
Sidh: A Wireless Sensor Network Simulator

Thomas W. Carley (tcarley@eng.umd.edu)

Department of Electrical & Computer Engineering

University of Maryland at College Park

1 Introduction

Wireless sensor networks are a hot research area, and gathering increasing attention from

industry. Several new workshops, conferences, and journals are dedicated to wireless sensor

networks. In addition, many popular conferences and journals have sessions, tracks, or special

issues dedicated to sensor networks. The research in these publications investigate new hardware

platforms, protocols, applications, programming environments, etc. One open research problem

is to be able to accurately and efficiently evaluate these new approaches.

In many cases it is impractical to experiment on real wireless sensor network systems; there are

several reasons for this. First, a proposed hardware platform, while theoretically possible, may

not be manufactured. An example of this is a low power system-on-chip hardware platform that,

while possible, is not yet practical to manufacture due to up-front design, mask, and fabrication

costs. Second, even if the hardware platform exists, it may be prohibitively expensive. An

example of this is research protocol or application that requires hundreds or thousands of nodes

to evaluate. With current nodes costing approximately one hundred of dollars, evaluating this

research could cost thousands to tens of thousands of dollars. Third, even if it is practical to

evaluate research on the real hardware platform, it may not be practical to experiment in an

appropriate environment. An example of this are wireless sensor networks which operate on

glaciers [Martinez et al. 2004], remote wildlife habitats [Szewczyk et al. 2004], detect tanks

[Abdelzaher et al. 2004], and other environments with which it is expensive or dangerous to

experiment.

One solution to this problem is to simulate the sensor network system. This is an approach that is

common in other network research for similar reasons to those above. In fact, a number of tools

are currently used to simulate sensor networks systems. These simulators have limitations that

make them less than ideal for wireless sensor networks; we discuss them briefly here, and in

more detail in section 3. First, many of these simulators are designed for other types of networks;

for instance, wired TCP/IP networks. Others, though wireless, are made to simulate WLAN

networks and 802.11 protocols, and are also inherently IP networks. Also, some simulators that

are designed specifically for sensor networks are limited to a specific programming environment,

TinyOS. In addition, wireless sensor network simulators vary greatly in their accuracy of

modeling the wireless medium; some only model the medium at a high level that is appropriate

for roughly evaluating applications, others model the medium at the accuracy needed to evaluate

low level protocols such as MAC. Finally, many simulators do not simulate the sensors, the

physical phenomenon they measure, or the environment in which they operate.

We introduce Sidh (pronounce shee as in banshee); a wireless sensor network simulator designed

to address these problems. Sidh is built from the ground up to simulate sensor networks. Sidh is

efficient; it scales to simulate networks with thousands of nodes faster than real-time on a typical

desktop computer. Sidh is component based and easily reconfigurable to adapt to different: levels

of simulation detail and accuracy; communication media; sensors and actuators; environmental

conditions; protocols; and applications.

The remainder of this paper is organized as follows. Section 2 expands on some background

material. Section 3 describes related work in network simulators used to evaluate sensor

networks. Section 4 details the design of Sidh. Section 5 concludes the paper.

2 Background

In section 1 we state that several new workshops, conferences, and journals are dedicated to

wireless sensor networks; in addition, many popular conferences and journals have special

sessions, tracks, and issues dedicated to wireless sensor networks. Workshops on sensor

networks include: Workshop on Security of Ad Hoc and Sensor Networks (SASN); International

Workshop on RFID and Ubiquitous Sensor Networks (USN); International Workshop on

Broadband Advanced Sensor Networks (BaseNets); European Workshop on Wireless Sensor

Networks (EWSN); International Workshop on Heterogeneous Wireless Sensor Networks

(HWISE). Conferences on sensor networks include: IEEE Communications Society Conference

on Sensor and Ad Hoc Communications and Networks (SECON), Conference on Embedded

Networked Sensor Systems (SenSys); International Conference on Sensor Networks (SENET);

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP); International

Symposium on Information Processing in Sensor Networks (IPSN). Journals include: ACM

Transactions on Sensor Networks (TOSN). Popular conferences and journals with sessions,

tracks, or special issues dedicated to sensor networks include: International Conference on

Mobile Computing and Networking (MobiCom); International Conf. on Mobile Systems,

Applications, and Services (Mobisys); IEEE Conference on Computer Communications

(INFOCOM); IEEE International Real-Time Systems Symposium (RTSS); International Journal

of Wireless and Mobile Computing (IJWMC); EURASIP Journal on Wireless Communications

and Networking; Inderscience International Journal of Ad Hoc and Ubiquitous Computing; IEEE

International Conference on Mobile and Wireless Communications Networks (MWCN); IEEE

Wireless Communications and Networking Conference (WCNC).

3 Related Work

As we discuss in section 1, there are a number of simulators that have been used in sensor

network research. Here we discuss only simulators that can be used to evaluate wireless sensor

network research. There are a number of other network simulators; however, for one reason or

another they are inappropriate for evaluating wireless sensor network research.

3.1 Ns-2

Ns (http://www.isi.edu/nsnam/ns/) is a discrete event networks simulator that began in 1989 as a

variant of an even earlier network simulator. It is written in a combination of C++ and OTcl, an

object oriented scripting language. Ns is a very popular network simulator, but is effectively

limited to IP networks due to low level assumptions. Support for wireless networks was added in

1997; it is designed to simulate wireless LAN protocols, though later expanded to mobile ad-hoc

networks. Ns supports only two wireless MAC protocols, 802.11, and a single-hop TDMA

protocol. The single-hop TDMA MAC protocol was added in 2000, and is still considered

preliminary. A project at the Naval Research Laboratory (NRL) produced an extension to ns for

sensor networks (http://nrlsensorsim.pf.itd.nrl.navy.mil/) [Downard 2004]. This extension adds a

phenom channel for modeling physical phenomena such as sensor and the environment.

However, 802.11 is used for the MAC protocol, which is not representative of sensor network

MAC protocols. In conclusion, while ns has been used to evaluate wireless sensor networks, the

accuracy of results are questionable since the MAC protocols, packet formats, and energy

models are very different from those of typical sensor network platforms.

3.2 GloMoSim / QualNet

GloMoSim (http://pcl.cs.ucla.edu/projects/glomosim/) [Zeng et al. 1998] began in 1998 as a

simulator for mobile wireless networks. It is written in parsec, a variant of C with parallel

programming extensions. The latest version of GloMoSim dates back to 2000. Further

development has been commercialized into the QualNet product (http://www.scalable-

networks.com/). GloMoSim has several choices for radio propagation, CSMA MAC protocols

(including 802.11), mobile wireless routing protocols, and implementations of UDP and TCP.

GloMoSim is good at simulating of mobile IP networks. However, GloMoSim is effectively

limited to IP networks because of low level design assumptions. Therefore, it suffers the same

problems as ns; the packet formats, energy models, and MAC protocols are not representative of

those used in wireless sensor networks. Also, GloMoSim does not provide support for sensors,

actuators, physical phenomena, or environmental conditions. While GloMoSim has been used to

evaluate wireless sensor networks, the accuracy of results are questionable.

3.3 J-Sim

J-Sim (http://www.j-sim.org/) began in 1999 as a generic component based, compositional

simulation framework. J-Sim is similar to ns in that is written in two languages; however, in J-

Sim’s case they are Java and Jacl, a java version of Tcl. On top of this framework a general

packet switching network was built. This includes many internet protocols. Support for mobile

wireless networks and sensor networks was added in 2004 (http://www.j-

sim.org/v1.3/sensor/JSim.pdf). J-Sim provides support for sensors and physical phenomena.

Energy modeling, with the exception of radio energy consumption, is also appropriate for sensor

networks. However, the only MAC protocol provided for wireless networks is 802.11. Therefore,

accuracy of simulations still suffers.

3.4 SENSE

SENSE (http://www.cs.rpi.edu/~cheng3/sense/) is a recent sensor network simulator started in

2004 [Chen et al. 2004]. It is similar to J-Sim in that it is component based, but is written in C++

in order to avoid the perceived inefficiency of Java. SENSE runs on top of COST, a component

based discrete event simulator that is written in CompC++, a component extension to C++.

SENSE supports an energy model that is sufficient for wireless sensor networks. SENSE supports

only an unrealistic perfect NullMAC protocol, where messages arrive instantly with no

possibility of collision or error, and an 802.11 MAC protocol. SENSE does not support sensors,

physical phenomena, or environmental effects. Overall, the MAC protocol support and radio

propagation make SENSE less than ideal for accurate evaluation of wireless sensor network

research.

3.5 VisualSense

VisualSense (http://ptolemy.eecs.berkeley.edu/visualsense/) is a modeling and simulation

framework for wireless sensor networks that build on and leverages Ptolemy II

(http://ptolemy.eecs.berkeley.edu) [Baldwin et al. 2005]. VisualSense provides an accurate and

extensible radio model. The radio model is based on a general energy propagation model that can

be reused for physical phenomena. VisualSense provides a sound model based on this

propagation model that is accurate enough to use for localization. VisualSense is a good

framework; however, it does not provide any protocols above the wireless medium, nor any

sensor or physical phenomena other than sound.

3.6 (J)Prowler

Prowler (http://www.isis.vanderbilt.edu/projects/nest/prowler/index.html) and JProwler

(http://www.isis.vanderbilt.edu/projects/nest/jprowler/index.html) are probabilistic wireless

sensor network simulators. Prowler is written in Matlab, while JProwler is written in Java.

(J)Prowler is targeted to the Berkeley MICA Mote hardware platform running application built

on TinyOS, though it could be modified to simulate more general systems. (J)Prowler provides

an accurate radio model. However, it provides only one MAC protocol, the default MAC

protocol of TinyOS (circa 2004). (J)Prowler also does not provide support for sensors or

physical phenomena.

3.7 SENS

SENS (http://osl.cs.uiuc.edu/sens/) is a high level sensor network simulator [Sundresh et al.

2004]. SENS is written in C++ and built with the gcc compiler. SENS provides a few models of

wireless medium ranging from: a simple perfect model; to a probabilistic message loss model; to

an interference and collision model. SENS does not accurately simulate a MAC protocol. SENS

provides support for sensors, actuators, and physical phenomena only for sound.

3.8 TOSSIM & TOSSF

TOSIM [Levis et al. 2003] and TOSSF [Perrone et al. 2002.] are both sensor network simulators

build specifically to simulate the Berkeley MICA Mote hardware platform running applications

built on TinyOS. In the name of efficiency TOSIM uses an inaccurate probabilistic bit error

model for the wireless medium. This is sufficient when evaluating a high level application, but

not when evaluating low level protocols such as MAC. TOSIM does simulate the Mote’s devices

including digital I/O and A/D. This enables simulating sensors and actuators; however, it does

not simulate the physical phenomena that are sensed. Another limitation of TOSIM is that each

node must run the exact same code. TOSSF is similar to, and inspired by, TOSIM. TOSSF

addresses the above limitations of TOSIM. One limitation of TOSSF is that it no longer simulates

the devices as accurately as TOSIM.

3.9 ATEMU

ATEMU is a software emulator for the AVR processor and the Berkeley MICA2 Mote hardware

platform [Polley et al. 2004]. Since ATEMU is binary compatible with the MICA2 Mote

hardware platform, it also supports TinyOS binary application unchanged. ATEMU only supports

a simple free-space propagation model of the wireless medium. In ATEMU different sensor

nodes can run different executables. The primary strength of ATEMU is that it is the most

accurate simulator for a particular hardware platform. Conversely, the main limitation of

ATEMU is its dependence on the MICA2 Mote hardware architecture.

4 Sidh

Sidh is a simulator specifically designed for wireless sensor networks and is greatly influenced

by related work discussed in section 3. Sidh is efficient; it scales to simulate networks with

thousands of nodes faster than real-time on a typical desktop computer. Sidh is component based

and easily reconfigurable to adapt to different: levels of simulation detail and accuracy;

communication media; sensors and actuators; environmental conditions; protocols; and

applications. Sidh is written in Java for portability.

Sidh is composed of a set of modules. A few modules are accessed via method calls; these

modules are defined by a Java interface. The use of an interface allows modules to be replaced

with different implementations. All other modules interact, via Simulator, through events. The

use of events ensures that the timing of interactions is respected. The use of events also ensures

that modules are not directly dependent on each other. Therefore, Sidh is configured by selecting

independent modules, and can even be re-configured on-line. The selection of modules is

governed by matching the events generated and consumed by modules. The modules currently

supported in Sidh can be organized in to the following categories: Simulator; Events; Medium;

Environment; Node; Transceiver; Protocols, Applications. Each category is represented by an

interface that defines its methods and events generated and consumed. The following sub-

sections discuss each of these categories, and other modules available in Sidh.

4.1 Simulator

Simulator is a discrete event simulator module, and is the foundation of Sidh. It is an

implementation of the interface Simulator_I. The interface Simulator_I is how modules interact

with the simulator. Simulator provides methods to: add and remove events; clear the event

queue; generate random numbers and time values; convert time units; and run the simulation

either for a given time or until the event queue is empty. Simulator uses a binary heap data

structure to manage events based on the time at which they are fired.

4.2 Event

Event is an abstract base class that provides basic functionality for all events. Particular events

are sub-classes of class Event. Event contains the time at which an event should fire. Event

provides methods to: compare events based on their fire times; determine whether events are

equal; print themselves to a string; and an abstract method to fire the event. Sub-classes of Event

provide an interface for Listeners of that event. They also have members that are parameters for

the event. The abstract inherited fire event is overridden to call the Interface’s method with the

parameters.

4.3 Medium

Medium models the wireless medium. Medium is allows nodes to broadcast signals, and is

responsible for informing nodes of signals that affect it. In order to do this Medium must be

informed of the presence of every node, and any changes in position or radio properties such as

transmitter power or receiver sensitivity. Medium has the properties of bandwidth and

wavelength of the medium modeled. For instance a wavelength of 2.4 GHz with a bandwidth of

250 Kbps is one medium used by the 802.15.4 physical layer specification. Medium also has a

reference to a propagation model that is given to it at the time of construction. The propagation

model provides the strength at a particular receiver from a signal transmitted by a given

transmitter.

4.4 PropagationModel

PropagationModel defines the strength of a signal at a particular receiver from a particular

transmitter at a particular instant of time. The interface of PropagationModel defines methods for

getting the maximum and the instantaneous signal strength for a given transmitter and receiver

pair. The maximum signal strength is useful for determining interference relationships. There are

many theoretical and practical models for signal propagation; these can be realized as

implementations of the PropagationModel interface. Models that have been implemented

include: free space propagation; two ray ground reflection; Rayleigh and Ricean fading; and

Radio Interference Model (RIM) [Zhou et al. 2004]. Many more models exist, and wireless

signal propagation is still an active research area.

4.5 Environment

The Environment module is similar to Medium module. The difference is that the

implementation of Environment has properties that relate to the physical phenomenon modeled.

Environment also has a propagation model similar to PropagationModel that models the

propagation of the physical phenomena modeled. Physical phenomena of interest in sensor

networks include: temperature; light; humidity; magnetic field; sound; optical; chemical

presence.

4.6 Node

Node represents a single node in a wireless sensor network. As such, it serves as a container for

all of the components, both hardware and software, in a node. These components include:

processor; transceiver; sensors; actuators; energy source (such as a battery); network protocols;

and applications. In addition each node has the properties of location and identification.

4.7 Processor

The Processor module models the processor on the sensor node; examples include TI’s msp430

or Atmel’s AVR. This module models processor state such as low power modes and the energy

consumption of each state. Processor consumes events to change its state, and generates events to

notify of changes in power consumption.

4.8 Transceiver

This module models the hardware transceiver on each sensor node. It models the transceiver

states (i.e. sleep, standby, receive, and transmit), and their associated behavior and power

consumption. Sleep mode is the lowest power state the transceiver can be in, in which even the

oscillators are off. This state takes the longest to switch out of. Standby mode uses more power

than sleep since the oscillators are running. Receive and Transmit use the most power since they

are either powering the antenna or actively trying to decode a signal. Which mode, transmit or

receive, uses more power changes with transceiver type. For instance, in a narrow band

transceiver transmit uses more power than receive. However, in wideband transceivers, such as

Direct Sequence Spread Spectrum (DSSS), receive uses more power than transmit.

Transceiver consumes events informing it of the beginning and ending of every signal it

receives. It sums active signals to maintain the interference. Transceiver generates events for the

beginning and ending of every signal it transmits. These events are all exchanged with an

instance of the Medium module. Transceiver maintains properties for the Signal to Interference

and Noise Ratio (SINR) thresholds necessary to begin receiving a signal, and to receive a signal

without corruption. It also maintains properties for receiver gain, and transmitter power output.

When a signal start event is received its SINR is checked against the receive SINR threshold; if it

is greater than the threshold then the message is tracked as a potential message to receive. When

the matching signal end event is received then its minimum SINR is compared to the SINR

corruption threshold; if it is greater than the threshold then the message is received.

4.9 Sensor & Actuator

Sensor and Actuator modules are similar to Transceiver modules. The biggest difference is that

they interface to an Environment module rather than a Medium module. Another difference is in

the properties they maintain. Sensor and Actuator modules maintain properties consistent with

the physical phenomenon they model.

4.10 EnergySupply

This module models the energy supply for each node. Many energy supplies are possible, but

batteries are most common. Several battery technologies exist, and have different properties; for

instance: alkaline; lithium; nickel cadmium; and nickel metal hydride. EnergySupply consumes

events that announce changes in power consumption and voltages requirements of other

modules. EnergySupply generates events only under conditions in which it cannot supply the

power or voltage requirements of other modules; for instance, a battery is drained.

4.11 Physical Protocol

The Physical protocol is the lowest layer in a network stack. It is often implemented in the

transceiver hardware. The Physical layer provides services for: changing the state of the

transceiver; carrier sensing or Clear Channel Assessment (CCA); sending and receiving packets;

received energy detection on received packets; changing channels on physical layers that support

multiple channels.

4.12 MAC Protocol

The MAC protocol is the next layer in a network stack. It is usually implemented in software

running on the node’s processor. The MAC layer provides services for: changing the state of the

MAC layer (i.e. low power mode); setting and getting protocol parameters; sending and

receiving packets; etc. Sidh offers implementations for several sensor network MAC protocols,

including: a simple CSMA MAC protocol; Bel [Carley et al. 2005]; B-MAC [Polastre et al.

2004]; and TRAMA [Rajendran et al. 2003].

4.13 Routing Protocol

The Routing protocol resides above the MAC protocol and provides services for routing

messages over multiple hops between nodes that cannot communicate directly. One routing

protocol implemented in Sidh is Greedy Perimeter Stateless Routing (GPSR) [Karp and Kung

2000]

4.14 Application Layer

The Application layer resides at the top of the network stack. It interfaces with the lower layers

in the network stack as well as the sensors and actuators to implement a wireless sensor network

application. An example of a wireless sensor network application implemented on Sidh is

EnviroTrack [Abdelzaher et al. 2004]. In [Carley et al. 2005] we use EnviroTrack to evaluate

MAC protocols including Bel, B-MAC, and TRAMA.

5 Conclusions

In conclusion, in this report we introduced Sidh, a simulator specifically designed for wireless

sensor networks. Sidh is efficient; it scales to simulate networks with thousands of nodes faster

than real-time on a typical desktop computer. Sidh is component based and easily reconfigurable

to adapt to different: levels of simulation detail and accuracy; communication media; sensors and

actuators; environmental conditions; protocols; and applications.

6 References

Downard. 2004. Simulating Sensor Networks in NS-2. NRL/FR/5522--04-10073, Naval

Research Laboratory, Washington, D.C., May 2004.

Zeng X., Bagrodia R., Gerla M. 1998. GloMoSim: a Library for Parallel Simulation of Large-

scale Wireless Networks. In Proceedings of the 12th Workshop on Parallel and Distributed

Simulations (PADS), May 26-29, 1998 in Banff, Alberta, Canada.

Chen G., Branch J., Pflug M. J., Zhu L., Szymanski B. 2004. SENSE: A Sensor Network

Simulator. Advances in Pervasive Computing and Networking, Springer: 249-267.

Baldwin P., Kohli S., Lee E. A., Liu S., Zhao Y. 2005. VisualSense: Visual Modeling for

Wireless and Sensor Network Systems. Technical Memorandum UCB/ERL M05/25, University

of California, Berkeley, CA 94720, USA July 15, 2005.

Sundresh S., Kim W., Agha G. 2004. SENS: A Sensor, Environment and Network Simulator, In

Proceedings of 37th Annual Simulation Symposium, pages 221-230, 2004.

Levis P., Lee N., Welsh M., Culler D. 2003. TOSSIM: Accurate and Scalable Simulation of

Entire TinyOS Applications. In Proceedings of the ACM Conference on Embedded Networked

Sensor Systems (SenSys), 2003.

Perrone L. F., Nicol D. 2002. A Scalable Simulator for TinyOS Applications. In Proceedings of

the Winter Simulation Conference, 2002.

Polley J., Blazakis D., McGee J., Rusk D., Baras J. S., Karir M. 2004. ATEMU: A Fine-grained

Sensor Network Simulator. In Proceedings of the First IEEE Communications Society

Conference on Sensor and Ad Hoc Communications and Networks (SECON), 2004.

Martinez K., Ong R., Hart J. 2004. Glacsweb: a sensor network for hostile environments. In

Proceedings of the IEEE Conf. Sensor, Ad Hoc Comm. & Networks, October 2004, pp. 81-87.

Szewczyk R., Osterweil E., Polastre J., Hamilton M., Mainwaring A., Estrin D. 2004. Wireless

sensor networks: Habitat monitoring with sensor networks. Communications of the ACM, 47(6),

June 2004.

Abdelzaher T., Blum B., Cao Q., Chen Y., Evans D., George J., George S., Gu L., He T.,

Krishnamurthy S., Luo L., Son S., Stankovic J., Stoleru R., Wood A. 2004. EnviroTrack:

Towards an Environmental Computing Paradigm for Distributed Sensor Networks. In

Proceedings of the 24th International Conference on Distributed Computing Systems, Tokyo,

Japan, March 2004, IEEE, Inc., 582-589.

Zhou G., He T., Krishnamurthy S., Stankovic J.A. 2004. Impact of Radio Irregularity in Wireless

Sensor Networks. In Proceedings of the 2nd International Conference on Mobile Systems,

Applications, and Services (MobiSys), Boston, MA, June 2004, ACM Press New York, NY,

USA, 125-138.

Rajendran V., Obraczka K., Garcia-Luna-Aceves J. J. 2003. Energy-Efficient Collision-Free

Medium Access Control for Wireless Sensor Networks. In Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, California,

November 2003, ACM Press New York, NY, USA, 181-192.

Polastre J., Hill J., Culler D. 2004. Versatile low power media access for wireless sensor

networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor

Systems (SenSys), Baltimore, Maryland, November 2004, ACM Press New York, NY, USA, 95-

107.

Carley T. W., Barua R., Blum B. 2005. Bel: Periodically Scheduled Medium Access in Mesh

Multi-Hop Wireless Sensor Networks. Under submission to ACM Transactions on Sensor

Networks.

Karp B., Kung H.T. 2000. Greedy Perimeter Stateless Routing (GPSR) for Wireless Networks.

In Proceedings of the 6th International Conference on Mobile Computing and Networking

(Mobicom), Boston, MA, August 2000, ACM Press New York, NY, USA, 243–254.

	Introduction
	Background
	Related Work
	Ns-2
	GloMoSim / QualNet
	J-Sim
	SENSE
	VisualSense
	(J)Prowler
	SENS
	TOSSIM & TOSSF
	ATEMU

	Sidh
	Simulator
	Event
	Medium
	PropagationModel
	Environment
	Node
	Processor
	Transceiver
	Sensor & Actuator
	EnergySupply
	Physical Protocol
	MAC Protocol
	Routing Protocol
	Application Layer

	Conclusions
	References

