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1 Introduction 

Wireless sensor networks are a hot research area, and gathering increasing attention from 

industry. Several new workshops, conferences, and journals are dedicated to wireless sensor 

networks. In addition, many popular conferences and journals have sessions, tracks, or special 

issues dedicated to sensor networks. The research in these publications investigate new hardware 

platforms, protocols, applications, programming environments, etc. One open research problem 

is to be able to accurately and efficiently evaluate these new approaches. 

In many cases it is impractical to experiment on real wireless sensor network systems; there are 

several reasons for this. First, a proposed hardware platform, while theoretically possible, may 

not be manufactured. An example of this is a low power system-on-chip hardware platform that, 

while possible, is not yet practical to manufacture due to up-front design, mask, and fabrication 

costs. Second, even if the hardware platform exists, it may be prohibitively expensive. An 

example of this is research protocol or application that requires hundreds or thousands of nodes 

to evaluate. With current nodes costing approximately one hundred of dollars, evaluating this 

research could cost thousands to tens of thousands of dollars. Third, even if it is practical to 

evaluate research on the real hardware platform, it may not be practical to experiment in an 

appropriate environment. An example of this are wireless sensor networks which operate on 

glaciers [Martinez et al. 2004], remote wildlife habitats [Szewczyk et al. 2004], detect tanks 

[Abdelzaher et al. 2004], and other environments with which it is expensive or dangerous to 

experiment. 

One solution to this problem is to simulate the sensor network system. This is an approach that is 

common in other network research for similar reasons to those above. In fact, a number of tools 

are currently used to simulate sensor networks systems. These simulators have limitations that 

make them less than ideal for wireless sensor networks; we discuss them briefly here, and in 



more detail in section 3. First, many of these simulators are designed for other types of networks; 

for instance, wired TCP/IP networks. Others, though wireless, are made to simulate WLAN 

networks and 802.11 protocols, and are also inherently IP networks. Also, some simulators that 

are designed specifically for sensor networks are limited to a specific programming environment, 

TinyOS. In addition, wireless sensor network simulators vary greatly in their accuracy of 

modeling the wireless medium; some only model the medium at a high level that is appropriate 

for roughly evaluating applications, others model the medium at the accuracy needed to evaluate 

low level protocols such as MAC. Finally, many simulators do not simulate the sensors, the 

physical phenomenon they measure, or the environment in which they operate. 

We introduce Sidh (pronounce shee as in banshee); a wireless sensor network simulator designed 

to address these problems. Sidh is built from the ground up to simulate sensor networks. Sidh is 

efficient; it scales to simulate networks with thousands of nodes faster than real-time on a typical 

desktop computer. Sidh is component based and easily reconfigurable to adapt to different: levels 

of simulation detail and accuracy; communication media; sensors and actuators; environmental 

conditions; protocols; and applications. 

The remainder of this paper is organized as follows. Section 2 expands on some background 

material. Section 3 describes related work in network simulators used to evaluate sensor 

networks. Section 4 details the design of Sidh. Section 5 concludes the paper. 

2 Background 

In section 1 we state that several new workshops, conferences, and journals are dedicated to 

wireless sensor networks; in addition, many popular conferences and journals have special 

sessions, tracks, and issues dedicated to wireless sensor networks.  Workshops on sensor 

networks include: Workshop on Security of Ad Hoc and Sensor Networks (SASN); International 

Workshop on RFID and Ubiquitous Sensor Networks (USN); International Workshop on 

Broadband Advanced Sensor Networks (BaseNets); European Workshop on Wireless Sensor 

Networks (EWSN); International Workshop on Heterogeneous Wireless Sensor Networks 

(HWISE). Conferences on sensor networks include: IEEE Communications Society Conference 

on Sensor and Ad Hoc Communications and Networks (SECON), Conference on Embedded 

Networked Sensor Systems (SenSys); International Conference on Sensor Networks (SENET); 



Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP); International 

Symposium on Information Processing in Sensor Networks (IPSN). Journals include: ACM 

Transactions on Sensor Networks (TOSN). Popular conferences and journals with sessions, 

tracks, or special issues dedicated to sensor networks include: International Conference on 

Mobile Computing and Networking (MobiCom); International Conf. on Mobile Systems, 

Applications, and Services  (Mobisys); IEEE Conference on Computer Communications 

(INFOCOM); IEEE International Real-Time Systems Symposium (RTSS); International Journal 

of Wireless and Mobile Computing (IJWMC); EURASIP Journal on Wireless Communications 

and Networking; Inderscience International Journal of Ad Hoc and Ubiquitous Computing; IEEE 

International Conference on Mobile and Wireless Communications Networks (MWCN); IEEE 

Wireless Communications and Networking Conference (WCNC).  

3 Related Work 

As we discuss in section 1, there are a number of simulators that have been used in sensor 

network research. Here we discuss only simulators that can be used to evaluate wireless sensor 

network research. There are a number of other network simulators; however, for one reason or 

another they are inappropriate for evaluating wireless sensor network research. 

3.1 Ns-2 

Ns (http://www.isi.edu/nsnam/ns/) is a discrete event networks simulator that began in 1989 as a 

variant of an even earlier network simulator. It is written in a combination of C++ and OTcl, an 

object oriented scripting language. Ns is a very popular network simulator, but is effectively 

limited to IP networks due to low level assumptions. Support for wireless networks was added in 

1997; it is designed to simulate wireless LAN protocols, though later expanded to mobile ad-hoc 

networks. Ns supports only two wireless MAC protocols, 802.11, and a single-hop TDMA 

protocol. The single-hop TDMA MAC protocol was added in 2000, and is still considered 

preliminary. A project at the Naval Research Laboratory (NRL) produced an extension to ns for 

sensor networks (http://nrlsensorsim.pf.itd.nrl.navy.mil/) [Downard 2004]. This extension adds a 

phenom channel for modeling physical phenomena such as sensor and the environment. 

However, 802.11 is used for the MAC protocol, which is not representative of sensor network 

MAC protocols. In conclusion, while ns has been used to evaluate wireless sensor networks, the 



accuracy of results are questionable since the MAC protocols, packet formats, and energy 

models are very different from those of typical sensor network platforms. 

3.2 GloMoSim / QualNet 

GloMoSim (http://pcl.cs.ucla.edu/projects/glomosim/) [Zeng et al. 1998] began in 1998 as a 

simulator for mobile wireless networks. It is written in parsec, a variant of C with parallel 

programming extensions. The latest version of GloMoSim dates back to 2000. Further 

development has been commercialized into the QualNet product (http://www.scalable-

networks.com/). GloMoSim has several choices for radio propagation, CSMA MAC protocols 

(including 802.11), mobile wireless routing protocols, and implementations of UDP and TCP. 

GloMoSim is good at simulating of mobile IP networks.  However, GloMoSim is effectively 

limited to IP networks because of low level design assumptions. Therefore, it suffers the same 

problems as ns; the packet formats, energy models, and MAC protocols are not representative of 

those used in wireless sensor networks. Also, GloMoSim does not provide support for sensors, 

actuators, physical phenomena, or environmental conditions. While GloMoSim has been used to 

evaluate wireless sensor networks, the accuracy of results are questionable. 

3.3 J-Sim 

J-Sim (http://www.j-sim.org/) began in 1999 as a generic component based, compositional 

simulation framework. J-Sim is similar to ns in that is written in two languages; however, in J-

Sim’s case they are Java and Jacl, a java version of Tcl. On top of this framework a general 

packet switching network was built. This includes many internet protocols. Support for mobile 

wireless networks and sensor networks was added in 2004 (http://www.j-

sim.org/v1.3/sensor/JSim.pdf). J-Sim provides support for sensors and physical phenomena. 

Energy modeling, with the exception of radio energy consumption, is also appropriate for sensor 

networks. However, the only MAC protocol provided for wireless networks is 802.11. Therefore, 

accuracy of simulations still suffers.  

3.4 SENSE 

SENSE (http://www.cs.rpi.edu/~cheng3/sense/) is a recent sensor network simulator started in 

2004 [Chen et al. 2004]. It is similar to J-Sim in that it is component based, but is written in C++ 

in order to avoid the perceived inefficiency of Java. SENSE runs on top of COST, a component 



based discrete event simulator that is written in CompC++, a component extension to C++. 

SENSE supports an energy model that is sufficient for wireless sensor networks. SENSE supports 

only an unrealistic perfect NullMAC protocol, where messages arrive instantly with no 

possibility of collision or error, and an 802.11 MAC protocol. SENSE does not support sensors, 

physical phenomena, or environmental effects. Overall, the MAC protocol support and radio 

propagation make SENSE less than ideal for accurate evaluation of wireless sensor network 

research. 

3.5 VisualSense 

VisualSense (http://ptolemy.eecs.berkeley.edu/visualsense/) is a modeling and simulation 

framework for wireless sensor networks that build on and leverages Ptolemy II 

(http://ptolemy.eecs.berkeley.edu) [Baldwin et al. 2005]. VisualSense provides an accurate and 

extensible radio model. The radio model is based on a general energy propagation model that can 

be reused for physical phenomena. VisualSense provides a sound model based on this 

propagation model that is accurate enough to use for localization. VisualSense is a good 

framework; however, it does not provide any protocols above the wireless medium, nor any 

sensor or physical phenomena other than sound. 

3.6 (J)Prowler 

Prowler (http://www.isis.vanderbilt.edu/projects/nest/prowler/index.html) and JProwler 

(http://www.isis.vanderbilt.edu/projects/nest/jprowler/index.html) are probabilistic wireless 

sensor network simulators. Prowler is written in Matlab, while JProwler is written in Java. 

(J)Prowler is targeted to the Berkeley MICA Mote hardware platform running application built 

on TinyOS, though it could be modified to simulate more general systems. (J)Prowler provides 

an accurate radio model. However, it provides only one MAC protocol, the default MAC 

protocol of TinyOS (circa 2004). (J)Prowler also does not provide support for sensors or 

physical phenomena. 

3.7 SENS 

SENS (http://osl.cs.uiuc.edu/sens/) is a high level sensor network simulator [Sundresh et al. 

2004]. SENS is written in C++ and built with the gcc compiler. SENS provides a few models of 

wireless medium ranging from: a simple perfect model; to a probabilistic message loss model; to 



an interference and collision model. SENS does not accurately simulate a MAC protocol. SENS 

provides support for sensors, actuators, and physical phenomena only for sound. 

3.8 TOSSIM & TOSSF 

TOSIM [Levis et al. 2003] and TOSSF [Perrone et al. 2002.] are both sensor network simulators 

build specifically to simulate the Berkeley MICA Mote hardware platform running applications 

built on TinyOS. In the name of efficiency TOSIM uses an inaccurate probabilistic bit error 

model for the wireless medium. This is sufficient when evaluating a high level application, but 

not when evaluating low level protocols such as MAC. TOSIM does simulate the Mote’s devices 

including digital I/O and A/D. This enables simulating sensors and actuators; however, it does 

not simulate the physical phenomena that are sensed. Another limitation of TOSIM is that each 

node must run the exact same code. TOSSF is similar to, and inspired by, TOSIM. TOSSF 

addresses the above limitations of TOSIM. One limitation of TOSSF is that it no longer simulates 

the devices as accurately as TOSIM. 

3.9 ATEMU 

ATEMU is a software emulator for the AVR processor and the Berkeley MICA2 Mote hardware 

platform [Polley et al. 2004]. Since ATEMU is binary compatible with the MICA2 Mote 

hardware platform, it also supports TinyOS binary application unchanged. ATEMU only supports 

a simple free-space propagation model of the wireless medium. In ATEMU different sensor 

nodes can run different executables. The primary strength of ATEMU is that it is the most 

accurate simulator for a particular hardware platform. Conversely, the main limitation of 

ATEMU is its dependence on the MICA2 Mote hardware architecture. 

4 Sidh 

Sidh is a simulator specifically designed for wireless sensor networks and is greatly influenced 

by related work discussed in section 3. Sidh is efficient; it scales to simulate networks with 

thousands of nodes faster than real-time on a typical desktop computer. Sidh is component based 

and easily reconfigurable to adapt to different: levels of simulation detail and accuracy; 

communication media; sensors and actuators; environmental conditions; protocols; and 

applications. Sidh is written in Java for portability. 



Sidh is composed of a set of modules. A few modules are accessed via method calls; these 

modules are defined by a Java interface. The use of an interface allows modules to be replaced 

with different implementations. All other modules interact, via Simulator, through events. The 

use of events ensures that the timing of interactions is respected. The use of events also ensures 

that modules are not directly dependent on each other. Therefore, Sidh is configured by selecting 

independent modules, and can even be re-configured on-line. The selection of modules is 

governed by matching the events generated and consumed by modules. The modules currently 

supported in Sidh can be organized in to the following categories: Simulator; Events; Medium; 

Environment; Node; Transceiver; Protocols, Applications. Each category is represented by an 

interface that defines its methods and events generated and consumed. The following sub-

sections discuss each of these categories, and other modules available in Sidh. 

4.1 Simulator 

Simulator is a discrete event simulator module, and is the foundation of Sidh. It is an 

implementation of the interface Simulator_I. The interface Simulator_I is how modules interact 

with the simulator. Simulator provides methods to: add and remove events; clear the event 

queue; generate random numbers and time values; convert time units; and run the simulation 

either for a given time or until the event queue is empty. Simulator uses a binary heap data 

structure to manage events based on the time at which they are fired. 

4.2 Event 

Event is an abstract base class that provides basic functionality for all events. Particular events 

are sub-classes of class Event. Event contains the time at which an event should fire. Event 

provides methods to: compare events based on their fire times; determine whether events are 

equal; print themselves to a string; and an abstract method to fire the event. Sub-classes of Event 

provide an interface for Listeners of that event. They also have members that are parameters for 

the event. The abstract inherited fire event is overridden to call the Interface’s method with the 

parameters. 

4.3 Medium 

Medium models the wireless medium. Medium is allows nodes to broadcast signals, and is 

responsible for informing nodes of signals that affect it. In order to do this Medium must be 



informed of the presence of every node, and any changes in position or radio properties such as 

transmitter power or receiver sensitivity. Medium has the properties of bandwidth and 

wavelength of the medium modeled. For instance a wavelength of 2.4 GHz with a bandwidth of 

250 Kbps is one medium used by the 802.15.4 physical layer specification. Medium also has a 

reference to a propagation model that is given to it at the time of construction. The propagation 

model provides the strength at a particular receiver from a signal transmitted by a given 

transmitter. 

4.4 PropagationModel 

PropagationModel defines the strength of a signal at a particular receiver from a particular 

transmitter at a particular instant of time. The interface of PropagationModel defines methods for 

getting the maximum and the instantaneous signal strength for a given transmitter and receiver 

pair. The maximum signal strength is useful for determining interference relationships. There are 

many theoretical and practical models for signal propagation; these can be realized as 

implementations of the PropagationModel interface. Models that have been implemented 

include: free space propagation; two ray ground reflection; Rayleigh and Ricean fading; and 

Radio Interference Model (RIM) [Zhou et al. 2004]. Many more models exist, and wireless 

signal propagation is still an active research area.  

4.5 Environment 

The Environment module is similar to Medium module. The difference is that the 

implementation of Environment has properties that relate to the physical phenomenon modeled. 

Environment also has a propagation model similar to PropagationModel that models the 

propagation of the physical phenomena modeled. Physical phenomena of interest in sensor 

networks include: temperature; light; humidity; magnetic field; sound; optical; chemical 

presence. 

4.6 Node 

Node represents a single node in a wireless sensor network. As such, it serves as a container for 

all of the components, both hardware and software, in a node. These components include: 

processor; transceiver; sensors; actuators; energy source (such as a battery); network protocols; 

and applications. In addition each node has the properties of location and identification. 



4.7 Processor 

The Processor module models the processor on the sensor node; examples include TI’s msp430 

or Atmel’s AVR. This module models processor state such as low power modes and the energy 

consumption of each state. Processor consumes events to change its state, and generates events to 

notify of changes in power consumption. 

4.8 Transceiver 

This module models the hardware transceiver on each sensor node. It models the transceiver 

states (i.e. sleep, standby, receive, and transmit), and their associated behavior and power 

consumption. Sleep mode is the lowest power state the transceiver can be in, in which even the 

oscillators are off. This state takes the longest to switch out of. Standby mode uses more power 

than sleep since the oscillators are running. Receive and Transmit use the most power since they 

are either powering the antenna or actively trying to decode a signal. Which mode, transmit or 

receive, uses more power changes with transceiver type. For instance, in a narrow band 

transceiver transmit uses more power than receive. However, in wideband transceivers, such as 

Direct Sequence Spread Spectrum (DSSS), receive uses more power than transmit. 

Transceiver consumes events informing it of the beginning and ending of every signal it 

receives. It sums active signals to maintain the interference. Transceiver generates events for the 

beginning and ending of every signal it transmits. These events are all exchanged with an 

instance of the Medium module. Transceiver maintains properties for the Signal to Interference 

and Noise Ratio (SINR) thresholds necessary to begin receiving a signal, and to receive a signal 

without corruption. It also maintains properties for receiver gain, and transmitter power output. 

When a signal start event is received its SINR is checked against the receive SINR threshold; if it 

is greater than the threshold then the message is tracked as a potential message to receive. When 

the matching signal end event is received then its minimum SINR is compared to the SINR 

corruption threshold; if it is greater than the threshold then the message is received. 

4.9 Sensor & Actuator 

Sensor and Actuator modules are similar to Transceiver modules. The biggest difference is that 

they interface to an Environment module rather than a Medium module. Another difference is in 



the properties they maintain. Sensor and Actuator modules maintain properties consistent with 

the physical phenomenon they model. 

4.10 EnergySupply 

This module models the energy supply for each node. Many energy supplies are possible, but 

batteries are most common. Several battery technologies exist, and have different properties; for 

instance: alkaline; lithium; nickel cadmium; and nickel metal hydride. EnergySupply consumes 

events that announce changes in power consumption and voltages requirements of other 

modules. EnergySupply generates events only under conditions in which it cannot supply the 

power or voltage requirements of other modules; for instance, a battery is drained. 

4.11 Physical Protocol 

The Physical protocol is the lowest layer in a network stack. It is often implemented in the 

transceiver hardware. The Physical layer provides services for: changing the state of the 

transceiver; carrier sensing or Clear Channel Assessment (CCA); sending and receiving packets; 

received energy detection on received packets; changing channels on physical layers that support 

multiple channels.  

4.12 MAC Protocol 

The MAC protocol is the next layer in a network stack. It is usually implemented in software 

running on the node’s processor. The MAC layer provides services for: changing the state of the 

MAC layer (i.e. low power mode); setting and getting protocol parameters; sending and 

receiving packets; etc. Sidh offers implementations for several sensor network MAC protocols, 

including: a simple CSMA MAC protocol; Bel [Carley et al. 2005]; B-MAC [Polastre et al. 

2004]; and TRAMA [Rajendran et al. 2003]. 

4.13 Routing Protocol 

The Routing protocol resides above the MAC protocol and provides services for routing 

messages over multiple hops between nodes that cannot communicate directly. One routing 

protocol implemented in Sidh is Greedy Perimeter Stateless Routing (GPSR) [Karp and Kung 

2000] 



4.14 Application Layer 

The Application layer resides at the top of the network stack. It interfaces with the lower layers 

in the network stack as well as the sensors and actuators to implement a wireless sensor network 

application. An example of a wireless sensor network application implemented on Sidh is 

EnviroTrack [Abdelzaher et al. 2004]. In [Carley et al. 2005] we use EnviroTrack to evaluate 

MAC protocols including Bel, B-MAC, and TRAMA. 

5 Conclusions 

In conclusion, in this report we introduced Sidh, a simulator specifically designed for wireless 

sensor networks. Sidh is efficient; it scales to simulate networks with thousands of nodes faster 

than real-time on a typical desktop computer. Sidh is component based and easily reconfigurable 

to adapt to different: levels of simulation detail and accuracy; communication media; sensors and 

actuators; environmental conditions; protocols; and applications. 
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