of the two messages. At this point symmetry exists across databases and within

messages, and all the interference from the undesired message W2 is decoded and

exploited. However, until this point, we downloaded one equation from every row of

W1. To reliably decode W1, we need to repeat the previous steps a total of K = 3

times by shifting the starting database in a circular pattern, e.g., in repetition 2,

we download new equations for the rows x
[1]
1 ,x

[1]
2 ,x

[1]
3 from database 2 instead of

database 1 in repetition 1, and x
[1]
4 ,x

[1]
5 ,x

[1]
6 from database 3 instead of database 2,

etc. As a final step, we shuffle the order of the queries to preclude the databases

from identifying the message index from the index of the first downloaded bit.

Since we download symmetric amount of W1,W2 from each database and

their indices are randomly chosen, privacy constraint is satisfied. Since vectors

x
[2]
i , i ∈ {1, · · · , 5} are downloaded from K databases, their interference is com-

pletely decoded. Hence, they can be canceled from round two. Finally, we repeat

the scheme 3 times with circular shifts, every desired row is received from K dif-

ferent databases and hence reliably decoded. The explicit query table is shown in

Table 2.2. The retrieval rate in this case is R = 75
120

= 5
8

=
1− 3

5

1−( 3
5

)2 .
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Table 2.2: PIR for code (5,3) and M = 2

DB1 DB2 DB3 DB4 DB5

re
p

et
it

io
n

1

ro
u

n
d

1

hT1 x
[1]
1 hT2 x

[1]
4 hT3 x

[1]
7 hT4 x

[1]
10 hT5 x

[1]
13

hT1 x
[1]
2 hT2 x

[1]
5 hT3 x

[1]
8 hT4 x

[1]
11 hT5 x

[1]
14

hT1 x
[1]
3 hT2 x

[1]
6 hT3 x

[1]
9 hT4 x

[1]
12 hT5 x

[1]
15

hT1 x
[2]
1 hT2 x

[2]
1 hT3 x

[2]
1 hT4 x

[2]
2 hT5 x

[2]
2

hT1 x
[2]
2 hT2 x

[2]
3 hT3 x

[2]
3 hT4 x

[2]
3 hT5 x

[2]
4

hT1 x
[2]
4 hT2 x

[2]
4 hT3 x

[2]
5 hT4 x

[2]
5 hT5 x

[2]
5

ro
u

n
d

2

hT1 (x
[1]
16 + x

[2]
3 ) hT2 (x

[1]
17 + x

[2]
2 ) hT3 (x

[1]
18 + x

[2]
2 ) hT4 (x

[1]
19 + x

[2]
1 ) hT5 (x

[1]
20 + x

[2]
1 )

hT1 (x
[1]
21 + x

[2]
5 ) hT2 (x

[1]
22 + x

[2]
5 ) hT3 (x

[1]
23 + x

[2]
4 ) hT4 (x

[1]
24 + x

[2]
4 ) hT5 (x

[1]
25 + x

[2]
3 )

re
p

et
it

io
n

2

ro
u

n
d

1

hT1 x
[1]
13 hT2 x

[1]
1 hT3 x

[1]
4 hT4 x

[1]
7 hT5 x

[1]
10

hT1 x
[1]
14 hT2 x

[1]
2 hT3 x

[1]
5 hT4 x

[1]
8 hT5 x

[1]
11

hT1 x
[1]
15 hT2 x

[1]
3 hT3 x

[1]
6 hT4 x

[1]
9 hT5 x

[1]
12

hT1 x
[2]
6 hT2 x

[2]
6 hT3 x

[2]
6 hT4 x

[2]
7 hT5 x

[2]
7

hT1 x
[2]
7 hT2 x

[2]
8 hT3 x

[2]
8 hT4 x

[2]
8 hT5 x

[2]
9

hT1 x
[2]
9 hT2 x

[2]
9 hT3 x

[2]
10 hT4 x

[2]
10 hT5 x

[2]
10

ro
u

n
d

2

hT1 (x
[1]
20 + x

[2]
8 ) hT2 (x

[1]
16 + x

[2]
7 ) hT3 (x

[1]
17 + x

[2]
7 ) hT4 (x

[1]
18 + x

[2]
6 ) hT5 (x

[1]
19 + x

[2]
6 )

hT1 (x
[1]
25 + x

[2]
10) hT2 (x

[1]
21 + x

[2]
10) hT3 (x

[1]
22 + x

[2]
9 ) hT4 (x

[1]
23 + x

[2]
9 ) hT5 (x

[1]
24 + x

[2]
8 )

re
p

et
it

io
n

3

ro
u

n
d

1

hT1 x
[1]
10 hT2 x

[1]
13 hT3 x

[1]
1 hT4 x

[1]
4 hT5 x

[1]
7

hT1 x
[1]
11 hT2 x

[1]
14 hT3 x

[1]
2 hT4 x

[1]
5 hT5 x

[1]
8

hT1 x
[1]
12 hT2 x

[1]
15 hT3 x

[1]
3 hT4 x

[1]
6 hT5 x

[1]
9

hT1 x
[2]
11 hT2 x

[2]
11 hT3 x

[2]
11 hT4 x

[2]
12 hT5 x

[2]
12

hT1 x
[2]
12 hT2 x

[2]
13 hT3 x

[2]
13 hT4 x

[2]
13 hT5 x

[2]
14

hT1 x
[2]
14 hT2 x

[2]
14 hT13x

[2]
15 hT4 x

[2]
15 hT5 x

[2]
15

ro
u

n
d

2

hT1 (x
[1]
19 + x

[2]
13) hT2 (x

[1]
20 + x

[2]
12) hT3 (x

[1]
16 + x

[2]
12) hT4 (x

[1]
17 + x

[2]
11) hT5 (x

[1]
18 + x

[2]
11)

hT1 (x
[1]
24 + x

[2]
15) hT2 (x

[1]
25 + x

[2]
15) hT3 (x

[1]
21 + x

[2]
14) hT4 (x

[1]
22 + x

[2]
14) hT5 (x

[1]
23 + x

[2]
13)
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2.5.2 (3,2) Code with M = 3

As in the previous example, the messages are randomly and independently inter-

leaved. For this case, the scheme is completed inM = 3 rounds and then repeated for

K = 2 repetitions, see Table 2.3. In the first round, we download KM−1 = 4 coded

bits for W1 from each database, e.g., hT1 x
[1]
i , i ∈ {1, · · · , 4} from the first database.

Similarly, we download one equation from the rows x
[1]
1 to x

[1]
12 by applying the

database symmetry. We apply message symmetry to download N
(
M−1

1

)
KM−1 = 24

undesired coded bits from W2,W3. Every 2 coded bits from the undesired bits are

grouped together to generate single solved side information vector, e.g., we download

as hT1 x
[2]
1 ,h

T
2 x

[2]
2 from databases 1,2, hT3 x

[2]
2 ,h

T
1 x

[2]
1 from databases 3,1, and similarly

for rows x
[m]
1 to x

[m]
6 where m = 2, 3. Hence, we have N

(
M−1

1

)
KM−2 = 12 side

information rows to be used in round two.

In round two, we download sums of every two messages. We exploit the

generated side information within the N − K = 1 remaining database that does

not participate in generating them. For example, we decoded x
[2]
1 by downloading

equations from databases 1,2, then we use x
[2]
1 in database 3 by downloading the

sum h3(x
[1]
15 +x

[2]
1 ). Hence, we can download N

(
M−1

1

)
KM−2(N−K) = 12 new coded

bits of W1 by using every decoded side information in a sum of W1 with one of W2

or W3. These bits are reliably decoded, since the generated side information can be

canceled from the downloaded equation. It remains to add sums of W2 and W3 to

ensure the privacy. Therefore, we download N
(
M−1

2

)
KM−2(N −K) = 6 undesired

equations, that will be grouped further to form N
(
M−1

2

)
KM−3(N −K) = 3 solved
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side information equations in the form of sums of W2 and W3. As an example,

we download hT1 (x
[2]
7 + x

[3]
7 ),hT2 (x

[2]
7 + x

[3]
7 ) from databases 1,2. In this case the

interference from the rows x
[2]
7 + x

[3]
7 is decoded. Note that we do not solve for the

individual x
[2]
7 or x

[3]
7 but we align them in the same subspace, and solve for their

sum.

In round three, we use the newly generated side information, e.g., x
[2]
7 +x

[3]
7 , to

download extra N
(
M−1

2

)
KM−3(N −K)2 = 3 desired coded bits in the form of sum

of three terms, e.g., hT3 (x
[1]
27 + x

[2]
7 + x

[3]
7 ). Finally, the previous steps are repeated

K = 2 times to reliably decode W1 and the queries are shuffled for privacy. The

retrieval rate in this case is R = 54
114

= 9
19

=
1− 2

3

1−( 2
3

)3 . The explicit query structure is

shown in Table 2.3.

2.6 Converse Proof

In this section, we prove the converse for PIR from MDS-coded databases. The

proof extends the techniques in [12] to the case of MDS-coded databases. The proof

presented here does not use symmetrization arguments or fixing of an individual

query as in the conference version [116], which presents an alternative proof that

provides an alternative perspective.

We need the following lemma which states that in the PIR problem from

(N,K) MDS-coded databases, the answers from any K databases are statistically

independent.

Lemma 2.1 (Independence of answers of any K databases) In the PIR
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Table 2.3: PIR for code (3,2) and M = 3

DB1 DB2 DB3

re
p

et
it

io
n

1

ro
u
n
d

1

hT1 x
[1]
1 hT2 x

[1]
5 hT3 x

[1]
9

hT1 x
[1]
2 hT2 x

[1]
6 hT3 x

[1]
10

hT1 x
[1]
3 hT2 x

[1]
7 hT3 x

[1]
11

hT1 x
[1]
4 hT2 x

[1]
8 hT3 x

[1]
12

hT1 x
[2]
1 hT2 x

[2]
1 hT3 x

[2]
2

hT1 x
[2]
2 hT2 x

[2]
3 hT3 x

[2]
3

hT1 x
[2]
4 hT2 x

[2]
4 hT3 x

[2]
5

hT1 x
[2]
5 hT2 x

[2]
6 hT3 x

[2]
6

hT1 x
[3]
1 hT2 x

[3]
1 hT3 x

[3]
2

hT1 x
[3]
2 hT2 x

[3]
3 hT3 x

[3]
3

hT1 x
[3]
4 hT2 x

[3]
4 hT3 x

[3]
5

hT1 x
[3]
5 hT2 x

[3]
6 hT3 x

[3]
6

ro
u
n
d

2

hT1 (x
[1]
13 + x

[2]
3 ) hT2 (x

[1]
14 + x

[2]
2 ) hT3 (x

[1]
15 + x

[2]
1 )

hT1 (x
[1]
16 + x

[3]
3 ) hT2 (x

[1]
17 + x

[3]
2 ) hT3 (x

[1]
18 + x

[3]
1 )

hT1 (x
[2]
7 + x

[3]
7 ) hT2 (x

[2]
7 + x

[3]
7 ) hT3 (x

[2]
8 + x

[3]
8 )

hT1 (x
[1]
19 + x

[2]
6 ) hT2 (x

[1]
20 + x

[2]
5 ) hT3 (x

[1]
21 + x

[2]
4 )

hT1 (x
[1]
22 + x

[3]
6 ) hT2 (x

[1]
23 + x

[3]
5 ) hT3 (x

[1]
24 + x

[3]
4 )

hT1 (x
[2]
8 + x

[3]
8 ) hT2 (x

[2]
9 + x

[3]
9 ) hT3 (x

[2]
9 + x

[3]
9 )

rd
.

3 hT1 (x
[1]
25 + x

[2]
9 + x

[3]
9 ) hT2 (x

[1]
26 + x

[2]
8 + x

[3]
8 ) hT3 (x

[1]
27 + x

[2]
7 + x

[3]
7 )

re
p

et
it

io
n

2

ro
u
n
d

1

hT1 x
[1]
9 hT2 x

[1]
1 hT3 x

[1]
5

hT1 x
[1]
10 hT2 x

[1]
2 hT3 x

[1]
6

hT1 x
[1]
11 hT2 x

[1]
3 hT3 x

[1]
7

hT1 x
[1]
12 hT2 x

[1]
4 hT3 x

[1]
8

hT1 x
[2]
10 hT2 x

[2]
10 hT3 x

[2]
11

hT1 x
[2]
11 hT2 x

[2]
12 hT3 x

[2]
12

hT1 x
[2]
13 hT2 x

[2]
13 hT3 x

[2]
14

hT1 x
[2]
14 hT2 x

[2]
15 hT3 x

[2]
15

hT1 x
[3]
10 hT2 x

[3]
10 hT3 x

[3]
11

hT1 x
[3]
11 hT2 x

[3]
12 hT3 x

[3]
12

hT1 x
[3]
13 hT2 x

[3]
13 hT3 x

[3]
14

hT1 x
[3]
14 hT2 x

[3]
15 hT3 x

[3]
15

ro
u
n
d

2

hT1 (x
[1]
15 + x

[2]
12) hT2 (x

[1]
13 + x

[2]
11) hT3 (x

[1]
14 + x

[2]
10)

hT1 (x
[1]
18 + x

[3]
12) hT2 (x

[1]
16 + x

[3]
11) hT3 (x

[1]
17 + x

[3]
10)

hT1 (x
[2]
16 + x

[3]
16) hT2 (x

[2]
16 + x

[3]
16) hT3 (x

[2]
17 + x

[3]
17)

hT1 (x
[1]
21 + x

[2]
15) hT2 (x

[1]
19 + x

[2]
14) hT3 (x

[1]
20 + x

[2]
13)

hT1 (x
[1]
24 + x

[3]
15) hT2 (x

[1]
22 + x

[3]
14) hT3 (x

[1]
23 + x

[3]
13)

hT1 (x
[2]
17 + x

[3]
17) hT2 (x

[2]
18 + x

[3]
18) hT3 (x

[2]
18 + x

[3]
18)

rd
.

3 hT1 (x
[1]
27 + x

[2]
18 + x

[3]
18) hT2 (x

[1]
25 + x

[2]
17 + x

[3]
17) hT3 (x

[1]
26 + x

[2]
16 + x

[3]
16)

51



problem from (N,K) MDS-coded databases, for any set K of databases such that

|K| = K,

H(A
[m]
K |Q

[m]
K ) =

∑

n∈K
H(A[m]

n |Q[m]
n ), m ∈ {1, · · · ,M} (2.27)

Furthermore, (2.27) is true if conditioned on any subset of messages WS , i.e.,

H(A
[m]
K |Q

[m]
K ,WS) =

∑

n∈K
H(A[m]

n |Q[m]
n ,WS), m ∈ {1, · · · ,M} (2.28)

Proof: Consider a set of databases K such that |K| = K. We prove first the

statistical independence between the vectors {yn, n ∈ K} where yn represents the

contents of the nth database. The contents of set K of databases can be written as

[yn, n ∈ K] =




W1

...

WM




[hn, n ∈ K] =




W1

...

WM




HK (2.29)

where HK = [hn, n ∈ K] is a FK×Kq matrix. By construction of the distributed

storage code, the matrix HK is an invertible matrix. Using [14, Lemma 1] and the

fact that elements of the messages are chosen independently and uniformly over
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FL̃×Kq , we conclude that

[yn, n ∈ K] =




W1

...

WM




HK ∼




W1

...

WM




(2.30)

where A ∼ B denotes that random variables A and B are identically distributed.

Therefore, the contents of the databases are statistically equivalent to the messages.

Hence, the columns of [yn, n ∈ K] are statistically independent since the elements

of the messages are independent.

Since A
[m]
n , n ∈ K are deterministic functions of (yn, Q

[m]
n ), {A[m]

n : n ∈ K} are

statistically independent as they are deterministic functions of independent random

variables. Therefore, if K = {n1, n2, · · · , nK}

H(A
[m]
K |Q

[m]
K ) =

K∑

i=1

H(A[m]
ni
|A[m]

1:ni−1
, Q

[m]
K ) (2.31)

=
K∑

i=1

H(A[m]
ni
|Q[m]
K ) (2.32)

=
∑

n∈K
H(A[m]

n |Q[m]
n ) (2.33)

where (2.32) follows from the independence of any K answer strings, (2.33) follows

from the fact that Q
[m]
K → Q

[m]
n → A

[m]
n is a Markov chain. We note that since coding

is applied on individual messages, conditioning on any subset of messages WS with

|WS | = S is equivalent to reducing the problem to storing M − S independent

messages instead of M messages. Hence, the statistical independence argument in
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(2.28) follows as before. �

We use Han’s inequality [47, Theorem 17.6.1] in a similar way to [14].

Lemma 2.2 (Han’s inequality) Let K ⊆ {1, · · · , N}, such that |K| = K. Then,

for any subset of messages WS ,

1(
N
K

)
∑

K:|K|=K
H(A

[m]
K |WS , Q

[m]
1:N) ≥ K

N
H(A

[m]
1:N |WS , Q

[m]
1:N) (2.34)

The following lemma characterizes a lower bound on the interference compo-

nents in A
[1]
1:N that result from the interfering messages W2:M which is represented

by L
R
− L. The following lemma is exactly [12, Lemma 5]. The result does not

change due to the distributed storage code introduced in our problem. We include

the proof of this lemma here for completeness.

Lemma 2.3 (Interference lower bound) The interference from undesired mes-

sages within the answer strings, L
R
− L, is lower bounded by,

L

(
1

R
− 1 +

o(L)

L

)
≥ I(W2:M ;Q

[1]
1:N , A

[1]
1:N |W1) (2.35)

Proof: We start with the right hand side of (2.35),

I(W2:M ;Q
[1]
1:N , A

[1]
1:N |W1) =I(W2:M ;Q

[1]
1:N , A

[1]
1:N ,W1) (2.36)

=I(W2:M ;Q
[1]
1:N , A

[1]
1:N) + I(W2:M ;W1|Q[1]

1:N , A
[1]
1:N) (2.37)

=I(W2:M ;Q
[1]
1:N) + I(W2:M ;A

[1]
1:N |Q

[1]
1:N) + o(L) (2.38)
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=I(W2:M ;A
[1]
1:N |Q

[1]
1:N) + o(L) (2.39)

=H(A
[1]
1:N |Q

[1]
1:N)−H(A

[1]
1:N |Q

[1]
1:N ,W2:M) + o(L) (2.40)

≤
N∑

n=1

H(A[1]
n )−H(W1, A

[1]
1:N |Q

[1]
1:N ,W2:M)

+H(W1|Q[1]
1:N , A

[1]
1:N ,W2:M) + o(L) (2.41)

=
L

R
−H(W1|Q[1]

1:N ,W2:M)−H(A
[1]
1:N |Q

[1]
1:N ,W1:M) + o(L)

(2.42)

=
L

R
− L+ o(L) (2.43)

=L

(
1

R
− 1 +

o(L)

L

)
(2.44)

where (2.36) follows from the independence of messages, (2.38) and (2.42) follow

from the decodability of W1 from (Q
[1]
1:N , A

[1]
1:N), (2.39) follows from the independence

of the queries Q
[1]
1:N and the messages W2:M , (2.41) follows from the fact that condi-

tioning reduces entropy, and (2.43) follows from the fact that the answers A
[1]
1:N are

deterministic functions of (Q
[1]
1:N ,W1:M) and the independence of (W1, Q

[1]
1:N ,W2:M).

�

In the following lemma, we prove an inductive relation for the mutual infor-

mation term on the right hand side of (2.35).

Lemma 2.4 (Induction lemma) We have the following inductive relationship,

I(Wm:M ;Q
[m−1]
1:N , A

[m−1]
1:N |W1:m−1) ≥ K

N
I(Wm+1:M ;Q

[m]
1:N , A

[m]
1:N |W1:m) +

KL
(

1− o(L)
L

)

N

(2.45)
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Proof: We start with the left hand side of (2.45),

I(Wm:M ;Q
[m−1]
1:N , A

[m−1]
1:N |W1:m−1)

≥ 1(
N
K

)
∑

K:|K|=K
I(Wm:M ;Q

[m−1]
K , A

[m−1]
K |W1:m−1) (2.46)

=
1(
N
K

)
∑

K:|K|=K
I(Wm:M ;A

[m−1]
K |W1:m−1, Q

[m−1]
K ) (2.47)

=
1(
N
K

)
∑

K:|K|=K
H(A

[m−1]
K |W1:m−1, Q

[m−1]
K ) (2.48)

=
1(
N
K

)
∑

K:|K|=K

∑

n∈K
H(A[m−1]

n |W1:m−1, Q
[m−1]
n ) (2.49)

=
1(
N
K

)
∑

K:|K|=K

∑

n∈K
H(A[m]

n |W1:m−1, Q
[m]
n ) (2.50)

=
1(
N
K

)
∑

K:|K|=K
H(A

[m]
K |W1:m−1, Q

[m]
K ) (2.51)

≥ 1(
N
K

)
∑

K:|K|=K
H(A

[m]
K |W1:m−1, Q

[m]
1:N) (2.52)

≥ K

N
H(A

[m]
1:N |W1:m−1, Q

[m]
1:N) (2.53)

=
K

N
I(Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m−1) (2.54)

=
K

N

[
I(Wm:M ;Wm, Q

[m]
1:N , A

[m]
1:N |W1:m−1)− o(L)

]
(2.55)

=
K

N

[
I(Wm:M ;Wm|W1:m−1) + I(Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m)− o(L)

]
(2.56)

=
K

N

[
L+ I(Wm+1:M ;Q

[m]
1:N , A

[m]
1:N |W1:m)− o(L)

]
(2.57)

=
K

N
I(Wm+1:M ;Q

[m]
1:N , A

[m]
1:N |W1:m) +

KL
(

1− o(L)
L

)

N
(2.58)

where (2.46) follows from the fact that for every subset K such that |K| = K we

have I(Wm:M ;Q
[m−1]
1:N , A

[m−1]
1:N |W1:m−1) ≥ I(Wm:M ;Q

[m−1]
K , A

[m−1]
K |W1:m−1) by the non-
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negativity of the mutual information, (2.47) follows from the independence of the

messages and the queries, (2.48) follows from the fact that the answers A
[m−1]
K are

deterministic functions of (W1:M , Q
[m−1]
K ), (2.49) and (2.51) follow from the inde-

pendence of any K answers as a consequence of Lemma 2.1, (2.50) follows from the

privacy constraint, (2.52) follows from conditioning reduces entropy, (2.53) follows

from Han’s inequality in Lemma 2.2, (2.54) follows from the fact that A
[m]
1:N is a de-

terministic function of (W1:M , Q
[m]
1:N) and the independence of the messages and the

queries, (2.55) follows from the decodability of Wm from (Q
[m]
1:N , A

[m]
1:N), and (2.57)

follows from I(Wm:M ;Wm|W1:m−1) = H(Wm) = L from the independence of the

messages. �

Now, we are ready to complete the converse proof by applying Lemma 2.3 and

Lemma 2.4 successively. We have

L

(
1

R
− 1 +

o(L)

L

)
≥ I(W2:M ;Q

[1]
1:N , A

[1]
1:N |W1) (2.59)

≥ K

N
I(W3:M ;Q

[2]
1:N , A

[2]
1:N |W1:2) +

KL
(

1− o(L)
L

)

N
(2.60)

≥ · · · (2.61)

≥ KM−2

NM−2
I(WM :M ;Q

[M−1]
1:N , A

[M−1]
1:N |W1:M−1)

+

(
K

N
+
K2

N2
+ · · ·+ KM−2

NM−2

)(
1− o(L)

L

)
L (2.62)

≥
(
K

N
+
K2

N2
+ · · ·+ KM−1

NM−1

)(
1− o(L)

L

)
L (2.63)

where (2.59) follows from Lemma 2.3, and (2.60)-(2.63) follow from applying
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Lemma 2.4 successively for M − 1 times. Hence, we have

1

R
≥
(

1 +
K

N
+
K2

N2
+ · · ·+ KM−1

NM−1

)(
1− o(L)

L

)
(2.64)

By taking L→∞, and noting o(L)
L
→ 0, we have

R ≤ 1
∑M−1

i=0

(
K
N

)i (2.65)

=
1∑M−1

i=0 Ri
c

=
1−Rc

1−RM
c

(2.66)

Remark 2.1 In the conference version of this work [116], we presented a different

converse proof. In this remark, we briefly describe this alternative proof for a more

complete and insightful exposition. The converse proof in [116] assumes without loss

of generality that the answer strings are symmetric across messages and databases,

and an individual answer string (e.g., A1) can be the same no matter what the desired

message is. The converse proof is obtained by induction over M . We start the proof

by considering the case of M = 2 messages as a base induction step. In this case,

we derive a lower bound on the interference from W2 to be [116, Lemma 3],

H(A
[1]
1:N |W1,Q) ≥ KL

N
(2.67)

where Q , {Q[m]
n : m ∈ {1, · · · ,M}, n ∈ {1, · · · , N}}. From [116, Lemma 3], we

prove that R ≤ 1
1+K

N

for M = 2, which proves the base induction step. For any M ,

we prove that the remaining uncertainty on the answer strings after conditioning on
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one of the interfering messages is upper bounded by [116, Lemma 4],

H(A
[2]
1:N |W1,Q) ≤ N

K
(NH(A1|Q)− L) (2.68)

Consequently, we obtain an inductive relation for any M as,

NH(A1|Q) ≥
(

1 +
K

N

)
L+

K2

N
H(A1|W1,W2,Q) (2.69)

Using the induction hypothesis,

NH(A1|Q) ≥ L
M−1∑

i=0

(
K

N

)i
(2.70)

and plugging it to the inductive relation concludes the converse proof.

2.7 Conclusions

In this chapter, we considered the private information retrieval (PIR) problem over

MDS-coded and non-colluding databases. We employed information-theoretic ar-

guments to derive the optimal retrieval rate for the desired message for any given

(N,K) storage code. We showed that the PIR capacity in this case is given by

C = 1−Rc
1−RMc . The optimal retrieval rate is strictly higher than the best-known achiev-

able scheme in the literature for any finite number of messages. This result reduces

to the capacity of the classical PIR problem, i.e., with repetition-coded databases,

by observing that for repetition coding Rc = 1
N

. Our result shows that the optimal
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retrieval cost is independent of the explicit structure of the storage code, and the

number of databases, but depends only on the code rate Rc and the number of

messages M . Interestingly, the result implies that there is no gain of joint design

of the MDS storage code and the retrieval procedure. The result also establishes

a fundamental tradeoff between the code rate and the PIR capacity for the MDS

codes.
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CHAPTER 3

Multi-Message Private Information Retrieval

3.1 Introduction

In this chapter, we consider the problem of multi-message private information re-

trieval (MPIR) from N non-communicating replicated databases. In MPIR, the user

is interested in retrieving P messages out of M stored messages without leaking the

identity of the retrieved messages. The information-theoretic sum capacity of MPIR

CP
s is the maximum number of desired message symbols that can be retrieved pri-

vately per downloaded symbol, where the symbols are defined over the same field.

For the case P ≥ M
2

, we determine the exact sum capacity of MPIR as CP
s = 1

1+M−P
PN

.

The achievable scheme in this case is based on downloading MDS-coded mixtures of

all messages. For P ≤ M
2

, we develop lower and upper bounds for all M,P,N . These

bounds match if the total number of messages M is an integer multiple of the number

of desired messages P , i.e., M
P
∈ N. In this case, CP

s =
(
1 + 1

N
+ · · ·+ 1

NM/P−1

)−1
,

i.e., CP
s =

1− 1
N

1−( 1
N

)M/P
for N > 1, and CP

s = P
M

for N = 1. The achievable scheme

in this case generalizes the single-message capacity achieving scheme to have unbal-

anced number of stages per round of download. For all the remaining cases, the
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difference between the lower and upper bound is at most 0.0082, which occurs for

M = 5, P = 2, N = 2. Our results indicate that joint retrieval of desired messages

is more efficient than successive use of single-message retrieval schemes even after

considering the free savings that result from downloading undesired symbols in each

single-message retrieval round.

3.2 Problem Formulation

Consider a classical PIR setting storing M messages (or files). Each message is a

vector Wi ∈ FLq , i ∈ {1, · · · ,M}, whose elements are picked uniformly and indepen-

dently from sufficiently large field1 Fq. Denote the contents of message Wm by the

vector [wm(1), wm(2), · · · , wm(L)]T . The messages are independent and identically

distributed, and thus,

H(Wi) = L, i ∈ {1, · · · ,M} (3.1)

H (W1:M) = ML (3.2)

where L is measured in q-ary bits, W1:M = (W1,W2, · · · ,WM). The messages are

stored in N non-colluding (non-communicating) databases. Each database stores an

identical copy of all M messages, i.e., the databases encode the messages via (N, 1)

repetition storage code [117].

In the MPIR problem (see Fig. 3.1), the user aims to retrieve a subset of mes-

1We note that using q = min {pm ≥ M : p is a prime,m ∈ N} is sufficient to ensure the
existence of the P ×M MDS generator matrix in Section 4. Furthermore, binary field suffices for
the achievable scheme in Section 5.
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Figure 3.1: The multi-message PIR problem (MPIR).

sages indexed by the index set P = {i1, · · · , iP} ⊆ {1, · · · ,M} out of the available

messages, where |P| = P , without leaking the identity of the subset P . We assume

that the cardinality of the potential message set, P , is known to all databases. To

retrieve WP = (Wi1 ,Wi2 , · · · ,WiP ), the user generates a query Q
[P]
n and sends it to

the nth database. The user does not have any knowledge about the messages in

advance, hence the messages and the queries are statistically independent,

I
(
W1,· · · ,WM ;Q

[P]
1 ,· · · ,Q[P]

N

)
= I

(
W1:M ;Q

[P]
1:N

)
=0 (3.3)

The privacy is satisfied by ensuring statistical independence between the queries
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and the message index set P = {i1, · · · , iP}, i.e., the privacy constraint is given by,

I
(
Q[i1,··· ,iP ]
n ; i1, · · · , iP

)
= I

(
Q[P]
n ;P

)
= 0 (3.4)

for all n ∈ {1, · · · , N}.

The nth database responds with an answer string A
[P]
n , which is a deterministic

function of the queries and the messages, hence

H(A[P]
n |Q[P]

n ,W1:M) = 0 (3.5)

We further note that by the data processing inequality and (3.4),

I
(
A[P]
n ;P

)
= 0, n ∈ {1, · · · , N} (3.6)

In addition, the user should be able to reconstruct the messages WP reliably from

the collected answers from all databases given the knowledge of the queries. Thus,

we write the reliability constraint as,

H(Wi1 , · · · ,WiP |A[P]
1 , · · · , A[P]

N , Q
[P]
1 , · · · , Q[P]

N ) = H
(
WP |A[P]

1:N , Q
[P]
1:N

)
= 0 (3.7)

We denote the retrieval rate of the ith message by Ri, where i ∈ P . The

retrieval rate of the ith message is the ratio between the length of message i and
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the total download cost of the message set P that includes Wi. Hence,

Ri =
H(Wi)

∑N
n=1 H

(
A

[P]
n

) (3.8)

The sum retrieval rate of WP is given by,

P∑

i=1

Ri =
H(WP)

∑N
n=1H

(
A

[P]
n

) =
PL

∑N
n=1H

(
A

[P]
n

) (3.9)

The sum capacity of the MPIR problem is given by

CP
s = sup

P∑

i=1

Ri (3.10)

where the sup is over all private retrieval schemes.

In this chapter, we follow the information-theoretic assumptions of large

enough message size, large enough field size, and ignore the upload cost as in

[8, 12, 14, 117]. A formal treatment of the capacity under message and field size

constraints for P = 1 can be found in [18]. We note that the MPIR problem de-

scribed here reduces to the classical PIR problem when P = 1, whose capacity is

characterized in [12].

3.3 Main Results and Discussions

Our first result is the exact characterization of the sum capacity for the case P ≥ M
2

,

i.e., when the user wishes to privately retrieve at least half of the messages stored
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in the databases.

Theorem 3.1 For the MPIR problem with non-colluding and replicated databases,

if the number of desired messages P is at least half of the number of overall stored

messages M , i.e., if P ≥ M
2

, then the sum capacity is given by,

CP
s =

1

1 + M−P
PN

(3.11)

The achievability proof for Theorem 3.1 is given in Section 3.4, and the con-

verse proof is given in Section 3.6.1. We note that when P = 1, the constraint of

Theorem 3.1 is equivalent to M = 2, and the result in (3.11) reduces to the known

result of [12] for P = 1, M = 2, which is 1
1+ 1

N

. We observe that the sum capacity

in (3.11) is a strictly increasing function of N , and CP
s → 1 as N → ∞. We also

observe that the sum capacity in this regime is a strictly increasing function of P ,

and approaches 1 as2 P →M .

The following corollary compares our result and the rate corresponding to the

repeated use of single-message retrieval scheme [12].

Corollary 3.1 For the MPIR problem with P ≥ M
2

, the repetition of the single-

message retrieval scheme of [12] P times in a row, which achieves a sum rate of,

Rrep
s =

(N − 1)(NM−1 + P − 1)

NM − 1
(3.12)

2Note that in the degenerate case, when P = M , the privacy constraint is trivially satisfied as

H(P) = H(P|Q[P]
n ) = 0 as there is no uncertainty about the identity of the desired messages if

P = M either with or without the knowledge of the queries. Thus, the optimal sum retrieval rate
is 1 which is achieved by downloading all the messages.
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is strictly sub-optimal with respect to the exact capacity in (3.11).

Corollary 3.1 implies that applying Sun-Jafar scheme [12] P times is sub-

optimal, even if the user uses the undesired symbols, which are downloaded as a

byproduct of Sun-Jafar scheme, as a head start in downloading the remaining mes-

sages because in this case the user would achieve Rrep
s < CP

s .

Proof: In order to use the single-message capacity achieving PIR scheme as an

MPIR scheme, the user repeats the single-message achievable scheme for each in-

dividual message that belongs to P . We note that at each repetition, the scheme

downloads extra decodable symbols from other messages. By this argument, the

following rate Rrep
s is achievable using a repetition of the single-message scheme,

Rrep
s = C + ∆(M,P,N) (3.13)

where C is the single-message capacity which is given by C =
1− 1

N

1−( 1
N

)M
[12], and

∆(M,P,N) is the rate of the extra decodable symbols that belong to P . To calcu-

late ∆(M,P,N), we note that the total download cost D is given by D = L
C

by def-

inition. Since L = NM in the single-message scheme, D =
NM (1−( 1

N
)M )

1− 1
N

= NM+1−N
N−1

.

The single-message scheme downloads one symbol from every message from every

database, i.e., the scheme downloads extra (P − 1)N symbols from the remaining

desired messages that belong to P , thus,

∆(M,P,N) =
(P − 1)N(N − 1)

NM+1 −N =
(P − 1)(N − 1)

NM − 1
(3.14)
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Using this in (3.13) gives the Rrep
s expression in (3.12).

Now, the difference between the capacity in (3.11) and achievable rate in (3.12)

is,

CP
s −Rrep

s =
PN

P (N − 1) +M
− (N − 1)(NM−1 + P − 1)

NM − 1
(3.15)

=
η(P,M,N)

(NM − 1)(P (N − 1) +M)
(3.16)

It suffices to prove that η(P,M,N) ≥ 0 for all P , M , N when P ≥ M
2

and N ≥ 2.

Note,

η(P,M,N) =(2P −M)NM + (M − P )NM−1 − P (P − 1)N2

+ ((P − 1)(2P −M)− P )N+(M − P )(P − 1) (3.17)

In the regime P ≥ M
2

, coefficients of NM , NM−1, N0 are non-negative. Denote the

negative terms in η(·) by ν(P,N) which is ν(P,N) = P (P − 1)N2 + PN . We note

ν(P,N) < P 2N2 when N > 1, which is the case here. Thus,

η(P,M,N) ≥(2P−M)NM+(M−P )NM−1+(P−1)(2P−M)N

+ (M − P )(P − 1)− P 2N2 (3.18)

>(2P −M)NM + (M − P )NM−1 − P 2N2 (3.19)

=N2
(
(2P −M)NM−2 + (M − P )NM−3 − P 2

)
(3.20)

≥N2
(
(2P −M)2M−2 + (M − P )2M−3 − P 2

)
(3.21)
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=N2
(
2M−3(3P −M)− P 2

)
(3.22)

≥N2

(
2M−3 · M

2
−M2

)
(3.23)

=MN2
(
2M−4 −M

)
(3.24)

where (3.21) follows from the fact that (2P −M)NM−2 + (M − P )NM−3 − P 2 is

monotone increasing in N ≥ 2 for M ≥ 3, and (3.23) follows from M
2
≤ P ≤ M .

From (3.24), we conclude that η(M,P,N) > 0 for all M ≥ 7, P ≥ M
2

and N ≥ 2.

Examining the expression in (3.17) for the remaining cases manually, i.e., when M ≤

6, we note that η(M,P,N) > 0 in these cases as well. Therefore, η(M,P,N) > 0 for

all possible cases, and the MPIR capacity is strictly larger than the rate achieved

by repeating the optimum single-message PIR scheme. �

For the example in the introduction, where M = 3, P = 2, N = 2, our MPIR

scheme achieves a sum capacity of 4
5

in (3.11), which is strictly larger than the

repeating-based achievable sum rate of 5
7

in (3.12).

The following corollary gives an achievable rate region for the MPIR problem.

Corollary 3.2 For the MPIR problem, for the case P ≥ M
2

, the following rate

region is achievable,

C = conv {(C, δ, · · · , δ), (δ, C, · · · , δ), · · · , (δ, · · · , δ, C),

(C, 0, 0,· · · ,0), (0, C, 0, · · · , 0),· · · ,(0, 0, · · · , C),

(0, 0, · · · , 0),
(
CP , CP , · · · , CP

)}
(3.25)

69



where

C =
1− 1

N

1− ( 1
N

)M
,

CP =
CP
s

P
=

N

PN + (M − P )
,

δ =
∆(M,P,N)

P − 1
=

N − 1

NM − 1
(3.26)

and where conv denotes the convex hull, and all corner points lie in the P -

dimensional space.

Proof: This is a direct consequence of Theorem 3.1 and Corollary 3.1. The corner

point
(
C, ∆(M,P,N)

P−1
, ∆(M,P,N)

P−1
, · · · , ∆(M,P,N)

P−1

)
=
(

1− 1
N

1−( 1
N

)M
, N−1
NM−1

, N−1
NM−1

, · · · , N−1
NM−1

)

is achievable from the single-message achievable scheme. Due to the symmetry

of the problem any other permutation for the coordinates of this corner point

is also achievable by changing the roles of the desired messages. Theorem 3.1

gives the symmetric sum capacity corner point for the case of P ≥ M
2

, namely

(
CPs
P
, C

P
s

P
, · · · , CPs

P

)
=
(

N
PN+(M−P )

, N
PN+(M−P )

, · · · , N
PN+(M−P )

)
. By time sharing of

these corner points along with the origin, the region in (3.25) is achievable. �

As an example for this achievable region, consider again the example in the

introduction, where M = 3, P = 2, N = 2. In this case, we have a two-dimensional

rate region with three corner points: (4
7
, 1

7
), which corresponds to the single-message

capacity achieving point that aims at retrieving W1; (1
7
, 4

7
), which corresponds to

single-message capacity achieving point that aims at retrieving W2; and (2
5
, 2

5
), which

corresponds to the symmetric sum capacity point. The convex hull of these corner
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Figure 3.2: The achievable rate region of M = 3, P = 2, N = 2.

points together with the points on the axes gives the achievable region in Fig. 3.2. We

note that in general, the rate region in Corollary 3.2 is merely an achievable region.

The capacity region that characterizes the exact tradeoff between the retrieval rates

for the P messages remains an open problem despite the optimality of the corner

points. A converse argument is needed to show the optimality of time-sharing (if

the rate region is indeed the capacity region).

For the case P ≤ M
2

, we have the following result, where the lower and upper

bound match if M
P
∈ N.

Theorem 3.2 For the MPIR problem with non-colluding and replicated databases,

when P ≤ M
2

, the sum capacity is lower and upper bounded as,

¯
Rs ≤ CP

s ≤ R̄s (3.27)
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where the upper bound R̄s is given by,

R̄s =
1

1 + 1
N

+ · · ·+ 1

Nb
M
P
c−1

+
(
M
P
− bM

P
c
)

1

Nb
M
P
c

(3.28)

=
1

1−( 1
N

)b
M
P
c

1− 1
N

+
(
M
P
−
⌊
M
P

⌋)
1

NbMP c
(3.29)

For the lower bound, define ri as,

ri =
ej2π(i−1)/P

N1/P − ej2π(i−1)/P
, i = 1, · · · , P (3.30)

where j =
√
−1, and denote γi, i = 1, · · · , P , to be the solutions of the linear

equations
∑P

i=1 γir
−P
i = (N − 1)M−P , and

∑P
i=1 γir

−k
i = 0, k = 1, · · · , P − 1, then

¯
Rs is given by,

¯
Rs =

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M
−
(

1 + 1
ri

)M−P]

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M
− 1

] (3.31)

The achievability lower bound in Theorem 3.2 is shown in Section 3.5 and the

upper bound is derived in Section 3.6.2. The following corollary states that the

bounds in Theorem 3.2 match if the total number of messages is an integer multiple

of the number of desired messages.

Corollary 3.3 For the MPIR problem with non-colluding and replicated databases,
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if M
P

is an integer, then the bounds in (3.27) match, and hence, for3 N > 1

CP
s =

1− 1
N

1− ( 1
N

)
M
P

,
M

P
∈ N, (3.32)

Proof: For the upper bound, observe that if M
P
∈ N, then M

P
=
⌊
M
P

⌋
. Hence, (3.28)

becomes

R̄s =
1− 1

N

1− ( 1
N

)
M
P

(3.33)

For the lower bound, consider the case M
P
∈ N. From (3.30),

(
1 +

1

ri

)M
=

(
N1/P

ej2π(i−1)/P

)M
= N

M
P (3.34)

since ej2π(i−1)M/P = 1 for M
P
∈ N. Similarly,

(
1 + 1

ri

)M−P
= N

M
P
−1. Hence, if

M
P
∈ N,

¯
Rs =

∑P
i=1 γir

M−P
i

[
N

M
P −N M

P
−1
]

∑P
i=1 γir

M−P
i

[
N

M
P − 1

] (3.35)

=
N

M
P −N M

P
−1

N
M
P − 1

(3.36)

=
1− 1

N

1− ( 1
N

)
M
P

(3.37)

Thus,
¯
Rs = CP

s = R̄s if M
P
∈ N, and we have an exact capacity result in this case.

�
3If N = 1, the optimal retrieval scheme is to download the contents of the database, hence

CPs = P
M .
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Sun-Jafar [8]

M

CP
s = 1

1+M−P
PN

P

P =
M
2

P
=
M

CP
s =

1− 1
N

1−( 1
N )M/P , if M

P ∈ N

P = 1

Figure 3.3: Summary of the state of the results.

Examining the result, we observe that when the total number of messages

is an integer multiple of the number of desired messages, the sum capacity of the

MPIR is the same as the capacity of the single-message PIR with the number of

messages equal to M
P

. Note that, although at first the result may seem as if every

P messages can be lumped together as a single message, and the achievable scheme

in [12] can be used, this is not the case. The reason for this is that, we need to

ensure the privacy constraint for every subset of messages of size4 P . That is why,

in this chapter, we develop a new achievable scheme.

4We note that this is similar to the TPIR problem when N
T ∈ N, in which case one cannot

simply lump every T databases together and apply the capacity-achieving scheme of PIR with
non-colluding databases for the new system that consists of N

T databases. In both problems, the
use of MDS codes is important to induce symmetry across the group of messages/databases.
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Figure 3.4: Deviation of the achievable sum rate from the upper bound.

The state of the results is summarized in Fig. 3.3: Consider the (M,P ) plane,

where naturally M ≥ P . The valid part of the plane is divided into two regions.

The first region is confined between the lines P = M
2

and P = M ; the sum capacity

in this region is exactly characterized (Theorem 3.1). The second region is confined

between the lines P = 1 and P = M
2

; the sum capacity in this region is characterized

only for the cases when M
P
∈ N (Corollary 3.3). The line P = 1 corresponds to the

previously known result for the single-message PIR [12]. The exact capacity for

the rest of the cases is still an open problem; however, the achievable scheme in
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Figure 3.5: Effect of changing M for fixed P = 5, 6, 10 and fixed N = 2.

Theorem 3.2 yields near-optimal sum rates for all the remaining cases with the

largest difference of 0.0082 from the upper bound, as discussed next.

Fig. 3.4 shows the difference of the achievable rate
¯
Rs and the upper bound

R̄s in Theorem 3.2, i.e., R̄s −
¯
Rs. The figure shows that the difference decreases as

N increases. This difference in all cases is small and is upper bounded by 0.0082,

which occurs when M = 5, P = 2, N = 2. In addition, the difference is zero for the

cases P ≥ M
2

(Theorem 3.1) or M
P
∈ N (Corollary 3.3).

Fig. 3.5 shows the effect of changing M for fixed (P,N). We observe that as

M increases, the sum rate monotonically decreases and has a limit of5 1 − 1
N

. In

addition, Fig. 3.6 shows the effect of changing N for fixed (P,M). We observe that

as N increases, the sum rate increases and approaches 1, as expected.

5Although it seems at first that CPs → 1 − 1
N if M → ∞, we emphasize that this is true

if only P = o(M), i.e., P does not scale with M . If P = γM , then as M → ∞, we have

CPs = 1
1+ 1−γ

γN

> 1− 1
N , when γ > 1

2 , and CPs =
1− 1

N

1−( 1
N )1/γ

> 1− 1
N , when 1

γ ≥ 2 ∈ N.
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Figure 3.6: Effect of changing N for fixed (M,P ) = (5, 2), (10, 5), (20, 3).

3.4 Achievability Proof for the Case P ≥ M
2

In this section, we present the general achievable scheme that attains the upper

bound for the case P ≥ M
2

. The scheme applies the concepts of message symmetry,

database symmetry, and exploiting side information as in [12]. However, our scheme

requires the extra ingredient of MDS coding of the desired symbols and the side

information in its second stage. We note also that, here, by message symmetry,

we mean symmetry across group of messages of size P , which is realized by MDS

coding.
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3.4.1 Motivating Example: M = 3, P = 2 Messages, N = 2

Databases

We start with a simple motivating example in this sub-section. The scheme operates

over message size N2 = 4. For sake of clarity, we assume that the three messages

after interleaving their indices are W1 = (a1, · · · , a4)T , W2 = (b1, · · · , b4)T , and

W3 = (c1, · · · , c4)T . We use G2×3 Reed-Solomon generator matrix over F3 as

G2×3 =




1 1 1

1 2 0


 (3.38)

The user picks a random permutation for the columns of G2×3 from the 6 possible

permutations, e.g., in this example we use the permutation 2, 1, 3. In the first round,

the user starts by downloading one symbol from each database and each message,

i.e., the user downloads (a1, b1, c1) from the first database, and (a2, b2, c2) from the

second database. In the second round, the user encodes the side information from

database 2 which is c2 with two new symbols from W1,W2 which are (a3, b3) using the

permuted generator matrix, i.e., the user downloads two equations from database 1

in the second round,

GS1




a3

b3

c2




=




1 1 1

1 2 0







0 1 0

1 0 0

0 0 1







a3

b3

c2




=



a3 + b3 + c2

2a3 + b3


 (3.39)
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The user repeats this operation for the second database with (a4, b4) as desired

symbols and c1 as the side information from the first database.

For the decodability: The user subtracts out c2 from round two in the first

database, then the user can decode (a3, b3) from a3 + b3 and 2a3 + b3. Similarly,

by subtracting out c1 from round two in the second database, the user can decode

(a4, b4) from a4 + b4 and 2a4 + b4.

For the privacy: Single bit retrievals of (a1, b1, c1) and (a2, b2, c2) from the

two databases in the first round satisfy message symmetry and database symmetry,

and do not leak any information. In addition, due to the private shuffling of bit

indices, the different coefficients of 1, 2 and 0 in front of the bits in the MDS-coded

summations in the second round do not leak any information either; see a formal

proof in Section 3.4.3. To see the privacy constraint intuitively from another angle,

we note that the user can alter the queries for the second database when the queries

for the first database are fixed, when the user wishes to retrieve another set of two

messages. For instance, if the user wishes to retrieve (W1,W3) instead of (W1,W2),

it can alter the queries for the second database by changing every c2 in the queries

of the second database with c3, c1 with c4, b2 with b3, and b4 with b1.

The query table for this case is shown in Table 3.1 below. The scheme retrieves

a1, · · · , a4 and b1, · · · , b4, i.e., 8 bits in 10 downloads (5 from each database). Thus,

the achievable sum rate for this scheme is 8
10

= 4
5

= 1
1+M−P

PN

. If we use the single-

message optimal scheme in [12], which is given in [12, Example 4.3] for this specific

case, twice in a row to retrieve two messages, we achieve a sum rate of 20
28

= 5
7
< 4

5

as discussed in the introduction.
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Table 3.1: The query table for the case M = 3, P = 2, N = 2.

Database 1 Database 2
a1, b1, c1 a2, b2, c2

a3 + b3 + c2 a4 + b4 + c1

2a3 + b3 2a4 + b4

3.4.2 General Achievable Scheme

The scheme requires L = N2, and is completed in two rounds. The main ingredient

of the scheme is the MDS coding of the desired symbols and side information in the

second round. The details of the scheme are as follows.

1. Index preparation: The user interleaves the contents of each message randomly

and independently from the remaining messages using a random interleaver

πm(.) which is known privately to the user only, i.e.,

xm(i) = wm(πm(i)), i ∈ {1, · · · , L} (3.40)

where Xm = [xm(1), · · · , xm(L)]T is the interleaved message. Thus, the down-

loaded symbol xm(i) at any database appears to be chosen at random and

independent from the desired message subset P .

2. Round one: As in [12], the user downloads one symbol from every message from

every database, i.e., the user downloads (x1(n), x2(n), · · · , xM(n)) from the nth

database. This implements message symmetry, symmetry across databases,

and satisfies the privacy constraint.

3. Round two: The user downloads a coded mixture of new symbols from
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the desired messages and the undesired symbols downloaded from the other

databases. Specifically,

(a) The user picks an MDS generator matrix G ∈ FP×Mq , which has the

property that every P × P submatrix is full-rank. This implies that

if the user can cancel out any M − P symbols from the mixture, the

remaining symbols can be decoded. One explicit MDS generator matrix

is the Reed-Solomon generator matrix over Fq, where q > M , [118, 119].

The matrix is constructed by choosing M distinct elements of Fq. Let us

denote these elements by {θ1, θ2, · · · , θM}. Then,

G =




1 1 1 · · · 1

θ1 θ2 θ3 · · · θM

θ2
1 θ2

2 32 · · · θ2
M

...
...

...
...

...

θP−1
1 θP−1

2 θP−1
3 · · · θP−1

M



P×M

(3.41)

(b) The user picks uniformly and independently at random the permutation

matrices S1,S2, · · · ,SN−1 of size M × M . These matrices shuffle the

order of the columns of G to be independent of P .

(c) At the first database, the user downloads an MDS-coded version of P

new symbols from the desired set P and M − P undesired symbols that

are already decoded from the second database in the first round, i.e., the
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user downloads P equations of the form

GS1[xi1(N+1) xi2(N+1) · · · xiP (N+1) xj1(2) xj2(2) · · · xjM−P (2)]T

(3.42)

where P = {i1, i2, · · · , iP} are the indices of the desired messages and

P̄ = {j1, j2, · · · , jM−P} are the indices of the undesired messages. In

this case, the user can cancel out the undesired messages and be left

with a P × P invertible system of equations that it can solve to get

[xi1(N + 1), xi2(N + 1), · · · , xiP (N + 1)]. This implements exploiting side

information as in [12].

(d) The user repeats the last step for each set of side information from

database 3 to database N , each with different permutation matrix.

(e) By database symmetry, the user repeats all steps of round two at all other

databases.

3.4.3 Decodability, Privacy, and Calculation of the Achievable Rate

Now, we verify that this achievable scheme satisfies the reliability and privacy con-

straints.

For the reliability: The user gets individual symbols from all databases in the

first round, and hence they are all decodable by definition. In the second round,

the user can subtract out all the undesired message symbols using the undesired

symbols downloaded from all other databases during the first round. Consequently,
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the user is left with a P ×P system of equations which is guaranteed to be invertible

by the MDS property, hence all symbols that belong to WP are decodable.

For the privacy: At each database, for every message subset P of size P , the

achievable scheme retrieves randomly interleaved symbols which are encoded by the

following matrix:

HP =




IP 0P 0P · · · 0P

0P G1
P 0P · · · 0P

0P 0P G2
P · · · 0P

...
...

...
...

...

0P 0P 0P · · · GN−1
P




(3.43)

where Gn
P = GSn(:,P) are the columns of the encoding matrix that correspond

to the message subset P after applying the random permutation Sn. Since the

permutation matrices are chosen uniformly and independently from each other, the

probability distribution of HP is uniform irrespective to P (the probability of realiz-

ing such a matrix is
(

(M−P )!
M !

)N−1

). Furthermore, the symbols are chosen randomly

and uniformly by applying the random interleaver. Hence, the retrieval scheme is

private.

To calculate the achievable rate: We note that at each database, the user

downloads M individual symbols in the first round that includes P desired symbols.

The user exploits the side information from the remaining (N − 1) databases to

generate P equations for each side information set. Each set of P equations in turn
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generates P desired symbols. Hence, the achievable rate is calculated as,

P∑

i=1

Ri =
total number of desired symbols

total downloaded equations
(3.44)

=
N(P + P (N − 1))

N(M + P (N − 1))
(3.45)

=
PN

(M − P ) + PN
(3.46)

=
1

1 + M−P
PN

(3.47)

3.4.4 Further Examples for the Case P ≥ M
2

In this section, we illustrate our achievable scheme with two more basic examples.

In Section 3.4.1, we considered the case M = 3, P = 2, N = 2. In the next two sub-

sections, we will consider examples with larger M , P (Section 3.4.4.1), and larger

N (Section 3.4.4.2).

3.4.4.1 M = 5 Messages, P = 3 Messages, N = 2 Databases

Let P = {1, 2, 3}, and a to e denote the contents of W1 to W5, respectively. The

achievable scheme is similar to the example in Section 3.4.1. The main difference is

that in this case, we use 5× 5 permutation matrix for S1 and G3×5 Reed-Solomon

generator matrix over F5 as:

G3×5 =




1 1 1 1 1

1 2 3 4 0

1 4 4 1 0




(3.48)
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The query table is shown in Table 3.2 below with the following random permutation

for the columns: 2, 5, 1, 3, 4. The reliability and privacy constraints are satisfied

due to the MDS property that implies that any subset of 3 messages corresponds

to a 3 × 3 invertible submatrix if the remaining symbols are decodable from the

other database. This scheme retrieves a1, · · · , a4, b1, · · · , b4 and c1, · · · , c4, hence

12 bits in 16 downloads (8 from each database). Thus, the achievable sum rate is

12
16

= 3
4

which equals the sum capacity 1
1+M−P

PN

in (3.11). This strictly outperforms

the repetition-based achievable sum rate 18
31

in (3.12).

Table 3.2: The query table for M = 5, P = 3, N = 2.

Database 1 Database 2
a1, b1, c1, d1, e1 a2, b2, c2, d2, e2

a3 + b3 + c3 + d2 + e2 a4 + b4 + c4 + d1 + e1

2a3 + c3 + 3d2 + 4e2 2a4 + c4 + 3d1 + 4e1

4a3 + c3 + 4d2 + e2 4a4 + c4 + 4d1 + e1

3.4.4.2 M = 4 Messages, P = 2 Messages, N = 3 Databases

Next, we give an example with a larger N . Here, the message size is N2 = 9. With

a generator matrix G2×4 = G3×5([1 : 2], [1 : 4]) to be the upper left submatrix

of the previous example and two set of random permutations (corresponding to

S1,S2) as 1, 3, 2, 4, and 4, 1, 3, 2. The query table is shown in Table 3.3 below.

This scheme retrieves a1, · · · , a9 and b1, · · · , b9, hence 18 bits in 24 downloads (8

from each database). Thus, the achievable rate is 18
24

= 3
4

= 1
1+M−P

PN

. This strictly

outperforms the repetition-based achievable scheme sum rate 7
10

in (3.12).
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Table 3.3: The query table for the case M = 4, P = 2, N = 3.

Database 1 Database 2 Database 3
a1, b1, c1, d1 a2, b2, c2, d2 a3, b3, c3, d3

a4 + b4 + c2 + d2 a6 + b6 + c1 + d1 a8 + b8 + c1 + d1

a4 + 3b4 + 2c2 + 4d2 a6 + 3b6 + 2c1 + 4d1 a8 + 3b8 + 2c1 + 4d1

a5 + b5 + c3 + d3 a7 + b7 + c3 + d3 a9 + b9 + c2 + d2

4a5 + b5 + 3c3 + 2d3 4a7 + b7 + 3c3 + 2d3 4a9 + b9 + 3c2 + 2d2

3.5 Achievability Proof for the Case P ≤ M
2

In this section, we describe an achievable scheme for the case P ≤ M
2

. We show that

this scheme is optimal when the total number of messages M is an integer multiple

of the number of desired messages P . The scheme incurs a small loss from the

upper bound for all other cases. The scheme generalizes the ideas in [12]. Different

than [12], our scheme uses unequal number of stages for each round of download.

Interestingly, the number of stages at each round can be thought of as the output of

an all-poles IIR filter. Our scheme reduces to [12] if we let P = 1. In the sequel, we

define the ith round as the download queries that retrieve sum of i different symbols.

We define the stage as a block of queries that exhausts all
(
M
i

)
combinations of the

sum of i symbols in the ith round.

3.5.1 Motivating Example: M = 5, P = 2 Messages, N = 2

Databases

To motivate our achievable scheme, consider the case of retrieving two messages

denoted by letters (a, b) from five stored messages denoted by letters (a, b, c, d, e).

Instead of designing the queries beginning from the top as usual, i.e., beginning by
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downloading individual symbols, we design the scheme backwards starting from the

last round that corresponds to downloading sums of all five messages and trace back

to identify the side information needed at each round from the other database. Our

steps described below can be followed through in the query table in Table 3.4.

Now, let us fix the number of stages in the 5th round to be 1 as in [12] since

N = 2. Round 5 corresponds to downloading the sum of all five messages and

contains one combination of symbols a + b + c + d + e; please see the last line in

Table 3.4. Since we wish to retrieve (a, b), we need one side information equation in

the form of c+ d+ e from earlier rounds. The combination c+ d+ e can be created

directly from round 3 without using round 4. Hence, we suppress round 4, as it does

not create any useful side information in our case, and download one stage from

round 3 to generate one side information equation c+ d+ e.

In round 3, we download sums of 3 messages. Each stage of round 3 consists

of
(

5
3

)
= 10 equations. One of those 10 equations is in the desired c + d + e form,

and the remaining 9 of them have either a or b or both a, b in them. In tabulating

all these 9 combinations, we recognize two categories of side information equations

needed from earlier rounds. The first category corresponds to equations of the form

a+b+(c, d, e), where (c, d, e) means possible choices for the rest of the equation, i.e.,

these equations have both a and b in them and plus one more symbol in the form of

c or d or e. This category requires downloading one stage of individual symbols (i.e.,

an individual c or d or e), that is, one stage of round 1. We note also that one of

the symbols (a, b) should be known as a side information from the second database

in order to solve for the remaining new symbol. The second category corresponds
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to equations of the form a+ (c+d, c+ e, d+ e) and b+ (c+d, c+ e, d+ e), i.e., these

equations have only one of a or b but not both. This category requires two stages of

round 2, as we need different side information equations that contain sum of twos,

e.g., c+ d, c+ e, d+ e.

In round 2, we download sums of 2 messages. Each stage of the second round

contains
(

5
2

)
= 10 equations. In each stage, we need one category of side information

equations, which is a+(c, d, e) and b+(c, d, e). This necessitates two different stages

of individual symbols, i.e., two stages of round 1 for each stage of round 2.

Denoting αi to be the number of stages needed for the ith round, we sum all

the required stages for round 1 to be α1 = 2 · 2 + 1 = 5 stages. Hence, the user

identifies the number stages as α1 = 5, α2 = 2, α3 = 1, α4 = 0, α5 = 1. These can be

observed in the query table in Table 3.4. Note that, we have α1 = 5 stages in round

1 where we download individual bits; then we have α2 = 2 stages in round 2 where

we download sums of two symbols; then we have α3 = 1 stage in round 3 where we

download sums of three symbols; we skip round 4 as α4 = 0; and we have α5 = 1

stage of round 5 where we download sum of all five symbols.

Now, after designing the structure of the queries and the number of stages

needed for each round, we apply the rest of the scheme described in [12]. The user

randomly interleaves the messages as usual. In the first round, the user downloads

one symbol from each message at each database. This is repeated α1 = 5 times

for each database. Hence, the user downloads a1:10, b1:10, c1:10, d1:10, e1:10 from the

two databases. In the second round, the user downloads sums of two messages.

Each stage contains
(

5
2

)
= 10 equations. This is repeated α2 = 2 times. For
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example, in database 1, user exploits c6, d6, e6 to get a12, a13, a14 and c7, d7, e7 to

obtain b11, b12, b13. These are from round 1. Round 2 generates c11 + d11, c12 + e11,

d12 + e12 from stage 1, and c13 + d13, c14 + e13, d14 + e14 from stage 2 as side

information for round 3. In round 3, the user downloads sum of three symbols.

There are
(

5
3

)
= 10 of them. Symbols c10, d10, e10 downloaded from round 1 in

database 2 are used to be summed with mixtures of a + b. The two sets of side

information generated in the second round are exploited in the equations that have

one a or b. Note that for each such equation, one of a or b is new and the other one is

decoded from database 2. Round 3 generates one side information as c19 + d19 + e19

that is used in round 5. This last round includes the sum of all five messages.

Therefore, as seen in Table 3.4, we have retrieved a1, · · · , a34 and b1 · · · , b34,

i.e., 68 bits in a total of 112 downloads (56 from each database). Thus, the achievable

sum rate is 68
112

= 17
28

. This is
¯
Rs in Theorem 3.2, whereas the upper bound R̄s in

Theorem 3.2 is 1
1+ 1

N
+ 1

2N2
= 8

13
. The gap between

¯
Rs and R̄s is equal to 3

364
' 0.0082,

which also is the largest possible gap between
¯
Rs and R̄s over all possible values of

M , P and N .

3.5.2 Calculation of the Number of Stages

The main new ingredient of our scheme in comparison to the scheme in [12] is the

unequal number of stages in each round. In [12], the scheme is completed in M

rounds, and each round contains only 1 stage only when N = 2. To generalize the

ideas in Section 3.5.1 and calculate the number of stages needed per round, we use
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Table 3.4: The query table for the case M = 5, P = 2, N = 2.

Database 1 Database 2

ro
u
n
d

1

stg 1 a1, b1, c1, d1, e1 a6, b6, c6, d6, e6

stg 2 a2, b2, c2, d2, e2 a7, b7, c7, d7, e7

stg 3 a3, b3, c3, d3, e3 a8, b8, c8, d8, e8

stg 4 a4, b4, c4, d4, e4 a9, b9, c9, d9, e9

stg 5 a5, b5, c5, d5, e5 a10, b10, c10, d10, e10

ro
u
n
d

2

st
ag

e
1

a11 + b6 a18 + b1

a12 + c6 a19 + c1

a13 + d6 a20 + d1

a14 + e6 a21 + e1

b11 + c7 b18 + c2

b12 + d7 b19 + d2

b13 + e7 b20 + e2

c11 + d11 c15 + d15

c12 + e11 c16 + e15

d12 + e12 d16 + e16

st
ag

e
2

a6 + b14 a1 + b21

a15 + c8 a22 + c3

a16 + d8 a23 + d3

a17 + e8 a24 + e3

b15 + c9 b22 + c4

b16 + d9 b23 + d4

b17 + e9 b24 + e4

c13 + d13 c17 + d17

c14 + e13 c18 + e17

d14 + e14 d18 + e18

ro
u
n
d

3

st
ag

e
1

a25 + b7 + c10 a2 + b29 + c5

a7 + b25 + d10 a30 + b2 + d5

a26 + b8 + e10 a3 + b30 + e5

a27 + c15 + d15 a31 + c11 + d11

a28 + c16 + e15 a32 + c12 + e11

a29 + d16 + e16 a33 + d12 + e12

b26 + c17 + d17 b31 + c13 + d13

b27 + c18 + e17 b32 + c14 + e13

b28 + d18 + e18 b33 + d14 + e14

c19 + d19 + e19 c20 + d20 + e20

rd
.

5

stg 1 a8 + b34 + c20 + d20 + e20 a34 + b3 + c19 + d19 + e19
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Vandermonde’s identity

(
M

i

)
=

P∑

k=0

(
P

k

)(
M − P
i− k

)
(3.49)

The relation in (3.49) states that any combination of i objects from a group of M

objects must have k objects from a group of size P and i−k objects from a group of

size M −P . In our context, the first group is the subset of the desired messages and

the second group is the subset of the undesired messages. Then, the relation can be

interpreted in our setting as follows: In the ith round, the
(
M
i

)
combinations of all

possible sums of i terms can be sorted into P + 1 categories: The first category (i.e.,

k = 0), contains no terms from the desired messages, the second category contains

1 term from the desired messages and i− 1 terms from the undesired messages, etc.

The relation gives also the number of query subgroups of each category
(
P
k

)
and the

number of queries in each subgroup
(
M−P
i−k
)
.

Let us consider the following concrete example for clarification: Consider that

we have 6 messages denoted by (a, b, c, d, e, f), and the desired group to be retrieved

is (a, b). Consider round 4 that consists of all combinations of sums of 4 symbols.

From Vandermonde’s identity, we know that
(

6
4

)
=
(

2
0

)(
4
4

)
+
(

2
1

)(
4
3

)
+
(

2
2

)(
4
2

)
. Which

means that there are three categories of sums: First category is with only undesired

messages; we have
(

2
0

)
= 1 query subgroup of the form c + d + e + f . The second

category is to have 1 term from the desired group and the remaining are undesired;

we have
(

2
1

)
= 2 query subgroups, one corresponds to a with combinations of 3

terms from c, d, e, f , and the other to b with combinations of 3 terms from c, d, e, f .
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Each query subgroup contains
(

4
3

)
queries, i.e., the first query subgroup is of the

form a + (c + d + e, c + d + f, c + e + f, d + e + f) and the second query subgroup

is of the form b + (c + d + e, c + d + f, c + e + f, d + e + f). Third category is to

have 2 terms from the desired group and 2 terms from the undesired group; we have

(
2
2

)
= 1 query subgroup of this category that takes the form a+ b+(c+d, c+e, · · · ).

The number of queries of this group is
(

4
2

)
corresponding to all combinations of 2

undesired symbols.

Back to the calculation of the number of stages: To be able to cancel the un-

desired symbols from an i-term sum, the user needs to download these undesired

symbols as side information in the previous rounds. Hence, round i requires down-

loading
(
P
1

)
stages in round (i− 1),

(
P
2

)
stages in round (i− 2), etc. Note that these

stages need to be downloaded from the remaining (N − 1) databases. Then, each

database needs to download 1
N−1

(
P
1

)
stages in round (i−1), 1

N−1

(
P
2

)
stages in round

(i− 2), etc.

From this observation, we can trace back the number of stages needed at each

round. Denote αi to be the number of stages in round i. Fix the number of stages in

the last round (round M) to be αM = (N − 1)M−P stages. This choice ensures that

the number of stages in any round is an integer. Note that in round M , the user

downloads a sum of all M messages, this requires side information in the form of the

sum of the undesired M − P messages. Hence, we suppress the rounds M − P + 1

through M − 1 since they do not generate any useful side information. Note that

the side information equations in round M at each database are collected from the

remaining (N − 1) databases. Then, the number of stages in round (M −P ) should
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be (N − 1)M−P−1. Therefore, we write

αM = (N − 1)M−P (3.50)

αM−1 = · · · = αM−P+1 = 0 (3.51)

αM−P =
1

N − 1
αM =

1

N − 1

P∑

i=1

(
P

i

)
αM−P+i (3.52)

Now, in round (M−P ), each stage requires
(
P
1

)
stages from round (M−P−1),

(
P
2

)
stages from round (M −P −2), and so on so forth, and these stages are divided

across (N − 1) databases. Continuing with the same argument, for each round, we

write

αM−P−1 =
1

N−1

(
P

1

)
αM−P =

1

N−1

P∑

i=1

(
P

i

)
αM−P−1+i (3.53)

αM−P−2 =
1

N − 1

(
P

1

)
αM−P−1 +

1

N − 1

(
P

2

)
αM−P

=
1

N − 1

P∑

i=1

(
P

i

)
αM−P−2+i (3.54)

...

αk =
1

N − 1

P∑

i=1

(
P

i

)
αk+i (3.55)

Interestingly, this pattern closely resembles the output of an IIR filter y[n] [54], with

the difference equation,

y[n] =
1

N − 1

P∑

i=1

(
P

i

)
y[n− i] (3.56)
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and with the initial conditions y[−P ] = (N − 1)M−P , y[−P + 1] = · · · = y[−1] = 0.

Note that the only difference between the two seemingly different settings is the

orientation of the time axis. The calculation of the number of stages is obtained

backwards in contrast to the output of this IIR filter. Hence, we can systematically

obtain the number of stages at each round by observing the output of the IIR

filter characterized by (3.56), and mapping it to the number of stages via αk =

y[(M − P )− k].

We note that for the special case P = 1, the number of stages can be obtained

from the first order filter y[n] = 1
N−1

y[n−1]. The output of this filter is y[n] = (N−

1)M−2−n. Then, the number of stages in round k is αk = y[M −1−k] = (N −1)k−1,

which is exactly the number of stages used in [12]; in particular if N = 2, then

αk = 1 for all k.

3.5.3 General Achievable Scheme

1. Index preparation: The user interleaves the contents of each message randomly

and independently from the remaining messages using a random interleaver

πm(.) which is known privately to the user only, i.e.,

xm(i) = wm(πm(i)), i ∈ {1, · · · , L} (3.57)

2. Number of stages: We calculate the number of stages needed in each round.

This can be done systematically by finding the output of the IIR filter char-
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acterized by,

y[n] =
1

N − 1

P∑

i=1

(
P

i

)
y[n− i] (3.58)

with the initial conditions y[−P ] = (N−1)M−P , y[−P +1] = · · · = y[−1] = 0.

The number of stages in round i is αi = y[(M − P ) − i] as discussed in

Section 3.5.2.

3. Initialization: From the first database, the user downloads one symbol from

each message that belongs to the desired message set P . The user sets the

round index to i = 1.

4. Message symmetry: In round i, the user downloads sums of i terms from

different symbols from the first database. To satisfy the privacy constraint,

the user should download an equal amount of symbols from all messages.

Therefore, the user downloads the remaining
(
M−P
i

)
combinations in round i

from the undesired symbol set P̄ . For example: In round 1, the user downloads

one symbol from every undesired message with a total of
(
M−P

1

)
= M−P such

symbols.

5. Repetition of stages: In the first database, the user repeats the operation in

round i according to the number of calculated stages αi. This in total results

in downloading αi
(
M−P
i

)
undesired equations, and αi

((
M
i

)
−
(
M−P
i

))
desired

equations.

6. Symmetry across databases: The user implements symmetry across databases

95



by downloading αi
(
M−P
i

)
new undesired equations, and αi

((
M
i

)
−
(
M−P
i

))
new

desired equations from each database. These undesired equations will be used

as side information in subsequent rounds. For example: In round 1, each

database generates α1(M − P ) undesired equations in the form of individual

symbols. Hence, each database can exploit up to α1(N − 1)(M − P ) side

information equations from other (N − 1) databases.

7. Exploiting side information: Until now, we did not specify how the desired

equations are constructed. Since each stage in round i can be categorized

using Vandermonde’s identity as in the previous section, we form the desired

equations as a sum of the desired symbols and the undesired symbols that can

be decoded from other databases in the former (i−1) rounds. If the user sums

two or more symbols from P , the user downloads one new symbol from one

message only and the remaining symbols from P should be derived from other

databases. Thus, in round (i + 1), the user mixes one symbol of P with the

sum of i undesired symbols from round i. This should be repeated for all
(
P
1

)

desired symbols. Then, the user mixes each sum of 2 desired symbols with the

sum of (i−1) undesired symbols generated in the (i−1)th round. This should

be repeated for all the
(
P
2

)
combinations of the desired symbols, and so on.

8. Repeating steps: Repeat steps 4, 5, 6, 7 by setting i = i+1 until i = M−P−1.

9. Last round: We note that rounds M − P + 1 to M − 1 do not generate useful

side information. Hence, αM−P+1 = · · · = αM−1 = 0. In round M , which

corresponds to summing all M messages, the user mixes P symbols from P
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(only one of them is new and the remaining are previously decoded from the

other (N − 1) databases) and M − P undesired symbol mixture that was

generated in round (M − P ).

10. Shuffling the order of queries: After preparing the query table, the order of

the queries are shuffled uniformly, so that all possible orders of queries are

equally likely regardless of P .

3.5.4 Decodability, Privacy, and Calculation of the Achievable Rate

Now, we verify that the proposed scheme satisfies the reliability and privacy con-

straints.

For the reliability: The scheme is designed to download the exact number of

undesired equations that will be used as side information equation at subsequent

rounds in other databases.6 Hence, each desired symbol at any round is mixed with

a known mixture of symbols that can be decoded from other databases. Note that if

the scheme encounters the case of having a mixture of desired symbols, one of them

only is chosen to be new and the remaining symbols are downloaded previously from

other databases. Thus, the reliability constraint is satisfied by canceling out the side

information.

For the privacy: The randomized mapping of message bits and the random-

ization of the order of queries guarantees privacy as in [12]. It can be checked that

6Check for instance in Table 3.4 that all of the downloads (equations) involving undesired
symbols from database 2 are used in database 1: singles c6, d6, e6, c7, d7, e7, c8, d8, e8, c9, d9, e9,
c10, d10, e10; sums of twos c15 +d15, c16 +e15, d16 +e16, c17 +d17, c18 +e17, d18 +e18; sum of threes
c20 + d20 + e20, all downloaded from database 2 are all used as side information in database 1.
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when we fix the queries for one database, we can adjust the queries for the remain-

ing databases such that the user can decode any P subset of messages. This is true

since all combinations of messages are generated by our scheme.

To calculate the achievable rate: From Vandermonde’s identity
(
M
i

)
=

∑P
p=0

(
P
p

)(
M−P
i−p
)
, round i requires downloading

(
P
p

)
stages in round (i − p). These

stages should be downloaded from the remaining (N−1) databases. Hence, as shown

in the previous section, the number of stages at each round is calculated as the out-

put of an IIR filter whose input-output relation is given in (3.56) with the initial

conditions y[−P ] = (N − 1)M−P , y[−P + 1] = · · · = y[−1] = 0, with the conversion

of time index of the filter to the round index of the schemes as αi = y[(M −P )− i].

These initial conditions imply that the user downloads (N − 1)M−P stages in the

last round that corresponds to downloading the sum of all messages. The (P − 1)

rounds before the last round are suppressed because we only need to form sums of

(M − P ) messages to be used in the last round.

Now, to calculate the number of stages for round i, we first solve for the roots

of the characteristic equation of (3.56) [54],

rP − 1

N − 1

P∑

i=1

(
P

i

)
rP−i = 0 (3.59)

which is equivalent to

rP − rP

N − 1

P∑

i=1

(
P

i

)
r−i = 0 (3.60)
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which further reduces to

rP − rP

N − 1

[(
1 +

1

r

)P
− 1

]
= 0 (3.61)

using the binomial theorem. Simplifying (3.61), we have

NrP − (r + 1)P = 0 (3.62)

By applying the bijective mapping t = N1/P · r
r+1

, (3.62) is equivalent to tP = 1.

The roots for this equation are the normal roots of unity, i.e., tk = ej2π(k−1)/P , k =

1, · · · , P , where j =
√
−1. Hence, the roots of the characteristic equation are given

by,

rk =
tk

N1/P − tk
=

ej2π(k−1)/P

N1/P − ej2π(k−1)/P
, k = 1, · · · , P (3.63)

Thus, the complete response of the IIR filter is given by y[n] =
∑P

i=1 γir
n
i , where γi

are constants that result from solving the initial conditions, i.e., γ = (γ1, · · · , γP )T

is the solution of the system of equations,




r−P1 r−P2 · · · r−PP

r−P+1
1 r−P+1

2 · · · r−P+1
P

...
... · · · ...

r−1
1 r−1

2 · · · r−1
P







γ1

γ2

...

γP




=




(N − 1)M−P

0

...

0




(3.64)
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Now, we are ready to calculate the number of stages αk in round k. Since

αk = y[(M − P )− k] by construction, then

αk =
P∑

i=1

γir
M−P−k
i (3.65)

In round k, the user downloads sums of k symbols. The user repeats this round for

αk stages. Each stage contains all the combinations of any k symbols which there

are
(
M
k

)
of them. Hence, the total download cost D is,

D =
M∑

k=1

(
M

k

)
αk (3.66)

=
M∑

k=1

P∑

i=1

(
M

k

)
γir

M−P−k
i (3.67)

=
P∑

i=1

γir
M−P
i

M∑

k=1

(
M

k

)
r−ki (3.68)

=
P∑

i=1

γir
M−P
i

[(
1 +

1

ri

)M
− 1

]
(3.69)

Considering the undesired equations: in round k, the user downloads all combina-

tions of the (M−P ) undesired messages which there are
(
M−P
k

)
of them. Therefore,

similar to the above calculation, the total number of undesired equations U is,

U =
P∑

i=1

γir
M−P
i

[(
1 +

1

ri

)M−P
− 1

]
(3.70)
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Hence, the achievable rate
¯
Rs is

¯
Rs =

D − U
D

(3.71)

=

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M
−
(

1 + 1
ri

)M−P]

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M
− 1

] (3.72)

which is (3.31) in Theorem 3.2.

3.5.5 Further Examples for the Case P ≤ M
2

In this section, we illustrate our proposed scheme with a few additional basic ex-

amples. In Section 3.5.1, we considered the case M = 5, P = 2, N = 2. In the

next three sub-sections, we consider three more examples. In the example in Sec-

tion 3.5.5.1, the ratio M
P

is exactly equal to 2, thus, both the achievable scheme

here and the achievable scheme in Section 3.4 can be used; we comment about the

differences and advantages of both schemes. In the example in Section 3.5.5.2, we

present the case of a larger N for the example in Section 3.5.1. In the example in

Section 3.5.5.3, we present a case with larger M , P and N .

3.5.5.1 M = 4 Messages, P = 2 Messages, N = 2 Databases

The first step of the achievable scheme is to identify the number of stages needed

for each round of download. The IIR filter in (3.56) that determines the number of
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stages reduces in this case to

y[n] = 2y[n− 1] + y[n− 2] (3.73)

with the initial conditions y[−2] = 1, y[−1] = 0. The number of stages in round k

is αk = y[2− k]. Since M is small, we can calculate the output iteratively without

using the canonical filter output as,

α4 = y[−2] = 1 (3.74)

α3 = y[−1] = 0 (3.75)

α2 = y[0] = 2y[−1] + y[−2] = 1 (3.76)

α1 = y[1] = 2y[0] + y[−1] = 2 (3.77)

Hence, we should download 2 stages of individual symbols (round 1), and 1 stage of

sums of two symbols (round 2). We should suppress the round that retrieves sums

of three symbols (round 3), and have 1 stage of sums of all four symbols (round 4).

The user initializes the scheme by randomly and independently interleaving the

symbols of each message. The query table for this example is shown in Table 3.5. In

round 1, the user downloads individual symbols from all messages at each database.

The user downloads a1, b1, c1, d1 and a2, b2, c2, d2 from database 1, as α1 = 2. This is

repeated for database 2. In round 2, the user downloads sums of two symbols. There

are
(

4
2

)
= 6 such equations. At database 1, the undesired symbols from database 2

in the first round are exploited in some of these sums. These equations are either
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in the form a+ (c, d) or in the form b+ (c, d). This necessitates two sets of different

individual symbols to be downloaded from database 2 in the first round, or otherwise

the symbols are repeated and privacy is compromised. Moreover, we note that the

user downloads a5 + b3 which uses b3 as side information even though W2 is desired;

this is reversed in database 2 to download a1 + b7 with a1 as a side information to

have a symmetric scheme. Round 2 concludes with downloading c5+d5 and c6+d6 at

the two databases, which will be used as side information in the last round. Round

3 is skipped and the user proceeds to round 4 (last round) directly. In round 4, the

user downloads sum of four symbols, and uses the side information downloaded in

round 2 and any decoded symbols for the other desired message. For example, in

database 1, the user downloads a3 + b10 + c6 +d6, hence, the side information c6 +d6

is exploited in this round as well as a3. The user finishes the scheme by shuffling the

order of all queries randomly. The user retrieves a1, · · · , a10 and b1, · · · , b10 privately

in 30 downloads (15 from each database) and achieves a sum rate of 20
30

= 2
3

= 1
1+ 1

N

,

which matches the upper bound in Theorem 3.2. This sum rate outperforms the

repetition-based achievable rate which is 3
5

in (3.12).

We note that this case can be solved using the achievable scheme presented in

Section 3.4 as well since M
P

= 2 in this case. In fact, this is equivalent to the case

considered in Section 3.4.4.2, if the number of databases is reduced from N = 3

to N = 2. Starting from Table 3.3 in Section 3.4.4.2 and removing the downloads

from database 3, we obtain the query table which uses MDS-coded queries shown

in Table 3.6 below. Via the scheme in Table 3.6 below, the user retrieves a1, · · · , a4

and b1, · · · , b4 privately in 12 downloads (6 from each database), therefore achieving
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Table 3.5: The query table for the case M = 4, P = 2, N = 2.

Database 1 Database 2

rd
.

1 stg 1 a1, b1, c1, d1 a3, b3, c3, d3

stg 2 a2, b2, c2, d2 a4, b4, c4, d4

ro
u
n
d

2

st
ag

e
1

a5 + b3 a1 + b7

a6 + c3 a8 + c1

a7 + d3 a9 + d1

b5 + c4 b8 + c2

b6 + d4 b9 + d2

c5 + d5 c6 + d6

rd
.

4

stg 1 a3 + b10 + c6 + d6 a10 + b1 + c5 + d5

the same optimal sum rate of 8
12

= 2
3

= 1
1+ 1

N

.

Table 3.6: Alternative query table for the case M = 4, P = 2, N = 2.

Database 1 Database 2
a1, b1, c1, d1 a2, b2, c2, d2

a3 + b3 + c2 + d2 a4 + b4 + c1 + d1

a3 + 3b3 + 2c2 + 4d2 a4 + 3b4 + 2c1 + 4d1

We presented this case here even though it could be solved using the scheme in

Section 3.4, in order to give an example where the second achievable scheme achieves

the upper bound in Theorem 3.2 and yields a capacity result since M
P

is an integer.

Interestingly, we observe that for all cases where P = M
2

, the two achievable schemes

are both optimal. The two schemes present an interesting trade-off between the

field size and the upload cost: The first achievable scheme in Section 3.4 requires

using an MDS code with field size q ≥ M but the number of queries for each

database is limited to M + P . On the other hand, the second achievable scheme

here in Section 3.5 does not use any coding and can work with the storage field size,

however, the number of queries increase exponentially since the number of stages

for each round is related to an unstable IIR filter.
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3.5.5.2 M = 5 Messages, P = 2 Messages, N = 3 Databases

In this example, we show an explicit query structure for N > 2. In this case the

corresponding difference equation for the IIR filter is

y[n] = y[n− 1] +
1

2
y[n− 2] (3.78)

with the initial conditions y[−1] = 0, y[−2] = (N−1)M−P = 8. Thus, the number of

stages in each round are: α1 = 6, α2 = 4, α3 = 4, α4 = 0, α5 = 8. The query table is

shown in Tables 3.7, 3.8 and 3.9. This scheme retrieves a1, · · · , a126 and b1, · · · , b126

privately in 354 downloads (177 from each database), therefore, achieving a sum

rate of 252
354

= 42
59
< 1

1+ 1
N

+ 1
2N2

= 18
25

. The gap is 12
1475
' 0.0081.

3.5.5.3 M = 7 Messages, P = 3 Messages, N = 3 Databases

Finally, in this section, we consider an example with N = 3 databases and larger

M and P than in previous examples, where we describe the structure and the

calculation of the number of queries without specifying the explicit query table as

it grows quite large. We first calculate the number of stages at each round. The

corresponding IIR filter is

y[n] =
1

2
(3y[n− 1] + 3y[n− 2] + y[n− 3]) (3.79)
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Table 3.7: The query table for the case M = 5, P = 2, N = 3.

Database 1 Database 2 Database 3
ro

u
n
d

1
stg 1 a1, b1, c1, d1, e1 a7, b7, c7, d7, e7 a13, b13, c13, d13, e13

stg 2 a2, b2, c2, d2, e2 a8, b8, c8, d8, e8 a14, b14, c14, d14, e14

stg 3 a3, b3, c3, d3, e3 a9, b9, c9, d9, e9 a15, b15, c15, d15, e15

stg 4 a4, b4, c4, d4, e4 a10, b10, c10, d10, e10 a16, b16, c16, d16, e16

stg 5 a5, b5, c5, d5, e5 a11, b11, c11, d11, e11 a17, b17, c17, d17, e17

stg 6 a6, b6, c6, d6, e6 a12, b12, c12, d12, e12 a18, b18, c18, d18, e18

ro
u
n
d

2

st
ag

e
1

a19 + b7 a33 + b1 a47 + b1

a20 + c7 a34 + c1 a48 + c1

a21 + d7 a35 + d1 a49 + d1

a22 + e7 a36 + e1 a50 + e1

b19 + c8 b33 + c2 b47 + c2

b20 + d8 b34 + d2 b48 + d2

b21 + e8 b35 + e2 b49 + e2

c19 + d19 c27 + d27 c35 + d35

c20 + e19 c28 + e27 c36 + e35

d20 + e20 d28 + e28 d36 + e36

st
ag

e
2

a7 + b22 a1 + b36 a1 + b50

a23 + c9 a37 + c3 a51 + c3

a24 + d9 a38 + d3 a52 + d3

a25 + e9 a39 + e3 a53 + e3

b23 + c10 b37 + c4 b51 + c4

b24 + d10 b38 + d4 b52 + d4

b25 + e10 b39 + e4 b53 + e4

c21 + d21 c29 + d29 c37 + d37

c22 + e21 c30 + e29 c38 + e37

d22 + e22 d30 + e30 d38 + e38

st
ag

e
3

a26 + b13 a40 + b13 a54 + b7

a27 + c13 a41 + c13 a55 + c7

a28 + d13 a42 + d13 a56 + d7

a29 + e13 a43 + e13 a57 + e7

b26 + c14 b40 + c14 b54 + c8

b27 + d14 b41 + d14 b55 + d8

b28 + e14 b42 + e14 b56 + e8

c23 + d23 c31 + d31 c39 + d39

c24 + e23 c32 + e31 c40 + e39

d24 + e24 d32 + e32 d40 + e40
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Table 3.8: The query table for the case M = 5, P = 2, N = 3 (cont.).

Database 1 Database 2 Database 3

ro
u
n
d

2

st
ag

e
4

a13 + b29 a13 + b43 a7 + b57

a30 + c15 a44 + c15 a58 + c9

a31 + d15 a45 + d15 a59 + d9

a32 + e15 a46 + e15 a60 + e9

b30 + c16 b44 + c16 b58 + c10

b31 + d16 b45 + d16 b59 + d10

b32 + e16 b46 + e16 b60 + e10

c25 + d25 c33 + d33 c41 + d41

c26 + e25 c34 + e33 c42 + e41

d26 + e26 d34 + e34 d42 + e42

ro
u
n
d

3

st
ag

e
1

a61 + b8 + c11 a79 + b2 + c5 a97 + b2 + c5

a8 + b61 + d11 a2 + b79 + d5 a2 + b97 + d5

a62 + b9 + e11 a80 + b3 + e5 a98 + b3 + e5

a63 + c27 + d27 a81 + c19 + d19 a99 + c19 + d19

a64 + c28 + e27 a82 + c20 + e19 a100 + c20 + e19

a65 + d28 + e28 a83 + d20 + e20 a101 + d20 + e20

b62 + c29 + d29 b80 + c21 + d21 b98 + c21 + d21

b63 + c30 + e29 b81 + c22 + e21 b99 + c22 + e21

b64 + d30 + e30 b82 + d22 + e22 b100 + d22 + e22

c43 + d43 + e43 c47 + d47 + e47 c51 + d51 + e51

st
ag

e
2

a9 + b65 + c12 a3 + b83 + c6 a3 + b101 + c6

a66 + b10 + d12 a84 + b4 + d6 a102 + b4 + d6

a10 + b66 + e12 a4 + b84 + e6 a4 + b102 + e6

a67 + c31 + d31 a85 + c23 + d23 a103 + c23 + d23

a68 + c32 + e31 a86 + c24 + e23 a104 + c24 + e23

a69 + d32 + e32 a87 + d24 + e24 a105 + d24 + e24

b67 + c33 + d33 b85 + c25 + d25 b103 + c25 + d25

b68 + c34 + e33 b86 + c26 + e25 b104 + c26 + e25

b69 + d34 + e34 b87 + d26 + e26 b105 + d26 + e26

c44 + d44 + e44 c48 + d48 + e48 c52 + d52 + e52

st
ag

e
3

a70 + b14 + c17 a88 + b14 + c17 a106 + b8 + c11

a14 + b70 + d17 a14 + b88 + d17 a8 + b106 + d11

a71 + b15 + e17 a89 + b15 + e17 a107 + b9 + e11

a72 + c35 + d35 a90 + c35 + d35 a108 + c27 + d27

a73 + c36 + e35 a91 + c36 + e35 a109 + c28 + e27

a74 + d36 + e36 a92 + d36 + e36 a110 + d28 + e28

b71 + c37 + d37 b89 + c37 + d37 b107 + c29 + d29

b72 + c38 + e37 b90 + c38 + e37 b108 + c30 + e29

b73 + d38 + e38 b91 + d38 + e38 b109 + d30 + e30

c45 + d45 + e45 c49 + d49 + e49 c53 + d53 + e53
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Table 3.9: The query table for the case M = 5, P = 2, N = 3 (cont.).

Database 1 Database 2 Database 3

ro
u

n
d

3

st
ag

e
4

a15 + b74 + c18 a15 + b92 + c18 a9 + b110 + c12

a75 + b16 + d18 a93 + b16 + d18 a111 + b10 + d12

a16 + b75 + e18 a16 + b93 + e18 a10 + b111 + e12

a76 + c39 + d39 a94 + c39 + d39 a112 + c31 + d31

a77 + c40 + e39 a95 + c40 + e39 a113 + c32 + e31

a78 + d40 + e40 a96 + d40 + e40 a114 + d32 + e32

b76 + c41 + d41 b94 + c41 + d41 b112 + c33 + d33

b77 + c42 + e41 b95 + c42 + e41 b113 + c34 + e33

b78 + d42 + e42 b96 + d42 + e42 b114 + d34 + e34

c46 + d46 + e46 c50 + d50 + e50 c54 + d54 + e54

ro
u

n
d

5

stg 1 a115 + b11 + c47 + d47 + e47 a119 + b5 + c43 + d43 + e43 a123 + b5 + c43 + d43 + e43

stg 2 a11 + b115 + c48 + d48 + e48 a5 + b119 + c44 + d44 + e44 a5 + b123 + c44 + d44 + e44

stg 3 a116 + b12 + c49 + d49 + e49 a120 + b6 + c45 + d45 + e45 a124 + b6 + c45 + d45 + e45

stg 4 a12 + b116 + c50 + d50 + e50 a6 + b120 + c46 + d46 + e46 a6 + b124 + c46 + d46 + e46

stg 5 a117 + b17 + c51 + d51 + e51 a121 + b17 + c51 + d51 + e51 a125 + b11 + c47 + d47 + e47

stg 6 a17 + b117 + c52 + d52 + e52 a17 + b121 + c52 + d52 + e52 a11 + b125 + c48 + d48 + e48

stg 7 a118 + b18 + c53 + d53 + e53 a122 + b18 + c53 + d53 + e53 a126 + b12 + c49 + d49 + e49

stg 8 a18 + b118 + c54 + d54 + e54 a18 + b122 + c54 + d54 + e54 a12 + b126 + c50 + d50 + e50

with the initial conditions y[−3] = (N − 1)M−P = 16, y[−2] = 0, y[−1] = 0. Hence,

the number of stages for each round αk = y[4 − k], k = 1, · · · , 7, are calculated

iteratively as α1 = 67, α2 = 30, α3 = 12, α4 = 8, α5 = 0, α6 = 0, α7 = 16.

In round 1, the user downloads 67 individual symbols from each message and

from each database. Each database can use the side information generated by

the other two databases. Hence, each database has 67 · 2 = 134 side information

equations in the form of single symbols from round 1 to exploit. In round 2, the

user downloads sums of two symbols. Each stage in round 2 requires 3 stages from

round 1, since the user faces with a+(d, e, f, g), b+(d, e, f, g) or c+(d, e, f, g) cases.

Then, round 2 requires 30 · 3 = 90 stages from the generated side information in

round 1, and we are left with 134− 90 = 44 more stages of round 1. Each database

can use the side information stages from the other two databases, i.e., each can use

up to 2 · 30 = 60 stages of side information in the form of sums of two.
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In round 3, the user downloads sums of three symbols, which can be either

of a + b + (d, e, f, g), a + c + (d, e, f, g), b + c + (d, e, f, g), a + (d + e, d + f, · · · ),

and similarly for b, c. Therefore, each stage in round 3 requires 3 stages from round

2, and 3 stages from round 1. This in total requires 12 · 3 = 36 stages from round

1 and 36 stages from round 2, and we will be left with 8 stages from round 1 and

24 stages from round 2. Round 3 generates 2 · 12 = 24 stages of side information

in the form of sums of threes. In round 4, the user downloads sums of 4 symbols,

which can be either a + b + (d + e, d + f, · · · ), and similarly for b + c and a + c,

a + (d + e + f, d + e + g, · · · ) and similarly for b, c, or a + b + c + (d, e, f, g). This

means that for each stage of round 3, the user needs 1 stage of round 1, 3 stages of

round 2, and 3 stages of round 3. This in total requires 8 · 3 = 24 stages from round

2 and 3 and 8 · 1 stages from round 1 and hence, we exhaust all the generated side

information by round 4. Round 4 generates 8 stages of side information in the form

of sums of fours. This will be used in the last round to get 8 · 2 new symbols from

the desired messages.

The achievable sum rate in this case is 3933
5445

= 437
605

< 1
1+ 1

N
+ 1

3N2
= 27

37
. The gap

is 166
22385

' 0.0074.

3.6 Converse Proof

In this section, we derive an upper bound for the MPIR problem7. The derived

upper bound is tight when P ≥ M
2

and when M
P
∈ N. We follow the notations and

7We note that the assumption that Wi ∈ FLq is indeed unnecessary in terms of converse argu-
ments. Consequently, our converse proof is valid for any storage alphabet.

109



simplifications in [12,117], and we define

Q ,
{
Q[P]
n : P ⊆ {1,· · · ,M}, |P| = P, n ∈ {1,· · · ,N}

}
(3.80)

and

A[P]
n1:n2

,
{
A[P]
n1
, A

[P]
n1+1, · · · , A[P]

n2

}
(3.81)

for n1 ≤ n2, n1, n2 ∈ {1, · · · , N}.

Without loss of generality, the following simplifications hold for the MPIR

problem:

1. We can assume that the MPIR scheme is symmetric. Since for every asym-

metric scheme, there exists an equal rate symmetric scheme that can be con-

structed by replicating all permutations of databases and messages.

2. To invoke the privacy constraint, we fix the response of one database to be

the same irrespective of the desired set of messages P , i.e., A
[Pi]
n = An, where

|Pi| = P for every i ∈ {1, 2, · · · , β} for some n ∈ {1, · · · , N}, and β =
(
M
P

)
. No

loss of generality is incurred due to the fact that the queries and the answers

are statistically independent from P . In the sequel, we fix the answer string

of the first database, i.e.,

A
[P]
1 = A1, ∀P (3.82)
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The following lemma is a consequence of the symmetry assumption; its proof

can be found in [12].

Lemma 3.1 (Symmetry [12]) For any WS = {Wi : i ∈ S}

H(A[P]
n |WS ,Q) = H(A

[P]
1 |WS ,Q), n ∈ {1,· · · ,N} (3.83)

H(A1|Q) = H(A[P]
n |Q), n ∈ {1,· · · ,N}, ∀P (3.84)

We construct the converse proof by induction over bM
P
c in a similar way to

[12,117]. The base induction step is obtained for 1 ≤ M
P
≤ 2 (this is the case P ≥ M

2

as it was referred to so far, where the user wants to retrieve at least half of the

messages). We obtain an inductive relation for the case M
P
> 2. The converse proof

extends the proof in [12] for P > 1.

3.6.1 Converse Proof for the Case 1 ≤ M
P ≤ 2

To prove the converse for the case 1 ≤ M
P
≤ 2, we need the following lemma which

gives a lower bound on the interference within an answer string.

Lemma 3.2 (Interference Lower Bound) For the MPIR problem with P ≥ M
2

,

the uncertainty of the interfering messages WP+1:M within the answer string A
[1:P ]
1

is lower bounded as,

H(A
[1:P ]
1 |W1:P ,Q) ≥ (M − P )L

N
(3.85)
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Furthermore, (3.85) is true for any set of desired messages P with |P| = P , i.e.,

H(A
[P]
1 |WP ,Q) ≥ (M − P )L

N
(3.86)

Proof: For clarity of presentation, we assume that P = {1, · · · , P} without loss of

generality. Hence,

(M − P )L = H(WP+1:M) (3.87)

= H(WP+1:M |W1:P ,Q) (3.88)

= H(WP+1:M |W1:P ,Q)−H(WP+1:M |A[M−P+1:M ]
1:N ,W1:P ,Q) (3.89)

= I(WP+1:M ;A
[M−P+1:M ]
1:N |W1:P ,Q) (3.90)

= H(A
[M−P+1:M ]
1:N |W1:P ,Q) (3.91)

≤
N∑

n=1

H(A[M−P+1:M ]
n |W1:P ,Q) (3.92)

= NH(A1|W1:P ,Q) (3.93)

where (3.88) follows from the independence of the messages WP+1:M from the mes-

sages W1:P and the queries as in (3.2) and (3.3); (3.89) follows from the reliability

constraint (3.7), since messages WP+1:M can be decoded correctly from the answer

stringsA
[M−P+1:M ]
1:N if P ≥ M

2
as {P+1, · · · ,M} ⊆ {M−P+1, · · · ,M} in this regime;

(3.91) follows from the fact that the answer strings are deterministic functions of all

messages and queries (Q,W1:M); and (3.93) follows from the independence bound

and Lemma 3.1.
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Consequently, H(A1|W1:P ,Q) ≥ (M−P )L
N

. The proof of the general statement

can be done replacing W1:P by WP , WP+1:M by WP̄ which corresponds to the com-

plement set of messages of WP , and the answer strings A
[M−P+1:M ]
1:N by A

[P∗]
1:N , where

P̄ ⊆ P∗, |P∗| = P . �

Now, we are ready to prove the converse of the case P ≥ M
2

. We use a similar

converse technique to the case of M = 2, P = 1 in [12],

ML = H(W1:M) (3.94)

= H(W1:M |Q) (3.95)

= H(W1:M |Q)−H(W1:M |A[P1]
1:N , A

[P2]
1:N,· · ·,A

[Pβ ]
1:N ,Q) (3.96)

= I(W1:M ;A
[P1]
1:N , A

[P2]
1:N , · · · , A

[Pβ ]
1:N |Q) (3.97)

= H(A
[P1]
1:N , A

[P2]
1:N , · · · , A

[Pβ ]
1:N |Q) (3.98)

= H(A1, A
[P1]
2:N , A

[P2]
2:N , · · · , A

[Pβ ]
2:N |Q) (3.99)

= H(A1,A
[P1]
2:N |Q)+H(A

[P2]
2:N ,· · ·,A

[Pβ ]
2:N |A1, A

[P1]
2:N ,Q) (3.100)

= H(A1, A
[P1]
2:N |Q) +H(A

[P2]
2:N , · · · , A

[Pβ ]
2:N |A1, A

[P1]
2:N ,WP1 ,Q) (3.101)

≤
N∑

n=1

H(A[P1]
n |Q)+H(A

[P2]
2:N ,· · ·,A

[Pβ ]
2:N |A1,WP1 ,Q) (3.102)

=
N∑

n=1

H(A[P1]
n |Q) +H(A

[P2]
1:N , · · · , A

[Pβ ]
1:N |WP1 ,Q)−H(A1|WP1 ,Q) (3.103)

where β =
(
M
P

)
represents the total number of message subsets of size P that can

be constructed from M messages; (3.95) follows from the independence between the

messages and the queries; (3.96) follows from the reliability constraint in (3.7) with

noting that A
[P1]
1:N , A

[P2]
1:N , · · · , A

[Pβ ]
1:N represent all answer strings from all databases
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to every possible subset of messages Pi ⊆ {1, · · · ,M}, i = 1, 2, · · · , β, hence all

messages can be correctly decoded as all possible answer strings are known; (3.98)

follows from the fact that answer strings are deterministic functions of the messages

and the queries; (3.99) follows from simplification (3.82) without loss of generality;

(3.101) follows from the fact that the messages WP = (Wi1 ,Wi2 , · · · ,WiP ) can be

reconstructed from A
[P]
1:N ; and (3.102) is a consequence of the fact that conditioning

does not increase entropy and Lemma 3.1.

Now, every message appears in
(
M−1
P−1

)
different message subsets of size P ,

therefore the answer strings (A
[P2]
1:N , · · · , A

[Pβ ]
1:N ) are sufficient to construct all messages

W1:M irrespective of P1. Therefore,

H(A
[P2]
1:N , · · · , A

[Pβ ]
1:N |WP1 ,Q) = (M − P )L (3.104)

Using this and Lemma 3.2 in (3.103) yields

ML ≤
N∑

n=1

H(A[P1]
n |Q) + (M − P )L− (M − P )L

N
(3.105)

which can be written as,

PL+
(M − P )L

N
≤

N∑

n=1

H(A[P1]
n |Q) (3.106)
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which further can be written as,

(
1 +

M − P
PN

)
PL ≤

N∑

n=1

H(A[P1]
n |Q) (3.107)

which leads to the desired converse result,

P∑

i=1

Ri =
PL

∑N
n=1H

(
A

[P]
n

)

≤ PL
∑N

n=1 H
(
A

[P]
n |Q

)

≤ 1

1 + M−P
PN

(3.108)

3.6.2 Converse Proof for the Case M
P > 2

In the sequel, we derive an inductive relation that can be used in addition to the

base induction step of 1 ≤ M
P
≤ 2 derived in the previous sub-section to obtain an

upper bound for the MPIR problem. The idea we pursue here is similar in spirit

to the one in [12], where the authors developed a base converse step for M = 2

messages, and developed an induction over the number of messages M for the case

M > 2. Here, we have developed a base converse step for 1 ≤ M
P
≤ 2, and now

develop an induction over
⌊
M
P

⌋
for the case M

P
> 2.

The following lemma upper bounds the remaining uncertainty of the answer

strings after knowing a subset of size P of the interference messages.

Lemma 3.3 (Interference Conditioning Lemma) The remaining uncertainty
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in the answer strings A
[P2]
2:N after conditioning on the messages indexed by P1, such

that P1 ∩ P2 = φ, |P1| = |P2| = P is upper bounded by,

H(A
[P2]
2:N |WP1 ,Q) ≤ (N − 1)[NH(A1|Q)− PL] (3.109)

Proof: We begin with

H(A
[P2]
2:N |WP1 ,Q)

≤
N∑

n=2

H(A[P2]
n |WP1 ,Q) (3.110)

≤
N∑

n=2

H(A
[P1]
1:n−1, A

[P2]
n , A

[P1]
n+1:N |WP1 ,Q) (3.111)

=
N∑

n=2

H(A
[P1]
1:n−1, A

[P2]
n , A

[P1]
n+1:N ,WP1 |Q)−H(WP1|Q) (3.112)

=
N∑

n=2

H(A
[P1]
1:n−1, A

[P2]
n , A

[P1]
n+1:N |Q) +H(WP1|A[P1]

1:n−1, A
[P2]
n , A

[P1]
n+1:N)−H(WP1)

(3.113)

≤
N∑

n=2

NH(A1|Q)−H(WP1) (3.114)

= (N − 1)[NH(A1|Q)− PL] (3.115)

where (3.110) follows from the independence bound; (3.111) follows from

the non-negativity of entropy; (3.113) follows from the statistical in-

dependence between the messages and the queries; and (3.114) follows

from the decodability of WP1 given the answer strings (A
[P1]
1:n−1, A

[P2]
n ,

A
[P1]
n+1:N), which is tantamount to the privacy constraint as in the second simpli-
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fication. �

Now, we derive the inductive relation for M
P
> 2. Without loss of generality,

let P1 = {1, · · · , P} and P2 = {P + 1, · · · , 2P}. Then, starting from (3.99), we

write

ML =H(A1, A
[P1]
2:N , A

[P2]
2:N , · · · , A

[Pβ ]
2:N |Q) (3.116)

=H(A1, A
[P1]
2:N |Q)+H(A

[P2]
2:N |A1, A

[P1]
2:N ,Q)

+H(A
[P3]
2:N , · · · , A

[Pβ ]
2:N |A1, A

[P1]
2:N , A

[P2]
2:N ,Q) (3.117)

≤NH(A1|Q) +H(A
[P2]
2:N |A1, A

[P1]
2:N ,W1:P ,Q)

+H(A
[P3]
2:N ,· · ·,A

[Pβ ]
2:N |A1,A

[P1]
2:N ,A

[P2]
2:N ,W1:2P ,Q) (3.118)

≤NH(A1|Q) +H(A
[P2]
2:N |W1:P ,Q) +H(A

[P3]
2:N ,· · ·, A

[Pβ ]
2:N |A1,W1:2P ,Q) (3.119)

=NH(A1|Q) +H(A
[P2]
2:N |W1:P ,Q)−H(A1|W1:2P ,Q)

+H(A
[P3]
1:N ,· · ·, A

[Pβ ]
1:N |W1:2P ,Q) (3.120)

=NH(A1|Q) +H(A
[P2]
2:N |W1:P ,Q)−H(A1|W1:2P ,Q) + (M − 2P )L (3.121)

≤NH(A1|Q) + (N − 1)[NH(A1|Q)− PL]

−H(A1|W1:2P ,Q) + (M − 2P )L (3.122)

where (3.118) follows from the decodability of W1:2P given (A1, A
[P1]
2:N , A

[P2]
2:N ),

the symmetry lemma and the independence bound; (3.119) follows from

the fact that conditioning does not increase entropy. In (3.121), we

note that subsets (P3, · · · ,Pβ) include all messages (W1, · · · ,WM) be-

cause every message appears in
(
M−1
P−1

)
subsets. Hence, H(A

[P3]
1:N , · · · , A

[Pβ ]
1:N |
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W1:2P ,Q) = (M − 2P )L since W2P+1:M is decodable from (A
[P3]
1:N , · · · , A

[Pβ ]
1:N ) after

knowing W1:2P . Finally, (3.122) follows from the interference conditioning lemma.

Consequently, (3.122) can be written as

N2H(A1|Q) ≥ (N + 1)PL+H(A1|W1:2P ,Q) (3.123)

which is equivalent to

NH(A1|Q) ≥
(

1 +
1

N

)
PL+

1

N
H(A1|W1:2P ,Q) (3.124)

Now, (3.124) constructs an inductive relation, since evaluating NH(A1|W1:2P ,Q) is

the same as NH(A1|Q) with (M − 2P ) messages, i.e., the problem of MPIR with

M messages for fixed P is reduced to an MPIR problem with (M − 2P ) messages

for the same fixed P . We note that (3.124) generalizes the inductive relation in [12]

for P = 1.

We can write the induction hypothesis for MPIR with M messages as

NH(A1|Q) ≥PL



bM
P
c−1∑

i=0

1

N i
+

(
M

P
−
⌊
M

P

⌋)
1

NbMP c


 (3.125)

Next, we proceed with proving this relation for M + 1 messages. From the

induction hypothesis, we have

NH(A1|W1:2P ,Q)
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≥ PL



bM−2P+1

P
c−1∑

i=0

1

N i
+

(
M − 2P + 1

P

−
⌊
M − 2P + 1

P

⌋
 1

NbM−2P+1
P c


 (3.126)

= PL



bM+1

P
c−3∑

i=0

1

N i
+

(
M + 1

P
−
⌊
M + 1

P

⌋)
1

NbM+1
P c−2


 (3.127)

substituting this in (3.124),

NH(A1|Q)

≥
(

1 +
1

N

)
PL+

PL

N2



bM+1

P
c−3∑

i=0

1

N i
+


M + 1

P
−
⌊
M + 1

P

⌋
 1

NbM+1
P c−2




(3.128)

= PL



bM+1
P
c−1∑

i=0

1

N i
+

(
M+1

P
−
⌊
M+1

P

⌋)
1

NbM+1
P c


 (3.129)

which concludes the induction argument.

Consequently, the upper bound for the MPIR problem can be obtained as,

P∑

i=1

Ri =
PL

∑N
n=1 H

(
A

[P]
n

) (3.130)

≤ PL

NH(A1|Q)
(3.131)

=
1

∑bM
P
c−1

i=0
1
N i +

(
M
P
−
⌊
M
P

⌋)
1

NbMP c
(3.132)

=

(
1− ( 1

N
)b
M
P
c

1− 1
N

+

(
M

P
−
⌊
M

P

⌋)
1

NbMP c

)−1

(3.133)
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where (3.132) follows from (3.129); and (3.133) follows from evaluating the sum in

(3.132).

3.7 Conclusions

In this chapter, we introduced the multi-message private information retrieval

(MPIR) problem from an information-theoretic perspective. The problem gener-

alizes the PIR problem in [12] which retrieves a single message privately. We deter-

mined the exact sum capacity for this problem when the number of desired messages

is at least half of the number of total stored messages to be CP
s = 1

1+M−P
PN

. We showed

that joint retrieval of the desired messages strictly outperforms repeating the single-

message capacity achieving scheme for each message. Furthermore, we showed that

if the total number of messages is an integer multiple of the number of desired mes-

sages, then the sum capacity is CP
s =

1− 1
N

1−( 1
N

)M/P
, which resembles the single-message

PIR capacity expression when the number of messages is M
P

. For the remaining

cases, we derived lower and upper bounds. We observed numerically that the gap

between the lower and upper bounds decreases monotonically in N , and the worst

case gap is 0.0082 which occurs for the case N = 2 when M = 5, P = 2.

The MPIR problem can be extended in several interesting directions. First, we

recall from earlier remarks in the chapter that the sum capacity for M/P /∈ N is still

an open problem, in addition to characterizing the optimal capacity region. Second,

the MDS-coded MPIR as an extension of [117] is an interesting open problem, as the

contents of the databases are themselves coded via an MDS code in [117]. This is
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a challenging problem, in particular if P ≥ M
2

, because our achievable scheme here

uses a P×M MDS code; it would be interesting to see how the storage MDS code and

the retrieval MDS code would interact. Similar difficulties would exist in the MPIR

problem with colluding databases (extending [14]), robust MPIR problem (extending

[14]), and MPIR problem with Byzantine databases (extending [120]), as all these

problems adopt some version of MDS coding for retrieval purposes. Furthermore,

one can examine whether multiround MPIR enhances the MPIR retrieval rate or

not (extending the case of single-message retrieval in [19]), and study the effects

of limited message size on MPIR (extending [18]). Our converse techniques may

be generalized to be applicable to these scenarios. Some progress in these MPIR

problems has been made recently in [25].
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CHAPTER 4

Private Information Retrieval from Byzantine and Colluding

Databases

4.1 Introduction

In this chapter, we consider the problem of single-round PIR from N replicated

databases, where B databases are outdated (unsynchronized), or even worse, adver-

sarial (Byzantine), and therefore, can return incorrect answers. In the PIR problem

with Byzantine databases (BPIR), a user wishes to retrieve a specific message from

a set of M messages with zero-error, irrespective of the actions performed by the

Byzantine databases. We consider the T -privacy constraint in this chapter, where

any T databases can collude, and exchange the queries submitted by the user. We

derive the information-theoretic capacity of this problem, which is the maximum

number of correct symbols that can be retrieved privately (under the T -privacy con-

straint) for every symbol of the downloaded data. We determine the exact BPIR

capacity to be C = N−2B
N
· 1− T

N−2B

1−( T
N−2B

)M
, if 2B + T < N . This capacity expression

shows that the effect of Byzantine databases on the retrieval rate is equivalent to

removing 2B databases from the system, with a penalty factor of N−2B
N

, which signi-
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fies that even though the number of databases needed for PIR is effectively N −2B,

the user still needs to access the entire N databases. The result shows that for the

unsynchronized PIR problem, if the user does not have any knowledge about the

fraction of the messages that are mis-synchronized, the single-round capacity is the

same as the BPIR capacity. Our achievable scheme extends the optimal achievable

scheme for the robust PIR (RPIR) problem to correct the errors introduced by the

Byzantine databases as opposed to erasures in the RPIR problem. Our converse

proof uses the idea of the cut-set bound in the network coding problem against

adversarial nodes.

4.2 Problem Formulation

Consider a single-round PIR setting with N replicated databases storing M mes-

sages (or files). The messages W = {W1, · · · ,WM} are independent and uniformly

distributed over a large enough finite field Fq. Each message Wi ∈ FLq is a vector of

length L (q-ary symbols),

H(Wi) = L, i = 1, · · · ,M (4.1)

H(W) = H(W1, · · · ,WM) = ML (4.2)

Each database stores a copy from the complete set of messages W , i.e., this dis-

tributed storage system applies an (N, 1) repetition code [117]. Denote the contents

of the nth database by Ωn. Ideally, Ωn =W for all n ∈ {1, · · · , N}.

In the PIR problem, a user wishes to retrieve a message Wi ∈ W without
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revealing any information about the message index i. The user submits a single-

round query Q
[i]
n to the nth database. The user does not know the stored messages in

advance, therefore, the message setW and the queries are statistically independent,

I
(
W ;Q

[i]
1:N

)
= I

(
W1, · · · ,WM ;Q

[i]
1:N

)
= 0 (4.3)

where Q
[i]
1:N = {Q[i]

1 , Q
[i]
2 , · · · , Q[i]

N} is the set of all queries to the N databases for

message i.

Ideally, the classical PIR formulation assumes that all databases store the

correct database contents (i.e., up-to-date contents), and respond truthfully with

the correct answering strings A
[i]
1:N = {A[i]

1 , · · · , A[i]
N}. In the BPIR setting, on the

other hand, there exists a set B of databases, that is unknown to the user, such

that |B| = B, which are called Byzantine databases. These databases can respond

arbitrarily to the user by introducing errors to the answer strings A
[i]
B = {A[i]

j : j ∈

B}, i.e.,

H
(
A[i]
n |Q[i]

n ,W
)
> 0, n ∈ B, |B| = B (4.4)

We assume that these Byzantine databases can coordinate upon submitting the

answers. In this chapter, we do not assume a specific pattern to the errors. The

remaining set of databases B̄ = {1, · · · , N} \ B respond truthfully to the user, i.e.,

the answer strings of B̄ are a deterministic function of the queries and the correct
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contents of the databases W ,

H
(
A[i]
n |Q[i]

n ,W
)

= 0, n ∈ B̄, |B̄| = N −B (4.5)

We consider a T -privacy constraint as in the TPIR problem in [14], where any

T databases can communicate and exchange the queries submitted by the user. To

ensure the T -privacy constraint, the queries to any set T ⊂ {1, · · · , N} of databases,

such that |T | = T , need to be statistically independent of the desired message index

i, i.e.,

I
(
i;Q

[i]
T

)
= 0, for all T ⊂ {1, · · · , N}, |T | = T (4.6)

where Q
[i]
T are the queries submitted to the set T of databases.

We remark here to differentiate the actions of colluding between the databases

which is done to figure out the desired message, and coordination between the Byzan-

tine databases which is done to introduce errors in the answer strings. In addition

to the difference in their purposes, these two actions differ in the manner they are

performed: colluding between any T databases occurs upon receiving the queries

from the user, while coordination between the B Byzantine databases occurs upon

submitting the answers to the user. We do not assume any specific relation between

the T colluding databases and the B Byzantine databases. This is a more general

formulation of the problem; the user in this case has the knowledge that there are

B Byzantine databases and T colluding databases, but does not know anything fur-
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ther. In general, these two sets may be identical, one may be a subset of the other,

they may be disjoint, or they may have a non-trivial intersection1.

The user should be able to reconstruct the desired message Wi, no matter

what the Byzantine databases do, i.e., if there exists a set of databases B̄, that is

unknown to the user, such that (4.5) holds, then the reliability constraint is given

by,

H(Wi|A[i]
1:N , Q

[i]
1:N) = 0 (4.7)

We define the resilient PIR rate R for the BPIR problem as the ratio between

the message size L and the total download cost under the reliability constraint in

(4.7) for any possible action of the Byzantine databases, and the T -privacy constraint

in (4.6), i.e.,

R =
L

∑N
n=1 H(A

[i]
n )

(4.8)

The capacity of BPIR is C = sup R over all possible single-round retrieval schemes.

In this chapter, we follow the information-theoretic assumptions of large

enough message size, large enough field size, and ignore the upload cost as in

1For instance, they may be disjoint if the intentions of these databases are different, e.g., if the
T colluding databases are only curious to learn the interests of the user without disrupting the
retrieval process, while the B Byzantine databases do not care about the identity of the desired
message but just want to block the retrieval process itself. An example where Byzantine behavior
may not require collusion, or even communication, is when B databases become outdated (unsyn-
chronized) with the same outdated content. This happens without a communication between the
databases, but results in errors at the user’s side as if these B databases are coordinating, as they
have the same wrong content. This discussion clarifies that collusion (which requires communica-
tion between databases) and Byzantine behavior (which may or may not require communication
or coordination between databases) can be completely different.
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[8, 14, 117]. A formal treatment of the capacity under message size constraints can

be found in [18]. The BPIR with colluding databases reduces to the TPIR problem

in [14] if B = 0.

Some scenarios that fit our formulation include:

• Unsynchronized setting [7]: In this case, there exists a set B of databases, such

that |B| = B, in which they store different versions of the database contents

(see Fig. 4.1), i.e.,

Ωn 6=W , n ∈ B, |B| = B (4.9)

Note that unlike [7], we assume that the user has no knowledge about the frac-

tion of the messages that are mis-synchronized. Hence, our achievable schemes

must be resilient against the worst-case that the entirety of the database is mis-

synchronized. Furthermore, the scheme in [7] is a two-round scheme, hence we

cannot compare our rates with the rates in [7]; we consider only single-round

schemes here.

• Adversarial attacks [55–57]: In this case, the databases in B intend to pre-

clude the retrieval process at the user by introducing a carefully-designed

error sequence (see Fig. 4.2). This can be done by altering the contents of

the databases to an erroneous version as in the unsynchronized setting; or by

altering the answering strings themselves, i.e., the nth database returns the
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Figure 4.1: PIR from unsynchronized databases.

answer string Ã
[i]
n such that,

Ã[i]
n 6= A[i]

n , n ∈ B, |B| = B (4.10)

or by doing both.

4.3 Main Result and Discussions

The main result of this chapter is to characterize the capacity of the BPIR problem

under T -privacy constraint, where B databases are adversarial (Byzantine) and can

return malicious answers, and at the same time the privacy should be kept against

any T colluding databases.
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Figure 4.2: PIR under adversarial attacks.

Theorem 4.1 For the single-round BPIR problem with B Byzantine databases, and

T colluding databases, such that 2B + T < N , the capacity is given by,

C =
N − 2B

N
·

1− T
N−2B

1−
(

T
N−2B

)M (4.11)

=
N − 2B

N
·
(

1 +
T

N − 2B
+

T 2

(N − 2B)2
+ · · ·+ TM−1

(N − 2B)M−1

)−1

(4.12)

On the other hand, if 2B+ 1 ≤ N ≤ 2B+T , then the user is forced to download the

entire database from at least from (2B + 1) different databases, hence C = 1
(2B+1)M

,

which is the trivial rate in the BPIR problem. Otherwise, the problem is infeasible

and C = 0.
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The achievability proof for Theorem 4.1 is given in Section 4.4, and the con-

verse proof is given in Section 4.5. We have a few remarks.

Remark 4.1 The BPIR capacity in (4.11) is the same as the capacity of PIR with

T colluding databases if the number of databases is N − 2B with a penalty factor

of N−2B
N

. This means that the harm introduced by the B Byzantine databases is

equivalent to removing a part from the storage system of size 2B, but the user still

needs to download from all N databases, as it does not know which N−2B databases

are honest. This results in the penalty term N−2B
N

. If B = 0, the expression in (4.11)

reduces to

Ccolluded =
1− T

N

1−
(
T
N

)M (4.13)

which is the capacity expression in [14] as expected. Fig. 4.3 shows the severe effect

of the Byzantine databases on the retrieval rate for fixed T = 2 and M = 3 as a

function of N .

Remark 4.2 Comparing the BPIR capacity in Theorem 4.1 with the robust capacity

Crobust in [14], where U databases are merely unresponsive,

Crobust =
1− T

N−U

1−
(

T
N−U

)M (4.14)

we note that the number of redundant databases, which are needed to correct the

errors introduced by the Byzantine databases, is twice the number of redundant
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Figure 4.3: The effect of Byzantine databases on the BPIR capacity as a function
of N for fixed T = 2, M = 3.

databases needed to correct the erasures introduced in the case of unresponsive

databases. We also note that the penalty factor is missing in the RPIR problem,

since in the RPIR problem, the user does not get the chance to download from

the unresponsive databases, in contrast to the BPIR problem, in which the user

downloads answer strings from all databases. This is due to the fact that the user

cannot identify the Byzantine databases before decoding the entire answer strings in

the BPIR setting, while in the RPIR setting, the user identifies the unresponsive

databases as they simply do not return answer strings.

Remark 4.3 The trivial rate for the BPIR problem is 1
(2B+1)M

, which is much less

than the trivial rate without the Byzantine databases, 1
M

. The reason for this is that

the user cannot download the entire database only once in BPIR, but it must down-
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load (2B+ 1) different copies of the database in order to decode the desired message

via majority decoding. If N < 2B + 1, the capacity is C = 0, as the Byzantine

databases can always confuse the user to decode the desired message incorrectly.

Remark 4.4 When the number of messages is large, i.e., as M → ∞, the BPIR

capacity C → (N−2B
N

)(1 − T
N−2B

) = 1 − 2B+T
N

, i.e., for large enough number of

messages, the capacity expression acts as if there are no Byzantine databases and

2B + T databases are colluding.

Remark 4.5 If T and B are fixed and do not scale with N , i.e., T = B = o(N),

then the capacity is a strictly increasing function in N and C → 1 as N → ∞.

If the number of the Byzantine databases scales with N , i.e., B = γN , where γ ∈
[
0, 1

2
(1− T

N
)
)
, then C → 1 − 2γ as N → ∞. If 2γ + 1

N
≤ 1 ≤ 2γ + T

N
, then the

only possible rate is the trivial rate 1
(2B+1)M

. As N →∞, then γ → 1
2
, and C → 0.

This entails that the asymptotic behaviour of the BPIR capacity is a linear function

with a slope of −2 as in Fig. 4.4, i.e., the asymptotic rate as N → ∞ is decreased

by twice the ratio of the Byzantine databases. A similar behaviour is observed for

secure distributed storage systems against Byzantine attacks in [61]. The problem is

infeasible if γ > 1
2
, i.e., C = 0. This feasibility result conforms with the best result

of a uniquely decodable BPIR scheme in [57] which needs B < N
2

.

Remark 4.6 Surprisingly, our retrieval scheme in Section 4.4 is a linear scheme in

contrast to the network coding problem in [60] that states that linear coding schemes

are not sufficient. We note that although the retrieval process is itself linear, the
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decoding process employs a successive interference cancellation decoder, which is

non-linear.

Remark 4.7 The capacity expression in Theorem 4.1 is also the capacity result for

the unsychronized PIR problem [7]. This occurs under the restriction to single-round

schemes and the assumption that the user only knows that there exist B databases

that are unsynchronized, but does not know the fraction of messages that are mis-

synchronized. The achievability scheme in Section 4.4 is a valid achievable scheme

for the unsynchronized PIR problem, since the adversary in the Byzantine setting

is stronger. For the converse proof, we restricted the actions of the adversarial

databases to changing the contents of the stored messages, i.e., altering Ωn from W

to W̃, which is the same setting as the unsynchronized PIR with no restriction on

the fraction of messages that can be mis-synchronized.
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4.4 Achievability Proof

In this section, we present an achievable scheme that is resilient to the errors in-

troduced by the Byzantine databases. The achievable scheme does not assume any

specific error pattern. Hence, our achievable scheme enables correct decoding of any

desired message if any B databases become outdated, or even worse, intentionally

commit an adversarial attack to confuse the user. The achievable scheme generalizes

the RPIR scheme presented in [14]. Our scheme has two new ingredients, namely,

correcting errors in the side information using punctured MDS codes, and correcting

errors in the desired message by an outer layer of MDS code. Error correction in

both cases is performed via a nearest-codeword decoder.

4.4.1 Preliminaries

We start by presenting some preliminary results that will be needed. The following

lemma states that if an MDS code is punctured by a puncture pattern whose length

is smaller than the minimum distance of the original MDS code, then it remains an

MDS code [121].

Lemma 4.1 (MDS code puncturing [121]) If C is an (n, k) MDS code, then by

puncturing the code by a sequence of length z, i.e., deleting a sequence of size z from

output codewords of C, such that z < n − k, the resulting punctured code Cz is an

(n− z, k) MDS code.
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The second lemma is regarding the statistical effect of operating on a random matrix

by a deterministic full-rank matrix. The proof of this lemma can be found in [14].

Lemma 4.2 (Statistical effect of full-rank matrices [14]) Let

S1,S2, · · · ,SM ∈ Fα×αq be M random matrices, drawn independently and uni-

formly from all α × α full-rank matrices over Fq. Let G1,G2, · · · ,GM ∈ Fβ×βq be

M invertible square matrices of dimension β × β over Fq. Let I1, · · · , IM ∈ Nβ be

M index vectors, each containing β distinct indices from {1, · · · , α}, then

{G1S1(I1, :), · · · ,GMSM(IM , :)} ∼ {(S1([1 : β], :), · · · ,SM([1 : β], :)} (4.15)

where ∼ denotes statistical equivalence, Si(Ii, :), Si([1 : β], :) denote β × α matrices

with rows indexed by Ii and {1, 2, · · · , β}, respectively.

The next lemma summarizes the code capabilities of handling errors and erasures

for linear block codes [122, Theorem 1.7].

Lemma 4.3 (Code capabilities [122]) Let C be an [n, k, d] linear block code over

Fq. Let ρ be the number of erasures introduced by the channel. Let τ ∈ N, such that

2τ + ρ ≤ d− 1, then there exists a nearest-codeword decoder that recovers all errors

and erasures if the number or errors (excluding erasures) is τ or less.

Lemma 4.3 implies that in the case of no erasures, the maximum number of errors

τ ≤
⌊
d−1

2

⌋
.
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4.4.2 Motivating Example: M = 2 Messages, N = 5, T = 2, B = 1

Databases

Assume without loss of generality that W1 is the desired message. Let ai and

bi be the ith symbol mixture of messages W1 and W2, respectively. The specific

construction of these mixtures will be presented shortly. We begin the retrieval

process by downloading TM−1 = 2 symbols from W1, which are a1, a2 as in [14]. By

message symmetry, we download 2 symbols from W2, which are b1, b2. By database

symmetry, we download 2 symbols from W1 and 2 symbols from W2 from all other

databases.

Now, we want to generate the maximum number of side information equations

in order to maximize the retrieval rate. From Lemma 4.3, we see that the number

of errors that can be corrected increases with d. We know that MDS codes meet

the Singleton bound [62] with equality, hence encoding both desired and undesired

messages by MDS codes is desirable. In addition, Lemma 4.3 implies a doubling

effect, which suggests that in order to correct the errors introduced by the Byzantine

database, we should effectively considerN−2B = 3 honest databases. Consequently,

considering any 3 databases, the number of undesired symbols is 6. We note that

any T = 2 of them can collude, therefore, we are left with 2 undesired symbols that

can be used to generate side information among the 2 colluding databases. Hence,

each database should get 1 side information equation b[11:15]. These side-information

symbols can be added to new desired symbols a[11:15]. The complete query structure

is shown in Table 4.1.
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Table 4.1: The query table for the case M = 2, N = 5, T = 2, B = 1.

DB 1 DB 2 DB 3 DB 4 DB 5
a1 a3 a5 a7 a9

a2 a4 a6 a8 a10

b1 b3 b5 b7 b9

b2 b4 b6 b8 b10

a11 + b11 a12 + b12 a13 + b13 a14 + b14 a15 + b15

Now, we specialize the query structure in Table 4.1, and identify the specific

construction of the mixtures a[1:15] and b[1:15]. For the desired message W1, consid-

ering any N − 2B = 3 honest databases, we see 9 distinct symbols. Therefore, the

length of W1 is L = 9, and we use S1, which is a 9×9 random mixing matrix picked

uniformly from the full-rank matrices over F9×9
q . These 9 mixed symbols are further

mapped to a[1:15] by a (15, 9) MDS code generator matrix MDS15×9, therefore,

a[1:15] = MDS15×9S1W1 (4.16)

For the undesired message W2, considering again any N −2B = 3 honest databases,

we have 6 individual symbols from W2 in round 1. We should be able to reconstruct

the side information equations b[11:15] in round 2 from any 6 individual symbols,

hence we get 6 random symbols from W2. This can be done by considering the first

6 rows of the random mixing matrix S2 ∈ F9×9
q . These randomly mixed symbols are

further mapped to b[1:15] via and MDS code with generator matrix MDS15×6, i.e.,

b[1:15] = MDS15×6S2([1 : 6], :)W2 (4.17)

To see the decodability: the worst-case scenario is that the Byzantine database
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commits errors in all the symbols returned to the user. This means that the database

commits 2 errors in the individual symbols from W1, 2 errors in the individual

symbols from W2, and 1 extra error in the sum of a+ b.

Consider the codeword b[1:10]: this codeword belongs to (15, 6) MDS code

with a sequence of length z = 5 removed. Hence, this codeword belongs to (10, 6)

punctured MDS code. Since z = 5 < 15 − 6 = 9, the (10, 6) punctured MDS code

is still an MDS code. Denote the minimum distance of the (10, 6) punctured MDS

code that results in b[1:10] by dbp. Then, dbp = 10 − 6 + 1 = 5. Consequently, from

Lemma 4.3, the (10, 6) punctured MDS code can tolerate errors up to τb, such that

τb ≤
⌊
dbp − 1

2

⌋
= 2 (4.18)

Therefore, this code can correct all errors that can be introduced to the individual

undesired symbols b[1:10]. Let b∗[1:10] be the correct codeword of b[1:10]. Choose any 6

symbols from b∗[1:10]. Now, since MDS15×6 matrix has the property that any 6 × 6

matrix is an invertible matrix, then from any 6 symbols from b∗[1:10], the correct side

information equations b∗[11:15] are determined and canceled from the sums of a and

b in round 2.

For the desired message W1: after removing the interference from W2, we

are left with ã[1:15]. Note that this is not exactly a[1:15], because we canceled the

correct side information and not b[1:15]. However, the total errors in ã[1:15] still is

upper bounded by 3, since ã[1:15] can differ from a[1:15] only in the positions that

correspond to Byzantine databases. The desired message W1 is coded via (15, 9)
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MDS code. Then, the minimum distance for this code is da = 15 − 9 + 1 = 7.

Consequently, this code can tolerate errors up to τa, such that

τa ≤
⌊
da − 1

2

⌋
= 3 (4.19)

Hence, all the errors in ã[1:15] can be corrected, and we can obtain true a∗[1:15]. Con-

sider the first 9 symbols from a∗[1:15], without loss of generality, then

W1 = (MDS15×9([1 : 9], :)S1)−1a∗[1:9] (4.20)

since MDS15×9([1 : 9], :)S1 is a 9× 9 invertible matrix.

Therefore, despite Byzantine behaviour of B = 1 database, we decode the de-

sired message correctly. In addition, our achievable scheme can identify the Byzan-

tine database as does the scheme in [7] by comparing a∗[1:10] with a[1:10], and b∗[1:10]

with b[1:10] and see which database has introduced errors.

To see the privacy: we note that from any T = 2 databases, our achievable

scheme collects 6 symbols from a[1:15] and 6 symbols from b[1:15] indexed by I such

that |I| = 6. For the undesired message, we collect bI ,

bI = MDS15×6(I, :)S2([1 : 6], :)W2 (4.21)

∼ S2([1 : 6], :)W2 (4.22)

where (4.22) follows from Lemma 4.2 as any 6 × 6 matrix in MDS15×6 matrix is
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full-rank. Therefore, the symbols bI are independent and uniformly distributed. For

aI , we have

aI = MDS15×9(I, :)S1W1 (4.23)

= Ψ6×9W1 (4.24)

where Ψ = MDS15×9(I, :)S1 is a full row-rank matrix as any 6 rows in MDS15×9

are linearly independent. Consequently, the symbols aI are also independent and

uniformly distributed, and aI ∼ bI for every 2 databases, where ∼ means that the

involved random vectors are statistically identical. Thus, the proposed scheme is

2-private; that is, despite colluding behaviour of T = 2 databases, we have privacy.

Finally, the achievable resilient retrieval rate is R = 9
25

= N−2B
N
· 1− T

N−2B

1−( T
N−2B )

M =

C. In comparison, the trivial rate for this system is 1
(2B+1)M

= 1
6
, as the user must

download the entire database from 3 different databases for correct decoding.

4.4.3 General Achievable Scheme

The general achievable scheme is performed in M rounds. The ith round includes

all the
(
M
i

)
combinations of the sums of any i messages. In our construction2, we use

L = (N − 2B)M . The construction resembles the optimal scheme for RPIR in [14].

The new key ingredient in our achievable scheme is the decoding procedure, which

includes correcting the undesired symbols by punctured MDS codes, successive in-

2We note that we do not claim that L = (N − 2B)M is the minimum message length needed
to achieve the capacity. The reason we choose this specific L is that it enables us to realize our
achievable scheme for general N , B, T , M . The problem of obtaining the minimum capacity-
achieving L is an interesting open problem.
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terference cancellation to cancel the interfering messages, and correcting the errors

in the desired message by an outer layer MDS code.

4.4.3.1 General Description for the Scheme

1. Initialization: The scheme starts with downloading TM−1 mixed symbols from

the desired message from the first database. The specific construction of the

mixture will be specified shortly. The scheme sets the round index i = 1.

2. Message symmetry: To satisfy the privacy constraint, the user downloads

the same number of mixed symbols from the undesired messages with all the

possible combinations, i.e., in the ith round, the user downloads
(
M−1
i

)
(N −

2B − T )i−1TM−i mixed symbols from the remaining M − 1 messages. The

specific construction of the undesired mixture will be specified shortly.

3. Database symmetry: The user repeats the same steps at all the databases.

Specifically, the user downloads
(
M−1
i−1

)
(N − 2B − T )i−1TM−i equations in the

form of a desired message mixture symbol and i− 1 mixed symbols from the

undesired messages, and
(
M−1
i

)
(N − 2B−T )i−1TM−i mixed symbols from the

undesired messages only, from each database.

4. Exploiting side information: The specific construction of the undesired mix-

tures should be done such that in the (i+ 1)th round, the user should be able

to generate N−2B−T
T

side information equations for each undesired symbol in

the ith round. This fraction is a consequence of considering Ñ = N − 2B

honest databases only, and dividing the undesired symbols from the Ñ − T
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databases among the T colluding databases. The side information generated

is added to a new mixed symbol from the desired message.

5. Repeat steps 2, 3, 4 after setting i = i+ 1 until i = M − 1.

4.4.3.2 Specific Construction of the Symbol Mixtures

Let Wm ∈ F(N−2B)M

q , m ∈ {1, · · · ,M} be the message vectors, and Sm, m ∈

{1, · · · ,M} be random mixing matrices picked independently and uniformly from

the full-rank matrices in F(N−2B)M×(N−2B)M

q . From the general description of the

scheme, we note that at the ith round, the user downloads all possible combinations

of the sums of any i messages. In the following specific construction, we enumerate

all the sets that contain a symbol from the desired message and assign them labels

L1, · · · ,Lδ. For each undesired message, we further enumerate also all the sets that

contain symbols from this undesired message and do not include any desired sym-

bols and assign them labels K1, · · · ,K∆. These sets construct the undesired symbol

mixtures and the corresponding side information.

For the desired message: Assume that the desired message is W`. Let δ be

the number of the distinct subsets of {1, · · · ,M} that contain `, then δ = 2M−1.

Let Li, i ∈ {1, · · · , δ} be the ith subset that contains `. Assume without loss of

generality, that these sets are arranged in ascending order in the sizes of the sets

|Li|. According to this order, we note that L1 = {`} and belongs to round 1. Round

2 contains sets L2, · · · ,L(M−1
1 )+1, and so on. Let X [`] ∈ FN(N−2B)M

q be the vector of

mixtures that should be obtained from the desired message W`. Divide X [`] into δ
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partitions denoted by x
[`]
Li , each corresponds to a distinct set Li. Now, encode the

desired message by a
(
N(N − 2B)M−1, (N − 2B)M

)
MDS code as,

X [`] =




x
[`]
L1

x
[`]
L2

...

x
[`]
Lδ




= MDSN(N−2B)M−1×(N−2B)MS`Wl (4.25)

where x
[`]
Li is a vector of length N(N − 2B − T )|Li|−1TM−|Li| in Fq.

For any other undesired message: Consider the undesired message Wk, k ∈

{1, · · · ,M} \ {`}. Let ∆ = 2M−2 be the number of distinct subsets that contain k

and do not contain `. Let Ki, i ∈ {1, · · · ,∆} be the ith subset that contains k and

does not contain ` with indices in ascending order in the size of set |Ki|. Define u
[k]
Ki

to be the undesired symbol mixtures in the |Ki|th round corresponding to message

k among the Ki set. Define σ
[k]
Ki to be the side information symbols from message k

among the Ki subset of undesired messages. These side information equations are

added to a desired message symbol in the (|Ki| + 1)th round. For each subset Ki,

the undesired symbols and side information symbols are related via,



u

[k]
Ki

σ
[k]
Ki


 = MDSN

T
αi×αiSk

([
i−1∑

j=1

αj + 1 :
i∑

j=1

αj

]
, :

)
Wk (4.26)

where αi = (N−2B)(N−2B−T )|Ki|−1TM−|Ki|, u[k]
Ki is a vector of length N

N−2B
αi, and

σ
[k]
Ki is a vector of length N−2B−T

T
· N
N−2B

αi. This implies that the side information σ
[k]
Ki
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in the (|Ki| + 1)th round is completely determined by u
[k]
Ki in the |Ki|th round. We

note that these choices of the dimensions ensure that the same number of desired and

undesired symbols exist in the |Ki|th round, and they are both equal to N(N−2B−

T )|Ki|−1TM−|Ki|. We further note that the N−2B−T
T

factor in the length of σ
[k]
Ki , implies

that we generate N−2B−T
T

side information symbols for each undesired symbol. We

note that the same MDS matrix is used for all messages k 6= ` that belong to the

same subset Ki. This is critical to enable interference alignment, and joint error

correction. Let X [k] ∈ FN(N−2B)M−1

q be the vector of mixtures corresponding to

message k 6= `. Then, X [k] is given by,




u
[k]
K1

σ
[k]
K1

u
[k]
K2

σ
[k]
K2

...

u
[k]
K∆

σ
[k]
K∆




=




MDSN
T
α1×α1

0 · · · 0

0 MDSN
T
α2×α2

· · · 0

...
...

...
...

0 0 0 MDSN
T
α∆×α∆




Sk([1 : T (N−2B)M−1], :)Wk

(4.27)

Now, we are ready to specify the queries. For every non-empty set M ⊆
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{1, · · · ,M}, define Q[`]
M to be all queries related to set M,

Q[`]
M =





x
[`]
L1
, M = L1 = {`}

x
[`]
Lj +

∑
k∈Ki σ

[k]
Ki ∃i, j :M = Ki ∪ {`} = Lj

∑
k∈Ki u

[k]
Ki ∃i :M = Ki

(4.28)

We distribute the queries randomly and evenly among the N databases for each

subset M, and the construction is now complete.

4.4.4 Decodability, Privacy, and the Achievable Rate

First, we show how the decoding is performed. The first step is to correct the errors

in the undesired symbols in the Ki set in the |Ki|th round, so that we can generate

the correct side information in the (|Ki|+ 1)th round. Consider again the encoding,



u

[k]
Ki

σ
[k]
Ki


 = MDSN

T
αi×αiSk (Ji, :)Wk (4.29)

where Ji =
[∑i−1

j=1 αj + 1 :
∑i

j=1 αj

]
. Since the sum of linear codes is also a linear

code, for the every set Ki, i ∈ {1, · · · ,∆}, we have




∑
k∈Ki u

[k]
Ki

∑
k∈Ki σ

[k]
Ki


 = MDSN

T
αi×αi

∑

k∈Ki
Sk (Ji, :)Wk (4.30)

This enables joint error correction on the aligned sum. The minimum distance of

this MDS code is dKi = N
T
αi − αi + 1 = N−T

T
αi + 1.
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Now, in the |Ki|th round, the user downloads
∑

k∈Ki u
[k]
Ki which is a vector of

length N
N−2B

αi from all databases. The vector
∑

k∈Ki u
[k]
Ki belongs to

(
N

N−2B
αi, αi

)

punctured MDS code with a puncturing sequence corresponding to the side informa-

tion symbols, i.e., with a puncturing sequence of length z = |σ[k]
Ki | = N−2B−T

T
· N
N−2B

αi.

Therefore,

dKi − z − 1 =
N − T
T

αi −
N − 2B − T

T
· N

N − 2B
αi (4.31)

=
2B

N − 2B
αi (4.32)

= 2B(N − 2B − T )|Ki|−1TM−|Ki| > 0 (4.33)

Thus, the
(

N
N−2B

αi, αi
)

punctured MDS code remains an MDS code with a minimum

distance dui , such that

dui =
N

N − 2B
αi − αi + 1 (4.34)

=
2B

N − 2B
αi + 1 (4.35)

Hence, the punctured code can correct upto τui errors, such that

τui ≤
⌊
dui − 1

2

⌋
=

B

N − 2B
αi (4.36)

Each database contributes 1
N−2B

αi symbols from
∑

k∈Ki u
[k]
Ki , hence the Byzantine

databases can introduce at most B
N−2B

αi errors. Consequently, the punctured MDS

code can correct all errors in
∑

k∈Ki u
[k]
Ki . This results in a corrected undesired
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message vector
(∑

k∈Ki u
[k]
Ki

)∗
. Choose any αi symbols from

(∑
k∈Ki u

[k]
Ki

)∗
. By the

MDS property of the (N
T
αi, αi) MDS code, any αi×αi submatrix is invertible, hence

a correct version of the side information vector, which is used in the (|Ki| + 1)th

round, can be generated. Denote this correct version by
(∑

k∈Ki σ
[k]
Ki

)∗
.

Now, we cancel the correct side information successively from each setKi. Note

that the successive correction of side information gives rise to non-linearity in the

decoding. After interference cancellation, we are left with X̃ [`], which is not exactly

X [`], as we cancelled the correct side information from the sum and not the side

information provided by the Byzantine databases. This is not a problem, because

X̃ [`] and X [`] differ in codeword positions if and only if these positions belong to the

Byzantine databases, hence the worst-case number of errors in X̃ [`] cannot increase.

The desired message is encoded by (N(N − 2B)M−1, (N − 2B)M) MDS code with

minimum distance dx, such that

dx = N(N − 2B)M−1 − (N − 2B)M + 1 (4.37)

= 2B(N − 2B)M−1 + 1 (4.38)

Each database returns (N − 2B)M−1 symbols from the desired message. The B

Byzantine databases can at most introduce B(N − 2B)M−1 errors. The outer MDS

code can correct up to τx errors, such that

τx ≤
⌊
dx − 1

2

⌋
= B(N − 2B)M−1 (4.39)
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Thus, the user can correct all the errors introduced by the Byzantine databases to

get a correct vector
(
X [`]

)∗ ∈ FN(N−2B)M−1

q . Consider any (N − 2B)M symbols from

(
X [`]

)∗
. Denote these symbols by x∗` , and index them by Ix. Then, the user can

decode W` with zero error via

W` = (MDSN(N−2B)M−1×(N−2B)M (Ix, :)S1)−1x∗` (4.40)

This is true as matrix MDSN(N−2B)M−1×(N−2B)M (Ix, :)S1 is invertible by the MDS

property.

In addition, the user can identify the Byzantine databases by comparing the

correct versions of the undesired symbols at each cancellation step (
∑

k∈Ki u
[k]
Ki)
∗,

and the desired symbols
(
X [`]

)∗
by their counterparts from the retrieval process.

Any change between the correct vector and the retrieved vector implies that this

database is a Byzantine database (or unsynchronized). The user can expurgate the

malicious nodes in this case as in [7, 60,61].

Next, we show how the privacy is achieved. The queries for any T colluding

databases are comprised of T (N − 2B)M−1 mixed symbols from each message Wi,

i ∈ {1, · · · ,M}. Let these symbols be indexed by I. Denote the kth message

symbols by x
[k]
I . For the desired symbols, we have

x
[`]
I = MDSN(N−2B)M−1×(N−2B)M (I, :)S`Wl (4.41)

Since |I| = T (N − 2B)M−1 < (N − 2B)M as 2B + T < N by construction, and due
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to the MDS property, the symbols x
[`]
I have full-rank. Hence, they are independent

and uniformly distributed. Furthermore, for any undesired message Wk, k 6= `, we

have,

x
[k]
I =




MDSN
T
α1×α1

(I1, :) · · · 0

0 · · · 0

...
...

...

0 0 MDSN
T
α∆×α∆

(I∆, :)




︸ ︷︷ ︸
Φ

Sk([1 : T (N−2B)M−1], :)Wk

(4.42)

where I =
⋃∆
j=1 Ij, and |Ij| = αj. Therefore, each submatrix in Φ is an αi × αi

invertible matrix by the MDS property. Hence, Φ is also an invertible matrix because

it is a block-diagonal matrix. By Lemma 4.2, we have

x
[k]
I ∼ Sk([1 : T (N−2B)M−1], :)Wk (4.43)

Thus, symbols x
[k]
I are independent and uniformly distributed, and the privacy is

guaranteed.

We next calculate the achievable resilient rate. We note that the scheme

operates in M rounds. At the ith round, the scheme downloads
(
M−1
i−1

)
(N − 2B −

T )i−1TM−i equations in the form of one desired symbol added to i−1 symbols from

the undesired messages, and
(
M−1
i

)
(N − 2B − T )i−1TM−i undesired symbols only.

Then, the total download in the ith round is
(
M
i

)
(N − 2B − T )i−1TM−i from each
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database, i.e., the total download of the scheme, D, is D = N
∑M

i=1

(
M
i

)
(N − 2B −

T )i−1TM−i. The scheme decodes correctly the desired message, which has length

L = (N − 2B)M . Thus, the resilient retrieval rate is,

R =
L

D
(4.44)

=
(N − 2B)M

N
∑M

i=1

(
M
i

)
(N − 2B − T )i−1TM−i

(4.45)

=
N − 2B

N
· (N − 2B)M−1

∑M
i=1

(
M
i

)
(N − 2B − T )i−1TM−i

(4.46)

=
N − 2B

N
· (N − 2B)M−1

1
N−2B−T

∑M
i=1

(
M
i

)
(N − 2B − T )iTM−i

(4.47)

=
N − 2B

N
· (N − 2B)M−1

1
N−2B−T ((N − 2B)M − TM)

(4.48)

=
N − 2B

N
· (N − 2B)M − T (N − 2B)M−1

(N − 2B)M − TM (4.49)

=
N − 2B

N
·

1− T
N−2B

1−
(

T
N−2B

)M (4.50)

which is the expression in Theorem 4.1. We have some additional remarks about

the achievable scheme.

Remark 4.8 We note that our achievable scheme is capable of identifying the

Byzantine databases by observing discrepancies between the corrected codewords of

desired and undesired messages and their counterparts from the retrieval process.

Therefore, if multiple-rounds are allowed in the achievable scheme, we can remove

the databases that introduce errors at each retrieval round, and achieve larger re-

trieval rates in future rounds. For instance, assume that B̃ ≤ B databases commit

errors and are identified to be Byzantine in the kth retrieval round, then removing
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these databases from the system and downloading only from the remaining (N − B̃)

databases, we can achieve the following retrieval rate in the (k + 1)th round

R(k+1) =
N − B̃ − 2(B − B̃)

N − B̃
·

1− T
N−B̃−2(B−B̃)

1− ( T
N−B̃−2(B−B̃)

)M
(4.51)

=
N + B̃ − 2B

N − B̃
·

1− T
N+B̃−2B

1− ( T
N+B̃−2B

)M
(4.52)

In particular, if all B Byzantine databases act maliciously in the kth retrieval round

and get identified, i.e., B̃ = B, then we can achieve the following retrieval rate in

the (k + 1)th round

R(k+1) =
1− T

N−B
1− ( T

N−B )M
(4.53)

which is the retrieval rate if B databases are just unresponsive.

Remark 4.9 Our achievable scheme can be seamlessly extended to the case of BPIR

with U unresponsive databases (as in the case of RPIR [14]) – also known in the

literature as T -private B-Byzantine (N−U)-out-of-N PIR as in [56]. The construc-

tion of the achievable scheme can be done by replacing every N−2B with N−2B−U

in the general achievable scheme. Using Lemma 4.3, that states that correct decod-

ing is possible if 2τ + ρ ≤ d − 1, and considering the effect of the unresponsive

databases as erasures, i.e., via ρ, the decodability holds for the BPIR problem with
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unresponsive databases. The retrieval rate in this case is,

R =
N − 2B − U
N − U ·

1− T
N−2B−U

1− ( T
N−2B−U )M

(4.54)

The retrieval expression is the same as the BPIR capacity in (4.11) if the number of

databases is N−U . This in turn implies that the expression in (4.54) is the capacity

of the BPIR problem with unresponsive databases. The details of the construction

and the analysis are omitted to avoid repetition.

4.4.5 Further Examples

In this section, we present some further simple examples with tractable parameters

of M , N , T , B for better understanding of the achievable scheme. Here, we use

increased number of messages (M = 3) and databases (N = 6) compared to the

selections M = 2, N = 5 in the motivating example in Section 4.4.2. In the following

two subsections, we choose T = 1, B = 2 and T = 2, B = 1, respectively, to show

the different effects of colluding and Byzantine behavior. We assume without loss

of generality that the desired message is W1.

4.4.5.1 M = 3 Messages, N = 6, T = 1, B = 2 Databases

We denote the mixed symbols of messages W1,W2,W3 by a, b, c, respectively. In

this example L = (N − 2B)M = 8, hence we use 8 × 8 random mixing matrices

denoted by S1,S2,S3. We have L1 = {1},L2 = {1, 2},L3 = {1, 3},L4 = {1, 2, 3}.

Also, for the undesired message W2, we have K1 = {2},K2 = {2, 3}, and sim-
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ilarly for W3. The scheme starts with downloading TM−1 = 1 symbol from

each message from each database. Therefore, in round 1, the scheme downloads

x
[1]
L1

= a[1:6], u
[2]
K1

= b[1:6], and u
[3]
K1

= c[1:6]; see Table 4.2. For every undesired sym-

bol in round 1, we generate N−2B−T
T

= 1 side information symbols to be used

in round 2. The scheme constructs the side information symbols σ
[2]
K1

= b[7:12]

based on the downloaded symbols b[1:6], and similarly for σ
[3]
K1

= c[7:12]. Round

2 contains all combinations of the sums of 2 messages. Round 2 adds one new

symbol from the desired message with one symbol of the generated side informa-

tion from b, c. This results in the sums x
[1]
L2

+ σ
[2]
K1

= a[7:12] + b[7:12], and the sums

x
[1]
L3

+ σ
[3]
K1

= a[13:18] + c[7:12]. By message symmetry, we must include the undesired

symbol sum
∑

k∈K2
u

[k]
K2

= b[13:18] + c[13:18]; see Table 4.2. We note that these unde-

sired information equation is in the form of aligned sums. The undesired symbols

in round 2 generate the side information equations
∑

k∈K2
σ

[k]
K2

= b[19:24] + c[19:24].

These side information equations are added to new symbols from the desired mes-

sage to have x
[1]
L4

+
∑

k∈K2
σ

[k]
K2

= a[19:24] + b[19:24] + c[19:24]. The query table is shown

in Table 4.2.

Table 4.2: The query table for the case M = 3, N = 6, T = 1, B = 2.

DB 1 DB 2 DB 3 DB 4 DB 5 DB 6
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

a7 + b7 a8 + b8 a9 + b9 a10 + b10 a11 + b11 a12 + b12

a13 + c7 a14 + c8 a15 + c9 a16 + c10 a17 + c11 a18 + c12

b13 + c13 b14 + c14 b15 + c15 b16 + c16 b17 + c17 b18 + c18

a19+b19+c19 a20+b20+c20 a21+b21+c21 a22+b22+c22 a23+b23+c23 a24+b24+c24
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The specific construction of the symbol mixtures are,

a[1:24] = MDS24×8S1W1 (4.55)

b[1:24] =




u
[2]
K1

σ
[2]
K1

u
[2]
K2

σ
[2]
K2




=




MDS12×2 0

0 MDS12×2


S2([1 : 4], :)W2 (4.56)

c[1:24] =




u
[3]
K1

σ
[3]
K1

u
[3]
K2

σ
[3]
K2




=




MDS12×2 0

0 MDS12×2


S3([1 : 4], :)W3 (4.57)

For the decodability, we note that B = 2 Byzantine databases can introduce

at most 2 errors in b[1:6], 2 errors in c[1:6], 2 errors in b[13:18] + c[13:18], and 8 errors in

a[1:24]. We note that b[1:6] is encoded via (6, 2) punctured MDS code, which still is

an MDS code because z = 6 < 12 − 2 = 10. The (6, 2) punctured MDS code can

correct errors up to b6−2
2
c = 2 errors. Then, the 2 errors in b[1:6] can be corrected.

The same argument holds for c[1:6]. For b[13:18] + c[13:18], since the same generator

matrix is used for b[13:18], c[13:18], and because of the linearity of the code, the aligned

sum is a codeword from (6, 2) punctured MDS code as well. Thus, we can correct

all the errors in the aligned sum b[13:18] + c[13:18]. Knowing the correct undesired

symbols results in decoding the correct side information symbols b[7:12], c[7:12] and

b[19:24] +c[19:24], respectively, by the MDS property. Cancelling these side information
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from the answer strings, we are left with ã[1:24], which are coded with an outer (24, 8)

MDS code, which is capable of correcting b24−8
2
c = 8 errors. Hence, the user can

correct all the errors introduced by the Byzantine databases and W1 is decodable.

For the privacy, from any individual database, the user asks for 4 mixed sym-

bols from each message. Because of the MDS property, the symbols from all mes-

sages are full-rank, and hence they are independent and uniformly distributed. Thus,

the scheme is private.

The resilient achievable rate is R = 8
42

= 4
21

= 1
3
· 4

7
= N−2B

N
· 1− T

N−2B

1−( T
N−2B )

M = C.

4.4.5.2 M = 3 Messages, N = 6, T = 2, B = 1 Databases

In this case L = (N − 2B)M = 64, and we use random mixing matrices S1,S2,S3

of size 64 × 64. The scheme starts by downloading TM−1 = 4 symbols from each

message from each database, namely, a[1:24], b[1:24], c[1:24]; see Table 4.3. The un-

desired symbols from b[1:24] and c[1:24] create N−2B−T
T

= 1 side information symbol

for each undesired symbol in a single database. Therefore, the scheme generates

the side information b[25:48], c[25:48]. In round 2, these side information are added to

a[25:48], a[49:72], respectively. Round 2 concludes by applying message symmetry, and

downloads b[49:72] + c[49:72]. These undesired symbols produce b[73:96] + c[73:96] as side

information symbols for round 3. The query table is shown in Table 4.3.

The specific construction of the symbol mixtures are,

a[1:96] = MDS96×64S1W1 (4.58)

155



Table 4.3: The query table for the case M = 3, N = 6, T = 2, B = 1.

DB 1 DB 2 DB 3 DB 4 DB 5 DB 6
a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12 a13, a14, a15, a16 a17, a18, a19, a20 a21, a22, a23, a24

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12 b13, b14, b15, b16 b17, b18, b19, b20 b21, b22, b23, b24

c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12 c13, c14, c15, c16 c17, c18, c19, c20 c21, c22, c23, c24

a25 + b25 a29 + b29 a33 + b33 a37 + b37 a41 + b41 a45 + b45

a26 + b26 a30 + b30 a34 + b34 a38 + b38 a42 + b42 a46 + b30

a27 + b27 a31 + b31 a35 + b35 a39 + b39 a43 + b43 a47 + b47

a28 + b28 a32 + b32 a36 + b36 a40 + b40 a44 + b44 a48 + b48

a49 + c25 a53 + c29 a57 + c33 a61 + c37 a65 + c41 a69 + c45

a50 + c26 a54 + c30 a58 + c34 a62 + c38 a66 + c42 a70 + c30

a51 + c27 a55 + c31 a59 + c35 a63 + c39 a67 + c43 a71 + c47

a52 + c28 a56 + c32 a60 + c36 a64 + c40 a68 + c44 a72 + c48

b49 + c49 b53 + c53 b57 + c57 b61 + c61 b65 + c65 b69 + c69

b50 + c50 b54 + c54 b58 + c58 b62 + c62 b66 + c66 b70 + c70

b51 + c51 b55 + c55 b59 + c59 b63 + c63 b67 + c67 b71 + c71

b52 + c52 b56 + c56 b60 + c60 b64 + c64 b68 + c68 b72 + c72

a73+b73+c73 a77+b77+c20 a81+b81+c81 a85+b85+c85 a89+b89+c89 a93+b93+c93

a74+b74+c74 a78+b78+c78 a82+b82+c82 a86+b86+c86 a90+b90+c90 a94+b94+c94

a75+b75+c75 a79+b79+c79 a83+b83+c83 a87+b87+c87 a91+b91+c91 a95+b95+c95

a76+b76+c76 a80+b80+c80 a84+b84+c84 a88+b88+c89 a92+b92+c92 a96+b96+c96

b[1:96] =




MDS48×16 0

0 MDS48×16


S2([1 : 32], :)W2 (4.59)

c[1:96] =




MDS48×16 0

0 MDS48×16


S3([1 : 32], :)W3 (4.60)

For the decodability, the Byzantine database can commit 4 errors in b[1:24],

4 errors in c[1:24], 4 errors in b[49:72] + c[49:72], and 16 errors in a[1:96]. All layers of

the undesired symbols are encoded via (24, 16) punctured MDS code, which is still

MDS code, and can correct up to b24−16
2
c = 4 errors. Therefore, all the undesired

symbols can be corrected, which in turn generate the correct side information in all

layers. By canceling the side information, we are left with ã[1:96], which is encoded

by (96, 64) outer MDS code. This code can correct up to b96−64
2
c = 16 errors. Hence,
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the user can decode W1 reliably.

For the privacy, from any 2 databases, the user asks for 16 symbols from each

message. By the MDS property and Lemma 4.2, all these symbols are full-rank,

and hence they are independent and uniformly distributed. Therefore, the scheme

is 2-private.

The resilient achievable rate is R = 64
168

= 8
21

= 4
6
· 4

7
= N−2B

N
· 1− T

N−2B

1−( T
N−2B )

M = C.

Note that, for the same M , N , the achievable rate with T = 1, B = 2 in the

previous subsection, 4
21

, is smaller than the achievable rate with T = 2, B = 1 in this

subsection, 8
21

, which signifies that Byzantine behavior is a more severe adversarial

behavior to cope with compared to colluding behavior.

4.5 Converse Proof

In this section, we develop an upper bound for the BPIR problem. We adapt the

cut-set upper bound proof in [60, 61] to the PIR setting. The upper bound can

be thought of as a network version of the Singleton bound [62]. The upper bound

intuitively asserts that the effect of the Byzantine databases on the retrieval rate

is harmful as if 2B databases are removed from the retrieval process, but the user

still needs to access them. The settings of PIR and network coding problem in [60]

share that they are both planar networks, and they both lack backward edges, as we

consider here a single-round retrieval, and hence the answer strings from the honest

databases are not affected by the answers of the Byzantine databases. However,

some technical differences arise in the PIR setting:
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1. Unlike the adversarial nodes in [60, 61], the Byzantine databases in PIR are

not fully omniscient, since they do not know which message the user wishes to

retrieve (by definition of PIR). Consequently, we assume in the following that

the Byzantine databases alter the contents of the entire database.

2. In the PIR setting, the user does not know the entire codebook in advance, in

contrast to the network coding problem in [60].

For sake of deriving an upper bound, we make the following simplifications:

1. We assume that the actions of the Byzantine databases are restricted to al-

tering the contents of the entire database, i.e., the nth Byzantine database

changes its contents Ωn from W to W̃ , where W̃ 6= W . This restriction is

valid from the converse point of view, since it potentially results in a weaker

adversary, which in turn results in a higher rate. Note that, in this sense

the Byzantine databases are reduced to being unsynchronized databases (with

unknown number of mis-synchronized messages).

2. We further restrict the answering string from the nth database to be a de-

terministic function fn(·), i.e., A
[i]
n = fn(Ωn, Q

[i]
n ), of the altered database Ωn.

This restriction also limits the capabilities of the Byzantine databases. This

results in a further upper bound on rate. Since we restrict the actions of the

Byzantine databases to altering Ωn only, we signify this dependence on Ωn by

writing the answering string A
[i]
n as A

[i]
n (Ωn).

3. We can assume that the retrieval scheme is symmetric. This is without loss

158



of generality, since any asymmetric PIR scheme can be made symmetric by

proper time sharing without changing the retrieval rate [12,117,123], i.e.,

H(A
[i]
1 |Q) = H(A

[i]
2 |Q) = · · · = H(A

[i]
N |Q) (4.61)

This assumption remains true in the BPIR problem, because if the nth Byzan-

tine database returned an answering string which has H(A
[i]
n |Q) 6= H(A

[i]
j |Q)

for some honest database j, i.e., the answering string has a different length as a

response to a symmetric retrieval scheme, this database will be identified as a

Byzantine database. Hence, the errors introduced by the Byzantine databases

can be mitigated and these databases will be removed from the system after-

wards. In addition, the restrictions in assumptions 1 and 2 above imply that

the Byzantine databases answer truthfully to the queries based on their own

(altered) Ωn. Therefore, the lengths of the answer strings will be symmetric

in response to a symmetric scheme.

The main argument of the converse proof is summarized in the following lemma.

Lemma 4.4 Fix a set of honest databases U ⊂ {1, · · · , N} such that |U| = N−2B,

and Ωn =W, for every n ∈ U . Then, for correct decoding of Wi, the answer strings

A
[i]
U (W) is unique for every realization of W, i.e., there cannot exist two realizations

of the message set W , W̃, such that W 6= W̃, and A
[i]
U (W) = A

[i]
U (W̃).

We have this following remark about Lemma 4.4 first, before we give its proof next.
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Remark 4.10 Lemma 4.4 implies that the answer strings from any N − 2B honest

databases are enough to reconstruct the desired message, since every realization of

the message set produces different answering strings from any N − 2B databases.

This argument was previously used by [60, Theorem 1] and [61, Theorem 6], as they

show that the capacity of the adversarial network coding problem and the adversarial

distributed storage problem, respectively, is upper bounded by the capacity of the

edges of any cut in the network after removing 2B edges from this cut. These edges

correspond to the set U in our problem. The proof in [60, 61] relies on the fact that

in the presence of an adversary controlling B nodes, and for any distinct messages

w1 6= w2, a necessary condition for the receiver to not make a decoding error is to

have XU(w1) 6= XU(w2).

Proof: Divide the set Ū = {1, · · · , N} \ U into two sets B1, B2 such that |B1| =

|B2| = B. In the BPIR problem, we must guarantee correct decoding if the Byzan-

tine databases are any subset B ⊂ {1, · · · , N}, such that |B| = B, in particular, if

the Byzantine databases are either B1 or B2.

Now, assume for sake of contradiction, that there exists a valid retrieval scheme

that achieves correct decoding of Wi, and there exist two realizations of the message

set W , W̃ such that W 6= W̃ , and

A
[i]
U (W) = A

[i]
U (W̃) (4.62)

Two scenarios can arise:
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1. The true realization of the database contents is W . In this case, if the adver-

sarial nodes are the databases indexed by B2, and they flip their contents ΩB2

into W̃ , the user collects the answer strings
(
A

[i]
B1

(W), A
[i]
B2

(W̃), A
[i]
U (W)

)
.

2. The true realization of the database contents is W̃ . In this case, if the adver-

sarial nodes are the databases indexed by B1, and they flip their contents ΩB1

into W , the user collects the answer strings
(
A

[i]
B1

(W), A
[i]
B2

(W̃), A
[i]
U (W̃)

)
.

Since A
[i]
U (W) = A

[i]
U (W̃), there is no way for the user to differentiate between the

two scenarios. Hence, the user commits an error either directly (if W and W̃ differ

in Wi) or indirectly (if W and W̃ differ in any message other than Wi, as the user

fails in canceling the interference from the answer strings). This is a contradiction

to the reliability constraint H(Wi|A[i]
1:N , Q

[i]
1:N) = 0. �

Now, we continue with the main body of the converse proof. From Lemma 4.4,

the answers A
[i]
U (W) are unique for everyW , hence restricting the decoding function

to these answers uniquely determine Wi, i.e., there exists no further confusion about

the correct database contents W , and the answering strings are designed to retrieve

Wi from this W . Consequently, if the true realization of the database is W , we can

write

R =
L

∑N
n=1 H(A

[i]
n )

(4.63)

≤ L
∑N

n=1H(A
[i]
n |Q)

(4.64)

=
N − 2B

N
· L

(N − 2B)H(A
[i]
1 |Q)

(4.65)
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=
N − 2B

N
· L
∑

n∈U H(A
[i]
n (W)|Q)

(4.66)

≤ N − 2B

N
· CT (|U|) (4.67)

=
N − 2B

N
· CT (N − 2B) (4.68)

=
N − 2B

N
·

1− T
N−2B

1−
(

T
N−2B

)M (4.69)

where CT (·) is the capacity of the PIR problem with T colluding databases as

a function of the number of databases. Here, (4.65) follows from the symmetry

assumption, (4.66) follows from the fact that A
[i]
U (W) can decode Wi correctly and

then L∑
n∈U H(A

[i]
n (W)|Q)

is a valid upper bound on the retrieval rate under the T -

privacy constraint if the accessed databases are restricted to U , which is further

upper bounded by the TPIR capacity CT (|U|) in (4.67) as CT (|U|) is the supremum

of all rates that can be achieved using the set of databases U under the T -privacy

constraint, and (4.69) follows from the capacity expression in [14].

4.6 Conclusions

In this chapter, we investigated the PIR problem from N replicated databases in the

presence of B Byzantine databases, and T -colluding databases from an information-

theoretic perspective. We determined the exact capacity of the BPIR problem to be

C = N−2B
N
· 1− T

N−2B

1−( T
N−2B

)M
. The capacity expression shows the severe degradation in the

retrieval rate in the presence of Byzantine databases. The expression shows that in

order to correct the errors introduced by the adversarial databases, the system needs

to have 2B redundant storage nodes. The retrieval rate is further penalized by the
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factor N−2B
N

, which reflects the ignorance of the user which N − 2B databases are

honest. The BPIR capacity converges to C → 1−2γ as B, N →∞, B = γN , where

γ is the fraction of Byzantine databases. For large enough number of messages, the

BPIR capacity approaches C → 1 − 2B+T
N

. We extended the optimal scheme for

the RPIR problem to permit error correction of any error pattern introduced by

the Byzantine databases. The new key ingredients in the achievable scheme are:

encoding the undesired messages via a punctured MDS code, successive interference

cancellation to remove the interfering messages, and encoding the desired message

by an outer-layer MDS code. For the converse, we adapted the cut-set bound, which

was originally derived for the network coding problem against adversarial nodes, for

the PIR setting.

The BPIR problem can be extended in several interesting directions. Accord-

ing to our formulation here, the capacities of unsynchronized and Byzantine PIR

problems are the same. However, in the unsynchronized PIR problem, if the user

knows in advance that at most S messages are mis-synchronized, and if S is small

with respect to M , the user can potentially achieve higher rates than our formu-

lation here, in particular, if it uses a multi-round scheme as in [7]. In addition, in

modeling the mis-synchronization, if we consider some specific attack/error patterns

(e.g., during mis-synchronization the stored data goes through a noisy channel with

a known model), then the user can tailor an error mitigation procedure that fits

these attack/error models explicitly, in contrast to our formulation here, where we

assumed that the user is prepared for the worst-case errors of any structure. Finally,

while we assumed that the B Byzantine databases can be any one of the
(
N
B

)
pos-
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sible subsets, the problem can be extended to the case where only a certain subset

of all possible
(
N
B

)
Byzantine configurations is possible as in [15] which considered

a limited collusion model.
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CHAPTER 5

Private Information Retrieval Under Asymmetric Traffic

Constraints

5.1 Introduction

In this chapter, we consider the classical setting of PIR of a single message (file) out

ofM messages fromN distributed databases under the new constraint of asymmetric

traffic from databases. In this problem, the ratios between the traffic from the

databases are constrained, i.e., the ratio of the length of the answer string that

the user (retriever) receives from the nth database to the total length of all answer

strings from all databases is constrained to be τn. This may happen if the user’s

access to the databases is restricted due to database availability, channel quality to

the databases, and other factors. For this problem, for fixed M , N , we develop a

general upper bound C̄(τ ), which generalizes the converse proof of Sun-Jafar [12],

where database symmetry was inherently used. Our converse bound is a piece-wise

affine function in the traffic ratio vector τ = (τ1, · · · , τN). For the lower bound, we

explicitly show the achievability of
(
M+N−1

M

)
corner points. For the remaining traffic

ratio vectors, we perform time-sharing between these corner points. The recursive
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structure of our achievability scheme is captured via a system of difference equations.

The upper and lower bounds exactly match for M = 2 and M = 3 for any N and

any τ . The results show strict loss of PIR capacity due to the asymmetric traffic

constraints compared with the symmetric case of Sun-Jafar [12] which implicitly

uses τn = 1
N

for all n.

5.2 System Model

Consider a classical PIR model with N non-communicating and replicated databases

storing M messages (or files). Each database stores the same set of messages W1:M =

{W1, · · · ,WM}. Messages W1:M are independent and identically distributed over all

vectors of size L picked from a finite field FLq , i.e.,

H(Wi) = L, i ∈ {1, · · · ,M} (5.1)

H(W1, · · · ,WM) = ML, (q-ary units) (5.2)

In the PIR problem, a user wants to retrieve a message Wi ∈ W1:M correctly

without revealing any information about the identity of the message i to any indi-

vidual database. To that end, the user submits a query Q
[i]
n to the nth database.

The messages and the queries are statistically independent due to the fact that the

user does not know the message realizations in advance, i.e.,

I(W1:M ;Q
[i]
1:N) = 0 (5.3)

166



where Q
[i]
1:N = {Q[i]

1 , · · · , Q[i]
N}. The nth database responds truthfully by an answer

string A
[i]
n . The answer string A

[i]
n is a deterministic function of the query Q

[i]
n and

all the messages W1:M , hence

H(A[i]
n |Q[i]

n ,W1:M) = 0, n ∈ {1, · · · , N} (5.4)

In the PIR model with asymmetric traffic constraints, the lengths of the an-

swer strings are different (see Fig. 5.1). More specifically, we assume that the nth

database responds with a tn-length answer string, such that tn = λnt1, where λn

is the ratio between the traffic from the nth database to the traffic from the first

database. Without loss of generality, we assume that the first database has the

highest traffic and the remaining databases are ordered descendingly in λn. Hence,

{λn}Nn=1 is a non-increasing monotone sequence with λ1 = 1, and λn ∈ [0, 1], i.e.,

H(A[i]
n ) ≤ λnt1, i ∈ {1, · · · ,M}, n ∈ {1, · · · , N}, 1 ≥ λ2 ≥ · · · ≥ λN (5.5)

We define the traffic ratio of the nth database τn as the ratio between the

traffic from the nth database and the total traffic from all databases, i.e.,

τn =
λn∑N
j=1 λj

(5.6)

We note that there is a one-to-one transformation between the vector λ =

(λ1, λ2, · · · , λN) and the vector τ = (τ1, τ2, · · · , τN). Thus, λ and τ are used inter-

changeably within the context of this chapter.
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Figure 5.1: PIR under asymmetric traffic constraints.

In order to ensure the privacy, at the nth database, the query Q
[i]
n designed

to retrieve Wi should be indistinguishable from the queries designed to retrieve any

other message, i.e.,

(Q[i]
n , A

[i]
n ,W1:M) ∼ (Q[j]

n , A
[j]
n ,W1:M), ∀j ∈ {1, · · · ,M} (5.7)

where ∼ denotes statistical equivalence.

In addition, the user should be able to reconstruct Wi from the collected

answer strings A
[i]
1:N with arbitrarily small probability of error. By Fano’s inequality,

we have the following reliability constraint,

H(Wi|Q[i]
1:N , A

[i]
1:N) = o(L) (5.8)

where o(L)
L
→ 0 as L→∞.
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For a fixed N , M , and a traffic ratio vector τ , a retrieval rate R(τ ) is achievable

if there exists a PIR scheme which satisfies the privacy constraint (5.7) and the

reliability constraint (5.8) for some message lengths L(τ ) and answer strings of

lengths {tn(τ )}Nn=1 that satisfy the asymmetric traffic constraint (5.5), such that

R(τ ) =
L(τ )∑N
n=1 tn(τ )

(5.9)

We note that in this problem, we do not constrain either the message length

L(τ ) or the lengths of the answer strings tn(τ ), but we rather constrain the ratios of

the traffic of each database with respect to the traffic of the first database. The pair

(L(τ ), t1(τ )) can grow arbitrarily large to conform with the information-theoretic

framework.

The capacity of the PIR problem under asymmetric traffic constraints C(τ )

is defined as the supremum of all achievable retrieval rates, i.e., C(τ ) = sup R(τ ).

5.3 Main Results and Discussions

Our first result is an upper bound on C(τ ) as a function of τ for any fixed M , N .

Theorem 5.1 (Upper bound) For the PIR problem under monotone non-

increasing asymmetric traffic constraints τ = (τ1, · · · , τN), the PIR capacity C(τ )
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is upper bounded by

C(τ ) ≤ C̄(τ ) = min
n1,··· ,nM−1∈{1,··· ,N}

1 +
∑N
n=n1+1 τn

n1
+
∑N
n=n2+1 τn

n1n2
+ · · ·+

∑N
n=nM−1+1 τn

n0n1···nM−1

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1
n0n1···nM−1

(5.10)

The proof of this upper bound is given in Section 5.4. We have the following

remarks.

Remark 5.1 The minimization in (5.10) is performed to obtain the tightest bound,

i.e., the bound in (5.10) is valid for any sequence of {ni}Ni=1 ⊂ {1, · · · , N}M−1. In

particular, restricting the minimization in the bound in (5.10) to monotone non-

decreasing sequences {ni}M−1
i=1 ⊂ {1, · · · , N}M−1 such that n1 ≤ n2 ≤ · · · ≤ nM−1 is

still a valid upper bound. For fixed M , N , the number of such monotone bounds is

(
M+N−2
M−1

)
.

Remark 5.2 The upper bound for the capacity function C̄(τ ) in (5.10) is a piece-

wise affine function in the traffic ratio vector τ .

Remark 5.3 The upper bound in (5.10) generalizes the known results about the

PIR problem. By picking n1 = · · · = nM−1 = N , (5.10) leads to

C(τ ) ≤ 1

1 + 1
N

+ 1
N2 + · · ·+ 1

NM−1

(5.11)

which is the capacity of PIR with symmetric traffic (no traffic constraints) in [12].

On the other hand, if τ = (1, 0, 0, · · · , 0), which implies that no traffic is returned

170



from any database except for the first one, by picking n1 = · · · = nM−1 = 1, the

upper bound in (5.10) leads to 1
M

, which is the capacity of the PIR problem with one

database [1].

The following corollary is a direct consequence of Theorem 5.1. The corollary

asserts that there is a strict capacity loss due to the asymmetric traffic constraints

if the traffic ratio of the weakest link falls below a certain threshold.

Corollary 5.1 (Asymmetry hurts) For the PIR problem under monotone non-

increasing asymmetric traffic constraints τ = (τ1, · · · , τN), if τN < τ ∗, such that

τ ∗ =
NM−1 − 1

NM − 1
, N > 1 (5.12)

then C(τ ) < C, where C = 1
1+ 1

N
+···+ 1

NM−1
is the PIR capacity without the asymmet-

ric traffic constraints in [12].

Proof: From Theorem 5.1, the upper bound corresponding to n1 = N − 1, and

n2 = · · · = nM−1 = N is strictly tighter than the capacity without asymmetric

traffic constraints C if

1 + τN
N−1

1 + 1
N−1

+ 1
(N−1)N

+ · · ·+ 1
(N−1)NM−1

< C (5.13)
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which leads to

τN
N − 1

(
1 +

1

N
+ · · ·+ 1

NM−1

)
<

(
1

N − 1
− 1

N

)(
1 +

1

N
+ · · ·+ 1

NM−2

)

(5.14)

which further simplifies to

τN <
1
N

(
1 + 1

N
+ · · ·+ 1

NM−2

)
(
1 + 1

N
+ · · ·+ 1

NM−1

) =

∑M−2
i=0 N i

∑M−1
i=0 N i

= τ ∗ (5.15)

which implies that the upper bound for the capacity under the asymmetric traffic

constraint is strictly less than C, which in turn implies that any achievable rate is

strictly less than the unconstrained capacity. �

Remark 5.4 As the number of messages M becomes large enough, i.e., as M →∞,

the traffic ratio threshold in (5.12) τ ∗ → 1
N

. This implies that as M → ∞, any

asymmetric traffic constraint incurs strict capacity loss.

Our second result is a lower bound on C(τ ) as a function of τ for any fixed

M , N .

Theorem 5.2 (Lower bound) For the PIR problem under asymmetric traffic

constraints, for a monotone non-decreasing sequence n = {ni}M−1
i=0 ⊂ {1, · · · , N}M ,

let n−1 = 0, and S = {i ≥ 0 : ni − ni−1 > 0}. Denote y`[k] as the number of stages

of the achievable scheme that downloads k-sums from the nth database, such that

n`−1 ≤ n ≤ n`, and ` ∈ S. Let ξ` =
∏

s∈S\{`}
(
M−2
s−1

)
. The number of stages y`[k] is
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characterized by the following system of difference equations:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj[k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj[k−1]

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1], ` ≥ 2

(5.16)

where δ[·] denotes the Kronecker delta function. The initial conditions of (5.16) are

y0[1] =
∏

s∈S
(
M−2
s−1

)
, and yj[k] = 0 for k ≤ j. Consequently, the traffic ratio vector

τ (n) = (τ1(n), · · · , τN(n)) corresponding to the sequence n = {ni}M−1
i=0 is given by:

τn(n) =

∑M
k=1

(
M
k

)
yj[k]

∑
`∈S
∑M

k=1

(
M
k

)
y`[k](n` − n`−1)

, nj−1 + 1 ≤ n ≤ nj (5.17)

and the achievable rate corresponding to τ (n) is given by:

R(τ (n)) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑M

k=1

(
M
k

)
y`[k](n` − n`−1)

(5.18)

Moreover, for τ =
∑N

i=1 αiτ (ni) for αi ≥ 0, for all i, and
∑N

i=1 αi = 1, the following

is a lower bound on C(τ ),

C(τ ) ≥ R(τ ) =
N∑

i=1

αiR(τ (ni)) (5.19)
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The proof of Theorem 5.2 can be found in Section 5.5. The theorem charac-

terizes an achievable rate for the corner points τ (n) corresponding to any monotone

non-decreasing sequence n = {ni}M−1
i=0 ⊂ {1, · · · , N}M . For any other traffic ratio

vector τ , the achievability scheme is obtained by time-sharing between the nearest

corner points. We note that due to the large number of corner points, we do not

provide an explicit achievable rate for each corner point but we rather describe the

achievable rate by a system of difference equations. The solution of this system of

difference equations specifies the traffic ratio vector τ (n) and the achievable rate

R(τ (n)) corresponding to the monotone non-decreasing sequence {ni}M−1
i=0 . We have

the following remarks.

Remark 5.5 If ni = N for all i ∈ {0, · · · ,M − 1}, then S = {0} and the number

of stages of k-sums is described by the following difference equation for any database

y[k] = (N − 1)y[k − 1] (5.20)

with initial condition of y[1] = 1. In this case τn = 1
N

for all n, and R =

1
1+ 1

N
+···+ 1

NM−1
, i.e., the scheme in Theorem 5.2 reduces to the symmetric scheme

in [12] if the sequence n = (N,N, · · · , N) is used.

Remark 5.6 We note that the sequence {ni}M−1
i=0 suffices to completely specify the

traffic ratio vector τ (n) for every corner point as a consequence of the monotonicity
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of the sequence, i.e.,

{ni}M−1
i=0 ⇒ (τ̃0, · · · , τ̃0︸ ︷︷ ︸

n0 elements

, τ̃1, · · · , τ̃1︸ ︷︷ ︸
(n1−n0) elements

, · · · , τ̃M−1, · · · , τ̃M−1︸ ︷︷ ︸
(nM−1−nM−2) elements

) (5.21)

where τ̃j =
∑M
k=1 (Mk )yj [k]∑

`∈S
∑M
k=1 (Mk )yj [k](n`−n`−1)

.

Remark 5.7 For fixed M , N , the number of corner points in Theorem 5.2 corre-

sponds to the number of monotone non-decreasing sequences n = {ni}M−1
i=0 , which is

(
M+N−1

M

)
.

The next corollary asserts that the achievable scheme in Theorem 5.2 is optimal

for M = 2 and M = 3 messages for any traffic ratio vector τ and any number of

databases N .

Corollary 5.2 (Capacity for M = 2 and M = 3 messages) For the PIR prob-

lem with asymmetric traffic constraints τ , the capacity C(τ ) for M = 2 and M = 3,

and for any arbitrary N is given by:

C(τ ) =





minn0∈{1,··· ,N}
1+ 1

n0

∑N
n=n0+1 τn

1+ 1
n0

, M = 2

minn0≤n1∈{1,··· ,N}
1+ 1

n0

∑N
n=n0+1 τn+ 1

n0n1

∑N
n=n1+1 τn

1+ 1
n0

+ 1
n0n1

, M = 3

(5.22)

The proof of Corollary 5.2 is given in Section 5.6.

Fig. 5.2 shows the PIR capacity under asymmetric constraints C(λ2) as a

function of λ2 (which is bijective to τ ) for the case of M = 3 messages and N = 2

databases. We note that the capacity C(λ2) is a piece-wise monotone curve in λ2,

which consists of
(
M+N−2
M−1

)
= 3 regimes. There exist

(
M+N−1

M

)
= 4 corner points.
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Figure 5.2: Capacity function C(λ2) for M = 3, N = 2.

Specific achievable schemes for the case of M = 3 and N = 2 are given in Sec-

tion 5.5.1. Each corner point shown in Fig. 5.2 corresponds to an explicit achievable

scheme given in Section 5.5.1.1. For any other point, time-sharing between corner

points is used to achieve these points as shown in Section 5.5.1.2.

Fig. 5.3 shows the capacity region C(λ2, λ3) for the case of M = 3 messages

and N = 3 databases as a function of the pair (λ2, λ3) (which is bijective to τ ).

Fig. 5.3 shows that there exist
(
M+N−1

M

)
= 10 corner points, and

(
M+N−2
M−1

)
= 6

regions. We show the capacity regions in terms of the triple (λ2, λ3, C(λ2, λ3)).

Furthermore, for every region we show the corresponding (n0, n1) to be plugged in

(5.22). The capacity for any point (λ2, λ3) other than the corner points is obtained

by time-sharing between the corner points that enclose (λ2, λ3). Specific achievable
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Figure 5.3: Illustration of corner points and regions of C(λ2, λ3) for M = 3, N = 3.

schemes for M = 3, N = 3 are given in Section 5.8.2.

Finally, in the following corollary, we specialize the achievable scheme in The-

orem 5.2 to the case of N = 2 for any arbitrary M .

Corollary 5.3 (Achievable traffic versus retrieval rate tradeoff for N = 2)

For the PIR problem with N = 2 and an arbitrary M under asymmetric traffic

constraints τ = (1 − τ2, τ2), τ2 ≤ 1
2
, let s2 ∈ {1, · · · ,M − 1}, for the traffic ratio

τ2(s2), where

τ2(s2) =

∑bM−s2−1
2 c

i=0

(
M

s2+2i+1

)

M
(
M−2
s2−1

)
+
∑M−s2−1

i=0

(
M

s2+1+i

) (5.23)
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the PIR capacity C(τ2(s2)) is lower bounded by:

C(τ2(s2)) ≥ R(τ2(s2)) =

(
M−2
s2−1

)
+
∑M−s2−1

i=0

(
M−1
s2+i

)

M
(
M−2
s2−1

)
+
∑M−s2−1

i=0

(
M

s2+1+i

) (5.24)

Moreover, if τ2(s2) < τ2 < τ2(s2 + 1), and α ∈ (0, 1), such that τ2 = ατ2(s2) + (1−

α)τ2(s2 + 1), then

C(τ2) ≥ R(τ2) = αR(τ2(s2)) + (1− α)R(τ2(s2 + 1)) (5.25)

The proof of Corollary 5.3 is given in Section 5.7.

Remark 5.8 Fig. 5.4 shows the tradeoff between the traffic ratio τ2 and the achiev-

able retrieval rate R(τ2). We note that as M increases R(τ2) decreases pointwise.

We observe that as M →∞, the rate-traffic tradeoff converges to R(τ2) = τ2. This

implies that for large enough M , our achievable scheme reduces to time-sharing be-

tween the trivial achievable scheme of downloading all the messages from database 1

which achieves a rate of 1
M

, and the asymptotically-optimal achievable scheme in [6]

which achieves R = 1− 1
N

.

5.4 Converse Proof

In this section, we derive an upper bound for the PIR problem with asymmetric

traffic constraints. We extend the converse techniques introduced in [12] to account

for the asymmetry of the returned answer strings.
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Figure 5.4: Achievable rate-traffic ratio tradeoff for N = 2.

We first need the following lemma, which characterizes a fundamental lower

bound on the interference from the undesired messages within the answer strings,

i.e., a lower bound on
∑N

n=1 tn−L, as a consequence of the privacy constraint. The

proof of this lemma can be found in [12, Lemma 5]. The proof follows for our case

since the privacy constraint does not change in the PIR with asymmetric traffic

constraints, and the fact that the proof in [12, Lemma 5] deals with the length of

the entire downloaded answer strings A
[1]
1:N and not the individual lengths of each

answer string, see [12, equations (46)-(47)].

Lemma 5.1 (Interference lower bound) For the PIR problem under asymmet-

ric traffic constraints {tn}Nn=1, the interference from undesired messages within the
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answer strings
∑N

n=1 tn − L is lower bounded as,

N∑

n=1

tn − L+ o(L) ≥ I
(
W2:M ;Q

[1]
1:N , A

[1]
1:N |W1

)
(5.26)

In the following lemma, we prove an inductive relation for the mutual infor-

mation term on the right hand side of (5.26). In this lemma, the interference lower

bound in (5.26) is expanded into two parts. The first part, which contains the an-

swer strings from the first nm−1 databases A
[m]
1:nm−1

, is dealt with as in the proof

of [12, Lemma 6]. For the second part, which contains the remaining answer strings

A
[m]
nm−1+1:N , each answer string A

[m]
n is bounded trivially by the length of the answer

string tn.

Lemma 5.2 (Induction lemma) For all m ∈ {2, . . . ,M} and for an arbitrary

nm−1 ∈ {1, · · · , N}, the mutual information term in Lemma 5.1 can be inductively

lower bounded as,

I
(
Wm:M ;Q

[m−1]
1:N , A

[m−1]
1:N |W1:m−1

)

≥ 1

nm−1

I
(
Wm+1:M ;Q

[m]
1:N , A

[m]
1:N |W1:m

)
+

1

nm−1

(
L− t1

N∑

n=nm−1+1

λn

)
− o(L)

nm−1

(5.27)

We note that [12, Lemma 6] can be interpreted as a special case of Lemma 5.2

with setting nm−1 = N . Intuitively, nm−1 represents the number of databases that

can apply the optimal symmetric scheme in [12] if the user wants to retrieve message

Wm−1 from the set of Wm−1:M messages (i.e., conditioned on W1:m−1).
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Proof: We start with the left hand side of (5.27) after multiplying by nm−1,

nm−1 I
(
Wm:M ;Q

[m−1]
1:N , A

[m−1]
1:N |W1:m−1

)

≥ nm−1 I
(
Wm:M ;Q

[m−1]
1:nm−1

, A
[m−1]
1:nm−1

|W1:m−1

)
(5.28)

≥
nm−1∑

n=1

I
(
Wm:M ;Q[m−1]

n , A[m−1]
n |W1:m−1

)
(5.29)

(5.7)
=

nm−1∑

n=1

I
(
Wm:M ;Q[m]

n , A[m]
n |W1:m−1

)
(5.30)

(5.3)
=

nm−1∑

n=1

I
(
Wm:M ;A[m]

n |Q[m]
n ,W1:m−1

)
(5.31)

(5.4)
=

nm−1∑

n=1

H
(
A[m]
n |Q[m]

n ,W1:m−1

)
(5.32)

≥
nm−1∑

n=1

H
(
A[m]
n |A[m]

1:n−1, Q
[m]
1:nm−1

,W1:m−1

)
(5.33)

(5.4)
=

nm−1∑

n=1

I
(
Wm:M ;A[m]

n |A[m]
1:n−1, Q

[m]
1:nm−1

,W1:m−1

)
(5.34)

= I
(
Wm:M ;A

[m]
1:nm−1

|Q[m]
1:nm−1

,W1:m−1

)
(5.35)

(5.3)
= I

(
Wm:M ;Q

[m]
1:nm−1

, A
[m]
1:nm−1

|W1:m−1

)
(5.36)

(5.3),(5.4)
= I

(
Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m−1

)

− I
(
Wm:M ;A

[m]
nm−1+1:N |Q

[m]
1:N , A

[m]
1:nm−1

,W1:m−1

)
(5.37)

(5.4)
= I

(
Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m−1

)
−H

(
A

[m]
nm−1+1:N |Q

[m]
1:N , A

[m]
1:nm−1

,W1:m−1

)

(5.38)

(5.5)

≥ I
(
Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m−1

)
− t1

N∑

n=nm−1+1

λn (5.39)

(5.8)
= I

(
Wm:M ;Wm, Q

[m]
1:N , A

[m]
1:N |W1:m−1

)
− t1

N∑

n=nm−1+1

λn − o(L) (5.40)
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= I (Wm:M ;Wm|W1:m−1) + I
(
Wm:M ;Q

[m]
1:N , A

[m]
1:N |W1:m

)
− t1

N∑

n=nm−1+1

λn−o(L)

(5.41)

= I
(
Wm+1:M ;Q

[m]
1:N , A

[m]
1:N |W1:m

)
+

(
L− t1

N∑

n=nm−1+1

λn

)
− o(L) (5.42)

where (5.28), (5.29) follow from the non-negativity of mutual information, (5.30)

follows from the privacy constraint, (5.31) follows from the independence of

(
Wm:M , Q

[m]
n

)
, (5.32),(5.34) follow from the fact that the answer string A

[m]
n is a

deterministic function of
(
Q

[m]
n ,W1:M

)
, (5.33) follows from conditioning reduces

entropy, (5.36) follows from the independence of
(
Wm:M , Q

[m]
1:nm−1

)
, (5.37) follows

from the chain rule, the independence of the queries and the messages, and the

fact that Q
[m]
1:N → Q

[m]
1:nm−1

→ A
[m]
1:nm−1

forms a Markov chain by (5.4), (5.38)

follows from the fact that the answer strings A
[m]
1:nm−1

are fully determined from

(
Q

[m]
1:N ,W1:M

)
, (5.39) follows from the fact that conditioning reduces entropy and

H(Anm−1+1:N) ≤ ∑N
n=nm−1+1 tn which is equal to t1

∑N
n=nm−1+1 λn from the asym-

metric traffic constraints, (5.40) follows from the reliability constraint. Finally,

dividing both sides by nm−1 leads to (5.27). �

Now, we are ready to derive an explicit upper bound for the retrieval rate under

asymmetric traffic constraints. Applying Lemma 5.1 and Lemma 5.2 successively

for an arbitrary sequence {ni}M−1
i=1 ⊂ {1, · · · , N}M−1 and observing that

∑N
n=1 tn =

t1
∑N

n=1 λn under the asymmetric traffic constraints, we have the following

t1

N∑

n=1

λn − L+ õ(L)
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(5.26)

≥ I
(
W2:M ;Q

[1]
1:N , A

[1]
1:N |W1

)
(5.43)

(5.27)

≥ 1

n1

(
L−t1

N∑

n=n1+1

λn

)
+

1

n1

I
(
W3:M ;Q

[2]
1:N , A

[2]
1:N |W1:2

)
(5.44)

(5.27)

≥ 1

n1

(
L−t1

N∑

n=n1+1

λn

)
+

1

n1n2

(
L−t1

N∑

n=n2+1

λn

)

+
1

n2

I
(
W4:M ;Q

[3]
1:N , A

[3]
1:N |W1:3

)
(5.45)

(5.27)

≥ . . .

(5.27)

≥ 1

n1

(
L−t1

N∑

n=n1+1

λn

)
+

1

n1n2

(
L−t1

N∑

n=n2+1

λn

)

+ · · ·+ 1∏M−1
i=1 ni


L−t1

N∑

n=nM−1+1

λn


 (5.46)

where õ(L) =
(

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

)
o(L), (5.43) follows from Lemma 5.1,

and the remaining bounding steps follow from successive application of Lemma 5.2.

Ordering terms, we have,

(
1 +

1

n1

+
1

n1n2

+· · ·+ 1∏M−1
i=1 ni

)
L ≤

(
1 +

γ(n1)

n1

+· · ·+ γ(nM−1)∏M−1
i=1 ni

)
t1

N∑

n=1

λn+õ(L)

(5.47)

where γ(`) =
∑N
n=`+1 λn∑N
n=1 λn

=
∑N

n=`+1 τn corresponds to the sum of the traffic ratios

from databases [`+ 1 : N ].

We conclude the proof by taking L → ∞. Thus, for an arbitrary sequence
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{ni}M−1
i=1 , we have

R(τ ) =
L

t1
∑N

n=1 λn
≤

1 + γ(n1)
n1

+ γ(n2)
n1n2

+ · · ·+ γ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(5.48)

Finally, we get the tightest bound by minimizing over the sequence {ni}M−1
i=1 over

the set {1, · · · , N}, as

R(τ ) ≤ min
n1,··· ,nM−1∈{1,··· ,N}

1 + γ(n1)
n1

+ γ(n2)
n1n2

+ · · ·+ γ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(5.49)

= min
n1,··· ,nM−1∈{1,··· ,N}

1 +
∑N
n=n1+1 τn

n1
+
∑N
n=n2+1 τn

n1n2
+ · · ·+

∑N
n=nM−1+1 τn∏M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(5.50)

Remark 5.9 From the converse proof, we note that we can intuitively interpret ni

as the number of databases that can apply the symmetric traffic scheme in [12] if the

number of messages is reduced to be M − i+ 1. We point out that in the absence of

asymmetric traffic constraints as in [12], all databases can apply symmetric schemes,

therefore ni = N for all i ∈ {1, · · · ,M − 1}. Now, since reducing the number of

messages cannot decrease the number of databases that apply the symmetric scheme

as the problem would be less constrained (in terms of the privacy constraint), which

leads to more flexibility in terms of satisfying the traffic constraints, it suffices to

evaluate the bound in (5.10) for monotone non-decreasing sequences {ni}M−1
i=1 ⊂

{1, · · · , N}M−1 such that n1 ≤ n2 ≤ · · · ≤ nM−1.
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5.5 Achievability Proof

The achievability scheme for the PIR problem under asymmetric traffic constraints

is inspired by the PIR schemes in [12, 29]. Our achievable scheme applies message

symmetry, and side information exploitation as in [12, 29]. However, due to the

asymmetric traffic constraints, database symmetry cannot be applied. In an al-

ternative view, we use the side information in an asymmetric fashion among the

databases. The most relevant achievable scheme to our achievable scheme here is

the scheme in [29], in which the bits stored in the user’s cache is exploited differently

depending on the caching ratio. We begin the discussion by presenting the M = 3,

N = 2 case as a concrete example to illustrate the main concepts of the scheme.

5.5.1 Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we show the achievability scheme for M = 3, N = 2. We first carry

out the minimization in (5.10) over n1, n2 ∈ {1, 2}. In this case, we have 4 upper

bounds (or effectively 3 bounds if n1 ≤ n2 restriction is applied). By taking the

minimum of these bounds for every λ2 ∈ [0, 1], we have the following explicit upper

bound on the capacity as a function of λ2 (which is in bijection to τ2)

C(λ2) ≤





1+3λ2

3(1+λ2)
, 0 ≤ λ2 ≤ 1

3

2(1+2λ2)
5(1+λ2)

, 1
3
≤ λ2 ≤ 3

4

4
7
, 3

4
≤ λ2 ≤ 1

(5.51)
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To show the achievability of the upper bound in (5.51), let ai, bi, ci denote

randomly and independently permuted symbols of messages W1, W2, W3, respec-

tively. Define s2 ∈ {0, 1, 2} to be the number of side information symbols that

are used simultaneously in database 2 within the initial round of downloads. First,

we show the achievability of the corner points, i.e., the achievability of the points

corresponding to λ2 ∈ {0, 1
3
, 3

4
, 1}.

5.5.1.1 Achievability of the Corner Points

The λ2 = 0 Corner Point: λ2 = 0 means that the second database does not return

any answer strings. The optimal achievable scheme is to download all files from the

first database (see Table 5.1). This scheme achieves R = 1
3

= C(0).

Table 5.1: The query table for M = 3, N = 2, λ2 = 0.

Database 1 Database 2
a1, b1, c1

The λ2 = 1 Corner Point: Since λ1 = 1 by definition, λ2 = 1 means that a

symmetric scheme can be applied to both databases. Thus, the optimal achievable

scheme is the optimal symmetric scheme in [12] (see Table 5.2). We present the

scheme here for completeness. In this scheme, the user starts with downloading the

individual symbols a1, b1, c1 from database 1. Since λ2 = 1, database symmetry can

be applied, hence the user downloads a2, b2, c2 from database 2. Note that in this

case, the user does not exploit the side information generated from database 1 in

the first round of downloads, but rather downloads new individual symbols, hence
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s2 = 0 in this case. The undesired symbols bi, ci, i = 1, 2 can be exploited in the

other database. This can be done by downloading a3 + b2, a4 + c2 from database 1,

and similarly by applying database symmetry, the user downloads a5 + b1, a6 + c1

from database 2. In order to satisfy the privacy constraint, the user applies the

message symmetry and downloads b3 +c3 from database 1, and b4 +c4 from database

2. Finally, the user exploits the newly generated side information by downloading

a7 + b4 + c4 from database 1, and a8 + b3 + c3 from database 2. Consequently, the

user downloads L = 8 symbols in 14 downloads which results in R = 8
14

= 4
7

= C(1).

Table 5.2: The query table for M = 3, N = 2, λ2 = 1.

Database 1 Database 2
a1, b1, c1 a2, b2, c2

a3 + b2 a5 + b1

a4 + c2 a6 + c1

b3 + c3 b4 + c4

a7 + b4 + c4 a8 + b3 + c3

The λ2 = 3
4

Corner Point: The user can cut the first round of downloads in database

2 and exploit the side information generated from database 1 directly in the form of

sums of 2, i.e., the user downloads a1, b1, c1 from database 1 and then exploits the

undesired symbols as side information by downloading a2 +b1, a3 +c1 from database

2. The user then applies message symmetry and downloads b2 + c2. Since the user

uses 1 bit of side information in the initial download round from database 2, s2 = 1

in this case. Finally, the user exploits the undesired sum b2 + c2 from database 2

as a side information in database 1 and downloads a4 + b2 + c2. Using this scheme

the user downloads 4 symbols from database 1 and 3 symbols from database 2,
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hence λ2 = 3
4
. The user downloads L = 4 desired symbols out of 7 downloads, thus

R = 4
7

= C(3
4
). The privacy is satisfied since W1, W2, W3 are independently and

randomly permuted, and since the scheme includes all the possible combinations of

the sums in any round. The query table for this scheme is given in Table 5.3. We

note that this scheme is exactly the asymmetric achievable scheme presented in [18].

Table 5.3: The query table for M = 3, N = 2, λ2 = 3
4
.

Database 1 Database 2
a1, b1, c1

a2 + b1

a3 + c1

b2 + c2

a4 + b2 + c2

The λ2 = 1
3

Corner Point: In this case, the user downloads a1, b1, c1 from database

1. In database 2, the user exploits the side information b1, c1 simultaneously and

downloads a2 + b1 + c1. Due to the fact that 2 side information symbols are used

simultaneously in the initial round of download from database 2, s2 = 2 in this case.

Using this scheme the user downloads 3 symbols from database 1 and 1 symbol

from database 2, therefore λ2 = 1
3
. The user downloads L = 2 desired symbols in 4

downloads, hence R = 1
2

= C(1
3
). The privacy follows by the same argument as in

the previous case. The query table for this case is given in Table 5.4.

Table 5.4: The query table for M = 3, N = 2, λ2 = 1
3
.

Database 1 Database 2
a1, b1, c1

a2 + b1 + c1
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5.5.1.2 Achievability of Non-Corner Points

In the following, we show that by combining the achievable schemes of the corner

points over different symbols, the upper bound in (5.51) is tight for any λ2. We note

that the privacy constraint is still satisfied after this combination as each scheme

operates over different sets of symbols and the fact that each scheme satisfies the

privacy constraint individually. A formal argument for proving that combination of

private schemes remains private can be found in [18, Theorem 4]. Let νs2 , where s2 =

0, 1, 2, denote the number of repetitions of the scheme that uses s2 side information

symbols simultaneously in the first round of download in database 2. By convention,

let ν3 denote the number of repetitions of the trivial retrieval scheme, i.e., when the

retrieval is solely done from database 1.

The 0 ≤ λ2 ≤ 1
3

Regime: We combine the achievable scheme of λ2 = 0 corner

point with the achievable scheme of λ2 = 1
3

corner point. The achievable scheme of

λ2 = 0 downloads 3 symbols from database 1 and 0 symbols from database 2. We

perform this scheme ν3 repetitions. The achievable scheme of λ2 = 1
3

downloads 3

symbols from database 1 and 1 symbol from database 2. We perform this scheme ν2

repetitions. Under the asymmetric traffic constraints, this results in the following

system of equations

3ν3 + 3ν2 = t1 (5.52)

ν2 = λ2t1 (5.53)
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This system has a unique solution (parametrized by t1) of ν2 = λ2t1 and ν3 = 1−3λ2

3
t1.

Note that ν3 ≥ 0 in the regime of 0 ≤ λ2 ≤ 1
3
. Since the scheme of λ2 = 0 downloads

1 symbol from the desired message and the scheme of λ2 = 1
3

downloads 2 symbols

from the desired message. The achievable rate R(λ2) is given by

R(λ2) =
2ν2 + ν3

(1 + λ2)t1
=

1 + 3λ2

3(1 + λ2)
= C(λ2), 0 ≤ λ2 ≤

1

3
(5.54)

The 1
3
≤ λ2 ≤ 3

4
Regime: Similarly, the user combines the achievable schemes of

λ2 = 1
3

and λ2 = 3
4

corner points. The user applies the scheme of λ2 = 1
3

for ν2

repetitions, which downloads 3 symbols from database 1 and 1 symbol from database

2 and has L = 2. The user applies the scheme of λ2 = 3
4

for ν1 repetitions, which

downloads 4 symbols from database 1 and 3 symbols from database 2 and has L = 4.

This results in the following system of equations

4ν1 + 3ν2 = t1 (5.55)

3ν1 + ν2 = λ2t1 (5.56)

which has the following solution: ν1 = −1+3λ2

5
t1 ≥ 0 and ν2 = 3−4λ2

5
t1 ≥ 0 in the

regime of 1
3
≤ λ2 ≤ 3

4
. Consequently, the achievable rate is given by

R(λ2) =
4ν1 + 2ν2

(1 + λ2)t1
=

2(1 + 2λ2)

5(1 + λ2)
= C(λ2),

1

3
≤ λ2 ≤

3

4
(5.57)
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The 3
4
≤ λ2 ≤ 1 Regime: The user combines the achievable schemes of λ2 = 3

4
and

λ2 = 1 corner points. The user repeats the scheme of λ2 = 3
4

for ν1 repetitions,

and the scheme of λ2 = 1 for ν0 repetitions. This results in the following system of

equations

4ν1 + 7ν0 = t1 (5.58)

3ν1 + 7ν0 = λ2t1 (5.59)

The solution for this system is given by: ν1 = (1− λ2)t1 ≥ 0 and ν0 = −3+4λ2

7
t1 ≥ 0

in the regime of 3
4
≤ λ2 ≤ 1. The corresponding rate is given by

R(λ2) =
4ν1 + 8ν0

(1 + λ2)t1
=

4

7
= C(λ2),

3

4
≤ λ2 ≤ 1 (5.60)

Specific Example for Non-Corner Points, λ2 = 1
2
: The query table for this case is

given in Table 5.5. The user applies the scheme of λ2 = 3
4

for ν1 = −1+3λ2

5
t1 = 1

10
t1

repetitions, and the scheme of λ2 = 1
3

for ν2 = 3−4λ2

5
t1 = 1

5
t1 repetitions. Choosing

t1 = 10, we have ν1 = 1 and ν2 = 2. The scheme downloads 10 symbols from

database 1 and 5 symbols from database 2, thus, λ2 = 1
2
. The scheme downloads 8

symbols in 15 downloads, hence R(1
2
) = 8

15
= 2(1+2λ2)

5(1+λ2)
= C(1

2
).

5.5.2 Description of the General Scheme

In this section, we describe the general achievable scheme that achieves the retrieval

rates in Theorem 5.2. We first show explicitly the achievability schemes for corner
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Table 5.5: The query table for M = 3, N = 2, λ2 = 1
2
.

Database 1 Database 2
a1, b1, c1 a2 + b1

a3 + c1

b2 + c2

a4 + b2 + c2

a5, b3, c3 a6 + b3 + c3

a7, b4, c4 a8 + b4 + c4

points, i.e., the achievability scheme for every monotone non-decreasing sequence

{ni}M−1
i=0 ⊂ {1, · · · , N}M . We note that our achievability scheme is different in two

key steps: First regarding the database symmetry, we note that it is not applied over

all databases directly as in [12], but rather it is applied over groups of databases,

such as, group 0 includes databases 1 through n0, group 1 includes databases n0 + 1

through n1, etc. Second, regarding the exploitation of side information step, we

note that each group of databases exploits side information differently in the initial

round of downloading. More specifically, we note that group 0 of databases do not

exploit any side information in the initial round of the download, group 1 exploits 1

side information symbol in the initial round of the download, group 2 exploits sums

of 2 side information symbols in the initial round of the download, and so on.

Next, we show that for non-corner points, time-sharing between corner points

is achievable and this concludes the achievability proof of Theorem 5.2.

5.5.2.1 Achievability Scheme for the Corner Points

Let sn ∈ {0, 1, · · · ,M − 1} denote the number of side information symbols that

are used simultaneously in the initial round of downloads at the nth database.
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For a given non-decreasing sequence {ni}M−1
i=0 ⊂ {1, · · · , N}M , let sn = i for all

ni−1 + 1 ≤ n ≤ ni with n−1 = 0 by convention. Denote S = {i : sn = i for some n ∈

{1, · · · , N}}. We follow the round and stage definitions in [123]. The kth round

is the download queries that admit a sum of k different messages (k-sum in [12]).

A stage of the kth round is a query block of the kth round that exhausts all
(
M
k

)

combinations of the k-sum. Denote y`[k] to be the number of stages in round k

downloaded from the nth database, such that n`−1 + 1 ≤ n ≤ n`. The details of the

achievable scheme are as follows:

1. Initialization: The user permutes each message independently and uniformly

using a random interleaver, i.e.,

xm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (5.61)

where xm(i) is the ith symbol of the permuted Wm, πm(·) is a random in-

terleaver for the mth message that is chosen independently, uniformly, and

privately at the user’s side. From the nth database where 1 ≤ n ≤ n0, the

user downloads
∏

s∈S
(
M−2
s−1

)
symbols from the desired message. The user sets

the round index k = 1. I.e., the user starts downloading the desired symbols

from y0[1] =
∏

s∈S
(
M−2
s−1

)
different stages.

2. Message symmetry: To satisfy the privacy constraint, for each stage initiated

in the previous step, the user completes the stage by downloading the remain-

ing
(
M−1
k−1

)
k-sum combinations that do not include the desired symbols, in
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particular, if k = 1, the user downloads
∏

s∈S
(
M−2
s−1

)
individual symbols from

each undesired message.

3. Database symmetry: Due to the asymmetric traffic constraints, the original

database symmetry step in [12] cannot be applied directly to our problem.

Instead, we divide the databases into groups. Group ` ∈ S corresponds to

databases n`−1 + 1 to n`. Database symmetry is applied within each group

only. Consequently, the user repeats step 2 over each group of databases, in

particular, if k = 1, the user downloads
∏

s∈S
(
M−2
s−1

)
individual symbols from

each message from the first n0 databases (group 1).

4. Exploitation of side information: This step is also different from [12] because

of the asymmetric traffic constraints. In order to create different lengths of the

answer strings, the initial exploitation of side information is group-dependent

as well. More specifically, the undesired symbols downloaded within the kth

round (the k-sums that do not include the desired message) are used as side

information in the (k + 1)th round. This exploitation of side information is

performed by downloading (k + 1)-sum consisting of 1 desired symbol and

a k-sum of undesired symbols only that were generated in the kth round.

However, the main difference from [12] is that for the nth database, if sn > k,

then this database does not exploit the side information generated in the kth

round. Thus, the nth database belonging to the `th group exploits the side

information generated in the kth round from all databases except itself if

sn ≤ k. Moreover, for sn = k, extra side information can be used in the nth
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database. This is because the user can form n0

∏
s∈S\{sn}

(
M−2
s−1

)
extra stages

of side information by constructing k-sums of the undesired symbols in round

1 from the databases in group 0.

5. Repeat steps 2, 3, 4 after setting k = k + 1 until k = M .

6. Shuffling the order of the queries: By shuffling the order of the queries uni-

formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

5.5.2.2 Achievability Scheme for Non-Corner Points

In this section, we show that achievability schemes for non-corner points can be de-

rived by time-sharing between the nearest corner points, i.e., the achievable scheme

under τ constraints is performed by time-sharing between the corner points of an

N -dimensional polytope that enclose the traffic vector τ . The following lemma for-

malizes the time-sharing argument. Lemma 5.3 can be thought of as an adaptation

of [18, Theorem 4] and [28, Lemma 1] to the PIR problem under asymmetric traffic

constraints.

Lemma 5.3 (Time-sharing) For the PIR problem under asymmetric traffic con-

straints τ , let the retrieval rate R(τi) be achievable for the traffic ratio vector τi for

all i ∈ {1, · · · , N}. Moreover, assume that τ =
∑N

i=1 αiτi for some {αi}Ni=1 such

that αi ≥ 0, for all i, and
∑N

i=1 αi = 1. Then, the following retrieval rate R(τ ) is
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achievable,

R(τ ) =
N∑

i=1

αiR(τi) (5.62)

Proof: Let PIRi denote the PIR scheme that achieves retrieval rate R(τi) for a traf-

fic ratio vector τi. Denote the total download of PIRi by Di and the corresponding

message length by Li.

Now, construct the following PIR scheme with total download D and message

length L. For each database, concatenate the queries from the N PIR schemes with

ensuring that each symbol is queried by one PIR scheme only. Hence, D =
∑N

i=1 Di,

such that Di = αiD, for i ∈ {1, · · · , N}, and the download from the nth database is

tn(τ ) =
∑N

i=1 tn(τi). This concatenation of the achievable schemes is feasible under

asymmetric traffic constraints since τ =
∑N

i=1 αiτi. To see this, we note that the

nth element of the traffic ratio vector τn is given by

τn =
tn(τ )

D
=

∑N
i=1 tn(τi)

D
=

∑N
i=1 τ

(i)
n Di

D
=

∑N
i=1 τ

(i)
n αiD

D
=

N∑

i=1

αiτ
(i)
n (5.63)

where τ
(i)
n denotes the nth element in τi. Since these implications are true for each

element in τ , we have τ =
∑N

i=1 αiτi as required.

PIRi scheme downloads Li symbols from the desired messages, such that

Li = R(τi)Di = αiR(τi)D (5.64)
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Hence, the total message length by concatenating all the achievable schemes together

is

L =
N∑

i=1

Li =
N∑

i=1

αiR(τi)D (5.65)

and the corresponding achievable rate is given by

R(τ ) =
L

D
=

N∑

i=1

αiR(τi) (5.66)

The reliability constraint follows from the reliability of each PIR scheme. The

privacy constraint is satisfied due to the fact that each PIR scheme operates on

a different portion of the messages and these portions are picked uniformly and

independently. Hence, the privacy constraint for the concatenated scheme follows

from the privacy of each PIR scheme. A formal treatment of the privacy constraint

of concatenated schemes can be found in [18]. �

Thus, Lemma 5.3 provides an achievability proof for any traffic ratio vector

τ that is not a corner point. Finally, we have the following remark regarding this

time-sharing lemma.

Remark 5.10 We note that although the vector λ = (λ1, · · · , λN) is in bijection

with τ = (τ1, · · · , τN), the time-sharing argument in Lemma 5.3 does not hold for

R(λ). This is due to the fact that R(λ) is a non-linear function of λ whereas R(τ )

is an affine function of τ .

197



5.5.3 Decodability, Privacy, and Calculation of the Achievable Rate

In this section, we prove the decodability, privacy and the achievable rate in Theo-

rem 5.2. We note that it suffices to consider the corner points only, as Lemma 5.3

settles the decodability, privacy and achievable rate for non-corner points based on

the existence of feasible PIR schemes that achieve the corner points.

Decodability: By construction, in the (k + 1)th round at the nth database, the

user exploits the side information generated in the kth round in the remaining

active databases by adding 1 symbol of the desired message with (k − 1)-sum of

undesired messages which was downloaded previously in the kth round. Moreover,

for the nth database belonging to the `th group at the (` + 1)th round, the user

adds every ` symbols of the undesired symbols downloaded from group 0 to make

one side information symbol. Since the user downloads
∏

`∈S
(
M−2
`−1

)
symbols from

every database in the first n0 databases (group 0), the user can exploit such side

information to initiate n0

∏
`∈S\{`}

(
M−2
`−1

)
stages in the (` + 1)th round from every

database in group `. Since all side information symbols used in the (k+ 1)th round

are decodable in the kth round or from round 1, the user cancels out these side

information symbols and is left with symbols from the desired message.

Privacy: For every stage of the kth round initiated in the exploitation of the side

information step, the user completes the stage by including all the remaining
(
M−1
k−1

)

undesired symbols. This implies that all
(
M
k

)
combinations of the k-sum are in-

cluded at each round. Thus, the structure of the queries is the same for any desired
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message. The privacy constraint in (5.7) is satisfied by the random and independent

permutation of each message and the random shuffling of the order of the queries.

This ensures that all queries are equally likely independent of the desired message

index.

Calculation of the Achievable Rate: For a corner point characterized by the non-

decreasing sequence {ni}M−1
i=0 , as mentioned before, we denote y`[k] to be the number

of stages that admit k-sums downloaded from any database belonging to the `th

group, i.e., the nth database such that n`−1 + 1 ≤ n ≤ n`. By construction, we

observe that all databases belonging to the `th group are inactive until the (`+1)th

round as the user initiates download in such databases by exploiting ` bits of side

information simultaneously by definition of the group. Consequently, we have the

initial condition y`[k] = 0 for k ≤ `. Since the user downloads
∏

s∈S
(
M−2
s−1

)
individual

symbols (i.e., from round 1) from group 0, we have the following initial condition

y0[1] =
∏

s∈S
(
M−2
s−1

)
.

Now, we note from the side information exploitation step that the user initiates

new stages in the kth round from the nth database depending on the number of

stages of the (k − 1)th round for group 0 and group 1 (i.e., for 1 ≤ n ≤ n1). More

specifically, for the nth database belonging to group 0, the user considers all the

undesired symbols downloaded from all databases (except the nth database) in the

(k − 1)th round as side information. Since database symmetry applies over each

group, and from the fact that each stage in the (k − 1)th round initiates a stage in
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the kth round, we have

y0[k] = (n0 − 1)y0[k − 1] +
∑

`∈S\{0}
(n` − n`−1)y`[k − 1] (5.67)

where the left side is the total number of stages in the (k − 1)th round from all the

N − 1 databases (i.e., except for the nth database that belongs to group 0). The

same argument holds for group 1 as well, hence

y1[k] = (n1 − n0 − 1)y1[k − 1] +
∑

`∈S\{1}
(n` − n`−1)y`[k − 1] (5.68)

where (n1− n0− 1) denotes the number of databases in group 1 other than the nth

database.

For a database belonging to the `th group such that ` ≥ 2, the user can

generate extra stages by exploiting the symbols downloaded in round 1. To initiate

one stage in the (`+ 1)th round, the user needs to combine symbols from
(M−1

` )`
M−1

=

(
M−2
`−1

)
stages. Therefore, the number of stages initiated in the (` + 1)th round as

a consequence of the side information in round 1 is ξ` = y0[1]

(M−2
`−1 )

=
∏

s∈S\{`}
(
M−2
s−1

)
.

Since these extra side information can be used once (at the (`+1)th round only) and

after that for the kth round, the database exploits the side information generated in

the (k−1)th round only. We represent this one-time exploitation of side information

in the (` + 1)th round by the Kronecker delta function δ[k − `− 1]. Consequently,

the number of stages for the `th group, ` ≥ 2 is related via the following difference
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equation:

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1] (5.69)

Now, we are ready to characterize τ (n) and R(τ (n)) in terms of y`[k], where

` ∈ S and k = 1, · · · ,M . For any stage in the kth round, the user downloads

(
M−1
k−1

)
desired symbols from a total of

(
M
k

)
downloads. Therefore, from a database

belonging to the `th group, the user downloads
∑M

k=1

(
M−1
k−1

)
y`[k] desired symbols

from a total of
∑M

k=1

(
M
k

)
y`[k]. The number of databases belonging to the `th group

is given by n` − n`−1. Therefore, the total download is given by,

N∑

n=1

tn(τ (n)) =
∑

`∈S

M∑

k=1

(
M

k

)
y`[k](n` − n`−1) (5.70)

Thus, the traffic ratio of the nth database belonging to the `th group (i.e.,

n`−1 + 1 ≤ n ≤ n`) corresponding to n = {ni}M−1
i=0 is given by

τn(n) = τ̃` =

∑M
k=1

(
M
k

)
y`[k]

∑
`∈S
∑M

k=1

(
M
k

)
y`[k](n` − n`−1)

, n`−1 + 1 ≤ n ≤ n` (5.71)

Furthermore, the total desired symbols from all databases is given by

L(τ (n)) =
∑

`∈S

M∑

k=1

(
M − 1

k − 1

)
y`[k](n` − n`−1) (5.72)
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which further leads to the following achievable rate

R(τ (n)) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑M

k=1

(
M
k

)
y`[k](n` − n`−1)

(5.73)

5.6 Optimality of M = 2 and M = 3 Cases

In this section, we prove Corollary 5.2, i.e., we prove that the capacity of the PIR

problem under asymmetric traffic constraints C(τ ) for M = 2, 3 is given by (5.22).

We note that since the upper bound in Theorem 5.1 is affine in τ and time-sharing

rates are achievable from Lemma 5.3, it suffices to prove the optimality of all corner

points to settle the PIR capacity C(τ ) for M = 2, 3. In the following, we use

Theorem 5.1 and Theorem 5.2 to show the optimality of these corner points.

5.6.1 M = 2 Messages

We start the proof from the achievability side. From Theorem 5.2, the corner points

are specified by the non-decreasing sequence n = (n0, n1). In this case, the system

of difference equations in (5.16) is reduced to

y0[k] = (n0 − 1)y0[k − 1] (5.74)

y1[k] = n0y0[k − 1] (5.75)
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for k = 1, 2, where y0[1] = 1, and y1[1] = 0. Hence, y0[2] = n0 − 1, and y1[2] = n0.

Hence, the total downloads for the corner point n = (n0, n1) is

N∑

n=1

tn(τ (n)) =
1∑

`=0

2∑

k=1

(
2

k

)
y`[k](n` − n`−1) = n0(n1 + 1) (5.76)

Thus, from Theorem 5.2, the traffic-ratio vector τ (n) is given by

τ̃0 =

(
2
1

)
y0[1] +

(
2
2

)
y0[2]

∑N
n=1 tn(τ (n))

=
n0 + 1

n0(n1 + 1)
(5.77)

τ̃1 =

(
2
1

)
y1[1] +

(
2
2

)
y1[2]

∑N
n=1 tn(τ (n))

=
1

n1 + 1
(5.78)

where τn = τ̃0, for 1 ≤ n ≤ n0, and τn = τ̃1, for n0 + 1 ≤ n ≤ n1, and τn = 0

otherwise. For the desired symbols, the user downloads L0(τ (n)) symbols from the

nth database when 1 ≤ n ≤ n0, and L1(τ (n)) symbols from the nth database when

n0 + 1 ≤ n ≤ n1

L0(τ (n)) = y0[1] + y0[2] = n0 (5.79)

L1(τ (n)) = y1[1] + y1[2] = n0 (5.80)

Consequently, L = n0L0 + (n1 − n0)L1 = n0n1, and the achievable retrieval rate

R(τ (n)) is given by

R(τ (n)) =
L(τ (n))∑N
n=1 tn(τ (n))

=
n1

n1 + 1
(5.81)
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For the converse, we evaluate the bound in (5.10) (without the minimization)

for n1 = n0, i.e., we substitute with n0 in the argument of the upper bound. Then,

we have the following upper bound

R(τ (n)) ≤
1 +

∑N
n=n0+1 τn

n0

1 + 1
n0

(5.82)

=
1 + (n1−n0)τ̃1

n0

1 + 1
n0

(5.83)

=
n1

n1 + 1
(5.84)

This concludes the optimality of our achievable scheme for M = 2.

5.6.2 M = 3 Messages

Similarly, for the corner point specified by the non-decreasing sequence n =

(n0, n1, n2), we have the following system of difference equations for k = 1, 2, 3

y0[k] = (n0 − 1)y0[k − 1] + (n1 − n0)y1[k − 1] + (n2 − n1)y2[k − 1] (5.85)

y1[k] = n0y0[k − 1] + (n1 − n0 − 1)y1[k − 1] + (n2 − n1)y2[k − 1] (5.86)

y2[k] = n0δ[k − 3] + n0y0[k − 1] + (n1 − n0)y1[k − 1] + (n2 − n1 − 1)y2[k − 1]

(5.87)

with the initial conditions y0[1] = 1, y1[1] = 0, and y2[1] = y2[2] = 0. Evaluating

y`[k], for ` = 0, 1, 2, and k = 1, 2, 3 recursively leads to y0[2] = n0 − 1, y1[2] = n0,

y0[3] = n1n0 − 2n0 + 1, y1[3] = n1n0 − 2n0, and y2[3] = n1n0. This leads to the
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following total download

N∑

n=1

tn(τ (n)) =
2∑

`=0

3∑

k=1

(
3

k

)
y`[k](n` − n`−1) = n0(n1n2 + n1 + 1) (5.88)

The sequence n = (n0, n1, n2) specifies the traffic ratio vector τ (n) such that

τ̃0 =
n0n1 + n0 + 1

n0(n2n1 + n1 + 1)
(5.89)

τ̃1 =
n1 + 1

n2n1 + n1 + 1
(5.90)

τ̃2 =
n1

n2n1 + n1 + 1
(5.91)

where τn = τ̃0 for 1 ≤ n ≤ n0, τn = τ̃1 for n0+1 ≤ n ≤ n1, τ = τ̃2 for n1+1 ≤ n ≤ n2,

and τn = 0 otherwise.

For the desired symbols, the user downloads L0(τ (n)) symbols from the nth

database if 1 ≤ n ≤ n0, L1(τ (n)) symbols if n0 +1 ≤ n ≤ n1, and L2(τ (n)) symbols

if n1 + 1 ≤ n ≤ n2, hence

L`(τ (n)) =
3∑

k=1

(
2

k − 1

)
y`[k] = n0n1, ` = 0, 1, 2 (5.92)

Consequently, the following rate is achievable

R(τ (n)) =
n1n2

n1n2 + n1 + 1
(5.93)

For the converse, pick (n1, n2) in the converse bound to be (n0, n1), which
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leads to the following bound

R(τ (n)) ≤
1 +

∑N
n=n0+1 τn

n0
+
∑N
n=n1+1 τn

n0n1

1 + 1
n0

+ 1
n0n1

(5.94)

=
1 + (n1−n0)τ̃1

n0
+ (n2−n1)τ̃2

n0
+ (n2−n1)τ̃2

n0n1

1 + 1
n0

+ 1
n0n1

(5.95)

=
n1n2

n1n2 + n1 + 1
(5.96)

This concludes the optimality of our achievable scheme for M = 3.

Remark 5.11 We note that, surprisingly, for the corner points of the cases M = 2

and M = 3, the number of desired symbols downloaded from each active database

is the same irrespective to the traffic ratio of the database; see (5.79)-(5.80) for

M = 2 and (5.92) for M = 3. This suggests that at these corner points, the optimal

scheme performs combinatorial water-filling for the undesired symbols first, i.e., the

nth active database downloads tn − n0 undesired symbols for M = 2 and tn − n0n1

undesired symbols for M = 3, and then downloads the same number of desired

symbols from all active databases.

5.7 Achievable Tradeoff for N = 2 and Arbitrary M

For the special case of N = 2, and an arbitrary M , the retrieval rate calculation

in Theorem 5.2 is significantly simplified. Let s2 ∈ {0, · · · ,M − 1} be the number

of side information symbols that are used simultaneously in the initial round of

download at the second database. Note that there is a bijection between s2 and

the non-decreasing sequence n as n0 = n1 = · · · = ns2−1 = 1, and ns2 = 2 for
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any corner point other than the corner point corresponding to the trivial scheme of

downloading the contents of the first database.

The user starts with downloading
(
M−2
s2−1

)
stages of individual symbols (i.e.,

the user downloads M
(
M−2
s2−1

)
symbols in round 1 from all messages) from the first

database to create 1 stage in the (s2+1)th round. After the initial exploitation of side

information, the two databases exchange side information. More specifically, from

database 1 in the (s2 + 2k)th round, where k = 1, · · · ,
⌊
M−s2

2

⌋
, the user exploits the

side information generated in database 2 in the (s2 + 2k − 1)th round to download

(
M−1

s2+2k−1

)
desired symbols (by adding one symbol of the desired symbols to the

(s2 +2k−1)-sum of undesired symbols generated in database 2) from total download

in the (s2 + 2k)th round of
(

M
s2+2k

)
. Similarly from database 2, in the (s2 + 2k+ 1)th

round, where k = 0, · · · ,
⌊
M−s2−1

2

⌋
, the user exploits the side information generated

in database 1 in the (s2 + 2k)th round, and downloads
(
M−1
s2+2k

)
desired symbols from

total of
(

M
s2+2k+1

)
downloads in the (s2 + 2k + 1)th round.

Consequently, we have

t1(s2) = M

(
M − 2

s2 − 1

)
+

bM−s22 c∑

k=1

(
M

s2 + 2k

)
(5.97)

t2(s2) =

bM−s2−1
2 c∑

k=0

(
M

s2 + 2k + 1

)
(5.98)

which further leads to the following total download

t1(s2) + t2(s2) = M

(
M − 2

s2 − 1

)
+

M−s2−1∑

k=0

(
M

s2 + k + 1

)
(5.99)

207



Thus, the traffic ratio τ2(s2) is given by

τ2(s2) =
t2(s2)

t1(s2) + t2(s2)
=

∑bM−s2−1
2 c

k=0

(
M

s2+2k+1

)

M
(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M

s2+k+1

) (5.100)

The total number of desired symbols is given by

L(s2) =

(
M − 2

s2 − 1

)
+

bM−s22 c∑

k=1

(
M − 1

s2 + 2k − 1

)
+

bM−s2−1
2 c∑

k=0

(
M − 1

s2 + 2k

)
(5.101)

=

(
M − 2

s2 − 1

)
+

M−s2−1∑

k=0

(
M − 1

s2 + k

)
(5.102)

Thus, the following rate is achievable for N = 2 and arbitrary M

R(s2) =
L(s2)

t1(s2) + t2(s2)
=

(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M−1
s2+k

)

M
(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M

s2+k+1

) (5.103)

5.8 Further Examples

In this section, we present further examples to clarify the achievable scheme for

some additional tractable values of M , N .

5.8.1 M = 4 Messages, N = 2 Databases

In this example, we show that the achievable rate R(τ2) does not match the upper

bound C̄(τ2) for all traffic ratios τ2. For M = 4, we have M + 1 = 5 corner

points, corresponding to s2 = {0, 1, 2, 3} and another corner point corresponding

to the trivial scheme of downloading the contents of database 1. Let ai, bi, ci, di
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denote the randomly permuted symbols of messages W1,W2,W3,W4, respectively.

Then, R(0) = 1
4

by trivially downloading a1, b1, c1, d1 from database 1. In addition,

R(1
2
) =

1− 1
2

1−( 1
2

)4 = 8
15

using the symmetric scheme in [12].

Corner Point s2 = 1: (See the query table in Table 5.6.) The user uses 1 bit of

side information in database 2, hence the user starts downloading from round 2

(that admits 2-sums). The user exploits the side information generated in round

1 by downloading a2 + b1, a3 + c1, and a4 + d1. The user completes the stage by

downloading undesired symbols consisting of 2-sums that do not include ai, hence

the user downloads b2 + c2, b3 + d2, c3 + d3. The undesired symbols are exploited

in database 1, thus the user downloads a5 + b2 + c2, a6 + b3 + d2, and a7 + c3 + d3.

The user completes the stage by downloading b4 + c4 + d4, which can be exploited

in database 2 by downloading a8 + b4 + c4 + d4. In this case, the user downloads 8

symbols from database 1 and 7 symbols from database 2, hence we have τ2 = 7
15

.

Since the user downloads L = 8 desired symbols, the achievable rate R( 7
15

) = 8
15

.

Table 5.6: The query table for M = 4, N = 2, s2 = 1 (corresponding to τ2 = 7
15

).

Database 1 Database 2
a1, b1, c1, d1

a2 + b1

a3 + c1

a4 + d1

b2 + c2

b3 + d2

c3 + d3

a5 + b2 + c2

a6 + b3 + d2

a7 + c3 + d3

b4 + c4 + d4

a8 + b4 + c4 + d4
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Corner Point s2 = 2: (See the query table in Table 5.7.) The user downloads

(
M−2
s2−1

)
= 2 stages of individual symbols (1-sum) from database 1, so that the user

forms 2-sums that can be used in database 2 as side information to start round 3

directly, i.e., by forming 2-sums as side information from the individual symbols,

the user effectively skips round 2. More specifically, the user downloads a3 + b1 + c1,

a4 + b2 + d1, a5 + c2 + d2 from database 2 taking into considerations that all these

undesired symbols are decodable from database 1. The user completes the stage by

downloading b3 +c3 +d3 that can be further exploited in database 1 by downloading

a6 + b3 + c3 + d3. In this case, the user downloads 9 symbols from database 1 and

4 symbols from database 2, therefore τ2 = 4
13

. The user downloads L = 6 desired

symbols, thus, R( 4
13

) = 6
13

.

Table 5.7: The query table for M = 4, N = 2, s2 = 2 (corresponding to τ2 = 4
13

).

Database 1 Database 2
a1, b1, c1, d1

a2, b2, c2, d2

a3 + b1 + c1

a4 + b2 + d1

a5 + c2 + d2

b3 + c3 + d3

a6 + b3 + c3 + d3

Corner Point s2 = 3: (See the query table in Table 5.8.) In this case, the user

skips rounds 2, 3 and jumps directly to round 4 at database 2. Therefore, the user

downloads a2+b1+c1+d1 from database 2, which uses b1+c1+d1 as side information

which is decodable from database 1. Thus, we have τ2 = 1
5
, and the corresponding

rate R(1
5
) = 2

5
.
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Table 5.8: The query table for M = 4, N = 2, s2 = 3 (corresponding to τ2 = 1
5
).

Database 1 Database 2
a1, b1, c1, d1

a2 + b1 + c1 + d1

Comparison with the Upper Bound: The upper bound in Theorem 5.1 can be

explicitly expressed as:

R(τ2) ≤





1
4

+ 3τ2
4
, 0 ≤ τ2 ≤ 1

5

2
7

+ 4τ2
7
, 1

5
≤ τ2 ≤ 3

8

4
11

+ 4τ2
11
, 3

8
≤ τ2 ≤ 7

15

8
15
, 7

15
≤ τ2 ≤ 1

2

(5.104)

We observe that for all the corner points of the achievable scheme, the upper and

lower bounds match. However, the upper bound has an extra corner point (3
8
, 1

2
)

which is not achievable using time-sharing. This is illustrated in Fig. 5.5

5.8.2 M = 3 Messages, N = 3 Databases

In this example, we show the capacity-achieving scheme for M = 3, N = 3 (the

capacity region is illustrated in Fig. 5.3 as a function of C(λ2, λ3)). Let ai, bi, ci

denote the permuted symbols of messages W1,W2,W3, respectively. We show here

only the query tables for achieving non-trivial corner points. In this case, we have

(
M+N−1

M

)
= 10 corner points corresponding to non-decreasing sequences (n0, n1, n2).

For the pair (τ2, τ3) = (0, 0), the achievable scheme is the trivial scheme that
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Figure 5.5: Upper and lower bounds for R(τ2) for M = 4, N = 2.

downloads a1, b1, c1 from the first database only achieving R(0, 0) = 1
3
. For the cor-

ner point (1
4
, 0), this is exactly the same corner point presented in Section 5.5.1.1 (for

λ2 = 1
3
) as τ3 = 0, which effectively reduces the problem to N = 2 databases. The

achievable scheme for this corner point is illustrated in Table 5.4, hence R(1
4
, 0) = 1

2
.

For the corner point (3
7
, 0), again this point reduces to 2 databases. The achievable

scheme is given in Table 5.3, and R(3
7
, 0) = 4

7
. For the corner point (1

3
, 1

3
), which is

the symmetric-traffic point, the achievable scheme is the symmetric scheme in [12],

which achieves R(1
3
, 1

3
) = 9

13
. For the corner point (1

2
, 0), we can apply the sym-

metric achievable scheme for N = 2 databases only as τ3 = 0 in this case, hence

R(1
2
, 0) = 4

7
.

Now, we focus on the non-trivial corner points. As mentioned previously, the
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pair (s2, s3) is in bijection with the sequence (n0, n1, n2). Therefore, we enumerate

the remaining cases using the pair (s2, s3).

Corner Point (s2, s3) = (0, 1): In this case, the user does not use the side infor-

mation generated in database 1 within the initial download of database 2 (s2 = 0),

hence the user downloads new individual symbols from database 2. The user uses

1 bit of side information in database 3 in its round of download (round 2). These

side information symbols come from database 1 and database 2. The query table

for this case is shown in Table 5.9. In this case, we have (τ2, τ3) = ( 9
26
, 4

13
), and the

achievable rate is R( 9
26
, 4

13
) = 9

13
.

Table 5.9: The query table for M = 3, N = 3, (s2, s3) = (0, 1) (i.e., (τ2, τ3) =
( 9

26
, 4

13
)).

Database 1 Database 2 Database 3
a1, b1, c1 a2, b2, c2

a3 + b2 a5 + b1 a7 + b1

a4 + c2 a6 + c1 a8 + c1

b3 + c3 b4 + c4 b5 + c5

a9 + b2

a10 + c2

b6 + c6

a11 + b4 + c4 a14 + b3 + c3 a17 + b3 + c3

a12 + b5 + c5 a15 + b5 + c5 a18 + b4 + c4

a13 + b6 + c6 a16 + b6 + c6

Corner Point (s2, s3) = (0, 2): The user does not exploit the side information gen-

erated from database 1 in the first round of download at database 2. The user

uses 2 side information symbols simultaneously in the initial round (round 3) of

download at database 3. Note that in round 3 database 3 receives side information

from rounds 1 and 2 of databases 1 and 2. The query table for this case is shown
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in Table 5.10. In this case, we have (τ2, τ3) = ( 7
18
, 2

9
), and the achievable rate is

R( 7
18
, 2

9
) = 2

3
.

Table 5.10: The query table for M = 3, N = 3, (s2, s3) = (0, 2) (i.e., (τ2, τ3) =
( 7

18
, 2

9
)).

Database 1 Database 2 Database 3
a1, b1, c1 a2, b2, c2

a3 + b2 a5 + b1

a4 + c2 a6 + c1

b3 + c3 b4 + c4

a7 + b4 + c4 a8 + b3 + c3 a9 + b1 + c1

a10 + b2 + c2

a11 + b3 + c3

a12 + b4 + c4

Corner Point (s2, s3) = (1, 1): In this case, both databases 2 and 3 exploit the side

information generated from database 1 in their initial round of download (round

1). The query table for this case is shown in Table 5.11. In this case, we have

(τ2, τ3) = ( 4
13
, 4

13
), and the achievable rate is R( 4

13
, 4

13
) = 9

13
.

Table 5.11: The query table for M = 3, N = 3, (s2, s3) = (1, 1) (i.e., (τ2, τ3) =
( 4

13
, 4

13
)).

Database 1 Database 2 Database 3
a1, b1, c1

a2 + b1 a4 + b1

a3 + c1 a5 + c1

b2 + c2 b3 + c3

a6 + b2 + c2 a8 + b3 + c3 a9 + b2 + c2

a7 + b3 + c3

Corner Point (s2, s3) = (1, 2): In this case, database 2 exploits 1 side information in

its initial download (round 2), while database 3 skips to round 3 directly. Database

3 receives side information from the round 1 of database 1 and round 2 of database
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2. The query table for this case is shown in Table 5.12. In this case, we have

(τ2, τ3) = (1
3
, 2

9
), and the achievable rate is R(1

3
, 2

9
) = 2

3
.

Table 5.12: The query table for M = 3, N = 3, (s2, s3) = (1, 2) (i.e., (τ2, τ3) =
(1

3
, 2

9
)).

Database 1 Database 2 Database 3
a1, b1, c1

a2 + b1

a3 + c1

b2 + c2

a4 + b2 + c2 a5 + b1 + c1

a6 + b2 + c2

Corner Point (s2, s3) = (2, 2): Both databases 2 and 3 skip round 1 and 2 of

downloads and go directly to round 3, in which they exploits 2 side information

symbols simultaneously. The query table for this case is shown in Table 5.13. In

this case, we have (τ2, τ3) = (1
5
, 1

5
), and the achievable rate is R(1

5
, 1

5
) = 3

5
.

Table 5.13: The query table for M = 3, N = 3, (s2, s3) = (2, 2) (i.e., (τ2, τ3) =
(1

5
, 1

5
)).

Database 1 Database 2 Database 3
a1, b1, c1

a2 + b1 + c1 a3 + b1 + c1

5.9 Conclusions

In this chapter, we introduced the PIR problem under asymmetric traffic constraints

τ . We investigated the fundamental limits of this problem by developing the novel

upper bound C̄(τ ) = minn1,··· ,nM−1∈{1,··· ,N}
1+

∑N
n=n1+1 τn

n1
+

∑N
n=n2+1 τn

n1n2
+···+

∑N
n=nM−1+1 τn

n0n1···nM−1

1+ 1
n1

+ 1
n1n2

+···+ 1
n0n1···nM−1

,

for some integer sequence {ni}Ni=1 ⊂ {1, · · · , N}M−1. The upper bound generalizes
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the converse proof in [12], which inherently utilizes database symmetry. The upper

bound is a piece-wise affine function in τ . The upper bound implies a strict capacity

loss due to the asymmetric traffic constraints for certain cases. We developed explicit

achievable schemes for
(
M+N−1

M

)
corner points, and achieved the remaining points by

time-sharing. We described the achievable scheme by means of a system of difference

equations. We explicitly derived the achievable rate for N = 2 and arbitrary M .

We proved that the upper bound and the lower bound exactly match for every τ

for the cases of M = 2 and M = 3 for any N .
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CHAPTER 6

Noisy Private Information Retrieval

6.1 Introduction

In this chapter, we consider the problem of noisy private information retrieval

(NPIR) from N non-communicating databases, each storing the same set of M

messages. In this model, the answer strings are not returned through noiseless bit

pipes, but rather through noisy memoryless channels. We aim at characterizing the

PIR capacity for this model as a function of the statistical information measures of

the noisy channels such as entropy and mutual information. We derive a general

upper bound for the retrieval rate in the form of a max-min optimization. We use

the achievable schemes for the PIR problem under asymmetric traffic constraints

and random coding arguments to derive a general lower bound for the retrieval rate.

The upper and lower bounds match for M = 2 and M = 3, for any N , and any noisy

channel. The results imply that separation between channel coding and retrieval is

optimal except for adapting the traffic ratio from the databases. We refer to this as

almost separation.

Next, we consider the private information retrieval problem from multiple
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access channels (MAC-PIR). In MAC-PIR, the database responses reach the user

through a multiple access channel (MAC) that mixes the responses together in a

stochastic way. We show that for the additive MAC and the conjunction/disjunction

MAC, channel coding and retrieval scheme are inseparable unlike in NPIR. We show

that the retrieval scheme depends on the properties of the MAC, in particular on the

linearity aspect. For both cases, we provide schemes that achieve the full capacity

without any loss due to the privacy constraint, which implies that the user can

exploit the nature of the channel to improve privacy. Finally, we show that the full

unconstrained capacity is not always attainable by determining the capacity of the

selection channel.

6.2 System Model

We consider a classical PIR model with N replicated and non-communicating

databases storing M messages. Each database stores the same set of messages

W1:M = {W1, · · · ,WM}. The mth message Wm is an L-length binary (without loss

of generality) vector picked uniformly from FL2 . The messages W1:M are independent

and identically distributed, i.e.,

H(Wm) =L, m ∈ {1, · · · ,M} (6.1)

H(W1:M) =ML (6.2)

In PIR, a user wants to retrieve a message Wi reliably and privately. To that

end, the user submits N queries Q
[i]
1:N = {Q[i]

1 , · · · , Q[i]
N}, one for each database.
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Since the user does not have any information about the message set in advance, the

queries and the messages are statistically independent,

I(W1:M ;Q
[i]
1:N) = 0, i ∈ {1, · · · ,M} (6.3)

The nth database responds to Q
[i]
n with a tn-length answer string A

[i]
n =

(X
[i]
n,1, · · · , X [i]

n,tn). The nth answer string is a deterministic function of the mes-

sages W1:M and the query Q
[i]
n , hence,

H(A[i]
n |W1:M , Q

[i]
n ) = 0, n ∈ {1, · · · , N}, i ∈ {1, · · · ,M} (6.4)

In noisy PIR with orthogonal links (NPIR, see Fig. 6.1), the user receives

the nth answer string via a discrete memoryless channel (response channel) with a

transition probability p(yn|xn). In this model, the noisy channels are orthogonal,

in the sense that the noisy answer strings do not interact (mix). Thus, the user

receives a noisy answer string Ã
[i]
n = (Y

[i]
n,1, · · · , Y [i]

n,tn). Therefore, we have,

P
(
Ã[i]
n = (y

[i]
n,1, · · · , y[i]

n,tn)|A[i]
n = (x

[i]
n,1, · · · , x[i]

n,tn)
)

=
tn∏

ηn=1

p
(
y[i]
n,ηn|x[i]

n,ηn

)
(6.5)

Consequently, (W1:M , Q
[i]
n ) → A

[i]
n → Ã

[i]
n forms a Markov chain. Let us denote the

channel capacity of the nth response channel by Cn, denote,

Cn = max
p(xn)

I(Xn;Yn) (6.6)
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Figure 6.1: The noisy PIR (NPIR) problem.

whereXn, Yn are the single-letter input and output pair for the nth response channel.

Without loss of generality, assume that the channel capacities are ordered such that

C1 ≥ C2 ≥ · · · ≥ CN , i.e., the channel capacities form a non-increasing sequence.

Let C = (C1, · · · , CN) be the vector of the channel capacities.

We note that, in general, the user and the databases can agree on suitable

lengths {tn}Nn=1 for the answer strings, which may not be equal in general, such

that they maximize the retrieval rate. Let us define the traffic ratio vector τ =

(τ1, · · · , τN) as,

τn =
tn∑N
j=1 tj

, n ∈ {1, · · · , N} (6.7)

To ensure privacy, the queries Q
[i]
1:N should be designed such that the query to
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the nth database does not reveal any information about i. We can write the privacy

constraint as

(Q[i]
n , A

[i]
n ,W1:M) ∼ (Q[j]

n , A
[j]
n ,W1:M), ∀i, j ∈ {1, · · · ,M} (6.8)

We note that from privacy constraint and due to the Markov chain

(W1:M , Q
[i]
n ) → A

[i]
n → Ã

[i]
n , we may write that (Q

[i]
n , A

[i]
n , Ã

[i]
n ,W1:M ,W1:M) ∼

(Q
[j]
n , A

[j]
n , Ã

[j]
n ,W1:M), ∀i, j ∈ {1, · · · ,M}.

In addition, the user should be able to reconstruct the desired message Wi by

observing the noisy answer strings Ã
[i]
1:N with arbitrarily small probability of error

Pe(L), i.e., Pe(L)→ 0 as L→∞. Hence, from Fano’s inequality, we have,

H(Wi|Q[i]
1:N , Ã

[i]
1:N) ≤ 1 + Pe(L) · L = o(L) (6.9)

where o(L)
L
→ 0 as L→∞.

For a fixed traffic ratio vector τ , the retrieval rate R(τ ,C) is achievable if

there exists a sequence of retrieval schemes, indexed by the message length L, that

satisfy the privacy constraint (6.8) and the reliability constraint (6.9) with answer

string lengths {tn}Nn=1 that conform with (6.7), thus,

R(τ ,C) = lim
L→∞

L∑N
n=1 tn

(6.10)

Consequently, the retrieval rate R(C) is the supremum of R(τ ,C) over all

traffic ratio vectors in T = {(τ1, · · · , τN) : τn ≥ 0 ∀n,∑N
n=1 τn = 1}. The PIR
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capacity for this model CPIR(C) is given by

CPIR(C) = sup R(C) (6.11)

where the supermum is over all achievable retrieval schemes.

6.3 Main Results and Discussions on NPIR

In this section, we present the main results of the NPIR problem. The first result

gives an upper bound for the NPIR problem.

Theorem 6.1 (Upper bound) For NPIR with noisy links of capacities C =

(C1, · · · , CN), the retrieval rate is upper bounded by,

CPIR(C)≤ C̄PIR(C)=max
τ∈T

min
ni∈{1,···,N}

∑N
n=1 τnCn+

∑N
n=n1+1 τnCn

n1
+· · ·+

∑N
n=nM−1+1 τnCn∏M−1

i=1 ni

1+ 1
n1

+· · ·+ 1∏M−1
i=1 ni

(6.12)

where T =
{
τ : τn ≥ 0 ∀n ∈ [1 : N ],

∑N
n=1 τn = 1

}
.

The proof of this upper bound is given in Section 6.4. The second result gives

an achievability scheme for the NPIR problem.

Theorem 6.2 (Lower bound) For NPIR with noisy links of capacities C =

(C1, · · · , CN), for a monotone non-decreasing sequence n = {ni}M−1
i=0 ⊂

{1, · · · , N}M , let n−1 = 0, and S = {i ≥ 0 : ni − ni−1 > 0}. Denote y`[k] to

be the number of stages of the achievable scheme that downloads k-sums from the
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nth database in one repetition of the scheme, such that n`−1 ≤ n ≤ n`, and ` ∈ S.

Let ξ` =
∏

s∈S\{`}
(
M−2
s−1

)
. The number of stages y`[k] is characterized by the following

system of difference equations:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj[k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj[k−1]

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1], ` ≥ 2

(6.13)

where δ[·] is the Kronecker delta function. The initial conditions of (6.13) are y0[1] =

∏
s∈S
(
M−2
s−1

)
, and yj[k] = 0 for k ≤ j. Then, the achievable rate corresponding to n

is given by:

R(n,C) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

Cn

(6.14)

Consequently, the capacity CPIR(C) is lower bounded by:

CPIR(C) ≥ R(C) = max
n0≤···≤nM−1∈{1,··· ,N}

R(n,C) (6.15)

= max
n0≤···≤nM−1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

Cn

(6.16)

The proof of this lower bound is given in Section 6.5. We have the following

remarks.
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Remark 6.1 The upper and lower bounds for the retrieval rate are similar to the

corresponding bounds for the PIR-WTC-II problem [124] after replacing the secrecy

capacity of WTC-II, 1−µn, with the capacity of the noisy link Cn. Thus, the NPIR

problem inherits all the structural remarks of the PIR-WTC-II problem.

Remark 6.2 The upper and lower bounds for the retrieval rate do not depend explic-

itly on the transition probabilities of the noisy channels p(yn|xn), but rather depend

on the capacities of the noisy channels Cn.

Remark 6.3 Theorem 6.1 and Theorem 6.2 imply that the channel coding needed

for combating channel errors is “almost seperable” from the retrieval scheme. The

channel coding problem and the retrieval problem are coupled only through agreeing

on a traffic ratio vector τ . Other than τ , the channel coding acts as an outer code

for the responses of the databases to the user queries. Interestingly, the result implies

that our schemes work even for heterogeneous channels, e.g., if N = 2, the channel

from one database can be a BSC, and the channel from the other database can be a

BEC.

Remark 6.4 Our results imply that randomized strategies for PIR cannot increase

the retrieval rate. We can view the noisy channel between the user and the database

as a randomizer for the actions of the databases, which is available to the databases

but not available to the user. Since the capacity expression does not depend on

p(yn|xn) and is always maximized by Cn = 1, any randomizing strategy p(yn|xn)

cannot enhance the retrieval rate.

224



Corollary 6.1 (Exact capacity for M = 2 and M = 3 messages) For NPIR,

the capacity CPIR(C) for M = 2, 3, and an arbitrary N is given by:

CPIR(C)=





maxn0,n1∈{1,··· ,N}
n0n1∑n0

n=1
n0+1
Cn

+
∑n1
n=n0+1

n0
Cn

, M = 2

maxn0,n1,n2∈{1,··· ,N}
n0n1n2∑n0

n=1
n0n1+n0+1

Cn
+
∑n1
n=n0+1

n0n1+n0
Cn

+
∑n2
n=n1+1

n0n1
Cn

, M = 3

(6.17)

The proof of Corollary 6.1 follows from the optimality of the PIR-WTC-II

scheme in [124] for M = 2 and M = 3 messages by replacing 1− µn by Cn.

Example: The capacity for NPIR from BSC(p1), BSC(p2), N = 2, M = 3:

To show how Theorem 6.1 reduces to Corollary 6.1 for M = 3, we apply Theorem 6.1

to the case of M = 3, N = 2, and the links to the user are BSC(p1), and BSC(p2).

From Theorem 6.1, we can write the upper bound for the achievable retrieval rate

as:

R(C) ≤ max
τ∈T

min
ni∈{1,2}

∑N
n=1 τnCn +

∑N
n=n1+1 τnCn

n1
+
∑N
n=n2+1 τnCn

n1n2

1 + 1
n1

+ 1
n1n2

(6.18)

where Cn = 1−H(pn).

By observing τ2 = 1 − τ1 and the fact that Cn is monotonically decreasing

in pn for pn ∈ (0, 1
2
) (which implies that p1 ≤ p2 satisfies C1 ≥ C2), (6.18) can be

explicitly written as the following linear program:

max
τ2,R

R
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s.t. R ≤ 1

3
(1−H(p1)) +

[
(1−H(p2))− 1

3
(1−H(p1))

]
τ2

R ≤ 2

5
(1−H(p1)) +

[
4

5
(1−H(p2))− 2

5
(1−H(p1))

]
τ2

R ≤ 4

7
(1−H(p1)) +

[
4

7
(1−H(p2))− 4

7
(1−H(p1))

]
τ2

0 ≤ τ2 ≤ 1 (6.19)

The bound corresponding to n1 = 2, n2 = 1 is inactive for all values of (p1, p2). Since

(6.19) is a linear program, its solution resides at the corner points of the feasible

region. The first corner point occurs at τ
(1)
2 = 0, which corresponds to the upper

bound R ≤ 1−H(p1)
3

. The second corner point is at the intersection of the first two

constraints, i.e.,

1

3
(1−H(p1)) +

[
(1−H(p2))− 1

3
(1−H(p1))

]
τ

(2)
2

=
2

5
(1−H(p1)) +

[
4

5
(1−H(p2))− 2

5
(1−H(p1))

]
τ

(2)
2

(6.20)

which leads to,

τ
(2)
2 =

1−H(p1)

3(1−H(p2)) + (1−H(p1))
(6.21)

which corresponds to the upper bound R ≤ 2
3

1−H(p1)
+ 1

1−H(p2)

. Similarly, by observing

the intersection between the last two constraints, we have the following upper bound

R ≤ 4
4

1−H(p1)
+ 3

1−H(p2)

, which is achieved at τ
(3)
2 = 3(1−H(p1))

4(1−H(p2))+3(1−H(p1))
. Consequently,
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Figure 6.2: Partitions of (p1, p2) space according to retrieval rate expression for
M = 3, N = 2.

an explicit upper bound for the retrieval rate is:

R ≤ max

{
1−H(p1)

3
,

2
3

1−H(p1)
+ 1

1−H(p2)

,
4

4
1−H(p1)

+ 3
1−H(p2)

}
(6.22)

In Section 6.5.1, we will show how these rates can be achieved, hence (6.22) is

the exact capacity. This capacity result is illustrated in Fig. 6.2. The figure shows

the partitioning of the (p1, p2) (by convention p1 ≤ p2) space according to the active

capacity expression. When the ratio 2 < 1−H(p1)
1−H(p2)

≤ 3, CPIR(p1, p2) = 2
3

1−H(p1)
+ 1

1−H(p2)

.

When the ratio 1−H(p1)
1−H(p2)

≤ 2, CPIR(p1, p2) = 4
4

1−H(p1)
+ 3

1−H(p2)

, otherwise, CPIR(p1, p2) =

1−H(p1)
3

. Interestingly, Fig. 6.2 shows that the dominant strategy for most (p1, p2)
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Figure 6.3: Capacity function CPIR(p1, p2) for M = 3, N = 2.

pairs is to rely only on database 1 for the retrieval process. The capacity function

CPIR(p1, p2) is shown in Fig. 6.3. The figure shows that the maximum value for the

capacity is CPIR(0, 0) = 4
7
, which is consistent with [12]. The figure also shows that

CPIR(0.5, 0.5) = 0, as the answer strings become independent of the user queries.

We observe that CPIR(0, p2) = 1
3

for p2 ≥ H−1(2
3
) = 0.1737, since the retrieval is

performed only from database 1, which is connected to the user via a noiseless link.

Remark 6.5 We will show in Section 6.5 that channel coding and retrieval schemes

for NPIR are almost separable. Nevertheless, the final capacity expression couples

the capacity of the noisy channels and the retrieval rates from databases with noise-

less links in a non-trivial way. We illustrate the capacity expression in (6.22) by
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Figure 6.4: Circuit analogy for the capacity expression of PIR from BSC(p1),
BSC(p2).

means of circuit theory analogy in Fig. 6.4. The current from the current source rep-

resents the number of desired bits, the voltage across the current source corresponds

to the achievable retrieval rate, and the channel effect of the link connected to the nth

database is abstracted via a parallel resistor, whose value depends on the capacity of

the channel and the total download from the nth database. Intuitively, to maximize

the retrieval rate, the user chooses one of the three circuits in Fig. 6.4. The circuits

are arranged ascendingly in the number of the desired bits (namely, 1, 2, 4 bits),

while the values of the resistors decrease, as the total download increases and/or due

to adding extra parallel branch. This results in a tension between conveying more de-

sired bits and decreasing the equivalent resistor of the circuit. The capacity-achieving

scheme is the one which maximizes the product of these contradictory effects (i.e.,

the voltage).

6.4 Converse Proof for NPIR

In this section, we derive a general upper bound for the NPIR problem. The main

idea of the converse hinges on the fact that the traffic from the databases should be

dependent on the relative channel qualities (i.e., channel capacities) of the response
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channels. Thus, we extend the converse proof in Chapter 5 to account for the noisy

observations.

We will need the following lemma, which characterizes the channel effect on

the noisy answer strings. The lemma states that the remaining uncertainty on a

subset of answer strings after revealing the queries and the message set is a sum of

single-letter conditional entropies of the noisy channels over the lengths of the answer

strings. The lemma is a consequence of the Markov chain (W1:M , Q
[m]
1:N , Ã

[m]
1:n−1) →

A
[m]
n → Ã

[m]
n .

Lemma 6.1 (Channel effect) For any subset S ⊆ {1, · · · , N} for all m ∈

{1, · · · ,M}, the remaining uncertainty on the noisy answer strings Ã
[m]
S given

(W1:M , Q
[m]
1:N) is given by,

H(Ã
[m]
S |W1:M , Q

[m]
1:N) =

∑

n∈S

tn∑

ηn=1

H
(
Y [m]
n,ηn|X [m]

n,ηn

)
(6.23)

Furthermore, (6.23) is true if conditioned on the complementary subset of the noisy

answer strings Ã
[m]

S̄ , i.e.,

H(Ã
[m]
S |W1:M , Q

[m]
1:N , Ã

[m]

S̄ ) =
∑

n∈S

tn∑

ηn=1

H
(
Y [m]
n,ηn|X [m]

n,ηn

)
(6.24)

where S̄ = {1, · · · , N} \ S.
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Proof: We start with the left hand side of (6.23),

H(Ã
[m]
S |W1:M , Q

[m]
1:N) =

∑

n∈S
H(Ã[m]

n |Ã[m]
1:n−1,W1:M , Q

[m]
1:N) (6.25)

(6.4)
=
∑

n∈S
H(Ã[m]

n |Ã[m]
1:n−1,W1:M , Q

[m]
1:N , A

[m]
n ) (6.26)

=
∑

n∈S
H(Ã[m]

n |A[m]
n ) (6.27)

=
∑

n∈S

tn∑

ηn=1

H(Y [m]
n,ηn|X

[m]
n,1 , · · · , X [m]

n,tn , Yn,1, · · · , Y
[m]
n,ηn−1) (6.28)

(6.5)
=
∑

n∈S

tn∑

ηn=1

H(Y [m]
n,ηn|X [m]

n,ηn) (6.29)

where (6.26) follows from the fact that A
[m]
n is a deterministic function of

(W1:M , Q
[m]
n ), (6.27) follows from the fact that (W1:M , Q

[m]
1:N , Ã

[m]
1:n−1) → A

[m]
n → Ã

[m]
n

is a Markov chain, (6.29) follows from the fact that the channel is memoryless.

The proof of (6.24) follows similarly by observing that

(W1:M , Q
[m]
1:N , Ã

[m]
1:n−1, Ã

[m]

S̄ )→ A
[m]
n → Ã

[m]
n is a Markov chain as well. �

We need the following lemma which upper bounds the mutual information

between the noisy answer strings and the interfering messages with a linear function

of the channel capacities.

Lemma 6.2 (Noisy interference bound) For NPIR, the mutual information be-

tween the interfering messages W2:M and the noisy answer strings Ã
[1]
1:N given the

desired message W1 is upper bounded by,

I
(
W2:M ;Q

[1]
1:N , Ã

[1]
1:N |W1

)
≤

N∑

n=1

tnCn − L+ o(L) (6.30)
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Proof: We start with the left hand side of (6.30),

I(W2:M ;Q
[1]
1:N ,Ã

[1]
1:N |W1)

(6.2)
= I

(
W2:M ;W1, Q

[1]
1:N , Ã

[1]
1:N

)
(6.31)

=I
(
W2:M ;Q

[1]
1:N , Ã

[1]
1:N

)
+ I

(
W2:M ;W1|Q[1]

1:N , Ã
[1]
1:N

)
(6.32)

(6.9)

≤ I
(
W2:M ;Q

[1]
1:N , Ã

[1]
1:N

)
+ o(L) (6.33)

(6.3)
= I

(
W2:M ; Ã

[1]
1:N |Q

[1]
1:N

)
+ o(L) (6.34)

=H
(
Ã

[1]
1:N |Q

[1]
1:N

)
−H

(
Ã

[1]
1:N |W2:M , Q

[1]
1:N

)
+ o(L) (6.35)

=H
(
Ã

[1]
1:N |Q

[1]
1:N

)
−H

(
Ã

[1]
1:N ,W1|W2:M , Q

[1]
1:N

)

+H
(
W1|W2:M , Q

[1]
1:N , Ã

[1]
1:N

)
+ o(L) (6.36)

(6.9)

≤ H
(
Ã

[1]
1:N |Q

[1]
1:N

)
−H

(
Ã

[1]
1:N ,W1|W2:M , Q

[1]
1:N

)
+ o(L) (6.37)

=H
(
Ã

[1]
1:N |Q

[1]
1:N

)
−H

(
W1|W2:M , Q

[1]
1:N

)
−H

(
Ã

[1]
1:N |W1:M , Q

[1]
1:N

)
+o(L)

(6.38)

(6.23)

≤
N∑

n=1

tn∑

ηn=1

[
H
(
Y [1]
n,ηn

)
−H

(
Y [1]
n,ηn|X [1]

n,ηn

)]
− L+ o(L) (6.39)

=
N∑

n=1

tn∑

ηn=1

I
(
X [1]
n,ηn ;Y [1]

n,ηn

)
− L+ o(L) (6.40)

≤
N∑

n=1

tnCn − L+ o(L) (6.41)

where (6.31) follows from the independence of the messages, (6.33), (6.37) follow

from the decodability of W1 given (Q
[1]
1:N , Ã

[1]
1:N), (6.34) follows from the indepen-

dence of (W2:M , Q
[1]
1:N), (6.39) follows from the independence of (W1,W2:M , Q

[1]
1:N),

Lemma 6.1, and the fact that conditioning cannot increase entropy, (6.41) follows
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from the fact that I
(
X

[m]
n,ηn ;Y

[m]
n,ηn

)
≤ Cn by the definition of the nth channel capac-

ity. �

Finally, in order to capture the recursive structure of the problem in terms of

the messages and to express the potential asymmetry of the optimal scheme, we will

need the following lemma, which inductively lower bounds the mutual information

term in Lemma 6.2. The lemma implies that nm−1 databases can apply a symmetric

scheme when the retrieval problem is reduced to retrieving message Wm−1 from the

set of Wm−1:M messages. For the remaining answer strings, we directly bound them

by their corresponding length of the unobserved portion
∑N

n=nm−1+1 tnCn.

Lemma 6.3 (Noisy induction lemma) For all m ∈ {2, . . . ,M} and for an ar-

bitrary nm−1 ∈ {1, · · · , N}, the mutual information term in Lemma 6.2 can be

inductively lower bounded as,

I
(
Wm:M ;Q

[m−1]
1:N , Ã

[m−1]
1:N |W1:m−1

)

≥ 1

nm−1

I
(
Wm+1:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m

)
+

1

nm−1

(
L−

N∑

n=nm−1+1

tnCn

)
− o(L)

nm−1

(6.42)

Proof: We start with the left hand side of (6.42) after multiplying by nm−1,

nm−1 I
(
Wm:M ;Q

[m−1]
1:N , Ã

[m−1]
1:N |W1:m−1

)

≥ nm−1 I
(
Wm:M ;Q

[m−1]
1:nm−1

, Ã
[m−1]
1:nm−1

|W1:m−1

)
(6.43)

≥
nm−1∑

n=1

I
(
Wm:M ;Q[m−1]

n , Ã[m−1]
n |W1:m−1

)
(6.44)
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(6.8)
=

nm−1∑

n=1

I
(
Wm:M ;Q[m]

n , Ã[m]
n |W1:m−1

)
(6.45)

(6.3)
=

nm−1∑

n=1

I
(
Wm:M ; Ã[m]

n |Q[m]
n ,W1:m−1

)
(6.46)

=

nm−1∑

n=1

H
(
Ã[m]
n |Q[m]

n ,W1:m−1

)
−H

(
Ã[m]
n |Q[m]

n ,W1:M

)
(6.47)

≥
nm−1∑

n=1

H
(
Ã[m]
n |Ã[m]

1:n−1, Q
[m]
1:nm−1

,W1:m−1

)
−H

(
Ã[m]
n |Ã[m]

1:n−1, Q
[m]
1:nm−1

,W1:M

)

(6.48)

=

nm−1∑

n=1

I
(
Wm:M ; Ã[m]

n |Ã[m]
1:n−1, Q

[m]
1:nm−1

,W1:m−1

)
(6.49)

= I
(
Wm:M ; Ã

[m]
1:nm−1

|Q[m]
1:nm−1

,W1:m−1

)
(6.50)

(6.3)
= I

(
Wm:M ;Q

[m]
1:nm−1

, Ã
[m]
1:nm−1

|W1:m−1

)
(6.51)

(6.3),(6.4)
= I

(
Wm:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m−1

)

− I
(
Wm:M ; Ã

[m]
nm−1+1:N |Q

[m]
1:N , Ã

[m]
1:nm−1

,W1:m−1

)
(6.52)

= I
(
Wm:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m−1

)
−H

(
Ã

[m]
nm−1+1:N |Q

[m]
1:N , Ã

[m]
1:nm−1

,W1:m−1

)

+H
(
Ã

[m]
nm−1+1:N |Q

[m]
1:N , Ã

[m]
1:nm−1

,W1:M

)
(6.53)

(6.24)

≥ I
(
Wm:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m−1

)

−
N∑

n=nm−1+1

tn∑

ηn=1

[
H
(
Y [m]
n,ηn

)
−H

(
Y [m]
n,ηn|X [m]

n,ηn

)]
(6.54)

(6.9)

≥ I
(
Wm:M ;Wm, Q

[m]
1:N , Ã

[m]
1:N |W1:m−1

)
−

N∑

n=nm−1+1

tn∑

ηn=1

I
(
X [m]
n,ηn ;Y [m]

n,ηn

)
− o(L)

(6.55)

= I (Wm:M ;Wm|W1:m−1) + I
(
Wm:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m

)

−
N∑

n=nm−1+1

tn∑

ηn=1

I
(
X [m]
n,ηn ;Y [m]

n,ηn

)
− o(L) (6.56)
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= I
(
Wm+1:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m

)
+

(
L−

N∑

n=nm−1+1

tn∑

ηn=1

I
(
X [m]
n,ηn ;Y [m]

n,ηn

)
)
− o(L)

(6.57)

≥ I
(
Wm+1:M ;Q

[m]
1:N , Ã

[m]
1:N |W1:m

)
+

(
L−

N∑

n=nm−1+1

tnCn

)
− o(L) (6.58)

where (6.43), (6.44) follow from the non-negativity of mutual information, (6.45)

follows from the privacy constraint, (6.46) follows from the independence of

(
Wm:M , Q

[m]
n

)
, (6.48) follows from the fact that conditioning cannot increase en-

tropy and from the fact that (W1:M , Q
[m]
1:nm−1

, Ã
[m]
1:n−1) → (W1:M , Q

[m]
n ) → Ã

[m]
n forms

a Markov chain, (6.51) follows from the independence of the messages and the

queries, (6.52) follows from the chain rule, the independence of the queries and the

messages, and the fact that Q
[m]
1:N → Q

[m]
1:nm−1

→ Ã
[m]
1:nm−1

forms a Markov chain by

(6.4), (6.54) follows from the fact that conditioning reduces entropy and Lemma 6.1,

(6.55) follows from the reliability constraint, (6.58) follows from the definition of the

channel capacity. Finally, dividing both sides by nm−1 leads to (6.42). �

Now, we are ready to derive an explicit upper bound for the retrieval rate

from noisy channels. Fixing the length of the nth answer string to tn and apply-

ing Lemma 6.2 and Lemma 6.3 successively for an arbitrary sequence {ni}M−1
i=1 ⊂

{1, · · · , N}M−1, we have the following,

N∑

n=1

tnCn − L+ õ(L)

(6.30)

≥ I
(
W2:M ;Q

[1]
1:N , Ã

[1]
1:N |W1

)
(6.59)
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(6.42)

≥ 1

n1

(
L−

N∑

n=n1+1

tnCn

)
+

1

n1

I
(
W3:M ;Q

[2]
1:N , Ã

[2]
1:N |W1:2

)
(6.60)

(6.42)

≥ 1

n1

(
L−

N∑

n=n1+1

tnCn

)
+

1

n1n2

(
L−

N∑

n=n2+1

tnCn

)

+
1

n2

I
(
W4:M ;Q

[3]
1:N , Ã

[3]
1:N |W1:3

)
(6.61)

(6.42)

≥ . . .

(6.42)

≥ 1

n1

(
L−

N∑

n=n1+1

tnCn

)
+

1

n1n2

(
L−

N∑

n=n2+1

tnCn

)

+· · ·+ 1∏M−1
i=1 ni


L−

N∑

n=nM−1+1

tnCn


 (6.62)

where õ(L) =
(

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

)
o(L), (6.59) follows from Lemma 6.2,

and the remaining bounding steps follow from successive application of Lemma 6.3.

Ordering terms, we have,

(
1 +

1

n1

+
1

n1n2

+· · ·+ 1∏M−1
i=1 ni

)
L ≤

(
θ(0)+

θ(n1)

n1

+· · ·+ θ(nM−1)∏M−1
i=1 ni

)
N∑

n=1

tn+õ(L)

(6.63)

where θ(`) =
∑N

n=`+1 τnCn

We conclude the proof by taking L → ∞. Thus, for an arbitrary sequence

{ni}M−1
i=1 , we have

R(τ ,C) =
L∑N
n=1 tn

≤
θ(0) + θ(n1)

n1
+ θ(n2)

n1n2
+ · · ·+ θ(nM−1)∏M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(6.64)

Finally, we get the tightest bound by minimizing over the sequence {ni}M−1
i=1 over
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the set {1, · · · , N}, as

R(τ ,C)≤ min
ni∈{1,···,N}

θ(0) + θ(n1)
n1

+ θ(n2)
n1n2

+ · · ·+ θ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(6.65)

= min
ni∈{1,···,N}

∑N
n=1 τnCn +

∑N
n=n1+1 τnCn

n1
+
∑N
n=n2+1 τnCn

n1n2
+ · · ·+

∑N
n=nM−1+1 τnCn∏M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(6.66)

The user and the databases can agree on a traffic ratio vector τ ∈ T =

{(τ1, · · · , τN) : τn ≥ 0 ∀n,∑N
n=1 τn = 1} that maximizes R(τ ,C), hence the retrieval

rate R(C) is upper bounded by,

R(C)≤max
τ∈T

R(τ ,C) (6.67)

=max
τ∈T

min
ni∈{1,··· ,N}

∑N
n=1 τnCn+

∑N
n=n1+1 τnCn

n1
+
∑N
n=n2+1 τnCn

n1n2
+· · ·+

∑N
n=nM−1+1 τnCn∏M−1

i=1 ni

1+ 1
n1

+ 1
n1n2

+· · ·+ 1∏M−1
i=1 ni

(6.68)

6.5 Achievability Proof for NPIR

In this section, we present the achievability proof for the NPIR problem. We show

that by means of the random coding argument, each database can independently

encode its response such that the probability of error can be made vanishingly

small. The databases use the uncoded responses as an indexing mechanism for

237



choosing codewords from a randomly generated codebook. The uncoded responses,

which are the truthful responses to the user queries, vary in length to maximize the

retrieval rate. The query structure builds on the achievability proofs for PIR under

asymmetric traffic constraints [125].

6.5.1 Motivating Example: M = 3, N = 2, via BSC(p1), BSC(p2)

We illustrate the retrieval scheme for N = 2 databases, M = 3 messages when the

answer strings pass through BSC(p1) and BSC(p2). We show that the channel coding

(using linear block codes) is almost separable from the retrieval scheme (which hinges

on the result of [125]). We begin with the case when (p1, p2) = (0.1, 0.2), then we

extend this technique for all (p1, p2) pairs. We will need the following lemma, which

shows the achievability of Shannon’s channel coding theorem for BSC using linear

block codes [122, Theorem 4.17, Corollary 4.18].

Lemma 6.4 (Shannon’s coding theorem for BSC [122]) For BSC(p) with

crossover probability p ∈ (0, 1
2
). Let n, k be integers such that R = k

n
< 1 − H(p),

and let EC[Pe(C)] denote the expected probability of error Pe(C) calculated over all

linear [n, k] codes C, assuming a nearest-codeword decoder. Then,

EC[Pe(C)] < 2 · 2−n∆(p,R) (6.69)

for some ∆(p,R) > 0. Moreover, for all ρ ∈ (0, 1], all but less than ρ of the linear
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[n, k] codes satisfy,

Pe(C) <
2

ρ
· 2−n∆(p,R) (6.70)

The result implies that as long as the rate of the linear [n, k] code is strictly less

than the capacity, then there exists a linear [n, k] code with exponentially decreasing

probability of error in n with high probability.

6.5.1.1 Achievable Scheme for BSC(0.1), BSC(0.2)

Now, we focus on the case when (p1, p2) = (0.1, 0.2). Using the explicit upper bound

in (6.22), we infer that R ≤ 4
4

1−H(p1)
+ 3

1−H(p2)

which is 0.2183 for p1 = 0.1, p2 = 0.2.

To operate at τ2 = τ
(3)
2 = 3(1−H(p1))

4(1−H(p2))+3(1−H(p1))
, we enforce the ratio between the

uncoded traffic, i.e., before channel coding, to be 4 : 3. This results in coded traffic

ratio of 4
1−H(p1)

: 3
1−H(p2)

, which appears in the denominator of the upper bound.

Concurrently, this results in retrieving 4 desired bits per scheme repetition, which

appears in the numerator.

To that end, the user repeats the following retrieval scheme for ν times. Each

repetition of the scheme operates over blocks of L∗ = 4 bits from all messages

W1:3. The user permutes the indices of the bits of each message independently and

uniformly. Let ai(j), bi(j), ci(j) denote the ith bit of block j from the permuted

message W1, W2, W3, respectively. Assume without loss of generality that the

desired file is W1. In block j, the user requests to download a single bit from each

message from database 1, i.e., the user requests to download a1(j), b1(j), and c1(j)
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from database 1. From database 2, the user exploits the side information generated

from database 1 by requesting to download the sums a2(j) + b1(j), a3(j) + c1(j),

and b2(j) + c2(j). Finally, the user exploits the side information generated from

database 1 by downloading a4(j) + b2(j) + c2(j) from database 2. The query table

for the jth block is summarized in Table 6.1. Denote the number of uncoded bits

requested from the nth database by Dn, then D1 = 4, D2 = 3. This guarantees

that the ratio between the uncoded traffic is 4 : 3 (for any number of repetitions

ν). This query structure is private, as all combinations of the sums are included

in the queries and the indices of the message bits are uniformly and independently

permuted for each block of messages (which operate on different set of bits), the

privacy constraint is satisfied.

Table 6.1: The query table for the jth block of M = 3, N = 2, p1 = 0.1, p2 = 0.2.

Database 1 Database 2
a1(j) a2(j) + b1(j)
b1(j) a3(j) + c1(j)
c1(j) b2(j) + c2(j)

a4(j) + b2(j) + c2(j)

After receiving the queries of the user, the nth database concatenates the

uncoded binary answer strings into a vector U
[1]
n of length νDn, i.e.,

U
[1]
1 =[a1(1) b1(1) c1(1) a4(1) + b2(1) + c2(1)

· · · a1(ν) b1(ν) c1(ν) a4(ν) + b2(ν) + c2(ν)]T (6.71)

U
[1]
2 =[a2(1) + b1(1) a3(1) + c1(1) b2(1) + c2(1)

· · · a2(ν) + b1(ν) a3(ν) + c1(ν) b2(ν) + c2(ν)]T (6.72)
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The nth database encodes the vector U
[1]
n to a coded answer string A

[1]
n of length

tn using a (tn, νDn) linear block code (which belongs to the set of good codes that

satisfy (6.70)) such that:

tn =

⌈
νDn

1−H(pn)

⌉
(6.73)

This ensures that νDn
tn

< 1 − H(pn). The nth database responds with A
[1]
n via the

noisy channel BSC(pn). The user receives the noisy answer string Ã
[1]
n from the nth

database.

To perform the decoding, the user employs the nearest-codeword decoder to

find an estimate of A
[1]
n based on the observation Ã

[1]
n . Since νDn

tn
< 1 − H(pn),

using Lemma 6.4 and the union bound, the probability of error in decoding is upper

bounded by:

Pe(L) ≤ Pe(C1) + Pe(C2) (6.74)

≤ 2

ρ

[
2
−t1∆

(
p1,

νD1
t1

)
+ 2

−t2∆
(
p2,

νD2
t2

)]
(6.75)

As ν → ∞, L → ∞ and tn → ∞, we have Pe(L) → 0. This ensures the

decodability of U
[1]
n with high probability. Since the vectors U

[1]
1 , U

[2]
2 are designed to

exploit the side information, the user can cancel the effect of the undesired messages

and be left only with the correct W1 with probability of error Pe(L). This satisfies

the reliability constraint.

Finally, we calculate the achievable retrieval rate. The retrieval scheme de-

241



codes L = νL∗ = 4ν bits from the desired messages. The retrieval scheme downloads

tn =
⌈

νDn
1−H(pn)

⌉
bits from the nth database, hence as ν →∞, we have

R =
L

t1 + t2
(6.76)

=
νL∗

νD1

1−H(p1)
+ νD2

1−H(p2)

(6.77)

=
4

4
1−H(p1)

+ 3
1−H(p2)

= 0.2183 (6.78)

which matches the upper bound.

6.5.1.2 Achieving the Upper Bound for Arbitrary (p1, p2)

Now, we show that the upper bound in (6.22) is achievable for any (p1, p2). The

idea is to design the uncoded response vectors U
[1]
1 , U

[2]
2 such that the ratio of their

traffic matches one of the corner points of the PIR problem under asymmetric traffic

constraints as in Chapter 5.

For R = 1−H(p1)
3

: For this rate, the user requests to download from database 1

only and does not access database 2. Thus, the user downloads all the contents

of database 1 to satisfy the privacy constraint. Specifically, the user downloads

a1(j), b1(j), c1(j) at the jth block of the retrieval process. Database 1 encodes the

responses U
[1]
1 into t1-length answer string using (t1, νD1), where D1 = 3, and t1 =

⌈
νD1

1−H(p1)

⌉
. The user decodes ν desired symbols from ν repetitions with vanishingly

small probability of error. Consequently, R = 1−H(p1)
3

.
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For R = 2
3

1−H(p1)
+ 1

1−H(p2)

: For this rate, the user designs the queries such that the

traffic ratio between the uncoded responses is 3 : 1. Thus, in the jth block, the user

requests to download one bit from each message, i.e., the user requests to download

a1(j), b1(j), c1(j) from database 1. The user mixes the undesired information ob-

tained from database 1 into one combined symbol b1(j)+ c1(j) and uses this symbol

as a side information in database 2 by requesting to download a2(j) + b1(j) + c1(j).

The query table for the jth block of the scheme is depicted in Table 6.2.

Table 6.2: The query table for the jth block of M = 3, N = 2 to achieve R =
2

3
1−H(p1)

+ 1
1−H(p2)

Database 1 Database 2
a1(j), b1(j), c1(j) a2(j) + b1(j) + c1(j)

After repeating the retrieval process ν times, database 1 encodes the responses

using a linear (t1, νD1) =
(⌈

3ν
1−H(p1)

⌉
, 3ν
)

code, while database 2 encodes its re-

sponses using a linear (t2, νD2) =
(⌈

ν
1−H(p2)

⌉
, ν
)

code. Using Lemma 4, the user

can decode the correct W1 with vanishingly small probability of error. The user

decodes L = 2ν bits from W1, hence, as ν →∞

R =
L

t1 + t2
=

2
3

1−H(p1)
+ 1

1−H(p2)

(6.79)

For R = 4
4

1−H(p1)
+ 3

1−H(p2)

: An instance for this scheme is the (p1, p2) = (0.1, 0.2)

example. Please refer to Section 6.5.1.1 for the details.

Therefore, the capacity of the PIR problem from BSC(p1), BSC(p2) is given
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by:

CPIR(p1, p2) = max

{
1−H(p1)

3
,

2
3

1−H(p1)
+ 1

1−H(p2)

,
4

4
1−H(p1)

+ 3
1−H(p2)

}
(6.80)

6.5.2 General Achievable Scheme

In this section, we present a general achievable scheme for the NPIR problem. The

main idea of the scheme is to use the uncoded response from the nth database to

user’s query as an index for choosing the transmitted codeword from a codebook

generated according to the optimal probability distribution. The query structure

maps to one of the corner points of PIR under asymmetric traffic constraints [125]

in order to maximize the retrieval rate.

Following the notations in [125], we denote the number of side information

symbols that are used simultaneously in the initial round of downloads at the nth

database by sn ∈ {0, 1, · · · ,M − 1}, e.g., if sn = 1, then the user requests to

download a sum of 1 desired symbol and 1 undesired symbol as a side information

in the form of a + b, a + c, ... etc., while sn = 2 implies that the user mixes every

two undesired symbols to form one side information symbol, i.e., the user requests

to download a + b + c, a + c + d, ... etc. For a given non-decreasing sequence

{ni}M−1
i=0 ⊂ {1, · · · , N}M , the databases are divided into groups, such that group

0 contains database 1 through database n0, group 1 contains n1 − n0 databases

starting from database n0 + 1, and so on.

Hence, let sn = i for all ni−1 + 1 ≤ n ≤ ni with n−1 = 0 by convention.
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Denote S = {i : sn = i for some n ∈ {1, · · · , N}}. We follow the round and stage

definitions in [123]. The kth round is the download queries that admit a sum of

k different messages (k-sum in [12]). A stage of the kth round is a query block of

the kth round that exhausts all
(
M
k

)
combinations of the k-sum. Denote y`[k] to

be the number of stages in round k downloaded from the nth database, such that

n`−1 + 1 ≤ n ≤ n`. Our scheme is repeated for ν repetitions. Each repetition has

the same query structure and operates over a block of message symbols of length

L∗. Denote the total requested symbols from the nth database in one repetition of

the scheme by Dn(n). The details of the achievable scheme are as follows:

1. Codebook construction: According to the optimal probability distribu-

tion p∗(xn) (that maximizes the mutual information I(Xn;Yn)), the

nth database constructs a
(
2νDn(n), tn(n)

)
codebook Cn at random, i.e.,

p(xn,1, · · · , xn,tn(n)) =
∏tn(n)

ηn=1 p
∗(xn,ηn). Specifically, the codebook Cn can be

written as:

Cn =




x1(1) x2(1) · · · xtn(n)(1)

x1(2) x2(2) · · · xtn(n)(2)

...
...

...
...

x1(2νDn(n)) x2(2νDn(n)) · · · xtn(n)(2
νDn(n))




2νDn(n)×tn(n)

(6.81)

where

tn(n) =

⌈
νDn(n)

Cn

⌉
(6.82)
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This ensures that the rate of Cn, νDn(n)
tn(n)

< Cn to ensure reliable transmission

over the noisy channel. The nth database reveals the codebook Cn to the user.

2. Initialization at the user side: The user permutes each message independently

and uniformly using a random interleaver, i.e.,

ωm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (6.83)

where ωm(i) is the ith symbol of the permuted Wm, πm(·) is a random in-

terleaver for the mth message that is chosen independently, uniformly, and

privately at the user’s side.

3. Initial download: From the nth database where 1 ≤ n ≤ n0, the user requests

to download
∏

s∈S
(
M−2
s−1

)
symbols from the desired message. The user sets

the round index k = 1. I.e., the user requests the desired symbols from

y0[1] =
∏

s∈S
(
M−2
s−1

)
different stages.

4. Message symmetry: To satisfy the privacy constraint, for each stage initiated

in the previous step, the user completes the stage by requesting the remaining

(
M−1
k−1

)
k-sum combinations that do not include the desired symbols, in par-

ticular, if k = 1, the user requests
∏

s∈S
(
M−2
s−1

)
individual symbols from each

undesired message.

5. Database symmetry: We divide the databases into groups. Group ` ∈ S

corresponds to databases n`−1 +1 to n`. Database symmetry is applied within

each group only. Consequently, the user repeats step 2 over each group of
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databases, in particular, if k = 1, the user downloads
∏

s∈S
(
M−2
s−1

)
individual

symbols from each message from the first n0 databases (group 1).

6. Exploitation of side information: The undesired symbols downloaded within

the kth round (the k-sums that do not include the desired message) are used as

side information in the (k + 1)th round. This exploitation of side information

is performed by requesting to download (k + 1)-sum consisting of 1 desired

symbol and a k-sum of undesired symbols only that were generated in the kth

round. Note that for the nth database, if sn > k, then this database does not

exploit the side information generated in the kth round. Consequently, the nth

database belonging to the `th group exploits the side information generated in

the kth round from all databases except itself if sn ≤ k. Moreover, for sn = k,

extra side information can be used in the nth database. This is due to the fact

that the user can form n0

∏
s∈S\{sn}

(
M−2
s−1

)
extra stages of side information by

constructing k-sums of the undesired symbols in round 1 from the databases

in group 0.

7. Repeat steps 4, 5, 6 after setting k = k + 1 until k = M .

8. Repetition of the scheme: Repeat steps 3, · · · , 7 for a total of ν repetitions.

9. Shuffling the order of the queries: By shuffling the order of the queries uni-

formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

10. Encoding the responses to the user’s queries: The nth database responds to
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the user queries truthfully. The nth database concatenates all the responses to

the user’s queries in a vector U
[i]
n of length νDn(n). The nth database uses U

[i]
n

as an index for choosing a codeword from Cn, i.e., the index of the codeword

and U
[i]
n should be in bijection (e.g., by transforming U

[i]
n into a decimal value).

Consequently, the nth database responds with,

A[i]
n = [x1(U [i]

n ) x1(U [i]
n ) · · · xtn(n)(U

[i]
n )]T (6.84)

6.5.3 Privacy, Reliability, and Achievable Rate

Privacy: The privacy of the scheme follows from the privacy of the inherent PIR

scheme under asymmetric traffic constraints. Specifically, for every stage of the kth

round initiated, all
(
M
k

)
combinations of the k-sum are included at each round. Thus,

the structure of the queries is the same for any desired message at any repetition

of the achievable scheme. Due to the random and independent permutation of each

message and the random shuffling of the order of the queries, all queries are equally

likely independent of the desired message index, and thus the privacy constraint in

(6.8) is guaranteed.

Reliability: The user employs joint typicality decoder for every noisy answer string

Ã
[i]
n to decode the codeword index. From the channel coding theorem [47, The-

orem 7.7.1], for every rate νDn(n)
tn(n)

< Cn, there exists a sequence of (2νDn(n), tn(n))

with maximum probability of error Pe(Cn)→ 0 as tn(n)→∞. By letting ν →∞, we

have tn(n)→∞, νDn(n)
tn(n)

< Cn and hence we ensure the existence of a good code such
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that Pe(Cn) → 0. By union bound, the probability of error in decoding the indices

of the codewords from every database is upper bounded by Pe ≤
∑N

n=1 Pe(Cn)→ 0.

Since the index of the codeword is bijective to U
[i]
n , the probability of error

in decoding U
[i]
n for n = 1, · · · , N is vanishingly small. Now, by construction of

the queries as in [125], all side information symbols used in the (k + 1)th round

are decodable in the kth round or from round 1, the user cancels out these side

information and is left with symbols from the desired message. Consequently, there

is no error in the decoding given that U
[i]
n is correct for every n.

Achievable Rate: The structure of one repetition of our scheme is exactly as [125].

The recursive structure is described using the following system of difference equa-

tions that relate the number of stages in the databases belonging to a specific group

as shown in [125, Theorem 2]:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj[k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj[k−1]

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1], ` ≥ 2

(6.85)

where y`[k] is the number of stages in the kth round in a database belonging to the

`th group, i.e., for the nth database, such that n`−1 + 1 ≤ n ≤ n`.

To calculate Dn(n) where n`−1 ≤ n ≤ n`, we note that for any stage in the kth
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round, the user downloads
(
M−1
k−1

)
desired symbols from a total of

(
M
k

)
downloads.

Therefore,

Dn(n) =
M∑

k=1

(
M

k

)
y`[k], n`−1 ≤ n ≤ n` (6.86)

Thus, the total download
∑N

n=1 tn(n) from all databases from all repetitions

is calculated by observing (6.82) and ignoring the ceiling operator as ν →∞,

N∑

n=1

tn(n) =
N∑

n=1

νDn(n)

Cn
(6.87)

= ν

[
n0∑

n=1

∑M
k=1

(
M
k

)
y0[k]

Cn
+

n1∑

n=n0+1

∑M
k=1

(
M
k

)
y1[k]

Cn
+ · · ·

]
(6.88)

= ν
∑

`∈S

n∑̀

n=n`−1+1

∑M
k=1

(
M
k

)
y`[k]

Cn
(6.89)

Furthermore, the total desired symbols from all databases from all repetitions is

given by,

L(n) = ν
∑

`∈S

M∑

k=1

(
M − 1

k − 1

)
y`[k](n` − n`−1) (6.90)

Consequently, the following rate is achievable corresponding to the sequence n,

R(n,C) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

Cn

(6.91)

Since this scheme is achievable for every monotone non-decreasing sequence
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n = {ni}M−1
i=0 , the following rate is achievable,

R(C) = max
n0≤···≤nM−1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

Cn

(6.92)

6.6 PIR from Multiple Access Channel

In this section, we consider the MAC-PIR problem. This problem is an extension

of the NPIR model presented in Section 6.2 which consists of N non-colluding and

replicated databases storing M messages. In MAC-PIR (see Fig. 6.5), the user sends

a query Q
[i]
n for the nth database to retrieve Wi privately and correctly. The nth

database responds with an answer string A
[i]
n = (X

[i]
n,1, · · · , X [i]

n,t). The user receives

a noisy observation Ã
[i]
n = (Y

[i]
1 , · · · , Y [i]

t ), where the responses of the databases

(A
[i]
1 , A

[i]
2 , · · · , A[i]

N) pass through a discrete memoryless channel with a transition

probability distribution p(y|x1, · · · , xN), i.e.,

P
(
Ã[i]|A[i]

1 , A
[i]
2 , · · · , A[i]

N

)
=

t∏

η=1

p
(
y[i]
η |x[i]

1,η, x
[i]
2,η, · · · , x[i]

N,η

)
(6.93)

In this sense, the retrieval is performed via a cooperative multiple access chan-

nel, as the databases cooperate to convey the message Wi to a common receiver (the

user). The full cooperation is realized via the user queries. Furthermore, in MAC-

PIR, the database responses are mixed together to have the noisy observation Ã[i]

in contrast to the noisy PIR problem with orthogonal links presented in Section 6.2.

In MAC-PIR, the user should be able to reconstruct Wi with vanishingly small
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Figure 6.5: The MAC-PIR problem.

probability of error by observing the noisy and mixed output Ã[i], i.e., the reliability

constraint is written as:

H(Wi|Q[i]
1:N , Ã

[i]) ≤ o(L) (6.94)

and the privacy constraint is written as:

(Q[i]
n , A

[i]
n ,W1:M) ∼ (Q[j]

n , A
[j]
n ,W1:M), ∀i, j ∈ {1, · · · ,M} (6.95)

We observe that the main difference between (6.95) and (6.8) is that we cannot

claim that Ã[i] ∼ Ã[j] in the MAC-PIR problem. This is due to the fact that the

user cannot statistically differentiate between the responses corresponding to each
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message and hence the user cannot decode the desired message. This is in contrast

to the NPIR problem with orthogonal links, where Ã[i] ∼ Ã[j] due to the Markov

chain (W1:M , Q
[i]
n )→ A

[i]
n → Ã

[i]
n .

The retrieval rate for the MAC-PIR is given by:

R =
L

t
(6.96)

and the MAC-PIR capacity is CPIR = sup R over all retrieval schemes. We note

that, without loss of generality, we can assume that all responses from the databases

have the same length t in contrast to the NPIR problem with orthogonal links. The

reason is that the retrieval rate depends only on the output of the channel and not

on the individual responses of the databases. Hence, even if the database responses

are different in lengths, we can choose t = maxn∈[N ] tn by appending the remaining

responses by dummy symbols.

In the sequel, we discuss the issue of separability of channel coding and the in-

formation retrieval in MAC-PIR via some examples. Interestingly, we show that the

optimal PIR scheme for the additive MAC and logic conjunction/disjunction MAC,

the channel coding and the retrieval scheme are dependent on the channel transition

probability, and hence channel coding and retrieval procedure are inseparable.

6.6.1 Additive MAC

In the first special case, we consider the additive MAC. In the additive MAC, at

each time instant η, the responses of the databases are added together (in modulo-

253



2) in addition to a random variable Zη ∼ Bernoulli(p), which is independent of

(W1:M , Q
[i]
1:N) and corresponds to a random additive noise, i.e.,

Yη =
N∑

n=1

Xn,η + Zη (6.97)

The following theorem characterizes the capacity of the MAC-PIR problem if

the channel is restricted to additive MACs.

Theorem 6.3 The additive MAC-PIR capacity is,

CPIR = 1−H(p) (6.98)

where p ∈ [0, 0.5) is the flipping probability of the additive noise.

We have the following remarks.

Remark 6.6 For noiseless additive MAC, i.e., p = 0 and Yη =
∑N

n=1Xn,η, the

MAC-PIR capacity is CPIR = 1. This implies that there is no penalty due to the

privacy constraint, i.e., the user can have privacy for free. Interestingly, this is the

first instance where the PIR capacity is independent of the number of databases N

and the number of messages M .

Remark 6.7 For noiseless additive MAC, i.e., p = 0, separation between channel

coding and retrieval process is not optimal unlike the NPIR problem with orthogonal

links. In fact, the retrieval scheme is dependent on the structure of the channel. To

see this, the user generates a random binary vector h = [h1 h2 · · · hM ] ∈ {0, 1}M .
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The user sends h to database 1, flips the ith position of h and sends it to database 2,

and does not send anything to the remaining databases. Thus, the responses of the

databases are,

A
[i]
1 =

M∑

m=1

hmWm (6.99)

A
[i]
2 =

M∑

m=1

hmWm +Wi (6.100)

This is exactly the retrieval scheme in [1]. Since the channel is additive and noise-

less, Ã[i] = A
[i]
1 + A

[i]
2 = Wi. Hence, the user downloads 1 bit from the channel in

order to get 1 bit from the desired file and R = 1. Here, we note that, the channel

performs the processing at the user for free. This implies that by careful design of

queries, the user can exploit the channel in its favor to maximize the retrieval rate.

Proof: We prove the converse and achievability.

The converse proof: To show the converse, we assume that W1 is the desired mes-

sage without loss of generality. Then, we have the following implications,

L = H(W1) (6.101)

(6.2),(6.3)
= H(W1|W2:M , Q

[1]
1:N) (6.102)

(6.94)

≤ H(W1|W2:M , Q
[1]
1:N)−H(W1|W2:M , Q

[1]
1:N , Ã

[1]) + o(L) (6.103)

= I(W1; Ã[1]|Q[1]
1:N ,W2:M) + o(L) (6.104)

= H(Ã[1]|Q[1]
1:N ,W2:M)−H(Ã[1]|Q[1]

1:N ,W1:M) + o(L) (6.105)
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(6.4)

≤ H(Ã[1])−H(Ã[1]|Q[1]
1:N ,W1:M , A

[1]
1:N) + o(L) (6.106)

= t−H(Ã[1]|A[1]
1:N) + o(L) (6.107)

= t−
t∑

η=1

H(Y [1]
η |X [1]

1,η, X
[1]
2,η, · · · , X [1]

N,η) + o(L) (6.108)

= t−
t∑

η=1

H

(
N∑

n=1

X [1]
n,η + Zη|X [1]

1,η, X
[1]
2,η, · · · , X [1]

N,η

)
+ o(L) (6.109)

= t−
t∑

η=1

H(Zη|X [1]
1,η, X

[1]
2,η, · · · , X [1]

N,η) + o(L) (6.110)

= t(1−H(p)) + o(L) (6.111)

where (6.102) follows from the independence of the messages and the queries, (6.103)

follows from the reliability constraint, (6.106) follows from the fact that the answer

string A
[1]
n is a deterministic function of the messages and the queries, (6.107) fol-

lows from the fact that (W1:M , Q
[1]
1:N) → A

[1]
1:N → Ã[1] is a Markov chain, (6.108)

follows from the fact that the channel is memoryless, and (6.111) follows from the

independence of Zη and (X
[1]
1,η, X

[1]
2,η, · · · , X [1]

N,η) as a consequence of the independence

of (Zη,W1:M , Q
[1]
1:N).

Hence, by reordering terms and taking L → ∞, we have R = L
t
≤ 1 −H(p).

Note that we can interpret the upper bound as the cooperative MAC bound, i.e.,

R ≤ I(Y ;X1, X2, · · · , XN) = 1−H(p).

The achievability proof: To show the general achievability, the user submits queries

to database 1 and database 2 only and ignores the remaining databases. We note

that the additive MAC in this case boils down to Yη = X1,η+X2,η+Zη, which means
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that the channel p(y|x1, x2) is BSC(p). Consequently, we use again Shannon’s coding

theorem for BSC in Lemma 6.4.

To that end, let the mth message be a vector Wm =

[Wm(1) Wm(2) · · · Wm(L)] of length L. The user repeats the following

scheme L times. For the jth repetition of the scheme, the user generates a random

binary vector h(j) = [h1(j) h2(j) · · · hM(j)] ∈ {0, 1}M . The user sends the

following queries to the databases:

Q
[i]
1 (j) = h(j) (6.112)

Q
[i]
2 (j) = h(j) + ei (6.113)

where ei is the unit vector containing 1 only at the ith position. The queries are

private since Q
[i]
n is a vector picked uniformly from {0, 1}M for any message i.

For the jth repetition of the scheme, the database uses the received query

vector as a combining vector for the jth element of all messages. The nth database

concatenates all responses in a vector U
[i]
n of length L, hence

U
[i]
1 =

[
M∑

m=1

hm(1)Wm(1)
M∑

m=1

hm(2)Wm(2) · · ·
M∑

m=1

hm(L)Wm(L)

]
(6.114)

U
[i]
2 =

[
M∑

m=1

hm(1)Wm(1) +Wi(1)
M∑

m=1

hm(2)Wm(2) +Wi(2)

· · ·
M∑

m=1

hm(L)Wm(L) +Wi(L)

]
(6.115)

From Lemma 6.4, for p ∈ (0, 0.5), all but ρ linear [t, L] block codes C, where

257



L
t

= R < 1 − H(p) that have Pe(C) < 2
ρ
· 2−t∆(p,R). Then, the databases agree on

the same [t, L] code from the family of good codes, where t = L
b1−H(p)c . The nth

database encodes U
[i]
n independently by the same [t, L] linear block code to output

A
[i]
n .

After passing through the noisy channel, the noisy observation is given by:

Ã[i] = A
[i]
1 + A

[i]
2 + Z1:t (6.116)

= Â[i] + Z1:t (6.117)

Since the two databases employ the same linear block code, the sum of the two

codewords Â[i] = A
[i]
1 + A

[i]
2 is also a valid codeword corresponding to the sum

U
[i]
1 + U

[i]
2 .

Consequently, as L→∞, t→∞, the probability of error in decoding the sum

U
[i]
1 + U

[i]
2 is Pe(L) → 0. By observing that U

[i]
1 + U

[i]
2 = Wi, the reliability proof

follows. �

Remark 6.8 In the achievability proof, the PIR scheme relies on the additivity of

the channel. In particular, the scheme uses a linear block code to exploit the fact that

the sum of two codewords from a linear block code is also a valid codeword. Conse-

quently, the retrieval process depends on the channel transition probability explicitly

as opposed to the NPIR problem with orthogonal links.
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6.6.2 Logic Conjunction/Disjunction MACs

In this section, we show that we can achieve privacy for free for MACs other than

the additive MACs. We illustrate this result by considering the MAC-PIR problem

through channels that output the logical conjunctions (logic AND)/disjunctions

(logic OR) of the inputs. Let ∧ denote the logical conjunction operator, ∨ denote

the logical disjunction operator, and ¬ denote the logical negation operator. The

input-output relation of the discrete memoryless logical conjunction channel is given

as:

Yη =
N∧

n=1

Xn,η (6.118)

For the logical conjunction channel, we have the following capacity result.

Theorem 6.4 In the logical conjunction MAC-PIR problem, if N ≥ 2M−1, then the

MAC-PIR capacity is CPIR = 1, where M is the number of messages.

We have the following observations:

Remark 6.9 Similar to the additive MAC, there is no loss due to the privacy con-

straint for the conjunction MAC. In this case, the capacity depends on the number

of messages M , and the number of databases N unlike the additive MAC. Interest-

ingly, the result shows the first instance of a threshold for the number of databases at

which the full unconstrained capacity can be achieved N = 2M−1, which is dependent

on the number of messages M .
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Remark 6.10 We note that the minimum number of databases N that results in

CPIR = 1 is still an open problem. In fact, the capacity for N < 2M−1 is also an

interesting open problem.

Proof: It suffices to show only the achievability for this problem as the retrieval

rate is trivially upper bounded by 1. To that end, the user submits queries to 2M−1

databases and submits nothing to the remaining databases. The user generates

the random variables (Z1, · · · , ZM) independently, privately, and uniformly from

{0, 1}. The random variable Zm ∼ Bernoulli(1
2
) is a Bernoulli random variable that

represents the negation state of the mth message literal in the first query Q
[i]
1 , i.e., if

Zm = 1, this means that the user requests Wm in Q
[i]
1 , while Zm = 0 means that the

user requests ¬Wm in Q
[i]
1 . Let W̃m be the requested literal from the mth message

in Q
[i]
1 , hence,

W̃m =





Wm, Zm = 1

¬Wm, Zm = 0

(6.119)

Now, without loss of generality, assume that W1 is the desired message. From

database 1, the user requests to download the disjunction X1 =
∨M
m=1 W̃m. From

every other database, the user requests the same literal W̃1 with a new disjunction

of the remaining messages with different negation pattern than what is requested

from database 1. I.e., from database 2, the user requests the disjunction X2 =

W̃1 ∨ ¬W̃2 ∨
∨
m∈[M ]\{1,2} W̃m. From database 3, the user requests the disjunction

X3 = W̃1 ∨ ¬W̃3 ∨
∨
m∈[M ]\{1,3} W̃m, · · · etc. Denote the disjunction of messages
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W2:M requested from the nth database by Fn, where n ∈ {1, · · · , 2M−1}, then the

received observation at the user is

Y =

(
M∨

m=1

W̃m

)
∧


W̃1 ∨ ¬W̃2 ∨

∨

m∈[M ]\{1,2}
W̃m


 ∧


W̃1 ∨ ¬W̃3 ∨

∨

m∈[M ]\{1,3}
W̃m


 ∧ · · ·

(6.120)

= W̃1 ∨
2M−1∧

i=1

Fi (6.121)

= W̃1 (6.122)

where (6.121) follows from successively applying the Boolean relation (W̃1 ∨ G1) ∧

(W̃1 ∨ G2) = W̃1 ∨ (G1 ∧ G2) for any logical expressions G1, G2. (6.122) follows

from the fact that there exist 2M−1 different negation states for the literals from

W2:M , each negation state is requested from one database in the form of logical

expression Fi, hence the conjunction of all these logical expressions
∧2M−1

i=1 Fi = 0

as all possible product of sums of W2:M exist in the conjunction. This satisfies the

reliability constraint. Another way to see this result is that the queries are designed

such that they cover exactly half the M -dimensional Karnaugh map, which can be

reduced to either W1 or ¬W1.

Furthermore, since the negation state for every message is chosen uniformly,

independently, and uniformly for each message, the probability of receiving specific

query from the user is 1
2M

irrespective to the desired message, which guarantees the

privacy. �
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Illustrative example: M = 3 messages, N = 4 databases with conjunction channel:

As an explicit example, let M = 3, N = 2M−1 = 4, then the user requests the

following:

X1 = W̃1 ∨ W̃2 ∨ W̃3 (6.123)

X2 = W̃1 ∨ ¬W̃2 ∨ W̃3 (6.124)

X3 = W̃1 ∨ W̃2 ∨ ¬W̃3 (6.125)

X4 = W̃1 ∨ ¬W̃2 ∨ ¬W̃3 (6.126)

Hence, the output of the channel is,

Y = X1 ∧X2 ∧X3 ∧X4 (6.127)

= (W̃1 ∨ W̃2 ∨ W̃3) ∧ (W̃1 ∨ ¬W̃2 ∨ W̃3) ∧ (W̃1 ∨ W̃2 ∨ ¬W̃3) ∧ (W̃1 ∨ ¬W̃2 ∨ ¬W̃3)

(6.128)

= (W̃1 ∨ (W̃2 ∨ W̃3) ∧ (¬W̃2 ∨ W̃3)) ∧ (W̃1 ∨ (W̃2 ∨ ¬W̃3) ∧ (¬W̃2 ∨ ¬W̃3))

(6.129)

= (W̃1 ∨W3) ∧ (W̃1 ∨ ¬W̃3) (6.130)

= W̃1 (6.131)

Thus, the user can decode W1 from Y as the user knows the correct negation pat-

tern for W̃1 privately. The scheme is private as all queries are equally likely with

probability 1
8

irrespective to the desired message. Since the user downloads 1 bit to
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retrieve 1 bit from the desired message, the retrieval rate R = 1.

Remark 6.11 We note that the result is still valid if the channel is replaced by a

disjunction channel, i.e.,

Yη =
N∨

n=1

Xn,η (6.132)

In this case, the user submits the same queries for the databases with replacing every

disjunction operator with a conjunction operator. The proof of reliability follows from

the duality of the product-of-sum and the sum-of-product.

Remark 6.12 The achievable scheme for the conjunction channel is a non-linear

retrieval scheme that depends on the non-linear characteristics of the channel in

contrast to the linear retrieval scheme used for the additive channel. This confirms

the non-separability between the retrieval scheme and the channel coding needed for

reliable communication through the channel.

6.6.3 Selection Channel

In this example, we illustrate the fact that the privacy for free phenomenon may not

be always feasible for any arbitrary channel in the MAC-PIR problem. To illustrate

this, we consider the selection channel. In this channel, the user selects to connect

to one database only at random and sticks to it throughout the transmission, i.e.,

Yη = Xn,η, n ∼ uniform {1, · · · , N} (6.133)
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In this channel, the user is connected to the same database at every channel

use. This implies that the user faces a single-database (N = 1) PIR problem at

every channel use. The optimal PIR strategy for N = 1 is to download all the

messages (M messages) from the connected database. Thus, the PIR capacity is

given by CPIR = 1
M

.

It is worth noting that there is another slight variant of the selection channel,

in which the user selects to connect to one database at random at every channel

use, i.e.,

Yη = Xn(η),η, n(η) ∼ uniform {1, · · · , N} (6.134)

where n(η) corresponds to the database index at channel use η. Then, CPIR ≤ C =

(1 + 1
N

+ · · ·+ 1
NM−1 )−1 trivially as the capacity of the classical PIR C [12], in which

all the databases are connected to the user, is an upper bound for this problem, as

the user can choose to ignore all the responses except the ones in the classical PIR

problem. For the achievability, the user can repeat the achievable scheme in [12] ν

times, which results in using the selection channel t = ν L
C

= νN(NM−1)
N−1

. At channel

use η, the user chooses a new query element from Q
[i]
n(η) and submits it to database

n(η). As ν → ∞, by strong law of large numbers, each database will be visited tn

times, where tn → t
N

in the limit for every n. Hence, all bits are decodable by the

decodability of the scheme in [12] and CPIR = C = (1 + 1
N

+ · · · + 1
NM−1 )−1 < 1 as

well.
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6.7 Conclusions

In this chapter, we introduced noisy PIR with orthogonal links (NPIR), and PIR

from multiple access channels (MAC-PIR). We focused on the issue of the separa-

bility of the channel coding and the retrieval scheme. For the NPIR problem, we

proved that the channel coding and the retrieval scheme are almost separable in the

sense that every database implements its own channel coding independently from

other databases. The problem is coupled only through agreeing on a suitable traffic

ratio vector to maximize the retrieval rate. On the other hand, these conclusions are

not valid for the MAC-PIR problem. We showed two examples, namely: PIR from

additive MAC and PIR from logical conjunction/disjunction MAC. In these exam-

ples, we showed that the channel coding and retrieval schemes are indeed inseparable

unlike in the NPIR problem. In both cases, we showed that by careful design of

joint retrieval and coding schemes, we can attain the full capacity CPIR = 1−H(p)

and CPIR = 1, respectively, with no loss due to the privacy constraint.
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CHAPTER 7

Private Information Retrieval Through Wiretap Channel II

7.1 Introduction

In this chapter, we consider the problem of private information retrieval through

wiretap channel II (PIR-WTC-II). In PIR-WTC-II, a user wants to retrieve a single

message (file) privately out of M messages, which are stored in N replicated and

non-communicating databases. An external eavesdropper observes a fraction µn

(of its choice) of the traffic exchanged between the nth database and the user. In

addition to the privacy constraint, the databases should encode the returned answer

strings such that the eavesdropper learns absolutely nothing about the contents of

the databases. We aim at characterizing the capacity of the PIR-WTC-II under

the combined privacy and security constraints. We obtain a general upper bound

for the problem in the form of a max-min optimization problem, which extends the

converse proof of the PIR problem under asymmetric traffic constraints. We propose

an achievability scheme that satisfies the security constraint by encoding a secret

key, which is generated securely at each database, into an artificial noise vector using

an MDS code. The user and the databases operate at one of the corner points of
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the achievable scheme for the PIR under asymmetric traffic constraints such that

the retrieval rate is maximized under the imposed security constraint. The upper

bound and the lower bound match for the case of M = 2 and M = 3 messages, for

any N , and any µ = (µ1, · · · , µN).

7.2 System Model

Consider a classical PIR model, in which there are N non-colluding and replicated

databases, each storing the same content of M messages (or files). The message

Wm is represented as a vector of length L, whose elements are picked from a finite

field FLq with a sufficiently large alphabet. The messages W1:M = {W1, · · · ,WM}

are independent and identically distributed, hence,

H(Wm) = L, m ∈ {1, · · · ,M} (7.1)

H(W1:M) = ML, (q-ary bits) (7.2)

We assume that the messages are uncoded and fixed, i.e., we assume that the con-

tents of the databases cannot be coded to satisfy the security constraint during the

storage phase.

In classical PIR, a user wants to retrieve a message Wi from the N databases

without revealing the identity of the message i to any individual database. The user

prepares N queries, one for each database. The user sends Q
[i]
n to the nth database.

Since the user has no knowledge about the realization of W1:M , the queries and the
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messages are statistically independent, i.e.,

I(Q
[i]
1:N ;W1:M) = 0, i ∈ {1, · · · ,M} (7.3)

where Q
[i]
1:N = {Q[i]

1 , · · · , Q[i]
N}. Furthermore, to ensure the privacy of Wi, the user

should constrain the query intended to retrieve Wi to be indistinguishable from the

query intended to retrieve any other message Wj at any individual database. Thus,

the privacy constraint is formalized as,

(Q[i]
n , A

[i]
n ,W1:M) ∼ (Q[j]

n , A
[j]
n ,W1:M), ∀j ∈ {1, · · · ,M} (7.4)

where ∼ denotes statistical equivalence.

The nth database, after receiving the query Q
[i]
n , responds with a tn-length

answering string A
[i]
n . Note that we allow the user and the databases to choose

arbitrary lengths for the answer strings such that they maximize the retrieval rate.

The answer string is generally a stochastic mapping of the messages W1:M and the

received query Q
[i]
n , hence,

H(A[i]
n |Q[i]

n ,W1:M ,Gn) = 0, n ∈ {1, · · · , N} (7.5)

where Gn is a random variable independent of all other random variables, whose

realization is known at the nth database only and not shared with any other database

or the user a priori of the transmission. We denote the traffic ratio vector by
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τ = (τ1, · · · , τN). The traffic ratio at the nth database τn is given by,

τn =
tn∑N
i=1 ti

(7.6)

We assume that the answer strings are transmitted through a WTC-II (see

Fig. 7.1). In this case, an external eavesdropper (wiretapper) wishes to learn

about the contents of the databases by observing the queries and answer strings

exchanged by the user and the databases. In PIR-WTC-II, the user observes the

tn-length answer string A
[i]
n from the nth database through a noiseless channel. On

the other hand, the eavesdropper can observe a fraction µn from the nth answer

string. More specifically, the eavesdropper arbitrarily chooses any set of positions

Sn ⊂ {1, · · · , tn} to observe from the nth answer string, such that |Sn| = µntn, i.e.,

the output of the eavesdropper channel is given by,

Z [i]
n = A[i]

n (Sn), n ∈ {1, · · · , N} (7.7)

We denote the unobserved portion of the answer string by Y
[i]
n = A

[i]
n (S̄n), where

S̄n = {1, · · · , N}\Sn, thus, A
[i]
n = (Y

[i]
n , Z

[i]
n ). We write the eavesdropping ratios as a

vector µ = (µ1, · · · , µN). Without loss of generality, we assume that the databases

are arranged ascendingly in µn, i.e., µ1 ≤ µ2 ≤ · · · ≤ µN , i.e., the first database

is the least threatened (most secure) and the Nth database is the most threatened

(least secure).

Upon preparing the answer string, the databases should encode the answer
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Figure 7.1: Secure PIR problem through wiretap channel II.

strings such that the eavesdropper learns nothing from observing any µn fraction

from the traffic from the nth database even with observing the queries submitted

by the user. Consequently, we write the security constraint as,

I(W1:M ;Z
[i]
1:N , Q

[i]
1:N) = 0 (7.8)

Additionally, the user should be able to reconstruct the desired message Wi

from the collected answer strings with arbitrarily small probability of error. Using

Fano’s inequality, we write the reliability constraint as,

H(Wi|Q[i]
1:N , A

[i]
1:N) = o(L) (7.9)
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where o(L)
L
→ 0 as L→∞.

For a fixed N , M , traffic ratio vector τ , and eavesdropping ratio vector µ, a

retrieval rate R(τ ,µ) is achievable if there exists a PIR scheme which satisfies the

privacy constraint (7.4), security constraint (7.8), and the reliability constraint (7.9)

for some message length L(τ ,µ) and answer strings of lengths {tn(τ ,µ)}Nn=1 such

that τn = tn(τ ,µ)∑N
i=1 ti(τ ,µ)

, where the retrieval rate is therefore given by,

R(τ ,µ) =
L(τ ,µ)∑N
n=1 tn(τ ,µ)

(7.10)

We note that in this problem, the user and the databases can agree on a traffic ratio

vector τ to maximize the retrieval rate, thus, we can express the secure retrieval

rate under eavesdropping capabilities µ, R(µ), as,

R(µ) = max
τ

R(τ ,µ) (7.11)

Note that the message lengths can grow arbitrarily large to conform with standard

information-theoretic arguments. The capacity of the PIR-WTC-II problem C(µ) is

defined as the supremum of all achievable retrieval rates over all achievable schemes,

i.e., C(µ) = sup R(µ).

7.3 Main Results and Discussions

In this section, we present the main results of this chapter. Our first result charac-

terizes a general upper bound for the PIR-WTC-II problem for fixed M , N , and an
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arbitrary µ.

Theorem 7.1 (Upper bound) For the PIR-WTC-II problem under eavesdrop-

ping capabilities µ = (µ1, · · · , µN), the capacity is upper bounded by,

C(µ)≤ C̄(µ)=max
τ∈T

min
ni∈{1,···,N}

∑N
n=1(1−µn)τn+

∑N
n=n1+1(1−µn)τn

n1
+· · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1+ 1
n1

+· · ·+ 1∏M−1
i=1 ni

(7.12)

where T =
{
τ : τn ≥ 0 ∀n ∈ [1 : N ],

∑N
n=1 τn = 1

}
.

The proof of this upper bound is given in Section 7.4. We have the following

remarks.

Remark 7.1 When µ = (0, · · · , 0), i.e., without any security constraints, the upper

bound reduces to:

C̄(µ) = max
τ∈T

min
ni∈{1,··· ,N}

∑N
n=1 τn +

∑N
n=n1+1 τn

n1
+ · · ·+

∑N
n=nM−1+1 τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.13)

= max
τ∈T

min
ni∈{1,··· ,N}

1 +
∑N
n=n1+1 τn

n1
+ · · ·+

∑N
n=nM−1+1 τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.14)

= max
τ

C̃(τ ) (7.15)

=
1

1 + 1
N

+ · · ·+ 1
NM−1

(7.16)

where the inner problem in (7.14) is precisely the upper bound of the PIR problem

under asymmetric traffic τ [125]. From [125], we know that C̃(τ ) is maximized

by adopting symmetric schemes, i.e., τn = 1
N

, which achieves the PIR capacity C
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in [12].

Remark 7.2 If the PIR-WTC-II problem is further constrained by the asymmetric

traffic constraints τ , the corresponding upper bound C̄(µ, τ ) is given by the inner

problem of (7.12), i.e.,

C̄(µ, τ ) = min
ni∈{1,··· ,N}

∑N
n=1(1− µn)τn +

∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.17)

Hence, without the asymmetric traffic constraints, the user and the databases can

agree on τ that maximizes the retrieval rate, which results in the outer maximization

over τ . This is reminiscent of the classical converse proof for the channel coding

theorem, where a converse argument is constructed for an arbitrary input distribu-

tion of the transmission codebook, and then the converse proof is concluded with a

maximization step over all the input distributions.

Remark 7.3 The upper bound C̄(µ) in Theorem 7.1 can be written as the following

linear programming problem:

C̄(µ) = max
τ ,R

R

s.t. R ≤
∑N

n=1(1− µn)τn +
∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

,∀n

τn ≥ 0, n = 1, · · · , N
N∑

n=1

τn = 1 (7.18)
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where n = (n1, · · · , nM−1) ⊂ {1, · · · , N}M−1, i.e., the number of constraints are fi-

nite (at most NM−1+2 constraints). Hence, the optimal solution of this optimization

problem is attained at one of the corner points of the feasible set.

Next, we present a general lower bound on C(µ) for fixed M , N .

Theorem 7.2 (Lower bound) For PIR-WTC-II, for a monotone non-decreasing

sequence n = {ni}M−1
i=0 ⊂ {1, · · · , N}M , let n−1 = 0, and S = {i ≥ 0 : ni−ni−1 > 0}.

Denote y`[k] to be the number of stages of the achievable scheme that downloads k-

sums from the nth database in one repetition of the scheme, such that n`−1 ≤ n ≤ n`,

and ` ∈ S. Let ξ` =
∏

s∈S\{`}
(
M−2
s−1

)
. The number of stages y`[k] is characterized by

the following system of difference equations:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj[k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj[k−1]

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1], ` ≥ 2

(7.19)

where δ[·] denotes the Kronecker delta function. The initial conditions of (7.19) are

y0[1] =
∏

s∈S
(
M−2
s−1

)
, and yj[k] = 0 for k ≤ j. Consequently, the traffic ratio vector

τ (n) = (τ1(n), · · · , τN(n)) corresponding to the sequence n = {ni}M−1
i=0 is given by:

τn(n) =

∑M
k=1

(
M
k

)
yj[k]

∑
`∈S
∑M

k=1

(
M
k

)
y`[k](n` − n`−1)

, nj−1 + 1 ≤ n ≤ nj (7.20)
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Then, the achievable rate corresponding to n is given by:

R(n,µ) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.21)

Consequently, the capacity C(µ) is lower bounded by:

C(µ) ≥ R(µ) = max
n0≤···≤nM−1∈{1,··· ,N}

R(n,µ) (7.22)

= max
n0≤···≤nM−1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.23)

The proof of Theorem 7.2 can be found in Section 7.5. We have the following

remarks.

Remark 7.4 For fixed M , N , the number of the achievable rates R(n,µ) in

Theorem 7.2 corresponds to the number of monotone non-decreasing sequences

n = {ni}M−1
i=0 , which is equal to

(
M+N−1

M

)
.

Remark 7.5 After achieving the corner points in Theorem 7.2, which achieve

R(n,µ), one can perform time-sharing between the corner points to obtain an achiev-

able R(τ ,µ) for any τ . The highest possible achievable rate can be obtained by max-

imizing over τ . However, this is not needed as time-sharing results in a piece-wise

affine function in τ . Hence, maximizing over τ would result in operating directly at

one of the corner points.

Remark 7.6 We note that the core of the achievability scheme is the PIR scheme

under asymmetric traffic constraints in Chapter 5. Hence, the recursive structure
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described by (7.19) is directly inherited from [125]. Nevertheless, two main differ-

ences appear in the final rate expression. First, the answer string length from every

database belonging to the same group is different in contrast to [125]. This is due

to the fact that every database experiences a different eavesdropping capability µn

in general, hence the nth database encrypts its responses with a key, whose length

depends on µn, thus the key lengths are different in general. Second, there is no need

for time-sharing over the corner points as shown in Remark 7.5.

In the following corollary, we settle the capacity C(µ) for M = 2, M = 3, and

arbitrary N .

Corollary 7.1 (Exact capacity for M = 2 and M = 3 messages) For PIR-

WTC-II, the capacity C(µ) for M = 2, 3, and an arbitrary N is given by:

C(µ) =





maxn0,n1∈{1,··· ,N}
n0n1∑n0

n=1
n0+1
1−µn

+
∑n1
n=n0+1

n0
1−µn

, M = 2

maxn0,n1,n2∈{1,··· ,N}
n0n1n2∑n0

n=1
n0n1+n0+1

1−µn
+
∑n1
n=n0+1

n0n1+n0
1−µn

+
∑n2
n=n1+1

n0n1
1−µn

, M = 3

(7.24)

The proof of Corollary 7.1 can be found in Section 7.5.4.

Remark 7.7 The explicit capacity expressions in Corollary 7.1 can be interpreted

using basic circuit theory. To see that for M = 2 for a given (n0, n1), consider

the circuit in Fig. 7.2. The circuit has a current source of n0n1 units. The circuit

consists of n0 + n1 parallel resistors. The nth resistor has the value of Rn = 1−µn
n0+1

if 1 ≤ n ≤ n0, and Rn = 1−µn
n0

if n0 + 1 ≤ n ≤ n1. Hence, the capacity C(µ) is
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Figure 7.2: Circuit interpretation of C(µ) for M = 2.
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Figure 7.3: Circuit interpretation of C(µ) for M = 3.

the voltage across the current source. A similar interpretation can be inferred from

Fig. 7.3 for the case of M = 3. Interestingly, this interpretation implies that in

order to maximize the retrieval rate (the voltage across the equivalent resistance of

the circuit), one should pick n0, n1, n2 such that the resistance of each parallel branch

is as symmetric as possible. This is due to the fact that the equivalent resistance of

parallel resistors is less than the resistance of the least resistor.

Finally, in the next corollary, we present an explicit achievable rate for R(µ)

when N = 2, and an arbitrary M . The proof of the corollary can be found in

Section 7.5.5

Corollary 7.2 (Achievable retrieval rate for N = 2) For PIR-WTC-II with
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N = 2 and an arbitrary M , let s2 = {1, · · · ,M − 1}, then the secure PIR capacity

C(µ) is lower bounded by:

max





max
s2∈{0,··· ,M−1}

(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M−1
s2+k

)

1
1−µ1

[
M
(
M−2
s2−1

)
+
∑bM−s22 c

k=1

(
M

s2+2k

)]
+ 1

1−µ2

[∑bM−s2−1
2 c

k=0

(
M

s2+2k+1

)] ,

1− µ1

M





(7.25)

Remark 7.8 We note the strong connection between the PIR-WTC-II problem and

the PIR problem under asymmetric traffic constraints in Chapter 5. In PIR-WTC-

II problem, the nth database uses a secret key of length µntn to span the entire

space of the eavesdropper. This in turn leaves (1 − µn)tn symbols for meaningful

queries. Since the eavesdropping vulnerabilities of the databases are different in

general (different µn), the meaningful queries are naturally constrained, e.g., we

expect the first database (the most secure) to support more meaningful queries than

the remaining databases. However, the main difference between the two problems

is that in the PIR problem under asymmetric traffic constraints [125], the traffic

ratio vector τ is fixed (by the problem formulation) in contrast to the PIR-WTC-II

problem, where the user and the databases can agree on a traffic ratio vector τ to

maximize the retrieval rate under the fixed eavesdropping capabilities µ.

Remark 7.9 We now compare our model with the PIR model in [21,41]. In [21,41],

there is an eavesdropper, which observes all communication of E out of N databases,

whose identities are unknown to the user. We restrict the comparison to the case
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T = 1 (i.e., no collusion between the databases). In this case, the capacity of

the secure PIR problem in [41] (abbreviated as T-EPIR problem) is 1 − E
N

. This

requires a common randomness, which is shared between the databases and unknown

to the user, of length E
N−E [41, Theorem 1]. We note that the capacity expression

is independent of the number of messages in [41]. For the symmetric version of

the problem in [21], the capacity expression is also 1 − E
N

. Interestingly, in the

symmetric version of the problem, the common randomness among the databases is

used to satisfy both the database privacy and the security constraints simultaneously.

On the other hand, in our model, the eavesdropper wiretaps all N databases

according to the given µ = (µ1, · · · , µN). The user knows the ratio of the traffic

which is observed by the eavesdropper from each database, i.e., µ = (µ1, · · · , µN),

but does not know which positions are being observed. Surprisingly, our model does

not need any shared randomness among the databases or with the user, i.e., here we

are able to achieve nontrivial PIR rates with zero shared randomness rates.

As a concrete example, let M = 3, and for a fair comparison, let µn = E
N

for

all n ∈ {1, · · · , N} in our model. The rationale for this choice of µn is that in [41],

the eavesdropper has access to a total of E · t observations, where t is the length of

the answer string from any database in [41]. Now, for symmetric µn = E
N

in our

model, all answer string lengths need to be symmetric, i.e., tn = t for all n, and

therefore, the eavesdropper accesses a total of E
N
· N · t = E · t observations here

as it does in [41]. The capacity for this case in our model, from Corollary 7.1, is

1−E
N

1+ 1
N

+ 1
N2

, which is attained with n0 = n1 = n2 = N in the corollary. This rate is

strictly less than the rate in [41], which is 1 − E
N

, however, [41] requires a shared
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randomness between the databases at a rate of at least E
N−E , while in our case no

shared randomness is required.

7.4 Converse Proof

In this section, we derive a general upper bound for the retrieval rate under the

privacy and security constraints (7.4), (7.8) for the PIR-WTC-II problem. Our

converse proof extends the techniques of [12] to incorporate the security constraint.

In addition, since the eavesdropper observes a different fraction of the traffic from

each database, we do not expect that the answer strings (and consequently the

traffic ratios) from each database to be symmetric in length. Thus, we modify the

converse proof in [12] to account for this prospected traffic asymmetry along the lines

of Chapter 5. However, different from [125], traffic ratios are not given, and must

be chosen; the eavesdropping ratios µ = (µ1, · · · , µN) are given here. Our converse

proof extends the proof in [125] to account for the imposed security constraint.

In the next lemma, we discuss some consequences of the security constraint in

(7.8). The security constraint introduces some interesting conditional independence

properties which simplify the converse proof.

Lemma 7.1 (Security consequences) In the PIR-WTC-II problem, the follow-

ing implications are true due to the security constraint (7.8):

1. Messages are conditionally independent given the observed part of the answer
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strings at the eavesdropper Z
[i]
1:N , i.e.,

I(Wm;W[1:M ]\{m}|Z [i]
1:N) = 0, i, m ∈ {1, · · · ,M} (7.26)

2. There is no leakage of Wm from all the queries Q
[i]
1:N , the eavesdropper ob-

servations Z
[i]
1:N , and any subset of messages WS = {Wi : i ∈ S} such that

m /∈ S,

I(Wm;WS , Z
[i]
1:N , Q

[i]
1:N) = 0, i, m ∈ {1, · · · ,M} (7.27)

In particular,

I(Wm;Wm:M |W1:m−1, Z
[i]
1:N) = L, i, m ∈ {1, · · · ,M} (7.28)

3. The eavesdropper’s observations Z
[i]
1:N and the messages are conditionally in-

dependent given the queries Q
[i]
1:N , i.e., for sets S1, S2, such that S1 ∩ S2 = ∅,

I(WS1 ;Z
[i]
1:N |Q

[i]
1:N ,WS2) = 0, i ∈ {1, · · · ,M} (7.29)

In particular,

I(Wm:M ;Z
[m−1]
1:N |W1:m−1) = 0, m ∈ {2, · · · ,M} (7.30)

4. The messages and the queries are conditionally independent given the eaves-

281



dropper’s observations, i.e., for sets S1, S2, such that S1 ∩ S2 = ∅,

I(WS1 ;Q
[i]
1:N |WS2 , Z

[i]
1:N) = 0, i ∈ {1, · · · ,M} (7.31)

5. The messages Wm:M and the queries Q
[m]
k+1:N for any k ∈ {1, · · · , N} are con-

ditionally independent given
(
W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k

)
, i.e.,

I(Wm:M ;Q
[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k ) = 0 (7.32)

Proof:

1. From the security constraint (7.8), we have I(W1:M ;Z
[i]
1:N , Q

[i]
1:N) = 0, which

further implies that I(W1:M ;Z
[i]
1:N) = 0. This can be expanded as:

0 = I(Wm,W[1:M ]\{m};Z
[i]
1:N) (7.33)

= I(Wm;Z
[i]
1:N) + I(W[1:M ]\{m};Z

[i]
1:N |Wm) (7.34)

= I(W[1:M ]\{m};Z
[i]
1:N) + I(Wm;Z

[i]
1:N |W[1:M ]\{m}) (7.35)

which implies that all four terms in (7.34), (7.35) are zero. Then, consider

I(Wm;W[1:M ]\{m}, Z
[i]
1:n) = I(Wm;Z

[i]
1:N) + I(Wm;W[1:M ]\{m}|Z [i]

1:N) (7.36)

= I(Wm;W[1:M ]\{m}) + I(Wm;Z
[i]
1:N |W[1:M ]\{m})

(7.37)
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which together with (7.34), (7.35) and the independence of the messages imply

(7.26).

2. From the security constraint (7.8), we have I(Wm,WS ;Q
[i]
1:N , Z

[i]
1:N) = 0 by the

non-negativity of mutual information. This can be further expanded as

0 = I(Wm,WS ;Q
[i]
1:N , Z

[i]
1:N) = I(WS ;Q

[i]
1:N , Z

[i]
1:N) + I(Wm;Q

[i]
1:N , Z

[i]
1:N |WS)

(7.38)

From the second term on the right hand side, we have I(Wm;Q
[i]
1:N , Z

[i]
1:N |WS) =

0, which implies (7.27) by the independence of the messages, as

I(Wm;WS , Z
[i]
1:N , Q

[i]
1:N) = I(Wm;WS) + I(Wm;Z

[i]
1:N , Q

[i]
1:N |WS).

For (7.28), we note that (7.27) implies that I(Wm;W1:m−1, Z
[i]
1:N) = 0

by the non-negativity of mutual information, which further implies that

I(Wm;Z
[i]
1:N |W1:m−1) = 0. Now,

I(Wm;Wm:M |W1:m−1, Z
[i]
1:N) =H(Wm|W1:m−1, Z

[i]
1:N) (7.39)

=H(Wm|W1:m−1)− I(Wm;Z
[i]
1:N |W1:m−1) (7.40)

=L (7.41)

where the last equality follows from the independence of the messages.

3. From the security constraint (7.8) and the non-negativity of mutual in-

formation, we have I(WS1 ,WS2 ;Z
[i]
1:N , Q

[i]
1:N) = 0, which can be expanded

as I(WS2 ;Z
[i]
1:N , Q

[i]
1:N) + I(WS1 ;Z

[i]
1:N , Q

[i]
1:N |WS2) = 0, which implies that
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I(WS1 ;Z
[i]
1:N , Q

[i]
1:N |WS2) = 0. We futher expand it as:

0 = I(WS1 ;Q
[i]
1:N |WS2) + I(WS1 ;Z

[i]
1:N |Q

[i]
1:N ,WS2) (7.42)

which leads to (7.29) by the non-negativity of mutual information.

For (7.30), we note from (7.29) that I(Wm:M ;Z
[m−1]
1:N |Q[m−1]

1:N ,W1:m−1) = 0,

hence

0 = I(Wm:M ;Z
[m−1]
1:N , Q

[m−1]
1:N |W1:m−1)− I(Wm:M ;Q

[m−1]
1:N |W1:m−1) (7.43)

Now, I(Wm:M ;Q
[m−1]
1:N |W1:m−1) = 0 by the independence of the messages and

the queries in (7.3), and this implies (7.30) by the non-negativity of mutual

information.

4. Using the same argument as in item 3 above and reversing the order of the

chain rule in (7.42) leads to (7.31).

5. We have

I(Wm:M ;Q
[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k )

=I(Wm:M ;Q
[m]
k+1:N , Y

[m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:k )

− I(Wm:M ;Y
[m]

1:k |W1:m−1, Z
[m]
1:N , Q

[m]
1:k ) (7.44)

=I(Wm:M ;Q
[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ) + I(Wm:M ;Y

[m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:N)

− I(Wm:M ;Y
[m]

1:k |W1:m−1, Z
[m]
1:N , Q

[m]
1:k ) (7.45)
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=0 (7.46)

where I(Wm:M ;Q
[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ) = 0 from (7.31) and the

non-negativity of mutual information, and since Q
[m]
1:N → Q

[m]
1:k →

Y
[m]

1:k is a Markov chain, we have I(Wm:M ;Y
[m]

1:k |W1:m−1, Z
[m]
1:N , Q

[m]
1:N) =

I(Wm:M ;Y
[m]

1:k |W1:m−1, Z
[m]
1:N , Q

[m]
1:k ).

�

We will need the following lemma, which characterizes a lower bound on the

interference from the undesired messages within the portion of answers that is un-

observed by the eavesdropper (and hence secure). Since the user must download at

least L symbols to retrieve the desired message, the difference
∑N

n=1(1− µn)tn − L

denotes the interference terms within the unobserved (by the eavesdropper) portion

of the answers.

Lemma 7.2 (Interference lower bound) For the PIR-WTC-II problem, the in-

terference from undesired messages within the unobserved portion of the answer

strings by the eavesdropper
∑N

n=1(1− µn)tn − L is lower bounded by,

N∑

n=1

(1− µn)tn − L+ o(L) ≥ I
(
W2:M ;Q

[1]
1:N , Y

[1]
1:N |W1, Z

[1]
1:N

)
(7.47)

We note that Lemma 7.2 is a generalization of [12, Lemma 5] to the problem of

PIR-WTC-II. If µn = 0 for all n ∈ [1 : N ], then Lemma 7.2 reduces to [12, Lemma 5]

as Z
[1]
1:N (the eavesdropper observations) is absent and Y

[1]
1:N = A

[i]
1:N in that case.
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Proof: We start with the right hand side of (7.47),

I(W2:M ;Q
[1]
1:N , Y

[1]
1:N |W1, Z

[1]
1:N)

(7.26)
= I

(
W2:M ;W1, Q

[1]
1:N , Y

[1]
1:N |Z

[1]
1:N

)
(7.48)

=I
(
W2:M ;Q

[1]
1:N , Y

[1]
1:N |Z

[1]
1:N

)
+ I

(
W2:M ;W1|A[1]

1:N , Q
[1]
1:N

)
(7.49)

(7.9)
= I

(
W2:M ;Q

[1]
1:N , Y

[1]
1:N |Z

[1]
1:N

)
+ o(L) (7.50)

(7.31)
= I

(
W2:M ;Y

[1]
1:N |Q

[1]
1:N , Z

[1]
1:N

)
+ o(L) (7.51)

=H
(
Y

[1]
1:N |Q

[1]
1:N , Z

[1]
1:N

)
−H

(
Y

[1]
1:N |Q

[1]
1:N , Z

[1]
1:N ,W2:M

)
+ o(L) (7.52)

≤
N∑

n=1

(1− µn)tn−H
(
W1, Y

[1]
1:N |Q

[1]
1:N ,Z

[1]
1:N ,W2:M

)
+H

(
W1|A[1]

1:N ,Q
[1]
1:N ,W2:M

)
+o(L)

(7.53)

(7.9)
=

N∑

n=1

(1− µn)tn −H
(
W1, Y

[1]
1:N |Q

[1]
1:N , Z

[1]
1:N ,W2:M

)
+ o(L) (7.54)

=
N∑

n=1

(1− µn)tn−H
(
W1|Q[1]

1:N , Z
[1]
1:N ,W2:M

)
−H

(
Y

[1]
1:N |Q

[1]
1:N , Z

[1]
1:N ,W1:M

)
+o(L)

(7.55)

≤
N∑

n=1

(1− µn)tn−H
(
W1|Q[1]

1:N , Z
[1]
1:N ,W2:M

)
+ o(L) (7.56)

(7.27)
=

N∑

n=1

(1− µn)tn − L+ o(L) (7.57)

where (7.48) follows from the conditional independence of messages in Lemma 7.1,

(7.50), (7.54) follow from the decodability of W1 given (Q
[1]
1:N , A

[1]
1:N), (7.51) follows

from the conditional independence of the messages and the queries in Lemma 7.1,

(7.53) follows from conditioning reduces entropy and the fact that H(Y
[1]

1:N) ≤
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∑N
n=1(1 − µn)tn from the WTC-II model, (7.56) follows from the non-negativity

of the entropy function, and (7.57) follows from zero leakage property of W1 from

(7.27) which implies H(W1|Q[1]
1:N , Z

[1]
1:N ,W2:M) = H(W1) = L. �

In the following lemma, we derive an induction relation for the right hand

side of the expression in (7.47). This lemma extends [12, Lemma 6] in two major

ways. First, we incorporate the security constraint in the proof by observing that

(W1:M , Z
[m]
1:N) are independent. Second, and more significantly, the main difference

between this lemma and [12, Lemma 6] is the fact that not all databases can use

a symmetric scheme due to the asymmetry of the fraction that the eavesdropper

can observe. Consequently, we denote nm−1 to be the number of databases that

can apply a symmetric scheme when the retrieval problem is reduced to retrieving

message Wm−1 from the set of Wm−1:M messages. For the remaining answer strings,

we directly bound them by their corresponding length of the unobserved portion

∑N
n=nm−1+1(1− µn)tn.

Lemma 7.3 (Induction lemma) For all m ∈ {2, . . . ,M} and for an arbitrary

nm−1 ∈ {1, · · · , N}, the mutual information term in Lemma 7.2 can be inductively

lower bounded as,

I
(
Wm:M ;Q

[m−1]
1:N , Y

[m−1]
1:N |W1:m−1, Z

[m−1]
1:N

)

≥ 1

nm−1

[
I
(
Wm+1:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m, Z

[m]
1:N

)
+

(
L−

N∑

n=nm−1+1

(1− µn)tn

)
− o(L)

]

(7.58)
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Proof: We start with the left hand side of (7.58), after multiplying by nm−1,

nm−1 I
(
Wm:M ;Q

[m−1]
1:N , Y

[m−1]
1:N |W1:m−1, Z

[m−1]
1:N

)

(7.30)
= nm−1 I

(
Wm:M ;Q

[m−1]
1:N , A

[m−1]
1:N |W1:m−1

)
(7.59)

≥ nm−1 I
(
Wm:M ;Q

[m−1]
1:nm−1

, A
[m−1]
1:nm−1

|W1:m−1

)
(7.60)

≥
nm−1∑

n=1

I
(
Wm:M ;Q[m−1]

n , A[m−1]
n |W1:m−1

)
(7.61)

(7.4)
=

nm−1∑

n=1

I
(
Wm:M ;Q[m]

n , A[m]
n |W1:m−1

)
(7.62)

(7.3)
=

nm−1∑

n=1

I
(
Wm:M ;A[m]

n |Q[m]
n ,W1:m−1

)
(7.63)

(7.29)
=

nm−1∑

n=1

I
(
Wm:M ;Y [m]

n |Q[m]
n ,W1:m−1, Z

[m]
n

)
(7.64)

=

nm−1∑

n=1

H
(
Y [m]
n |Q[m]

n ,W1:m−1, Z
[m]
n

)
−H

(
Y [m]
n |Q[m]

n ,W1:M , Z
[m]
n

)
(7.65)

≥
nm−1∑

n=1

H
(
Y [m]
n |Y [m]

1:n−1, Q
[m]
1:nm−1

,W1:m−1, Z
[m]
1:N

)

−H
(
Y [m]
n |Y [m]

1:n−1, Q
[m]
1:nm−1

,W1:M , Z
[m]
1:N

)
(7.66)

=

nm−1∑

n=1

I
(
Wm:M ;Y [m]

n |Y [m]
1:n−1, Q

[m]
1:nm−1

,W1:m−1, Z
[m]
1:N

)
(7.67)

= I
(
Wm:M ;Y

[m]
1:nm−1

|Q[m]
1:nm−1

,W1:m−1, Z
[m]
1:N

)
(7.68)

(7.31)
= I

(
Wm:M ;Q

[m]
1:nm−1

, Y
[m]

1:nm−1
|W1:m−1, Z

[m]
1:N

)
(7.69)

(7.32)
= I

(
Wm:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)

− I
(
Wm:M ;Y

[m]
nm−1+1:N |Q

[m]
1:N , Y

[m]
1:nm−1

,W1:m−1, Z
[m]
1:N

)
(7.70)

≥ I
(
Wm:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)
−H

(
Y

[m]
nm−1+1:N

)
(7.71)

≥ I
(
Wm:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)
−

N∑

n=nm−1+1

(1− µn)tn (7.72)
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= I
(
Wm:M ;Wm, Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)
− I

(
Wm:M ;Wm|W1:m−1, Q

[m]
1:N , A

[m]
1:N

)

−
N∑

n=nm−1+1

(1− µn)tn (7.73)

(7.9)
= I

(
Wm:M ;Wm, Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)
−

N∑

n=nm−1+1

(1− µn)tn − o(L) (7.74)

= I
(
Wm:M ;Wm|W1:m−1, Z

[m]
1:N

)
+ I

(
Wm:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m, Z

[m]
1:N

)

−
N∑

n=nm−1+1

(1− µn)tn − o(L) (7.75)

(7.28)
= I

(
Wm+1:M ;Q

[m]
1:N , Y

[m]
1:N |W1:m, Z

[m]
1:N

)
+

(
L−

N∑

n=nm−1+1

(1− µn)tn

)
− o(L)

(7.76)

where (7.59) follows from the conditional independence of the messages and Z
[m−1]
1:N

in (7.30) as a consequence of the security constraint, (7.60), (7.61) follow from

the non-negativity of mutual information, (7.62) follows from the privacy con-

straint, (7.63) follows from the independence of the queries and the messages,

(7.64) follows from the conditional independence of the messages and Z
[m]
n in

(7.29) and the non-negativity of mutual information, (7.66) follows from condi-

tioning reduces entropy and
(
Q

[m]
1:nm−1

, Z
[m]
1:N ,W1:M , Y

[m]
1:n−1

)
→
(
Q

[m]
n ,W1:M , Z

[n]
n

)
→

Y
[m]
n , (7.69) follows from (7.31) and the non-negativity of mutual information,

(7.70) follows from the chain rule and (7.32), (7.71) follows from the fact that

I
(
Wm:M ;Y

[m]
nm−1+1:N |Q

[m]
1:N , Y

[m]
1:nm−1

,W1:m−1, Z
[m]
1:N

)
≤ H

(
Y

[m]
1:nm−1

)
, (7.72) follows from

the fact that conditioning reduces entropy and H(Y
[m]
nm−1+1:N) ≤∑N

n=nm−1+1(1−µn)tn

in the WTC-II model, (7.74) follows from the reliability constraint, (7.76) follows

from the no leakage property of Wm from (7.28) as a consequence of the security
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constraint. Finally, dividing both sides by nm−1 leads to (7.58). �

Now, we are ready to prove an explicit upper bound for the retrieval rate in

the PIR-WTC-II problem R(µ) by applying Lemma 7.2 and Lemma 7.3 succes-

sively. For a pre-specified answer string lengths {tn}Nn=1, and an arbitrary sequence

{ni}M−1
i=1 , we can write

N∑

n=1

(1− µn)tn − L+ õ(L)

(7.47)

≥ I
(
W2:M ;Q

[1]
1:N , Y

[1]
1:N |W1, Z

[1]
1:N

)
(7.77)

(7.58)

≥ 1

n1

(
L−

N∑

n=n1+1

(1− µn)tn

)
+

1

n1

I
(
W3:M ;Q

[2]
1:N , Y

[2]
1:N |W1:2, Z

[2]
1:N

)
(7.78)

(7.58)

≥ 1

n1

(
L−

N∑

n=n1+1

(1− µn)tn

)
+

1

n1n2

(
L−

N∑

n=n2+1

(1− µn)tn

)

+
1

n2

I
(
W4:M ;Q

[3]
1:N , Y

[3]
1:N |W1:3, Z

[3]
1:N

)
(7.79)

(7.58)

≥ . . .

(7.58)

≥ 1

n1

(
L−

N∑

n=n1+1

(1− µn)tn

)
+

1

n1n2

(
L−

N∑

n=n2+1

(1− µn)tn

)
+ · · ·

+
1∏M−1

i=1 ni


L−

N∑

n=nM−1+1

(1− µn)tn


 (7.80)

where õ(L) =
(

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

)
o(L), (7.77) follows from Lemma 7.2,

and the remaining bounding steps follow from successive application of Lemma 7.3.
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Ordering terms and letting τn = tn∑N
i=1 ti

, we have,

(
1 +

1

n1

+
1

n1n2

+· · ·+ 1∏M−1
i=1 ni

)
L ≤

(
φ(0) +

φ(n1)

n1

+· · ·+ φ(nM−1)∏M−1
i=1 ni

)
N∑

n=1

tn+õ(L)

(7.81)

where φ(`) =
∑N

n=`+1(1 − µn)τn corresponds to the sum of the unobserved traffic

ratios by the eavesdropper from databases [`+ 1 : N ].

We conclude the proof by taking L → ∞. Thus, for an arbitrary sequence

{ni}M−1
i=1 we have

R(τ ,µ) =
L∑N
n=1 tn

≤
φ(0) + φ(n1)

n1
+ φ(n2)

n1n2
+ · · ·+ φ(nM−1)∏M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(7.82)

The bound in (7.82) for R(τ ,µ) is valid for any arbitrary sequence {ni}M−1
i=1 . Hence,

we obtain the tightest upper bound for R(τ ,µ) by minimizing over the sequence

{ni}M−1
i=1 over the set {1, · · · , N} to get

R(τ ,µ) ≤ min
n1,··· ,nM−1∈{1,··· ,N}

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · ·+ φ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(7.83)

Finally, since the user and the databases can choose any suitable traffic ratio

vector τ in the set T such that:

T =

{
τ : τn ≥ 0 ∀n ∈ [1 : N ],

N∑

n=1

τn = 1

}
(7.84)
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by maximizing over τ = (τ1, τ2, · · · , τN) in the set T, we obtain the following upper

bound for R(µ),

R(µ) ≤ max
τ∈T

min
ni∈{1,··· ,N}

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · ·+ φ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · ·+ 1∏M−1
i=1 ni

(7.85)

= max
τ∈T

min
ni∈{1,··· ,N}

∑N
n=1(1− µn)τn +

∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.86)

7.5 Achievable Scheme

In this section, we present a general achievable scheme for PIR-WTC-II. The scheme

builds on the achievable scheme in Chapter 5. The main idea of the achievable

scheme is that since the databases are eavesdropped by varying eavesdropping ca-

pabilities µ, then it would be beneficial for the user to query the databases using

the PIR scheme under asymmetric traffic constraints. Furthermore, the databases

should encrypt the answers such that the user can decode the meaningful trans-

mission by observing the entire answer string, while the encryption keys span the

eavesdropper’s entire observation space, ensuring the security of downloaded con-

tent. The user and the databases agree on the traffic ratio vector τ that maximizes

the achievable secure PIR rate.

In the following, we illustrate the main ingredients of the achievable scheme

by presenting the case of M = 3 messages and N = 2 databases for an arbitrary µ.
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7.5.1 Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we first show an explicit upper bound for the capacity expression

C̄(µ). Then, we show the capacity-achieving scheme for the concrete example of

µ = (1
4
, 1

2
). We conclude this section by showing how to extend the achievable

scheme for arbitrary µ.

7.5.1.1 Explicit Upper Bound for M = 3 Messages, N = 2 Databases

From Theorem 7.1, the upper bound of C̄(µ) is given by:

C̄(µ) = max
τ∈T

min
ni∈{1,2}

∑2
n=1(1− µn)τn +

∑2
n=n1+1(1−µn)τn

n1
+
∑2
n=n2+1(1−µn)τn

n1n2

1 + 1
n1

+ 1
n1n2

(7.87)

By observing that τ1 = 1 − τ2, this can be explicitly written as the following

linear program:

max
τ2,R

R

s.t. R ≤ 1

3
(1− µ1) +

[
(1− µ2)− 1

3
(1− µ1)

]
τ2

R ≤ 2

5
(1− µ1) +

[
4

5
(1− µ2)− 2

5
(1− µ1)

]
τ2

R ≤ 4

7
(1− µ1) +

[
4

7
(1− µ2)− 4

7
(1− µ1)

]
τ2

0 ≤ τ2 ≤ 1 (7.88)

Note that the bound corresponding to n1 = 2, n2 = 1 is not included in (7.88) as it

would be inactive for any µ. Since (7.88) is a linear program, the optimal solution
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exists among the corner points of the feasible region. The first corner point, is

τ
(1)
2 = 0, which leads to the bound C̄(µ) ≤ 1−µ1

3
. The second corner point occurs at

the intersection of the first two constraints, i.e., τ
(2)
2 satisfies:

1

3
(1− µ1) +

[
(1− µ2)− 1

3
(1− µ1)

]
τ

(2)
2 =

2

5
(1− µ1) +

[
4

5
(1− µ2)− 2

5
(1− µ1)

]
τ

(2)
2

(7.89)

which leads to,

τ
(2)
2 =

(1− µ1)

3(1− µ2) + (1− µ1)
(7.90)

with a corresponding bound of C̄(µ) ≤ 2(1−µ1)(1−µ2)
3(1−µ2)+(1−µ1)

. Similarly, the third corner

point τ
(3)
2 occurs at the intersection of the second and third constraints, hence τ

(3)
2 =

3(1−µ1)
4(1−µ2)+3(1−µ1)

with the corresponding bound of C̄(µ) ≤ 4(1−µ1)(1−µ2)
4(1−µ2)+3(1−µ1)

. Finally, at

τ2 = 1, we have the bound C̄(µ) ≤ 4(1−µ2)
7

which is no larger than 4(1−µ1)(1−µ2)
4(1−µ2)+3(1−µ1)

by

the monotonicity of µ, hence it can be ignored.

Consequently, the explicit upper bound for M = 3, N = 2 is given by

C̄(µ) = max

{
1− µ1

3
,

2(1− µ1)(1− µ2)

3(1− µ2) + (1− µ1)
,

4(1− µ1)(1− µ2)

4(1− µ2) + 3(1− µ1)

}
(7.91)

7.5.1.2 Concrete Example: µ1 = 1
4 , µ2 = 1

2

Before the retrieval process, the user permutes the indices of the symbols of W1,

W2, W3 independently, uniformly, and privately. Assume without loss of generality

294



that W1 is the desired message. Let ai, bi, ci be the permuted symbols from W1,

W2, W3, respectively. In the case of µ1 = 1
4
, µ2 = 1

2
, the explicit upper bound in

(7.91) is C̄(µ) = 4(1−µ1)(1−µ2)
4(1−µ2)+3(1−µ1)

= 6
17

. To achieve this bound, we focus first on the

meaningful queries, i.e., the queries without the randomness that is added to satisfy

the security constraint. From the first database, the user asks for an individual

symbol from every message, i.e., asks for a1, b1, c1. From database 2, the user does

not ask for new individual symbols but rather exploits the side information that is

generated from database 1 to query for 2-sums from database 2, i.e., the user asks

for a2 + b1, a3 + c1, b2 + c2 from database 2. Then, the user exploits b2 + c2 as side

information to ask for a4 + b2 + c2 from database 1. To get an integer number of

downloads for the meaningful queries, which covers (1−µn)tn from the downloaded

symbols from the nth database, the scheme is repeated ν times. Since this scheme

gets 4 symbols from database 1 and 3 symbols from database 2, we choose the

repetition factor of the scheme ν such that:

(1− µ1)t1 = 4ν ⇒ t1 =
16ν

3
(7.92)

(1− µ2)t2 = 3ν ⇒ t2 = 6ν (7.93)

Then, the minimal ν is ν = 3. Database 1 generates the independent keys K1 =

(
k

(1)
1 , · · · , k(1)

4

)
, such that K1 is picked uniformly from F4

q. Database 1 encodes these

random keys using a (16, 4) MDS code, to get u[1:16], i.e.,

u[1:16] = MDS16×4K1 (7.94)
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Similarly, database 2 generates K2 =
(
k

(2)
1 , · · · , k(2)

9

)
uniformly from F9

q.

Database 2 encodes the keys using an (18, 9) MDS code, to get v[1:16], i.e.,

v[1:18] = MDS18×9K2 (7.95)

Now, all the meaningful downloads are encrypted by the coded keys. Fur-

thermore, the user downloads u[13:16] separately from database 1, and v[10:18] from

database 2. The query table is shown in Table. 7.1.

Table 7.1: The query table for M = 3, N = 2, µ1 = 1
4
, µ2 = 1

2
.

Database 1 Database 2
a1 + u1 a2 + b1 + v1

b1 + u2 a3 + c1 + v2

c1 + u3 b2 + c2 + v3

a4 + b2 + c2 + u4

a5 + u5 a6 + b3 + v4

b3 + u6 a7 + c3 + v5

c3 + u7 b4 + c4 + v6

a8 + b4 + c4 + u8

a9 + u9 a10 + b5 + v7

b5 + u10 a11 + c5 + v8

c5 + u11 b6 + c6 + v9

a12 + b6 + c6 + u12

u13, u14, u15, u16 v10, u11, u12, u13, v14

v15, u16, u17, u18

For the decodability, since database 1 encodes its keys K1 using a (16, 4) MDS

code, by the MDS property, any 4 symbols suffice to reconstruct u[1:16]. The user

downloads u[13:16] separately, hence u[1:12] can be reconstructed and canceled from the

downloads to get the meaningful information only. Similarly, database 2 encodes

the keys K2 using an (18, 9) MDS code, hence v[10:18] suffice to reconstruct v[1:9]
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and can be canceled from the meaningful downloads. Furthermore, since the side

information at any database is obtained from the undesired symbols downloaded

from the second database, all undesired symbols can be canceled and the user is left

only with a[1:12], which are the desired symbols.

For the security, since µ1 = 1
4

and µ2 = 1
2
, the eavesdropper can obtain any

4 symbols out of total 16 downloaded symbols from database 1, and any 9 symbols

out of total 18 downloaded symbols from database 2. Since K1, K2 are generated

uniformly and independently from F4
q, F9

q, respectively, any 4 symbols (ui1 , · · · , ui4)

from u[1:16] are independent and uniformly distributed over Fq, and similarly for any

9 symbols (vj1 , · · · , vj9) from v[1:18]. Consequently, the leakage at the eavesdropper

is upper bounded by:

I(W1:3;Z
[1]
1:2) = H(Z1:2)−H(Z1:2|W1:3) (7.96)

≤ logq 13−H







ui1

...

ui4

vj1

...

vj9







= 0 (7.97)

For the privacy, as all combinations of the sums are included in the queries

and the indices of the message symbols are uniformly and independently permuted,

the privacy constraint is satisfied. Hence, the user downloads t1 = 16 symbols from
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database 1, and t2 = 18 symbols from database 2. From these downloads, the user

can decode L = 12 symbols from W1. Hence, R = 12
34

= 6
17

, which matches the upper

bound.

7.5.1.3 Achieving the Upper Bound for Arbitrary µ

Now, we show how to achieve the upper bound in (7.91) for general µ. As shown

in the example of µ1 = 1
4
, µ2 = 1

2
, the user downloads µ1t1 as individual symbols

from the coded keys from database 1, and µ2t2 as individual symbols from the coded

keys from database 2. This leaves (1−µ1)t1, (1−µ2)t2, respectively for meaningful

symbols. Furthermore, each scheme should be repeated ν times to ensure that

t1, t2 ∈ N. In the following, we focus on the meaningful symbols without the coded

keys. We show only one repetition of the scheme.

For R(µ) = 1−µ1

3
: To achieve this rate, the user applies the trivial retrieval scheme

[1], and downloads all messages from database 1, i.e., the user downloads a1, b1, c1

from database 1. Hence, t2 = 0 and

(1− µ1)t1 = 3ν ⇒ t1 =
3ν

1− µ1

(7.98)

where ν is chosen such that t1 ∈ N. From every repetition, the user gets 1 symbol

from W1. Hence, L = ν. The user asks for µ1t1 = 3µ1ν
1−µ1

individual coded symbols

from the keys, and the database encrypts the downloads with coded keys constructed

from a ( 3ν
1−µ1

, 3µ1ν
1−µ1

) MDS code. This ensures the security. The achievable rate in
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this case is

R =
L

t1 + t2
=

ν
3ν

1−µ1

=
1− µ1

3
(7.99)

For R(µ) = 2(1−µ1)(1−µ2)
3(1−µ2)+(1−µ1)

: To achieve this rate, the user downloads individual

symbols from all messages from database 1, i.e., the user downloads a1, b1, c1 from

database 1. The user combines the two undesired symbols b1, c1 into a 2-sum b1 +c1

and uses it as a side information in database 2. The query table for one repetition

of the scheme for the meaningful symbols (without showing the keys) is shown in

Table 7.2.

Table 7.2: The meaningful symbols for M = 3, N = 2 to achieve 2(1−µ1)(1−µ2)
3(1−µ2)+(1−µ1)

.

Database 1 Database 2
a1, b1, c1 a2 + b1 + c1

In this case, the scheme is repeated ν times such that t1, t2 ∈ N,

(1− µ1)t1 = 3ν ⇒ t1 =
3ν

1− µ1

(7.100)

(1− µ2)t2 = 1ν ⇒ t2 =
ν

1− µ2

(7.101)

Database 1 encodes µ1t1 = 3νµ1

1−µ1
independent and uniformly distributed keys

using a ( 3ν
1−µ1

, 3νµ1

1−µ1
) MDS code to obtain the coded keys that are added to each

download. Similarly, database 2 encodes µ2t2 = νµ2

1−µ2
keys using a ( ν

1−µ2
, νµ2

1−µ2
) MDS

code to obtain the coded symbols. Using this scheme, the user decodes L = 2ν from
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the desired messages. Consequently,

R =
L

t1 + t2
=

2ν
3ν

1−µ1
+ ν

1−µ2

=
2(1− µ1)(1− µ2)

3(1− µ2) + (1− µ1)
(7.102)

For R(µ) = 4(1−µ1)(1−µ2)
4(1−µ2)+3(1−µ1)

: An instance for this scheme is the µ1 = 1
4
, µ2 = 1

2

example. To avoid repetition, we give only the general rate. As shown in the

example, t1 = 4ν
1−µ1

, and t2 = 3ν
1−µ2

. From every repetition, the user can decode 4

symbols, hence L = 4ν. Thus,

R =
L

t1 + t2
=

4ν
4ν

1−µ1
+ 3ν

1−µ2

=
4(1− µ1)(1− µ2)

4(1− µ2) + 3(1− µ1)
(7.103)

This completes the description of the capacity-achieving scheme for PIR-WTC-

II for M = 3, N = 2, and arbitrary µ. The capacity region C(µ) is shown in

Fig. 7.4. In Fig. 7.5, we illustrate the partitioning of the µ space in terms of the

active capacity expression; note by convention µ2 ≥ µ1.

7.5.2 General Achievable Scheme

In this section, we present the general achievable scheme for PIR-WTC-II that

achieves the retrieval rate in Theorem 7.2. The core of the achievable scheme is

the achievable scheme of the corner points in the PIR problem under asymmetric

traffic constraints in Chapter 5. A new ingredient is needed to satisfy the security

constraint, namely, encrypting the answer strings by random keys. The nth database

uses a random key Kn of length µntn that is sufficient to span the space of the
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Figure 7.4: Capacity for M = 3, N = 2 as a function of µ1 and µ2.

eavesdropper’s observations. The nth database encodes Kn using a (tn, µntn) MDS

code and uses the resulting codeword to encrypt each downloaded symbol from the

meaningful downloads in addition to µntn individual symbols of coded key symbols

only. For completeness, we include all related details of the scheme in [125] in

addition to the new ingredients.

We use the same terminology as in [125]. Let sn ∈ {0, 1, · · · ,M−1} denote the

number of side information symbols that are used simultaneously in the initial round

of downloads at the nth database. For a given non-decreasing sequence {ni}M−1
i=0 ⊂

{1, · · · , N}M , the databases are divided into groups, such that group 0 contains

database 1 through database n0, group 1 contains n1 − n0 databases starting from

database n0 + 1, and so on.
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Figure 7.5: Partitions of µ space according to the active capacity expression for
M = 3, N = 2.

Hence, let sn = i for all ni−1 +1 ≤ n ≤ ni with n−1 = 0 by convention. Denote

S = {i : sn = i for somen ∈ {1, · · · , N}}. We follow the round and stage definitions

in [123]. The kth round is the download queries that admit a sum of k different

messages (k-sum in [12]). A stage of the kth round is a query block of the kth round

that exhausts all
(
M
k

)
combinations of the k-sum. Denote y`[k] to be the number of

stages in round k downloaded from the nth database, such that n`−1 + 1 ≤ n ≤ n`.

The details of the achievable scheme are as follows:

1. Calculation of the number of repetitions: The user and the databases agree

on appropriate answer string lengths tn(n,µ), n = 1, · · · , N . To that end, the
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scheme associated with n = {ni}M−1
i=0 is repeated ν times such that:

tn(n,µ) =
νDn(n)

1− µn
∈ N, ∀n ∈ {1, · · · , N} (7.104)

where Dn(n) is the number of meaningful downloads corresponding to one rep-

etition of the achievable scheme associated with the monotone non-decreasing

sequence n = {ni}M−1
i=0 .

2. Preparation of the keys: The nth database generates a random key Kn. The

random key Kn is of length µntn, such that elements of Kn are independent and

uniformly distributed over Fq. The nth database encodes Kn to an artificial

noise vector u
(n)
[1:tn] using a (tn, µntn) MDS code, i.e.,

u
(n)
[1:tn] = MDStn×µntnKn (7.105)

3. Initialization at the user side: The user permutes each message independently

and uniformly using a random interleaver, i.e.,

xm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (7.106)

where xm(i) is the ith symbol of the permuted Wm, πm(·) is a random in-

terleaver for the mth message that is chosen independently, uniformly, and

privately at the user’s side.

4. Initial download: From the nth database where 1 ≤ n ≤ n0, the user down-
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loads
∏

s∈S
(
M−2
s−1

)
symbols from the desired message. The user sets the round

index k = 1. I.e., the user starts downloading the desired symbols from

y0[1] =
∏

s∈S
(
M−2
s−1

)
different stages.

5. Message symmetry: To satisfy the privacy constraint, for each stage initiated

in the previous step, the user completes the stage by downloading the remain-

ing
(
M−1
k−1

)
k-sum combinations that do not include the desired symbols, in

particular, if k = 1, the user downloads
∏

s∈S
(
M−2
s−1

)
individual symbols from

each undesired message.

6. Database symmetry: We divide the databases into groups. Group ` ∈ S

corresponds to databases n`−1 +1 to n`. Database symmetry is applied within

each group only. Consequently, the user repeats step 2 over each group of

databases, in particular, if k = 1, the user downloads
∏

s∈S
(
M−2
s−1

)
individual

symbols from each message from the first n0 databases (group 1).

7. Exploitation of side information: The initial exploitation of side information

is group-dependent as well. Specifically, the undesired symbols downloaded

within the kth round (the k-sums that do not include the desired message)

are used as side information in the (k + 1)th round. This exploitation of side

information is performed by downloading (k + 1)-sum consisting of 1 desired

symbol and a k-sum of undesired symbols only that were generated in the kth

round. However, the main difference from [12] is that, for the nth database,

if sn > k, then this database does not exploit the side information generated

in the kth round. Consequently, the nth database belonging to the `th group
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exploits the side information generated in the kth round from all databases

except itself if sn ≤ k. Moreover, for sn = k, extra side information can be

used in the nth database. This is due to the fact that the user can form

n0

∏
s∈S\{sn}

(
M−2
s−1

)
extra stages of side information by constructing k-sums of

the undesired symbols in round 1 from the databases in group 0.

8. Repeat steps 5, 6, 7 after setting k = k + 1 until k = M .

9. Repetition of the scheme: Repeat steps 4, · · · , 8 for a total of ν repetitions.

10. Shuffling the order of the queries: By shuffling the order of the queries uni-

formly, all possible queries can be made equally likely regardless of the message

index. This guarantees the privacy.

11. Encryption of the downloads: The database encrypts each meaningful down-

load by adding one symbol from u
(n)
[1:(1−µn)tn]. Furthermore, the user downloads

u
(n)
[(1−µn)tn+1:tn] coded key symbols individually. This guarantees the security.

7.5.3 Decodability, Privacy, Security, and Achievable Rate

Decodability: To see the decodability, we note that the user receives µntn individ-

ual artificial noise symbols u
(n)
[(1−µn)tn+1:tn] from the nth database. From the MDS

property of the (tn, µntn) MDS code, any µntn coded symbols suffice to reconstruct

the entire tn coded symbols. Hence, the user can reconstruct and cancel u
(n)
[1:tn] by

the knowledge of u
(n)
[(1−µn)tn+1:tn]. Consequently, after canceling the artificial noise

symbols, the user is left with only the meaningful symbols in the answer strings.
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Now, by construction, in the (k + 1)th round at the nth database, the user

exploits the side information generated in the kth round in the remaining active

databases by adding 1 symbol of the desired message with k-sum of undesired mes-

sages which was downloaded previously in the kth round. Moreover, for the nth

database belonging to the `th group at the (` + 1)th round, the user adds every `

symbols of the undesired symbols downloaded from group 0 to make one side infor-

mation symbol. Since the user downloads
∏

`∈S
(
M−2
`−1

)
from every database in the

first n0 databases (group 0), the user can exploit such side information to initiate

n0

∏
`∈S\{`}

(
M−2
`−1

)
stages in the (` + 1)th round from every database in group `.

Since all side information symbols used in the (k + 1)th round is decodable in the

kth round or from round 1, the user cancels out these side information and is left

with symbols from the desired message.

Privacy: The privacy of the scheme follows from the privacy of the inherent PIR

scheme under asymmetric traffic constraints. Specifically, for every stage of the kth

round initiated in the exploitation of the side information step, all
(
M
k

)
combinations

of the k-sum are included at each round. Thus, the structure of the queries is the

same for any desired message. The privacy constraint in (7.4) is satisfied by the

random and independent permutation of each message and the random shuffling of

the order of the queries. This ensures that all queries are equally likely independent

of the desired message index.
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Security: From the nth database key Kn is of length µntn. The elements of Kn

are independent and uniformly distributed in Fq. The nth database encodes Kn

into the artificial noise vector u
(n)
[1:tn] using a (tn, µntn) MDS code. Since any µntn

columns of the generator matrix of the MDS code are full rank, the mapping from

Kn to any µntn symbols from the artificial noise vector Un = [u
(n)
i1
, · · · , u(n)

iµntn
] is

a bijection, and consequently, Un ∼ Kn, where ∼ denotes statistical equivalence.

Moreover, since there is no shared randomness between databases, the elements of

(K1, · · · , KN), and consequently the elements of (U1, · · · , UN) are independent and

uniformly distributed in Fq.

Now, the eavesdropper chooses to observe µntn symbols from the nth answer

string A
[i]
n . Denote the eavesdropper observations by Z

[i]
n ∈ Fµntnq . Since all down-

loaded symbols are encrypted using u
(n)
[1:tn] (counting the downloads that contain

solely the artificial noise). Denote the artificial noise symbols within Z
[i]
n by Un.

Hence, the leakage at the eavesdropper can be upper bounded by:

I(W1:M ;Z
[i]
1:N) = H(Z

[i]
1:N)−H(Z

[i]
1:N |W1:M) (7.107)

≤
N∑

n=1

µntn −H







U1

U2

...

UN







(7.108)

=
N∑

n=1

µntn −
N∑

n=1

µntn = 0 (7.109)

where (7.109) follows from the fact that any µntn artificial noise symbols are inde-
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pendent. Note that the units of calculation is q-ary symbols.

Achievable Rate: For the calculation of the achievable rate, we focus first on one

repetition of the scheme. Without adding the artificial noise symbols, the structure

of one repetition of our scheme is exactly as [125]. The recursive structure of the

achievable scheme can be described using the following system of difference equations

that relate the number of stages in the databases belonging to a specific group as

shown in [125, Theorem 2]:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj[k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj[k−1]

y`[k] = n0ξ`δ[k−`−1] + (n`−n`−1−1)y`[k − 1] +
∑

j∈S\{`}
(nj−nj−1)yj[k−1], ` ≥ 2

(7.110)

where y`[k] is the number of stages in the kth round in a database belonging to the

`th group, i.e., for the nth database, such that n`−1 + 1 ≤ n ≤ n`.

Hence, to calculate Dn(n) such that n`−1 ≤ n ≤ n`, which is the number

of meaningful downloads from the nth database belonging to the `th group, corre-

sponding to one repetition of the achievable scheme associated with the sequence

n = {ni}M−1
i=0 , we note that for any stage in the kth round, the user downloads

(
M−1
k−1

)
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desired symbols from a total of
(
M
k

)
downloads. Therefore,

Dn(n) =
M∑

k=1

(
M

k

)
y`[k], n`−1 ≤ n ≤ n` (7.111)

Consequently, the total download
∑N

n=1 tn(n) from all databases from all rep-

etitions is calculated by observing (7.104),

N∑

n=1

tn(n,µ) =
N∑

n=1

νDn(n)

1− µn
(7.112)

= ν

[
n0∑

n=1

∑M
k=1

(
M
k

)
y0[k]

1− µn
+

n1∑

n=n0+1

∑M
k=1

(
M
k

)
y1[k]

1− µn
+ · · ·

]
(7.113)

= ν
∑

`∈S

n∑̀

n=n`−1+1

∑M
k=1

(
M
k

)
y`[k]

1− µn
(7.114)

Furthermore, the total desired symbols from all databases from all repetitions is

given by,

L(n) = ν
∑

`∈S

M∑

k=1

(
M − 1

k − 1

)
y`[k](n` − n`−1) (7.115)

Thus, the following rate is achievable corresponding to the sequence n,

R(n,µ) =

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.116)

Since this scheme is achievable for every monotone non-decreasing sequence
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n = {ni}M−1
i=0 , the following rate is achievable,

R(µ) = max
n0≤···≤nM−1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.117)

7.5.4 Optimality for M = 2 and M = 3 Messages

In this section, we prove the optimality of our scheme for M = 2 and M = 3.

The proof relies on relating the upper bound for the PIR-WTC-II problem with the

upper bound for the PIR problem under asymmetric traffic constraints. From the

settled optimality of the achievable scheme of the meaningful symbols for M = 2,

M = 3 for the PIR problem under asymmetric traffic constraints, we conclude the

optimality of our scheme for PIR-WTC-II.1

We return to the upper bound in Theorem 7.1,

C̄(µ) = max
τ∈T

min
ni∈{1,··· ,N}

∑N
n=1(1− µn)τn +

∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.118)

= max
τ∈T

N∑

n=1

(1− µn)τn · min
ni∈{1,··· ,N}

1 +
∑N
n=n1+1(1−µn)τn

n1·
∑N
n=1(1−µn)τn

+ · · ·+
∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni·
∑N
n=1(1−µn)τn

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.119)

= max
τ∈T

N∑

n=1

(1− µn)τn · min
ni∈{1,··· ,N}

1 + 1
n1

∑N
n=n1+1̃τn + · · ·+ 1∏M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.120)

1Alternatively, for a specified N , µ, we can prove the optimality by showing that the KKT
conditions of the upper bound optimization problem are satisfied by our achievable scheme.
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= max
τ∈T

N∑

n=1

(1− µn)τn · C̃(τ̃ ) (7.121)

where τ̃n is obtained by the change of variable τ̃n = (1−µn)τn∑N
i=1(1−µi)τi

and the inner

problem C̃(τ̃ ) is defined as:

C̃(τ̃ ) = min
ni∈{1,··· ,N}

1 + 1
n1

∑N
n=n1+1̃τn + · · ·+ 1∏M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.122)

The inner problem is precisely the upper bound for the PIR problem under asym-

metric traffic constraints τ̃ in [125, Theorem 1].

In the following lemma, we show that the solution of C̄(µ) exists at one of the

corner points of C̃(τ̃ ).

Lemma 7.4 The solution of C̄(µ) exists at one of the corner points of C̃(τ̃ ) after

the change of variables τn =
∑N
i=1(1−µi)τi
(1−µn)

.

Proof: To show this, we note that the upper bound in Theorem 7.1 can be written

as the following linear program as discussed in Remark 7.3:

max
τ ,R

R

s.t. R ≤
∑N

n=1(1− µn)τn +
∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

, ∀n

N∑

n=1

τn = 1, τn ≥ 0, n = 1, · · · , N (7.123)

Equivalently, from (7.120), we can write the optimization problem correspond-
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ing to the upper bound as:

max
τ∈T,R̃,τ̃

N∑

n=1

(1− µn)τn · R̃

s.t. R̃ ≤
1 + 1

n1

∑N
n=n1+1̃τn + · · ·+ 1∏M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

, ∀n

N∑

n=1

τ̃n = 1, τ̃n ≥ 0, n = 1, · · · , N

τ̃n =
(1− µn)τn∑
i(1− µi)τi

, n = 1, · · · , N (7.124)

We note that the constraints of this equivalent problem is the same as constraints

of the upper bounds of the PIR problem under the asymmetric traffic constraints

τ̃ .

Since there are a finite number of constraints (NM−1 + 2 constraints), the

feasible region is a polyhedron, thus, the solution for C̄(µ) resides at a corner point

of this polyhedron.

For any corner point of this optimization problem, (N + 1) constraints are

active (i.e., met with equality) and linearly independent.

Since these constraints take the form of

R =

∑N
n=1(1− µn)τn +

∑N
n=n1+1(1−µn)τn

n1
+ · · ·+

∑N
n=nM−1+1(1−µn)τn∏M−1

i=1 ni

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.125)
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by dividing both sides by
∑N

i=1(1− µi)τi > 0, the constraint become

R̃ =
R∑N

i=1(1− µi)τi
=

1 + 1
n1

∑N
n=n1+1̃τn + · · ·+ 1∏M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · ·+ 1∏M−1
i=1 ni

(7.126)

Hence, the condition of intersection of the active constraints of the C̄(µ) is the

same as the condition of the intersection of the bounds of C̃(τ̃ ) after the change of

variables. Thus, it suffices to consider the corner points of the inner problem and

map the solution using the change of variables τn =
∑N
i=1(1−µi)τi
(1−µn)

. �

Consequently, for a corner point of the inner problem (τ̃ ∗, C̃(τ̃ ∗)), we have the

reverse change of variables

τ ∗n = τ̃ ∗n ·
∑N

i=1(1− µi)τ ∗i
1− µn

(7.127)

Now, since
∑N

n=1 τ
∗
n = 1,

∑N
n=1 τ̃

∗
n ·

∑N
i=1(1−µi)τ∗i

1−µn = 1, which leads to

N∑

i=1

(1− µi)τi =
1∑N

n=1
τ̃n

1−µn
(7.128)

Denote C̄(τ̃ ∗,µ) to be the upper bound of the PIR-WTC-II problem corresponding

to the corner point (τ̃ ∗, C̃(τ̃ ∗)) of the inner problem, hence from (7.121), we have

C̄(τ̃ ∗,µ) =
N∑

i=1

(1− µi)τi · C̃(τ̃ ∗) (7.129)

=
C̃(τ̃ ∗)∑N
n=1

τ̃n
1−µn

(7.130)

Thus, the upper bound can be written in terms of the corner points of the inner
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problem {τ̃ (i)}θi=1, where θ is the total number of corner points as

C̄(µ) = max
i∈{1,··· ,θ}

C̃(τ̃ (i))
∑N

n=1
τ̃ (i)

1−µn
(7.131)

7.5.4.1 M = 2 Messages

From [125], we know that for M = 2, all the corner points of the inner problem are in

fact optimal. For an increasing sequence (n0, n1), the corner points are characterized

by:

τ̃n =





n0+1
n0(n1+1)

, 1 ≤ n ≤ n0

1
n1+1

, n0 + 1 ≤ n ≤ n1

0, n1 + 1 ≤ n ≤ N

⇒ C̃(τ̃ ) =
n1

n1 + 1
(7.132)

Hence, the upper bound for M = 2 can be explicitly written as:

C̄(µ) = max
n0,n1∈{1,··· ,N}

n1

n1+1∑n0

n=1
n0+1

n0(n1+1)(1−µn)
+
∑n1

n=n0+1
1

(n1+1)(1−µn)

(7.133)

= max
n0,n1∈{1,··· ,N}

n0n1∑n0

n=1
n0+1
1−µn +

∑n1

n=n0+1
n0

1−µn
(7.134)

From the achievability side, for a sequence (n0, n1), the system of difference

equations in Theorem 7.2 reduces to

y0[k] = (n0 − 1)y0[k − 1] (7.135)

y1[k] = n0y0[k − 1] (7.136)
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for k = 1, 2, where y0[1] = 1, and y1[1] = 0. Hence, y0[2] = n0 − 1, and y1[2] = n0.

Consequently, the achievable rate in Theorem 7.2 is explicitly evaluated for M = 2

as:

R(µ) = max
n0,n1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.137)

= max
n0,n1∈{1,··· ,N}

n0n1∑n0

n=1
n0+1
1−µn +

∑n1

n=n0+1
n0

1−µn
(7.138)

which matches the upper bound and concludes the optimality for M = 2.

7.5.4.2 M = 3 Messages

Similarly, from [125], the corner points of the inner problem occur for an increasing

sequence (n0, n1, n2). The corner points are characterized by:

τ̃n =





n0n1+n0+1
n0(n2n1+n1+1)

, 1 ≤ n ≤ n0

n1+1
n2n1+n1+1

, n0 + 1 ≤ n ≤ n1

n1

n2n1+n1+1
n1 + 1 ≤ n ≤ n2

0, n2 + 1 ≤ n ≤ N

⇒ C̃(τ̃ ) =
n1n2

n1n2 + n1 + 1
(7.139)

Hence, the upper bound in (7.131) is explicitly written as:

C̄(µ) = max
n0,n1,n2∈{1,··· ,N}

n0n1n2∑n0

n=1
n0n1+n0+1

1−µn +
∑n1

n=n0+1
n0n1+n0

1−µn +
∑n2

n=n1+1
n0n1

1−µn

(7.140)

From the achievability side, we have the following system of difference equa-
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tions for k = 1, 2, 3:

y0[k] = (n0 − 1)y0[k − 1] + (n1 − n0)y1[k − 1] + (n2 − n1)y2[k − 1] (7.141)

y1[k] = n0y0[k − 1] + (n1 − n0 − 1)y1[k − 1] + (n2 − n1)y2[k − 1] (7.142)

y2[k] = n0δ[k − 3] + n0y0[k − 1] + (n1 − n0)y1[k − 1] + (n2 − n1 − 1)y2[k − 1]

(7.143)

with the initial conditions y0[1] = 1, y1[1] = 0, and y2[1] = y2[2] = 0. Evaluating

y`[k], for ` = 0, 1, 2, and k = 1, 2, 3 recursively leads to y0[2] = n0 − 1, y1[2] = n0,

y0[3] = n1n0 − 2n0 + 1, y1[3] = n1n0 − 2n0, and y2[3] = n1n0. Consequently, the

achievable rate from Theorem 7.2 is explicitly expressed as:

R(µ) = max
n0,n1∈{1,··· ,N}

∑
`∈S
∑M

k=1

(
M−1
k−1

)
y`[k](n` − n`−1)

∑
`∈S
∑n`

n=n`−1+1

∑M
k=1 (Mk )y`[k]

1−µn

(7.144)

= max
n0,n1,n2∈{1,··· ,N}

n0n1n2∑n0

n=1
n0n1+n0+1

1−µn +
∑n1

n=n0+1
n0n1+n0

1−µn +
∑n2

n=n1+1
n0n1

1−µn

(7.145)

which matches the upper bound and concludes the optimality for M = 3.

Remark 7.10 We note that the meaningful portion of the answer strings follows the

combinatorial water-filling shown in [125] for M = 2 and M = 3. This means that

the less threatened (more secure) databases are returning more meaningful symbols

than the less secure ones, hence, τ̃n ≥ τ̃k, if n < k. However, the length of the

entire answer string including the artificial noise symbols may not follow the same

structure, e.g., in the example in Section 7.5.1.2, we see that t1 = 16 and t2 = 18,
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i.e., τ2 > τ1, while τ̃2 < τ̃1.

7.5.5 Achievable Rate for N = 2 and Arbitrary M

Following the analysis of this case in [125], let s2 ∈ {0, · · · ,M−1} be the number of

side information symbols that are used simultaneously in the initial round download

in the second database.

Hence, the user starts with downloading
(
M−2
s2−1

)
stages of individual symbols

(i.e., the user downloads M
(
M−2
s2−1

)
symbols from round 1 from all messages) from

the first database to create 1 stage of side information in the (s2 + 1)th round.

After the initial exploitation of side information, the two databases exchange side

information. More specifically, from database 1 in the (s2 + 2k)th round, where

k = 1, · · · ,
⌊
M−s2

2

⌋
, the user exploits the side information generated in database 2 in

the (s2 +2k−1)th round to download
(

M−1
s2+2k−1

)
desired symbols from total download

in the (s2 + 2k)th round of
(

M
s2+2k

)
. Similarly from database 2, in the (s2 + 2k+ 1)th

round, where k = 0, · · · ,
⌊
M−s2−1

2

⌋
, the user exploits the side information generated

in database 1 in the (s2 + 2k)th round, and downloads
(
M−1
s2+2k

)
desired symbols from

total of
(

M
s2+2k+1

)
downloads in the (s2 +2k+1)th round. Thus, using the calculation

in [125], we have

D1(s2) = M

(
M − 2

s2 − 1

)
+

bM−s22 c∑

k=1

(
M

s2 + 2k

)
(7.146)

D2(s2) =

bM−s2−1
2 c∑

k=0

(
M

s2 + 2k + 1

)
(7.147)

317



where Dn(s2) corresponds to the length of the meaningful downloads within the nth

database from one repetition of the scheme, therefore, the total download of the

scheme is given by:

t1(s2) + t2(s1) =
D1(s2)

1− µ1

+
D2(s2)

1− µ2

(7.148)

=
1

1− µ1


M

(
M − 2

s2 − 1

)
+

bM−s22 c∑

k=1

(
M

s2 + 2k

)



+
1

1− µ2



bM−s2−1

2 c∑

k=0

(
M

s2 + 2k + 1

)

 (7.149)

The message length does not change due to the security constraint, hence, directly

from [125], we have

L(s2) =

(
M − 2

s2 − 1

)
+

M−s2−1∑

k=0

(
M − 1

s2 + k

)
(7.150)

Consequently, the achievable rate is explicitly given as:

R(µ) = max
s2∈{0,··· ,M−1}

(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M−1
s2+k

)

1
1−µ1

[
M
(
M−2
s2−1

)
+
∑bM−s22 c

k=1

(
M

s2+2k

)]
+ 1

1−µ2

[∑bM−s2−1
2 c

k=0

(
M

s2+2k+1

)]

(7.151)

including the corner point corresponding to the trivial rate, i.e., when the user

deactivates the retrieval process from the second database, leading to (7.25).
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7.5.6 Further Examples

In this section, we present further examples to clarify the achievable scheme for

additional tractable values of M , N .

7.5.6.1 M = 4 Messages, N = 2 Databases

In this example, we show the achievable scheme for M = 4, N = 2, and arbitrary

µ. This example helps us to show that our achievable scheme does not achieve the

capacity for all µ. For M = 4, we have M + 1 = 5 possible achievable schemes,

corresponding to s2 = {0, 1, · · · , 3} and one other achievable scheme corresponding

to the trivial scheme of downloading the contents of database 1. Let ai, bi, ci, di

denote the randomly permuted symbols from W1,W2,W3,W4, respectively. In all

achievable schemes, the nth database generates a key Kn with length µntn and

encodes it to generate an artificial noise vector u
(n)
[1:tn] using a (tn, µntn) MDS code.

The nth database provides µntn individual symbols of artificial noise. In all cases,

the scheme is repeated ν times such that:

tn(n,µ) =
νDn(n)

1− µn
∈ N, ∀n ∈ {1, 2} (7.152)

Now, we focus on one repetition of the achievable scheme. We further concen-

trate on the meaningful queries, i.e., before adding the artificial noise vector.

The trivial scheme corresponding to n = (1, 1, 1, 1): In one repetition of the scheme,

the user downloads a1, b1, c1, d1 from database 1. Hence, D1(n) = 4. Consequently,
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t1(n,µ) = 4ν
1−µ1

. As the user decodes 1 symbol from W1 in each repetition, L1(n) =

ν. Hence, R(n,µ) = 1−µ1

4
is achievable.

The scheme corresponding to n = (1, 1, 1, 2): In this case, s2 = 3, i.e., the user

exploits 3 side-information symbols simultaneously in database 2, i.e., focusing on

one repetition of the scheme, from database 1, the user downloads a1, b1, c1, d1. The

user combines b1 + c1 + d1 and uses this side information to get a2 from database 2,

i.e., the user downloads a2+b1+c1+d1. Hence, D1(n) = 4, D2(n) = 1. Consequently,

t1(n,µ) = 4ν
1−µ1

, and t2(n,µ) = ν
1−µ2

. As the user decodes 2 symbols from W1 in

each repetition, L1(n) = 2ν. Hence, R(n,µ) = 2
4

1−µ1
+ 1

1−µ2

is achievable. The query

table of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table 7.3.

Table 7.3: Meaningful queries for M = 4, N = 2, s2 = 3.

Database 1 Database 2
a1, b1, c1, d1 a2 + b1 + c1 + d1

The scheme corresponding to n = (1, 1, 2, 2): In this case s2 = 2, hence the user

combines every 2 undesired symbols from database 1 to form one side information

symbol. To that end, the user downloads
(
M−2
s2−1

)
= 2 stages of individual symbols

(1-sum) from database 1, so that the user forms 2-sums that can be used in database

2 as side information to start round 3 directly. More specifically, the user downloads

a3 + b1 + c1, a4 + b2 + d1, a5 + c2 + d2 from database 2 taking into considerations

that all these undesired symbols are decodable from database 1. The user completes

the stage by downloading b3 + c3 + d3 that can be further exploited in database 1
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by downloading a6 + b3 + c3 + d3. Hence, D1(n) = 9, D2(n) = 4. Consequently,

t1(n,µ) = 9ν
1−µ1

and t2(n,µ) = 4ν
1−µ2

. As the user decodes 6 symbols from W1 in

each repetition, L(n) = 6ν. Hence, R(n,µ) = 6
9

1−µ1
+ 4

1−µ2

is achievable. The query

table of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table 7.4.

Table 7.4: Meaningful queries for M = 4, N = 2, s2 = 2.

Database 1 Database 2
a1, b1, c1, d1 a3 + b1 + c1

a2, b2, c2, d2 a4 + b2 + d1

a5 + c2 + d2

b3 + c3 + d3

a6 + b3 + c3 + d3

The scheme corresponding to n = (1, 2, 2, 2): In this case s2 = 1, hence the user

exploits the individual undesired symbols downloaded from database 1 directly as a

side information in database 2. To that end, the user exploits the side information

generated in round 1 by downloading a2+b1, a3+c1, and a4+d1. The user completes

the stage by downloading undesired symbols consisting of 2-sums that do not include

ai, hence the user downloads b2 + c2, b3 + d2, c3 + d3. The undesired symbols are

exploited in database 1, thus the user downloads a5 + b2 + c2, a6 + b3 + d2, and

a7 + c3 + d3. The user completes the stage by downloading b4 + c4 + d4, which can

be exploited in database 2 by downloading a8 + b4 + c4 + d4. Hence, D1(n) = 8,

D2(n) = 7. Consequently, t1(n,µ) = 8ν
1−µ1

, and t2(n,µ) = 7ν
1−µ2

. As the user decodes

8 symbols from W1 in each repetition, L(n) = 8ν. Hence, R(n,µ) = 8
8

1−µ1
+ 7

1−µ2

is

achievable. The query table of the meaningful queries (without the artificial noise)
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for one repetition of the scheme is shown in Table 7.5.

Table 7.5: The query table for M = 4, N = 2, s2 = 1.

Database 1 Database 2
a1, b1, c1, d1 a2 + b1

a3 + c1

a4 + d1

b2 + c2

b3 + d2

c3 + d3

a5 + b2 + c2 a8 + b4 + c4 + d4

a6 + b3 + d2

a7 + c3 + d3

b4 + c4 + d4

As in the case of M = 3, under the assumption that µ1 ≤ µ2, the symmetric

scheme in [12] does not achieve any larger retrieval rates at any µ. Hence, the

following rate is achievable,

R(µ) = max

{
1− µ1

4
,

2
4

1−µ1
+ 1

1−µ2

,
6

9
1−µ1

+ 4
1−µ2

,
8

8
1−µ1

+ 7
1−µ2

}
(7.153)

In Fig. 7.6, we illustrate the partitioning of the µ space in terms of the active

achievable scheme. In Fig. 7.7, we plot the gap versus µ for M = 4, N = 2. We

note that the gap is upper bounded by 0.0051 and this gap exists only for specific

regimes of µ.

7.5.6.2 M = 2 Messages, N = 3 Databases

In this example, we show the achievable scheme for M = 2, N = 3, and arbitrary

µ. Again we focus on the meaningful queries in our exposition to avoid repetition.

The artificial noise incorporation is exactly as in the previous examples. Let ai, bi
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Figure 7.6: Partitions of µ space according to retrieval rate expression for M = 4,
N = 2.

denote the randomly permuted symbols from W1,W2, respectively.

The trivial scheme corresponding to (n0, n1) = (1, 1): In this case, the user deac-

tivates the retrieval from database 2. Hence, in one repetition, the user downloads

a1, b1 from database 1 only. Therefore, D1(1, 1) = 2 which leads to t1(1, 1,µ) = 2ν
1−µ1

.

From one repetition of the scheme, the user decodes 1 symbol from W1, hence L = ν

symbols. This gives the rate R(1, 1,µ) = 1−µ1

2
.

The scheme corresponding to (n0, n1) = (1, 2): In this case, the user exploits the

undesired symbols in database 1 as a side information in database 2 only and deacti-

vates database 3. Hence, in one repetition, the user downloads a1, b1 from database
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Figure 7.7: Capacity gap for the case of M = 4, N = 2.

1, and uses b1 as side information in database 2 by downloading a2 + b1. Therefore,

D1(1, 2) = 2, D2(1, 2) = 1 which leads to t1(1, 2,µ) = 2ν
1−µ1

, and t2(1, 2,µ) = ν
1−µ2

.

From one repetition of the scheme, the user decodes 2 symbols from W1, hence

L = 2ν symbols. This gives the rate R(1, 2,µ) = 2
2

1−µ1
+ 1

1−µ2

. The query table of the

meaningful queries (without the artificial noise) for one repetition of the scheme is

shown in Table 7.6.

Table 7.6: Meaningful queries for M = 2, N = 3, n = (1, 2).

Database 1 Database 2 Database 3
a1, b1 a2 + b1

The scheme corresponding to (n0, n1) = (1, 3): Since n1 = 3, the user exploits the

side information in database 2 and database 3. Hence, in one repetition, the user
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downloads a1, b1 from database 1. The user downloads a2 + b1 from database 2,

and a3 + b1 from database 3. Therefore, D1(1, 3) = 2, D2(1, 3) = 1, D3(1, 3) = 1

which leads to t1(1, 3,µ) = 2ν
1−µ1

, t2(1, 3,µ) = ν
1−µ2

, t3(1, 3,µ) = ν
1−µ3

. From one

repetition of the scheme, the user decodes 3 symbols fromW1, hence L = 3ν symbols.

This corresponds to the rate R(1, 3,µ) = 3
2

1−µ1
+ 1

1−µ2
+ 1

1−µ3

. The query table of the

meaningful queries (without the artificial noise) for one repetition of the scheme is

shown in Table 7.7.

Table 7.7: Meaningful queries for M = 2, N = 3, n = (1, 3).

Database 1 Database 2 Database 3
a1, b1 a2 + b1 a3 + b1

The scheme corresponding to (n0, n1) = (2, 2): In this case, the user applies the

symmetric scheme at databases 1 and 2, and deactivates database 3. Consequently,

the user downloads a1, b1 from database 1. From database 2, the user downloads new

symbols a2, b2. The user exploits the side information generated in the first round of

download by downloading a3 + b2, and a4 + b1. Therefore, D1(2, 2) = 3, D2(2, 2) = 3

which leads to t1(2, 2,µ) = 3ν
1−µ1

, t2(2, 2,µ) = 3ν
1−µ2

. From one repetition of the

scheme, the user decodes 4 symbols from W1, hence L = 4ν symbols. This gives the

rate R(2, 2,µ) = 4
3

1−µ1
+ 3

1−µ2

. The query table of the meaningful queries (without the

artificial noise) for one repetition of the scheme is shown in Table 7.8.

Table 7.8: Meaningful queries for M = 2, N = 3, n = (2, 2).

Database 1 Database 2 Database 3
a1, b1 a2, b2

a3 + b2 a4 + b1
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The scheme corresponding to (n0, n1) = (2, 3): In this case, the user further exploits

the side information generated in databases 1 and 2 in database 3. Hence, the user

downloads a3 + b1, a4 + b2 from database 3. Therefore, D1(2, 3) = 3, D2(2, 3) = 3,

D3(2, 3) = 2 which leads to t1(2, 3,µ) = 3ν
1−µ1

, t2(2, 3,µ) = 3ν
1−µ2

, t3(2, 3,µ) = 2ν
1−µ3

.

From one repetition of the scheme, the user decodes 6 symbols from W1, hence

L = 6ν symbols. This gives the rate R(2, 3,µ) = 6
3

1−µ1
+ 3

1−µ2
+ 2

1−µ3

. The query table

of the meaningful queries (without the artificial noise) for one repetition of the

scheme is shown in Table 7.9.

Table 7.9: Meaningful queries for M = 2, N = 3, n = (2, 3).

Database 1 Database 2 Database 3
a1, b1 a2, b2 a3 + b1

a4 + b2

a5 + b2 a6 + b1

The scheme corresponding to (n0, n1) = (3, 3): In this case, the user applies the

symmetric scheme in [12]. Therefore, Dn(3, 3) = 4, where n = 1, 2, 3 which leads to

tn(3, 3,µ) = 4ν
1−µn . From one repetition of the scheme, the user decodes 9 symbols

from W1, hence L = 9ν symbols. This gives the rate R(3, 3,µ) = 9
4

1−µ1
+ 4

1−µ2
+ 4

1−µ3

.

The query table of the meaningful queries (without the artificial noise) for one

repetition of the scheme is shown in Table 7.10.

Table 7.10: Meaningful queries for M = 2, N = 3, n = (3, 3).

Database 1 Database 2 Database 3
a1, b1 a2, b2 a3, b3

a4 + b2 a6 + b1 a8 + b1

a5 + b3 a7 + b3 a9 + b2
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Consequently, the following rate is achievable:

R(µ) = max

{
1− µ1

2
,

2
2

1−µ1
+ 1

1−µ2

,
3

2
1−µ1

+ 1
1−µ2

+ 1
1−µ3

,

4
3

1−µ1
+ 3

1−µ2

,
6

3
1−µ1

+ 3
1−µ2

+ 2
1−µ3

,
9

4
1−µ1

+ 4
1−µ2

+ 4
1−µ3

}
(7.154)

7.6 Conclusions

In this chapter, we investigated the PIR-WTC-II problem. We showed that the

problem is a concrete example of the PIR problem under asymmetric traffic con-

straints. We obtained a general upper bound that extends the converse techniques in

Chapter 5. The converse proof takes the form of a max-min optimization problem.

The inner minimization problem derives the tightest upper bound for the retrieval

rate for an arbitrary traffic ratio vector τ , while the outer maximization problem

optimizes over τ . The core of the achievability proof is the achievability proof of

the corner points of the PIR problem under asymmetric traffic constraints. The

security constraint is satisfied by encrypting each returned answering string by an

artificial noise vector. To generate the artificial noise vector, the nth database gen-

erates a secret key and encodes it into artificial noise by a (tn, µntn) MDS code. The

upper and lower bounds match for M = 2 and M = 3, for any N , and for every

eavesdropping capability vector µ = (µ1, · · · , µN).
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CHAPTER 8

Secure Degrees of Freedom Region of Gaussian MIMO In-

terference Channel

8.1 Introduction

In this chapter, we consider the two-user multiple-input multiple-output (MIMO)

interference channel with confidential messages (ICCM). We determine the exact

secure degrees of freedom (s.d.o.f.) region for the symmetric case of M antennas

at both transmitters and N antennas at both receivers. We develop the converse

by combining the broadcast channel with confidential messages (BCCM) coopera-

tive upper bound, decodability upper bound for the interference channel with no

secrecy constraints, and vector extensions of the secrecy penalty and role of a helper

lemmas. For the achievability, we first show that the s.d.o.f. region is a four-vertex

polytope. For the sum s.d.o.f. point, we propose a novel achievable scheme for the

2×2 ICCM, which combines asymptotic real interference alignment with spatial in-

terference alignment. Using this scheme, we provide achievable schemes for any M

and N by proper vector space operations. We achieve the other non-trivial extreme

polytope points by employing one of the transmitters as a deaf helper for assisting
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Figure 8.1: Two-user MIMO ICCM.

the secure transmission of the other user. We present simplified achievable schemes

for the special case of time-varying MIMO ICCM. The achievable schemes, in this

case, make use of the time-varying nature of the channel to construct vector-space

alignment counterpart of the real interference alignment used in the static channel

case.

8.2 System Model

We consider a two-user symmetric Gaussian MIMO ICCM. Each transmitter has

M transmit antennas, and each receiver has N receive antennas. The input-output

relationships of a two-user MIMO ICCM (see Fig. 8.1) are:

Y1(t) = H11(t)X1(t) + H21(t)X2(t) + N1(t) (8.1)

Y2(t) = H12(t)X1(t) + H22(t)X2(t) + N2(t) (8.2)

where Hij(t) ∈ RN×M is the channel gain matrix from transmitter i to receiver
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j (where i, j ∈ {1, 2}) at channel use t. We call the ICCM static, if Hij(t) = Hij for

all channel uses t, ∀i, j. The ICCM is time-varying, if Hij(t) takes an independent

realization at every channel use t, ∀i, j. We assume that Hij(t) is picked from a

continuous distribution. Hence, Hij(t) admits rationally independent elements with

probability 1. Furthermore, any finite collection of the channel gains are linearly

independent with probability1 1. Xi(t) ∈ RM is the channel input of transmitter i

at channel use t, Yi(t) ∈ RN is the channel output of receiver i at channel use t,

and Ni(t) ∈ RN is i.i.d. Gaussian noise vector with a finite variance at receiver i.

Transmitter i ∈ {1, 2} sends a message Wi chosen uniformly from a message

set Wi by encoding it into an n-letter channel input Xn
i (t). The message Wi is to

be conveyed reliably to receiver i and to be kept secret from receiver j, where j 6= i.

Transmitter i performs stochastic encoding fi over n channel uses fi :Wi → Xn
i (t)

such that for any ε > 0, the following reliability and security constraints are satisfied:

P(Ŵ1 6= W1) ≤ ε,
1

n
I(W1; Yn

2 ) ≤ ε (8.3)

P(Ŵ2 6= W2) ≤ ε,
1

n
I(W2; Yn

1 ) ≤ ε (8.4)

where Ŵi is the estimate of Wi at receiver i. The channel inputs are subject to

average power constraints tr(E[Xi(t)Xi(t)
T ]) ≤ P, i = 1, 2. The rate of user i is

Ri = 1
n

log |Wi|. The s.d.o.f. di of user i is:

di = lim
P→∞

Ri

1
2

logP
(8.5)

1In the exposition of the results, the phrase “for almost all” refers to the rational/linear inde-
pendence, which occurs with probability 1.
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The sum s.d.o.f. ds is given by ds = d1 + d2.

8.3 Preliminaries

In this section, we review the real interference alignment and spatial alignment

techniques as they are the main ingredients of our achievable scheme. In this work,

we combine both techniques for MIMO ICCM with static channels.

8.3.1 Real Interference Alignment

The real interference alignment technique, which is introduced in [101] and employed

in [78] for achieving the s.d.o.f. for one-hop networks, relies on transmitting multiple

data streams of PAM signals. Specifically, let {bi}Li=1 be a sequence of L symbols.

The symbol bi is picked from PAM constellation C(a,Q), where a is the separation

between any two symbols in the constellation set and the number of symbols in the

constellation set is given by 2Q + 1, i.e., C(a,Q) = a{−Q,−Q + 1, · · · , Q − 1, Q}.

Now, consider transmitting these L symbols simultaneously in the form of a linear

combination,

x =
L∑

i=1

αibi (8.6)

where {αi : i = 1, · · · , L} are rationally independent real numbers. The rational

independence means that if
∑L

i=1 αiqi = 0 for some q1, · · · , qL which are rational

numbers, then qi = 0 for all i.

Although the signal x is a mixture of {bi}Li=1, these symbols lie in separate
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rational dimensions if we choose,

Q = P
1−δ

2(L+δ) , a = γ
P

1
2

Q
(8.7)

for some δ > 0, a positive constant γ which is independent of P that is chosen

to satisfy the power constraint [101]. In this case, the constellation observed at

the receiver side consists of (2Q + 1)L points and the probability of error can be

upper bounded Pe ≤ exp (−ηγP δ). To summarize: by careful choice of C(a,Q) (e.g.,

by choosing the number of points as a function of L as in (8.7)), one can send L

separable data streams that satisfy the average power and the reliability constraints.

This is done by creating and exploiting rational dimensions.

This technique can be effectively used for security as in [78]. To achieve this,

the transmitted signals in general consist of two components, namely, the secure

signal V , and the cooperative jamming signal U . The cooperative jamming compo-

nent Ui from transmitter i is utilized to satisfy the security constraint of transmitter

j by being aligned with Vj in the same rational dimension. This can be done by

scaling both Ui and Vj by real coefficients such that their scaling is the same at the

receiver after passing through the channel. More specifically, the ith transmitter

sends Xi = αiUi and the jth transmitter sends Xj = αjVj, such that αihij = αjhjj,

where hij is the channel gain from transmitter i to receiver j and hjj is the channel

gain from transmitter j to receiver j. This satisfies the security at the jth receiver

as the received signal will have a component αjhjj(Ui + Vj), i.e., the secure signal

and the cooperative jamming signal lie in the same rational dimension and hence
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the leakage is upper bounded by a constant.

8.3.2 Spatial Alignment

The spatial alignment technique, introduced in [104], can be used for security as well

if the system is equipped by multiple antennas. Spatial alignment does not require

a specific signaling scheme, i.e., it does not require transmitting PAM signals as in

the real interference alignment scheme, instead Gaussian signaling can be used. The

spatial alignment exploits the spatial dimensions offered by the multiple antennas

in contrast to the rational dimensions in the real interference alignment scheme.

To achieve this, the ith transmitter transmits precoded version of the coop-

erative jamming signal Ui by transmitting Xi = QiUi, where Qi is a precoding

matrix for the cooperative jamming components from the ith transmitter. Further-

more, the jth transmitter sends Xj = PjVj, where Pj is the precoding matrix

for the secure signal component from the jth transmitter. This is achievable since

both transmitters are equipped by multiple transmit antennas. By ensuring that

QiHij = PjHjj, both signal components are aligned in the same spatial dimension

at the jth receiver, i.e., the received signal has a component PjHjj(Ui + Vj). This

satisfies the security constraint as well.

Note that in order to ensure reliable decoding at the receiver by a zero forcing

decoder, the total number of spatial dimensions spanned by the signal components

must be at most N (the number of receive antennas). This is parallel to choosing

Q in the real interference alignment scheme. Furthermore, this precoding idea can
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be extended as in [104] for time-varying SISO channels by symbol extension, i.e.,

completing the transmission over multiple time slots and dealing with the transmit-

ted symbols across time as a spatial vector. In this case, the alignment technique

exploits the time dimension.

8.3.3 Comparison of the Two Alignment Techniques

We note that the main strength of the real interference alignment technique is that

it creates a potential of performing interference alignment even for SISO channels

which do not enjoy time-varying diversity. This technique requires rational indepen-

dence of the channel coefficients. However, the decoding procedure of this scheme

is generally more complex than spatial alignment that uses simple zero-forcing de-

coder.

On the other hand, the spatial alignment technique requires either the presence

of multiple antennas and/or time-varying channels. This hinders the usage of spatial

alignment for static channels despite its simplicity.

8.4 Main Results and Discussions

The first result of this chapter characterizes the sum s.d.o.f. ds of the two-user

M ×N MIMO ICCM for arbitrary M and N .
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Theorem 8.1 The sum s.d.o.f. of the two user M ×N MIMO ICCM is given by,

ds =





min{2N
3
, [4M − 2N ]+}, M ≤ N

min{2N, 4M−2N
3
}, M ≥ N

(8.8)

for almost all channel gains.

Remark 8.1 For a fixed number of receive antennas N , the sum s.d.o.f. ds is a

piece-wise non-decreasing function of the number of transmitting antennas M . ds

in (8.8) consists of five regimes that can be written explicitly as,

ds =





0, M ≤ N
2

4M − 2N, N
2
≤M ≤ 2N

3

2N
3
, 2N

3
≤M ≤ N

4M−2N
3

, N ≤M ≤ 2N

2N, M ≥ 2N

(8.9)

i.e., ds increases linearly with M if N
2
≤ M ≤ 2N

3
with slope 4. Then, ds becomes

a constant value of 2N
3

in the regime 2N
3
≤ M ≤ N . Next, ds increases linearly

again with slope 4
3

until it hits M = 2N and continues as 2N afterwards. The sum

s.d.o.f. as a function of M for an arbitrary N is shown in Fig. 8.2. We note that

when M = N = 1 (SISO ICCM), our result reduces to ds = 2/3 in [78].

Remark 8.2 The term “for almost all channel gains” in Theorem 8.1 refers to

the fact that our achievable schemes for the static ICCM depends on real interfer-
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Figure 8.2: Sum s.d.o.f. of M ×N two-user ICCM for a given N .

ence alignment, which necessitates that the channel gains are rationally independent.

Since the channel gains are assumed to be drawn randomly from a continuous dis-

tribution over RN×M , the achievable schemes are feasible for almost all channel

gains. The same comment holds true for the time-varying ICCM, as the achievable

schemes, in this case, assume linear independence of channel gains.

Remark 8.3 The sum s.d.o.f. in the regime N
2
≤ M ≤ 2N

3
coincides with the sum

s.d.o.f. of the MIMO BCCM with the transmitter having 2M antennas. This implies

that, in this regime, there is no loss in the sum s.d.o.f. due to independent coding of

the users with respect to the sum s.d.o.f. obtained if cooperation (joint encoding) is

allowed.

Remark 8.4 The sum s.d.o.f. in the regime 2N
3
≤M ≤ N is constant. This implies

that there is no gain in the sum s.d.o.f. that can be obtained by increasing the number

of transmit antennas in this regime.
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Remark 8.5 The sum s.d.o.f. in the regime M ≥ 2N coincides with the sum degrees

of freedom (d.o.f.) of the IC with no security constraints. This implies that there is

no loss in the sum s.d.o.f. due to enforcing the security constraint, i.e., we achieve

security for free in this regime.

The second result characterizes the entire s.d.o.f. region for the two-user M×N

ICCM.

Theorem 8.2 The s.d.o.f. region of the two-user M ×N ICCM is given by the set

of all pairs (d1, d2) that lie in the four-vertex polytope, which is defined as

C =

{
(d1, d2) ∈ conv

{
(0, 0), (dm, 0), (0, dm),

(
ds
2
,
ds
2

)}}
(8.10)

where conv denotes the convex hull, and dm is the maximum individual s.d.o.f.,

which is given by,

dm =





min{N
2
, [2M −N ]+}, M ≤ N

min{N, 2M−N
2
}, M ≥ N

(8.11)

and ds is defined as in (8.8). The result holds for almost all channel gains.
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Remark 8.6 The s.d.o.f. region C can be written in an explicit form as





{(d1, d2) : d1 = 0, d2 = 0}, M≤ N
2

{(d1, d2) : d1 ≤ 2M −N, d2 ≤ 2M −N, d1 ≥ 0, d2 ≥ 0}, N
2 ≤M≤ 2N

3

{(d1, d2) : Ndi+(6M−4N)dj≤N(2M −N), di ≥ 0, i, j = 1, 2}, 2N
3 ≤M≤ 3N

4

{(d1, d2) : d1 + 2d2 ≤ N, 2d1 + d2 ≤ N, d1 ≥ 0, d2 ≥ 0}, 3N
4 ≤M≤N

{(d1, d2) : d1 + 2d2 ≤ 2M −N, 2d1 + d2 ≤ 2M −N, d1 ≥ 0, d2 ≥ 0}, N ≤M≤ 3N
2

{(d1, d2) : (2M−N)di+(4N−2M)dj≤N(2M−N), di ≥ 0, i, j = 1, 2}, 3N
2 ≤M≤2N

{(d1, d2) : d1 ≤ N, d2 ≤ N d1 ≥ 0, d2 ≥ 0}, M≥2N

(8.12)

for almost all channel gains.

Remark 8.7 The maximum individual s.d.o.f. of each user dm follows a pattern

similar to the sum s.d.o.f. in Remark 8.1. dm coincides with the s.d.o.f. of the MIMO

wiretap channel with 2M antennas at the transmitter and N receive antennas for

N
2
≤ M ≤ 3N

4
. Then, dm is constant at N

2
for the regime 3N

4
≤ M ≤ N . Next,

dm increases linearly with M with slope 1 until M = 3N
2

. The maximum individual

s.d.o.f. is constant at N afterwards, which coincides with the maximum individual

d.o.f. of MIMO channel with N receive antennas with no security constraints.
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Figure 8.3: Evolution of the s.d.o.f. region with M for a fixed N . The dashed lines
in each sub-figure correspond to the rate region in the previous regime for better
viewing of how the region evolves.
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Remark 8.8 From Remarks 8.1 and 8.7, we can track the evolution of the

s.d.o.f. region by noting the evolution of the extreme points of the corresponding

polytope as in Fig. 8.3. We start with a square region with dm = 2M − N , this

region increases in size while keeping its square shape with the increase of M until

M = 2N
3

. Starting from this point, we cannot support a sum s.d.o.f. larger than

2N
3

. Consequently, the sum s.d.o.f. point is kept constant, while the maximum indi-

vidual s.d.o.f. points can still increase and the s.d.o.f. region is no longer a square

region. This continues until M = 3N
4

, then the maximum s.d.o.f. points are kept

constant to N
2

. This implies that the s.d.o.f. region does not grow in the regime

3N
4
≤M ≤ N . The s.d.o.f. region starts increasing in size again from M = N . The

maximum individual s.d.o.f. points increase linearly with slope 1, while, the sum

s.d.o.f. point increases with slope 2
3
. Since slopes are different, the maximum indi-

vidual s.d.o.f. point hits the N bound first at M = 3N
2

, while the sum s.d.o.f. point

hits this bound at M = 2N and we are back to a square region again.

Remark 8.9 For the regimes N
2
≤ M ≤ 2N

3
and M ≥ 2N , the s.d.o.f. region is a

square, which implies that both users can transmit with their corresponding maximum

s.d.o.f. without sacrificing from their individual s.d.o.f.
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8.5 Outer Bounds for MIMO ICCM

8.5.1 For M < N

Allowing cooperation between transmitters yields an upper bound. This results in

a BCCM with a single transmitter with 2M antennas and two receivers with N

antennas each. The s.d.o.f. region of this BCCM is a square whose corner points are

(min{[2M−N ]+, N}, 0), (min{[2M−N ]+, N},min{[2M−N ]+, N}), (0,min{[2M−

N ]+, N}) [93]. Hence, the individual s.d.o.f. of the two users is upper bounded by:

di ≤ min{N, [2M −N ]+}, i = 1, 2 (8.13)

and the sum s.d.o.f. is upper bounded by:

ds ≤ 2 min{N, [2M −N ]+} = min{2N, [4M − 2N ]+} (8.14)

Therefore, for M < N , the s.d.o.f. region of the MIMO ICCM, C, is upper bounded

by the region {(d1, d2) : di ≥ 0, di ≤ 2M −N}.

8.5.2 For M ≥ N

We have two distinct upper bounds for the MIMO ICCM when M ≥ N . From the

sum d.o.f. of the two-user IC with no secrecy constraints, d̃, we have the following
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bound [105]:

ds ≤ d̃ = min{M1 +M2, N1 +N2,max{M1, N2},max{M2, N1}} (8.15)

= min{2M, 2N,max{M,N}} (8.16)

= min{2N,M} (8.17)

This above upper bound corresponds to the decodability of IC without secrecy

constraints. In addition, for the individual s.d.o.f. dm, we have dm ≤ N if M ≥ N

from the single-user MIMO channel.

In order to derive an upper bound using the secrecy constraints, we follow the

techniques in [78], [79]. From the secrecy penalty lemma in [78], we have:

nRi ≤ h(X̃n
1 ) + h(X̃n

2 )− h(Yn
j ) + nc1 (8.18)

where i 6= j, and X̃n
i = Xn

i + Ñn
i is a finite-variance Gaussian perturbed channel

input; here small Gaussian perturbation is introduced in order to avoid mixing con-

tinuous and discrete entropies, see [78]. In addition, we have the following vectorized

version of the role of a helper lemma of [78] (see also [79]).

Lemma 8.1 (MIMO role of a helper lemma) For M ≥ N , reliable decoding of

the jth transmitter at the ith receiver, i 6= j, is guaranteed if the perturbed channel

input X̃n
i satisfies

h(X̃n
i ) ≤ h(X̃n(2)

i ) + h(Yn
j )− nRj + nc2, i 6= j (8.19)
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where X̃n(2)

i = [X̃n
i (N + 1) X̃n

i (N + 2) . . . X̃n
i (M)].

Remark 8.10 X̃n(1)

i = [X̃n
i (1) X̃n

i (2) . . . X̃n
i (N)] represents the first N (per-

turbed) antenna inputs, and X̃n(2)

i = [X̃n
i (N + 1) X̃n

i (N + 2) . . . X̃n
i (M)] rep-

resents the M −N extra (perturbed) antenna inputs that can be used for null space

transmission. Note that, here we have M ≥ N , therefore, X̃n(2)

i is well-defined. We

note also that intuitively we should separate the upper bounding of differential en-

tropies of X̃n(1)

i and X̃n(2)

i because the null space components do not hurt the other

receiver (in fact, they are invisible to the other receiver) as X̃n(1)

i components do.

Consequently, we upper bound the differential entropy of these components directly

using Gaussian entropy bounds.

Proof: Let X̃n
i = [X̃n(1)

i X̃n(2)

i ]. Using Fano’s inequality, the rate of user j, where

j 6= i, is upper bounded by

nRj ≤ I(Xn
j ; Yn

j ) + nc3 (8.20)

= h(Yn
j )− h(Yn

j |Xn
j ) + nc3 (8.21)

≤ h(Yn
j )− h(Yn

j |Xn
j , X̃

n(2)

i ) + nc3 (8.22)

= h(Yn
j )− h(HjjX

n
j + H

(1)
ij Xn(1)

i + H
(2)
ij Xn(2)

i + Nn
j |Xn

j , X̃
n(2)

i ) + nc3 (8.23)

≤ h(Yn
j )− h(H

(1)
ij X̃n(1)

i + H
(2)
ij X̃n(2)

i |Xn
j , X̃

n(2)

i ) + nc3 (8.24)

= h(Yn
j )− h(X̃n(1)

i |X̃n(2)

i ) + nc2 (8.25)

where X̃n
i = Xn

i + Ñn
i such that Ñn

i ∼ N (0, ρiIM), where ρi < minj
1

||Hij ||2 . (8.24)

follows from considering a stochastically equivalent version of Yj given by Ỹj =
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HjjXj+HijX̃i+N̄j, where N̄j ∼ N (0, IM−ρiHijH
T
ij), hence h(HjjX

n
j +H

(1)
ij Xn(1)

i +

H
(2)
ij Xn(2)

i + Nj|Xn
j , X̃

n(2)

i ) ≥ h(HjjX
n
j + H

(1)
ij X̃n(1)

i + H
(2)
ij X̃n(2)

i |Xn
j , X̃

n(2)

i ) . (8.25)

follows from the scaling property of the differential entropy which results in an

additional constant that does not depend on P . Hence, the conditional entropy of

the ith user’s channel input is upper bounded by

h(X̃n(1)

i |X̃n(2)

i ) ≤ h(Yn
j )− nRj + nc2 (8.26)

By applying chain rule for users’ inputs h(X̃n
i ) = h(X̃n(2)

i ) + h(X̃n(1)

i |X̃n(2)

i ), we have

(8.19). �

By applying the secrecy penalty and MIMO role of a helper lemmas in (8.18),

(8.19) for user 1, we have the following upper bound

nR1 ≤ h(X̃n(2)

1 ) + h(X̃n(2)

2 ) + h(Yn
1 )− nR1 − nR2 + nc4 (8.27)

which is equivalent to

n(2R1 +R2) ≤ h(X̃n(2)

1 ) + h(X̃n(2)

2 ) + h(Yn
1 ) + nc4 (8.28)

Using the fact that Gaussian random variables maximize the differential entropy,

we obtain:

n(2R1 +R2) ≤h(X̃n(2)

1 ) + h(X̃n(2)

2 ) + h(Yn
1 ) + nc4 (8.29)

≤(M −N) · n
2

logP + (M −N) · n
2

logP +N · n
2

logP + nc5 (8.30)
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=(2M −N) · n
2

logP + nc5 (8.31)

Dividing by n yields,

2R1 +R2 ≤ (2M −N) · 1

2
logP + c5 (8.32)

and by dividing by 1
2

logP and taking the limit as P →∞, we obtain:

2d1 + d2 ≤ 2M −N (8.33)

By symmetry, we obtain the following upper bound by writing the secrecy penalty

and role of a helper lemmas for user 2

d1 + 2d2 ≤ 2M −N (8.34)

Also, adding (8.33) and (8.34), we obtain the following upper bound on the sum

s.d.o.f. ds

d1 + d2 ≤
4M − 2N

3
(8.35)

Consequently, the s.d.o.f. region C is upper bounded by the region {(d1, d2) : di +

2dj ≤ 2M −N, di ≥ 0, i, j = 1, 2, j 6= i} for M ≥ N .

Focusing on the sum s.d.o.f., from (8.35) and (8.17) we have the upper bound
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on the sum s.d.o.f. as

ds ≤ min

{
4M − 2N

3
,M, 2N

}
(8.36)

If the first term in the upper bound is not active, then M ≤ 4M−2N
3

or 2N ≤ 4M−2N
3

,

which both lead to M ≥ 2N and hence the M term in the upper bound is never

active, and the sum s.d.o.f. upper bound is

ds ≤ min

{
4M − 2N

3
, 2N

}
(8.37)

Focusing on the maximum individual s.d.o.f. points, from (8.33) and (8.34),

we have dm ≤ 2M−N
2

. Including the maximum d.o.f. upper bound for the MIMO

channel, we have

dm ≤ min

{
2M −N

2
, N

}
(8.38)

8.5.3 Combining Both Bounds

First, we note that since the outer bounds in (8.13)-(8.14) and (8.36)-(8.37) define

a bounded polyhedron in R2, the outer bounds form a polytope as in [82]. Thus, it

is sufficient to characterize upper bounds for its extreme points.

Now, we note that increasing the number of transmit antennas of both trans-

mitters cannot decrease the s.d.o.f. of ICCM for a fixed number of receiver anten-

nas. Therefore, ds ≤ 2N
3

corresponding to the case of M = N for both the sum

s.d.o.f. point and the maximum individual s.d.o.f. point. For the sum s.d.o.f. point,

the upper bound in (8.35) is 2N
3

for the case M = N . Combining the bounds (8.14)
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and ds ≤ 2N
3

, we have ds ≤ min{2N
3
, 4M − 2N} for M ≤ N . Consequently, the

upper bound for the sum s.d.o.f. of the ICCM for any arbitrary M and N is,

ds =





min{2N
3
, [4M − 2N ]+}, M ≤ N

min{2N, 4M−2N
3
}, M ≥ N

(8.39)

Similarly, for the maximum individual s.d.o.f. point, the upper bound in (8.38)

for the case M = N is N
2

. Hence, combining this with (8.13), dm ≤ min{N
2
, [2M −

N ]+} for M ≤ N . Consequently, the maximum individual s.d.o.f. of the ICCM for

any arbitrary M and N is,

dm =





min{N
2
, [2M −N ]+}, M ≤ N

min{N, 2M−N
2
}, M ≥ N

(8.40)

Since the problem is symmetric with respect to the two users, there exists a

symmetric sum s.d.o.f. point
(
ds
2
, ds

2

)
and two maximum individual s.d.o.f. points

(0, dm), (dm, 0).

8.6 Achievable Scheme for Sum s.d.o.f. of the 2× 2 ICCM for Static

Channels

In this section, we develop optimal achievable schemes to match the presented upper

bounds. First, we focus on the sum s.d.o.f. point
(
ds
2
, ds

2

)
for the case of static

channels, i.e., Hij(t) = Hij, ∀t. We start by proposing a novel achievable scheme

for the 2 × 2 ICCM system using asymptotic real interference alignment. Then,
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we build on this achievable scheme to obtain achievable schemes for any M,N by

combining spatial alignment and exploiting the null space (whenever possible, i.e.,

M > N) with the 2×2 scheme. Real interference alignment is not needed in regimes

that correspond to integer s.d.o.f., i.e., it suffices to use Gaussian codebooks along

with spatial alignment and/or null space transmission in these cases. To carry out

the secure rate calculation, we use the following result from [70] which states that

the following secure rates are achievable for the ICCM2:

R1 ≤ I(V1; Y1)− I(V1; Y2|V2) (8.41)

R2 ≤ I(V2; Y2)− I(V2; Y1|V1) (8.42)

8.6.1 Basic System: 2× 2 MIMO ICCM

The basic building blocks of all achievable schemes for the sum s.d.o.f. point when

the channel is static are the 1× 1 SISO ICCM and the 2× 2 MIMO ICCM systems.

We can reduce all other regimes to one of these cases by proper vector space manip-

ulations. The achievable scheme for the 1 × 1 SISO ICCM is given in [78]. In this

section, we give an achievable scheme for the 2 × 2 MIMO ICCM. The achievable

scheme for the 2× 2 system combines spatial alignment with asymptotic real inter-

ference alignment. To use asymptotic real interference alignment, the secure signal

Vi and the cooperative jamming signal Ui are constructed as a linear combination

2Interestingly, the rate region in (8.41) is also achievable under the strong security constraint
as shown in [126, Theorem 1] and [127, Remark 1]. This implies that our s.d.o.f. region is in fact
valid if we changed the security constraint to the strong security constraint, i.e., I(Wi;Y

n
j ) ≤ ε, for

i, j ∈ {1, 2} without normalization with n. Note that any scheme that achieves the strong security
constraint is a valid achievable scheme under the weak security constraint as well.
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of structured signals picked from PAM constellation C(a,Q) with proper parameters

that will be identified shortly. The transmitted signals are:

X1 = H−1
12 V1 + H−1

11 U1 (8.43)

X2 = H−1
21 V2 + H−1

22 U2 (8.44)

The received signals are:

Y1 = H11H
−1
12 V1 + (U1 + V2) + H21H

−1
22 U2 + N1

= AV1 + (U1 + V2) + BU2 + N1 (8.45)

and

Y2 = (V1 + U2) + H12H
−1
11 U1 + H22H

−1
21 V2 + N2

= (V1 + U2) + B̄U1 + ĀV2 + N2 (8.46)

Considering the first receiver without loss of generality, we note that A =

H11H
−1
12 , B = H21H

−1
22 are generally non-diagonal with rationally independent ele-

ments almost surely. Using exact real interference alignment requires constructing 5

irrational dimensions in order to decode Vi with arbitrary small probability of error.

However, this wastes the observation space of the second antenna and achieves an

s.d.o.f. of 2/5 from only one antenna.

To see this, let aij, i, j ∈ {1, 2} be the (i, j)th element of matrix A, and
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similarly for the other matrices B, Ā = H22H
−1
21 , B̄ = H12H

−1
11 . Then, the received

signal at receiver 1 is

Y1 =



a11v11 + a12v12 + (u11 + v21) + b11u21 + b12u22

a21v11 + a22v12 + (u12 + v22) + b21u21 + b22u22


+ N1 (8.47)

where V1 = [v11 v12]T ,U2 = [u21 u22]T . The scaling factors {aij}i,j=1,2, {bij}i,j=1,2,

and 1 are rationally independent almost surely. Thus, in order to decode v11, v12

with arbitrarily small probability of error using exact real interference alignment as

in [101], [78], we need to construct at least 5 irrational dimensions. We note also

that from antenna 2, the same symbols v11, v12 can be decoded. Hence, by using

exact real interference alignment, we exploit the observation of the first antenna

only, as the second antenna does not give any new information. Consequently, from

the first antenna, we achieve an s.d.o.f. of 2/5, as 2 components of the secure signal

can be decoded out of the 5 irrational dimensions needed for correct decoding. To

minimize the required irrational dimensions, we need to leave one of v11 or v12 to

be in a separate irrational dimension at each antenna, while the other component is

aligned with u21, u22. This type of alignment can be done asymptotically by break-

ing {vij}i,j=1,2, {uij}i,j=1,2 into sufficiently large number of components. Hence, for

the first antenna, the components of signal v11 are in separate irrational dimensions

that cover 1/3 of the total dimensions, and the signal components of (u11+v21) cover

1/3 of the total dimensions, while the signal components of v12, u21, u22 are asymp-

totically aligned together and cover slightly larger than 1/3 of the total irrational
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Figure 8.4: Illustration of asymptotic real interference alignment for the 2×2 system.

dimensions. Consequently, user 1 can achieve 1/3 s.d.o.f. from the first antenna. A

similar argument holds for the second antenna with switching the roles of v11 and

v12. This scheme is illustrated in Fig. 8.4.

We begin discussing the details of the asymptotic real interference alignment

[86] by defining sets of irrational dimensions Ti

T1 =

{
2∏

i,j=1,i 6=j
ā
rij
ij

2∏

i,j=1

b̄
sij
ij : rij, sij = 1, . . . ,m

}
(8.48)

T2 =

{
2∏

i,j=1,i 6=j
a
rij
ij

2∏

i,j=1

b
sij
ij : rij, sij = 1, . . . ,m

}
(8.49)

We define t1, t2 to be the vectors constructed by enumerating all elements of T1, T2

sets, respectively. The cardinality of Ti (which is also the length of the ti vector) is

given by

MT = |Ti| = m6, i = 1, 2 (8.50)

We note that Ti set does not contain the gains aii, āii and hence multiplying by these

channel gains produces new MT irrational dimensions. On the other hand, multi-
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plying with any channel gain that appears in Ti results in asymptotically aligning

this signal within T̃i set which is defined as

T̃1 =

{
2∏

i,j=1,i 6=j
ā
rij
ij

2∏

i,j=1

b̄
sij
ij : rij, sij = 1, . . . ,m+ 1

}
(8.51)

T̃2 =

{
2∏

i,j=1,i 6=j
a
rij
ij

2∏

i,j=1

b
sij
ij : rij, sij = 1, . . . ,m+ 1

}
(8.52)

with cardinality of

MR = |T̃i| = (m+ 1)6, i = 1, 2 (8.53)

Now, we give the explicit structure of the transmitted signals. The vectors

Vi, Ui are 2 × 1 vectors. Each component is constructed out of irrational com-

binations of MT PAM signals vij = [vij1 vij2 · · · vijMT
]T representing secure signal

components of user i from antenna j. Generate ui = [uij1 uij2 · · ·uijMT
]T as cooper-

ative jamming signal as follows

V1 =




tT2 v11

tT2 v12


 , U1 =




tT1 u11

tT1 u12


 (8.54)

V2 =




tT1 v21

tT1 v22


 , U2 =




tT2 v21

tT2 v22


 (8.55)

This means that the alignment of V1 and U2 is carried over the T2 set, while that of

V2 and U1 over the T1 set. Using this construction, the received signal at receiver
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1 is

Y1 =



a11t

T
2 v11 + tT1 (u11 + v21) + tT2 (a12v12 + b11u21 + b12u22)

a22t
T
2 v12 + tT1 (u12 + v22) + tT2 (a21v11 + b21u21 + b22u22)


+ N1 (8.56)

Lemma 8.2 The sum s.d.o.f. of 4
3

is achievable using the combination of asymptotic

alignment and spatial alignment shown in this section with signals picked from PAM

constellation C(a,Q) with Q = P
1−δ

2(MΣ+δ) , a = γ P
1
2

Q
, where MΣ = 2m6 + (m+ 1)6 for

arbitrarily large integer m, and any δ > 0.

Remark 8.11 From (8.56), we first note that using this type of alignment ensures

exact alignment of user 2’s secure signals with cooperative jamming signal generated

by user 1 as in (u11 + v21) terms. This exact alignment guarantees security as

in the SISO case in [78]. In addition, at each antenna, only one secure signal

component lies in a separate irrational dimension for decodability as in a11t
T
2 v11 and

a22t
T
2 v12, while the other component aligns with user 2’s cooperative jamming signal

over the set T̃2. Therefore, the intended secure signal at each antenna covers MT

dimensions out of MΣ dimensions. Consequently, achievable s.d.o.f. per antenna is

approximately MT

MΣ
which approaches 1/3 as m gets large. Hence, we achieve a total

of 2/3 s.d.o.f. per user, and a total of ds = 4/3 s.d.o.f. for the system.

Proof: The total number of dimensions at antenna 1 (and similarly antenna 2)

needed in this case is

MΣ = |a11T2 ∪ T1 ∪ T̃2| = 2m6 + (m+ 1)6 (8.57)
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By choosing the parameters of the PAM constellation as

Q = P
1−δ

2(MΣ+δ) , a = γ
P

1
2

Q
(8.58)

the average power constraint is satisfied, and the probability of error can be made

arbitrarily small as P → ∞ as in [101], [78]. We can also decode U2 perfectly at

receiver 1 after decoding V1. By subtracting V1 from Y1, we have

Y′1 = (U1 + V2) + BU2 + N1 (8.59)

By filtering the received observations using C = B−1, we have

Y′′1 = B−1(U1 + V2) + U2 + N′′1 (8.60)

=



c11t

T
1 (u11 + v21) + c12t

T
1 (u12 + v22) + tT2 u21

c21t
T
1 (u11 + v21) + c22t

T
1 (u12 + v22) + tT2 u22


+ N′′1 (8.61)

where N′′1 = B−1N1. Since no specific alignment procedure has been designed for

the C matrix, all these signals are received in separate irrational dimensions. The

total required dimensions in this case is 3MT = 3m6 < MΣ, and hence decodable.

Now, we evaluate the rates in (8.41) focusing on user 1. Using the parameters

chosen in (8.58), V1 is received with asymptotically vanishing probability of error.

Consequently, the first term of (8.41) can be lower bounded using data processing
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and Fano’s inequality as

I(V1; Y1) ≥ I(V1; V̂1) (8.62)

= H(V1)−H(V1|V̂1) (8.63)

≥ (1− Pe) log(2Q+ 1)2MT − 1 (8.64)

= (1− Pe)
2MT (1− δ)
MΣ + δ

· 1

2
logP + o(logP ) (8.65)

We can upper bound the leakage as

I(V1; Y2|V2) ≤ I(V1; (V1 + U2) + B̄U1 + ĀV2|V2) (8.66)

= H((V1 + U2) + B̄U1)−H(U2 + B̄U1) (8.67)

The first term in (8.67) can be upper bounded by

H(V1 + U2) + B̄U1) = H((B̄−1(V1 + U2) + U1) (8.68)

= H






c̄11t

T
2 (u21 + v11) + c̄12t

T
2 (u22 + v12) + tT1 u11

c̄21t
T
2 (u21 + v11) + c̄22t

T
2 (u22 + v12) + tT1 u12







(8.69)

= H







V1 + U2

U1





 (8.70)

= log
(
(4Q+ 1)2MT (2Q+ 1)2MT

)
(8.71)

where C̄ = B̄−1, (8.68) holds since C̄ is invertible, and (8.70) follows from the fact
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that all signal components lie in different irrational dimensions with a total number

of dimensions of 3MT < MΣ, which in turn makes these signals decodable for large

enough P . Thus, the transformation

[
B̄−1 I

]
is invertible. Similarly, the second

term in (8.67) which solely contains cooperative jamming signals, is

H(U2 + B̄U1) = H







U2

U1





 = log

(
(2Q+ 1)4MT

)
(8.72)

Then, the leakage in (8.67) is upper bounded by

I(V1; Y2|V2) ≤ log

(
4Q+ 1

2Q+ 1

)2MT

(8.73)

≤ 2MT + o(logP ) (8.74)

Therefore, user 1’s rate is lower bounded by

R1 ≥ I(V1; Y1)− I(V1; Y2|V2) (8.75)

= 2MT

(
(1− Pe)

(1− δ)
MΣ + δ

· 1

2
logP − 1

)
+ o(logP ) (8.76)

By normalizing by 1
2

logP and taking P →∞,

d1 ≥
2MT (1− δ)
MΣ + δ

(8.77)

=
2m6(1− δ)

2m6 + (m+ 1)6 + δ
(8.78)
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≥ 2(1− δ)
2 +

(
1 + 1

m

)6
+ δ

(8.79)

As m → ∞ and δ → 0, the achievable s.d.o.f is 2/3 for each user, and hence the

sum s.d.o.f. is 4
3

. �

Remark 8.12 We note that for the SISO system, we do not need any asymptotic

alignment. By specializing the spatial alignment presented here to the SISO case,

i.e.,

X1 =
1

h12

V1 +
1

h11

U1 (8.80)

X2 =
1

h21

V2 +
1

h22

U2 (8.81)

we see that the received signals fit exactly into 3 irrational dimensions. Hence, 1/3

s.d.o.f. per user is achievable as in [78]. Therefore, we focus our attention to the

presentation of achievable schemes for the cases that result in a 2× 2 system, since

the SISO case can be obtained as a special case of the 2 × 2 achievable scheme by

ignoring the asymptotic alignment step and replacing with an exact real interference

alignment step.

8.7 Achievable Scheme for Sum s.d.o.f. of the M ×N MIMO ICCM

8.7.1 N
2 ≤M ≤ 2N

3

In this case, the sum s.d.o.f. is an integer. Hence, we use Gaussian codebooks for

transmission of the secure signal Vi and the cooperative jamming signal Ui. We
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precode these signals such that the secure signal of one user lies in the same subspace

as the cooperative jamming signal of the other user.

Transmitted Signals: Each user transmits a Gaussian secure signal Vi, and

a Gaussian cooperative jamming signal Ui. The signals Vi,Ui ∼ N (0, η1P I2M−N)

are of 2M−N dimensions, and independent from each other, where η1 is a constant,

which is chosen to satisfy the power constraint. Let Pi,Qi ∈ RM×(2M−N) be the

precoding matrices for Vi, Ui, respectively. Then, the transmitted signals are,

X1 = P1V1 + Q1U1 (8.82)

X2 = P2V2 + Q2U2 (8.83)

The received signals in this case are:

Y1 = H11P1V1 + (H11Q1U1 + H21P2V2) + H21Q2U2 + N1

Y2 = (H12P1V1 + H22Q2U2) + H12Q1U1 + H22P2V2 + N2 (8.84)

We choose the precoding matrices Pi,Qi such that they satisfy the following align-

ment equations

span{H21P2} ⊆ span{H11Q1} (8.85)

span{H12P1} ⊆ span{H22Q2} (8.86)

Feasibility of Alignment: The alignment can be achieved by choosing Pi,Qi
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such that

[
H11 −H21

]



Q1

P2


 = 0 (8.87)

[
H12 −H22

]



P1

Q2


 = 0 (8.88)

i.e., by choosing Pi, Qi to be in the null space of the combined channel of the

two users. Note that

[
H11 −H21

]
is an RN×2M matrix. Hence, the null space of

this matrix,

[
H11 −H21

]⊥
, is an R2M×2M−N matrix. Thus, choosing Pi, Qi as

RM×2M−N is feasible.

Decodability: By this alignment scheme, we have

Y1 = H11P1V1 + H11Q1(U1 + V2) + H21Q2U2 + N1 (8.89)

=

[
H11P1 H11Q1 H21Q2

]




V1

U1 + V2

U2




+ N1 (8.90)

Similarly, for receiver 2, we have

Y2 =

[
H22Q2 H12Q1 H22P2

]




V1 + U2

U1

V2




+ N2 (8.91)

In order to decode Yi using a zero forcing receiver, the total dimensions 3(2M −N)
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should be at most N . This holds true since M
N
≤ 2

3
. Thus, we can decode V1 using

zero forcing as




V1

U1 + V2

U2




=

[
H11P1 H11Q1 H21Q2

]†
Y1 (8.92)

where (.)† is the pseudo-inverse of a matrix.

Security: Since each secure signal is aligned with a cooperative jamming

signal from the other user, the leakage rate is upper bounded by a constant, and

hence the system is secure from the s.d.o.f. perspective, i.e., for user 1 without loss

of generality, using Fano’s and data processing inequality,

R1 ≥ I(V1; Y1)− I(V1; Y2|V2) (8.93)

≥ I(V1; V̂1)− h(Y2|V2) + h(Y2|V1,V2) (8.94)

≥ h(V1)− h(V1|V̂1)− h



[
H22Q2 H12Q1

]



V1 + U2

U1







+h



[
H12Q1 H22P2

]



U2

U1





 (8.95)

≥ (1− Pe)(2M −N) · 1

2
logP − h







V1 + U2

U1





+ h







U2

U1





+ o(logP )

(8.96)

= (1− Pe)(2M −N) · 1

2
logP − 2(2M −N) · 1

2
logP
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+ 2(2M −N) · 2

2
logP + o(logP ) (8.97)

By dividing by 1
2

logP and taking P →∞, the Pe → 0 and hence d1 ≥ 2M −N .

8.7.2 2N
3 ≤M ≤ N

In this regime, we combine the achievable scheme of the previous regime with the

achievable scheme of the basic 2× 2 system (or the 1× 1 SISO system).

Transmitted Signals: Let Vi =




V
(1)
i

V
(2)
i


 and Ui =




U
(1)
i

U
(2)
i


. V

(1)
i ,U

(1)
i ∼

N (0, η2P IbN
3
c) are Gaussian signals of size bN

3
c. V

(1)
i ,U

(1)
i correspond to the part

that can be protected using spatial alignment only without any real interference

alignment. The vectors V
(2)
i ,U

(2)
i are structured signals of size N mod 3 which is

either 1 or 2. V
(2)
i ,U

(2)
i are picked from PAM constellation C(a,Q), with proper

parameters. This separation effectively reduces the problem into designing spatial

alignment precoders as in the previous regime and the basic 2 × 2 system (or the

1×1 SISO system). We consider the case of Nmod3 = 2, without loss of generality.

Let Pi, Qi be precoding matrices in RM×(bN
3
c+N mod 3), then the transmitted signals
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are

X1 = P1




v
(1)
1,1

v
(1)
1,2

...

v
(1)

1,bN
3
c

tT2 v
(2)
11

tT2 v
(2)
12




+ Q1




u
(1)
1,1

u
(1)
1,2

...

u
(1)

1,bN
3
c

tT1 u
(2)
11

tT1 u
(2)
12




(8.98)

X2 = P2




v
(1)
2,1

v
(1)
2,2

...

v
(1)

2,bN
3
c

tT1 v
(2)
21

tT1 v
(2)
22




+ Q2




u
(1)
2,1

u
(1)
2,2

...

u
(1)

2,bN
3
c

tT2 u
(2)
21

tT2 u
(2)
22




(8.99)

where Pi,Qi are designed using (8.87), (8.88).

Feasibility of Alignment: Similar to the previous section, this alignment

is possible if the null space of the combined channel

[
H11 −H21

]⊥
has dimension

2M − N ≥ bN
3
c + N mod 3, which implies that M

N
≥ 2

3
+ N mod 3

3N
. This condition

always holds in this regime.

Decodability: Partition Pi =

[
P

(1)
i
N×bN3 c

P
(2)
iN×N mod 3

]
and similarly for Qi.
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Then, the received signal at receiver 1 is

Y1 =

[
H11P

(1)
1 H11Q

(1)
1 H21Q

(1)
2

]




V
(1)
1

V
(1)
2 + U

(1)
1

U
(1)
2




+

[
H11P

(2)
1 H11Q

(2)
1 H21Q

(2)
2

]




V
(2)
1

V
(2)
2 + U

(2)
1

U
(2)
2




+ N1 (8.100)

Define matrix F1 =

[
H11P

(1)
1 H11Q

(1)
1 H21Q

(1)
2

]
as an RN×3bN

3
c matrix. We null

out the effect of the first components from Y1 by multiplying by the nulling matrix

ZT
1 , which is defined as the right null space of F1

Z1 =
(
FT

1

)⊥
(8.101)

The nulling matrix ZT
1 is RN mod 3×N . Then, the filtered observation is

Ỹ1 = ZT
1 Y1 (8.102)

=

[
ZT

1 H11P
(2)
1 ZT

1 H11Q
(2)
1 ZT

1 H21Q
(2)
2

]




V
(2)
1

V
(2)
2 + U

(2)
1

U
(2)
2




+ Ñ1 (8.103)

where Ñ1 = ZT
1 N1. Orthogonalize V

(2)
2 + U

(2)
1 components by multiplying by
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(ZT
1 H11Q

(2)
1 )−1,

˜̃Y1 = (ZT
1 H11Q

(2)
1 )−1Ỹ1 (8.104)

= AV
(2)
1 + (V

(2)
2 + U

(2)
1 ) + BU

(2)
2 + ˜̃N1 (8.105)

where A = (ZT
1 H11Q

(2)
1 )−1ZT

1 H11P
(2)
1 , B = (ZT

1 H11Q
(2)
1 )−1ZT

1 H21Q
(2)
2 , and ˜̃N1 =

(ZT
1 H11Q

(2)
1 )−1Ñ1. A, B are now N mod 3 × N mod 3 matrices. By designing ti

as in the 2× 2 system, V
(2)
1 ,U

(2)
2 are decoded without error. Cancelling them from

Y1, we have

Ȳ1 =

[
H11P

(1)
1 H11Q

(1)
1 H21Q

(1)
2 H11Q

(2)
1

]




V
(1)
1

V
(1)
2 + U

(1)
1

U
(1)
2

V
(2)
2 + U

(2)
1




+ N1 (8.106)

To check the decodability, the total number of dimensions is 3bN
3
c+N mod 3 = N ,

and hence signals are decodable by a zero-forcing receiver as in the previous section.

Security: Similar to the analysis in the previous sections, the secure signals

of user 2 at receiver 1 are exactly aligned with the cooperative jamming signals of

user 1. Consequently, the leakage rate is bounded by a constant, and each user

achieves an s.d.o.f. of bN
3
c+ N mod 3

3
= N

3
with a total s.d.o.f. ds ≥ 2N

3
.
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8.7.3 N ≤ M ≤ 2N

In this regime, we note the availability of a null space for each cross-channel ma-

trix. Consequently, the achievable scheme combines null space transmission with

the achievable scheme of the square system M = N , which includes spatial and

asymptotic real interference alignment. The upper bound suggests that each user

sends M − N signals in the null space of the other user, so that they become in-

visible, and use the rest of the antennas as a square system of dimension 2N −M

(recall that ds ≤ 2(2M−N)
3

= 2(M − N) + 22N−M
3

). To separate the square system

components from contaminating the null space components, we further precode the

signals of the square system.

Transmitted Signals: Generate Vi0 ∼ N (0, η3P IM−N) as Gaussian secure

signals of size M−N that are transmitted through the null space of the cross-channel

to the jth receiver. Vi,Ui ∼ N (0, η4P Ib 2N−M
3
c) are Gaussian secure signals and

Gaussian cooperative jamming signals, respectively, both of size b2N−M
3
c. vij,uij

are structured PAM signals weighted with vectors ti, which will be defined later.

Let H
(1)
11 , H

(1)
12 , H

(1)
22 , H

(1)
21 are the R(M−N)×M channel matrices to the first M − N
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antennas at the receivers. Therefore, the transmitted signals are

X1 = H⊥12V10 +




H
(1)
11

H
(1)
12




⊥




P1




v
(1)
1,1

v
(1)
1,2

...

v
(1)

1,b Ñ
3
c

tT2 v
(2)
11

tT2 v
(2)
12




+ Q1




u
(1)
1,1

u
(1)
1,2

...

u
(1)

1,b Ñ
3
c

tT1 u
(2)
11

tT1 u
(2)
12







(8.107)

X2 = H⊥21V20 +




H
(1)
21

H
(1)
22




⊥




P2




v
(1)
2,1

v
(1)
2,2

...

v
(1)

2,b Ñ
3
c

tT1 v
(2)
21

tT1 v
(2)
22




+ Q2




u
(1)
2,1

u
(1)
2,2

...

u
(1)

2,b Ñ
3
c

tT2 u
(2)
21

tT2 u
(2)
22







(8.108)

where Ñ = 2N −M . This precoding separates the first M − N antennas at each

receiver from the square system signals. This leaves the Vi0 vectors to be reliably

received via zero-forcing processing.

Decodability and Security: We focus on receiver 1 without loss of gen-

erality. H11




H
(1)
11

H
(1)
12




⊥

has the dimension of N × (2N − M). Ignoring the first

M − N antennas at the receiver, the remaining system is (2N −M) × (2N −M),

which is a square system as presented in the previous section. By considering the

first M − N antennas, Y
(1)
1 = H11H

⊥
12V10 + N

(1)
1 . Consequently, we can decode
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V̂10 = (H11H
⊥
12)†Y(1)

1 . Cancelling V10 from Y1, we are left with a square sys-

tem only. Note that the dimensions set and spatial alignment matrices can be

constructed in a similar manner by defining H̄11 = H
(2)
11




H
(1)
11

H
(1)
12




⊥

, and similarly,

H̄21 = H
(2)
21




H
(1)
21

H
(1)
22




⊥

, H̄12 = H
(2)
12




H
(1)
11

H
(1)
12




⊥

and H̄22 = H
(2)
22




H
(1)
21

H
(1)
22




⊥

. Then the

spatial alignment matrices are designed such that

[
H̄11 −H̄21

]



Q1

P2


 = 0 (8.109)

[
H̄12 −H̄22

]



P1

Q2


 = 0 (8.110)

We can now define the dimensions sets on H̄11, H̄12, H̄21, H̄22 as in the previous

section. Thus, the alignment process, and the secrecy analysis remain the same as

the square system analysis.

8.7.4 M ≥ 2N

In this case, since M ≥ 2N , each cross-channel H12, H21 has M − N null

space components. Since M − N ≥ N , each user transmits N secure Gaus-

sian signal components in the null space of the other receiver’s channel only. Let

Vi = [vi1 vi2 . . . viN 0TM−2N ]T = [V̄i 0TM−2N ]T be the transmitted Gaussian signal
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for user i, where V̄i ∼ N (0, η4P IN). Thus, the transmitted signals are:

X1 = H⊥12V1 (8.111)

X2 = H⊥21V2 (8.112)

Since the channel gains are drawn from a continuous distribution, H11H
⊥
12 and

H22H
⊥
21 are full rank almost surely. Hence, the receiver performs zero-forcing to

decode Vi, i.e.,

V̂1 = (H11H
⊥
12)†Y1 (8.113)

V̂2 = (H22H
⊥
21)†Y2 (8.114)

At high SNR, the probability of error can be made arbitrarily small. These signals

are invisible to the other receiver, i.e., transmitted in perfect security.

8.8 The Entire s.d.o.f. Region for the M ×N ICCM

In this section, we derive the optimal achievable schemes for the entire region of

the M × N ICCM. From the converse proof, we note that the s.d.o.f. region is

a four-vertex polytope for any M, N . The non-trivial points of the polytope are

the sum s.d.o.f. point and the two symmetric maximum individual s.d.o.f. points.

Thus, in this section, we concentrate on characterizing achievable schemes for one

of the maximum individual s.d.o.f. points only. Since the s.d.o.f. region is naturally

a square region for N
2
≤ M ≤ 2N

3
and M ≥ 2N , the problem of characterizing
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the entire s.d.o.f. region reduces to finding the optimal achievable schemes for the

maximum individual s.d.o.f. points for 2N
3
≤M ≤ 2N . Any other point that belongs

to the s.d.o.f. region can be achieved by time-sharing. In the following, we consider

the achievability of the (dm, 0) point, without loss of generality. We present these

schemes in a concise way because these points can be mapped to the achievable

schemes of the MIMO wiretap channel with a helper in [79]. The idea in all these

schemes is to let user 2 sacrifice his own s.d.o.f. and send only cooperative jamming

signals to jam its own receiver, i.e., it acts as a pure helper.

8.8.1 For 2N
3 ≤M ≤ 3N

4

In this case user 1 sends Gaussian secure signal V1 of dimension 2M − N , while

user 2 sends pure Gaussian cooperative jamming signal U1 of the same dimension,

i.e., the transmitted signals are

X1 = P1V1 (8.115)

X2 = Q2U2 (8.116)

Then, the received signals are

Y1 = H11P1V1 + H21Q2U2 + N1 (8.117)

Y2 = H12P1V1 + H22Q2U2 + N2 (8.118)
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To ensure security, we align the cooperative jamming of user 2 with the secure signal

of user 1 at receiver 2 by designing P1, Q2 such that

[
H12 −H22

]



P1

Q2


 = 0 (8.119)

Since the null space of the matrix

[
H12 −H22

]
has dimension 2M × (2M − N),

this alignment is feasible. The decodability is performed via zero-forcing, if the total

dimensions 2(2M −N) ≤ N , which is true for M ≤ 3N
4

. The leakage rate is upper

bounded by a constant as shown in previous sections, hence, the scheme is secure

in the s.d.o.f. sense. Consequently, dm = 2M −N is achievable.

8.8.2 For 3N
4 ≤M ≤ N

We combine the previous achievable scheme with the exact real interference align-

ment. The signals compose of Gaussian components V
(1)
1 ,U

(1)
2 of dimension bN

2
c

and structured components v
(2)
1 , u

(2)
2 of dimension N mod 2 = 0 or 1 picked from

PAM constellation C(a,Q) with Q = P
1−δ

2(2+δ) , a = γ P
1
2

Q
. The transmitted signals are

X1 = P1




V
(1)
1

v
(2)
1


 , X2 = Q2




U
(1)
2

u
(2)
2


 (8.120)

Note that the PAM component is ignored if N is even. By using the same P1,Q2

as in the previous section, the transmission is secure from user 2. This alignment is

feasible, because the null space dimension 2M −N ≥ bN
2
c+N mod 2 for an integer
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M that satisfies 3N
4
≤M ≤ N . The received signal at receiver 1 is

Y1 =

[
H11P

(1)
1 H21Q

(1)
2

]



V
(1)
1

U
(1)
2


+ H11P

(2)
1 v

(2)
1 + H21Q

(2)
2 u

(2)
2 + N1 (8.121)

where P1 = [P
(1)
1
M×bN2 c

P
(2)
1M×N mod 2

] and similarly for Q2. By defining F1 =
[
H11P

(1)
1 H21Q

(1)
2

]
and multiplying by the right null space of this matrix, i.e.,

by multiplying by ZT
1 =

((
FT

1

)⊥)T
, we have

ỹ1 = ZT
1 H11P

(2)
1 v

(2)
1 + ZT

1 H21Q
(2)
2 u

(2)
2 + Ñ1 (8.122)

where Ñ1 = ZTN1. Note that this is a SISO system. Therefore, with the choice of

Q = P
1−δ

2(2+δ) , a = γ P
1
2

Q
, the v

(2)
1 , u

(2)
2 , signals are both decodable, because they lie in

rationally independent dimensions almost surely. By cancelling these components

from Y1, we are left with 2bN
2
c ≤ N signals, which can be decoded using a zero-

forcing receiver. Consequently, dm = N
2

is achievable.

8.8.3 For N ≤M ≤ 3N
2

In this case, user 1 can exploit the null space of H12 to send M−N Gaussian secure

signal components. Similarly, user 2 can generate M − N Gaussian cooperative

jamming components that are invisible to receiver 1 if transmitted in the null space

of H21. Therefore, user 1 sends four signal components, V10 is the Gaussian secure

signal that can be transmitted in the null space of dimension M − N , V11 is the

Gaussian secure signal that can be protected using the invisible cooperative jamming
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components of user 2 of dimensionM−N , V
(1)
12 is Gaussian secure signal of dimension

b3N−2M
2
c and v

(2)
12 which is a structured secure signal of dimension N mod 2 picked

from PAM constellation C(a,Q) with the same parameters as in the previous section.

Similarly, user 2 transmits cooperative jamming signal into U11 of dimension M−N

and is sent in the null space of receiver 1, U
(1)
12 Gaussian of dimension b3N−2M

2
c and

a structured component u
(2)
12 of dimension N mod 2. The transmitted signals are,

X1 = H⊥12V10 + P11V11 + P12




V
(1)
12

v
(2)
12


 (8.123)

X2 = H⊥21Q21U11 + Q22




U
(1)
12

u
(2)
12


 (8.124)

By forcing, H12P11 = H22H
⊥
21Q21 and H12P12 = H22Q22, the scheme is secure in

the s.d.o.f. sense. Then, the received signals are,

Y1 = H11H
⊥
12V10 + H11P11V11 + H11P12




V
(1)
12

v
(2)
12


+ H21Q22




U
(1)
12

u
(2)
12


+ N1 (8.125)

Y2 = H22H
⊥
21Q21(V11 + U11) + H22Q22




V
(1)
12 + U

(1)
12

v
(2)
12 + u

(2)
12


+ N2 (8.126)

This alignment can be designed by choosing P1i,Q2i, i = 1, 2 such that

[
H12 −H22H

⊥
21

]



P11

Q21


 = 0 (8.127)
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[
H12 −H22

]



P12

Q22


 = 0 (8.128)

This alignment is feasible if the null space of

[
H12 −H22H

⊥
21

]
, which has a di-

mension of 2(M − N) is at least accommodating V11 of M − N dimension, i.e.,

2(M − N) ≥ M − N . The null space of

[
H21 −H22

]
is also accommodating

V12, i.e., 2M − N ≥ b3N−2M
2
c + N mod 2. Both conditions hold true if M ≥ N .

Considering the decodability, we write the received signal at receiver 1 as

Y1 =

[
H11H

⊥
12 H11P11 H11P

(1)
12 H21Q

(2)
22

]




V10

V11

V
(1)
12

U
(1)
12




+H11P
(2)
12 v

(2)
12 +H21Q

(2)
22 u

(2)
12 +N1

(8.129)

By defining F1 =

[
H11H

⊥
12 H11P11 H11P

(1)
12 H21Q

(2)
22

]
, we can null out the effect

of its symbols by multiplying with the right null space of F1. This is feasible because

F1 ∈ RN×2(M−N)+2b 3N−2M
2
c which has right null space of dimension N mod 2 × N .

Hence, we are left with Y
(2)
1 = ZT

1 (H11P
(2)
12 v

(2)
12 +H21Q

(2)
22 u

(2)
12 )+ñ1. Since, v

(2)
12 , u

(2)
12 are

picked from structured signals with proper a,Q, these signals are decodable. By can-

celling these signals from Y1 and applying zero-forcing, the rest of the components

are also decodable. Consequently, user 1 can transmit 2(M−N)+b3N−2M
2
c+Nmod2

secure signal components and hence dm = 2M−N
2

is achievable.

373



8.8.4 For 3N
2 ≤M ≤ 2N

In this case, user 1 can send V10 Gaussian secure signal of dimension M −N in the

null space of cross channel to receiver 2. Therefore, these components are invisible at

receiver 2, i.e., perfectly secure. User 2 can send U2 Gaussian cooperative jamming

signals of size 2N −M in the null space of the cross channel to receiver 1. These

signals ensure the security of signals V1 of user 1 and at the same time are invisible

to receiver 1, and hence leave the space for decodability of the secure signals only.

The transmitted signals are

X1 = H⊥12V10 + P1V1 (8.130)

X2 = H⊥21Q2U2 (8.131)

The received signals are

Y1 = H11H
⊥
12V10 + H11P1V1 + N1 (8.132)

Y2 = H12P1V1 + H22H
⊥
21Q2U2 + N2 (8.133)

By designing P1 ∈ RM×2N−M , Q2 ∈ RM−N×2N−M such that

[
H12 −H22H

⊥
21

]



P1

Q2


 = 0 (8.134)

The leakage rate of V1 can be upper bounded by a constant, and hence, secure
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in the s.d.o.f. sense. This alignment is feasible as long as the null space of user 2

dimension M−N is at least as the dimension of V1, i.e., M−N ≥ 2N−M . We have

also the condition from the precoder design that the null space of

[
H12 −H22H

⊥
21

]

columns (which is 2(M −N)) should be larger than 2N −M which both hold true

if M ≥ 3N
2

. For the decodability, the number of dimensions at receiver 1 is N and

hence decodable using a zero-forcing receiver. Consequently, dm = N is achievable.

8.9 Special Case: Time-Varying M ×N ICCM

In this section, we consider the special case of time-varying channels. The converse

proofs do not change if we change the setting to time-varying channels. Any achiev-

able scheme for the static channel is a valid achievable scheme for the time-varying

setting. However, we can use channel variations to simplify the achievable schemes

via symbol extension as in [104]. By symbol repetition and coding across multiple

channel uses, we can obtain fractional s.d.o.f. in a simpler way. The symbol extension

(repetition) replaces the complex real interference alignment (exact or asymptotic)

with simplified encoding and decoding schemes. Since symbol extension is used to

replace real interference alignment in regimes that have fractional s.d.o.f., it suffices

to develop achievable schemes for the sum s.d.o.f. point in the 2N
3
≤M ≤ 2N regime

and the maximum individual s.d.o.f. point for the 3N
4
≤M ≤ 3N

2
regime because the

remaining points achieve integer s.d.o.f. and do not use real interference alignment

for achievability.
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8.9.1 Sum s.d.o.f. Point for 2N
3 ≤M ≤ N

The users send N secure signal components over 3 channel uses. We call the secure

signal V
(1)
i (t) as time-varying, if for every channel use t = 1, 2, 3, V

(1)
i (t) takes an in-

dependent realization from an underlying Gaussian distribution. We call the secure

signal V
(2)
i as fixed, if for every channel use t, the same realization is transmitted

(repeated), i.e., V
(2)
i (t) = V

(2)
i , t = 1, 2, 3. Each user divides its transmitted secure

signals Vi into two parts. The first part is time-varying V
(1)
i (t), which is a Gaussian

vector of dimension bN
3
c. This vector takes new symbols at each channel use t. The

second part V
(2)
i is fixed, which is a Gaussian vector of dimension Nmod3. This vec-

tor is repeated over channel uses t = 1, 2, 3. Similarly, each user sends cooperative

jamming signal Ui with the same structure. The transmitted signals are

X1(t) = P1(t)




V
(1)
1 (t)

V
(2)
1


+ Q1(t)




U
(1)
1 (t)

U
(2)
1


 (8.135)

X2(t) = P2(t)




V
(1)
2 (t)

V
(2)
2


+ Q2(t)




U
(1)
2 (t)

U
(2)
2


 (8.136)

where t = 1, 2, 3. The precoding matrices vary with t and are designed for every t

such that

[
H11(t) −H21(t)

]



Q1(t)

P2(t)


 = 0 (8.137)
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[
H12(t) −H22(t)

]



P1(t)

Q2(t)


 = 0 (8.138)

This alignment is feasible, since 2M − N ≥ bN
3
c + N mod 3 in this regime. Then,

the received signal at receiver 1 in this case is

Y1(t) =H11(t)P1(t)




V
(1)
1 (t)

V
(2)
1


+ H11(t)Q1(t)




U
(1)
1 (t) + V

(1)
2 (t)

U
(2)
1 + V

(2)
2




+ H21(t)Q2(t)




U
(1)
2 (t)

U
(2)
2


+ N1(t) (8.139)

for t = 1, 2, 3. By observing Y1(t) over the 3 channel uses we can form a linear

system with 3N unknowns and 3N equations. The unknowns are V
(1)
1 (t), U

(1)
1 (t) +

V
(1)
1 (t), U

(1)
2 (t), t = 1, 2, 3, each of dimension 3bN

3
c over the 3 channel uses.

V
(2)
1 , U

(2)
1 + V

(2)
2 , U

(2)
2 of dimension of N mod 3 each. Hence, the total number

of unknowns are 3
(
3bN

3
c+N mod 3

)
= 3N . Since receiver has N antennas, and

realizations of channels are independently time-varying, the receiver has 3N inde-

pendent observations almost surely over the 3 channel uses. Using zero-forcing we

can decode these unknowns with arbitrarily small probability of error. Each secure

signal component of user 2 is aligned with one cooperative jamming signal com-

ponent from user 1, hence the scheme is secure. Now, since each user transmits

3bN
3
c+N mod 3 over 3 channel uses, ds = 2N

3
is achievable.
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8.9.2 Sum s.d.o.f. Point for N ≤M ≤ 2N

In this case, the users make use of the null spaces to send their time-varying secure

signals. Specifically, each user transmits a time-varying Vi0(t), t = 1, 2, 3 Gaussian

secure signal of dimension M −N . Each user transmits a fixed Vi Gaussian secure

signal of dimension 2N −M , and a fixed Ui Gaussian cooperative jamming signal.

We restrict the first M−N antennas at the receiver for decoding of the time-varying

symbols and the rest of the antennas for the fixed symbols. To do this restriction,

we precode the transmitted signals as

X1(t) = H12(t)⊥V10(t) +




H
(1)
11 (t)

H
(1)
12 (t)




⊥

(P1(t)V1 + Q1(t)U1) (8.140)

X2(t) = H21(t)⊥V20(t) +




H
(1)
21 (t)

H
(1)
22 (t)




⊥

(P2(t)V2 + Q2(t)U2) (8.141)

where H
(1)
ij (t), H

(2)
ij (t) correspond to the channel matrix from the ith user to the

first M − N antennas, and the rest of the 2N −M antennas at receiver j, respec-

tively. Focusing on the first M − N antennas of user 1, without loss of generality.

The Y
(1)
1 (t) = H

(1)
11 (t)H12(t)⊥V10(t) + N

(1)
1 (t). Then, using zero-forcing, the signal

V10(t), t = 1, 2, 3 is decodable. After decoding V10(t), we cancel it from Y1(t). By

defining H̄11(t) = H
(2)
11 (t)




H
(1)
11 (t)

H
(1)
12 (t)




⊥

, and similarly, H̄21(t) = H
(2)
21 (t)




H
(1)
21 (t)

H
(1)
22 (t)




⊥

,
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H̄12(t) = H
(2)
12 (t)




H
(1)
11 (t)

H
(1)
12 (t)




⊥

and H̄22(t) = H
(2)
22 (t)




H
(1)
21 (t)

H
(1)
22 (t)




⊥

, the received signals

after cancelling V10 at the second 2N −M antennas are

Y
(2)
1 (t) = H̄11(t)P1(t)V1+(H̄11(t)Q1(t)U1+H̄21(t)P2V2)+H̄21(t)Q2(t)U2+N1(t)

(8.142)

Y
(2)
2 (t) = (H̄12(t)P1(t)V1+H̄22(t)Q2(t)U2)+H̄22(t)P2(t)V2+H̄12(t)Q1U1+N2(t)

(8.143)

Note that H̄ij(t) is a square matrix ∀i, j. By choosing the precoding matrices as

P1(t) = H̄12(t)−1, Q1(t) = H̄11(t)−1 (8.144)

P2(t) = H̄21(t)−1, Q2(t) = H̄22(t)−1 (8.145)

the received signals become

Y
(2)
1 (t) = H̄11(t)H̄12(t)−1V1 + (U1 + V2) + H̄21(t)H̄22(t)−1U2 + N1(t) (8.146)

Y
(2)
2 (t) = (V1 + U2) + H̄22(t)H̄21(t)−1V2 + H̄12(t)H̄11(t)−1U1 + N2(t) (8.147)

Hence, the scheme is secure. Y
(2)
i (t), t = 1, 2, 3 correspond to 3(2N − M) in-

dependent observations, and we have V1, V2 + U1, U2 unknowns of 2N − M

each. Consequently, we can form 3(2N −M) × 3(2N −M) square linear system

with unique solution using zero-forcing receiver. Therefore, each user transmits

3(M −N) time-varying symbols and (2N −M) fixed symbols over 3 channel uses,
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then ds = 23(M−N)+2N−M
3

= 2(2M−N)
3

is achievable.

8.9.3 Maximum Individual s.d.o.f. Point for 3N
4 ≤M ≤ N

User 1 transmits a time-varying vector V
(1)
1 (t), t = 1, 2 Gaussian secure signals of

dimension bN
2
c and a fixed vector V

(2)
1 Gaussian secure signal of dimension Nmod2.

The fixed vector is repeated over 2 channel uses. User 2 transmits signals with the

same structure for cooperative jamming signalling. The transmitted signals are

X1(t) = P1(t)




V
(1)
1 (t)

v
(2)
1


 (8.148)

X2(t) = Q2(t)




U
(1)
2 (t)

u
(2)
2


 (8.149)

where P1(t), Q2(t) satisfy

[
H12(t) −H22(t)

]



P1(t)

Q2(t)


 = 0 (8.150)

where t = 1, 2. This alignment is feasible, since 2M −N ≥ bN
2
c + N mod 2 in this

regime Hence, the received signals are

Y1(t) = H11(t)P1(t)




V
(1)
1 (t)

v
(2)
1


+ H21(t)Q2(t)




U
(1)
2 (t)

u
(2)
2


+ N1(t) (8.151)
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Y2(t) = H11(t)P1(t)




U
(1)
2 (t) + V

(1)
1 (t)

u
(2)
2 + v

(2)
1


+ N2(t) (8.152)

which implies that the scheme is secure. For decodability, we note that Y1(t), t = 1, 2

has 2N independent observations. The unknowns are V
(1)
1 (t), U

(1)
2 (t), t = 1, 2 with

2bN
2
c dimension each and V

(2)
1 , U

(2)
2 of N mod 2 dimension each. Hence, the total

number of unknowns is 2
(
2bN

2
c+N mod 2

)
= 2N . Therefore, using this achievable

scheme, and observing Y1(t) for 2 channel uses, we have 2N independent observa-

tions. Hence, we can form 2N × 2N independent linear system of equations and

hence unknowns are decodable. Therefore, user 1 transmits 2bN
2
c time-varying sym-

bols and Nmod2 fixed symbol over 2 channel uses and hence dm =
2bN

2
c+N mod 2

2
= N

2

is achievable.

8.9.4 Maximum Individual s.d.o.f. Point for N ≤M ≤ 3N
2

The same scheme presented for static channels can be used here by replacing the

structured signals v
(2)
12 , u

(2)
12 by fixed Gaussian signals, which are repeated across 2

channel uses. Hence, the transmitted signals are

X1(t) = H12(t)⊥V10(t) + P11(t)V11(t) + P12(t)




V
(1)
12 (t)

v
(2)
12


 (8.153)

X2(t) = H21(t)⊥Q21(t)U11(t) + Q22(t)




U
(1)
12 (t)

u
(2)
12


 (8.154)
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By applying the same alignment procedure, i.e., designing P1i, Q2i, i = 1, 2 such

that

[
H12(t) −H22(t)H21(t)⊥

]



P11(t)

Q21(t)


 = 0 (8.155)

[
H12(t) −H22(t)

]



P12(t)

Q22(t)


 = 0 (8.156)

where t = 1, 2, the scheme is secure. The received signal is

Y1(t) =H11(t)H12(t)⊥V10(t) + H11(t)P11(t)V11(t)

+ H11(t)P12(t)




V
(1)
12 (t)

v
(2)
12


+ H21(t)Q22(t)




U
(1)
12 (t)

u
(2)
12


+ N1(t) (8.157)

Then, Y1(t), t = 1, 2 correspond to 2N unknowns by 2N equations. Us-

ing transmission over 2 channel uses, the receiver has 2N independent obser-

vations. We have V10(t), V11(t), t = 1, 2 each with 2(M − N) dimensions,

V
(1)
12 (t), V

(1)
12 (t), t = 1, 2 each with 2b3N−2M

2
c dimensions and v

(2)
12 , u

(2)
12 with

(3N − 2M) mod 2 dimensions. Consequently, the total number of unknowns is

2
(
2(M −N) + 2b3N−2M

2
c+ (3N − 2M) mod 2

)
= 2N . Hence, we constructed a

2N × 2N system, where symbols are decodable over 2 channel uses, and dm = N is

achievable.
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8.10 Conclusions

We determined the exact s.d.o.f. region of a two-user M ×N MIMO ICCM for any

arbitrary symmetric antenna configuration. For the converse proof, we showed that

the cooperative bound which results in a two-user BCCM system is tight if M ≤ 2N
3

.

We also constructed another outer bound that uses vectorized versions of the secrecy

penalty and role of a helper lemmas. We used these outer bounds together with the

IC without secrecy constraints to determine the entire s.d.o.f. region for any M, N .

For the achievability, we showed that the s.d.o.f. region is a four-vertex poly-

tope. Focusing on the sum s.d.o.f. point, if the sum s.d.o.f. is an integer (fractional

part is zero), then there is no need for real interference alignment; spatial alignment

suffices. If the fractional part is 1/3, then after spatial alignment, real alignment in

a single dimension is needed. For the case where the fraction is 2/3, we developed

a novel achievable scheme for the basic 2 × 2 MIMO ICCM. This scheme together

with its SISO counterpart are central for achievable schemes for general M and N .

The 2 × 2 scheme combines spatial alignment, which ensures that secure signals

and cooperative jamming signals lie in the same rational dimension irrespective of

the joint MIMO processing used at the receiver, and asymptotic real interference

alignment to minimize the required dimensions needed for decodability and ensuring

that observations of all receiving antennas are exploited. We showed the achievabil-

ity of the other non-trivial polytope points by forcing one of the users to act as a

cooperative jammer (helper) that jams its own receiver.

Interestingly, we showed that the s.d.o.f. region starts as a square region if
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M ≤ 2N
3

, then it takes the shape of an irregular polytope until it returns back to a

square region when the number of transmit antennas is at least twice the number

of receiving antennas. We showed that if the ICCM channel is time-varying, the

achievable schemes can be simplified by using vector space alignment via symbol

extension over multiple channel uses instead of real interference alignment that is

necessary for static channels.
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CHAPTER 9

Secure Degrees of Freedom in Networks with User Misbe-

havior

9.1 Introduction

In this chapter, we investigate s.d.o.f. of three new channel models: broadcast chan-

nel with combating helpers, interference channel with selfish users, and multiple

access wiretap channel with deviating users. The goal of introducing these channel

models is to investigate various malicious interactions that arise in networks, in-

cluding active adversaries. That is in contrast with the common assumption in the

literature that the users follow a certain protocol altruistically and transmit both

message-carrying and cooperative jamming signals in an optimum manner.

In the first model, over a classical broadcast channel with confidential mes-

sages (BCCM), there are two helpers, each associated with one of the receivers. In

the second model, over a classical interference channel with confidential messages

(ICCM), there is a helper and users are selfish. By casting each problem as an

extensive-form game and applying recursive real interference alignment, we show

that, for the first model, the combating intentions of the helpers are neutralized
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and the full s.d.o.f. is retained; for the second model, selfishness precludes secure

communication and no s.d.o.f. is achieved.

In the third model, we consider the multiple access wiretap channel (MAC-

WTC), where multiple legitimate users wish to have secure communication with a

legitimate receiver in the presence of an eavesdropper. We consider the case when

a subset of users deviate from the optimum protocol that attains the exact s.d.o.f.

of this channel. We consider two kinds of deviation: when some of the users stop

transmitting cooperative jamming signals, and when a user starts sending inten-

tional jamming signals. For the first scenario, we investigate possible responses

of the remaining users to counteract such deviation. For the second scenario, we

use an extensive-form game formulation for the interactions of the deviating and

well-behaving users. We prove that a deviating user can drive the s.d.o.f. to zero;

however, the remaining users can exploit its intentional jamming signals as cooper-

ative jamming signals against the eavesdropper and achieve an optimum s.d.o.f.

9.2 BCCM with Combating Helpers

9.2.1 System Model and Assumptions

In BCCM, the transmitter has two private messages W1 and W2 picked from the mes-

sage sets W1,W2 uniformly with rates R1, R2, respectively, where Ri = 1
n

log |Wi|.

Each message Wi should be received reliably by the ith receiver, while being kept
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secure from the jth receiver, i 6= j:

P(Ŵ1 6= W1) ≤ ε, P(Ŵ2 6= W2) ≤ ε (9.1)

1

n
I(W2;Y n

1 ) ≤ ε,
1

n
I(W1;Y n

2 ) ≤ ε (9.2)

where Ŵi is the estimate of Wi at the ith receiver. The s.d.o.f. di is defined as

di = limP→∞
Ri

1
2

logP
, where P is the transmitter power constraint E[X2] ≤ P .

The system has two helpers with inputs Z1 and Z2, with the power constraints

E[Z2
i ] ≤ P . Each helper assists secure transmission to one of the receivers. The

input/output relations for the BCCM with combating helpers (see Fig. 9.1) are:

Y1[k] = hX[k] + h̃1Z1[k] + h̃2Z2[k] +N1[k] (9.3)

Y2[k] = gX[k] + g̃1Z1[k] + g̃2Z2[k] +N2[k] (9.4)

where Yi[k] is the received signal at the ith receiver in the kth transmission frame,

h, g are the channel gains from the transmitter to receivers 1, 2, respectively, and

h̃i, g̃i are the channel gains from helper i to receivers 1, 2, respectively.

The helpers are combating as they maximize the s.d.o.f. of one user only, while

hurting the other user by sending jamming signals. The transmitter acts in even

transmission frames, and helpers respond in odd frames. Each node has perfect

channel state information (CSI) and knows the actions of others at the end of every

frame. We require that the action of a helper does not hurt its own receiver (in

terms of s.d.o.f.) if no new jamming signals are produced by the other helper.
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Ŵ2
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h

g g̃1

h̃2

N1

N2

Ŵ1

(W1,W2)

W1

Figure 9.1: BCCM with combating helpers.

Consequently, we formalize the role of the ith helper as:

min dj(k) s.t. di(k) = di(k − 1) (9.5)

where i, j ∈ {1, 2}, i 6= j and dj(k) is the s.d.o.f. of the jth user in the kth transmis-

sion frame, where k is odd. On the other hand, the transmitter does not take the side

of any of the users and maximizes the sum s.d.o.f. of the system, i.e., transmitter’s

role in even encoding frames is:

max d1(k) + d2(k) (9.6)
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9.2.2 Achievable Scheme: Recursive Real Interference Alignment as

Extensive-Form Game

We use recursive real interference alignment as achievable strategy for our model. At

encoding frame k, all secure and jamming signals are picked from PAM constellation

set C(ak, Qk), where ak is the minimum distance between any two points in the

constellation and Qk is the number of points.

9.2.2.1 For Frames k = 0, k = 1

Frames 0 and 1 are considered transient frames. For frame 0, the transmitter per-

forms the optimal strategy in the presence of helpers [78], and sends two signal

components V11, V21 in two irrational dimensions,

X[0] = α1V11 + α2V21 (9.7)

where α1, α2 are rationally independent scalars. These message-carrying signals are

not secured. None of the helpers expects the other helper to jam its own receiver,

hence each helper needs to protect the message of its own receiver at the other

receiver. Hence, at k = 1, the ith helper sends a structured jamming signal Ũi1 in

the irrational dimension where its message-carrying signal lies at the other receiver

as

Z1[1] =
α1g

g̃1

Ũ11, Z2[1] =
α2h

h̃2

Ũ21 (9.8)
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Y1
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Ũ2Ũ1

Ũ1

Ũ2

V21 V11

V21 V11

V21 V11

h̃1

g̃2

h

g g̃1

Figure 9.2: BCCM frame k = 1. Pink circle and blue square denote user signals,
and the hatched circles/squares denote corresponding helper jamming signals.

Then, the received signals are

Y1[1] = α1hV11 +
α1gh̃1

g̃1

Ũ11 + α2h(V21 + Ũ21) +N1 (9.9)

Y2[1] = α2gV21 +
α2hg̃2

h̃2

Ũ21 + α1g(V11 + Ũ11) +N2 (9.10)

Although V11, V21 are now secure, this results in a new irrational dimension at each

receiver as in Fig. 9.2. Hence di(1) = 1/3 for each user as we show formally in

Section 9.2.3 (instead of di = 1/2 in BCCM with coordinating helpers).

9.2.2.2 For Frame k = 2

The transmitter knows that a new irrational dimension is generated within frame

k = 1. The transmitter uses this dimension in its favor, as it can protect more

message-carrying signals. It produces two new message-carrying signal components

390



V11

Y1

Y2

Z1

X

Z2
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Ũ11Ũ21

Ũ11

V22 V12V21 V11

V22 V21 V12

Figure 9.3: BCCM frame k = 2.

V12, V22 to be aligned with the generated jamming dimensions in frame k = 1 as,

X[2] = α1V11 + α2V21 +
α2hg̃2

h̃2g
V12 +

α1gh̃1

g̃1h
V22 (9.11)

= X[1] + β1V12 + β2V22 (9.12)

That is, the transmitter appends its last frame transmission with two new signal

components in rationally independent dimensions β1, β2 (see Fig. 9.3). The received

signals are,

Y1[1] =α1hV11 +
α2h

2g̃2

h̃2g
V12 +

α1gh̃1

g̃1

(V22 + Ũ11) + α2h(V21 + Ũ21) +N1 (9.13)

Y2[1] =α2gV21 +
α1g

2h̃1

g̃1h
V22 +

α2hg̃2

h̃2

(V12 + Ũ12) + α1g(V11 + Ũ11) +N2 (9.14)

Consequently, the system retains full s.d.o.f. (di(2) = 1/2).
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9.2.2.3 For Frame k = 3

Now, each helper minimizes the s.d.o.f. of the other user by sending jamming signal.

However, due to the strong constraint di(3) = di(2), no helper jams the other receiver

directly, as this would create a new jamming dimension at the side of its own receiver,

decreasing its own s.d.o.f. Instead, it transmits a jamming signal which aligns with

the already jammed dimension at its own receiver as,

Z1[3] = Z1[1] +
α2h

h̃1

Ũ12, Z2[3] = Z2[1] +
α1g

g̃2

Ũ22 (9.15)

Consequently, the received signals are,

Y1[3] = Y1[2] + α2hŨ12 +
α1h̃2g

g̃2

Ũ22 (9.16)

Y2[3] = Y2[2] + α1gŨ22 +
α2g̃2h

h̃1

Ũ12 (9.17)

Since the α2h dimension is already jammed, the first helper does not create a new

irrational dimension. Hence, it does not hurt its own receiver. However, it creates a

new jamming dimension α2g̃2h

h̃1
at the second receiver, which decreases the resultant

s.d.o.f. From the symmetry, the second helper applies the same strategy and hence

the resulting s.d.o.f. is di(3) = 2/5 as in Fig. 9.4. Note that, neither of the helpers can

hold back its original jamming signal (i.e., each helper should append its previous

signalling with new jamming signals), because if not, its previous message-carrying

signals are compromised.
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Ũ11Ũ21

V22 V12 V11
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Figure 9.4: BCCM frame k = 3.

9.2.2.4 For General kth Frame

If k is odd, the helpers produce one extra jamming component aligned with the

last generated jamming signal of the other helper. If k is even, the transmitter

makes use of this jamming signal and provides two extra secure signals, achieving

the maximum possible s.d.o.f. (di(k) = 1/2, k is even).

9.2.3 Calculation of the Secure Degrees of Freedom

To calculate the s.d.o.f., we need the following lemma.

Lemma 9.1 If every message-carrying signal is protected by a cooperative jamming

signal, then the s.d.o.f. is given by

di(k) =
Jk
Lk

(9.18)
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where Jk is the number of irrational dimensions needed to receive the message-

carrying signal of user i at the kth frame Vi[k] = [Vi1, Vi2, . . . ViJk ]
T and Lk is the

total number of irrational dimensions.

Proof: We give only a sketch of a proof here as it follows standard arguments.

At every encoding frame, the transmitter transmits PAM signals with parameters

Qk = P
1−δ

2(Lk+δ) and ak = γP
1
2/Qk. This satisfies the power constraint and ensures

that the probability of error goes to zero as P →∞. From [70], the following rates

are achievable for the BCCM,

R1[k] ≥ I(V1[k];Y1[k])− I(V1[k];Y2[k]|V2[k]) (9.19)

By techniques similar to [78], we calculate I(V1[k];Y1[k]) ≥ Jk(1−δ)
Lk+δ

(
1
2

logP
)

+

o(logP ), while the leakage rate is upper bounded by o(logP ), as every message-

carrying signal is protected by CJ signal. Taking limits concludes the proof. �

Theorem 9.1 For BCCM with combating helpers under the constraint of not de-

creasing the s.d.o.f. of their own receivers due to helper actions, the s.d.o.f. of each

user evolves as,

di(k) =





1/2, k even

k+1
2k+4

→ 1/2, k odd

(9.20)

I.e., the combating behaviour is asymptotically neutralized.

Proof: Using Lemma 9.1, we have di(k) = Jk
Lk

. We complete the proof by calculating

the dimensions Jk, Lk. We prove this by induction on k. For the base step k = 1,
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we have Jk = 1 and Lk = 3 which conforms with (9.20). For k = 2, we have Jk = 2

and Lk = 4 and hence di(k) = 1/2.

For the induction step, assume that k is odd and di(k − 2) = k−1
2k

. Then, in

the (k − 1)th frame, transmitter can always add extra 2 message-carrying signals

to have di(k − 1) = 1/2. Thus, Jk−1 = Jk−2 + 1 and Lk−1 = Lk−2 + 1. This is

because the transmitter uses the extra irrational dimension produced by jamming

in odd frames in its favor, hence it adds one extra dimension corresponding to the

new message-carrying signal. This results in the following simultaneous equations,

Jk−2

Lk−2

=
k − 1

2k
,

Jk−1

Lk−1

=
Jk−2 + 1

Lk−2 + 1
=

1

2
(9.21)

Solving these two equations gives Lk−2 = k and Jk−2 = (k−1)
2

. Then, Lk−1 = k+1 and

Jk−1 = k+1
2

. In the next frame transmission, each helper produces extra jamming

component aligned with already jammed dimension. This increases Lk by one at

the other receiver without changing Jk. Consequently, di(k) = Jk
Lk

=
k+1

2

k+2
= k+1

2k+4
,

which converges to 1/2. �

9.3 ICCM with Selfish Users

9.3.1 System Model and Assumptions

In ICCM, each transmitter has a message Wi picked from the message set Wi uni-

formly with rate Ri = 1
n

log |Wi| for i ∈ {1, 2}. Message Wi should be received

reliably by the ith receiver, while being kept secure from the jth receiver, i 6= j.
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Figure 9.5: ICCM with selfish users.

The system has an external helper with channel input Z. Inputs satisfy power con-

straints E[X2
i ] ≤ P and E[Z2] ≤ P . The ICCM model depicted in Fig. 9.5 is given

by,

Y1[k] = h11X1[k] + h21X2[k] + h31Z[k] +N1[k] (9.22)

Y2[k] = h12X1[k] + h22X2[k] + h32Z[k] +N2[k] (9.23)

where Yi[k] is the received signal at the ith receiver in the kth transmission frame,

hij is the channel gain from transmitter i = 1, 2, 3 (transmitter 3 is the helper) to

receiver j = 1, 2.

The users are selfish and malicious. User i maximizes the individual s.d.o.f. at

receiver Yi, while maximally hurting the second user. Formally, the ith user’s role
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is,

max di(k)− dj(k) (9.24)

where i 6= j, i, j ∈ {1, 2}. The role of the users here is less stringent than the BCCM

model, since in the ICCM model, we allow the users to hurt their own receivers if

they hurt the other receiver more. On the other hand, the system helper does not

take side of any of the users and maximizes the sum s.d.o.f. of the system,

max di(k) + dj(k) (9.25)

9.3.2 Achievable Scheme: Recursive Real Interference Alignment as

Extensive Form Game

Similar to the BCCM, we propose to use recursive interference alignment using PAM

constellation C(ak, Qk).

9.3.2.1 For Frame k = 0

All nodes perform the optimal selfless strategy as in [78]. The transmitted signals

are,

X1[0] =
h32

h12

V11, X2[0] =
h31

h21

V21, Z[0] = Ũ1 (9.26)
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Figure 9.6: ICCM frame k = 0. Pink circle and blue square denote user signals, and
the hatched squares denote jamming signals.

The received signals at both receivers are (as in Fig. 9.6),

Y1[0] =
h32h11

h12

V11 + h31(V21 + Ũ1) +N1 (9.27)

Y2[0] =
h31h22

h21

V21 + h32(V11 + Ũ1) +N2 (9.28)

which implies that the achievable s.d.o.f. di(0) = 1/2.

9.3.2.2 For Frame k = 1

User i maximizes di(1)−dj(1) assuming that user j keeps its strategy as in frame 0.

Each user prefers to jam the other user directly, even if it results in partial decrease

of its own s.d.o.f. (by creating extra dimension at its receiver), since in this case it

can drive the s.d.o.f. of the other user to zero and maximize the s.d.o.f. difference.

398



V11

N1

N2

U21

Ũ1
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Ũ1

U11 V21

V21V11

V21

U11

Figure 9.7: ICCM frame k = 1.

Thus,

X1[1] = X1[0] +
h31h22

h12h21

U11 (9.29)

X2[1] = X2[0] +
h32h11

h12h21

U21 (9.30)

Hence, the received signals in this case are,

Y1[1] =
h32h11

h12

(V11 + U21) + h31(V21 + Ũ1) +
h31h22h11

h12h21

U11 +N1 (9.31)

Y2[1] =
h31h22

h21

(V21 + U11) + h32(V11 + Ũ1) +
h32h12h22

h12h21

U11 +N2 (9.32)

which implies that all secure signals are jammed and communication is driven to

zero s.d.o.f. as in Fig. 9.7.
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9.3.2.3 For Frame k = 2

Both users know that their communication links are jammed during frame k = 1.

Therefore, the problem of maximizing the s.d.o.f. difference reduces to maximizing

s.d.o.f. of individual user. Since the s.d.o.f. of the other user is zero. Each user

benefits from the extra jamming dimension created by the other user to protect

extra message-carrying component. Moreover, the helper produces extra jamming

component in a new irrational dimension, which allows each user to produce extra

secure signal. Thus,

X1[2] = X1[1] +
α1h32

h12

V12 +
h32h11h22

h2
12h21

V13 (9.33)

X2[2] = X2[1] +
α1h31

h21

V22 +
h31h22h11

h2
21h12

V23 (9.34)

Z[2] = Z[1] + α1Ũ2 (9.35)

where α1 is irrational number independent from all channel gains. Hence, the re-

ceived signals are,

Y1[2] =Y1[1]+α1h31(V22+Ũ2)+
h31h22h11

h21h12

V23+
α1h32h11

h12

V12+
h32h

2
11h22

h2
12h21

V13 (9.36)

Y2[2] =Y2[1]+α1h32(V12+Ũ2)+
h32h11h22

h12h21

V13+
α1h31h22

h21

V22+
h31h22h11

h2
21h12

V23 (9.37)

Consequently, di(2) = 1/3 as shown in Fig. 9.8.
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Ũ2

Ũ2
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Figure 9.8: ICCM frame k = 2.

9.3.2.4 For General kth Frame

The s.d.o.f. differs whether k is odd/even. If k is odd, each user chooses to jam all

dimensions of the other user’s secure signals. This choice leads to di(k) = 0 for all

odd frames. If k is even, each user takes advantage of the generated jamming by

the other user plus extra jamming signal from the system helper to protect more

signals.

9.3.3 Calculation of the Secure Degrees of Freedom

Theorem 9.2 For the ICCM with selfish users in the presence of a system helper,

assuming that users maximize the s.d.o.f. difference for every transmission frame,

the s.d.o.f. evolves as

di(k) =





0, k odd

2
k+4
→ 0, k even

(9.38)
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I.e., selfishness eventually precludes secure communication.

Proof: From [70], the rates given in (9.19) are achievable for the ICCM. Then, from

Lemma 9.1, we have di(k) = Jk
Lk

. Next, we count Jk = k+2
2

, when k is even. This

follows by induction: For k = 1, the number of secure dimensions is 1. Now, assume

that the relation holds for any even k− 2. Then, Jk−2 = k
2
. Then, since user i jams

all secure dimensions of user j in frame k − 1, it creates k
2

new dimensions. These

dimensions are used by user i in frame k to protect k
2

new secure signals. The helper

produces extra jamming component allowing protection of one extra signals. Then,

Jk = k
2

+ 1 = k+2
2

.

We use this result in proving s.d.o.f. by induction: For k = 0, J0 = 1 and

L0 = 2, which leads to di(0) = 1/2. For k = 1, J1 = 0 and L1 = 3, which leads

to di(1) = 0. Now, assume that k is even and expression (9.38) is true, then,

di(k − 2) = 2
k+2

. Then, from above, we have Jk−2 = k
2
. Hence, Lk−2 = k(k+2)

4
. The

total dimensions Lk at any receiver is increased over the k − 2 frame by 2Jk, since

the increase is caused by the new secure dimensions Jk for the two users which are

symmetric. Therefore, the s.d.o.f. for even k is

di(k) =
Jk
Lk

=
Jk

Lk−2 + 2Jk
=

2

k + 4
(9.39)

If k is odd, users make s.d.o.f. zero, completing the proof. �

Remark 9.1 Although the previous channel models are different, they have critical

similarities: In both models there is a central node, transmitter in BCCM and helper
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Figure 9.9: Optimal achievable scheme for a K = 4 user MAC-WTC.

in ICCM, which altruistically want to maximize the sum s.d.o.f., however, transmit-

ter in BCCM can send useful signals, but helper ICCM can only jam. In both models

there are two adversarial/selfish transmitters, helpers in BCCM and users in ICCM,

however, helpers in BCCM can only jam, but users in ICCM can send useful signals

and/or jam. We observe that this difference in roles drives systems to opposite end

results of full s.d.o.f. in BCCM and zero s.d.o.f. in ICCM.

9.4 Multiple Access Wiretap Channel with Deviating Users

9.4.1 System Model and Assumptions

The K-user Gaussian MAC-WTC is given by (see Fig. 9.9),

Y1 =
K∑

i=1

hiXi +N1 (9.40)

Y2 =
K∑

i=1

giXi +N2 (9.41)
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where Y1, Y2 are the channel outputs at the legitimate receiver and the eavesdropper,

respectively, hi, gi are the channel gains from user i to the receiver and the eaves-

dropper, respectively. User i has a message Wi picked uniformly from the message

setWi, with a rate Ri = 1
n

log |Wi|, and sends it in n channel uses using Xn
i reliably

and securely, i.e.,

P(ŴK
1 6= WK

1 ) ≤ ε,
1

n
I(WK

1 ;Y n
2 ) ≤ ε (9.42)

where WK
1 = (W1, . . . ,WK), and ŴK

1 = (Ŵ1, . . . , ŴK) are the estimates of the mes-

sages at the legitimate receiver. The transmitters are subject to power constraints

E[X2
i ] ≤ P . The sum s.d.o.f. is given by ds = limP→∞

∑K
i=1 Ri

1
2

logP
.

In the second part of the chapter, we consider a severe form of deviation

where one user transmits intentional jamming signals. To distinguish that user and

its jamming signal, we denote its channel input as Z, which also is subject to the

power constraint E[Z2] ≤ P , and we designate it as the Kth user without loss of

generality, see Fig. 9.13. The malicious user and the remaining users respond to

each other in multiple coding frames. The channel inputs/outputs for this model in

frame k are:

Y1[k] =
K−1∑

i=1

hiXi[k] + h̃Z[k] +N1[k] (9.43)

Y2[k] =
K−1∑

i=1

giXi[k] + g̃Z[k] +N2[k] (9.44)

where h̃, g̃ are the channel gains from the malicious user to the legitimate receiver
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Figure 9.10: The remaining users keep their originally optimum schemes.

and the eavesdropper, respectively.

9.4.2 S.d.o.f. When Remaining Users Do Not Respond

Consider that M users have deviated from the optimum strategy in [78] (see Fig. 9.9)

by not sending cooperative jamming signals and that the remaining users have kept

their originally optimum strategies, i.e., have not responded to the deviating users

(see Fig. 9.10). That is, the user signals are [78],

Xi =





∑K
j=1,j 6=i

gj
gihj

Vij + 1
hi
Ui, i = 1, . . . , K −M

∑K
j=1,j 6=i

gj
gihj

Vij, i = K −M + 1, . . . , K

(9.45)

where Vij, Ui are picked uniformly from PAM constellation set C(a,Q) [78]. The

constants a,Q are chosen as [78]

Q = P
1−δ

2K(K−1)+1+δ , a = γ
P 1/2

Q
(9.46)
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Consequently, the received signals are (see Fig. 9.10),

Y1 =
K∑

i=1

K∑

j=1,j 6=i

gjhi
gjhj

Vij +
K−M∑

k=1

Uk +N1 (9.47)

Y2 =
K∑

i=1

K∑

j=1,j 6=i

gj
hj
Vij +

K−M∑

j=1

gj
hj
Uj +N2 (9.48)

=
K−M∑

j=1

gj
hj

(
Uj +

K∑

i=1,i 6=j
Vij

)
+

K∑

j=K−M+1

K∑

i=1,i 6=j

gj
hj
Vij +N2 (9.49)

Let V = {Vij : i, j = 1, . . . K, i 6= j}. From [78, 80], the following secure rates

are achievable,
K∑

i=1

Ri ≥ I(V;Y1)− I(V;Y2) (9.50)

For the first term I(V;Y1): we note that the components of vector V are received

in different rational dimensions, and hence we have (2Q + 1)K(K−1) separable con-

stellation points, while the cooperative jamming signal components are aligned in

the same rational dimension, i.e., (2(K−M)Q+ 1) constellation points. From data

processing and Fano’s inequalities,

I(V;Y1) ≥ I(V; V̂) = H(V)−H(V|V̂) (9.51)

≥ [1− exp(ηγP
δ)] log(2Q+ 1)K(K−1) − 1 (9.52)

=
K(K − 1)(1− δ)
K(K − 1) + 1 + δ

· 1

2
logP + o(logP ) (9.53)

For the second term I(V;Y2): we note that we have K −M dimensions, in which

message-carrying signals are aligned with cooperative jamming signals, while M

dimensions lack cooperative jamming signals, i.e., we have (2KQ+ 1)K−M · (2(K −
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1)Q+ 1)M constellation points. Hence,

I(V;Y2) ≤H(Y2 −N2)−H(Y2 −N2|V) (9.54)

≤ log(2KQ+ 1)K−M(2(K − 1)Q+ 1)M)− log(2Q+ 1)K−M (9.55)

=(K −M) log
2KQ+ 1

2Q+ 1
+M log(2(K − 1)Q+ 1) (9.56)

≤(K −M) logK +
M(1− δ)

K(K − 1) + 1 + δ
· 1

2
logP + o(logP ) (9.57)

=
M(1− δ)

K(K − 1) + 1 + δ
· 1

2
logP + o(logP ) (9.58)

Substituting (9.53) and (9.58) into (9.50), and taking the limit as P → ∞, the

achievable sum s.d.o.f. is,

ds ≥
K(K − 1)−M
K(K − 1) + 1

(9.59)

That is, the sum s.d.o.f. decreases by M
K(K−1)+1

from the optimal in [78]. This

affects all users, including the deviating users, hence they do not benefit from their

deviation.

9.4.3 S.d.o.f. When Remaining Users Respond

In this section, we consider two achievable schemes resulting from two different

responses of the remaining users.

9.4.3.1 Reducing the Secure Rate for Zero Leakage Rate

In this achievable scheme, all users decrease their secure rates, i.e., decrease the

number of message-carrying signal components to ensure that all of them are aligned
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with cooperative jamming signals. Specifically, the first K − M users send K −

M − 1 message-carrying signals and 1 cooperative jamming signal, while the rest

of the users, i.e., the deviating users, send K − M message-carrying signals and

no cooperative jamming signals, see Fig. 9.11. Note that the deviating users are

motivated to decrease their message-carrying signals from K − 1 to K − M , as

otherwise, some of their message-carrying signals would not be protected. The

transmitted signals are,

Xi =





∑K−M
j=1,j 6=i

gj
gihj

Vij + 1
hi
Ui, i = 1, . . . , K −M

∑K−M
j=1

gj
gihj

Vij, i = K −M + 1, . . . , K

(9.60)

Consequently, the received signals are (see Fig. 9.11),

Y1 =
K−M∑

i=1

K−M∑

j=1,j 6=i

gjhi
gjhj

Vij +
K∑

i=K−M+1

K−M∑

j=1

gjhi
gjhj

Vij +
K−M∑

k=1

Uk +N1 (9.61)

Y2 =
K−M∑

i=1

K−M∑

j=1,j 6=i

gj
hj
Vij +

K−M∑

i=K−M+1

K−M∑

j=1

gj
hj
Vij +

K−M∑

j=1

gj
hj
Uj +N2 (9.62)

=
K−M∑

j=1

gj
hj

(
Uj +

K−M∑

i=1,i 6=j
Vij +

K∑

i=K−M+1

Vij

)
+N2 (9.63)

Let V = {Vij : i = 1, . . . K, j = 1, . . . , K −M, i 6= j}. We evaluate the secrecy

rates using (9.50), after choosing,

Q = P
1−δ

2(K−M)(K−1)+1+δ , a = γ
P 1/2

Q
(9.64)

The components of V are received in different dimensions, and hence we have (2Q+
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Figure 9.11: All users reduce rates to have zero leakage s.d.o.f.

1)(K−M)(K−M−1)+M(K−M) = (2Q+1)(K−M)(K−1) separable constellation points, while

the cooperative jamming signals are aligned in the same dimension, i.e., (2(K −

M)Q+ 1) constellation points. Thus,

I(V;Y1) ≥ I(V; V̂) (9.65)

=
(K −M)(K − 1)(1− δ)
(K −M)(K − 1) + 1 + δ

· 1

2
logP + o(logP ) (9.66)

Since all message-carrying signals are jammed by cooperative jamming signals, we

have K − M dimensions with (2KQ + 1)(K−M) overlapping constellation points.

Thus,

I(V;Y2) ≤H(Y2 −N2)−H(Y2 −N2|V) (9.67)

=H

(
K−M∑

j=1

gj
hj

(
Uj +

K−M∑

i=1,i 6=j
Vij +

K∑

i=K−M+1

Vij

))
−H

(
K−M∑

j=1

gj
hj
Uj

)
(9.68)

=(K −M) log
2KQ+ 1

2Q+ 1
(9.69)

≤(K −M) logK (9.70)
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Substituting (9.66) and (9.70) into (9.50), and taking the limit as P → ∞, the

achievable sum s.d.o.f. is,

ds ≥
(K −M)(K − 1)

(K −M)(K − 1) + 1
(9.71)

The resultant sum s.d.o.f. is less than the optimal in [78]. However, interestingly,

the individual s.d.o.f. of each deviating user is K−M
(K−M)(K−1)+1

, which is larger than

its s.d.o.f. without deviation K−1
K(K−1)+1

, so long as M ≤ K − 1 + 1
K

, i.e., if at least

one user sticks to the optimal strategy in [78].

9.4.3.2 Reducing the Leakage to a Single Dimension

In this achievable scheme, we allow one rational dimension to be leaked. This

dimension is not secured by a cooperative jamming signal. This results in the

ability of injecting an extra message-carrying signal component for each user. All

these extra signals are aligned in the same rational dimension at the eavesdropper.

The transmitted signals are (see Fig. 9.12),

Xi =





∑K−M
j=1,j 6=i

gj
gihj

Vij + α
hi
Vi0 + 1

hi
Ui, i = 1, . . . , K−M

∑K−M
j=1

gj
gihj

Vij + α
hi
Vi0, i = K −M + 1, . . . , K

(9.72)

where α is rationally independent from all channel gains. The received signals are

shown in Fig. 9.12. By similar steps, we have the following s.d.o.f. for this scheme,

ds ≥
(K −M)2 +M(K −M + 1)− 1

(K −M)2 +M(K −M + 1) + 1
(9.73)
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Figure 9.12: All users reduce the leakage dimension to 1.

Although the sum s.d.o.f. in this case is smaller than in (9.71), the individual

s.d.o.f. of a well-behaving user is higher and a deviating user is lower than in (9.71).

9.4.4 Malicious Deviation: Intentional Jamming

In this section, we consider a more severe form of deviation, where a user (say

the Kth user) sends intentional jamming signals. The deviating (malicious) user is

restricted to use structured signals. In this section, we show that, when the malicious

user acts, it can drive the sum s.d.o.f. to zero. However, when the remaining users

respond, the sum s.d.o.f. is raised to ds = (K−1)2

(K−1)2+1
, which is the sum s.d.o.f. of a

K − 1 user MAC-WTC with an external altruistic helper.
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9.4.4.1 When the Jammer Responds to the Users

In any encoding frame, each user sends its message-carrying signals Vij on N ratio-

nally independent dimensions αij as,

Xi[k] =
N∑

j=1

αijVij (9.74)

Then, the jammer designs structured jamming signals Ũij as a response to users’

signals as,

Z[k] =
K−1∑

i=1

N∑

j=1

αijhi

h̃
Ũij (9.75)

Consequently, the received signal at the legitimate receiver is,

Y1[k] =
K−1∑

i=1

N∑

j=1

hiαij(Vij + Ũij) +N1[k] (9.76)

Hence, each message-carrying signal is aligned with a jamming signal. Let V[k] =

[Vij, i = 1, . . . , K − 1, j = 1, . . . , N ]T to be vectorization of all secure signal compo-

nents. Then, the secure rate is upper bounded as,

K−1∑

i=1

Ri ≤ I(V[k];Y1[k]−N1[k]) (9.77)

=
K−1∑

i=1

N∑

j=1

H(Vij + Ũij)−H(Ũij) (9.78)

≤
K−1∑

i=1

N∑

j=1

log(4Q+ 1)− log(2Q+ 1) (9.79)

≤ N(K − 1) = o(logP ) (9.80)
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Hence ds = 0, i.e., whenever the jammer knows the signalling scheme of the users,

it nulls the communication by jamming.

9.4.4.2 When the Users Respond to the Jammer

Since structured jamming signalling suffices to jam the system, the jammer sends

structured signals in N dimensions,

Z[k] =
N∑

j=1

αjŨj (9.81)

Users make use of the generated jamming signals to hide extra secure signals from

the eavesdropper. Users send,

Xi[k] =
N∑

j=1

K−1∑

l=1,l 6=i

αjh̃gl
gihi

Vijl +
N∑

j=1

αj g̃

gi
Vij0 +

N∑

j=1

αjh̃

hi
Uij (9.82)

where Vijl, Vij0 are the message-carrying signals which are protected by cooperative

jamming signals generated by other users, and the jamming signals generated by

the malicious user, respectively. Then, the received signal at receiver 1 is,

Y1[k] =
N∑

j=1

(
K−1∑

i=1

K−1∑

l=1,l 6=i

αjh̃glhi
gi

Vijl +
K−1∑

i=1

αj g̃hi
gi

Vij0 + αjh̃

(
Ũj +

K−1∑

i=1

Uij

))
+N1

(9.83)
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i.e., users’ jamming signals use the same dimensions as the external jammer to inject

extra cooperative jamming signals. The received signal at the eavesdropper is,

Y2[k] =
K−1∑

i=1

gi

[
N∑

j=1

K−1∑

l=1,l 6=i

αjh̃gl
gihi

Vijl +
N∑

j=1

αj g̃

gi
Vij0 +

N∑

j=1

αjh̃

hi
Uij

]
+ g̃

N∑

j=1

αjŨj +N2

(9.84)

=
N∑

j=1

[
αj g̃

(
K−1∑

i=1

Vij0 + Ũj

)
+

K−1∑

l=1

αjh̃gl
hl

(
Uij +

K−1∑

i=1,i 6=l
Vlji

)]
+N2 (9.85)

i.e., all message-carrying signals are protected from the eavesdropper, as in Fig. 9.13,

with K = 4, N = 1.

We note that the received signals at receiver Y1 consists of (2Q +

1)N(K−1)(K−2)+N(K−1)(2NKQ + 1) constellation points in N((K − 1)2 + 1) dimen-

sions. Each user is transmitting using PAM constellation C(a,Q). By choosing

Q = P
1−δ

2N((K−1)2+1)+δ and a = γP
1
2/Q, we have

I(V;Y1[k]) ≥ N(K − 1)2(1− δ)
N((K − 1)2 + 1) + δ

(
1

2
logP

)
+ o(logP ) (9.86)

Further, since every message-carrying signal is protected by a cooperative jamming

signal, I(V;Y2[k]) ≤ o(logP ). Thus, the achievable sum s.d.o.f. with one malicious

jammer when users respond is ds(k) = (K−1)2

(K−1)2+1
. Finally, in the Appendix, we deter-

mine the sum s.d.o.f. of a K-user MAC-WTC with M external altruistic helpers, as

a result on its own. We note that this ds(k) is in fact equal to the sum s.d.o.f. of a

K − 1 user MAC-WTC with 1 external helper, concluding that the users’ action to

the jammer is optimal, as they achieve the s.d.o.f. of the case of an altruistic helper
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Figure 9.13: A malicious jamming user: users’ response.

with a malicious jammer.

9.5 Conclusions

We introduced three new channel models, namely, BCCM with combating helpers,

ICCM with selfish users, and MAC-WTC with deviating users. These new models

aimed at studying the effects of selfishness and malicious behaviour on the secure rate

in networks. We investigated the achievable s.d.o.f. in these models. The presented

schemes are only achievable, new role-based converse arguments are needed.

For the BCCM with combating helpers, we formulated the problem as an

extensive-form game. We assumed that each helper wants to minimize the s.d.o.f. of

the other receiver without sacrificing the s.d.o.f. of its receiver, and analyzed schemes

that employs recursive real interference alignment. In this case, we showed that the

malicious behaviours of the combating helpers are neutralized and the s.d.o.f. of

both users converge to 1/2, as in the case of altruistic helpers.
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Next, For the ICCM with selfish users, we changed the objective function of

the users to maximizing the difference of the s.d.o.f. between the two users. By

similar analysis to BCCM, we showed that the selfishness precludes any secure

communication, and the s.d.o.f. of two users converge to zero.

Finally, for the MAC-WTC with deviating users, we considered two types of

deviation: First, in the case when some of the users stopped transmitting coop-

erative jamming signals as in the optimal scheme, we evaluated the corresponding

s.d.o.f. and proposed counter-strategies to respond to the deviation. Second, we

investigated an extreme form of deviation, where a user sends intentional jamming

signals. We showed that although a deviating user can drive the sum s.d.o.f. to

zero, the jamming signals can be exploited as cooperative jamming signals against

the eavesdropper to achieve an optimum s.d.o.f.

9.6 Appendix: K-User MAC-WTC with M External Helpers

Theorem 9.3 The s.d.o.f. of the K-user Gaussian MAC-WTC with M-external

helpers is given by ds = K(K+M−1)
K(K+M−1)+1

.

Proof: We give only a sketch of a proof as it follows standard arguments. For the

achievability, each user sends K +M − 1 message-carrying signals and one cooper-

ative jamming signal to secure the other users. Each helper sends one cooperative

jamming signal. The cooperative jamming signals are aligned in the same rational

dimension at the receiver.

For the converse, we rely on the techniques in [78]. First, we have the following
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upper bound which represents the secrecy penalty due to the secrecy constraint on

the eavesdropper,

n

K∑

i=1

Ri ≤
K∑

l=2

h(X̃l) +
M∑

j=1

h(Z̃j) + nc1 (9.87)

where X̃i, Z̃j are the perturbed inputs of user i and helper j, respectively. Next, we

have the role of the external helper(s),

M∑

j=1

h(Z̃j) ≤Mh(Y1)− nM
K∑

i=1

Ri + nc2 (9.88)

By considering the rates of all users except one for the K − 1 users, we have role of

the internal helper(s),

K∑

l=2

h(X̃l) ≤ (K − 1)h(Y1)− n
K∑

l=2

∑

i 6=l
Ri + nc3 (9.89)

We substitute (9.88) and (9.89) in (9.87) to have,

n
(
R1 + (M +K − 1)

K∑

i=1

Ri

)
≤ (M +K − 1)h(Y1) + nc4 (9.90)

We have written (9.87) by eliminating the first user’s channel input, hence the

summation starting at i = 2. This inequality holds when any other user’s channel

input is chosen. Writing (9.87) for all K users, and adding the K corresponding

bounds,

n(K(K +M − 1) + 1)
K∑

i=1

Ri

417



≤ K(K +M − 1)
(n

2
logP

)
+ nc5 (9.91)

Taking the limit as P →∞, we have ds ≤ K(K+M−1)
K(K+M−1)+1

. �

Note that this result is related to the s.d.o.f. region result in [82] for the K+M

user MAC-WTC, when we focus on the hyperplane corresponding to zero s.d.o.f. for

M of the users; these M users essentially serve as helpers.
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CHAPTER 10

MIMO Wiretap Channel under Receiver Side Power Con-

straints

10.1 Introduction

In this chapter, we consider the MIMO wiretap channel under a minimum receiver-

side power constraint in addition to the usual maximum transmitter-side power

constraint. This problem is motivated by energy harvesting communications with

wireless energy transfer, where an added goal is to deliver a minimum amount of

energy to a receiver in addition to delivering secure data to another receiver. In this

chapter, we characterize the exact secrecy capacity of the MIMO wiretap channel

under transmitter and receiver-side power constraints. We first show that solving

this problem is equivalent to solving the secrecy capacity of the wiretap channel un-

der a double-sided correlation matrix constraint on the channel input. We show the

converse by extending the channel enhancement technique to our case. We present

two achievable schemes that achieve the secrecy capacity: the first achievable scheme

uses a Gaussian codebook with a fixed mean, and the second achievable scheme uses

artificial noise (or cooperative jamming) together with a Gaussian codebook. The
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role of the mean or the artificial noise is to enable energy transfer without sacrificing

from the secure rate. This is the first instance of a channel model where either the

use of a mean signal or the use of channel prefixing via artificial noise is strictly

necessary for the MIMO wiretap channel. We then extend our work to consider a

maximum receiver-side power constraint instead of a minimum receiver-side power

constraint. This problem is motivated by cognitive radio applications, where an

added goal is to decrease the received signal energy (interference temperature) at a

receiver. We further extend our results to: requiring receiver-side power constraints

at both receivers; considering secrecy constraints at both receivers to study broad-

cast channels with confidential messages; and removing the secrecy constraints to

study the classical broadcast channel.

10.2 System Model, Preliminaries and the Main Result

The MIMO wiretap channel with Nt antennas at the transmitter, Nr antennas at the

legitimate receiver and Ne antennas at the eavesdropper is given by (see Fig. 10.1),

Yi = HXi + W1,i (10.1)

Zi = GXi + W2,i (10.2)

where Xi ∈ RNt is the channel input, Yi ∈ RNr is the legitimate receiver’s channel

output, and Zi ∈ RNe is the eavesdropper’s channel output at channel use i; W1,i

and W2,i are independent Gaussian random vectors N (0, I). The channel matrices

of legitimate receiver H and the eavesdropper G are real-valued matrices of dimen-
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tr(ZZT ) ≥ E

P [Ŵ 6= W ] ≤ ǫ

Ŵ

tr(XXT ) ≤ P
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I(W ;Zn) → 0

Bob

Y

Figure 10.1: Gaussian MIMO wiretap channel with receiver-side power constraint.

sions Nr×Nt and Ne×Nt, respectively, and are fixed and known to all entities. The

transmitter encodes a message W picked from a discrete message set W to a code-

word Xn over n channel uses via a stochastic encoder f : W → Xn. The channel

input is constrained by the usual maximum average power constraint [47], [128]:

1

n

n∑

i=1

tr(XiX
T
i ) ≤ P (10.3)

In this chapter, we consider minimum and maximum power constraints at the

receivers. In the initial part of the chapter, we consider a minimum power constraint

at the eavesdropper only as:

1

n

n∑

i=1

tr(ZiZ
T
i ) ≥ E (10.4)

As usual, see [47, 128], the actual power constraints in (10.3) and (10.4) will be

reflected in the single-letter capacity expressions in the sequel as expectations, i.e.,
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tr(E[XXT ]) ≤ P and tr(E[ZZT ]) ≥ E. In addition, for all εn > 0, we have the

following asymptotic reliability and secrecy constraints on W based on n-length

observations Yn,Zn at the receiver and the eavesdropper, respectively:

P[Ŵ 6= W ] ≤ εn, lim
n→∞

1

n
I(W ; Zn) = 0 (10.5)

where εn → 0 as n→∞, and Ŵ = φ(Yn) is the estimate of the legitimate receiver

of the transmitted message W based on Yn by using a decoder φ(·).

In this case, we have an achievable rate Rs(E,P,H,G) = limn→∞
1
n

log |W| if

there exists a code, i.e., a codebook and (f, φ) pair such that constraints (10.3)-(10.5)

are satisfied. The secrecy capacity C(E,P,H,G) = sup R(E,P,H,G), i.e., the

supremum of all achievable rates. Although, we will determine the secrecy capacity

under the maximum transmitter-side power constraint in (10.3) and the minimum

receiver-side power constraint in (10.4), we initially characterize C(S1,S2,H,G),

the secrecy capacity, under a general double-sided correlation matrix constraint :

S1 � Q � S2 (10.6)

where Q = E[XXT ] is the channel input correlation matrix, and S1 � S2 are

given and fixed positive semi-definite (PSD) matrices, where � denotes the partial

ordering of PSD matrices. We will show in a similar way to [102, Section II.B] that

the secrecy capacity with power constraints of (10.3)-(10.4) can be obtained from the

secrecy capacity with the more general double-sided correlation matrix constraint
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in (10.6) by maximizing this secrecy capacity over all correlation matrices S1 � S2

that lie in the compact set SPE:

SPE = {S � 0 : tr(S) ≤ P, tr(GSGT ) ≥ Ẽ} (10.7)

where Ẽ = E − Ne. We evaluate the secrecy capacity based on Csiszar-Korner

secrecy capacity expression [67]

Cs = max
V→X→Y,Z

I(V ; Y)− I(V ; Z) (10.8)

where V carries the message signal and X is the channel input. The maximization

is over all jointly distributed (V,X) that satisfy the Markov chain V → X → Y,Z

and the constraints (10.3), (10.4). Note that although Csiszar-Korner expression

is initially given for discrete alphabets, it can be directly extended to alphabets

other than discrete, by including the appropriate cost function in the maximization

problem; see remarks in [67, Section VI]. This extension can be done via discrete

approximations in [129, Chapter 3] and [130, Chapter 7].

The main result of this chapter is the exact characterization of the secrecy

capacity of the MIMO wiretap channel under the maximum transmitter-side power

constraint in (10.3) and the minimum receiver-side power constraint in (10.4). This

result is stated in Theorem 10.1 below. We dedicate Section 10.3 for the achievability

proof and Section 10.4 for the converse proof of this theorem. In Section 10.5, we

extend this basic proof technique to the cases of: minimum receiver-side power
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constraints at both receivers; maximum receiver-side power constraints; no secrecy

constraints (classical BC); and double-sided secrecy constraints (BCCM).

Theorem 10.1 The secrecy capacity of a MIMO wiretap channel with a

transmitter-side power constraint P and a receiver-side power constraint E,

C(E,P,H,G), is given as

C(E,P ,H,G)

= max
Q�0

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q + µµT ) ≤ P

tr(G(Q + µµT )GT ) ≥ Ẽ (10.9)

where Ẽ = E −Ne. This secrecy capacity is achieved by X ∼ N (µ,Q), i.e., with a

mean but no channel prefixing. Alternatively, the secrecy capacity, C(E,P,H,G),

is also given as

C(E,P ,H,G)

= max
Q1,Q2�0

1

2
log
|I + H(Q1 + Q2)HT |
|I + HQ2HT |

− 1

2
log
|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ (10.10)

where X = V + U, with jointly Gaussian V ∼ N (0,Q1) and U ∼ N (0,Q2),
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and V,U are independent, i.e., with Gaussian signalling with Gaussian channel

prefixing.

10.3 Achievability Schemes

In this section, we provide two coding schemes that achieve the secrecy capacity

of the MIMO wiretap channel with transmitter and receiver-side power constraints

given in Theorem 10.1.

10.3.1 Gaussian Coding with Fixed Mean

The first achievable scheme is Gaussian coding with fixed mean, i.e., X ∼ N (µ,Q1).

In this case, the fixed mean does not play a role in evaluating the secrecy capacity

except for consuming part of the overall correlation matrix and only provides the

required power level at the receiver side. Then, we choose V = X, i.e., no channel

prefixing. Hence, we have

C(S1,S2,H,G)

≥ max
Q1�0,µ

I(X; Y)− I(X; Z)

= max
Q1�0,µ

1

2
log |I + HQ1H

T | − 1

2
log |I + GQ1G

T |

s.t. S1 � Q1 + µµT � S2 (10.11)

In the converse proof, in place of µµT , we have a general positive semidefinite matrix

Q2. In order to have a matching feasible coding scheme, Q2 must be constrained
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to unit-rank correlation matrices, as it corresponds to the mean of the transmitted

signal. Although, the solution of Q2 is generally not unit-rank for arbitrary corre-

lation matrices S1,S2, we show in the following lemma that for the special case of a

maximum transmitter-side power constraint P and a minimum receiver-side power

constraint E, the solution is guaranteed to be of unit-rank, and hence the mean

based coding scheme is feasible.

Lemma 10.1 The coding scheme X ∼ N (V(Q∗2),Q∗1) is achievable for the wiretap

channel under the transmitter-side power constraint P and the receiver-side power

constraint E given that the matrix GTG has a unique maximum eigenvalue. The

secrecy rate is characterized by the following optimization problem:

max
Q1,Q2�0

1

2
log |I + HQ1H

T | − 1

2
log |I + GQ1G

T |

s.t. tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ (10.12)

where Q∗1,Q
∗
2 are the optimal correlation matrices for (10.12) and V(Q∗2) denotes

the unique eigenvector of matrix Q∗2 with a non-zero eigenvalue.

Proof: We note that Q2 does not appear in the objective function; it only appears

in the constraint set. Therefore, its only role is to enlarge the feasible set for Q1

subject to some power constraint P̃ , where P̃ ≤ P . Thus, Q2 must be chosen such

that, when the first constraint of (10.12) is fixed, it maximizes the feasible set for
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Q1 in the second constraint, i.e., Q2 must be the solution of

max
Q2�0

tr(GQ2G
T ) s.t. tr(Q2) = P̃ (10.13)

The eigenvector decomposition for Q2, which is symmetric, is

Q2 =
r∑

i=1

λiqiq
T
i (10.14)

where r, λi, qi are the rank, the ith eigenvalue and the corresponding orthonormal

eigenvector of Q2, respectively. Thus, we can write the constraint as tr(Q2) =

∑r
i=1 λi = P̃ . Moreover, the objective function can be written as

tr(GQ2G
T ) = tr

(
G

(
r∑

i=1

λiqiq
T
i

)
GT

)
(10.15)

=
r∑

i=1

λi‖Gqi‖2 (10.16)

Hence, the optimization problem in (10.13) can be written as

max
λi,qi

r∑

i=1

λi‖Gqi‖2 s.t.
r∑

i=1

λi = P̃ (10.17)

which is a linear program in λi. The optimum solution is λm = P̃ , and λi = 0 for

i 6= m, where

m = arg max
i
‖Gqi‖2 (10.18)
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Hence, the optimal solution for this problem is to beam-form all the available power

P̃ to the direction of the largest ‖Gqi‖2. This solution is unique if GTG has a unique

maximum eigenvalue. Otherwise a unit-rank solution for Q2 is not guaranteed. In

this case, Q2 = P̃qmqTm, i.e., it is unit-rank with eigenvector µ =
√
P̃qm, and the

problem is feasible. �

We remark that the same capacity expression in (10.12) can be realized by

letting X = V + U, where V ∼ N (0,Q1) is the message-carrying signal and U ∼

N (0,Q2) is the energy-carrying signal that is known causally at both Bob and Eve,

so that it can be cancelled prior to information decoding. We note that, with this

coding scheme any covariance matrix Q2 can be realized, and therefore Lemma 1 is

not needed with this coding scheme, i.e., that the converse and achievability match

for all S1,S2. However, if Q2 is optimized for this scheme as well for given P,E, then

the optimum Q2 is still unit-rank. If the problem is considered under covariance

constraints, as opposed to power constraints, unit-rank requirement of the mean

based scheme can be removed by sending known Gaussian signals instead, at the

cost of extra overhead of identifying U causally at Bob and Eve.

10.3.2 Gaussian Coding with Gaussian Artificial Noise

The second achievable scheme is Gaussian coding with Gaussian artificial noise. In

this case, we choose X = V + U, where V, U are independent and V ∼ N (0,Q1)

and U ∼ N (0,Q2). Here, V carries the message, X is the channel input, and

U is the artificial noise (or cooperative jamming [111]) signal. In this case, we use
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channel prefixing, hence V 6= X. The extra randomness U is sent by the transmitter

to provide extra noise floor at both receivers, and confuses the eavesdropper. The

added significance of this artificial noise in our problem is to provide a suitable level

of received power at the receiver, i.e., we utilize the artificial noise as a source of

power. In this case, the achievable secrecy rate satisfies

C(S1,S2,H,G) ≥ max
Q1,Q2�0

I(V; Y)− I(V; Z)

= max
Q1,Q2�0

1

2
log
|I + H(Q1 + Q2)HT |
|I + HQ2HT |

− 1

2
log
|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. S1 � Q1 + Q2 � S2 (10.19)

10.4 Converse Proof

In this section, we prove the reverse implication using the channel enhancement

technique [100,102]. We will consider the case of S2 � S1 � 0 and the aligned MIMO

setting which means that the channel matrices are square and invertible. The general

MIMO case follows directly from the limiting arguments in [100], as the additional

receiver-side power constraint is irrelevant in the limit. The idea of this limiting

argument is to perform singular-value decomposition of the perturbed channels H̄, Ḡ

[100, Eqn. (37)]. Our result follows by taking the limit of this perturbation to zero.

The argument is introduced in [100, Section II.B] and used for example in [72,

Appendix B.2], [76, Section VII]. Therefore, we focus on the aligned case here.

The aligned MIMO model is obtained by multiplying the input-output relations
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(10.1)-(10.2) by the inverse of the channel matrices:

Ỹ = X + H−1W1 = X + W̃1 (10.20)

Z̃ = X + G−1W2 = X + W̃2 (10.21)

where W̃1 and W̃2 are the equivalent zero-mean Gaussian random vectors with

covariance matrices N1 = H−1H−T and N2 = G−1G−T , respectively.

10.4.1 Equivalence of a Double-Sided Correlation Matrix Constraint

For the MIMO broadcast and wiretap channels under a transmitter-side maximum

power constraint, references [100, 102] showed that it is sufficient to prove the con-

verse under a maximum correlation constraint on the channel input. We first note

here that in our case with maximum transmitter-side and minimum receiver-side

power constraints, a single correlation constraint on the channel input, i.e., Q � S,

is not sufficient. Next, we show the equivalence of solving our problem with a double-

sided correlation matrix constraint on the channel input, i.e., S1 � Q � S2. Then,

our problem can be solved in two stages: the inner problem finds the capacity under

fixed correlation matrices S1 and S2 constraints, and the outer problem finds the op-

timal S1,S2 ∈ SPE in (10.7). Finally, we modify the original channel enhancement

technique [100, 102] to prove the optimality of the achievable schemes presented in

the previous section.

We first note that solving the problem for Q � S, where S ∈ SPE is insuffi-

cient. Consider solving the secrecy capacity under maximum transmitter-side and
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minimum receiver-side power constraints in two stages, first, solving the problem

under a fixed correlation matrix S, and then choosing the optimal S ∈ SPE, i.e.,

max
S∈SPE

max
Q�S

Rs(Q,H,G) (10.22)

where Rs(Q,H,G) is the achievable secure rate upon using correlation matrix Q.

Since Q � S, we have GQGT � GSGT and hence tr(GQGT ) ≤ tr(GSGT ).

Then, although any S ∈ SPE satisfies the minimum receiver-side power constraint,

i.e., tr(GSGT ) ≥ Ẽ, the input correlation matrix Q is not guaranteed to satisfy

tr(GQGT ) ≥ Ẽ. Hence, the single correlation constraint is not sufficient for solving

problems involving minimum receiver-side power constraints.

Lemma 10.2 Since SPE is a compact set of PSD matrices, and C(S1,S2,H,G) is

continuous with respect to S2, we have

C(E,P,H,G) = max
S1,S2∈SPE ,S1�S2

C(S1,S2,H,G) (10.23)

Proof: We follow and extend the proof technique in [102, Lemma 1] to the case

of double-sided covariance matrices. We define the wiretap code C(n,S, R, ε) as

a codebook, where the codewords {Xn
i }2nR

i=1 are such that S = 1
2nR

∑2nR

i=1 Xn
i X

nT

i ,

and accompanying encoding and decoding functions (f, φ), such that P(φ(f(W )) 6=

W ) ≤ ε. The decoder φ can be taken as the maximum likelihood decoder.
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To see

C(E,P,H,G) ≥ max
S1,S2∈SPE ,S1�S2

C(S1,S2,H,G) (10.24)

we note that for any S1 � Q � S2 where S1,S2 ∈ SPE, we have Q ∈ SPE, i.e., every

Q in the feasible set of the optimization problem on the right hand side belongs to

the feasible set of the optimization problem C(E,P,H,G). Hence, C(E,P,H,G)

is at least as large as maxS1,S2∈SPE ,S1�S2 C(S1,S2,H,G).

To see

C(E,P,H,G) ≤ max
S1,S2∈SPE ,S1�S2

C(S1,S2,H,G) (10.25)

we should prove that C(E,P,H,G) = C(S1,S2,H,G) for some S1,S2 ∈ SPE [102].

If R = C(E,P,H,G) is achievable, then there exists an infinite sequence of codes

C(ni,S0i , R, εi), i = 1, . . . with rate R and decreasing probability of error εi → 0

as i → ∞. Choose S1 � S0i , ∀i and S1 ∈ SPE. We note that the choice of S1

is completely arbitrary, thus without loss of generality, we can choose it to be the

first element in the sequence, i.e., S01 . As SPE is compact [131,132], for any infinite

sequence of points in SPE, there must exist a sub-sequence that converges to a point

S0 ∈ SPE. Hence, for any arbitrary δ > 0, we can find an increasing subsequence

i(k) such that S1 � S0i(k)
� S0 + δI.

This implies that we can find a sequence of codes C(nk,S0 + δI, R, εk) with

S0 ∈ SPE, S0 � S1 achieving small probability of error. Therefore, for every δ > 0,
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we have R = C(S1,S0 + δI,H,G). Since C(S1,S0 + δI,H,G) is continuous, see

Appendix 10.9, with respect to its second argument, we have that every ε-ball around

R contains C(S1,S0,H,G), since for every ε > 0, there exists δ > 0 such that

C(S1,S0 + δI,H,G) − C(S1,S0,H,G) < ε as continuity asserts. Therefore R is

a limit point of C(S1,S0,H,G) and hence C(E,P,H,G) = C(S1,S0,H,G). This

limit point belongs to SPE since it is closed. �

10.4.2 Converse Proof for Gaussian Coding with Fixed Mean

First, we begin with writing the equivalent optimization problem corresponding to

the achievability scheme in the aligned MIMO case with Gaussian coding X ∼

N (V(Q∗2),Q∗1):

max
Q1,Q2�0

1

2
log
|Q1 + N1|
|N1|

− 1

2
log
|Q1 + N2|
|N2|

s.t. Q1 + Q2 � S1, Q1 + Q2 � S2 (10.26)

The Lagrangian of this optimization problem can be written as:

L = log
|Q1 + N2|
|N2|

− log
|Q1 + N1|
|N1|

− tr(Q1M1)− tr(Q2M2)

− tr((Q1 + Q2 − S1)M3) + tr((Q1 + Q2 − S2)M4) (10.27)
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where M1 � 0,M2 � 0,M3 � 0 and M4 � 0 are the Lagrange multipliers for each

constraint. The corresponding KKT complementary slackness conditions are:

Q∗1M1 = 0, Q∗2M2 = 0 (10.28)

(Q∗1 + Q∗2 − S1)M3 = 0 (10.29)

(S2 −Q∗1 −Q∗2)M4 = 0 (10.30)

and the KKT optimality conditions for Q∗1 and Q∗2 are:

(Q∗1 + N2)−1−(Q∗1 + N1)−1−M1 −M3 + M4 = 0 (10.31)

−M2 −M3 + M4 = 0 (10.32)

Now, using (10.31) and (10.32), we can construct an enhanced channel that can serve

as an upper bound for the original legitimate receiver’s channel, while the eaves-

dropper’s channel is degraded with respect to it. The covariance of the enhanced

channel is chosen as Ñ such that

(Q∗1 + N2)−1 + M2 = (Q∗1 + N1)−1 + M1 = (Q∗1 + Ñ)−1 (10.33)

Using this definition of the enhanced channel, we explore various characteristics of

Ñ.
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First, to prove the validity of the covariance matrix Ñ, we note that

Ñ = [(Q∗1 + N1)−1 + M1]−1 −Q∗1 (10.34)

= (I + N1M1)−1(Q∗1 + N1)−Q∗1 (10.35)

= (I + N1M1)−1[(Q∗1 + N1)− (I + N1M1)Q∗1] (10.36)

= (I + N1M1)−1N1 (10.37)

= (N−1
1 + M1)−1 � 0 (10.38)

and hence the covariance matrix of the constructed enhanced channel is positive

semi-definite, and therefore it is a feasible covariance matrix.

Next, we want to show that the constructed channel is enhanced with respect

to N1, i.e., N1 � Ñ. To show that we note from (10.37) that Ñ = (N−1
1 +M1)−1 and

hence, N1 � Ñ. Similarly by considering (Q∗1 + N2)−1 + M2 = (Q∗1 + Ñ)−1 we note

that N2 � Ñ. Hence, we conclude that the enhanced channel has better channel

conditions than the original legitimate user’s channel, therefore, the constructed

channel is an upper bound for the legitimate receiver. Moreover, the eavesdropper’s

channel is degraded with respect to the constructed channel. Consequently the

secrecy capacity of the enhanced channel is known. In other words, we have Ỹ =

X + W̃ such that W̃ ∼ N (0, Ñ) and X→ Ỹ → Y and X→ Ỹ → Z.

In order to have a meaningful upper bound, we need to show that the rate is

preserved between the original problem and the constructed channel. To show that,

435



we have

(Q∗1 + Ñ)−1Ñ = (Q∗1 + Ñ)−1(Ñ + Q∗1 −Q∗1) (10.39)

= I− (Q∗1 + Ñ)−1Q∗1 (10.40)

= I− [(Q∗1 + N1)−1 + M1]Q∗1 (10.41)

= I− (Q∗1 + N1)−1Q∗1 (10.42)

= (Q∗1 + N1)−1N1 (10.43)

where (10.41) follows from the definition of the enhanced channel and (10.42) follows

from the complementary slackness condition (10.28). Therefore, we have

|Ñ + Q∗1|
|Ñ|

=
|N1 + Q∗1|
|N1|

(10.44)

To show a similar rate preservation argument for the degraded channel N2,

we will need the following lemma.

Lemma 10.3 The optimal covariance matrix for the achievable scheme with Gaus-

sian signaling with a fixed mean Q∗1 satisfies (S2 −Q∗1)M2 = 0.

Proof: We return to the KKT conditions. Considering the correlation constraint,

three cases can possibly occur. The first case: the correlation constraint is satisfied

with equality, consequently S2−Q∗1 = Q∗2. In this case, (S2−Q∗1)M2 = Q∗2M2 = 0

from (10.28). The second case: the correlation constraint is strictly loose, i.e, Q1 +

Q2 ≺ S2. In this case, we can define a matrix ∆ = S2−Q∗1−Q∗2 � 0, and therefore
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∆ is a full-rank matrix. Thus, M4 = 0 and from (10.32), we have M2 = −M3. The

matrices M2, M3 are both positive semi-definite matrices. Therefore, we must have

M2 = M3 = 0. Finally, the third case: the correlation constraint is partially loose,

that is, we have ∆ = S2 − Q1 − Q2 � 0, hence ∆ is not a full-rank matrix. We

define Σ = S2−S1 � 0, i.e., S1 = S2−Σ. In this case, we sum the KKT conditions

(10.29) and (10.30) to obtain the following implications:

(Q∗1 + Q∗2)(M3 −M4)− S1M3 + S2M4 = 0 (10.45)

(Q∗1 + Q∗2)(M3 −M4)− S2M3 + ΣM3 + S2M4 = 0 (10.46)

(S2 −Q∗1 −Q∗2)(M4 −M3) = −ΣM3 (10.47)

(S2 −Q∗1 −Q∗2)M2 = −ΣM3 (10.48)

(S2 −Q∗1)M2 = −ΣM3 (10.49)

where (10.48) follows from (10.32), and (10.49) follows from (10.28). Since (S2 −

Q∗1)M2 � 0 and ΣM3 � 0, or at least (S2 − Q∗1)M2 and ΣM3 have the same

number of non-negative eigenvalues of M2 and M3, respectively [133], the only way

to satisfy (10.49) is to have all the eigenvalues of both matrices equal zero, i.e.,

(S2 −Q∗1)M2 = −ΣM3 = 0. Hence, we conclude that for all three cases we have

(S2 −Q∗1)M2 = 0 and this completes the proof of Lemma 10.3. �

Hence, using Lemma 10.3, we write:

(Ñ + S2)(Q∗1 + Ñ)−1
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= (S2 −Q∗1)(Q∗1 + Ñ)−1 + I (10.50)

= (S2 −Q∗1)[(Q∗1 + N2)−1 + M2] + I (10.51)

= (S2 −Q∗1)(Q∗1 + N2)−1 + I (10.52)

= [(N2 + S2)− (Q∗1 + N2)](Q∗1 + N2)−1 + I (10.53)

= (N2 + S2)(Q∗1 + N2)−1 (10.54)

where (10.51) follows from the definition of the enhanced channel (10.33), and

(10.52) follows from Lemma 10.3. Hence, we have:

|S2 + Ñ|
|S2 + N2|

=
|Q∗1 + Ñ|
|Q∗1 + N2|

(10.55)

We upper bound the secrecy capacity of the MIMO wiretap channel with

a receiver-side power constraint by the secrecy capacity of the enhanced channel.

Since S2 ∈ SPE, S2 satisfies the receiver power constraint for the enhanced channel.

Hence, the receiver constraint is valid with the upper bounding argument. The

secrecy capacity of the enhanced channel C̃s is given by

C̃s =
1

2
log
|S2 + Ñ|
|Ñ|

− 1

2
log
|S2 + N2|
|N2|

(10.56)

=
1

2
log
|S2 + Ñ|
|S2 + N2|

· |N2|
|Ñ|

(10.57)

=
1

2
log
|Q∗1 + Ñ|
|Q∗1 + N2|

· |N2|
|Ñ|

(10.58)

=
1

2
log
|Q∗1 + Ñ|
|Ñ|

− 1

2
log
|Q∗1 + N2|
|N2|

(10.59)
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=
1

2
log
|Q∗1 + N1|
|N1|

− 1

2
log
|Q∗1 + N2|
|N2|

(10.60)

= C(S1,S2,H,G) (10.61)

where (10.58) follows from (10.55), and (10.60) follows from (10.44), completing the

converse proof for the case of Gaussian signalling with a fixed mean.

10.4.3 Converse Proof for Gaussian Coding with Gaussian Artificial

Noise

In this section, we follow a similar channel enhancement technique as in Sec-

tion 10.4.2. The optimization problem corresponding to the Gaussian coding scheme

with artificial noise is:

max
Q1,Q2�0

1

2
log
|Q1 + Q2 + N1|
|Q2 + N1|

− 1

2
log
|Q1 + Q2 + N2|
|Q2 + N2|

s.t. Q1 + Q2 � S1, Q1 + Q2 � S2 (10.62)

The Lagrangian for this optimization problem is given by:

L = log
|Q1 + Q2 + N2|
|Q2 + N2|

− log
|Q1 + Q2 + N1|
|Q2 + N1|

− tr(Q1M1)− tr(Q2M2)

− tr((Q1 + Q2 − S1)M3) + tr((Q1 + Q2 − S2)M4) (10.63)

The complementary slackness conditions (10.28)-(10.30) are still the same due to the

same set of constraints for both problems (10.62) and (10.26). The KKT optimality
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condition for Q∗1 and Q∗2 are:

(Q∗1 + Q∗2 + N2)−1 − (Q∗1 + Q∗2 + N1)−1 −M1 −M3 + M4 = 0 (10.64)

(Q∗1 + Q∗2 + N2)−1 − (Q∗2 + N2)−1 − (Q∗1 + Q∗2 + N1)−1

+(Q∗2+N1)−1−M2−M3+M4 = 0 (10.65)

Using (10.64), we can write (10.65) as:

M1 − (Q∗2 + N2)−1 + (Q∗2 + N1)−1 −M2 = 0 (10.66)

In this case, we again construct an enhanced channel with similar steps as in Sec-

tion 10.4.2. The enhanced channel is constructed as:

(Q∗2 + N1)−1 + M1 = (Q∗2 + N2)−1 + M2 = (Q∗2 + Ñ)−1 (10.67)

which is the same as in the previous section. Therefore, it follows that Ñ � 0,

Ñ � N1, Ñ � N2. Similarly, we can prove that the rate is preserved for the

eavesdropper (as in the set of equations (10.39)-(10.44) with Q∗2 instead of Q∗1), i.e.,

|Ñ + Q∗2|
|Ñ|

=
|N2 + Q∗2|
|N2|

(10.68)

To prove the rate preservation for the legitimate receiver, we will need the following

lemma.
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Lemma 10.4 To achieve a positive secrecy rate using Gaussian coding with artifi-

cial noise, S2 must be fully used, i.e., S2 = Q∗1 + Q∗2, and the optimal covariance

matrix used for the artificial noise component, Q∗2, satisfies (S2 −Q∗2)M1 = 0.

Proof: We start by proving the first part of the lemma by contradiction. Assume

that a positive secrecy rate can be achieved using artificial noise, and S2 is partially

used. Then, we have two cases. The first case: ∆ = S2−Q∗1−Q∗2 � 0. Hence, ∆ is

a full-rank matrix, then M4 = 0. From (10.64), we can write (Q∗1 + Q∗2 + N1)−1 +

M1 + M3 = (Q∗1 + Q∗2 + N2)−1 and hence, (Q∗1 + Q∗2 + N1)−1 � (Q∗1 + Q∗2 + N2)−1,

which results in N2 � N1. This means that the legitimate channel is degraded

with respect to the eavesdropper channel, and hence, no positive secrecy rate can

be achieved. This contradicts our assumption. The second case: ∆ is not full-rank.

Due to the similarity of the complementary slackness conditions for the artificial

noise and the Gaussian coding with fixed mean settings, we have also (10.47), and

from (10.64), we have

M4 −M3 = (Q∗1 + Q∗2 + N1)−1 − (Q∗1 + Q∗2 + N2)−1 + M1 (10.69)

substituting this in (10.47), we have the following implications:

∆(Q∗1 + Q∗2 + N1)−1 −∆(Q∗1 + Q∗2 + N2)−1 + ∆M1 = −ΣM3 (10.70)

∆[(Q∗1 + Q∗2 + N2)−1 −∆(Q∗1 + Q∗2 + N1)−1 = ∆M1 + ΣM3 (10.71)
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Then, [(Q∗1+Q∗2+N2)−1−(Q∗1+Q∗2+N1)]−1 � 0 to have (10.71) hold true [134], and

then we have N2 � N1 as in the previous case, which also contradicts the assumption

of having a positive secrecy rate. Hence, Q∗1 + Q∗2 = S2. For the second part of

the lemma, we now have S2 − Q∗2 = Q∗1, and from the complementary slackness

condition Q∗1M1 = 0. Then, we conclude that (S2 − Q∗2)M1 = 0, completing the

proof of Lemma 10.4. �

Using Lemma 10.4, we can prove rate preservation for the legitimate receiver

as follows:

(Ñ + S2)(Q∗2 + Ñ)−1 = (S2 −Q∗2)(Q∗2 + Ñ)−1 + I (10.72)

= (S2 −Q∗2)[(Q∗2 + N1)−1 + M1] + I (10.73)

= (S2 −Q∗2)(Q∗2 + N1)−1 + I (10.74)

= [(N1 + S2)− (Q∗2 + N1)](Q∗2 + N1)−1 + I (10.75)

= (N1 + S2)(Q∗2 + N1)−1 (10.76)

where (10.73) follows from the definition of the enhanced channel (10.67), and

(10.74) follows from Lemma 10.4. Therefore, we have:

|S2 + Ñ|
|Q∗2 + Ñ|

=
|S2 + N1|
|Q∗2 + N1|

(10.77)

Hence, the secrecy capacity of the enhanced channel is given by:

C̃s =
1

2
log
|S2 + Ñ|
|Ñ|

− 1

2
log
|S2 + N2|
|N2|

(10.78)
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=
1

2
log
|S2 + Ñ|
|S2 + N2|

· |N2|
|Ñ|

(10.79)

=
1

2
log
|S2 + Ñ|
|S2 + N2|

· |Q
∗
2 + N2|
|Q∗2 + Ñ|

(10.80)

=
1

2
log
|S2 + Ñ|
|Q∗2 + Ñ|

· |Q
∗
2 + N2|

|S2 + N2|
(10.81)

=
1

2
log
|S2 + N1|
|Q∗2 + N1|

· |Q
∗
2 + N2|

|S2 + N2|
(10.82)

=
1

2
log
|S2 + N1|
|Q∗2 + N1|

− 1

2
log
|S2 + N2|
|Q∗2 + N2|

(10.83)

=
1

2
log
|Q∗1 + Q∗2 + N1|
|Q∗2 + N1|

− 1

2
log
|Q∗1 + Q∗2 + N2|
|Q∗2 + N2|

(10.84)

= C(S1,S2,H,G) (10.85)

where (10.80) follows from (10.68), (10.82) follows from (10.77), and (10.84) follows

from Q∗1+Q∗2 = S2, completing the converse proof for the case of Gaussian signalling

with Gaussian artificial noise.

10.5 Extensions to Related Channel Models

10.5.1 Gaussian MIMO Wiretap Channel Under Dual Minimum

Receiver-Side Power Constraints

In this section, we consider the case where we impose dual receiver-side minimum

power constraints, i.e., receiver-side power constraints both on the legitimate receiver

and the eavesdropper. Then, we have the following constraint in addition to the
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constraints in (10.3) and (10.4):

tr(E[YYT ]) ≥ E2 (10.86)

where E2 is the minimum power level that should be delivered to the legitimate

receiver. The following theorem characterizes the secrecy capacity of this model.

Theorem 10.2 The secrecy capacity of a MIMO wiretap channel with a

transmitter-side power constraint P and dual receiver-side power constraints E1, E2,

C(E1, E2, P,H,G), is given as

C(E1, E2, P,H,G) = max
Q�0,µ

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q + µµT ) ≤ P

tr(G(Q + µµT )GT ) ≥ Ẽ1

tr(H(Q + µµT )HT ) ≥ Ẽ2 (10.87)

where Ẽ1 = E1 − Ne, and Ẽ2 = E − Nr. This secrecy capacity is achieved

by X ∼ N (µ,Q), i.e., with a mean but no channel prefixing. Alternatively,

C(E1, E2, P,H,G) is also given as

C(E1, E2, P,H,G) max
Q1,Q2�0

1

2
log
|I + H(Q1 + Q2)HT |
|I + HQ2HT |

− 1

2
log
|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. tr(Q1 + Q2) ≤ P
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tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (10.88)

where X = V + U, with jointly Gaussian V ∼ N (0,Q1) and U ∼ N (0,Q2), where

U,V are independent, i.e., Gaussian signalling with Gaussian channel prefixing.

Proof: The proof relies on verifying that the double-sided correlation matrix con-

straint constructed in Section 10.4.1 is sufficient for this case also. First, we define

the set SPE1E2 as:

SPE1E2 = {S � 0 :tr(S) ≤ P, tr(GSGT ) ≥ Ẽ1, tr(HSHT ) ≥ Ẽ2} (10.89)

To show the direct implication

C(E1, E2, P,H,G) ≥ max
S1,S2∈SPE1E2

,S1�S2

C(S1,S2,H,G) (10.90)

we note that for any Q such that S1 � Q � S1 where S1,S2 ∈ SPE1E2 , we

have tr(Q) ≤ tr(S2) ≤ P , tr(GQGT ) ≥ tr(GS1G
T ) ≥ E1 and tr(HQHT ) ≥

tr(HS1H
T ) ≥ E2. Consequently, Q ∈ SPE1E2 , i.e., the feasible set under

S1,S2 ∈ SPE1E2 is a subset of the feasible set under P,E1, E2 constraints. Moreover,

SPE1E2 ⊆ SPE defined in Section 10.2, and hence SPE1E2 is also a compact set.

Hence the implication

C(E1, E2, P,H,G) ≤ max
S1,S2∈SPE1E2

,S1�S2

C(S1,S2,H,G) (10.91)
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can be proved by following the reverse implication (10.24) of the proof of Lemma 10.2

for the compact set SPE1E2 , we can show that:

C(E1, E2, P,H,G) = max
S1,S2∈SPE1E2

,S1�S2

C(S1,S2,H,G) (10.92)

Then, the inner problem under the dual receiver-side power constraints is identical

to its counterpart under a single receiver-side power constraint on the eavesdropper

side only. Consequently, achievability schemes of mean based and artificial noise

based signalling are optimal for the dual receiver-side minimum power constraints.

It only remains to show that the achievable rates with Gaussian signalling with

fixed mean match the converse, i.e., that when the covariance matrix representing

the mean is left unrestricted for converse purposes, at the optimal, it takes a unit-

rank so that it can be implemented with a mean vector in the achievability. That

is, we need to show that Lemma 10.1 extends to the current setting under P,E1, E2

constraints. To show this, as a generalization of (10.13), we need to solve:

max
Q2�0

α1tr(GQ2G
T ) + α2tr(HQ2H

T ) s.t. tr(Q2) = P̃ (10.93)

This optimization problem is equivalent to:

max
λi,qi

r∑

i=1

λi
(
α1‖Gqi‖2 + α2‖Hqi‖2

)
s.t.

r∑

i=1

λi = P̃ (10.94)
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which has a beam-forming optimal solution of assigning all P̃ to qm such that

m = arg max
i
α1‖Gqi‖2 + α2‖Hqi‖2 (10.95)

and hence the optimal Q2 is unit-rank and the mean-based signalling is feasible. �

10.5.2 Gaussian MIMO Wiretap Channel Under Maximum Receiver-

Side Power Constraints

In this section, we consider the MIMO wiretap channel under maximum receiver-

side power constraints. This generalizes Gastpar’s problem [107] to include a secrecy

requirement. In this case, we limit the interference at both receivers instead of

maintaining the received power levels at both receivers as in Section 10.2. Then, we

impose the following constraints together with (10.3):

tr(E[ZZT ]) ≤ E1, tr(E[YYT ]) ≤ E2 (10.96)

Theorem 10.3 The secrecy capacity of the MIMO wiretap channel with a

transmitter-side power constraint P and maximum receiver-side power constraints

E1, E2, C(E1, E2, P,H,G), is

max
Q�0

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q) ≤ P, tr(GQGT ) ≤ Ẽ1, tr(HQHT ) ≤ Ẽ2 (10.97)
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This secrecy capacity is achieved by X ∼ N (0,Q), i.e., neither mean or channel

prefixing is required.

Proof: Similar to the previous section, we construct a suitable correlation matrix

set S ′PE1E2
as:

S ′PE1E2
= {S � 0 :tr(S) ≤ P, tr(GSGT ) ≤ Ẽ1, tr(HSHT ) ≤ Ẽ2} (10.98)

Now, we show that, using a single-sided correlation matrix constraint Q � S is suf-

ficient for maximum receiver-side power constraints, unlike the double-sided corre-

lation constraint that was necessary for minimum receiver-side power constraints so

far. Since, for all Q � S, we have tr(Q) ≤ tr(S) ≤ P , tr(GQGT ) ≤ tr(GSGT ) ≤ Ẽ1

and tr(HQHT ) ≤ tr(HSHT ) ≤ Ẽ2, we thus have Q ∈ S ′PE1E2
. Moreover, the set

S ′PE1E2
is closed and bounded and hence compact. Consequently, we can find a

sequence of codes C(nk,S0 + δI, R, εk) with S0 ∈ S ′PE1E2
, achieving small probability

of error, that has a limit point of C(S0,H,G) and hence

C(E1, E2, P,H,G) = max
S∈S′PE1E2

C(S,H,G) (10.99)

Consequently, the inner problem under a correlation matrix constraint for the wire-

tap channel with maximum receiver-side power limitations is identical to the inner

problem for the classical wiretap channel without the extra maximum receiver-side

power constraints. Hence, the classical Gaussian coding with zero-mean and no

channel-prefixing is optimal. �
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10.5.3 Gaussian MIMO Broadcast Channel Under Minimum

Receiver-Side Power Constraints

In this section, we consider the MIMO BC with no secrecy constraints under mini-

mum receiver-side power constraints. In this setting, the transmitter is required

to communicate messages simultaneously and reliably with the largest possible

rate, and at the same time, deliver the minimum required powers to the receivers:

tr(E[ZZT ]) ≥ E1, tr(E[YYT ]) ≥ E2. The problem without the receiver-side con-

straints is solved by Weingarten et. al. [102]. The rate region is achieved using DPC

along with time sharing. We show in the following theorem that the DPC is optimal

even after imposing the receiver-side power constraints.

Theorem 10.4 The capacity region of a MIMO broadcast channel with a

transmitter-side power constraint P and minimum receiver-side power constraints

E1, E2, C(E1, E2, P,H,G), is given by the DPC region, which is the convex hull

of the union of two regions RDPC
1 and RDPC

2 , corresponding to the two orders of

encoding, given as:

RDPC
1 =

{
(R1, R2) : R1 ≤

1

2
log |I + HQ1H

T |, R2 ≤
1

2
log
|I + G(Q1 + Q2)GT |
|I + GQ1GT |

}

RDPC
2 =

{
(R1, R2) : R1 ≤

1

2
log
|I + H(Q1 + Q2)HT |
|I + HQ2HT | , R2 ≤

1

2
log |I + GQ2G

T |
}

(10.100)
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both of which subject to

tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (10.101)

Proof: We consider, without loss of generality, the region of rates achieved by

RDPC
1 . We first note that, due to the presence of the minimum receiver-side

power constraints, we need to consider a double-sided correlation matrix constraint

S1 � Q1 + Q2 � S2, for any fixed S1,S2 in SPE1E2 in (10.89). Following the original

channel enhancement proof of the aligned MIMO (not necessarily degraded) BC

(AMBC) in [102], it suffices to prove that under a double-sided correlation matrix

constraint S1 � Q1 + Q2 � S2, there exists an enhanced aligned degraded BC

(ADBC) such that for α1 ≤ α2, noise covariances of the enhanced channel satisfy

the covariance increment Ñ1 � Ñ2 and supporting hyperplane preservation.

First, the achievable DPC rates in the aligned case with the encoding order in

RDPC
1 are

max
Q1,Q2�0

α1 ·
1

2
log
|Q1 + N1|
|N1|

+ α2 ·
1

2
log
|Q1 + Q2 + N2|
|Q1 + N2|

s.t. Q1 + Q2 � S1, Q1 + Q2 � S2 (10.102)
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The Lagrangian for this problem is:

L =α1 ·
1

2
log
|Q1 + N1|
|N1|

+ α2 ·
1

2
log
|Q1 + Q2 + N2|
|Q1 + N2|

+ tr(Q1M1) + tr(Q2M2)

+ tr((Q1 + Q2 − S1)M3)− tr((Q1 + Q2 − S2)M4) (10.103)

The KKT optimality conditions for Q∗1,Q
∗
2 are:

α1

2
(Q∗1 + N1)−1 +

α2

2
(Q∗1 + Q∗2 + N2)−1

−α2

2
(Q∗1 + N2)−1 + M1 + M3 −M4 = 0 (10.104)

α2

2
(Q∗1 + Q∗2 + N2)−1 + M2 + M3 −M4 = 0 (10.105)

and the complementary slackness conditions are as in (10.28)-(10.30). From (10.105)

and (10.104), we have:

α1

2
(Q∗1 + N1)−1 + M1 =

α2

2
(Q∗1 + N2)−1 + M2 (10.106)

Consequently, we construct the enhanced channels as:

α1

2
(Q∗1 + N1)−1 + M1 =

α1

2
(Q∗1 + Ñ1)−1 (10.107)

α2

2
(Q∗1 + N2)−1 + M2 =

α2

2
(Q∗1 + Ñ2)−1 (10.108)

Then, Ñ1 � N1 and Ñ2 � N2, and thus, the constructed channels are enhanced. We

need show that the enhanced BC is degraded in favor of receiver 1. Since α1 ≤ α2,

451



from (10.106)-(10.108),

(Q∗1 + Ñ1)−1 =
α2

α1

(Q∗1 + Ñ2)−1 � (Q∗1 + Ñ2)−1 (10.109)

and hence Ñ1 � Ñ2. Moreover, we have the rate preservation relation of receiver 1,

|Q∗1 + Ñ1|
|Ñ1|

=
|Q∗1 + N1|
|N1|

(10.110)

and the rate preservation for user 2 can be shown as:

(Q∗1 + Q∗2 + Ñ2)(Q∗1 + Ñ2)−1 = Q∗2(Q∗1 + Ñ2)−1 + I (10.111)

= Q∗2[(Q∗1 + N2)−1 +
2

α2

M2] + I (10.112)

= Q∗2(Q∗1 + N2)−1 + I (10.113)

= (Q∗1 + Q∗2 + N2)(Q∗1 + N2)−1 (10.114)

leading to:

|Q∗1 + Q∗2 + Ñ2|
|Q∗1 + Ñ2|

=
|Q∗1 + Q∗2 + N2|
|Q∗1 + N2|

(10.115)

Hence, we have an enhanced ADBC whose rate region is achieved by a Gaus-

sian codebook and use full S2 [102]. Additionally, from (10.110) and (10.115), we

conclude that the rate region of the original AMBC coincides with the optimal Gaus-

sian rate region RG(S2, Ñ1, Ñ2) of the enhanced ADBC. To complete the proof, we

need to show that the supporting hyperplane {(R1, R2) : α1R1 + α2R2 = b} is
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also a supporting hyperplane for the Gaussian rate region of the enhanced ADBC

RG(S2, Ñ1, Ñ2), i.e., that
∑2

i=1 αiR
G
i (Q1,Q2, Ñ1, Ñ2) is maximized by the Q∗i that

solves the AMBC problem. The proof of this follows from [102]. �

We note that the related work [135] considers a MISO BC with multiple re-

ceivers, where each receiver requires either data or energy, but not both. The energy-

requiring users are satisfied by the transmission of pseudo-random signals, that are

known to all receivers, which can be subtracted out for communication purposes

with the information-requiring users. The information-requiring users are served

with a DPC scheme, which is optimal in that case due to [102], as energy transfer

does not interact with data transfer. The emphasis in [135] is the optimization of the

system for this transmission scheme. In our work, all users require both data and in-

formation simultaneously. We prove by developing a suitable channel enhancement

method using double-sided correlation matrix constraints that DPC is optimal for

this system.

10.5.4 Gaussian MIMO Broadcast Channel with Confidential mes-

sages Under Minimum Receiver-Side Power Constraints

In this section, we consider the MIMO BCCM where we transmit a message to

each receiver secret from the other. In this setting, the transmitter is required to

communicate messages reliably, securely and at the same time deliver minimum

amounts of energy E1 and E2 to the receivers. The problem without receiver-side

power constraints was solved in [72], and it was shown that secure DPC (S-DPC)
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attains the secrecy capacity region. We show in the following theorem that S-DPC

is optimal in the presence of receiver-side power constraints as well.

Theorem 10.5 The secrecy capacity region of a MIMO broadcast channel with a

transmitter-side power constraint P and minimum receiver-side power constraints

E1, E2 and with secrecy constraints, C(E1, E2, P,H,G), is given by the S-DPC re-

gion,

R1 ≤ max
Q1,Q2�0

1

2
log |I + HQ1H

T | − 1

2
log |I + GQ1G

T |

R2 ≤ max
Q1,Q2�0

1

2
log
|I + G(Q1 + Q2)GT |
|I + GQ1GT |

− 1

2
log
|I + H(Q1 + Q2)HT |
|I + HQ1HT |

s.t. tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (10.116)

This region is achieved by S-DPC (Gaussian double binning) using jointly Gaussian

random variables (V1,V2) → X → (Y,Z) such that V1 = U1 + FU2, V2 = U2,

X = U1 + U2, where U1 ∼ N (0,Q1), U2 ∼ N (0,Q2) are independent and F =

Q1H
T (I + HQ1H

T )−1H.

Proof: In this case also, we have a double-sided correlation matrix constraint S1 �

Q1 + Q2 � S2, where S1,S2 in SPE1E2 in (10.89). From Lemma 10.4, we know that,

to have a positive secrecy rate at receiver 2, we must use the full correlation matrix
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S2, i.e., Q1 +Q2 = S2. Since the outer optimization problem chooses S2 from the set

SPE1E2 , and X has the covariance Q = Q1 + Q2, the receiver-side power constraints

are satisfied. The achievability of the corner point follows from [72] by using the

double binning scheme presented in [70].

We next need to show that the achievable scheme matches the converse. For

receiver 2: From Theorem 10.1, noticing that G in this case corresponds to the

main channel and H corresponds to the eavesdropper channel, the achievable rate

R2,max in (10.116) is equal to the secrecy capacity C(S1,S2,G,H) in (10.19) proving

the converse. For receiver 1: The achievable rate R1,max in (10.116) is the same as

the secrecy capacity C(S1,S2,H,G) in (10.11) except for the correlation constraint

S1 � Q1 + µµT � S2. Recall that, in Section 10.4.2, we proved the converse for

arbitrary Q2, not necessarily unit-rank. Therefore, using S-DPC encoding scheme

induces the required extra covariance component Q2 that supports the receiver-side

constraint. Moreover, we observe that

C(S1,S2,G,H) = C(S1,S2,H,G) +
1

2
log
|I + GS2G

T |
|I + HS2HT | (10.117)

This implies that Q1 maximizes the secrecy capacities of both users simultaneously.

Consequently, the two users can receive the confidential messages at their respective

maximum secrecy rates as individual wiretap channels, i.e., the secrecy rate region

is rectangular under the S1,S2 correlation matrix constraints. Hence, the S-DPC

scheme is optimal. �
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10.6 Practical Optimization Approaches

In this section, we provide several optimization approaches to evaluate the capacities

under receiver-side power constraints stated in Theorems 10.1-10.5. Without loss of

generality, we consider the case of a single minimum receiver-side power constraint

in the wiretap channel in Theorem 10.1. This is one of the most challenging op-

timization problems among the results in Theorems 10.1-10.5, as the optimization

problem in this case is not convex.

10.6.1 MISO Problem with Gaussian Mean-Based Coding Scheme

The MISO problem with Gaussian mean-based coding scheme can be exactly cast

as a convex optimization problem by considering a linear fractional transformation

(Charnes-Cooper transformation) [136] as follows:

max
Q1,Q2�0

1

2
log(1 + hTQ1h)− 1

2
log(1 + gTQ1g)

s.t. tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (10.118)

The objective function is generally not concave. Considering the monotonicity of log,

the objective function can be replaced with the linear fractional objective function

1+hTQ1h
1+gTQ1g

. Following the linear fractional transformation [136] by multiplying by

positive variable t > 0 and defining Q1 = Q̃1/t, Q2 = Q̃2/t, and fixing the resultant

denominator as t + gT Q̃1g = 1, we obtain the convex equivalent of the problem in
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(10.118) as

max
Q̃1,Q̃2�0,t>0

t+ hT Q̃1h

s.t. t+ gT Q̃1g = 1

tr(Q̃1) + tr(Q̃2) ≤ tP

hT (Q̃1 + Q̃2)h ≥ tẼ (10.119)

The optimal solution of (10.119) can be obtained efficiently using convex solvers,

e.g., CVX.

10.6.2 MISO Problem with Gaussian Artificial Noise Based Coding

Scheme

In this case, we cannot fully transform the problem to a convex form. However, we

can apply similar techniques together with an extra step of line search [137] to solve

the problem. The problem in this case is:

max
Q1,Q2�0

1

2
log

(
1 +

hTQ1h

1 + hTQ2h

)
− 1

2
log

(
1 +

gTQ1g

1 + gTQ2g

)

︸ ︷︷ ︸
≤β

s.t. tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (10.120)

Next, we upper bound the second term in the optimization problem by 1
2

log β, where

β is the line-search variable. This results in an extra constraint gTQ1g
1+gTQ2g

≤ β − 1.
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We write the optimization problem by considering the monotonicity of log and

rearranging terms as:

max
Q1,Q2�0

1 + hT (Q1 + Q2)h

β(1 + hTQ2h)

s.t. gT (Q1 − (β − 1)Q2)g ≤ β − 1

tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (10.121)

Now, by linear fractional transformation [136], we multiply (10.121) by t > 0,

define Q1 = Q̃1/t,Q2 = Q̃2/t and fix β(t + hT Q̃2h) = 1. Note that using this

transformation, the resultant problem is a convex problem for fixed β. Hence,

iterating over β along its range 1 ≤ β ≤ 1 + P‖h‖2, the problem becomes

max
β

ϕ(β), s.t. 1 ≤ β ≤ 1 + P‖h‖2 (10.122)

which together with the following can be solved effectively

ϕ(β) = max
Q̃1,Q̃2�0,t>0

t+ hT (Q̃1 + Q̃2)h

s.t. gT (Q̃1 − (β − 1)Q̃2)g ≤ t(β − 1)

β(t+ hT Q̃2h) = 1

tr(Q̃1) + tr(Q̃2) ≤ tP

gT (Q̃1 + Q̃2)g ≥ tẼ (10.123)
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10.6.3 General MIMO Problem

For the general MIMO case, we cannot provide a direct convex optimization equiv-

alent as in the MISO case even by adding a line search. This is due to the con-

cavity of log-determinant functions, which result in difference of concave func-

tions. To tackle the problem, we can approximate the objective function us-

ing sequential convex optimization techniques [138, 139]. The idea here is to

approximate the second term in the objective function by its first order expan-

sion. To show that, first, consider the objective function of the Gaussian coding

with fixed mean 1
2

log |I + HQ1H
T | − 1

2
log |I + GQ1G

T |, which is equivalent to

log |Q1 + N1|− log |Q1 + N2|. We approximate the second term with an affine func-

tion using the Taylor series expansion of the log det function around Q(k), where k

denotes the kth iteration:

log |Q1 + N2| ∼= log |Q(k)
1 + N2|+ tr((Q

(k)
1 + N2)−1(Q1 −Q(k))) (10.124)

Since the constant terms do not affect the optimal solution, we can use

log |Q1 + N2| ∼= tr((Q
(k)
1 + N2)−1Q1) (10.125)

The optimization problem in the kth iteration is

max
Q1,Q2�0

log |Q1 + N1| − tr((Q
(k)
1 + N2)−1Q1)
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s.t. tr(Q1) + tr(Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ (10.126)

which is a convex problem, and can be solved efficiently. We update Q
(k)
1 ,Q

(k)
2 by

solving such convex optimization problems until convergence.

Finally, using similar ideas, we can perform linearization in the case of Gaus-

sian with artificial noise coding scheme, where the corresponding optimization prob-

lem in the kth iteration is

max
Q2,S�0

log |S + N1|+ log |Q2 + N2| − tr((Q
(k)
2 + N1)−1Q2)− tr((S(k) + N2)−1S)

s.t. tr(S) ≤ P, tr(GSGT ) ≥ Ẽ (10.127)

10.7 Numerical Results

In this section, we present simple simulation results for the secrecy capacity of

the MIMO wiretap channel with maximum transmitter-side power constraint and

minimum receiver-side (eavesdropper-side) power constraint. In these simulations,

the average transmit power at the transmitter is taken as P = 10 and the noise

covariance is identity at both receivers.

Fig. 10.2 shows a secrecy capacity receiver-side power constraint region for

a MISO 4-1-1 system, i.e, a system with 4 antennas at the transmitter and single

antenna at both the legitimate receiver and the eavesdropper. The figure shows

the optimality of the Gaussian signalling with a mean and Gaussian coding with
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Gaussian artificial noise coding schemes; in particular, the regions corresponding to

the mean and artificial noise coding schemes are identical. Moreover, the secrecy

rate region with receiver-side power region of the standard Gaussian coding scheme

with no mean or no artificial noise is noticeably smaller than the optimal schemes.

That is, the standard Gaussian signaling scheme is strictly sub-optimal for the case

of receiver-side power constraints. In addition, we observe that, as the receiver-side

power constraint is increased, the secrecy capacity decreases, i.e., there is a trade-off

between the power that should be delivered to the eavesdropper’s receiver and the

confidentiality that can be provided to the legitimate receiver. This is because, when

the receiver-side power constraint is increased, the problem becomes more confined

and more power should be concentrated for the receiver-side power constraint, which

decreases the set of signalling choices for the secrecy communications. Fig. 10.3

shows similar observations for the 2-2-2 MIMO wiretap system.

10.8 Conclusions

We considered the MIMO wiretap channel with the usual transmitter-side maximum

power constraint and an additional receiver-side minimum power constraint. For the

converse, we first proved that the problem is equivalent to solving a secrecy capacity

problem with a double-sided correlation matrix constraint on the channel input. We

then extended the channel enhancement technique to our setting. For the achiev-

ability, we proposed two optimum schemes that achieve the converse rate: Gaussian

signalling with a fixed mean and Gaussian signalling with Gaussian channel prefixing
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Figure 10.2: Secrecy capacity receiver-side power constraint region for a 4-1-1 MISO
wiretap channel.

(artificial noise). This is the first instance of a problem where transmission with a

mean or channel prefixing are strictly necessary for a MIMO wiretap channel under

power constraints. The transmission scheme with a mean enables us to deliver the

needed power to the receiver without creating interference to the legitimate receiver

as it is a deterministic signal. On the other hand, the transmission scheme with

Gaussian artificial noise, both jams the eavesdropper contributing to the secrecy as

well as delivering the needed power to the receiver. We note that the optimal coding

scheme for the MIMO wiretap channel under a transmitter-side power constraint

only, which is Gaussian signalling with no channel prefixing or mean, is strictly

sub-optimal when we impose a receiver-side power constraint, showing similar to
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Figure 10.3: Secrecy capacity receiver-side power constraint region for a 2-2-2 MIMO
wiretap channel.

the cases of [107,108], that receiver-side power constraints may change the solution

significantly and may introduce non-trivial trade-offs. We then extended our setting

to the cases of minimum power constraints at both receivers in a wiretap channel;

maximum receiver-side power constraints at both receivers in a wiretap channel;

minimum receiver-side power constraints in a broadcast channel (i.e., no secrecy

constraints); and minimum receiver-side power constraints in a broadcast channel

with confidential messages (i.e., double-sided secrecy constraints).
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10.9 Appendix: Continuity of the Capacity Function

We prove our claim in Lemma 10.2 that C(S1,S2,H,G) is a continuous function

with respect to S2. Although contiguity defined in [102], which is a weaker notion

than continuity, suffices to prove Lemma 10.2, we prove continuity here. To prove

this, we begin by writing the optimization problem in a general form as in [102,

Appendix IV] by concatenating the rows of Q1,Q2 to form a vector y ∈ R2t2 , where

t = max{Nt, Nr}. We denote the point-to-set map Ω(S2) to be a mapping from S2

to the power set of all subsets of the corresponding feasible set, i.e.,

Ω(S2) = {row concatenation of (Q1,Q2) : Q1,Q2 � 0, S1 � Q1 + Q2 � S2}

(10.128)

Denote C(S1,S2,H,G) by C(S2) for notational simplicity as we focus on the argu-

ment S2 here. From (10.11) with Q2 = µµT , we write C(S2) as

C(S2) = max
y∈Ω(S2)

f(y) (10.129)

where f(y) = 1
2

log |I + HQ1H
T | − 1

2
log |I + GQ1G

T |. Note that in this case f(y)

depends only on the first t2 elements of y. Now, we use [140, Theorem 7], which

states conditions on the continuity of the optimal value function in mathematical

programming to prove the continuity of C(S2). In the sequel, we verify that all

requirements of [140, Theorem 7] are satisfied.

Since the determinant of an n × n matrix A can be written as det(A) =
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∑
σ sgn(σ)

∏n
i=1 aiσ(i), where the sum is over all n! permutations of {1, 2, · · · , n}, the

determinant in this form is a polynomial in n2 variables, and det(A) is continuous.

Consequently, f(y) is also continuous. Ω(S2) consists of linear matrix inequalities,

hence it is a continuous point-to-set map. Furthermore, Ω(S2) is uniformly compact

because for any sequence S
(i)
2 in the neighborhood of S2, i.e., the metric distance

d(S
(i)
2 ,S2) = tr

(
(S

(i)
2 − S2)(S

(i)
2 − S2)T

)
≤ δ2 for some finite δ > 0, one can find

ki = maxλ(S
(i)
2 ) where λ(S

(i)
2 ) is an eigenvalue of matrix S

(i)
2 such that

Ω(S
(i)
2 ) ⊆ Y = {row concatenation of (Q1,Q2) : Q1,Q2 � 0, tr(Q1 + Q2) ≤ k}

(10.130)

where k = maxi ki ≤ P + δ, where P is the power constraint imposed on SPE.

Since Y is compact and contains
⋃
i Ω(S

(i)
2 ), Ω(S2) is uniformly compact. Hence,

the requirements of [140, Theorem 7] are satisfied and C(S1,S2,H,G) is continuous

with respect to S2.
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CHAPTER 11

Conclusions

In this dissertation, we used the information-theoretic approach to characterize the

fundamental limits of information retrieval and communication rates under privacy

and/or security constraints for the next generation networks.

In Chapters 2-6, we focused on the private information retrieval (PIR) problem

while taking into account various practical constraints.

In Chapter 2, we considered the PIR problem over MDS-coded (CPIR) and

non-colluding databases. We employed information-theoretic arguments to derive

the optimal retrieval rate for the desired message for any given MDS storage code.

Our result shows that the optimal retrieval cost is independent of the explicit struc-

ture of the storage code, and the number of databases, but depends only on the code

rate and the number of messages. Interestingly, the result implies that there is no

gain to be obtained from a joint design of the MDS storage code and the retrieval

procedure. The result also establishes a fundamental tradeoff between the code rate

and the PIR capacity for MDS codes.

In Chapter 3, we introduced the multi-message private information retrieval
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(MPIR) problem. We determined the exact sum capacity for this problem when

the number of desired messages is at least half of the number of total stored mes-

sages and when the total number of messages is an integer multiple of the number

of desired messages. For the remaining cases, we derived lower and upper bounds.

We observed numerically that the gap between the lower and upper bounds de-

creases monotonically in the number of databases, and the worst case gap is 0.0082.

The result implies that joint retrieval of the desired messages strictly outperforms

repeating the single-message capacity achieving scheme for each message.

In Chapter 4, we investigated the PIR problem in the presence of Byzantine

and colluding databases (BPIR). We determined the exact capacity of the BPIR

problem. The capacity expression shows the severe degradation in the retrieval

rate in the presence of Byzantine databases. The expression shows that in order to

correct the errors introduced by the adversarial databases, the system needs to have

twice the number of Byzantine databases as redundant storage nodes. The retrieval

rate is further penalized by a multiplicative factor, which reflects the ignorance of

the user to the identity of the honest databases. We extended the optimal scheme

for the RPIR problem to permit error correction of any error pattern introduced by

the Byzantine databases. For the converse, we adapted the cut-set bound, which

was originally derived for the network coding problem against adversarial nodes, for

the PIR setting.

In Chapter 5, we introduced the PIR problem under asymmetric traffic con-

straints. We investigated the fundamental limits of this problem by developing a

novel upper bound. The upper bound generalizes the converse proof for the case
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of classical PIR, which inherently utilizes database symmetry. The upper bound is

a piece-wise affine function in the traffic constraints. The upper bound implies a

strict capacity loss due to the asymmetric traffic constraints for certain cases. We

developed explicit achievable schemes for specific corner points, and achieved the

remaining points by time-sharing. We described the achievable scheme by means of

a system of difference equations. We proved that the upper bound and the lower

bound exactly match for the cases of 2 and 3 messages for any number of databases.

In Chapter 6, we introduced noisy PIR with orthogonal links (NPIR), and PIR

from multiple access channels (MAC-PIR). We focused on the issue of separability

of the channel coding and the retrieval scheme. For the NPIR problem, we proved

that the channel coding and the retrieval scheme are almost separable in the sense

that every database implements its own channel coding independently of the other

databases. The problem is coupled only through agreeing on a suitable traffic ratio

vector to maximize the retrieval rate. However, these conclusions are not valid for

the MAC-PIR problem. We showed two examples, namely: PIR from additive MAC

and PIR from logical conjunction/disjunction MAC, where the channel coding and

retrieval schemes are indeed inseparable unlike the NPIR problem. In both cases,

we showed that we can attain the full capacity with no loss due to privacy.

In Chapter 7, we investigated joint security and privacy constraints by con-

sidering the PIR problem from wiretap channel II (PIR-WTC-II). We showed that

the problem is a concrete example of the PIR problem under asymmetric traffic

constraints. We obtained a general upper bound that takes the form of a max-min

optimization problem. The inner minimization problem derives the tightest upper
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bound for the retrieval rate for an arbitrary traffic ratio vector, while the outer

maximization problem optimizes over traffic ratio vector. The security constraint

is satisfied by (information-theoretically) encrypting each returned answering string

by an artificial noise vector. To obtain the artificial noise vector, each database

generates a secret key and encodes it into artificial noise by an MDS code. The

upper and lower bounds match for the cases of 2 and 3 messages for any number of

databases, and for any eavesdropping capability vector.

In Chapters 8-10, we focused on the security problem in multi-user networks.

In Chapter 8, we determined the exact s.d.o.f. region of a two-user M × N

MIMO ICCM. For the converse proof, we combined three distinct upper bounds:

the cooperative upper bound which treats ICCM as a BCCM; the upper bounding

technique that uses vectorized versions of secrecy penalty and role of a helper lem-

mas; and the IC upper bound without any secrecy constraints. For achievability, we

showed that the s.d.o.f. region is a four-vertex polytope. To that end, we developed

a novel achievable scheme for the basic 2 × 2 MIMO ICCM, which is central for

achievable schemes for general M and N . The 2× 2 scheme combines spatial align-

ment for secrecy and asymptotic real interference alignment for decodability. We

showed the achievability of the other non-trivial polytope corner points by forcing

one of the users to act as a cooperative jammer (helper) that jams its own receiver.

Interestingly, we showed that the s.d.o.f. region starts as a square region, then it

takes the shape of an irregular polytope until it returns back to a square region when

the number of transmit antennas is at least twice the number of receiving antennas.

We showed that if the ICCM channel is time-varying, the achievable schemes can
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be simplified by using vector space alignment instead of real interference alignment

that is necessary for static channels.

In Chapter 9, we introduced three new channel models: broadcast channel

with combating helpers, interference channel with selfish users, and multiple access

wiretap channel with deviating users. We aimed at studying the effects of selfishness

and malicious behaviour on secrecy in networks. For BCCM with combating helpers,

we showed that the malicious intentions of the helpers are neutralized and the full

s.d.o.f. is retained. On the contrary, for the ICCM with selfish users, we showed

that selfishness precludes secure communication and no s.d.o.f. is achieved. For the

MAC-WTC with deviating users, we considered two kinds of deviation: when some

of the users stop transmitting cooperative jamming signals, and when a user starts

sending intentional jamming signals. For the first scenario, we investigated possible

responses of the remaining users to counteract such deviation. For the second sce-

nario, we showed that although a deviating user can drive the sum s.d.o.f. to zero,

the remaining users can exploit the jamming signals as cooperative jamming signals

against the eavesdropper and achieve an optimum s.d.o.f.

In Chapter 10, we considered the MIMO wiretap channel with the usual

transmitter-side maximum power constraint and an additional receiver-side min-

imum power constraint. For the converse, we first proved that the problem is

equivalent to solving a secrecy capacity problem with a double-sided correlation

matrix constraint on the channel input. We then extended the channel enhance-

ment technique to our setting. For the achievability, we proposed two optimum

schemes that achieve the converse rate: Gaussian signalling with a fixed mean and
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Gaussian signalling with Gaussian artificial noise. This is the first instance of a

problem where transmission with a mean or channel prefixing are strictly necessary

for a MIMO wiretap channel under power constraints, showing that receiver-side

power constraints may change the solution significantly and may introduce non-

trivial tradeoffs. We then extended our setting to the cases of minimum power

constraints at both receivers in a wiretap channel; maximum receiver-side power

constraints at both receivers in a wiretap channel; minimum receiver-side power

constraints in a broadcast channel; and minimum receiver-side power constraints in

a broadcast channel with confidential messages.

The contents of Chapter 2 are published in [116,117], Chapter 3 in [123,141],

Chapter 4 in [120, 142], Chapter 5 in [125, 143], Chapter 6 in [144–146], Chapter 7

in [124, 147], Chapter 8 in [148, 149], Chapter 9 in [150, 151], and Chapter 10 in

[152,153].
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