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In wireless networks, a transmitted message may successfully reach multiple

nodes simultaneously, which is referred to as the Wireless Multicast Advantage. As

such, intermediate nodes have the ability to capture the message and then contribute

to the communication toward the ultimate destination by cooperatively relaying the

received message. This enables cooperative communication, which has been shown

to counteract the effects of fading and attenuation in wireless networks. There

has been a great deal of work addressing cooperative methods and their resulting

benefits, but most of the work to date has focused on physical-layer techniques and

on information-theoretic considerations. While compatible with these, the main

thrust of this dissertation is to explore a new approach by implementing cooperation

at the network layer.

First, we illustrate the idea in a multi-hop multi-access wireless network, in

which a set of source users generate packets to deliver to a common destination.

An opportunistic and dynamic cooperation protocol is proposed at the network



level, where users with a better channel to the destination have the capability and

option to relay packets from users that are farther afield. The proposed mode of

cooperation protocol is new and relies on MAC/Network-level of relaying, but also

takes into account physical-layer parameters that determine successful reception at

the destination and/or the relay. We explicitly characterize the stable throughput

and average delay performance. Our analysis reveals that cooperation at the network

layer leads to substantial performance gains for both performance metrics.

Next, on top of the network-layer cooperation, we investigate enhanced coop-

erative techniques that exploit more sophisticated physical-layer properties. Specif-

ically, we consider dynamic decode-and-forward, superposition coding, and multi-

packet reception capability, and we quantify the extent to which the enhancement

techniques can further improve the stable throughput region. Then we revert back

to the two-user multi-access channel with single-packet reception, which has been

extensively studied in the case of no cooperation. After cooperation is permitted

between the two users, we revisit the relationship between the stability region and

the throughput region under both scheduled access and random access schemes.

Finally, we shift our focus from the packet-level to bit-level multi-access chan-

nels. By exploiting the bit-nature of a packet, we create a bridge between tra-

ditional physical-layer-based transmission rates and classical MAC/Network-layer-

based throughput rates. We first obtain the closed form of the stability region in

bits/slot. Then, as a separate, but related issue, we look at the minimum delivery

time policy; for any initial queue size vector, the optimal policy that empties all bits

in the system within the shortest time is characterized.



TOWARD LAYERLESS COOPERATION AND RATE CONTROL
IN WIRELESS MULTI-ACCESS CHANNELS

by

Beiyu Rong

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Anthony Ephremides, Chair/Advisor
Professor Michael Fu
Professor Richard J. La
Professor Prakash Narayan
Professor Lawrence C. Washington, Dean’s Representative



c© Copyright by
Beiyu Rong

2010



Acknowledgments

My deepest gratitude goes to my advisor, Professor Anthony Ephremides, for

his enormous help and support during my Ph.D. study in Maryland. He is the person

who led me to the road of research. His way of doing research and his enthusiasm in

both research and life will continue to influence me. I am so fortunate to be advised

by an extraordinary person like him.

I would like to thank Professor Ioannis Krikidis for giving me the opportunity

to collaborate with him. I am much grateful to Professor Jie (Rockey) Luo, for his

useful advice and continuous encouragement.

I owe my gratitude to all people who have helped me and made this dissertation

possible, including my friends, my officemates, and so many others that I am unable

to list their names here.

ii



Table of Contents

1 Introduction 1
1.1 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Network-Layer Cooperation . . . . . . . . . . . . . . . . . . . 2
1.2 Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Network-Level Cooperative Access: Stable Throughput and Delay Analysis 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Cooperation Strategy . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Queue Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Cooperative Work-Conserving Policy . . . . . . . . . . . . . . . . . . 18
2.3.1 Stable Throughput Region . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Delay Minimizing Policy . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Average Delay Characterization . . . . . . . . . . . . . . . . . 25

2.4 Cooperative TDMA policy . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Stable Throughput Region . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Average Delay Characterization . . . . . . . . . . . . . . . . . 31

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.2 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . 45
2.7.4 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.5 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . 53

3 Enhanced Cooperation Based on Physical-Layer Techniques 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 DDF and Superposition Coding . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 Dynamic Decode-and-Forward . . . . . . . . . . . . . . . . . . 61

3.2.2.1 Non-Cognitive DDF (NC-DDF) . . . . . . . . . . . . 64
3.2.2.2 Cognitive DDF (C-DDF) . . . . . . . . . . . . . . . 67

3.2.3 Superposition Coding . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3.1 Conventional Cooperation with Superposition (S-CC) 71
3.2.3.2 Cognitive DDF with Superposition (SC-DDF) . . . . 72

3.2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Multipacket Reception Capability . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.2 Opportunistic Cooperation Scheme . . . . . . . . . . . . . . . 78

iii



3.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Stability and Throughput Regions for Cooperative Multi-Access 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Scheduled Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.2 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Optimal Policy for the Throughput Region . . . . . . . . . . . 107

4.4 Random Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.2 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.3 Optimal Policy for the Throughput Region . . . . . . . . . . . 116

4.5 Network Coding at the Relay Node . . . . . . . . . . . . . . . . . . . 118
4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.1 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . 123

5 Rate Control 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Stability Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 Minimum Delivery Time Policy . . . . . . . . . . . . . . . . . . . . . 140
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 146
5.6.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusion 155
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 160

iv



Chapter 1

Introduction

Traditional analysis and implementation of wireless networks still view the

network as a collection of point-to-point links. However, this approach is not appro-

priate, and in most cases, not accurate. Unlike the wired counterpart where links

are well established, the connection between any pair of nodes in wireless networks

depends on a lot of factors such as transmission power, distance, fading, target

bit-error-rate, and interference from concurrent transmissions. In addition, if we

assume isotropic medium and omnidirectional antennas, a transmitted message is

capable of being received by multiple nodes simultaneously, which is referred to as

the “Wireless Multicast Advantage” [1]. In light of these facts, extraordinary efforts

have been made on “cross-layer” design, which links different layers but still treats

them separately. In this dissertation, we aim at a “layerless” approach that “fuses”

the physical, MAC and network layers.

In a wireless multi-access system, user nodes share the common channel. Their

transmissions are not only interfering, but also, users are capable of overhearing each

other’s transmission. Thus, the multi-access channel exhibits almost every facet for

the basic understanding of wireless communications and the ultimate performance

limits.
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1.1 Cooperative Communication

As implied by the wireless multicast advantage, intermediate nodes have the

ability to capture the transmission and then contribute to the communication toward

the destination by cooperatively relaying the data packets. Cooperative communi-

cation exploits spatial diversity inherent to wireless channels, which is an important

tool to counteract the effects of fading, shadowing and attenuation. Initially, spatial

diversity was achieved in single communication links via the use of multiple anten-

nas [2, 3]. However, in wireless networks, the effect of multiple antennas can be

realized through the combined use of the antenna resources that actually reside at

different nodes.

The notion of cooperative relaying has received a great deal of attention. Most

of it, so far, has focused on the physical layer and on information-theoretic consider-

ations [4,5,6,7,8,9,10,11]. While compatible with these, our work in this dissertation

focuses on simply and intelligently implementing cooperation at the network layer,

while taking into account the physical layer properties and realizations as well as

the MAC layer protocols.

1.1.1 Network-Layer Cooperation

A number of cooperative signaling methods have been addressed in physical-

layer studies, including decode-and-forward (DF), amplify-and-forward (AF), coded

cooperation, compress-and-forward (CF). In contrast to these sophisticated signaling

methods, our work considers only “reliable forwarding”, in the sense that a node
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will only forward the packet from another node if the packet is successfully decoded,

the process of which is independent from the source’s direct link to the destination.

We will show that a simple and practical forwarding protocol can actually lead

to significant performance improvement if the cooperation strategies are properly

designed.

In this part of work for network-layer cooperation, the communication unit

is considered to consist simply of a packet, without regard to its bit-content. If a

transmission is successful, the entire packet is considered to be decoded without er-

ror; otherwise, the packet is not successfully decoded and is discarded. We assume a

channel with fading and attenuation which also includes the effects of additive white

Gaussian noise, and is shared by all transmitting nodes. When node i transmits a

packet with power P , the probability that node j can successfully decode the packet

is given by

pi,j = P

[ |hi,j|2P
Pint + N0

> γ

]

(1.1)

where hi,j is the channel gain from node i to node j, which can either be distance-

dependent only as in free-space communication or can include the effects of different

types of fading represented by a random variable. As usual, the fading process is

assumed to remain constant during one slot, but may change independently from

one slot to another while retaining the same distribution. The quantity Pint is the

received power at receiver j resulting from transmissions other than from node i,

and N0 is the noise power level at j. The parameter γ is the signal-to-interference-
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plus-noise ratio (SINR) threshold required for correct decoding1.

The adopted SINR criterion is a useful tool for incorporating the physical-

layer properties into the network-layer analysis. This probabilistic reception channel

modeling in principle allows the communication between any pair of nodes in the

network, but with obviously different levels of likelihood based on the attenuation

of the signal.

At the network layer, cognitive cooperation has attracted increasing attention

for its efficient utilization of wireless network resources [12,13,14]. Basically, cogni-

tive relaying is enabled only when the relay node senses an idle time slot (or other

channel resource) of the primary user and hence transmits a relayed packet in that

slot. However, our work in this dissertation reaches far beyond the idea of cognitive

cooperation. First, without introducing extra “pure” relay to assist the transmis-

sion, all users in the network can help relay packets for others. We consider the

general case where all users may have their own information data to be delivered

to the destination while also relay information of other users. Second, instead of

allowing cooperation only during the idle slots, we consider a variety of medium ac-

cess schemes amongst users. Both conflict-free scheduled access and random access

schemes are investigated. Third, the cooperation in our study involves a multi-

hop relaying concept. In addition, the relaying pattern is not fixed but dynamic,

depending on instantaneous channel outcomes.

Although full-duplex mode is possible (but at an increased implementation

1This SINR criterion is fully accurate for Gaussian signals and noise, and increasingly accurate
as the number of interfering signals increases (no matter what their statistics are) by the cental
limit theorem.
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cost), in our work, we assume that the node cannot transmit and receive at the

same time. As such, the intermediate node will have to remain silent if it wants to

overhear a transmission. A question that naturally arises is, whether the intermedi-

ate user nodes will suffer performance loss as they waste time slots for capturing and

relaying packets from other users. A remarkable result from our work is that, by

opportunistically choosing the relaying node, all user nodes in the network can simul-

taneously achieve performance gains. The advantages and gains of cooperation are

mainly evaluated in terms of two performance metrics: (i) stable throughput region

and (ii) average delay. We observe that the improvement is not solely due to coop-

erative diversity which is the case with information-theoretic studies, but rather it

is also due to the concentration of packets from disparately distributed queues into

fewer virtual queues. This is to be revealed and discussed in the next chapter.

1.2 Rate Control

As implied by Eq. (1.1), the channel reception quality depends on the value

of γ, which is an increasing function of the transmission bit-rate. If we encode more

bits into a packet, the transmission is less sustainable under fixed channel condition

and interference; on the other hand, higher packet throughput can be achieved by

lowering the number of bits in a packet. Therefore, it is more appropriate and

accurate to formulate the problem at the bit level, and evaluate the performance

metrics such as bit throughput and bit delay.

In a multi-access channel, given that there are multiple users, the feasible

5



transmission bit-rate depends on whether other users transmit simultaneously or

not. In this part of dissertation, we extend our study in multi-access channels from

the packet reception to more realistic channel model, by exploring the bit-nature

of a packet. As a first step, we restrict our attention to the two-user case. Then,

a trade-off arises as to whether to activate one transmission at a time with higher

instantaneous transmission rate (measured in bits/slot), or to let both users transmit

simultaneously but at lower individual instantaneous rates, to combat interference

and ensure successful reception at the destination.

The balance of such trade-off is illustrated through two performance metrics:

stable throughput region and total delivery time. The two performance metrics are

obtained from different assumptions and have different meanings, but are related

to each other. The optimal rate control policies with regard to both performance

metrics are explicitly characterized in Chapter 5. Our results indicate that the

optimal policies for achieving different objectives vary and depend on the values of

some crucial system parameters.

There are two forms of “rate” measures: (i) the traditional throughput region,

which is based on a networking perspective and is measured in packets per time-

unit (slot), and (ii) the Shannon capacity region, which is based on an information-

theoretic perspective and is expressed in bits per time-unit. Our bit-level multi-

access channel study is, in a sense, “layerless”, and combines the two perspectives (to

some degree) and is, thus, a step towards the ultimate goal of unifying information

theory and networking theory [15].

6



1.3 Performance Measures

A common assumption with information-theoretic studies and many other

networking approaches is that source nodes are always backlogged with information

bits. The corresponding capacity limits mostly studied are the Shannon capacity re-

gion and the maximum throughput region respectively. The former one, which does

not fall into the scope of this dissertation, is the usual Shannon-theoretic region;

it can be sometimes characterized when symbol length and delay are allowed to

approach infinity. The latter one measures the maximum rates that can be commu-

nicated by assuming saturated queues. Such saturated queue assumption neglects

the bursty traffic nature of a real network. In this dissertation, the emphasis will be

given on the stable throughput region. The stable throughput region, also called the

stability region, is a “rate” measure based on the networking perspective under the

assumption of bursty arrivals. It quantifies the maximum rates sustainable by the

network while ensuring that all queues remain stable – i.e., the queues are “infinitely

often” empty2. We will show in the following chapters that the traffic burstiness is

crucial for the performance improvement of our network-layer cooperation amongst

different users. With the proposed cooperation protocol, theoretical analysis proves

that the stable throughput region is substantially improved; in other words, all users

in the network can simultaneously increase their stable throughput rates.

Despite the fact that the stability region and the throughput region are defined

with different assumptions and have different impacts, there is strong evidence that

2A precise technical definition of queue stability is provided in [16].
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the two regions are identical in multi-access channels, under a variety of channel

and traffic models [17,18,19,20,21]. If it is true, it supports the conjecture that the

empty state of the queue is immaterial in determining stability. The relationship of

these two regions has been extensively studied in the case of no cooperation. In this

dissertation, we would like to revisit it after cooperation is permitted. As there are

multiple data streams at the intermediate node, it is not immediately clear whether

the priority policies assigned over these streams will affect the result.

Queue stability in the cases we study implies finite queueing delay. With

infinite reservoir of bits or packets, only the transmission delay is accounted in the

delay performance. However, the queueing delay can be a significant component of

overall delay if the information data is assumed to arrive randomly at the source

user. The total delay of a packet is counted from the epoch it enters the system to

the epoch it is delivered to the destination, which includes the queueing delay at

multiple intermediate nodes the packet has stayed with.

In addition, we address another notion of “delay” in the rate control problem:

the total delivery time. Given that an initial amount of traffic volume is located at

the sources at a given time, and if there are no more arrivals, the minimum delivery

time policy is defined as the rate allocation policy that drains all bits in the network

within the shortest time.

8



1.4 Outline of the Dissertation

The first part of this dissertation is devoted to cooperative communication

at the network layer. In Chapter 2, we present a new cooperation concept in a

general wireless multi-access system, where there are a finite number of users and

a common destination. We provide the option to users that have a better user-

destination channel to relay packets from those that are farther afield; as a result,

almost all users in the network behave as both user and relay. We consider conflict-

free, work-conserving transmission policies as well as plain Time Division Multiple

Access (TDMA) policy. For the case of an erasure channel, the stable throughput

and delay performance under both medium access control policies are investigated.

Chapter 3 deals with the enhancement of the network-layer cooperation through

the exploitation of sophisticated physical-layer techniques. Then, in Chapter 4, we

revisit the relationship between the stability region and the throughput region in

the context of a network-layer cooperative multi-access channel, under a centralized

scheduled access and a random access scheme respectively. The second part of

this dissertation aims to address the subtle interactions between bits and packets in

multi-access channels. By associating the transmission rates with the channel access

policies, the achievable stability region (measured in bits/slot) in a random access

system is derived; in addition, the optimal policy to empty all bits in the minimum

time is explicitly characterized. This is presented in Chapter 5. Finally, Chapter

6 summarizes the contributions of this dissertation and points out possible future

research directions.
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Chapter 2

Network-Level Cooperative Access: Stable Throughput and Delay

Analysis

2.1 Introduction

Previous work in cooperative communication has mainly focused on the phys-

ical layer and on information-theoretic considerations [4, 5, 6, 7, 8, 9, 10,11]. In these

settings, information bit streams have been modeled as continuous data flows, while

the rate regions have been defined as Shannon rate regions which can be some-

times characterized when symbol length and packet delay are allowed to approach

infinity. Some recent work, however, has implemented cooperation at the network

protocol level, and performance gains in terms of (stable) throughput, delay and en-

ergy efficiency were demonstrated. In [12,13,14], cognitive cooperation was enabled

by considering the bursty nature of real source users, in which the cognitive relay

transmitted the packets relayed from the source during the idle time slots.

In this chapter, we study a more general relaying tactic at the network layer

by exploiting cooperation amongst source users. We consider a wireless multi-access

system which consists of N source users and a single common destination. Instead

of allowing for only the N point-to-point links between the sources and the destina-

tion, here, any node pair in the network may form a direct communication link as

10
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Figure 2.1: Wireless multi-access system with packet-erasure channels. A total of N
users, indexed by {1, 2, . . . , N}, transmit unicast traffic to the common destination
node (N + 1). The channel reception probabilities are denoted above the channels.

depicted in Fig. 2.1. The N source nodes are ordered in the following way: node 1 is

the “farthest” node from the destination node (N + 1), and every subsequent node

i is progressively “closer” to (N + 1), and node N is the “closest” to (N + 1). This

distance notion can either be represented as real distance in free-space communica-

tion, or “virtual” distance that also includes all types of fading. Therefore node i is

considered to have a better channel to (N + 1) than (i− 1) does. Thus, we provide

the option to node i to relay packets of its predecessor nodes 1, 2, . . . , (i− 1) in lieu

of its own packets if the transmission by these predecessor nodes is unsuccessful but

correctly received by node i. Specifically, the cooperation idea is as follows: when

node i transmits a packet, if the packet is not successfully decoded by the destina-

tion, it may still be decoded by some subsequent source nodes from (i + 1) to N ;

then a selection process is activated and the node among the decoding set with the

best source-destination channel will relay that packet, while all other nodes drop

that packet; if none of i’s subsequent nodes or the destination node decodes the

packet, node i will retransmit that packet later on.

11



Due to the subtle complexity incurred by cooperation, we restrict our attention

to conflict-free scheduling only; that is, we do not allow contention. Basically, we

consider two types of MAC policy (i.e. transmission scheduling at the source nodes):

conflict-free work-conserving policies and Time Division Multiple Access (TDMA)

policy. Under the work-conserving policies, we characterize the stable throughput

region and establish that all work-conserving policies following the proposed cooper-

ation strategy have the same stable throughput region. This region strictly contains

the stable throughput region when cooperation is not permitted. The backpressure

algorithm introduced in [22] was proved to achieve the maximum stable through-

put region, and it must be conflict-free and work-conserving; but in general, not all

conflict-free work-conserving policies are optimal. Our work exhibits a special case

where all conflict-free work-conserving policies result in the same region. Subse-

quently, the optimal work-conserving policy that minimizes the average delay over

all packets in the system is determined among all cooperative work-conserving poli-

cies; and in the special case of two source users, where the user with a relatively weak

channel to the destination has higher priority to transmit, we derive the closed-form

expressions for the average delay experienced by each user’s packets. Our results

indicate that cooperation reduces the delay substantially for all users in the network.

Under the TDMA policy, both the stable throughput region and average delay are

characterized; likewise, we show that cooperation leads to significant improvement

for both performance indices. Finally, we characterize the effect of inter-user channel

quality on performance, and show that the gain in performance through cooperation

increases as the inter-user channel quality improves.

12



2.2 Model

We consider the slotted wireless multi-access system shown in Fig. 2.1. N

source nodes, indexed by 1, 2, . . . , N , transmit unicast traffic to a common destina-

tion node (N + 1). The sources are equipped with a buffer of infinite capacity to

store the packets. Traffic burstiness is considered by modeling the arrival process

for each source node i as a Bernoulli process with rate λi (i ∈ {1, 2, . . . , N}). These

processes are independent from node to node and i.i.d (independently and identi-

cally distributed) over time slots. In the following, we denote i-th source’s packets

as class-i packets, so there is a total of N classes of packets flowing in the network.

The channel is slotted, and the transmission of a packet takes the duration of exactly

one time slot.

We adopt the packet-erasure channel model as described in Section 1.1.1. Since

we assume conflict-free scheduling only at the MAC layer, corresponding to any node

pair (i, j), we denote by pi,j the probability that node j successfully decodes the

packet transmitted by node i. Further, the channel reception processes are assumed

to be independent across all receivers. As mentioned in Section 2.1, node i has a

better channel to the destination than (i−1) does, and hence, has a higher successful

delivery probability. Therefore, we have pN,N+1 > pN−1,N+1 > . . . > p1,N+1. As

usual, we assume that acknowledgements (ACKs) are instantaneous and error-free,

and all nodes in the system can hear the ACKs. This relatively strong assumption

is necessary and common for packet communication and establishes upper bounds

to performance for both the cooperative and non-cooperative cases.
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2.2.1 Cooperation Strategy

The relaying by nodes with a better channel to the destination is expected to

yield performance gains. This intuition leads to the following cooperation strategy

idea: When node k transmits a packet,

• If the destination (N + 1) successfully decodes the packet, it broadcasts an

ACK to the network, so the packet exits the system.

• Otherwise, if the destination doesn’t decode the packet, but some nodes from

the set {k+1, k+2, . . . , N} decode the packet, the node with the largest index

among them (that is the node with the best channel to the destination among

those that decode the packet) will keep the packet and take the responsibility

to forward the packet, while all other nodes will drop that packet in this

case. This can be done if any of k’s subsequent node that decodes the packet

generates an ACK, then by checking all the ACKs, if a node finds itself to

be the one with the largest index, it stores the packet, otherwise it drops the

packet.

• Finally, if neither the destination nor any of k’s subsequent source nodes de-

codes the packet, the packet remains at k’s queue for retransmission.

With this form of cooperation, except for node 1 which only transmits its own

packets, every other source node k, for 2 ≤ k ≤ N , may forward some packets

from any of its predecessor nodes besides its own packets. When node k transmits a

packet, generally k is allowed to randomly select a packet in its queue, either its own
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packet or a packet relayed from any of its predecessor nodes. We acknowledge that

some performance indices, for example, the delay experienced by each individual

packet class, depends on the specific transmission priority policy; we will discuss

this issue later when the performance is evaluated.

Before we proceed to the next section, we would like to make a few comments

regarding this cooperation strategy:

• This type of cooperation is opportunistic in the sense that it always tries to

push the packets to the “best” possible source node. The concept of relaying

at the network layer is similar to routing. Some work [23, 24] has focused

on multi-hop wireless network routing, using the term “dynamic routing” or

“opportunistic routing”. However, the objective and the approach in those

work are quite different from ours. It focused on finding better routing pro-

tocols; the intermediate nodes served only for routing the packets toward the

destination. To demonstrate the advantage of the proposed routing proto-

cols, simulation results were provided solely without any analytical solutions.

By contrast, our work investigates the impact of cooperation in which source

nodes relay packets for each other in case the direct links fail; every node

(except for the destination) has its own data to deliver to the destination. A

mathematical model is developed for this cooperative multi-access system; by

assuming bursty packet arrivals, we are interested in the performance mea-

sures of stable throughput and delay. The stable throughput region is defined

as the union of all arrival rate vectors (in packets/slot) to the sources such
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that all queues in the network remain ergodic. The intermediate nodes have

their own data, and it is not obvious at first glance that such cooperation can

benefit all source nodes including the intermediate nodes, as they take extra

workload for relaying packets from predecessor nodes.

• The description of the cooperation strategy appears simple; but we should

emphasize that instead of being a fixed relaying strategy, this strategy is dy-

namic. In each time slot, a packet is selected to be relayed by the “best”

possible node, based on the current channel outcome. The total number of all

possible routes experienced by a packet originated from source i to the desti-

nation (N +1) can be calculated to be 2N−i. We illustrate this fact in a simple

network with N = 3 source nodes in Fig 2.2. A packet transmitted from node

1 can either be directly delivered to the destination node 4 (Fig. 2.2(a)), or

relayed through different sets of intermediate nodes via a varying number of

hops (Fig. 2.2(b)(c)(d)).

• This cooperation strategy will require all N source nodes to exchange ACK

information, but, considering that only one bit is needed for each ACK to

indicate successful reception, the cooperation overhead becomes negligible and

we can easily incorporate it into our analysis without affecting the results in

any substantial way. Therefore, we provide the results without addressing the

cooperation overhead.

• The cooperation strategy has the effect of concentrating packets into fewer

“virtual” queues: at each source node k, the packets in node k’s queue comprise
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Figure 2.2: An example of the relaying process in a network with N = 3 sources and
a single destination node indexed by 4. A packet from node 1 reaches destination 4
through (a) direct transmission, (b)(c)(d) relaying by intermediate nodes.

in general a total number of k classes of packets. In [12], packets tended to

be pushed to a single relay; here, with a more general relay tactic, packets are

gradually concentrated into several intermediate nodes hop-by-hop toward the

destination. Given the option to multiplex the traffic streams originated from

different sources, the performance limit that can be approached must be an

upper bound to that achieved in the non-cooperative case, where packets of

different sources are kept in disparate source queues.

2.2.2 Queue Stability

Denote by X t
k the number of arrivals to the queue at node k during the t-th

time slot, and Y t
k the number of departures from node k. The queue length evolves

according to the following form

Qt+1
k = [Qt

k − Y t
k ]+ + X t

k (2.1)
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As defined in [25], the queue is stable if

lim
t→∞

P
[
Qt

k < x
]

= F (x) and lim
x→∞

F (x) = 1 (2.2)

The system is stable if and only if all queues are stable. Under our model, the queue

length vector Qt = {Qt
1, Q

t
2, . . . , Q

t
N} forms an irreducible, aperiodic Markov chain,

and the queue stability is equivalent to the positive recurrence of the Markov chain.

An important tool to determine stability is Loynes’ Theorem [16], which states that

if the arrival and service processes in a queueing system are jointly stationary, the

queue is stable if and only if the average arrival rate is strictly less than the average

service rate3. We also use the criterion in [26], which establishes that in a work-

conserving system, the system is stable if the proportion of time the system is busy

is less than 1. With these tools we characterize the stable throughput region as the

union of all arrival rate vectors (λ1, λ2, . . . , λN) such that all queues in the system

remain stable.

2.3 Cooperative Work-Conserving Policy

At the MAC layer we separately consider conflict-free, work-conserving policy

on one hand, and a TDMA policy on the other. This section will address the work-

conserving policy, while the TDMA policy is described and analyzed in Section 2.4.

A policy is defined to be conflict-free and work-conserving if two conditions are

3Stability at the boundary with equivalence between the arrival rate and service rate is hard to
determine, and is out of the scope of this dissertation.
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satisfied simultaneously: (i) the system is not idling whenever there are packets in

the system; (ii) at most one backlogged source node transmits at each time slot, so

there is no contention (i.e., productive work is accomplished when there is demand in

the system). Nodes can access the channel via any one of almost countless disciplines

as long as they do not violate any of these two conditions. We will show that

all conflict-free work-conserving policies have the same stable throughput region,

regardless of the transmission priority policy for deciding which class of packets

to serve at the transmitter. By incorporating the cooperation strategy stated in

Section 2.2.1, the cooperative work-conserving policy is described as follows:

• When a backlogged user node k accesses the channel, it randomly picks up a

packet from its queue and transmits. The packet can be from its own arrivals,

or a packet that node k relays from any of its predecessor nodes.

• If the destination decodes the packet successfully, it sends back an ACK, and

the packet is removed from the system.

• If the destination fails to decode the packet, but there is at least one node in

the set {k+1, k+2, . . . , N} that decodes the packet, the node with the largest

index among the decoding set is the one that queues the packet; by checking

the ACKs, all other nodes that have a copy of the packet can safely drop the

packet.

• If none of the nodes from (k + 1) up to (N + 1) decode the packet, the packet

remains in the queue of node k for retransmission.
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2.3.1 Stable Throughput Region

As the total arrival process to each source node depends on the departure

processes of all its predecessor nodes, the interaction among the N queues makes

the stability analysis extremely difficult. In this part, we present the main results

with respect to the stable throughput region.

Theorem 2.1 Λ = (λ1, λ2, . . . , λN) is the external Bernoulli arrival rate vector.

The stable throughput region under any cooperative work-conserving policy is the

same, and is independent of the transmission priority policy adopted by the source

nodes in scheduling among different classes of packets. The stable throughput region

is characterized by

ℜ =

{

Λ :
N∑

k=1

rk

1 − ∏N+1
i=k+1 (1 − pk,i)

< 1

}

(2.3)

where

r1 = λ1

rk = λk +
k−1∑

i=1

(

pi,k

∏N+1
m=k+1 (1 − pi,m)

)

ri

1 − ∏N+1
j=i+1 (1 − pi,j)

k ∈ [2, N ] (2.4)

Proof: See Appendix 2.7.1. ¥

Theorem 2.2 Nodes in the network are ordered such that pN,N+1 > pN−1,N+1 >

. . . > p1,N+1. With such ordering, the stable throughput region of the cooperative sys-

tem strictly contains the stable throughput region when cooperation is not performed.
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The maximum stabilizable arrival rates for source nodes from 1 up to (N−1) strictly

increase, while the maximum stabilizable arrival rate for node N stays unaffected.

Proof: See Appendix 2.7.2. ¥

The stabilizable point (0, 0, . . . , λmax
N ) at the boundary is unchanged after co-

operation is performed; this does not mean that cooperation is not beneficial at this

point. Indeed, this point corresponds to the case where there are no arrivals to all

the other sources, but only source node N is delivering data to the destination with-

out assistance from any other node (since source N has the best source-destination

channel). The multi-access system in this case reduces to a single channel, and the

maximum stabilizable rate for source N is always pN,N+1. If we draw a line across

the region, we can easily see that all source users simultaneously increase their stable

throughput rates.

2.3.2 Delay Minimizing Policy

In the case of no cooperation, the problem of optimal server allocation for

scheduling among the source-destination links has been extensively studied, includ-

ing in [27,28,29]. The stability analysis in Section 2.3.1 establishes that all cooper-

ative conflict-free work-conserving policies have the same stable throughput region;

however, the delay performance depends on the specific work-conserving policy. The

class of conflict-free, work-conserving policy includes also dynamic policies that base

their decisions on the past observations and past actions of the system. We are in-

terested in characterizing the optimal work-conserving policy that minimizes the
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average delay over all packets in the system. In this case, the transmission priority

policy at each node in deciding what class of packet to serve is irrelevant, and the

optimal policy needs only to schedule what source node to be activated at each time

slot. The optimal work-conserving policy is given in the following theorem:

Theorem 2.3 Among all cooperative, conflict-free, work-conserving policies, the

policy that minimizes the average delay over all packets in the system is the policy

that at each time slot, activates the backlogged source node with the best channel to

the destination.

Proof: Denote by G the set of all cooperative work-conserving policies, and π0 the

policy which activates the backlogged source node with the best channel to the

destination at each time slot. Before we give out the proof, a few preliminaries are

needed.

Let Ai(t) denote the Bernoulli arrivals to node i at time slot t. For any work-

conserving policy, at each time slot, if there are packets in the system, the system

never idles, and one and only one backlogged node is activated. This is represented

by the binary random variable Mi(t), which is equal to one if the backlogged node i is

activated to transmit at slot t; and equal to zero otherwise. If all N source nodes are

empty, Mi(t) is equal to zero for all i (i ∈ {1, 2, . . . , N}). When node i is activated,

the transmitted packet will either exit the system with a certain probability, or will

remain at i’s queue or will be relayed to a subsequent source node j for j > i. In the

latter case, the total number of packets in the system stays unaffected. Denote by

Ui(t) the service process at slot t, which is equal to one if and only if the transmitted
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packet from node i is decoded by the destination, and hence, exits the system, and

is equal to zero otherwise. At each time slot, there can be at most one departure.

We denote by X(t) the total number of packets in the system by the end of

slot t. Under our assumptions, the total number of packets in the system evolves

according to

X(t + 1) =

[

X(t) −
N∑

i=1

Ui(t)Mi(t)

]+

+
N∑

i=1

Ai(t) (2.5)

And, as stated above, at each slot t, there can be at most one value of i, for which

Ui(t)Mi(t) is equal to 1.

Let X0 = {X(t)}∞t=1 be the process of the total number of packets in the system

under policy π0, and X the corresponding process when some policy π ∈ G acts on

the system. To prove the optimality of π0, first we prove that when the initial state

is the same, X0 is stochastically smaller than X, that is,

X0 ≤st X (2.6)

We first show that at t = 0, inequality (2.6) is satisfied; then we show that if

inequality (2.6) is satisfied at some time t, then it is satisfied at (t + 1) as well. To

prove this, recall the following property of stochastic ordering:

Property 2.1 If u : ℜn → ℜ is an increasing function and Ai and Bi are inde-

pendent sets of random variables with Ai ≤st Bi for each i, then u (A1, . . . , An) ≤st

u (B1, . . . , Bn).
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The initial state is the same under either policy; so we have

X0(0) ≤st X(0) (2.7)

If at time slot t, we have

X0(t) ≤st X(t) (2.8)

we want to show

X0(t + 1) ≤st X(t + 1) (2.9)

When node i transmits a packet, the packet exits the system if and only if

the destination decodes the packet; this occurs with probability pi,N+1. Else the

packet stays in the system (either in the queue of node i, or in the queue of one

of i’s subsequent nodes), which occurs with probability 1 − pi,N+1. So Ui(t) is a

Bernoulli random variable which takes the value 1 with probability pi,N+1, and 0

with probability 1 − pi,N+1. We have p1,N+1 < p2,N+1 < . . . < pN,N+1, so it is true

that for every t,

U1(t) <st U2(t) <st . . . <st UN−1(t) <st UN(t) (2.10)

and Ui(t) are independent from node to node, and i.i.d over all slots for each i.
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Policy π0 activates the source node i with the largest pi,N+1 among all back-

logged source nodes at each time slot, so we have

∑N

i=1 Ui(t)Mi(t)
∣
∣
∣
π0

≥st

∑N

i=1 Ui(t)Mi(t)
∣
∣
∣
π

⇐⇒ −∑N

i=1 Ui(t)Mi(t)
∣
∣
∣
π0

≤st −
∑N

i=1 Ui(t)Mi(t)
∣
∣
∣
π

(2.11)

Since X0(t) ≤st X(t), according to the queue length evolution form in Eq. (2.5), and

by applying Property 2.1, we show that inequality (2.9) holds.

Therefore, we arrive at the conclusion that the process of the total number

of packets in the system under policy π0 is stochastically smaller than the corre-

sponding process of any other policy π ∈ G. This implies that the average number

of packets in the system under π0 is smaller than that of any π ∈ G. Finally, by

Little’s law, we conclude that the average delay over all packets under policy π0 is

the minimum among all cooperative conflict-free work-conserving policies. ¥

2.3.3 Average Delay Characterization

Given that the delay minimizing policy has been found, we would also like to

characterize the average delay, which is a function of the number of packets. It is

known that delay analysis of more than two interacting queues is next to impossi-

ble [17, 25]; thus we focus our attention on the case of two users. The work in [30]

analyzed delay of interfering queues in packet-radio networks under the collision

channel model; the technique relies on solving the moment-generating function of

the joint stationary queue lengths. We notice that the delay performance with re-
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spect to each individual packet class depends on not only the MAC policy, which

schedules the activation of the source users, but also on the transmission priority

policy for deciding what class of packet to serve at the transmitter. Therefore, in this

part, we investigate the delay performance of a special work-conserving policy that

is priority-based. With the objective to somehow balance the network resources in

a fair way between users, let us assume that the priority rule assigns higher priority

to packets of source user 1, which has a relatively weak user-destination channel.

First we describe this cooperative priority-based policy in detail:

• User 1 has higher priority than user 2 to access the channel. When user 1 is

backlogged, it transmits a packet. If the destination decodes the packet, the

packet exits the system; otherwise, if user 2 decodes the packet, user 2 queues

the packet for retransmission, and user 1 drops the packet. If neither user 2

nor the destination decodes the packet, the packet remains at user 1.

• When user 1 is empty, user 2 accesses the channel. If there are both class-1

and class-2 packets in its queue, user 2 picks a packet belonging to class 1 and

transmits that packet first; if there are only class-2 packets in its queue, user 2

transmits a packet of class 2. If the transmitted packet is successfully decoded

by the destination, the packet exits the system; otherwise, the packet stays at

user 2’s queue.

We assume that on a control sub-channel, nodes share their queue status

information in order for this policy to be implementable. According to the stated

cooperative priority-based policy, there are three queues involved in the analysis, as
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Figure 2.3: Two-user case: under the cooperative priority-based policy, there are
three queues involved in the analysis.

illustrated in Fig. 2.3:

1. Q1: The packets that arrive to user 1 according to the external Bernoulli

process with rate λ1.

2. Q21: The packets at user 2 that are relayed from user 1.

3. Q22: The packets that arrive to user 2 according to the external Bernoulli

process with rate λ2.

Besides, we can merge Q21 and Q22 at user 2, and denote the merged queue by Q2.

We have the following proposition:

Proposition 2.1 Under the cooperative priority-based policy, if the system is stable,

D1 and D2, which represent the average delay of class-1 packets and class-2 packets

respectively, are given by

D1 =
N1 + N21

λ1

(2.12)

D2 =
N2 − N21

λ2

(2.13)
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where,

1. N1, the average queue length of Q1, is given by

N1 =
−λ2

1 + λ1

p1,2 + p1,3 − p1,2p1,3 − λ1

(2.14)

2. N21, the average queue length of Q21, is given by

N21 =
fλ2

1 + gλ1

aλ2
1 + bλ1 + c

(2.15)

with

f = (p1,2 − p1,2p1,3)
( p2,3 − p1,3

p1,2 + p1,3 − p1,2p1,3

− p1,2 − p2,3 + p1,2p1,3

)

g = (p1,2 − p1,2p1,3) (p1,2 + p1,3 − p1,2p1,3)

a = p1,2 + p2,3 − p1,2p1,3

b = (p1,2 + p1,3 − p1,2p1,3) (−p1,2 − 2p2,3 + p1,2p1,3)

c = p2,3 (p1,2 + p1,3 − p1,2p1,3)
2

(2.16)

3. N2, the average queue length of Q2, is given by

N2 =
AD − BC

D − B
(2.17)
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with

A =
−λ2

1 − λ2
2 + λ1 + λ2 − λ1λ2

p1,3 − λ1 − λ2

+
λ2

1 − λ1

p1,2 + p1,3 − p1,2p1,3 − λ1

B =
p1,3 − p2,3

p1,3 − λ1 − λ2

C =
−λ2

2 + λ2 + p1,2−p1,2p1,3

p1,2+p1,3−p1,2p1,3
λ1

−λ2 − p1,2 + p1,2p1,3

D =
−p1,2 − p2,3 + p1,2p1,3

−λ2 − p1,2 + p1,2p1,3

(2.18)

Proof: See Appendix 2.7.3. ¥

2.4 Cooperative TDMA policy

In this section, we consider the TDMA policy at the MAC layer. User nodes

access the channel via a TDMA-based schedule; each source node is allocated a

fraction of time in each frame to access the channel. Let Ω = (ω1, ω2, . . . , ωN)

denote the time allocation vector for the N nodes; all feasible time allocation vectors

should satisfy ΣN
i=1ωi ≤ 1. Together with the proposed cooperation strategy, the

cooperative TDMA policy is described as follows:

• At the beginning of node k’s assigned time slot, k transmits a packet from

its queue if it is backlogged; if k is empty, the slot is not utilized. Just as

before, node k randomly picks a packet to transmit, either a packet from its

own arrivals, or a packet it relays from any predecessor node.

• If the destination decodes the packet successfully, the packet is removed from

the system.
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• If the destination fails to decode the packet, then, if there are some nodes

among k’s subsequent source nodes that decode the packet, only the node with

the largest index among them queues the packet for retransmission, while all

others drop that packet.

• If none of the nodes from (k + 1) up to (N + 1) decode the packet, the packet

remains in the queue of node k for retransmission.

2.4.1 Stable Throughput Region

Under the TDMA policy, for each allocation vector (ω1, ω2, . . . , ωN), we can

find a corresponding region containing all arrival rates that are stabilizable; then,

we will take the union of such regions over all possible allocation vectors that satisfy

ΣN
i=1ωi ≤ 1. Therefore, for any point (λ1, λ2, . . . , λN) inside the thus obtained stable

throughput region, there exist time allocations (ω1, ω2, . . . , ωN) such that the queues

in the system remain stable.

Theorem 2.4 The stable throughput region under the cooperative TDMA policy is

independent of the transmission policy adopted by the source nodes in scheduling

among different classes of packets, and is equal to the stable throughput region of

the cooperative work-conserving policy, with the region given by Eq. (2.3) of Theo-

rem 2.1.

Proof: See Appendix 2.7.4. ¥

Under the non-cooperative TDMA policy, by using the same technique, the

non-cooperative stable throughput region can be easily obtained, and is the same as
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the stable throughput region of the non-cooperative work-conserving policy. Such

region is given by Eq. (2.34) in Appendix 2.7.2. Therefore, as stated by Theorem 2.2,

the cooperative TDMA policy provides a larger stable throughput region than the

non-cooperative TDMA policy.

At light traffic, the TDMA policy idles the time slot even when there are pack-

ets in the system. As the arrival rates increase until they reach the boundary of the

stable throughput region, some or all of the queues grow without bound. Hence, at

the boundary, the TDMA policy becomes conflict-free and work-conserving. This

explains the phenomenon that the cooperative work-conserving policy and the co-

operative TDMA policy have the same stable throughput region.

2.4.2 Average Delay Characterization

As explained in Section 2.3.3, the delay analysis will be conducted for the

case of two users only. Under the cooperative TDMA policy, when user 2 accesses

the channel, it randomly selects a packet from its queue to transmit, either its own

packet, or a packet relayed from user 1. Therefore, at user 2, the relayed packets

and source packets are merged into a single queue to be served. In this case, there

are only two queues involved in the analysis: the queue at user node 1, and the

queue at user node 2, denoted by Q1 and Q2 respectively.

When the system is stable, we derive the analytical delay expressions as func-

tions of the reception probabilities, as well as of the allocation vector (ω1, ω2).

Among all allocation vectors that stabilize the system, we solve for the optimal
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allocation (ω∗
1, ω

∗
2) that minimizes the average delay over all packets in the system.

The results lead to:

Proposition 2.2 Under the cooperative TDMA policy, if the system is stable, the

minimum average delay over all packets that can be achieved by the optimal (ω∗
1, ω

∗
2)

is

D∗
Avg(TDMA) =

(√

b1 (−r2
2 + r2 + αλ1λ2) +

√

b2(−r2
1 + r1)

)2

(λ1 + λ2)(b1b2 − b1r2 − b2r1)
(2.19)

With (ω∗
1, ω

∗
2), the average delay of class-1 packets is

D1(TDMA)|(ω∗
1 ,ω∗

2) =
(−r1 + 1)

(

b2 +
√

b1b2(−r2
2+r2+αλ1λ2)

−r2
1+r1

)

b1b2 − b1r2 − b2r1

+
α (−r2

2 + r2 + αλ1λ2)
(

b1 +
√

b1b2(−r2
1+r1)

−r2
2+r2+αλ1λ2

)

r2 (b1b2 − b1r2 − b2r1)
(2.20)

the average delay of class-2 packets is

D2(TDMA)|(ω∗
1 ,ω∗

2) =
(−r2

2 + r2 + αλ1λ2)
(

b1 +
√

b1b2(−r2
1+r1)

−r2
2+r2+αλ1λ2

)

r2 (b1b2 − b1r2 − b2r1)
(2.21)
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with

r1 = λ1

r2 =
p1,2(1 − p1,3)

p1,2 + p1,3 − p1,2p1,3

λ1 + λ2

b1 = 1 − (1 − p1,2)(1 − p1,3)

b2 = p2,3

α =
p1,2(1 − p1,3)

p1,2 + p1,3 − p1,2p1,3

(2.22)

Proof: See Appendix 2.7.5. ¥

2.5 Numerical Results

In Fig. 2.4, we compare the stable throughput regions of the cooperative poli-

cies and the non-cooperative policies in the two-user case. The stable throughput

region of the non-cooperative policies is characterized by Eq. (2.34), with N = 2,

in Appendix 2.7.2. In this plot, the reception probabilities of the user-destination

channels are chosen to be p1,3 = 0.3, p2,3 = 0.8; while for the inter-user channel

we study three channel conditions with reception probabilities: p1,2 = 0.4, 0.6, 0.85

(note that p1,2 affects the performance of the cooperative case only). The stable

throughput region of the cooperative policies is found to strictly contain that of the

non-cooperative policies, and the region increases as the inter-user channel condition

improves.

In Fig. 2.5 and Fig. 2.6, we demonstrate the benefit of cooperation in the delay
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performance for class-1 packets and class-2 packets respectively, under the priority-

based policy. The channel reception probabilities are chosen as those for plotting

Fig. 2.4. Using the same technique, we obtain the delay performance under the

non-cooperative priority-based policy as:

(a) The average delay of class-1 packets is

D1|non-coop =
−λ1 + 1

p1,3 − λ1

(2.23)

(b) The average delay of class-2 packets is

D2|non-coop =
(−p1,3 + p2,3 − p1,3p2,3) λ1 − p2

1,3λ2 + p1,3λ1λ2 + p2
1,3

(p2,3λ1 + p1,3λ2 − p1,3p2,3) (λ1 − p1,3)
(2.24)

We let λ1 = λ2 = λ and vary λ to obtain the shown plots. It is seen that,

when cooperation is permitted, both class-1 and class-2 packets experience signif-

icantly reduced average delay. And when the inter-user channel quality improves,

cooperation leads to higher performance gains for both users.

In Fig. 2.7-2.9, we illustrate the benefit of cooperation in terms of the delay

performance under the TDMA policy. Using the same technique, the minimum

overall average delay achievable under the non-cooperative TDMA policy is obtained

as

D∗
Avg(TDMA)

∣
∣
non-coop =

(√

p1,3λ2(1 − λ2) +
√

p2,3λ1(1 − λ1)
)2

(λ1 + λ2) (p1,3p2,3 − p1,3λ2 − p2,3λ1)
(2.25)

With the optimal allocation vector that achieves the minimum delay in Eq. (2.25),
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the average delay of class-1 packets and class-2 packets in the non-cooperative case

is given by

D1(TDMA)|non-coop =
(1 − λ1)

(

p2,3 + p1,3

√
p2,3λ2(1−λ2)

p1,3λ1(1−λ1)

)

p1,3p2,3 − p1,3λ2 − p2,3λ1

(2.26)

D2(TDMA)|non-coop =
(1 − λ2)

(

p1,3 + p2,3

√
p1,3λ1(1−λ1)

p2,3λ2(1−λ2)

)

p1,3p2,3 − p1,3λ2 − p2,3λ1

(2.27)

Fig. 2.7 shows that the minimum overall average delay is substantially de-

creased after cooperation is performed under the TDMA policy. It is also seen that

the delay performance for both the class-1 packets and class-2 packets is greatly im-

proved over that of the non-cooperative case, as illustrated by Fig. 2.8 and Fig. 2.9

respectively. Moreover, a better inter-user channel reduces delay when cooperation

is permitted.

2.6 Discussion

In this chapter, we studied a new concept of cooperation at the network level.

In a wireless multi-access system consisting of a number of sources and a single des-

tination, the cooperation among the source users was defined so that a transmitted

packet, if not decoded by the destination, was relayed by the source user with the

best possible source-destination channel among those that decoded it. With an era-

sure channel model which captures the effects of fading and attenuation, as well as

the multicast advantage of wireless channels, the impact of our cooperation strategy

was evaluated under two classes of cooperative MAC policies separately.
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In Section 2.3, we investigated the class of cooperative work-conserving policy.

First, the stable throughput region was explicitly characterized, and was proved to

be the same for all cooperative, work-conserving policies. This region strictly outer-

bounds the corresponding region of the non-cooperative policy. Then, among the

class of all cooperative work-conserving policies, which also includes dynamic poli-

cies designed according to the whole system history, we explicitly characterized the

optimal policy that minimizes the average delay. And for the two-user cooperative

priority-based policy, we derived the analytical delay expressions for each packet

class. It was shown that both users’ packets experience reduced average delay after

cooperation is performed.

In Section 2.4, we investigated the cooperative TDMA policy. Similar obser-

vations were obtained as for the cooperative work-conserving policy. By taking the

union of all time allocation vectors, the achievable stable throughput region was ex-

plicitly characterized, and was shown to be the same as the stable throughput region

we obtained for the cooperative work-conserving policy, which strictly outer-bounds

the non-cooperative stable throughput region. The average delay performance for

the two-user case was quantified subsequently; our results showed that cooperation

substantially reduces the delay for both users.

Although the motivating reason for cooperation is not discussed, the fact that

all users can simultaneously increase stable throughput rates and experience less

average delay can serve as a motivation for cooperation. This is somehow “anti-

intuitive”, since it seems that the intermediate user nodes will suffer performance

loss by wasting time slots for relaying others’ packets that could be rather used for
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their own packets. For example, in the simple case of two users shown in Fig. 2.3,

it seems that user 2 “wastes” a fraction of time for transmitting user 1’s packets.

However, it turns out that user 2 is indeed gaining from the relaying. This is

because, by opportunistically relaying user 1’s packets through user 2 which has a

better user-destination channel, the cooperation strategy results in emptying user

1’s queue faster; in return, more network resources can be utilized for delivering user

2’s packets. As a result, all users simultaneously achieve performance gains.

So far, we considered only the single-packet reception channel model, and the

transmission of different users was scheduled in different time slots. In Chapter 3,

we will continue our line of research by implementing cooperation at the network

layer, while incorporating several enhancement techniques that are based on the

physical layer. The work in this chapter touches on two elements that are ignored by

classical information-theoretic studies of cooperation: source burstiness and delay.

In Chapter 4, we will consider both cases of bursty source and saturated source;

corresponding to these two cases, we will assess two “rate” measures and examine

their relations.

2.7 Appendix

2.7.1 Proof of Theorem 2.1

In a conflict-free, work-conserving system, the system is stable if the proportion

of time the system is busy is less than 1. Denote by ρk the proportion of time source
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Figure 2.4: Comparison of the stable throughput regions under cooperative and
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node k is transmitting (k ∈ {1, 2, . . . , N}); the system is stable if

N∑

k=1

ρk < 1 (2.28)

where ρk is the utilization factor of node k, given by ρk = rk/µk, where rk is the

average total arrival rate to node k, and µk is the average service rate seen by k.

Then we need to calculate rk and µk for every node k, 1 ≤ k ≤ N .

At node 1’s queue, we have r1 = λ1. A packet will depart node 1 if the packet

is decoded by at least one node from node 2 up to node (N + 1), so the service rate

received by node 1 is

µ1 = 1 −
N+1∏

j=2

(1 − p1,j) (2.29)

Then we analyze node k’s queue, for k ≥ 2. The total arrival processes to node

k consist of two parts: first, the external Bernoulli arrival process to node k with

rate λk; and second, the arrivals from the predecessor node 1 up to node (k − 1). It

remains to calculate the arrival rate to node k from the predecessor nodes. When

node i (for 1 ≤ i ≤ k− 1) transmits a packet, the packet will be dropped by i if it is

decoded by at least one node in the set {i+1, i+2, . . . , N +1}, which has probability

1−∏N+1
j=i+1 (1 − pi,j). When i transmits, the packet will be relayed to node k’s queue,

if and only if k decodes the packet and none of the nodes from (k + 1) to (N + 1)

decode the packet, which happens with probability pi,k

∏N+1
m=k+1 (1 − pi,m). Hence,

we obtain the conditional probability that a transmitted packet by node i is relayed
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to the queue at node k given that the transmitted packet departs node i’s queue,

which is

pi,k

∏N+1
m=k+1 (1 − pi,m)

1 − ∏N+1
j=i+1 (1 − pi,j)

(2.30)

We know that when the queue at node i is stable, the departure rate is the

same as the total arrival rate to the queue, which is ri. Therefore, the total arrival

rate to node k from node i is

(

pi,k

∏N+1
m=k+1 (1 − pi,m)

)

ri

1 − ∏N+1
j=i+1 (1 − pi,j)

(2.31)

If we take the summation of all arrival rates from node 1 up to (k− 1), and add the

external Bernoulli arrival rate λk, we obtain that the total arrival rate rk to node k

is

rk = λk +
k−1∑

i=1

(

pi,k

∏N+1
m=k+1 (1 − pi,m)

)

ri

1 − ∏N+1
j=i+1 (1 − pi,j)

(2.32)

Then we evaluate the average service rate node k receives. A packet will be

dropped from k’s queue if and only if the packet is decoded by at least one node

from the set {k + 1, k + 2, . . . , N + 1}, so the average service rate node k receives is

µk = 1 −
N+1∏

m=k+1

(1 − pk,m) (2.33)

Finally, by substituting rk and µk into the stability condition expressed by
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Eq. (2.28), the stable throughput region of the cooperative work-conserving pol-

icy is shown to be given by Eq. (2.3) of Theorem 2.1. Besides, the above analy-

sis and derivation is independent of the transmission policy by each node k (k ∈

{1, 2, . . . , N}) in deciding what class of packet to transmit. We should also remark

here that the above analysis is the same for any conflict-free work-conserving pol-

icy, so the results of Theorem 2.1 hold for any cooperative policy as long as it is

conflict-free and work-conserving.

2.7.2 Proof of Theorem 2.2

It is easy to show by repeating the same argument as before that, the stability

condition for the non-cooperative, work-conserving policy is given by

N∑

k=1

λk

pk,N+1

< 1 (2.34)

while the stability condition for the cooperative work-conserving policy is given in

Eq. (2.3) of Theorem 2.1. By checking Eq. (2.3) and Eq. (2.34), we see that they

both can be expressed by the following form

N∑

k=1

αkλk < 1 (2.35)

where the coefficients αk are functions of the reception probabilities, and are strictly

greater than zero. The region characterized by this form is the region of all points
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under a linear N -dimension hyperplane. Therefore to compare the two regions, it

is necessary and sufficient to compare the maximum rate λmax
k that can be achieved

for every k, since all points under the hyperplane connected by the N maximum

points can be achieved through time-sharing.

Under the non-cooperative work-conserving policy, the maximum stabilizable

arrival rate for node k (1 ≤ k ≤ N) is

λmax
k |non-cooperative = pk,N+1 (2.36)

Under the cooperative work-conserving policy, when k = N , the maximum stabiliz-

able rate for node N is

λmax
N |coopeartive = pN,N+1 = λmax

N |non-coopeartive (2.37)

For 1 ≤ k ≤ N − 1, after we rearrange the terms in Eq. (2.3), the maximum

stabilizable rate for node k can be expressed as

1
(

βk,k

pk,N+1
+

βk,k+1

pk+1,N+1
+ . . . +

βk,N

pN,N+1

) (2.38)

where βk,i are functions of the reception probabilities, strictly greater than zero,

and satisfy
∑N

i=k βk,i = 1. Since pN,N+1 > pN−1,N+1 > . . . > pk,N+1, the following
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inequality holds for every 1 ≤ k ≤ N − 1,

1
(

βk,k

pk,N+1
+

βk,k+1

pk+1,N+1
+ . . . +

βk,N

pN,N+1

) > pk,N+1 (2.39)

Hence, for 1 ≤ k ≤ N − 1, we have

λmax
k |cooperative > λmax

k |non-cooperative (2.40)

Therefore we prove Theorem 2.2. The stable throughput region of the cooperative

work-conserving policy strictly contains the stable throughput region of the non-

cooperative work-conserving policy.

2.7.3 Proof of Proposition 2.1

According to the priority rule, the three queues in Fig. 2.3 are assigned pri-

orities such that Q1 has the highest priority, Q21 has the second highest priority

and Q22 has the lowest priority. First we analyze class-1 packets. We notice that

a class-1 packet may experience two parts of queueing delay: 1) the queueing delay

at user 1, that is, the delay in Q1; and 2) the queueing delay at user 2, that is, the

delay in Q21. If the packet is directly delivered to the destination by user 1, the

packet experiences the queueing delay in Q1 only. This happens with probability

1 − α = p1,3

1−(1−p1,2)(1−p1,3)
; otherwise, if the packet is relayed to user 2 first before it

finally reaches the destination, the packet experiences the total delay which is the
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queueing delay in Q1 plus the queueing delay in Q21. This happens with probability

α = p1,2(1−p1,3)

1−(1−p1,2)(1−p1,3)
. Therefore, the average queueing delay experienced by class-1

packets should be computed as follows

D1 = (1 − α)T1 + α(T1 + T21) = T1 + αT21 (2.41)

where T1 is the average queueing delay in Q1, and T21 is the average queueing delay

in Q21. The arrival rates to Q1 and Q21 are λ1 and αλ1 respectively; by Little’s

Law, we have

T1 = N1/λ1, T21 = N21/αλ1 (2.42)

where N1 and N21 denote the average queue sizes of Q1 and Q21 respectively. By sub-

stituting Eq. (2.42) into Eq. (2.41), the average delay of class-1 packets is computed

by

D1 =
N1 + N21

λ1

(2.43)

Now it remains to calculate N1 and N21. We notice that Q1 is a discrete-time

M/M/1 queue4 with arrival rate λ1 and service rate µ1 = p1,2 + p1,3 − p1,2p1,3; by

4We use the notion of discrete-time M/M/1 queue to describe a queueing system with Bernoulli
arrival process and geometrically distributed service times.
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applying the Pollaczek-Khinchin formula [31], we obtain N1 as

N1 =
−λ2

1 + λ1

p1,2 + p1,3 − p1,2p1,3 − λ1

(2.44)

To calculate N21, we solve the moment-generating function of the joint queue

lengths of Q1 and Q21, denoted by G(x, y) = limt→∞ E
[
xQt

1yQt
21

]
. The queue evolu-

tion has the form shown in Eq. (2.1). Then from the description of the cooperative

priority-based policy stated in Section 2.3.3, it can be seen that:

E
[

xQt+1
1 yQt+1

21

]

= (λ1x + 1 − λ1) ·
{

E
[
1

[
Qt

1 = 0, Qt
21 = 0

]]

+

(
p1,2(1 − p1,3)y

x
+

p1,3

x
+ (1 − p1,2)(1 − p1,3)

)

E
[

xQt
11

[
Qt

1 > 0, Qt
21 = 0

]]

+

(
p2,3

y
+ 1 − p2,3

)

E
[

yQt
211

[
Qt

1 = 0, Qt
21 > 0

]]

+

(
p1,2(1 − p1,3)y

x
+

p1,3

x
+ (1 − p1,2)(1 − p1,3)

)

E
[

xQt
1yQt

211
[
Qt

1 > 0, Qt
21 > 0

]]
}

(2.45)

Let t → ∞ at both sides of Eq. (2.45), we obtain

G(x, y) = (xλ1 + 1 − λ1)
b(x, y)G(0, 0) + c(x, y)G(0, y)

yd(x, y)
(2.46)
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where,

b(x, y) = xyp2,3 − xp2,3

c(x, y) = xp2,3 − yp1,3 − y2p1,2(1 − p1,3) + xy (p1,2 + p1,3 − p1,2p1,3 − p2,3)

d(x, y) = x − (xλ1 + 1 − λ1)
(

p1,3 + yp1,2(1 − p1,3) + x(1 − p1,2)(1 − p1,3)
)

(2.47)

Using the same approach as in [30], G(0, 0) is solved to be

G(0, 0) = 1 − p1,2(1 − p1,3) + p2,3

p2,3 (1 − (1 − p1,2)(1 − p1,3))
λ1 (2.48)

and note that

G(0, 1) = lim
t→∞

P
[
Qt

1 = 0
]

= 1 − λ1

1 − (1 − p1,2)(1 − p1,3)
(2.49)

Define G2(x, y) = dG(x,y)
dy

, so N21 = G2(1, 1). By taking the derivative of Eq. (2.46)

with respect to y, applying L’Hopital’s rule twice, and substituting Eq. (2.48) and

Eq. (2.49), we obtain one equation relating G2(1, 1) and G2(0, 1) as

G2(1, 1) = − λ1

p1,2 + p1,3 − p1,2p1,3

+
p1,2 + p2,3 − p1,2p1,3

p1,2 − p1,2p1,3

G2(0, 1) (2.50)

Then we compute dG(y,y)
dy

∣
∣
∣
y=1

, and note that dG(y,y)
dy

∣
∣
∣
y=1

= G1(1, 1) + G2(1, 1); after

some algebra, we obtain

G2(1, 1) =
(−λ2

1 + λ1) (p1,2 − p1,2p1,3)

(p1,3 − λ1) (p1,2 + p1,3 − p1,2p1,3 − λ1)
+

p1,3 − p2,3

p1,3 − λ1

G2(0, 1) (2.51)
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With Eq. (2.50) and Eq. (2.51), eliminating G2(0, 1) yields N21, which is as

shown in Eq. (2.15) in Proposition 2.1. Now that we have calculated N1 and N21,

from Eq. (2.43), we obtain the average delay of class-1 packets exactly as given by

Proposition 2.1.

Next we analyze class-2 packets. The average queueing delay experienced by

class-2 packets is equal to the average queueing delay in Q22. We merge Q21 and

Q22 to be Q2, and denote by N2 the average queue length of Q2, so N22 = N2 −N21.

N21, the average queue length of Q21, has been derived above; to obtain N22, it

is equivalent to obtain N2. Define H(x, y) = limt→∞ E
[
xQt

1yQt
2

]
as the moment-

generating function of the joint queue lengths of Q1 and Q2. Under the cooperative

priority-based policy, H(x, y) can be written as follows:

H(x, y) = F ′(x, y)
b′(x, y)H(0, 0) + c′(x, y)H(0, y)

yd′(x, y)
(2.52)

where,

F ′(x, y) = (xλ1 + 1 − λ1) (yλ2 + 1 − λ2)

b′(x, y) = xyp2,3 − xp2,3

c′(x, y) = xp2,3 − yp1,3 − y2p1,2(1 − p1,3) + xy (p1,2 + p1,3 − p1,2p1,3 − p2,3)

d′(x, y) = x − (xλ1 + 1 − λ1)(yλ2 + 1 − λ2) (p1,3 + yp1,2(1 − p1,3) + x(1 − p1,2)(1 − p1,3))

(2.53)

Using the same technique as in deriving N21, we derive N2 as shown in Eq. (2.17)
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of Proposition 2.1. Finally applying Little’s Law gives the average queueing delay

of class-2 packets as given by Proposition 2.1.

2.7.4 Proof of Theorem 2.4

Denote by At
k the event that there is an arrival to node k at slot t from the

external Bernoulli process, W t
k the event that slot t is assigned to node k, and Θt

i,k

the event that node k decodes the packet transmitted by node i but none of the

nodes from (k + 1) to (N + 1) decodes the packet.

At node 1, the total arrival rate is λ1. A packet leaves node 1 if the slot is

assigned to node 1, and at least one node from node 2 up to node (N + 1) decodes

the transmitted packet. So the average service rate seen by node 1 is

µ1 = ω1

(

1 −
N+1∏

j=2

(1 − p1,j)

)

(2.54)

For node k, where 2 ≤ k ≤ N , the total number of arrivals X t
k in slot t is given

by

X t
k = 1

[
At

k

]
+

k−1∑

i=1

1
[

W t
i

⋂

{Qt
i 6= 0}

⋂

Θt
i,k

]

(2.55)

where 1 [] is the indicator function. The first term on the right-hand side of Eq. (2.55)

accounts for the external Bernoulli arrival process to node k; the second term ac-

counts for the arrival processes from the predecessor node 1 up to node (k− 1). For

50



1 ≤ i ≤ (k − 1), the packet transmitted by node i will be relayed to node k if the

following three events happen together: first, slot t is assigned to node i; second,

node i is nonempty so i transmits, which has probability ri/µi; and third, k decodes

the packet while none of the nodes from (k + 1) to (N + 1) decodes the packet.

These three events are independent; adding the Bernoulli arrival rate λk, the total

arrival rate to node k is

rk = λk +
k−1∑

i=1

(

ωi

ri

µi

pi,k

N+1∏

m=k+1

(1 − pi,m)

)

(2.56)

To evaluate such rk, we need to calculate µi on the right-hand side of Eq. (2.56),

which is the average service rate seen by node i. A packet will leave node i’s queue

if it is node i’s time slot, and at least one node from the set {i + 1, i + 2, . . . , N + 1}

decodes the packet transmitted by node i. So we have

µi = ωi

(

1 −
N+1∏

j=i+1

(1 − pi,j)

)

(2.57)

By substituting Eq. (2.57) into Eq. (2.56), we obtain rk exactly as shown in Eq. (2.4)

of Theorem 2.1.

Given a fixed allocation vector Ω = (ω1, ω2, . . . , ωN), by using Loynes’ Theo-

rem, the queue at node k is stable if rk < µk; and the system is stable if all queues
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are stable, that is

rk < µk

⇐⇒rk < ωk

(

1 −
N+1∏

j=k+1

(1 − pk,j)

)

(2.58)

for all 1 ≤ k ≤ N , with rk given in Eq. (2.4). The stable throughput region of the

cooperative TDMA policy is then given by the union of the stabilizable arrival rates

(λ1, λ2, . . . , λN) over all feasible allocation vectors that satisfy

N∑

k=1

ωk ≤ 1

ωk ≥ 0, 1 ≤ k ≤ N (2.59)

This problem can be easily solved using vector optimization techniques; after simple

algebra, the stability condition of the cooperative TDMA policy is given by

N∑

k=1

rk

1 − ∏N+1
i=k+1 (1 − pk,i)

< 1 (2.60)

Compared with Eq. (2.3) of Theorem 2.1, we arrive at the conclusion that the

stable throughput region of the cooperative TDMA policy is identical to the stable

throughput region of the cooperative work-conserving policy. It is important to

note here that when we construct the proof, any source node k (k ∈ {1, 2, . . . , N})

is allowed to randomly pick a packet from its queue to transmit (that is, either a

packet from its own arrivals, or a packet relayed from any of its predecessor nodes);
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the above analysis is independent of the transmission priority policy adopted. This

concludes the proof of Theorem 2.4.

2.7.5 Proof of Proposition 2.2

There are two queues to be analyzed, the queue at user node 1 and the queue

at user node 2, denoted by Q1 and Q2 respectively. For a given allocation vector

(ω1, ω2) that stabilizes the system, by using the same technique as in the delay

analysis of the priority-based policy, we obtain the average queue length of Q1 and

Q2 as

N1(TDMA) =
−r2

1 + r1

ω1b1 − r1

(2.61)

N2(TDMA) =
−r2

2 + r2 + αλ1λ2

ω2b2 − r2

(2.62)

with r1, r2, b1, b2 and α given in Eq. (2.22) of Proposition 2.2. The arrival rates to

Q1 and Q2 are r1 and r2 respectively; by Little’s Law, the average queueing delay

in these two queues is

T1(TDMA) =
N1(TDMA)

r1

, T2(TDMA) =
N2(TDMA)

r2

(2.63)

Note that at user 2, the relayed packets and source packets are merged into a

single queue to be served, so the average queueing delay experienced by both class-

1 packets and class-2 packets in Q2 is the same, and is equal to T2(TDMA). By
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following the same argument as in the proof of Proposition 2.1, the average delay of

class-1 packets and the average delay of class-2 packets in the system are calculated

as

D1(TDMA) = T1(TDMA) + αT2(TDMA) (2.64)

D2(TDMA) = T2(TDMA) (2.65)

And the average delay over all packets in the system is given by

DAvg(TDMA) =
λ1D1(TDMA) + λ2D2(TDMA)

λ1 + λ2

=
N1(TDMA) + N2(TDMA)

λ1 + λ2

(2.66)

Then we want to minimize the overall average delay given in Eq. (2.66) by

optimizing over all possible allocation vectors under the following constraints:

λ1

1 − (1 − p1,2)(1 − p1,3)
< ω1 ≤ 1 (2.67)

p1,2(1−p1,3)

1−(1−p1,2)(1−p1,3)
λ1 + λ2

p2,3

< ω2 ≤ 1 (2.68)

ω1 + ω2 ≤ 1 (2.69)

The objective function (2.66) is convex in both ω1 and ω2. The inequality con-

straints (2.67) and (2.68) are the conditions for user 1’s queue and user 2’s queue

to be stable, and constraint (2.69) is the condition for a feasible allocation vector.

This problem can be solved easily with the Lagrangian multiplier technique, and the
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optimal allocation vector (ω∗
1, ω

∗
2) that minimizes the overall average delay is found

to be

ω∗
1 =

r1 + (b2 − r2)

√
b1(−r2

1+r1)
b2(−r2

2+r2+αλ1λ2)

b1 + b2

√
b1(−r2

1+r1)
b2(−r2

2+r2+αλ1λ2)

ω∗
2 = 1 − ω∗

1 =

b1 − r1 + r2

√
b1(−r2

1+r1)
b2(−r2

2+r2+αλ1λ2)

b1 + b2

√
b1(−r2

1+r1)
b2(−r2

2+r2+αλ1λ2)

(2.70)

with r1, r2, b1, b2 and α given in Eq. (2.22) of Proposition 2.2. By substituting

(ω∗
1, ω

∗
2) into Eq. (2.66), the minimum average delay over all packets is exactly given

by Eq. (2.19) of Proposition 2.2. And by substituting (ω∗
1, ω

∗
2) into Eq. (2.64) and

Eq. (2.65), we obtain the average delay of class-1 packets and class-2 packets exactly

as shown in Eq. (2.20) and Eq. (2.21) of Proposition 2.2 respectively.
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Chapter 3

Enhanced Cooperation Based on Physical-Layer Techniques

3.1 Introduction

In Chapter 2, we introduced a new cooperation concept at the network layer,

and evaluated its impact in a general wireless multi-access system. In that work,

we considered only the single-packet reception channel model and allowed for at

most one transmission in each time slot. By doing so, too limited and oversimpli-

fied assumptions were made on the physical-layer properties. In this chapter, we

aim to integrate more sophisticated physical-layer techniques into the network-layer

cooperation. Designed properly, the enhanced cooperative techniques are expected

to yield higher performance gains.

This chapter is divided into two parts. In Section 3.2, we formulate the prob-

lem in a cognitive cooperation system, and employ two enhancement techniques at

the cognitive relay: (i) dynamic decode-and-forward, and (ii) superposition cod-

ing. In contrast to the previously reported work in cognitive cooperation, where

relaying is only enabled during the periods of source silence [12, 13, 14, 32], here, a

dynamic decode-and-forward (DDF) scheme is first elaborated as a physical-layer

relaying strategy [33, 34, 35]. The proposed method allows the relay node to also

provide diversity benefits simultaneously with the source transmission, if the relay

node is able to decode the source message based on partial reception. In addition,
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the conventional cognitive cooperation is enhanced via an adaptive superposition

coding technique. The proposed scheme allows the relay node to switch between a

single-queue service and a simultaneous service of several relaying queues by using

a 1-bit feedback channel. The proposed schemes are analyzed from a networking

perspective; by assuming bursty traffic arrivals, the stable throughput region for

a two-user configuration is characterized explicitly. The combination of DDF and

superposition coding with cognitive relaying introduces a new concept for protocol-

level cooperation in wireless networks.

Then, in Section 3.3, we extend the single-packet reception channel model to

a multipacket reception model. Allowing the relay to transmit only when the other

user is idle, is motivated by the objective of avoiding interference among multi-

ple simultaneous transmissions which may result in unsuccessful reception of any

transmitted packet. However, such destructive interference assumption does not ac-

curately capture the behavior of wireless channels; in wireless environments, a packet

might survive the interference caused by concurrent transmissions, if the received

signal-to-interference-plus-noise ratio (SINR) exceeds the threshold required for cor-

rect decoding. Furthermore, if the receiver is equipped with a multiuser detector,

it may decode packets successfully from more than one transmitter at a time. The

multipacket reception (MPR) model has been studied extensively without user co-

operation, focusing on the stability issue [19,21,36,37]. In the cognitive cooperation

system where the relay can possibly transmit together with the other user, there is a

trade-off between the scheduling of simultaneous transmissions with reduced success

probability against single transmission. Based on these considerations, we investi-
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gate in a two-user multi-access system where the user with a better user-destination

channel may act as the relay for the other. By observing the other user’s queue

state, the relay is scheduled to transmit opportunistically with probability p if the

other user is transmitting. We are then interested in characterizing the optimal

scheduling probability that maximizes the stable throughput region of the network.

We show that by optimally choosing the scheduling probability, which in general is a

function of the arrival rate, the stable throughput region can be a convex polyhedral

region for certain channels; this strictly contains the stable throughput region of the

conflict-free scheduling which is bounded by a straight line.

3.2 DDF and Superposition Coding

3.2.1 Model

We assume a simple multiple-access relay channel (MARC) configuration con-

sisting of two primary users A, B, one common cognitive relay S and one common

destination D as shown in Fig. 3.1. Both primary users (A,B) have a buffer of

infinite capacity to store incoming packets and Qi denotes the queue of the i-th

user (i ∈ {A,B}). Time is considered to be slotted with a normalized slot duration

(T = 1) and both users share the channel through Time-Division Multiple-Access

(TDMA) scheduling which allows the users A and B to access the channel over

disjoint fractions of time ωA and ωB, respectively, where 0 6 ωA 6 1, 0 6 ωB 6 1

and ωA + ωB = 1. The packet length for the i-th user is fixed, and contains Ri bits

which are transmitted during one slot, thus resulting in a spectral efficiency of Ri
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Figure 3.1: The system model; Users A and B communicate with a common desti-
nation D via a TDMA policy.

bits/slot. The packet arrivals at the users are independent and stationary Bernoulli

processes with mean λi (packets per slot) for the i-th user.

The retransmission process is based on an Acknowledgement/Negative Ac-

knowledgement (ACK/NACK) mechanism, in which short-length error-free packets

are broadcast over a separate narrow-band channel in order to inform the network

of that packet’s reception status. When supporting the cognitive cooperation, the

relay node is equipped with two relaying queues QRA, QRB, to relay some packets

from the source users A and B respectively. The relaying queues QRi (i ∈ {A,B})

are formed in the following way: when the i-th user transmits a packet, if the desti-

nation D decodes the packet successfully, it sends back an ACK and the packet exits

the system; otherwise, if D cannot decode the packet but S decodes the packet, S

sends back an ACK and keeps the packet in its queue QRi for retransmission, while

the i-th source drops the packet; if neither S nor D decodes the packet, the packet

remains at Qi for retransmission in the next TDMA frame.

All wireless links exhibit fading and additive white Gaussian noise (AWGN).

The fading is assumed to be stationary, with frequency non-selective Rayleigh block

fading. This means that the fading coefficients hi,j (for the i → j link) remain con-
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stant during one slot, but change independently from one slot to another according

to a circularly symmetric complex Gaussian distribution with zero mean and vari-

ance σi,j for the link i → j. Furthermore, the variance of the AWGN is assumed to

be normalized with zero mean and unit variance which corresponds to an average

signal-to-noise ratio (SNR) equal to ρi,j = P0σ
2
i,j, where P0 denotes the transmis-

sion power common to all nodes. Each link i → j is characterized by the success

probability fi,j(Ri) , P [log(1 + ρi,j|hi,j|2) > Ri] = exp(−2Ri−1
ρi,j

) which denotes the

probability that the link i → j is not in outage (fi,j(Ri) = 1 − fi,j(Ri) denotes

the outage probability). An outage occurs when the instantaneous capacity of the

link i → j is lower than the transmitted spectral efficiency rate Ri. The channel

is assumed to be known only at the receivers (not at the transmitters) and perfect

radio sensing is assumed for the cognitive relay which allows the node S to access

the channel only when the latter is unutilized.

Under our model, the arrival processes and the departure processes of each

queue are jointly stationary, we can apply Loynes’ Theorem [16] to determine queue

stability, which requires the average arrival rate to be less than the average service

rate. The stable throughput region is defined as the union of all arrival rate vectors

(in packets/slot) such that all queues in the network remain stable. The assumed

TDMA structure decouples the queues of the terminals, and, hence, bypasses the

thorny aspects of stability that arise when the queues interact.
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3.2.2 Dynamic Decode-and-Forward

The DDF scheme which enables a partial relaying during the source trans-

mission has been well studied from an information-theoretic standpoint [33,34], but

here, we use it to assess its impact on improving the stable throughput region. Ac-

cording to the DDF protocol, the source codeword is divided into M blocks which

are delivered to the destination in two dependent phases during the time of one slot.

More specifically, in the first phase of the protocol which is called listening phase,

the source broadcasts the source message towards the relay and the destination.

During this phase, the destination receives the source message via the direct link

without diversity. At a certain instant, referred to as the decision time m, if the

relay is able to decode the source information message (based on the received m

blocks) before receiving the whole codeword, it starts to assist the source transmis-

sion by providing cooperative diversity. More specifically, after successful decoding,

the relay can correctly anticipate the future transmissions from the source since it

knows the source codebook by using an Alamouti constellation.

The duration of the second phase is from the decision time to the end of the

codeword and is a random variable which depends on the instantaneous quality of

the i → S link. If we restrict the decision time to coincide with the end of a block,

the decision time can be represented by a random variable m ∈ [1, 2 . . . ,M ] (m = M

corresponds to the case where the relay does not help the destination).

Before we utilize the DFF technique, we first characterize the stable through-

out regions of the non-cooperation (NC) scheme and the conventional cooperation
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(CC) scheme, which can serve as a baseline for evaluating the impact of DDF on

affecting the stable throughput performance. Without cooperation, the users A,B

deliver their data via their direct links to the destination without any assistance

from the relay S. Since both the arrival processes and the service processes are

stationary and since the queues operate without interdependence (because of the

time-division between the two users), the stability analysis of the two users’ queues

can be carried out separately for each queue; and by applying the Loynes’ Theorem,

for a fixed (ωA, ωB), the stability condition is defined by

λi < µ
(max)
i = ωifi,D(Ri) with i ∈ {A,B} (3.1)

where µ
(max)
i denotes the maximum service rate for the i-th user’s queue. If we take

the union over all (ωA, ωB) such that ωA + ωB ≤ 1, we obtain the non-cooperative

stable throughput region which is

LNC =

{

(λA, λB) :
λA

fA,D(RA)
+

λB

fB,D(RB)
< 1

}

(3.2)

Under the conventional cooperation scheme, the relaying queue QRi is served

only when the time slot is assigned to the i-th user, and the i-th user’s queue Qi

is empty. At each user’s time slot, the user transmits a packet if it is backlogged;

and the packet is removed from its queue if it is decoded by either the destination

or the relay, or both of them. By Loynes’ Theorem, the i-th user’s queue is stable
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if and only if

λi < µ
(max)
i = ωi

[

fi,D(Ri) + [1 − fi,D(Ri)]fi,S(Ri)
︸ ︷︷ ︸

,gi,S(Ri)

]

(3.3)

Then we analyze the stability of the cognitive relay S. A packet transmitted

by the i-th user, if not successfully decoded by the destination but decoded by relay

S, will be removed from the user’s queue Qi and stored at the relaying queue QRi for

cognitive retransmission, thus forming the arrival process at QRi. Relay S serves its

relaying queues when the corresponding time slot becomes idle, and the transmitted

packet will leave the relaying queue if it is decoded by the destination. The average

arrival rate (λRi) and average service rate (µ
(max)
Ri ) of the relaying queues QRi for

i ∈ {A,B} can be easily obtained as

λRi = ωiP [Qi 6= 0] gi,S(Ri) = ωi

λi

µ
(max)
i

gi,S(Ri) (3.4)

µ
(max)
Ri =ωiP [Qi = 0] fS,D(Ri)= ωi

[

1 − λi

µ
(max)
i

]

fS,D(Ri) (3.5)

The relaying queue QRi is stable if and only if λRi < µ
(max)
Ri . Given the fixed

(ωA, ωB), the stability condition for the whole network is the intersection of the sta-

bility conditions for both the user queues and relaying queues. Finally by taking the

union over all (ωA, ωB), the stable throughput region for the conventional cognitive
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cooperation is given by

LCC =

{

(λA, λB) :
λA[gA,S(RA) + fS,D(RA)]

fS,D(RA)[fA,D(RA) + gA,S(RA)]

+
λB[gB,S(RB) + fS,D(RB)]

fS,D(RB)[fB,D(RB) + gB,S(RB)]
< 1

}

(3.6)

3.2.2.1 Non-Cognitive DDF (NC-DDF)

In the NC-DDF scheme, the cognitive cooperation is not enabled, and the relay

can only possibly provide cooperative diversity during the source transmission. If

the destination cannot decode the packet successfully by the end of the second

phase, the source packet remains in the source queue and will be retransmitted by

the source at the next assigned time slot using the same DDF policy. Furthermore,

the relay node will drop the packet, even if it achieves to decode it, and will treat

the retransmitted packet as a new packet. Again, the reduction in efficiency from

this restriction is accepted for simplifying the analysis. The system model for the

DDF case can be written as

y
(i)
k =







hi,Dxi,k + wk k = 1 . . . m

√

|hi,D|2 + |hS,D|2xi,k + vk k = m + 1 . . . M

(3.7)

where y
(i)
k denotes the received signal at the destination for the k-th block and

the i-th user (i ∈ {A,B}), xi,k denotes the transmitted k-th block for the i-th

user, wk, vk ∼ CN (0, 1) denote the normalized AWGN noise for the two phases

of the protocol with a zero mean and a variance equal to one, respectively, and
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m = min
{

M,
⌈

MRi

log(1+P0|hi,S |2)

⌉}

denotes the decision time when the relay node starts

to assist the transmission [33] (practical issues concerning the decision time are

beyond the scope of this dissertation [35]). It is worth noting that the orthogonality

during the second phase of the DDF protocol is achieved by using an Alamouti

scheme [34, 35]. In this case, the achievable rate for m = k and i.i.d. Gaussian

inputs is given by [35], which is

C
(i)
k =

k

M
log(1 + P0|hi,D|2)

︸ ︷︷ ︸

non-cooperation

+
M − k

M
log(1 + P0|hi,D|2 + P0|hS,D|2)

︸ ︷︷ ︸

cooperation

(3.8)

The probability that the DDF link is not in outage can be written as

fi,S,D(Ri) =
M∑

k=1

P [m = k]P
[

C
(i)
k > Ri

]

≃
M∑

k=1

P [m = k] f
(k)
i,S,D(Ri) (3.9)

P [m = k] =P
[
k log(1 + P0|hi,S|2) > MRi > (k − 1) log(1 + P0|hi,S|2)

]

= exp

(

−2
MRi
k−1 − 1

ρi,S

)

− exp

(

−2
MRi

k − 1

ρi,S

)

(3.10)

where log(·) denotes the base 2 logarithm. We note that the probability f
(k)
i,S,D(Ri)

is computable precisely but at great computational cost. In order to simplify the

analysis, we approximate the achievable rate of the DDF protocol, that has a decision
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time equal to k, as follows [35]:

C
(i)
k =

k

M
log(1 + P0|hi,D|2) +

M − k

M
log(1 + P0|hi,D|2 + P0|hS,D|2)

(Since X + Y ≤ max[X,Y ] where X,Y ∈ R+ we have)

> max

[

k

M
log(1 + P0|h′

i,D|2)
︸ ︷︷ ︸

,ζ

,
M − k

M
log(1 + P0|hi,D|2 + P0|hS,D|2)

︸ ︷︷ ︸

,ψ

]

(3.11)

where h′
i,D denotes an independent channel coefficient with variance σ2

i,D (it is used

in order to relax the dependency between the two terms). The outage probability

for the random variables ζ, ψ (for σ2
i,D 6= σ2

S,D) is given as

Pζ(z) = P [ζ 6 z] = 1 − exp

(

−2
Mz
k − 1

P0σ2
i,D

)

(3.12)

Pψ(z) = P [ψ 6 z] = 1 − exp

(

− ρ

σ2
S,D

)

− σ2
i,D

σ2
i,D − σ2

S,D

exp

(

− ρ

σ2
i,D

)

×
[

1 − exp

(

−σ2
i,D − σ2

S,D

σ2
i,Dσ2

S,D

ρ

)]

(3.13)

where ρ , 2
Mz

M−k −1
P0

. By applying basic order statistics, the probability of outage for

the DDF protocol is written as

fi,S,D(Ri) = P [max[ζ, ψ] < Ri] = Pζ(Ri)Pψ(Ri) (3.14)

In the numerical results section, we plot both the approximated results using

the closed-form expression, as well as the exact stable throughput region; the ap-

proximated result is shown to be very close to the true result. The stable throughput
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region follows the formulation of the NC scheme (Eq. (3.2)) and thus can be written

as

LNC-DDF =

{

(λA, λB) :
λA

fA,S,D(RA)
+

λB

fB,S,D(RB)
< 1

}

(3.15)

3.2.2.2 Cognitive DDF (C-DDF)

In the NC-DDF scheme just discussed, cooperation is performed for each

source transmission only when the source is active. Therefore, a packet is removed

from the source user’s queue only when it is decoded correctly at the destination. In

the scheme proposed here, a packet is dropped from the user queue also when it is

decoded correctly at the relay node, following the principles of the CC scheme. The

C-DDF relaying strategy is described as follows: during the source transmission, if

the relay node can decode the packet of the i-th user with a decision time equal to

m (with 1 ≤ m ≤ M), it assists the source transmission for the rest of the codeword;

by the end of the whole codeword, if the packet is still not successfully decoded at

the destination, the relay node transmits an ACK signal and the source packet is

dropped from the user, while the relay node will take the responsibility to retransmit

this packet later on. The service of QRi follows the rules of the CC protocol and

therefore it is activated when the i-th user’s slot is sensed to be idle. The C-DDF

scheme provides two different types of relaying collaboration: (1) a dynamic coop-

eration when the source is active based on the DDF protocol, and (2) a cognitive

cooperation when the source is idle. By inserting the DDF outage probabilities into
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Eq. (3.6), the stable throughput region of the C-DDF scheme becomes

LC-DDF =

{

(λA, λB) :
λA

[
vA,S(RA) + fS,D(RA)

]

fS,D(RA)
[
fA,S,D(RA) + vA,S(RA)

]

+
λB

[
vB,S(RB) + fS,D(RB)

]

fS,D(RB)
[
fB,S,D(RB) + vB,S(RB)

] < 1

}

(3.16)

where vi,S(Ri) , [1 − fi,S,D(Ri)]fi,S(Ri).

Comparison between NC-DDF and C-DDF: The C-DDF scheme utilizes a dynamic

and cognitive relaying cooperation. More specifically, in addition to dynamic coop-

eration, a cognitive cooperation is enabled. In this subsection, we determine when

this alternative type of cooperation is favorable to the non-cognitive DDF in terms

of stable throughput region.

Due to the adopted TDMA transmission policy, the stable throughput regions

of both DDF schemes are bounded by a straight line. Therefore, to compare the

two regions, it is enough to compare the intersection of these lines with the axes.

The intersection points for NC-DDF and C-DDF are given as

λ∗
i (NC-DDF) = fi,S,D(Ri) (3.17)

λ∗
i (C-DDF) =

fS,D(Ri)[fi,S,D(Ri) + vi,S(Ri)]

vi,S(Ri) + fS,D(Ri)
(3.18)

It is clear that the stable throughput region of NC-DDF is completely con-

tained inside the corresponding region of C-DDF, if λ∗
i (C-DDF) > λ∗

i (NC-DDF) for
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i ∈ {A,B}. After a little algebra, this condition reduces to

fS,D(Ri) > fi,S,D(Ri) (3.19)

The above condition reveals that the integration of the “cognitive” relaying

to the NC-DDF scheme is beneficial only when the relay-destination link is better

than the combined DDF links.

3.2.3 Superposition Coding

The protocols discussed so far, assume that the relay node serves only one

non-empty queue at a time when the source becomes silent. In order to boost co-

operation, we investigate an adaptive superposition coding technique which allows

the relay node to serve simultaneously both relaying queues via a power split tech-

nique [38, Ch. 6]. More specifically, when the relay node senses an idle time slot

and the channel from the relay to the destination is good enough, it is allowed to

superimpose packets from both relaying queues to transmit to the destination with

a total power equal to P0. To do this, a feedback channel that informs the relay

node about the instantaneous condition of the relay-destination link, is introduced.

The feedback message consists of one bit, informing the relay node whether the

relay-destination link can support the superimposed spectral efficiency RA + RB or

not. It is assumed to be error-free and always available at the relay node. In the

case that the relay-destination channel cannot support the total spectral efficiency,

all the power is allocated to the corresponding relaying data flow (which corresponds
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to the spare source time slot), and the scheme reduces to the conventional cognitive

relaying. To support both data flows when the instantaneous channel capacity is

higher than the total spectral efficiency, multiuser detection schemes like interfer-

ence cancelation (IC) can be implemented at the destination [38, Ch. 9] so that both

data flows can be decoded. The transmission schemes are summarized as follows:

1. If the feedback informs that the relay-destination link can support the total

spectral efficiency RA + RB (feedback is equal to 1):

• a) If QRA 6= 0, QRB 6= 0, the relay serves both relaying queues, one packet

from QRA, and one packet from QRB.

• b) If QRA 6= 0, QRB = 0, the relay serves a packet from the relaying queue

QRA.

• c) If QRA = 0, QRB 6= 0, the relay serves a packet from the relaying queue

QRB.

2. Otherwise, if the feedback informs that the relay-destination link cannot sup-

port the superimposed spectral efficiency RA + RB (feedback is equal to 0),

then if the i-th user’s slot is sensed to be idle, the relay serves a packet from the

QRi relaying queue without superposition coding (conventional transmission).

It is worth noting that the feedback is a form of strongly compressed side-

information that concerns the relay-destination link only and consists of 1 bit;

therefore the related complexity overhead is negligible. Furthermore, a feedback

equal to 1, guarantees that a packet can be correctly decoded at the destination at
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the sum rate. In the following part of this section, we integrate the abovementioned

adaptive superposition mechanism into the cognitive protocols (CC, C-DDF) and

carry out the stability analysis.

3.2.3.1 Conventional Cooperation with Superposition (S-CC)

The stability analysis of the user queues under the S-CC scheme is similar to

that of the CC scheme, and the stability condition of the user queues is given by

λi < ωi

[
fi,D(Ri) + gi,S(Ri)
︸ ︷︷ ︸

,Γi

]

ωA + ωB ≤ 1







=⇒ LS-CC1 =

{

(λA, λB) :
λA

ΓA

+
λB

ΓB

< 1

}

(3.20)

Then the stability condition for the relaying queue QRi (i ∈ {A,B}) can be

found to be:

λRi < µ
(max)
Ri

=⇒ λi

Γi

gi,S(Ri) < ωi

[

1 − λi

ωiΓi

]

︸ ︷︷ ︸

P[Qi=0]

[

θ · 1 +
[
1 − θ

]
fS,D(Ri)

]

︸ ︷︷ ︸

,δi

+ ωi

[

1 − λi

ωiΓi

]

︸ ︷︷ ︸

P[Qi=0]

θ · 1 (3.21)

ωA + ωB ≤ 1 (3.22)

71



=⇒ LS-CC2 =

{

(λA, λB) :
λA

ΓA

[
gA,S(RA) + δA

δA − θ
+

θ

δB − θ

]

+
λB

ΓB

[
gB,S(RB) + δB

δB − θ
+

θ

δA − θ

]

− θ

[
1

δA − θ
+

1

δB − θ

]

< 1

}

(3.23)

where θ , P [feedback is equal to 1] = fS,D(RA + RB) denotes the success proba-

bility for the sum rate and i denotes the complementary of i ∈ {A,B}. The arrival

rate to the relaying queue QRi is the same as that in the CC scheme; regarding

the service process of QRi, a packet will depart from QRi if any of the following

events happens: (1) the slot is assigned to the i-th user, Qi = 0, and the feedback

is equal to 1, in which case the packet departs with probability 1, (2) the slot is

assigned to the i-th user, Qi = 0, and the feedback is equal to 0, in which case the

packet departs with probability fS,D(Ri), (3) the slot is assigned to the i-th user,

Qi = 0, and the feedback is equal to 1, the packet departs with probability 1. These

events are disjoint and the service rate of QRi can be obtained as in Eq. (3.21). The

resulting stable throughput region of S-CC is given by the intersection of the two

regions LS-CC1

⋂
LS-CC2 , which is easily shown to be equal to LS-CC2 .

3.2.3.2 Cognitive DDF with Superposition (SC-DDF)

The superposition approach can be further built on the C-DDF protocol. In

a manner similar to the S-CC scheme, it can be shown that the stable throughput

region of the SC-DDF scheme is given by Eq. (3.23) by replacing gi,S(Ri), Γi with

vi,S(Ri) and γi , fi,S,D(Ri) + vi,S(Ri), respectively.
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3.2.4 Numerical Results

Numerical plots are shown to support the analytical results of the proposed

schemes and compare their performance. For clarity of presentation, a symmetric

configuration is considered with RA = RB = 2 bits per channel per use (BPCU),

ρA,D = ρB,D = 5 dB, ρA,S = ρB,S = 12 dB, ρS,D = 30 dB, and M = 3 for the DDF-

based schemes. Fig. 3.2 plots the stable throughput regions for the investigated

protocols. As expected, cooperation increases the stable throughput region as it

overcomes deep-fading of the direct links, resulting in faster emptying of the user

queues. Regarding the enhanced cooperative methods, it can be seen that the NC-

DDF scheme provides a superior stable throughput region than the CC scheme

(LNC-DDF ⊃ LCC). The NC-DDF scheme allows the relay node to assist the source

transmission when the source is active but not during the periods of source silence

which creates more relaying opportunities than the CC scheme (for most of the time

the source slots are not idle unless the traffic is light). Furthermore, the integration

of the cognitive relaying (relaying when the source is sensed to be idle) to the NC-

DDF scheme, improves further the stable throughput region (C-DDF). The same

observation is made for the integration of the superposition coding into the cognitive

relaying, that the stable throughput region of the S-CC scheme strictly contains the

corresponding region of the CC scheme (LS-CC ⊃ LCC). Moreover, the combination

of DDF with superposition cognitive relaying (SC-DDF) provides the largest stable

throughput region and is introduced as an efficient cross-layer technique for bursty

cooperative applications.
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Fig. 3.3 shows the maximum stable throughput (MST) for the above symmetric

configuration. MST is defined as the maximum common arrival rate (the arrival

processes are the same across source users) that stabilizes the system, rather than the

full two-dimensional region. The first important observation is that the “cognitive”

cooperation becomes more important as the rate (in bits/packet) increases, and

hence, the MST for the NC and NC-DDF protocols decays to zero faster than

in the cognitive cooperative schemes as the bit rate per packet increases. The

fundamental reason for this property is that the cognitive protocols convey a major

part of the traffic from the primary users to the relay-destination link, which has

a better successful delivery probability than the direct links. Furthermore, it can

be seen that the superposition coding approach significantly increases the MST for

all protocols, which is expected as the superposition coding technique uses more

efficiently the relay-destination link.

It should be noted here that cooperation for cognitive systems is a beneficial

solution only when the direct links are in deep-fading and the relay-destination link is

strong enough in order to establish communication, which motivated our particular

choice of system parameters.

3.3 Multipacket Reception Capability

3.3.1 Model

As another line to address more realistic and advanced physical-layer model,

this section exploits the MPR capability at the physical layer. The slotted multi-
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Figure 3.4: The slotted two-user multi-access system. User S2 acts as the relay for
S1. With an MPR channel model, S2 is scheduled to transmit opportunistically.

access channel we consider in this part of work is shown in Fig. 3.4. It consists of

two source users S1 and S2, and a common destination node d. Packets of fixed

length arrive to the source node Si independently according to a Bernoulli process

with rate λi (packets per slot) in each time slot, i ∈ {1, 2}. The transmission of one

packet takes the duration of exactly one time slot, and the packets to be transmitted

are stored in the buffer of the source nodes, which are assumed to be of infinite size.

The MPR channel model is similar to that specified in [19, 21]; given that the set

M of source users transmit, the probability that node n decodes the packet from

the source m (for m ∈ M) is denoted by

q
(n)
m|M = P [packet from m is received at node n|users in set M transmit] (3.24)

This MPR model captures the effects of fading, attenuation and interference

at the physical layer. If a packet is not successfully decoded, the receiver simply

drops the packet. In the two-user cooperative multiple access channel, the source

users are ordered in such a way that S2 has a better channel to the destination than

S1 does. Thus, S2 serves to relay S1’s packets if these packets are not decoded by the
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destination but decoded by S2 successfully. In such settings, there are five reception

probabilities associated with this network, specifically,

q
(d)
1|1 = P [packet from S1 is received at d | only S1 transmits]

q
(d)
2|2 = P [packet from S2 is received at d | only S2 transmits]

q
(2)
1|1 = P [packet from S1 is received at S2 | only S1 transmits]

q
(d)
1|1,2 = P [packet from S1 is received at d | both S1 and S2 transmit]

q
(d)
2|1,2 = P [packet from S2 is received at d | both S1 and S2 transmit]

(3.25)

We assume throughout that interference cannot increase the reception proba-

bility, hence, the probability that a packet transmitted by Si is decoded by d given

that only Si transmits, is greater than the corresponding probability given that both

S1 and S2 transmit, that is,

q
(d)
1|1 > q

(d)
1|1,2, q

(d)
2|2 > q

(d)
2|1,2 (3.26)

With these reception probabilities, the condition that S2 has a relatively better

user-destination channel than S1 does can be expressed by

q
(d)
2|2 > q

(d)
1|1 , q

(d)
2|1,2 > q

(d)
1|1,2 (3.27)

Nodes are equipped with single transceivers so that they cannot transmit and

receive at the same time. Therefore, S2 can decode the packet transmitted by S1 with

positive probability if only S1 transmits, as is illustrated by the reception probability
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q
(2)
1|1. We also assume instantaneous and error-free acknowledgements (ACKs), which

are broadcast to the network over a separate channel with negligible bandwidth.

With all these settings, the relaying process of the network is as follows: when S1

transmits a packet and S2 remains silent, if the destination d decodes the packet

successfully, it sends back an ACK and the packet exits the network; otherwise, if

d doesn’t decode the packet but S2 decodes the packet, S2 sends back an ACK and

queues the packet for retransmission, while S1 drops that packet upon receiving the

ACK from S2; if neither S2 nor d decodes the packet, the packet remains at S1’s

queue for retransmission later on.

When opportunistic scheduling at S2 is carried out, the queues at S1 and S2

interact in a complicated manner which makes the stability analysis difficult to track.

We will adopt the stochastic dominance approach introduced in [17] to decouple the

queues. Then for each single queue, a primary tool we use to determine queue

stability is Loynes’ Theorem [16].

3.3.2 Opportunistic Cooperation Scheme

In the context of this considered multi-access system, we can derive the stable

throughput regions of the non-cooperation and conventional cognitive cooperation

schemes similarly as in Section 3.2.2. The techniques used are the same, so we omit

the detailed analysis and present only the results here.
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The stable throughput region of the non-cooperation (NC) scheme is given by

ℜNC =

{

(λ1, λ2) :
λ1

q
(d)
1|1

+
λ2

q
(d)
2|2

< 1

}

(3.28)

In the conventional cooperation (CC) scheme, S2 accesses the channel only

when it senses an idle time slot of S1 (we assume perfect sensing). The resulting

stable throughput region is given by

ℜCC =

{

(λ1, λ2) :

(

q
(2)
1|1 + q

(d)
2|2 − q

(2)
1|1q

(d)
1|1

)

λ1

q
(d)
2|2

(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

) +
λ2

q
(d)
2|2

< 1

}

(3.29)

Similarly as before, it can be easily verified that the stable throughput region

of the conventional cooperation scheme strictly outer-bounds the non-cooperative

region, that is, ℜCC ⊃ ℜNC.

In contrast to the conventional cooperation where S2 only transmits during

the idle time slot of S1, under the Opportunistic Cooperation (C-OPP) scheme,

S2 observes the queue length Q1 at S1, and is scheduled to transmit opportunis-

tically [39, 40]: if Q1 = 0, S2 will transmit with probability 1 if it is backlogged;

otherwise, if Q1 6= 0 and hence S1 transmits, S2 is scheduled to transmit with

probability p if it has packets. In the latter case, if S2 is scheduled to transmit

together with S1, the two transmissions will cause interference to each other; and

since S2 cannot receive and transmit at the same time, the relay-assistance of S2 is

sacrificed for taking advantage of the multipacket reception capability, under which

both transmissions can reach the destination successfully with probability q
(d)
1|1,2q

(d)
2|1,2,
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strictly greater than zero. It should be noted here that when S2 transmits a packet, it

randomly picks up a packet from its queue, either its own packet or a packet relayed

from S1; we will show that the stability analysis is the same for both situations.

With such opportunistic scheduling, the two queues interact in such a way

that the service rate of each queue depends on whether the other queue is empty or

not; in addition, the arrival process to S2 from S1 depends on the departure process

from S1. A useful tool to bypass this thorny problem is the stochastic dominance

approach [17]. By utilizing this dominance approach, a complete description of

the stability condition of the C-OPP scheme can be characterized for each fixed

scheduling probability p; then, by applying a constrained optimization technique,

the achievable stable throughput region is obtained by varying over all possible

values of p. The main results are provided in the following theorem.

Theorem 3.1 By optimizing over all possible scheduling probability p ∈ [0, 1] at S2,

the stable throughput region of the C-OPP scheme (ℜC-OPP) for the MPR channel

model is defined as follows:

1. if

η =q
(2)
1|1(1 − q

(d)
1|1)q

(d)
1|1,2 + (q

(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1)q

(d)
2|1,2

− (q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1 − q

(d)
1|1,2)q

(d)
2|2 > 0 (3.30)

the achievable stable throughput region (by optimizing the scheduling probability
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p) is given by ℜC-OPP = ℜ1

⋃ℜ2, where

ℜ1 =

{

(λ1, λ2) :
(q

(d)
2|2 − q

(d)
2|1,2)λ1

q
(d)
2|2q

(d)
1|1,2

+
λ2

q
(d)
2|2

< 1, for 0 ≤ λ1 ≤ q
(d)
1|1,2

}

(3.31)

ℜ2 =

{

(λ1, λ2) :
q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|1,2

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1 − q

(d)
1|1,2

λ1 + λ2

<
q
(2)
1|1(1 − q

(d)
1|1)(q

(d)
1|1,2 + q

(d)
2|1,2) + q

(d)
1|1q

(d)
2|1,2

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1 − q

(d)
1|1,2

, for λ1 > q
(d)
1|1,2

}

(3.32)

In the rate region defined by λ1 ≤ q
(d)
1|1,2, the boundary of the subregion ℜ1 is

achieved by setting the optimal scheduling probability to be p∗ = 1; and in the

rate region defined by λ1 > q
(d)
1|1,2, the optimal p∗ which achieves the boundary

of ℜ2 is given by p∗ =
q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−λ1

q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−q
(d)
1|1,2

.

2. otherwise, that is, if

η =q
(2)
1|1(1 − q

(d)
1|1)q

(d)
1|1,2 + (q

(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1)q

(d)
2|1,2

− (q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1 − q

(d)
1|1,2)q

(d)
2|2 ≤ 0 (3.33)

the optimal scheduling probability is given by p∗ = 0, which means that S2 only

transmits during the idle time slot of S1, hence the C-OPP scheme reduces

to the CC scheme, and the stable throughput region is known to be given by

Eq. (3.29), which is,

ℜC-OPP =

{

(λ1, λ2) :

(

q
(2)
1|1 + q

(d)
2|2 − q

(2)
1|1q

(d)
1|1

)

λ1

q
(d)
2|2

(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

) +
λ2

q
(d)
2|2

< 1

}

(3.34)
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Proof: The key part of the dominance approach is as follows: first, construct an

appropriate dominant system in which one queue can be decoupled from the other,

which makes the stability analysis tractable; then, prove that the dominant system

and the original system behave in the same way at the boundary of the stable

throughput region. We construct the dominant system S ′ which dominates the

original system S in the following fashion:

1. If Q1 = 0 and Q2 = 0, S2 transmits a dummy packet with probability 1;

2. If Q1 6= 0 and Q2 = 0, S2 transmits a dummy packet with probability p.

All the other assumptions, channel models, arrival and reception processes remain

unaltered in the dominant system. Since the transmission of dummy packets will not

contribute to the throughput but cause interference to the concurrent transmission

from the other source, it is true that each queue will have a successful departure in S

whenever it has one in S ′. Therefore, the queue lengths of the dominant system can

no longer be smaller than the corresponding queue lengths of the original system;

and the stability of the dominant system implies the stability of the original system.

In the dominant system S ′, the service rate of the queue at S1 depends on

whether S2 transmits or not: (a) if S2 transmits together with S1 (which happens

with probability p), the service rate seen by S1 is q
(d)
1|1,2; (b) if S2 remains silent when

S1 transmits, S1 receives the service rate of q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1 , because the packet

is dropped from S1 when either S2 or the destination d decodes the packet. Hence,
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the average service rate of S1 is

µ1 = (1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2 (3.35)

And the queue at S1 is stable if and only if

λ1 < µ1 = (1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2 (3.36)

The analysis of the queue at S2 will be a bit more complicated. First we

analyze the total arrival process to S2. The total arrival process consists of two

parts: 1) the external Bernoulli arrivals with rate λ2; and 2) the arrivals from S1,

with the rate λ1→2 to be calculated. There is an arrival to S2 from S1 if the following

events happen together: (1) S1 is non-empty and transmits, which has probability

λ1/µ1 as S1’s queue is a discrete-time M/M/1 queue, (2) S2 remains silent, which

happens with probability 1 − p, (3) the packet transmitted by S1 is decoded by

S2 but not decoded by d, which occurs with probability q
(2)
1|1(1 − q

(d)
1|1). These three

events are independent, and the total arrival rate to S2 is

λS2 = λ1→2 + λ2 =P [Q1 6= 0] (1 − p)q
(2)
1|1(1 − q

(d)
1|1) + λ2

=
(1 − p)q

(2)
1|1(1 − q

(d)
1|1)

(1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2

λ1 + λ2 (3.37)

Then we analyze the service rate of S2, which also depends on the queue state

at S1. Specifically, if Q1 6= 0 and S1 transmits, S2 transmits with probability p, and
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the packet from S2 is decoded by d with probability q
(d)
2|1,2; otherwise, if Q1 = 0, S2

transmits with probability 1 and sees a successful delivery probability q
(d)
2|2 . So the

average service rate of S2 is

µS2 =P [Q1 = 0] q
(d)
2|2 + P [Q1 6= 0] pq

(d)
2|1,2

=

(

1 − λ1

µ1

)

q
(d)
2|2 +

λ1

µ1

pq
(d)
2|1,2 (3.38)

where µ1 is given in Eq. (3.35). The queue at S2 is stable if and only if

λS2 < µS2 (3.39)

with λS2 and µS2 as written in Eq. (3.37) and Eq. (3.38) respectively.

The network is stable if both queues are stable; after some simple algebra, the

stability condition for a fixed scheduling probability p is defined by

λ1 < (1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2 (3.40)

(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|2

)

− p
(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|1,2

)

(1 − p)
(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

)

+ pq
(d)
1|1,2

λ1 + λ2 < q
(d)
2|2 (3.41)

We argue that the boundary of the stable throughput region of the dominant

system indeed coincides with that of the original system: given that λ1 < (1 −

p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2, if for some λ2 the queue at S2 is stable in the

dominant system, then the corresponding queue in the original system must be

stable; conversely, if for some λ2 the queue at S2 is unstable in the dominant system,
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then this queue never empties, and S2 always transmits source information when

it accesses the channel. In other words, S2 will not transmit dummy packets, and

as long as S2 never empties, the dominant system and the original system behave

exactly in the same way. Thus, we can conclude that the original system and the

dominant system are indistinguishable at the boundary points, and ℜC-OPP is indeed

the union of rate pairs (λ1, λ2) constrained by Eq. (3.40) and Eq. (3.41) as p varies

over [0, 1].

To obtain the closure, we utilize the constrained optimization technique simi-

larly as in [19]. We fix λ1 and maximize λ2 as p varies over [0, 1]. By replacing λ1

by x and λ2 by y, the boundary of the stable throughput region given by Eq. (3.40)

and Eq. (3.41) for a fixed p can be written as

y = q
(d)
2|2 −

(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|2

)

− p
(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|1,2

)

(1 − p)
(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

)

+ pq
(d)
1|1,2

x

for 0 ≤ x ≤ (1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2 (3.42)

Now we consider the following constrained optimization problem

max
p∈[0,1]

y = max
p∈[0,1]

q
(d)
2|2 −

(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|2

)

− p
(

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|1,2

)

(1 − p)
(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

)

+ pq
(d)
1|1,2

x (3.43)

Differentiate it with respect to p gives

dy

dp
=

ηx
(

(1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2

)2 (3.44)
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with η as given by Eq. (3.30) or Eq. (3.33). The denominator of Eq. (3.44) is strictly

greater than zero; and the numerator excluding x, which is η, can be either positive

or negative.

• In the case that η > 0, the first derivative dy

dp
is strictly positive and y is an

increasing function of p. Thus, it appears that the optimal value of p∗ is 1.

But caution is needed here. As seen by Eq. (3.42), this constraint is valid

only for x ≤ (1 − p)(q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1) + pq

(d)
1|1,2. Clearly, p∗ can take the

value 1 if and only if x ≤ q
(d)
1|1,2. So in the subregion defined by 0 ≤ x ≤ q

(d)
1|1,2,

the optimal probability is p∗ = 1; substituting p = 1 into Eq. (3.43) gives the

boundary of the subregion characterized by ℜ1 in Eq. (3.31). Now consider x

for x > q
(d)
1|1,2. Since y increases with p, and p satisfies p ≤ q

(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−x

q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−q
(d)
1|1,2

according to Eq. (3.42), the optimal p is given by p∗ =
q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−x

q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−q
(d)
1|1,2

.

By substituting p∗ into Eq. (3.43), we obtain the boundary of the subregion

as characterized by ℜ2 in Eq. (3.32).

• In the case that η ≤ 0, we have dy

dp
≤ 0 for all p ∈ [0, 1], and so y is a decreas-

ing function of p in the range of all possible values of x. Hence, the optimal

p∗ is equal to zero, and the opportunistic cooperation scheme reduces to the

conventional cooperation scheme, with the stable throughput region given by

Eq. (3.29).

A) Comparison between CC and C-OPP: When the condition expressed in Eq. (3.30)

is satisfied, ℜC-OPP, characterized by ℜ1

⋃ℜ2, becomes a convex polyhedron. This
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can be easily verified, and the procedure is as follows: both subregions ℜ1 and ℜ2 are

bounded by a straight line, and the intersection point connecting the two straight

lines can be calculated to be (λ′
1(C-OPP), λ′

2(C-OPP)), where

λ′
1(C-OPP) = q

(d)
1|1,2, λ′

2(C-OPP) = q
(d)
2|1,2 (3.45)

From Eq. (3.31), the intersection point of the line which bounds ℜ1 with the

y-axis is

λ∗
2(ℜ1) = q

(d)
2|2 (for λ∗

1(ℜ1) = 0) (3.46)

and from Eq. (3.32), the intersection point of the line which bounds ℜ2 with the

x-axis is

λ∗
1(ℜ2) =

q
(2)
1|1(1 − q

(d)
1|1)(q

(d)
1|1,2 + q

(d)
2|1,2) + q

(d)
1|1q

(d)
2|1,2

q
(2)
1|1(1 − q

(d)
1|1) + q

(d)
2|1,2

(for λ∗
2(ℜ2) = 0) (3.47)

If we form a straight line by connecting these two points, and denote it by L, it

turns out that (λ′
1(C-OPP), λ′

2(C-OPP)) strictly lies above L. This can be easily

checked, as the value of λ2 at L when λ1 = λ′
1(C-OPP) is

λ′
2(L) =

q
(d)
2|2q

(d)
2|1,2(q

(d)
1|1 + q

(2)
1|1(1 − q

(d)
1|1) − q

(d)
1|1,2)

q
(2)
1|1(1 − q

(d)
1|1)(q

(d)
1|1,2 + q

(d)
2|1,2) + q

(d)
1|1q

(d)
2|1,2

(3.48)

This is strictly less than λ′
2(C-OPP) if and only if η > 0. Therefore, when η > 0,

the stable throughput region ℜC-OPP is strictly convex.
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Then we compare ℜC-OPP and ℜCC. If we can show that L strictly outer-bounds

ℜCC, it suffices to say that ℜC-OPP strictly outer-bounds ℜCC since the boundary of

ℜC-OPP strictly lies above L as shown above. Because ℜCC is bounded by a straight

line, to compare L and ℜCC, it is enough to compare the intersection points of these

lines with the axes. The two intersection points of L are given by Eq. (3.46) and

Eq. (3.47); and from Eq. (3.29), the corresponding values for ℜCC are given by

λ∗
1(CC) =

q
(d)
2|2

(

q
(2)
1|1 + q

(d)
1|1 − q

(2)
1|1q

(d)
1|1

)

q
(2)
1|1 + q

(d)
2|2 − q

(2)
1|1q

(d)
1|1

, λ∗
2(CC) = q

(d)
2|2 (3.49)

Clearly, λ∗
2(ℜ1) = λ∗

2(CC), and it can be shown that λ∗
1(ℜ2) > λ∗

1(CC) if and only if

η > 0. Hence, in this case, we conclude that ℜC-OPP strictly contains ℜCC, that is,

ℜC-OPP ⊃ ℜCC.

On the other hand, when the condition in Eq. (3.33) is satisfied, the MPR

channel is not strong enough to support simultaneous transmissions, and the opti-

mal opportunistic scheduling becomes the conflict-free scheduling, which is the CC

scheme. So even in the worst case, the C-OPP scheme can do as well as the CC

scheme.

B) Effects that affect η: The value of η determines whether the channel sup-

ports simultaneous transmissions to some degree so that the opportunistic coop-

eration scheme can outperform the conventional scheme: if η > 0, simultaneous

transmissions are supported; if η ≤ 0, the opportunistic scheme reduces to the con-

ventional one by scheduling S1 and S2 separately. A simple examination of η reveals

how it is affected by those reception probabilities defined in Eq. (3.25):
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• The effect of q
(d)
1|1 , q

(d)
2|2 : we observe that η decreases as q

(d)
1|1 or q

(d)
2|2 increases. A

higher value of q
(d)
1|1 means that S1 is more likely to deliver its packets to the

destination without interference from S2, so it is more preferable to schedule

S2 not to interfere with S1; likewise, a higher value of q
(d)
2|2 implies a good

channel from S2 to d, and intuitively, we would like to exploit more relaying

opportunity by scheduling S2 to be silent when S1 transmits, so that S2 can

possibly decode the transmitted packet of S1 and then relay the packet.

• The effect of q
(d)
1|1,2 and q

(d)
2|1,2: η is an increasing function of both q

(d)
1|1,2 and q

(d)
2|1,2,

this is not surprising because the action of simultaneous transmissions is more

preferable by a strong MPR channel.

• The effect of q
(2)
1|1: η can be rearranged to be written as q

(2)
1|1(1 − q

(d)
1|1)(q

(d)
1|1,2 +

q
(d)
2|1,2−q

(d)
2|2)+q

(d)
1|1q

(d)
2|1,2−q

(d)
1|1q

(d)
2|2 +q

(d)
1|1,2q

(d)
2|2 . Setting q

(2)
1|1 to be zero gives the value

of the non-cooperative case with MPR channel. Hence, if q
(d)
1|1,2 + q

(d)
2|1,2 − q

(d)
2|2 is

strictly greater than zero (which implies a strong MPR channel), cooperation

adds a positive contribution to η which makes η more likely to be positive,

and, hence, the opportunistic scheduling can take effect to outperform the

conventional scheme.

3.3.3 Numerical Results

In this section, we compare the stable throughput regions of the two cooper-

ation schemes (CC and C-OPP) and the non-cooperation scheme (NC). Two plots

are given to illustrate how different categories of MPR channel affect the C-OPP
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Figure 3.5: Comparison of the stable throughput regions under NC, CC, and C-OPP
schemes when η > 0. ℜC-OPP ⊃ ℜCC ⊃ ℜNC.
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Figure 3.6: Comparison of the stable throughput regions under NC, CC, and C-OPP
schemes when η ≤ 0. ℜC-OPP = ℜCC ⊃ ℜNC.
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Table 3.1: The effects of q
(d)
1|1 , q

(d)
2|2 , q

(2)
1|1, q

(d)
1|1,2 and q

(d)
2|1,2 on the value of η.

q
(d)
1|1 q

(d)
2|2 q

(2)
1|1 q

(d)
1|1,2 q

(d)
2|1,2 η

0.4 0.8 0.4 0.1 0.4 −0.1520
0.2 0.4 −0.0480
0.2 0.5 0.0160
0.3 0.6 0.1840

0.3 0.8 0.4 0.2 0.5 0.0420
0.4 0.0160
0.5 −0.0100

0.4 0.7 0.4 0.2 0.5 0.0600
0.8 0.0160
0.9 −0.0280

scheme. In Fig. 3.5, the reception probabilities are chosen to be q
(d)
1|1 = 0.3, q

(d)
2|2 = 0.7,

q
(2)
1|1 = 0.4, q

(d)
1|1,2 = 0.2 and q

(d)
2|1,2 = 0.5 such that η > 0. As we have proved, the

C-OPP scheme supports simultaneous transmissions to some degree, and hence,

supports a convex stable throughput region which strictly contains the correspond-

ing region of the CC scheme, which is bounded by a straight line. In the subregion

defined by λ1 ≤ q
(d)
1|1,2, the optimal scheduling probability p∗ is 1; while in the sub-

region defined by λ1 > q
(d)
1|1,2, the optimal p∗ is

q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−λ1

q
(2)
1|1

+q
(d)
1|1

−q
(2)
1|1

q
(d)
1|1

−q
(d)
1|1,2

. The convexity

of the region also implies that higher sum rates can be achieved.

In Fig. 3.6, the reception probabilities are chosen to be q
(d)
1|1 = 0.3, q

(d)
2|2 = 0.8,

q
(2)
1|1 = 0.4, q

(d)
1|1,2 = 0.2 and q

(d)
2|1,2 = 0.4 such that η ≤ 0. It is seen that the optimal

scheduling strategy sets p∗ = 0, which reduces the C-OPP scheme to the CC scheme

by scheduling S2 to transmit only when S1 is empty. So even in the worst case, the

C-OPP scheme can perform as well as the CC scheme.

Under all channel conditions, both cooperation schemes outperform the non-
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cooperation scheme; so cooperation among users improves the stable throughput

region, thus leads to higher stable throughput simultaneously for both users.

In addition, a number of channel reception probability sets are tested to

demonstrate their effects on affecting the value of η. The results are listed in Ta-

ble 3.1.

3.4 Discussion

In this chapter, we utilized enhancement techniques that are based on the phys-

ical layer to boost network-layer cooperation. Cooperative communication studies

at the physical layer usually neglect source burstiness, and on the other hand, tradi-

tional work at the network layer makes unrealistic and limited assumptions on the

physical layer channel model and the encoding/decoding processes. The proposed

cooperation methods in this chapter combine physical and network layer ideas.

In Section 3.2, the DDF cooperative technique which allows relaying assistance

also during the source’s transmission was first studied. Then an adaptive superposi-

tion coding technique was investigated by allowing the relay to simultaneously serve

two relaying queues, according to the instantaneous channel feedback. We showed

that both advanced cooperative techniques result in more relaying opportunities,

which leads to higher performance gains in terms of the stable throughput region.

In Section 3.3, by considering a general asymmetric MPR channel model which

better exploits the physical-layer properties, the conventional cognitive cooperation

where the relay only transmits during an idle time slot was refined. As such, we
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proposed an opportunistic cooperation scheme, in which the relay transmits together

with the other user with some probability. The stable throughput region of this

opportunistic scheme was characterized explicitly by optimizing the transmission

probability at the relay. The conventional cooperation scheme results in higher

stable throughput for both users over the non-cooperation scheme, and it was shown

that the opportunistic cooperation scheme can yield higher performance gains under

certain channels.
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Chapter 4

Stability and Throughput Regions for Cooperative Multi-Access

4.1 Introduction

Previous chapters addressed the issue of user cooperation in wireless networks.

For the cooperative multi-access system investigated in Chapter 2, if we set the

number of source users to be N = 2, it becomes a two-user system where the user

“closer” to the destination helps to relay packets from the other user. This model

resembles the single-relay channel which was first introduced by van der Meulen [41];

later, Cover and El Gamal considered the Shannon information capacity region of

the classical relay channel in [42], and were able to determine it for the class of

physically degraded channels. Subsequently, numerous papers have contributed to

the understanding of the relay channel, including [43,44,45], et al. These work was

studied from an information-theoretic standpoint; even for the single-relay channel,

the Shannon information capacity remains unknown.

In this chapter, we will continue to perform cooperation between the two users

at the network level, and assume that both users have their own data packets to be

delivered to the destination. The main objective is to revisit the relationship be-

tween the stability region and the throughput region in the context of a packet-based

network-level cooperative multi-access system. This would answer the unresolved

question of whether the empty state of the queue is immaterial in determining
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stability. The stability region (also called the stable throughput region) and the

throughput region (also called the saturated throughput region), are two rate mea-

sures based on the networking perspective. With different assumptions and different

meanings, these two regions need not coincide. In the multi-access system where

cooperation is not performed, it was established that these two regions are iden-

tical under a variety of channel and traffic models [17, 18, 19, 20, 21]. In the case

of our cooperative multi-access system, there are different packet streams at the

relay, thus, we apply a class of scheduling policies for the transmission of the source

packets and relayed packets at the relay node. We show that, the stability region is

independent of the scheduling policies; however, the throughput region does depend

on the scheduling policies, and is not necessarily identical to the stability region.

This result rekindles interest in the relation between these two regions. In addition,

we determine the optimal policy for maximizing the throughput region.

The abovementioned two regions are characterized and compared under both

a centralized scheduled access and a random access scheme separately. Another out-

come of our work is that, the cooperative stability region under random access does

not necessarily outer-bound the non-cooperative stability region. In the last part

of this chapter, network coding is performed at the relay node as an alternative to

plain store-and-forward routing, and its impact on both the stability and through-

put regions is evaluated. We conclude that network coding between the two traffic

streams at the relay node leads to the same performance as plain store-and-forward

routing.

A simpler version of our model was studied in [46], where the authors con-
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sidered a linear tandem network in which each node was only connected to its two

neighboring nodes via error-free links. However, this simple connectivity model does

not accurately capture the physical-layer property of wireless channels. In [46], the

authors did not consider the stability issue under random access; when they analyzed

the throughput region, they assumed that all queues in the network are saturated

which guarantees permanent availability of packets for transmission. However, even

under heavy traffic, the queues of packets to be relayed are built by arrivals from

the neighboring nodes and, hence, can be empty with positive probability. In this

chapter we characterize the throughput region by assuming that only the source

queues at the user nodes are saturated, while the relay queue at the relay accepts

bursty arrivals departing from the other user and, hence, need not be saturated. We

show that by assuming that all queues are saturated, the actual throughput region

is over-estimated.

4.2 Model

We consider the slotted two-user multi-access system shown in Fig. 4.1. Two

source users, S and R, transmit unicast traffic to the common destination node D.

The source nodes are equipped with buffers of infinite size to store incoming packets,

and the transmission of each packet takes exactly one time slot. Nodes are ordered

according to Fig. 4.1 so that R has a better source-destination channel than S. We

adopt the single-packet reception channel model as described in Chapter 1, such

that a transmitted packet will be successfully decoded with a certain probability.
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S

Q1

D
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Q2
2

p23

p13

p12

Q1
2

Figure 4.1: The two-user multi-access system with cooperation between the two
source users (S and R). D is the common destination. Channel reception probabil-
ities are denoted above the channels.

Further, if both users transmit at the same time, a collision will occur which leads

to the failure of both transmissions. For simplicity, we do not consider advanced

physical-layer techniques as in Chapter 3; however, we will show that the considered

simple channel model can still lend itself to a thorough examination and achieve our

objective.

There are three channel reception probabilities associated with this multi-

access system. Specifically, p13 and p23 denote the source-destination channel re-

ception probabilities from the sources S and R to the destination respectively; and

p12 denotes the inter-user channel reception probability between S and R. By using

these notations, the fact that source user R has a better channel to the destination

(than S) can be mathematically expressed as p23 > p13. The reception probabili-

ties p13, p23 and p12 are determined by parameters such as the network topology,

transmission power, targeted bit-error rate, etc., and cannot be altered once these

parameters are fixed.

The cooperation strategy used in this chapter is stated as follows: when node
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S transmits a packet, if the destination D decodes the packet successfully, it sends

back an acknowledgement (ACK) and the packet exits the system; otherwise, if D

doesn’t decode the packet but R decodes the packet, R sends back an ACK and

keeps the packet in its queue for retransmission; upon receiving the ACK from R, S

will drop the packet in this case; if neither R nor D decodes the packet, the packet

will remain in S’s queue for retransmission. For R’s own packets, R is responsible

for delivering them to the destination without help from S. As usual, ACKs are

assumed to be error-free and instantaneous, and broadcast to the whole network

over a separate control channel with negligible bandwidth.

With this form of cooperation, there are two queues at node R, as depicted

in Fig. 4.1: the queue Q1
2 stores packets relayed from S, and Q2

2 stores R’s own

packets. We refer to Q1 and Q2
2 as the source queues, and Q1

2 as the relay queue.

We will focus our attention on investigating the performance metrics of the stability

region and throughput region. Accordingly, we model bursty packet arrivals and

saturated source queues separately. In the non-saturated system, packets arrive at

nodes S and R independently according to Bernoulli processes, with rates λ1 and

λ2 respectively. Then, the stability region is defined as the union of all (λ1, λ2)

such that all queues in the network remain stable. In the saturated system, we

assume permanent availability of source packets at the two source queues Q1 and

Q2
2; accordingly, we study the throughput region which is the union of all achievable

throughput rate pairs (λ1, λ2), where λ1 and λ2 stand for the throughput rates for

S and R respectively. We should note here that the relay queue Q1
2 at node R is

formed by arrivals from S according to a stationary process, and hence, cannot be
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assumed to be saturated.

At the MAC layer, we separately consider a centralized scheme and a fully

distributed scheme, namely, scheduled access and random access. The two medium

access schemes will be described and analyzed in Section 4.3 and Section 4.4 respec-

tively.

4.3 Scheduled Access

Under scheduled access, the source nodes S and R access the channel at disjoint

fractions of time ω1 and ω2 respectively, where 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1. The set of all

feasible time allocation satisfies:
∑2

i=1 ωi ≤ 1. The two source nodes are activated

to transmit at different time slots, so there is no contention. For each allocation

(ω1, ω2), we can find a corresponding stability region and throughput region; then,

we will take the union of such regions over all possible (ω1, ω2) such that
∑2

i=1 ωi ≤ 1.

Therefore, for any point (λ1, λ2) inside the thus obtained stability region, there exist

time allocations (ω1, ω2) such that the queues in the network remain stable; similarly,

for any point (λ1, λ2) in the throughput region, there exist time allocations (ω1, ω2)

such that the throughput rates (λ1, λ2) can be achieved.

In this cooperative multi-access system, there are two queues Q1
2 and Q2

2 at

node R, one stores packets relayed from S, and the other stores R’s own packets.

Therefore, when it is R’s turn to transmit a packet, R can choose to transmit a packet

from one of the two queues; the scheduling policy, that is, the policy for deciding

which of the two queues to serve, may affect the (stable) throughput achieved by the
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two source nodes individually. We consider a class of scheduling policies for node R

in deciding between Q1
2 and Q2

2: when both Q1
2 and Q2

2 are non-empty, R selects a

packet from Q1
2 with probability β, and a packet from Q2

2 with probability 1−β (for

0 ≤ β ≤ 1); when only one of the two queues is non-empty, R selects a packet from

that queue. If we set β = 0, it corresponds to the case which assigns higher priority

to Q2
2; if we set β = 1, it corresponds to the case which assigns higher priority to Q1

2.

Putting together these two special cases with the general case, the three scheduling

policies we consider at the relay node are described as follows:

1. The source queue Q2
2 has higher priority; that is, only when it is empty, will

R transmit a packet from the relay queue Q1
2 (β = 0).

2. The relay queue Q1
2 has higher priority; that is, only when it is empty, will R

serve a packet from the source queue Q2
2 (β = 1).

3. When both queues Q1
2 and Q2

2 are non-empty, R selects a packet from Q1
2 with

probability β, and a packet from Q2
2 with probability 1 − β, for 0 ≤ β ≤ 1;

when only one of the two queues is non-empty, R selects a packet from that

queue.

Note that under policy 3, we will vary over β ∈ [0, 1] to obtain the stability and

throughput regions; the thus obtained regions are compared with the corresponding

regions under policies 1 and 2.
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4.3.1 Stability Analysis

The stability region under scheduled access for a tandem of N users was ob-

tained in Chapter 2; an important observation from the proof in that analysis is that

the resulting region is independent of the scheduling policies at the relay node. In

addition, the stability region of the cooperative system strictly contains the stability

region of the non-cooperative system. By specializing the results from Chapter 2,

for N = 2, we obtain:

Theorem 4.1 For any scheduling policy adopted by node R, the stability region

under scheduled access in the two-user multi-access system with cooperation is given

by

LSR =

{

(λ1, λ2) :
(p12 + p23 − p12p13)λ1

p23 (p12 + p13 − p12p13)
+

λ2

p23

< 1

}

(4.1)

4.3.2 Throughput Analysis

Next, we consider the throughput region, that is, the region of throughput

rates that are achievable when we assume that the two source queues Q1 and Q2
2

are saturated. We denote by Li the throughput region when the scheduling policy i

(i ∈ {1, 2, 3}) is adopted. Note that even in the saturated case, the relay queue Q1
2

at node R is built by the arrivals from Q1, so it is non-saturated and can be empty

at times.

Under scheduling policy 1 in which Q2
2 has higher priority, the assumption

that Q2
2 is always saturated implies that the relay queue Q1

2 will never be served by
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node R. Therefore, we have the following theorem:

Theorem 4.2 Under scheduling policy 1, the throughput region reduces to the through-

put region of the non-cooperative system, which is

L1 =

{

(λ1, λ2) :
λ1

p13

+
λ2

p23

< 1

}

(4.2)

This is a strict subset of the stability region given by Eq. (4.1), that is, L1 ⊂ LSR.

Proof: The source queue Q2
2 is saturated and never empties, so R always selects a

packet from Q2
2 to transmit when it is R’s slot. This reduces to the non-cooperative

system as node R never serves the packets relayed from S. The throughput rates

are given by

λ1 = ω1p13, λ2 = ω2p23 (4.3)

If we take the union over all (ω1, ω2) such that ω1+ω2 ≤ 1, we obtain the throughput

region as given in Eq. (4.2). A simple comparison will find that the throughput

region under policy 1 is strictly inferior to the stability region given by Eq. (4.1). ¥

Similarly, as Q2
2 never empties, the scheduling policy 3 becomes: when Q1

2 is

non-empty, R selects a packet from Q1
2 with probability β, and a packet from Q2

2

with probability 1 − β, for 0 ≤ β ≤ 1; when Q1
2 is empty, R selects a packet from

Q2
2. The throughput analysis under policy 2 and policy 3 is carried out, and the

results lead to:

102



Theorem 4.3 Under scheduling policies 2 and 3, the throughput regions are the

same and are identical to the stability region given by Eq. (4.1) of Theorem 4.1. So

we have: L2 = L3 = LSR.

Proof: Under both policies 2 and 3, the throughput rate for source S consists of

two parts: the packets delivered to the destination by S itself, and those relayed

by R. The throughput rate contributed by S itself is easily seen to be λS
1 = ω1p13,

since a packet is delivered from S to the destination if and only if the time slot is

assigned to S and the packet is successfully decoded by the destination, which has

the probability of ω1p13; we need further to calculate the throughput rate contributed

by the relaying, that is, the throughput rate contributed by the packet delivery from

the queue Q1
2.

As we have clarified before, Q1
2 is built by arrivals from source S, and hence,

can be empty with positive probability. Therefore, the behavior of Q1
2 is determined

by both its arrival process and its service process. A packet will arrive at Q1
2 from

node S if and only if the following three events happen together: first, the time slot

is assigned to S, so S transmits a packet; second, the destination doesn’t decode

that packet; and third, the relay node R decodes that packet successfully. These

three events are independent, so the expected value of the arrival process to the

queue Q1
2 is

λQ1
2

= ω1p12(1 − p13) (4.4)

Under policy 2, Q1
2 has higher priority than Q2

2, and the packet is delivered to
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the destination from Q1
2 if and only if it is node R’s time slot, and the destination

successfully decodes the transmitted packet. So the average service rate of Q1
2 is

calculated to be

µQ1
2

= ω2p23 (4.5)

By Loynes’ Theorem, if the arrival and service processes of a queue are jointly

stationary, the queue is stable if and only if the average arrival rate is strictly less

than the average service rate, and furthermore, the departure rate is equal to the

arrival rate. As a result, one and only one, of the following two cases will happen:

1. If ω1p12(1 − p13) < ω2p23, the queue Q1
2 is stable, and the throughput rate

for S contributed by the relaying is λR
1 = ω1p12(1 − p13). Therefore, the total

throughput rate for S is

λ1 = λS
1 + λR

1 = ω1(p13 + p12(1 − p13)) (4.6)

In this case, Q1
2 is empty with probability 1−ω1p12(1−p13)/ω2p23 as it is simply

a discrete-time M/M/1 queue. According to policy 2, Q2
2 is successfully served

if it is node R’s time slot and Q1
2 is empty, and the packet transmitted from

Q2
2 is decoded by the destination. So the average service rate that Q2

2 receives

is given by

µQ2
2

= ω2p23

(

1 − ω1p12(1 − p13)

ω2p23

)

= ω2p23 − ω1p12(1 − p13) (4.7)
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This is the actual throughput rate for user R. So we obtain the throughput

rates as

λ1 = ω1(p13 + p12(1 − p13)) (4.8)

λ2 = ω2p23 − ω1p12(1 − p13) (4.9)

2. If ω1p12(1 − p13) ≥ ω2p23, Q1
2 is unstable and will grow without bound. In

this case, the throughput rate for S contributed by the relaying is equal to the

service rate of Q1
2, which is ω2p23; besides, Q1

2 is empty with probability zero,

so Q2
2 is served with probability zero as it is assigned lower priority, and the

throughput rate for R is zero. Therefore, the throughput rates are given by

λ1 = ω1p13 + ω2p23 (4.10)

λ2 = 0 (4.11)

By taking the union of these rates over all feasible (ω1, ω2) such that
∑2

i=1 ωi ≤

1, we obtain that the actual throughput region under policy 2 is characterized by

Eq. (4.1).

Under policy 3, given fixed (ω1, ω2), a similar analysis will lead to the through-

put rates as functions of ω1, ω2 and β, given by the following:
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1. If ω1p12(1 − p13) < βω2p23, the throughput rates are given by

λ1 = ω1(p13 + p12(1 − p13)) (4.12)

λ2 = ω2p23 − ω1p12(1 − p13) (4.13)

2. If ω1p12(1 − p13) ≥ βω2p23, the throughput rates are given by

λ1 = ω1p13 + βω2p23 (4.14)

λ2 = (1 − β)ω2p23 (4.15)

By taking the union of the throughput rates over all (ω1, ω2) such that
∑2

i=1 ωi ≤

1 and β ∈ [0, 1], the throughput region under policy 3 is also characterized by

Eq. (4.1). ¥

The above analysis reveals that the arrival and service processes of the non-

saturated queue Q1
2 play a critical role in determining the throughput region under

policy 2 and policy 3. If we instead assume that all queues are saturated including

the relay queue Q1
2, as was done in [46], the maximum throughput region is achieved

by activating node R all the time, that is, by assigning ω1 = 0 and ω2 = 1. Node R

switches between Q1
2 and Q2

2, and the throughput region is given by L′ =
{

(λ1, λ2) :

λ1 + λ2 < p23

}
. This strictly contains the region expressed in Eq. (4.1). So by

assuming all queues saturated, we will over-estimate the throughput region, and the

corresponding result provided in [46] turns out to be a strict outer bound.
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4.3.3 Optimal Policy for the Throughput Region

As shown above, the throughput region under policy 3 obtained by taking the

union of the throughput rates for all possible β ∈ [0, 1], where β is the probability to

select a packet from the relay queue Q1
2, is the same as the throughput region under

policy 2 where Q1
2 has higher priority than Q2

2. In addition, the throughput regions

under policy 2 and policy 3 strictly outer-bound the throughput region under policy

1. These two observations suffice to conclude that, the scheduling policy which

assigns higher priority to the relay queue Q1
2 (β = 1) is optimal in the sense that it

achieves the maximum throughput region among the class of stationary scheduling

policies considered at the relay node.

4.4 Random Access

Due to the difficulty of global coordination for scheduled access in ad hoc net-

works, random access is an attractive and simple alternative that is implemented in

a fully distributed fashion. In this setting, when source node S (or R) is backlogged,

it transmits a packet with probability q1 (or q2) independently of any other event.

If both S and R decide to transmit in the same time slot, a collision will occur and

both transmissions will fail. We also do not allow simultaneous transmission and

reception, and hence, when R is transmitting, it cannot receive a packet transmitted

by S.

We are interested in characterizing the stability and throughput regions cor-

responding to each of the three scheduling policies described in Section 4.3, upon
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which we can reveal the relation between the two regions for random access. Like-

wise, the stability region is obtained by taking the union of all arrival rates (λ1, λ2)

such that there exist transmission probabilities (q1, q2) which stabilize all queues;

the throughput region is defined as the union of all throughput rates (λ1, λ2) for

which there exist (q1, q2) that can achieve them.

4.4.1 Stability Analysis

Stability analysis in random access system is known to be notoriously difficult

due to the interaction among the queues. So far, the stability region of the slotted

random access system is known for no more than three users. Even in the case of

two users without cooperation (the two-user ALOHA system), the stability analysis

is non-trivial. We again make use of the stochastic dominance approach to decouple

the queues and derive the stability region. The main result is summarized in the

following theorem:

Theorem 4.4 The stability region under random access is independent of the schedul-

ing policies at the relay node R, and is characterized by

ℜSR =

{

(λ1, λ2) :

√

λ1

p12 + p13 − p12p13

+

√

p12(1 − p13)λ1

p23(p12 + p13 − p12p13)
+

λ2

p23

< 1

}

(4.16)

Proof: See Appendix 4.8.1. ¥

Under scheduled access, we have proved in Chapter 2 that the cooperative

stability region strictly contains the stability region when cooperation is not used.
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Under random access, the stability region without cooperation is known to be

ℜnocoop
SR =

{

(λ1, λ2) :

√

λ1

p13

+

√

λ2

p23

< 1

}

(4.17)

From Eq. (4.16), the maximum stabilizable rate for source S with cooperation is

p23(p12+p13−p12p13)

(
√

p12(1−p13)+
√

p23)2
, this quantity can be greater than, equal to or less than p13,

which is the maximum stabilizable rate for S in the non-cooperative system. By

comparing the two regions expressed in Eq. (4.16) and Eq. (4.17), we can easily find

that the relation between the two regions depends on the relation between these two

quantities that are functions of the system parameters. Specifically,

1. If

p23(p12 + p13 − p12p13)

(
√

p12(1 − p13) +
√

p23)2
≥ p13 (4.18)

the stability region of the cooperative system under random access strictly con-

tains the stability region of the non-cooperative system. The relation between

these two regions in this case is illustrated in Fig. 4.2(a);

2. If

p23(p12 + p13 − p12p13)

(
√

p12(1 − p13) +
√

p23)2
< p13 (4.19)

the stability region of the cooperative system and the stability region of the

non-cooperative system overlap, but neither one properly contains the other.
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(b)    (a)

λ′′
2

ℜnocoop
SR

λ2 λ2

λ1

ℜSR ℜSR

ℜnocoop
SR

λ1 λ′′
1

Figure 4.2: Comparison of the stability regions for the cooperative and non-
cooperative systems under random access. (a) Condition (4.18) holds, ℜSR ⊃
ℜnocoop

SR . (b) Condition (4.19) holds, ℜSR and ℜnocoop
SR cross at (λ′′

1, λ
′′
2).

The boundaries of the two stability regions have two intersection points, which

are (λ′
1, λ

′
2) = (0, p23) on the y-axis, and (λ′′

1, λ
′′
2) = (αp13, (1 −√

α)2p23), with

α =
4(

√
p12−p12p13+p13−

√
p13)

2
(p12−p12p13+p13)p2

23

(p12−p12p13)2(p13+p23)
2 . In the subset constrained by λ1 ≤

λ′′
1 (or equivalently, λ2 ≥ λ′′

2), the cooperative stability region strictly contains

the non-cooperative stability region; in the subset constrained by λ1 > λ′′
1 (or

equivalently, λ2 < λ′′
2), the non-cooperative stability region strictly contains

the cooperative stability region. This relationship is illustrated in Fig. 4.2(b).

Condition (4.18) implies that p23 is considerably larger than p13, that is, the

channel condition from R to D is sufficiently better than the channel condition from

S to D. By contrast, condition (4.19) implies that the R to D channel quality is

better than the S to D one, but not sufficiently so. When cooperation is used, some

of S’s packets will enter R’s queue for retransmission, and the transmission of these

packets from R will collide with the transmission from S, if S decides to transmit

at the same time. Therefore, we observe that two forces are at work:
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(a) For one thing, some of S’s packets will be relayed by R, which has the better

user-destination channel. This is a positive effect.

(b) For another, the addition of such an arrival process to R requires R to push more

packets out of its queue if it wants to remain stable; and under random access,

the simultaneous transmissions of R and S will cause destructive collision and

both transmissions will fail. This is a negative effect.

Based on these two effects, under condition (4.19) when the R to D channel

is not sufficiently better than the S to D channel, it follows that: when λ1 is very

small, the cooperative system outperforms the non-cooperative system in terms of

stability region. In this range, effect (a) plays the major role. As we increase λ1 until

it exceeds a certain threshold value λ′′
1, the cooperative stability region falls inside

the non-cooperative stability region. This is because, as λ1 increases, the arrival

rate from S to R increases as well, and the occurrence of collision increases. As a

result, effect (b) becomes dominant and the cooperation strategy actually degrades

the performance.

4.4.2 Throughput Analysis

Under the assumption that the source queues Q1 and Q2
2 are saturated, we

investigate the throughput regions with respect to each of the three scheduling

policies at node R as described in Section 4.3. We denote by ℜi the throughput

region when the scheduling policy i (i ∈ {1, 2, 3}) is adopted.
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Theorem 4.5 Under scheduling policy 1, the throughput region is given by

ℜ1 =

{

(λ1, λ2) :

√

λ1

p13

+

√

λ2

p23

< 1

}

(4.20)

Proof: As we have argued in the proof of Theorem 4.2 in Section 4.3.2, the satu-

rated system in which the source traffic at the relay node has higher priority reduces

to the non-cooperative system. Under random access, this system behaves the same

as the slotted ALOHA system with an erasure channel, and the throughput region is

known to be given by Eq. (4.20), which is also the non-cooperative stability region.

Theorem 4.6 Under scheduling policy 2 and policy 3, the throughput regions ℜ2

and ℜ3 are given by:

1. When the condition in Eq. (4.18) is satisfied, the throughput regions under

policy 2 and policy 3 are the same, and are identical to the cooperative stability

region as given by Eq. (4.16) in Theorem 4.4. That is,

ℜ2 = ℜ3 = ℜSR (4.21)

2. When the condition in Eq. (4.19) is satisfied, the throughput region under

policy 2 is given by the union of two regions, specifically,

ℜ2 = ℜSR

⋃

ℜ′ (4.22)
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where ℜSR is the cooperative stability region as shown in Eq. (4.16), and ℜ′ is

defined by

ℜ′ =







(λ1, λ2) :

p23(p12+p13−p12p13)

(
√

p12(1−p13)+
√

p23)2
≤ λ1 ≤ p13

λ2 = 0







(4.23)

A diagram of the boundary of ℜ2 given by this equation is shown in Fig. 4.3(a).

Finally, the throughput region under policy 3 is given by

ℜ3 = ℜSR

⋃

ℜ1 (4.24)

where ℜSR and ℜ1 are given in Eq. (4.16) and Eq. (4.20) respectively. A

diagram showing the boundary of ℜ3 is depicted in Fig. 4.3(b). In this case, the

relationship between the cooperative stability region and the throughput regions

under policies 2 and 3 is

ℜ3 ⊃ ℜ2 ⊃ ℜSR (4.25)

Proof: The throughput rates for nodes S and R under policy 2 and policy 3 can

be computed in the same way as in the proof of Theorem 4.3 in Section 4.3.2. For

fixed (q1, q2), under policy 2, we can obtain that

1. If

q1(1 − q2)p12(1 − p13) < q2(1 − q1)p23 (4.26)
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(b)    (a)

ℜ3

λ2 λ2

λ1λ1

ℜ2

Figure 4.3: Boundaries of the throughput regions under policy 2 and policy 3 for
random access when condition (4.19) holds. (a) ℜ2, the throughput region under
policy 2. (b) ℜ3, the throughput region under policy 3.

the throughput rates are given by

λ1 = q1(1 − q2)(p12 − p12p13 + p13) (4.27)

λ2 = q2(1 − q1)p23 − q1(1 − q2)p12(1 − p13) (4.28)

2. If

q1(1 − q2)p12(1 − p13) ≥ q2(1 − q1)p23 (4.29)

the throughput rates are given by

λ1 = q1(1 − q2)p13 + q2(1 − q1)p23 (4.30)

λ2 = 0 (4.31)
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The throughput region is the union of all these rates over (q1, q2) ∈ [0, 1]2.

When the condition written in Eq. (4.26) is satisfied, by following the same procedure

as in the proof of Theorem 4.4 which solves a constrained optimization problem, we

can obtain that the achievable throughput rates are in the region of

{

(λ1, λ2) :

√

λ1

p12 + p13 − p12p13

+

√

p12(1 − p13)λ1

p23(p12 + p13 − p12p13)
+

λ2

p23

< 1

}

(4.32)

On the other hand, when the condition in Eq. (4.29) holds, the achievable

throughput rates are in the region of







(λ1, λ2) :
0 ≤ λ1 ≤ max

(

p13,
p23(p12+p13−p12p13)

“√
p12(1−p13)+

√
p23

”2

)

λ2 = 0







(4.33)

The throughput region under policy 2 is then the union of these two sub-

regions. Depending on the relation between the quantities p13 and p23(p12+p13−p12p13)
“√

p12(1−p13)+
√

p23

”2 ,

the throughput region is as described in Theorem 4.6.

Under policy 3, by following a similar analysis, we can obtain that for fixed

(q1, q2) and fixed β, we have:

1. If q1(1 − q2)p12(1 − p13) < βq2(1 − q1)p23, the throughput rates are given by

λ1 = q1(1 − q2)(p12 − p12p13 + p13) (4.34)

λ2 = q2(1 − q1)p23 − q1(1 − q2)p12(1 − p13) (4.35)
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2. If q1(1 − q2)p12(1 − p13) ≥ βq2(1 − q1)p23, the throughput rates are given by

λ1 = q1(1 − q2)p13 + βq2(1 − q1)p23 (4.36)

λ2 = (1 − β)q2(1 − q1)p23 (4.37)

After taking the union over (q1, q2) ∈ [0, 1]2 and β ∈ [0, 1], the throughput

region under policy 3 can be shown to be given by Theorem 4.6.

Finally, a simple comparison between ℜ2, ℜ3 and ℜSR yields the relations

between these regions as shown in Eq. (4.21) and Eq. (4.25), under condition (4.18)

and condition (4.19) respectively. ¥

4.4.3 Optimal Policy for the Throughput Region

From theorems 4.5 and 4.6, we learn that if condition (4.18) is satisfied, the

throughput region under policy 2 coincides with the throughput region under policy

3, which strictly outer-bounds the throughput region under policy 1. That is, ℜ2 =

ℜ3 ⊃ ℜ1. Hence, in this case, the scheduling policy which always assigns higher

priority to the relay queue Q1
2 (corresponding to β = 1) is optimal in achieving the

maximum throughput region among the stationary scheduling policies considered

at the relay node. The optimal scheduling policy under condition (4.18) is shown in

Fig. 4.4(a).

Otherwise, that is, if condition (4.19) is satisfied, the optimal scheduling policy

is not the same for the entire range. In this case, a simple comparison will find that

the maximum throughput region is given by the union of two regions: the throughput
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(b)    (a)

λ∗
2

λ2 λ2

λ1λ1 λ∗
1

β = 1

β = 0

β = 1

Figure 4.4: The optimal scheduling policies that maximize the throughput region
for random access under (a) condition (4.18), and (b) condition (4.19).

region under policy 1 and the throughput region under policy 2. That is, ℜmax
TR =

ℜ1

⋃ℜ2. In addition to the two points on the x-axis and y-axis, the boundaries of the

two throughput regions intersect at the point (λ∗
1, λ

∗
2) = (αp13, (1 −√

α)2p23), with

α =
4(

√
p12−p12p13+p13−

√
p13)

2
(p12−p12p13+p13)p2

23

(p12−p12p13)2(p13+p23)
2 . In the subset constrained by λ1 ≤ λ∗

1

(or equivalently, λ2 ≥ λ∗
2), ℜ2 strictly contains ℜ1; in the subset constrained by

λ1 > λ∗
1 (or equivalently, λ2 < λ∗

2), ℜ1 strictly contains ℜ2. Therefore, among

the class of scheduling policies considered, the optimal policy at the relay node in

achieving the maximum throughput region is described as follows: if we want to

achieve the throughput rates for λ1 ≤ λ∗
1 (or equivalently, λ2 ≥ λ∗

2), the optimal

scheduling policy is the policy which assigns higher priority to the relay queue Q1
2

(β = 1); if we want to achieve the throughput rates for λ1 > λ∗
1 (or equivalently,

λ2 < λ∗
2), the optimal scheduling policy is the one which assigns higher priority to

relay’s source queue Q2
2 (β = 0). The latter case corresponds to the scenario of the

non-cooperative operation, as Q2
2 never empties and Q1

2 will never be served. The

optimal scheduling policy under condition (4.19) is shown in Fig. 4.4(b).
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4.5 Network Coding at the Relay Node

The idea of Network Coding was first introduced in [47]. It allows nodes to

perform operations on the bits inside the packets that are received from different

sources. In [48] where a configuration similar to the one we are considering here was

analyzed. It was shown that certain coding schemes at the relay node achieve the

min-cut capacity ; among the coding schemes at the relay node, greedy random linear

coding was proved to be rate-optimal when the channels are noiseless, provided that

the relay node can transmit and receive information simultaneously.

With both relayed packets and source packets at the relay node R, we investi-

gate the performance of network coding when it is applied on these two streams of

packets, and compare it to the simple retransmission scheme. When node R decides

to transmit, network coding is performed in the following fashion: if both queues

Q1
2 and Q2

2 are non-empty, node R transmits a random linear combination of two

packets, one from Q1
2, the other from Q2

2; if only one queue is non-empty, node R

transmits an uncoded packet from that queue. The random linear combination is

assumed to be taken over a sufficiently large finite field, so the coefficient vectors

of the same set of packets generated in different time slots are linearly independent

with probability approaching one. It is easy to show the following result:

Theorem 4.7 The superposition of network coding over cooperative relaying does

not introduce additional performance gains for either the stability region or the

throughput region, under either scheduled access or random access. The performance

of network coding at the relay node R in this three-node packet-erasure network is
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the same as that of plain store-and-forward routing.

Proof: Consider the coded packet α1A + α2B, where packets A and B are from

the queues Q1
2 and Q2

2 respectively, and coefficients α1, α2 are randomly generated

in each time slot. Since both A and B are new to the destination, the destination

needs to successfully receive two such encoded packets to decode both A and B.

Therefore, we can view each encoded packet as a new uncoded packet and it follows

that network coding yields the same performance as the plain store-and-forward

routing in this case. ¥

This conclusion can be extended to the case where the relay node is allowed

to perform random linear network coding on K packets, for any K ≥ 2; or even the

greedy random coding scheme which allows the relay to transmit a linear combina-

tion of all packets in its queue at each time. There will be no performance gain over

the plain store-and-forward routing in either the stability or throughput region, by

following the same argument. Furthermore, if we take into account the non-zero

probability of linear dependence between the coding vectors applied to the same set

of combined packets, the destination is required to receive on average more than two

encoded packets in order to decode two individual packets, and hence, network cod-

ing can possibly decrease the stability or throughput region. This is not surprising

since network coding generally yields benefits for multicasting environments with

multiple destinations. However, if network coding is performed in different ways, it

is possible to yield enhancement to the obtained regions.
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4.6 Numerical Results

Numerical results illustrating the relationship between the stability and through-

put regions in the cooperative multi-access system are provided in this section.

Fig. 4.5 plots the stability and throughput regions under scheduled access, for the

channels with reception probabilities p13 = 0.3, p23 = 0.8 and p12 = 0.6. It is seen

that the relationship between the regions is consistent with the results in Section 4.3,

that is, LSR = L2 = L3 ⊃ L1.

The situation is more complicated in the random access case. The stability

and throughput regions under random access are shown in Fig. 4.6 and Fig. 4.7. In

Fig. 4.6, the channel reception probabilities are chosen to be p13 = 0.15, p23 = 0.8,

p12 = 0.7, so that Eq. (4.18) is satisfied. In this case, the cooperative stability region

and the throughput regions under policies 2 and 3 are observed to be the same,

following the solid line; whereas the throughput region under policy 1 depicted by

the dotted line is strictly inferior to the other three regions. That is, ℜSR = ℜ2 =

ℜ3 ⊃ ℜ1.

In Fig. 4.7, the channel reception probabilities are chosen to be p13 = 0.4,

p23 = 0.7, p12 = 0.6, so that Eq. (4.19) is satisfied. The boundaries of the coop-

erative stability region and the non-cooperative stability region (which is also the

throughput region under policy 1) cross at the point (λ1, λ2) = (0.2167, 0.0482).

The throughput regions under policies 2 and 3, and the cooperative stability region

are shown to confirm that ℜ3 ⊃ ℜ2 ⊃ ℜSR.
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Figure 4.5: Stability region and throughput regions under scheduled access. p13 =
0.3, p23 = 0.8, p12 = 0.6. (I) Stability region; throughput regions under policies 2
and 3. (II) Throughput region under policy 1.
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Figure 4.6: Stability region and throughput regions under random access. p13 =
0.15, p23 = 0.8, p12 = 0.7. (III) Stability region; throughput regions under policies
2 and 3. (IV) Throughput region under policy 1.
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Figure 4.7: Stability region and throughput regions under random access. p13 = 0.4,
p23 = 0.7, p12 = 0.6.

4.7 Discussion

In this chapter, we investigated the effects of network-level cooperation in a

wireless multi-access system with two sources unicasting traffic to a common des-

tination over erasure channels, under scheduled access and random access schemes

respectively. After cooperation was permitted, the stability region and the through-

put region were explicitly characterized, and their relationship was revisited, am-

plified, and explained. We concluded that the stability region is independent of

the scheduling policies at the relay node assigned to the source packets and relayed

packets; while the throughput region depends on the scheduling policies. Among

a class of scheduling policies considered, we identified the two regions and deter-

mined when and whether they are identical or not. This observation demonstrates

that, the addition of the extra link between the two users brings in a new dimen-
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sion of complexity that affects the relationship between the stability region and the

throughput region in multi-access systems.

Unlike the case of scheduled access, we observed that the cooperative sta-

bility region under random access does not always strictly outer-bound the non-

cooperative stability region; this is due to the lack of coordination associated with

random access, which leads to collision of simultaneous transmissions.

Finally, integration of network coding at the relay node was considered. It

turned out that this does not yield additional performance gains over plain store-

and-forward routing in terms of the stability region or throughput region. This is

somewhat surprising since the information capacity region of the single-relay channel

can be achieved if network-coding-like processing of information at the relay node

is permitted. However, our model is different in that it allows the relay node to

multiplex its own traffic with the traffic it relays.

4.8 Appendix

4.8.1 Proof of Theorem 4.4

We start by considering a dominant system, denoted by M1. In system M1,

node S transmits dummy packets with probability q1 whenever it is empty, while

node R behaves in the same way as in the original system. All the other assumptions,

channel models, arrival processes and reception processes remain unaltered in the

dominant system. Since the dummy packets have no contribution to the throughput

but cause collision with the transmission from the other source terminal, it follows
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that the queue sizes in the dominant system are not smaller than the corresponding

queue sizes in the original system, which implies that the stability of the dominant

system is a sufficient condition for the stability of the original system.

We merge the two queues at node R, and denote the merged queue by Q2.

The two queues at node R are stable if and only if the merged queue Q2 is stable.

In the dominant system M1, node S always transmits with probability q1, so the

probability of success seen by Q2 is always q2(1 − q1)p23, that is to say, the average

service rate of Q2 is

µQ2 = q2(1 − q1)p23 (4.38)

To derive the stability condition for Q2, we need to calculate its total arrival rate.

There are two independent arrival processes to Q2: first, the external Bernoulli

arrivals to node R that line up in queue Q2
2, and second, the arrivals from node S,

stored in queue Q1
2. The arrival rate to Q2

2 is λ2; it remains to calculate the arrival

rate to Q1
2.

In system M1, when node R receives a dummy packet from node S, it will

simply discard the dummy packet. When the dominant system is stable, the queue

at node S is stable, so the departure rate of the source packets (dummy packets

are excluded) is equal to the arrival rate to node S, which is λ1. When node S

transmits a source packet, the packet will leave node S’s queue if the following two

events happen together: (i) node R is empty, or node R is backlogged but decides to

be silent with probability 1−q2, and (ii) either the destination D or node R decodes
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the packet, or both of them decode the packet. These two events described under

(i) and (ii) are independent, and thus we have

P [the transmitted packet of node S departs S]

=
{
(1 − q2)P [Q2 6= 0] + P [Q2 = 0]

}
(1 − (1 − p12)(1 − p13)) (4.39)

Among the packets that exit node S’s queue, some will exit the network if

they are decoded by the destination node directly, and some of them will be relayed

to node R first. The latter case will happen if the following two events happen

together: (i) node R decodes the packet, and (ii) the destination node D doesn’t

decode the packet. Therefore, we have

P [the transmitted packet of node S is relayed to node R]

=
{
(1 − q2)P [Q2 6= 0] + P [Q2 = 0]

}
p12(1 − p13) (4.40)

From Eq. (4.39) and Eq. (4.40), we obtain the conditional probability that

a transmitted packet of node S (dummy packets are excluded) arrives at node R

given that the transmitted packet exits node S’s queue, which is

{
(1 − q2)P [Q2 6= 0] + P [Q2 = 0]

}
p12(1 − p13)

{
(1 − q2)P [Q2 6= 0] + P [Q2 = 0]

}
(1 − (1 − p12)(1 − p13))

=
p12(1 − p13)

1 − (1 − p12)(1 − p13)
(4.41)

As we have described above, when the queue at S is stable, the departure rate
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of the source packets (dummy packets are excluded) is equal to the arrival source

rate λ1, so the average arrival rate to the queue Q1
2 at node R is computed to be

p12(1−p13)
1−(1−p12)(1−p13)

λ1. And the total arrival rate to Q2 is

λQ2 = λ2 +
p12(1 − p13)

1 − (1 − p12)(1 − p13)
λ1 (4.42)

By Loynes’ Theorem, the stability condition for the queue Q2 at node R is given by

λQ2 < µQ2 , that is

p12(1 − p13)

1 − (1 − p12)(1 − p13)
λ1 + λ2 < q2(1 − q1)p23 (4.43)

Then we analyze the queue Q1 at node S in system M1. The arrival rate to Q1

is λ1; the service process of Q1 depends on whether Q2 at node R is empty or not:

if Q2 is empty, Q1 receives a service rate of q1 (1 − (1 − p12)(1 − p13)); otherwise, if

Q2 is not empty, Q1 receives a service rate of (1− q2)q1 (1 − (1 − p12)(1 − p13)). We

now need to calculate the probability that Q2 is empty. The total arrival process to

Q2 is no longer Bernoulli, since there can be possibly two packets arriving at R in

the same time slot, one to Q2
2, the other to Q1

2 from Q1. However, these two arrival

processes are independent, and the inter-arrival times regarding the total arrival

process remain geometrically distributed. By using the result provided in [49, Ch.

6.2], the stationary probability that Q2 is empty still has the form of 1 − λQ2/µQ2 .
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As a result, the average service rate received by Q1 is

µQ1 =
{
(1 − q2)P [Q2 6= 0] + P [Q2 = 0]

}
q1 (1 − (1 − p12)(1 − p13))

=

(

1 −
λ2 + p12(1−p13)

1−(1−p12)(1−p13)
λ1

(1 − q1)p23

)

q1 (1 − (1 − p12)(1 − p13)) (4.44)

And the stability condition for Q1 is

λQ1 < µQ1

⇐⇒ (1 − q1)p23 + q1p12(1 − p13)

q1(1 − q1)p23 (1 − (1 − p12)(1 − p13))
λ1 +

1

(1 − q1)p23

λ2 < 1 (4.45)

The network is stable if and only if all queues in the network are stable, and

from Eq. (4.43) and Eq. (4.45), the stability region of the dominant system M1 is

characterized by

ℜM1 =







(λ1, λ2) :

(1−q1)p23+q1p12(1−p13)
q1(1−q1)p23(1−(1−p12)(1−p13))

λ1 + 1
(1−q1)p23

λ2 < 1

p12(1−p13)
1−(1−p12)(1−p13)

λ1 + λ2 < q2(1 − q1)p23







(4.46)

We now consider another dominant system M2. In system M2, node R trans-

mits dummy packets with probability q2 whenever it is empty, and node S behaves

in the same way as in the original system. By following a parallel argument, we

obtain the stability region of the dominant system M2 as

ℜM2 =







(λ1, λ2) :
λ1 < q1(1 − q2) (1 − (1 − p12)(1 − p13))

λ2 + (1−q2)p12(1−p13)+q2p23

(1−q2)(1−(1−p12)(1−p13))
λ1 < q2p23







(4.47)
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For a fixed transmission probability pair (q1, q2), the union of the two regions

ℜM1

⋃ℜM2 given by Eq. (4.46) and Eq. (4.47) provides the sufficient condition for

the stability of the original system. By following the same “indistinguishability”

argument as in [17], we observe that at saturation, the dominant systems and the

original system become indistinguishable and hence must have the same boundary

of the stability regions. As a result, the exact stability region of the original system

coincides with the union of the stability regions of the two dominant systems, as

(q1, q2) varies over [0, 1]2.

Finally, to obtain the stability region over all (q1, q2), we solve a constrained

optimization problem as in [19]. To do this, we fix λ1 and maximize λ2 as (q1, q2)

varies over [0, 1]2, which then generates the boundary of the stability region. The

procedure is as follows.

We replace λ1 by x and λ2 by y, and the boundary of the stability regions

given by Eq. (4.46) and Eq. (4.47) can be written as

y = (1 − q1)p23 −
(
(1 − q1)p23 + q1p12(1 − p13)

)
x

q1(p12 + p13 − p12p13)

for 0 ≤ x ≤ (p12 + p13 − p12p13)(q2(1 − q1)p23 − y)

p12(1 − p13)
(4.48)

and

y = q2p23 −
(
(1 − q2)p12(1 − p13) + q2p23

)
x

(1 − q2)(p12 + p13 − p12p13)

for 0 ≤ x ≤ q1(1 − q2)(p12 + p13 − p12p13) (4.49)
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First we consider the constrained optimization problem suggested by Eq. (4.48)

as

max
q1∈[0,1]

y′ = max
q1∈[0,1]

(

(1 − q1)p23 −
(
(1 − q1)p23 + q1p12(1 − p13)

)
x

q1(p12 + p13 − p12p13)

)

(4.50)

Differentiating with respect to q1 gives

dy′

dq1

= −p23 +
p23x

q2
1(p12 + p13 − p12p13)

(4.51)

Setting Eq. (4.51) to zero yields

q∗1 =

√
x

p12 + p13 − p12p13

(4.52)

A simple calculation shows that the second derivative at q∗1 is negative, and so q∗1

must be the unique maximizer if it can be reached. Since q1 is a probability, we

have 0 ≤ q1 ≤ 1; according to Eq. (4.52), this is equivalent to require

0 ≤ x ≤ p12 + p13 − p12p13 (4.53)

But by Eq. (4.48), y must be non-negative, and so x automatically satisfies Eq. (4.53).
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Hence, by substituting Eq. (4.52) into Eq. (4.48), we obtain

y′
max = −

(
p12(1 − p13) − p23

)
x

p12 + p13 − p12p13

− 2p23

√
x√

p12 + p13 − p12p13

+ p23

⇐⇒
√

x

p12 + p13 − p12p13

+

√

p12(1 − p13)x

p23(p12 + p13 − p12p13)
+

y′
max

p23

= 1 (4.54)

This is the boundary of the stability region provided by Eq. (4.48).

By applying the same procedure on Eq. (4.49), we can show that its boundary

is also given by Eq. (4.54). Therefore, the stability region of the cooperative multi-

access system under random access is described by

ℜSR =

{

(λ1, λ2) :

√

λ1

p12 + p13 − p12p13

+

√

p12(1 − p13)λ1

p23(p12 + p13 − p12p13)
+

λ2

p23

< 1

}

(4.55)

This concludes the proof of Theorem 4.4. We should remark here that when we

construct the proof, node R is allowed to randomly pick a packet from the merged

queue Q2 to transmit (that is, either pick a packet of its own or a relayed packet

from S); the analysis and derivation we presented is independent of what scheduling

policy node R adopts, and hence, the stability region is independent of the schedul-

ing policies considered and is given by Eq. (4.16).
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Chapter 5

Rate Control

5.1 Introduction

As another arena for studying wireless multi-access channels, rate control is

the main subject of this chapter. The traditional networking-theoretic approach in

multi-access channels rests on the packet level, which assumes that data travels in

the form of packets, without regard to the bit-content. By doing this, the physical

layer properties which include the effects of fading, attenuation and interference are

abstracted into a simple packet-erasure channel model: the transmission is consid-

ered to be successful with a certain probability, and unsuccessful otherwise. Then

the performance measures of interest are the packet throughput, packet delay, etc.

However, packets cannot be treated separately from the internal bits. If a packet

contains more bits and hence is transmitted at a higher data rate, the successful

reception probability of that packet is relatively low; on the other hand, higher

packet throughput can be achieved by lowering the data rate. Therefore, it is more

appropriate and accurate to consider the problem at the bit level, and evaluate the

performance metrics such as bit throughput and bit delay.

There have been many papers which investigate the problem of rate allocation

in multi-access channels, with the objective to maximize the throughput or minimize

the average delay, including [50,51,52,53]. However, those work is subject to a couple
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of limitations. First, their channel model is restricted to additive white Gaussian

noise multiple access channel only, the capacity region of which has a polymatroidal

structure that is essential for their proof of optimality. Second, in those work, the

transmission rates assigned to the users are selected from the Shannon capacity

region, and the optimal rate control policy is shown to be operated on the boundary

of the capacity region. However, the Gaussian capacity region is obtained when we

assume the availability of infinite number of source bits at the transmitters, which

may not hold under the assumption of bursty arrivals. In addition, the rates on

the boundary are asymptotically achievable when the codeword length approaches

infinity, thus, such rates cannot be achieved with finite-length codeword transmitted

in a finite time slot. And, the infinite-length codeword implies infinite delay, which

makes the delay minimization problem questionable.

In this chapter, we first investigate the stability issue of a multi-access channel

consisting of two users and a common destination. In each time slot, information

bits arrive at the two users independently according to some stationary processes.

Due to the difficulty and cost of global coordination in the wireless environment,

here, we assume that each user, if it is backlogged, decides to transmit with some

probability independently of any other event. Then, the transmission rates are se-

lected from a finite, discrete set, such that the allocated rates are feasible according

to the action of both users. The feasible rate set can be derived from any channel

model, and is not restricted to the Gaussian channel only. Basically, if only one

user decides to transmit, the channel is able to support higher transmission rate;

otherwise, if both users decide to transmit together in a time slot, the supportable
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data rate from each user must be lowered in order to combat interference and ensure

successful reception at the destination. By doing this, we require that the users ex-

change the information about whether they will transmit or remain idle. Since only

one bit is needed for the side information from each user (active or idle), the cost

incurred by this information exchange is negligible. Under these assumptions, we

explicitly characterize the stability region (in bits/slot) of this multi-access system.

The stability region is defined as the set of all arrival rates for which there exist

transmission probabilities such that all queues in the network remain stable. Subse-

quently, the structure property of the stability region is discussed, and we determine

the necessary and sufficient condition under which the stability region is convex. In

this case, the optimal policy for attaining the maximum achievable stability region

is shown to be the rate allocation policy with transmission probability one for both

users. According to our model, the stability region is the union of all stabilizable

arrival rates by some transmission probabilities. Hence, we define a policy to be

optimal if it can stabilize all arrival rates that are stabilizable with some transmis-

sion policy; and the stability region of the optimal policy, which is indeed the entire

stability region, is also referred to as the maximum stability region.

In the second part of this chapter, we focus our attention on the delay per-

formance. We look into the case where users are initially given a certain amount

of data to be delivered to the destination, and there are no more arrivals. We are

interested in characterizing the optimal policy that drains the queues of two users

within the shortest time. Under the same condition for a convex stability region, the

optimal policy is shown to have similar structure as the policy investigated in [54,55]

133



S1

D

S2

Figure 5.1: The wireless multi-access channel with two users (S1, S2), and a common
destination (D).

for the Gaussian broadcast channels, and is the one that empties the two queues

with the same expected time.

5.2 Model

We consider throughout this chapter the slotted wireless multi-access channel

shown in Fig. 5.1. Two users, S1 and S2, transmit unicast traffic to the common

destination D. In each time slot, packets arrive to source user Si according to a

Bernoulli process with rate ηi packets per slot, and each packet contains an average

number of li information bits. Hence, the average arrival rate to each user, measured

in bits per slot, is λi = ηili, for i = 1, 2. Further, we assume that the arrival processes

are independent across users and independently and identically distributed over time

slots.

Different from the packet-based approach in most work at the network layer,

which assumes the transmission of one packet in a time slot without regard to the

packet-content, in this chapter, we take into account the bit-nature of a packet. As

such, we assume that each user, if it transmits, will transmit a finite number of bits.

These bits are then encoded into a packet with fixed length that is transmitted for
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the duration of one time slot. Generally, the transmission rates can be chosen from a

continuous set. But for simplifying the analysis, we assume that user Si (i ∈ {1, 2})

is allowed to transmit with one of the two rates: Ri or ri. The rates are chosen such

that Ri is the supportable rate that Si can transmit to D without the presence of Sī’s

transmission (̄i denotes the complementary of i); and ri is the rate Si can transmit

if both users transmit simultaneously. Due to the interference caused by concurrent

transmissions, the supportable rate under single transmission must be greater than

the supportable rate under simultaneous transmissions. That is, Ri > ri, for i = 1, 2.

These rates depend on various parameters such as the received power, target bit-

error-rate, as well as the coding and decoding mechanisms. For example, the rate

can be defined as some increasing function of the received signal-to-interference-plus-

noise ratio (SINR) as in [56]. In some papers, the rate is represented by the Shannon

capacity rate log2 (1 + SINR). As we have commented in Section 5.1, although this

approach based on Shannon capacity is widely used for the rate control problem, its

validity is questionable. However, the actual choices for the transmission rates will

not affect our analysis.

We would like to remark that our model is general since we do not restrict it

to any specific channel model (e.g., additive Gaussian multiple-access channel); all

rates chosen following the principle described above are included in our model. In

addition, we incorporate the physical-layer properties into the network-layer stud-

ies by considering more realistic channel model than the packet reception channel

model.

Denote by q1[n] and q2[n] the number of bits in the queues at S1 and S2
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respectively, at the beginning of time slot n. Instead of a centralized scheduling

like Time Division Multiple Access (TDMA) or a fully distributed random access

scheme, here, we consider a class of transmission policy that is partially distributed

with some coordination. The transmission policy is distributed as each user decides

to transmit with some probability if it is backlogged, independent of any other event.

Then, users communicate over a control sub-channel exchanging the information

whether they decide to transmit or not; according to the action of the other user,

each user selects the feasible rate to transmit. At each time slot n, the transmission

policy is described as follows:

• If qi[n] > 0, user Si decides to transmit with probability pi. If qi[n] = 0, Si

has to be idle with probability 1.

• If both users are backlogged and decide to transmit, by exchanging this infor-

mation they know that they both will transmit, so each user Si (i ∈ {1, 2})

selects the rate ri to transmit, as ri is the supportable rate when S1 and S2

transmit together.

• If only one of the users, say user Si, decides to transmit, it transmits with rate

Ri.

We note that the control information shared by the two users requires only

one bit from each side (transmit or idle), and hence, the overhead incurred by this

type of coordination is negligible. Defined in this way, we see that in each time slot,

there are three possible allocation rate pairs: (R1, 0), (r1, r2) and (0, R2), according

to the queue state and the action chosen by the two users.
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5.3 Stability Region

As defined by the transmission policy, user Si independently decides to access

the channel, and the queues at S1 and S2 interact in a complicated manner. As

before, by the stochastic dominance approach and Loynes’ Theorem, we are able

to solve the stability conditions in the context of our bit-level multi-access channel

model. The main results are provided in the following theorem.

Theorem 5.1 The parameters λ1, λ2 represent the average arrival rates to the users

S1 and S2 respectively, measured in bits/slot. The stability region of the investigated

multi-access channel is given by

ℜ =
⋃

(p1,p2)∈[0,1]2

(

ℜ1(p1, p2)
⋃

ℜ2(p1, p2)
)

(5.1)

where

ℜ1(p1, p2) =







(λ1, λ2) :
λ1 < p1R1 − p1(R1−r1)

R2−p1(R2−r2)
λ2

λ2 < p2R2 − p1p2(R2 − r2)







(5.2)

ℜ2(p1, p2) =







(λ1, λ2) :
λ1 < p1R1 − p1p2(R1 − r1)

λ2 < p2R2 − p2(R2−r2)
R1−p2(R1−r1)

λ1







(5.3)

and (p1, p2) ∈ [0, 1]2 is the transmission probability pair.

Proof: See Appendix 5.6.1. ¥

Lemma 5.1 By varying the transmission probabilities (p1, p2) over [0, 1]2, the union
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of the stability region for the multi-access channel takes one, and only one of the

following forms:

(a) If

r1

R1

+
r2

R2

< 1 (5.4)

the stability region is given by

ℜ = L1

⋃

L2

⋃

L3 (5.5)

where

L1 =

{

(λ1, λ2) : λ2 < R2 −
(R2 − r2)λ1

r1

, for λ1 ∈
[

0,
r2
1 · R2

R1(R2 − r2)

)
}

(5.6)

L2 =

{

(λ1, λ2) :

√

(R2 − r2)λ1

R1R2

+

√

(R1 − r1)λ2

R1R2

< 1,

for λ1 ∈
[ r2

1 · R2

R1(R2 − r2)
,
R1(R2 − r2)

R2

)
}

(5.7)

L3 =

{

(λ1, λ2) : λ2 <
R1r2

R1 − r1

− r2λ1

R1 − r1

, for λ1 ∈
[R1(R2 − r2)

R2

, R1

)
}

(5.8)

(b) Otherwise, that is, if

r1

R1

+
r2

R2

≥ 1 (5.9)

the optimal transmission probability pair for maximizing the stability region is
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(p∗1, p
∗
2) = (1, 1). The resulting stability region is convex, and is given by

ℜ = I1

⋃

I2 (5.10)

where

I1 =

{

(λ1, λ2) : λ2 < R2 −
(R2 − r2)λ1

r1

, for λ1 ∈ [0, r1)

}

(5.11)

I2 =

{

(λ1, λ2) : λ2 <
R1r2

R1 − r1

− r2λ1

R1 − r1

, for λ1 ∈ [r1, R1)

}

(5.12)

Proof: See Appendix 5.6.2. ¥

These results imply that, when the condition expressed in Eq. (5.4) is satisfied,

the stability region is bounded by straight lines in some part, and bounded by a

strictly convex function in the remaining part. Otherwise, when the condition ex-

pressed in Eq. (5.9) is satisfied, the stability region becomes convex, and is bounded

by two straight lines from the axes.

Further, when Eq. (5.9) is satisfied, each user should choose to transmit when-

ever it is backlogged. Such policy will stabilize any arrival rate vectors that are

stabilizable under some rate control policy we investigate. The resulting stability

region is convex, and is bounded by two straight lines that intersect at (r1, r2). In

Fig. 5.2, we display some diagrams to illustrate the properties of the stability region

in different cases. In Fig. 5.2(a), the condition in Eq. (5.4) holds, the stability region

is bounded by two straight lines from the axes and a convex function in the interior;

whereas, in Fig. 5.2(b), the condition in Eq. (5.9) is satisfied, and the stability region
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(convex)

linear

linear

    (a) (b)

nonlinear

λ1R1

(r1, r2)

R2

λ2

(r1, r2)

λ1R1

R2

λ2

Figure 5.2: The closure of the stability region. (a) Eq. (5.4) is satisfied, ℜ is bounded
by straight lines close to the axes and a convex curve in the interior. (b) Eq. (5.9)
is satisfied, ℜ is convex.

becomes convex.

5.4 Minimum Delivery Time Policy

In the previous section, we characterized the optimal policy that yields the

maximum stability region for the case r1

R1
+ r2

R2
≥ 1 and r1

R1
+ r2

R2
< 1 separately.

However, a policy that is throughput-optimal does not guarantee optimal delay

performance. For example, the backpressure algorithm introduced in [22] was proved

to achieve the maximum stability region in a relatively general network model, but

it can have poor delay performance.

As a separate, but related issue, we focus our attention on the minimum

delivery time policy in this section. We consider the scenario where there is an

initial amount of traffic volume at the source users at a given time, and there are no

more arrivals; the objective is then to minimize the total time to empty the queues

of both users. We first analyze the case of r1

R1
+ r2

R2
≥ 1, we will show that the

minimum delivery time policy in our problem has a similar property as the Queue
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Proportional Scheduling (QPS) policy studied in [54,55]. In those work, the authors

worked on the Gaussian broadcast channels, and the operation space for all feasible

transmission rates is the Shannon capacity region. In [54], the QPS policy was

shown to achieve the maximum stability region; in [55], the QPS policy was shown

to minimize the total delivery time. In [55], the action space for the users is the

Gaussian Shannon capacity region, which is a continuous set. Therefore, as there are

no new arrivals, and the system is operating on the rate point that is proportional

to the initial queue size vector, it turns out that the queue sizes retain the same

proportion. As a result, the system is operating on a fixed transmission rate point

until both queues are emptied at the same time. However, in our work, there is

only a discrete set for feasible allocation rate pairs: {(R1, 0), (r1, r2), (0, R2)}, so the

system must operate on these points in a probabilistic fashion such that the average

allocated rate is proportional to the initial queue size vector.

Then, we analyze the case of r1

R1
+ r2

R2
< 1; this turns out to be a much

simpler case. We will show that the minimum delivery time policy is the policy that

separately schedules the transmissions of the two users, and each user transmits Ri

bits during the assigned time slots until its queue is empty.

Theorem 5.2 Denote by q0 = (q1, q2) the initial queue size vector at users S1 and

S2. When the condition in Eq. (5.9) is satisfied, that is, if it is true that r1

R1
+ r2

R2
≥ 1,

the minimum delivery time policy is described as follows:
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1. If

q2

q1

≥ r2

r1

(5.13)

the optimal policy is to allocate the rates (r1, r2) to the users with probabil-

ity τ = q1R2

q1R2+q2r1−q1r2
, and allocate the rates (0, R2) with probability 1 − τ =

q2r1−q1r2

q1R2+q2r1−q1r2
until one queue is emptied, after which the policy serves the re-

maining backlogged user Si with rate Ri;

2. Otherwise, that is, if

q2

q1

<
r2

r1

(5.14)

the optimal policy is to allocate the rates (r1, r2) to the users with probability

τ ′ = q2R1

q2R1+q1r2−q2r1
, and allocate the rates (R1, 0) with probability 1 − τ ′ =

q1r2−q2r1

q2R1+q1r2−q2r1
until one queue is emptied, after which the policy serves the

remaining backlogged user Si with rate Ri.

Proof: First, we note that to compare the total delivery time of different policies, it

is equivalent to compare the average allocated rates to the two users. Suppose that

the total delivery time of a policy is T , then the average allocated rate vector is given

by RAvg = q0/T . As we have stated above, the set of all possible allocation rates in

each time slot is {(R1, 0), (r1, r2), (0, R2)}. When the condition in Eq. (5.9) is satis-

fied, the union of all achievable average allocated rates coincides with the stability

region expressed by Eq. (5.10), which is convex. Hence, the average allocated rate
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vector must be inside the stability region, that is, RAvg ∈ ℜ. Then, we show that

the average allocated rate vector of the optimal policy must lie on the boundary of

ℜ. The argument is simple: suppose that the average allocated rate vector (d1, d2)

of the optimal policy is not on the boundary but in the interior, we can always find

a rate vector (d′
1, d

′
2) on the boundary with d′

1 > d1 and d′
2 > d2, then a different

policy with average allocation rates (d′
1, d

′
2) must have better performance. Finally

we can show that the optimal policy must empty the two queues using the same

expected time. This can be proved as follows. Without loss of generality, we select

a different policy that empties S1’s queue first, then the average rate allocated to

user S1 must be increased, at the expense of decreasing the rate allocated to user S2.

As a result, the queue at S2 needs more time slots to empty, and the total delivery

time is determined by the queue that is emptied last. Therefore, under the optimal

policy, the two queues are emptied with the same expected time; and a policy with

such property yields the average allocation rate vector proportional to the initial

queue size vector.

Consequently, the explicit characterization of the optimal policy depends on

the initial queue sizes. If q2/q1 ≥ r2/r1, the initial queue size vector (q1, q2) falls

inside the semi-infinite triangle (I) as illustrated by Fig. 5.3(a), and the optimal

policy has the average allocation rates (l1, l2) as indicated in Fig. 5.3(a). To achieve

this rate pair, the policy selects the rates (r1, r2) with probability τ , and selects the

rates (0, R2) with probability 1 − τ ; after simple calculation the probability τ is as

given in Theorem 5.2. Otherwise, if q2/q1 < r2/r1 and the initial queue size vector

falls inside the region (II) as shown by Fig. 5.3(b), a parallel statement can be made.
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(I)

(II)

    (a) (b)
λ1

λ2

R1

R2

(l1, l2)

(r1, r2)

(l1, l2)

λ1

λ2

R2

R1

(r1, r2)

(q1, q2)

(q1, q2)

Figure 5.3: The average allocation rates of the optimal policy that minimizes the
total delivery time. (a) Condition (5.13) holds, (q1, q2) is inside region (I). (b)
Condition (5.14) holds, (q1, q2) is inside region (II).

In case a queue is emptied first, we allocate the maximum supportable rate to the

remaining queue until it is empty. ¥

Although it has been proved that, when the condition r1

R1
+ r2

R2
≥ 1 holds, the

transmission policy with transmission probability 1 for both users is optimal for the

stable throughput. Under the same condition, such policy does not drain the queues

within the shortest time among all policies; and the minimum delivery time policy is

the one described in Theorem 5.2 which takes into account the initial traffic demand

in both queues. It will be more interesting to address the minimum average delay

policy, which minimizes the average delay experienced by all users in the system

when there are random arrivals. The minimum average delay problem appears to

be challenging even in our two-user multi-access channel model, where both users

are allowed to transmit simultaneously, though at a lower rate. This investigation

is left to the future work.

Theorem 5.3 For the case of r1

R1
+ r2

R2
< 1 as described by Eq. (5.4), the minimum
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delivery time policy will perform a time sharing between the two rate points: (R1, 0)

and (0, R2), until both users’ queues are empty. That is, the optimal policy is the

one that schedules the transmissions of two users separately, until all the backlogged

bits are delivered to the destination.

Proof: Under the condition in Eq. (5.4), the relations of the three rate points are

illustrated as in Fig. 5.2(a), where the rate point (r1, r2) is below the straight line

formed by the points (R1, 0) and (0, R2). Suppose that the optimal policy should

allocate the rates (r1, r2) for some time slots, then by averaging over all allocated

rates, the average allocated rate must be at a point that is strictly below the straight

line connected by (R1, 0) and (0, R2). However, for any such rate point (d1, d2), we

can always find a rate point (d′
1, d

′
2) that lies on the straight line with d′

1 > d1 and

d′
2 > d2, thus an alternate policy with average allocation rate (d′

1, d
′
2) will result in

shorter delivery time. Therefore, we can argue that the optimal policy will perform

a time sharing between the rate points (R1, 0) and (0, R2), and the transmissions of

the users are assigned in disjoint time slots. Each user Si transmits with rate Ri

until its queue is empty. ¥

5.5 Discussion

In this chapter, we studied the rate control problem in a wireless multi-access

channel. Instead of using the Shannon capacity rate at the network layer, the trans-

mission rates are selected from a finite, discrete set in which the rates are achievable

in a finite time slot. In Section 5.3, under a class of transmission policies with some
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coordination, we first characterized the stability region in terms of bits/slot. We

showed that the optimal policies for maximizing the stability region depend on the

values of some crucial network parameters. Under a certain channel condition, the

maximum stability region is achieved by activating the users with probability one if

they are backlogged, and the stability region is convex.

In Section 5.4, the minimum delivery time problem was investigated in our

channel model. For any initial queue size vector, we explicitly characterized the

optimal policy that empties the users’ queues within the shortest time. Under the

same condition for a convex stability region, the minimum delivery time policy was

shown to be the one that drains the queues of both users with the same expected

time.

5.6 Appendix

5.6.1 Proof of Theorem 5.1

We first find the stability region ℜ(p1, p2) for a fixed transmission probability

pair (p1, p2). Tow parallel dominant systems Mi (i ∈ {1, 2}) are constructed in the

following way:

• In the dominant system M1, user S1 transmits dummy bits with probability

p1 if it is empty, while user S2 acts the same as in the original system.

• In the dominant system M2, user S2 transmits dummy bits with probability

p2 if it is empty, while user S1 acts the same as in the original system.
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The arrival processes, the channel model, the transmission and reception pro-

cesses and all other assumptions remain unaltered in the dominant systems. Then

we analyze the stability conditions with respect to each dominant system. In system

M1, user S1 always attempts to transmit with probability p1, regardless of its queue

state. Therefore, user S2 experiences an average service rate of p2p1r2+p2(1−p1)R2.

This is because: if S1 decides to transmit, which occurs with probability p1, S2 is

able to transmit with rate r2; otherwise, if S1 decides not to transmit with probabil-

ity 1− p1, S2 is able to transmit alone with rate R2 to the destination. And if S2 is

backlogged, it will attempt to transmit with probability p2. Hence, the service rate

for S2 in system M1 takes an average of p2p1r2 + p2(1 − p1)R2. Then, according to

Loynes’ Theorem, the queue at S2 is stable if and only if

λ2 < p2p1r2 + p2(1 − p1)R2 = p2R2 − p1p2(R2 − r2) (5.15)

Now we analyze the stability condition of the queue at S1. The service process

of S1 depends on the state of S2’s queue. When S2 is not empty, S2 will decide to

transmit with probability p2. In this case, S1 is only able to deliver r1 bits to the

destination. Otherwise, if S2 decides not to transmit, S1 is able to transmit with

rate R1. On the other hand, when S2 is empty, S1 can always transmit with rate

R1. As a result, the average service rate of S1 should be calculated as

µ1 = p1

{

P [q2 6= 0] (p2r1 + (1 − p2)R1) + (1 − P [q2 6= 0])R1

}

(5.16)
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Since the queue at S2 is a discrete-time M/M/1 queue, the stationary probabil-

ity that the queue is not empty is P [q2 6= 0] = λ2

µ2
= λ2

p2R2−p1p2(R2−r2)
; by substituting

this into Eq. (5.16), we can obtain the average service rate of S1, with which we

can determine the stability condition of S1 by Loynes’ Theorem. The queue at S1

is stable if and only if

λ1 < p1R1 −
p1(R1 − r1)

R2 − p1(R2 − r2)
λ2 (5.17)

Hence, the dominant system M1 is stable if and only if the queues at both

S1 and S2 are stable; and its stability region, denoted by ℜ1(p1, p2), is as shown in

Eq. (5.2).

By following a parallel argument for system M2 in which user S2 transmits

dummy bits, the stability region of M2, denoted by ℜ2(p1, p2), is characterized by

Eq. (5.3) in Theorem 5.1.

We know from the stochastic dominance argument that, the stability of the

dominant systems implies the stability of the original system. That is, the stability

region of the original system ℜ(p1, p2) is lower-bounded by
⋃

i=1,2 ℜi(p1, p2), so we

have ℜ(p1, p2) ⊇ ⋃

i=1,2 ℜi(p1, p2). Then we proceed by arguing that the boundary

of the original system indeed coincides with the boundary of the dominant systems,

which is ℜ(p1, p2) =
⋃

i=1,2 ℜi(p1, p2). Consider system M1 where S1 continues to

transmit dummy bits when it is empty, given that λ2 < p2R2 − p1p2(R2 − r2), for

those λ1 that S1’s queue is stable in the dominant system, the corresponding queue

is also stable in the original system; conversely, for those λ1 which makes the queue
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at S1 unstable in the dominant system, S1 never empties and hence S1 always at-

tempts to transmit source bits with probability p1. We observe that as long as S1

never empties, the dominant system M1 and the original system behave the same.

Therefore, we see that at saturation, the two systems are “indistinguishable”. A

similar “indistinguishability” argument can be applied to system M2. Thus we con-

clude that ℜ(p1, p2) is equal to
⋃

i=1,2 ℜi(p1, p2). Once the stability region for a fixed

transmission probability pair (p1, p2) is found, the stability region for the system is

the union of all such regions as (p1, p2) varies over [0, 1]2. This concludes the proof

of Theorem 5.1.

5.6.2 Proof of Lemma 5.1

Since we have obtained the stability region for a fixed probability pair (p1, p2)

in Theorem 5.1, we can utilize the constrained optimization technique as in [19] to

derive the stability region for all possible values of (p1, p2). To do this, for a fixed

λ1, we maximize λ2 as (p1, p2) varies over [0, 1]2, where λ1 and λ2 are constrained

by the conditions in Eq. (5.2) and Eq. (5.3) (We can reverse the role of λ1 and λ2,

i.e., fix λ2, then maximize λ1 over all possible values of (p1, p2). The thus obtained

region can be shown to be the same).

By replacing λ1 with x and λ2 with y, the boundaries of the stability region
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given by Eq. (5.2) and Eq. (5.3) can be written as

x = p1R1 −
p1(R1 − r1)y

R2 − p1(R2 − r2)

for 0 ≤ y ≤ p2R2 − p1p2(R2 − r2) (5.18)

and

y = p2R2 −
p2(R2 − r2)x

R1 − p2(R1 − r1)

for 0 ≤ x ≤ p1R1 − p1p2(R1 − r1) (5.19)

First we consider the constrained optimization problem suggested by Eq. (5.19)

as

max
p2∈[0,1]

y = max
p2∈[0,1]

(

p2R2 −
p2(R2 − r2)x

R1 − p2(R1 − r1)

)

(5.20)

Differentiating with respect to p2 gives

dy

dp2

= R2 −
R1(R2 − r2)x

(R1 − p2(R1 − r1))
2 (5.21)

Setting Eq. (5.21) to zero yields

p∗2 =
R1

R1 − r1

− 1

R1 − r1

√

R1(R2 − r2)x

R2

(5.22)

A simple calculation shows that the second derivative at p∗2 is negative; so p∗2 must
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be the unique maximizer if it can be reached. Since p∗2 is a probability and it must

satisfy 0 ≤ p∗2 ≤ 1, it follows from Eq. (5.22) that

r2
1 · R2

R1(R2 − r2)
≤ x ≤ R1R2

R2 − r2

(5.23)

The constraint in Eq. (5.19) is valid only for p2 < R1−x
R1−r1

, then for p∗2 given by

Eq. (5.22) to be reachable, x must satisfy

0 ≤ x <
R1(R2 − r2)

R2

(5.24)

Combining Eq. (5.23) and Eq. (5.24), for x in the range given by

r2
1 · R2

R1(R2 − r2)
≤ x <

R1(R2 − r2)

R2

(5.25)

It appears that p∗2 in Eq. (5.22) is the real maximizer. But caution is needed here.

For the region expressed in Eq. (5.25) to exist, it must satisfy that

r2
1 · R2

R1(R2 − r2)
<

R1R2

R2 − r2

⇐⇒ r1

R1

+
r2

R2

< 1 (5.26)

which is the condition as shown in Eq. (5.4) in Case (a) of Lemma 5.1. Thus,

depending on whether r1

R1
+ r2

R2
is greater or less than one, we separately derive the

stability regions corresponding to the two cases.

1) Case (a) :
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When it is true that r1

R1
+ r2

R2
< 1, the region in Eq. (5.25) exists, and the

optimal p∗2 expressed in Eq. (5.22) is the real maximizer. By substituting p∗2 into

Eq. (5.19), the maximum y is

ymax =

(√
R1R2 −

√

(R2 − r2)x
)2

R1 − r1

(5.27)

Now we consider those values of x that fall into the range of

0 ≤ x <
r2
1 · R2

R1(R2 − r2)
(5.28)

We calculate that

dy

dp2

> 0, for ∀x ∈
[

0,
r2
1 · R2

R1(R2 − r2)

)

(5.29)

Therefore, y is a strictly increasing function of p2 for 0 ≤ x <
r2
1 ·R2

R1(R2−r2)
, and the

optimal p∗2 is equal to 1. The corresponding ymax is

ymax = R2 −
(R2 − r2)x

r1

(5.30)

Then we check for those x such that x ≥ R1(R2−r2)
R2

. From Eq. (5.19), we know

that x should be no greater than R1. Hence, we investigate those x which fall into

the range given by

R1(R2 − r2)

R2

≤ x < R1 (5.31)
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Further, Eq. (5.19) implies p2 must satisfy p2 < R1−x
R1−r1

. Under these conditions, we

can easily check that dy

dp2
is strictly positive in this case. So y strictly increases with

p2; but since p2 is no greater than R1−x
R1−r1

, the optimal p∗2 that maximizes y is R1−x
R1−r1

.

By inserting it into Eq. (5.19), the maximum y becomes

ymax =
R1r2

R1 − r1

− r2x

R1 − r1

(5.32)

Thus, under the condition r1

R1
+ r2

R2
< 1, the stability region provided by

Eq. (5.19) is completely described; its form is expressed by L1

⋃L2

⋃L3 given in

Lemma 5.1. By applying the same procedure on the constrained optimization prob-

lem suggested by Eq. (5.18), we obtain the same form of the stability region. Hence,

for the case r1

R1
+ r2

R2
< 1, the stability region is as given in Case (a) of Lemma 5.1.

2) Case (b) :

When it is true that r1

R1
+ r2

R2
≥ 1, the subregion represented by L2 does not

exist. In this case, the stability region is bounded by the union of L1 and L3, as

expressed in Eq. (5.6) and Eq. (5.8) respectively.

As for the region given by L1, the optimal p∗2 is 1, and the feasible values of

x are those for x < p1r1, as according to the constraint in Eq. (5.19). Therefore, x

is maximized by setting p∗1 to be 1. And the corresponding feasible range for x is

0 ≤ x < r1. This is described as the region I1 in Eq. (5.11) of Lemma 5.1.

As for the region given by L3, it can be achieved from the conditions con-

strained by Eq. (5.18), after setting p∗1 to be 1 and p∗2 to be 1; and the values of x

in this region fall into the range of [r1, R1). This is described as the region I2 in
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Eq. (5.12) of Lemma 5.1.

The convexity of the stability region in this case is shown as follows. First, it

can be easily calculated that, the two straight lines that bound the subregions I1

and I2 intersect at the point (r1, r2). Then, if we form a straight line by connecting

the two points (R1, 0) and (0, R2) at the x-axis and y-axis, and denote this line by

L; the intersection point (r1, r2) lies above the line L when it holds that r1

R1
+ r2

R2
≥ 1.

Therefore, the stability region characterized by Eq. (5.10) in this case is convex.

By combining the analysis in Case (a) and Case (b), we conclude the proof of

Lemma 5.1.
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Chapter 6

Conclusion

6.1 Summary of Contributions

In this dissertation, we focused on the issues of cooperative communication

and rate control in wireless multi-access channels. By synthesizing properties of

different layers, our work provided a “layerless” view of the wireless networks.

We first offered an innovative perspective for cooperation by implementing

it at the network layer. In a wireless multi-access system with multiple source

users, cooperation was exploited amongst users by taking into account physical-layer

properties; as such, a packet is delivered to the destination through either a direct

link or through cooperative relaying by intermediate source users, depending on the

channel quality and instantaneous channel outcomes. We considered conflict-free,

work-conserving transmission policies as well as plain TDMA policy at the MAC

layer. By modeling bursty traffic arrivals as in a real network, the performance

metrics of the stable throughput region and delay were evaluated for both MAC

policies. We established that, the stable throughput regions under both classes of

cooperative policies are the same, which strictly outer-bound the stable throughput

regions achieved without cooperation. Moreover, the optimal policy that minimizes

the average delay among the class of all cooperative work-conserving policies was

determined. Then, in the case of two users, the closed-form delay expressions were
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explicitly derived as well. Our results showed that cooperation substantially reduces

delay for both users. A significant implication from our results is that, by relaying

the packets of other users, the intermediate users also enjoy the throughput and

delay benefit for their own packets. Besides cooperative diversity, we observed that

the performance improvement is also attributed to the concentration of packets from

disparate source queues into fewer virtual queues. These contributions are presented

in Chapter 2 and in [57,58,59].

Next, in Chapter 3, we designed and analyzed several advanced network-layer

cooperation techniques, with enhancements based on the physical layer. First, in a

multi-access channel with a cognitive relay, we incorporated a dynamic decode-and-

forward method which allows relaying assistance also during the source’s transmis-

sion. The enhancement of cognitive relaying with DDF provides more cooperation

opportunities which results in faster emptying of the user queues. Further, the

cognitive cooperation was supported by an adaptive superposition scheme which

allows the relay to simultaneously forward packets from different users. With these

techniques that boost the relaying capability, we quantified the extent to which the

enhanced cooperation schemes outperform the conventional cooperation scheme in

terms of the stable throughput region. Subsequently, the composite effects of mul-

tipacket reception and relaying capability in a two-user cooperative channel were

investigated. We showed that under certain channel conditions, simultaneous trans-

missions of different messages from the source user and the relay user should be

permitted for yielding higher stable throughput rates. These results are also pre-

sented in [60,61,62].
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Then we returned to the single-packet reception channel model as analyzed

in Chapter 2, but considered only two users. For such two-user cooperative multi-

access system, we made a thorough analysis on the stability and throughput regions.

These two regions are conjectured to be identical in the non-cooperative multi-access

system. After cooperation was performed, we revisited the relationship between

these two regions, and contributed new and more complicated observations. We

established that, the throughput region depends on the scheduling policies at the

relay node, and may or may not be equal to the stability region, which was shown

to be independent of the scheduling policies. This conclusion holds under both

a centralized access scheme and a random access scheme. Furthermore, network

coding was applied at the relay node as another form of cooperation; we concluded

that network coding provides the same performance as the plain store-and-forward

routing in the context of our single-relay cooperative system. These contributions

appear in Chapter 4 and in [63,64].

In Chapter 5, we studied the rate control problem in a multi-access channel.

We made the distinction from the traditional networking approach by exploiting

the bit-nature of a packet. And, instead of using the Shannon capacity rate at

the network layer, the transmission rates are selected from a finite, discrete set

such that the rates are achievable in a finite time slot. Under a class of partially

distributed transmission policies, we explicitly characterized the stability region in

terms of bits/slot. Under a certain channel condition, the transmission policy which

activates both users with probability one when they are backlogged was shown to

achieve the maximum stability region, and the resulting stability region is convex.
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Finally, we studied the minimum delivery time problem where each user is allocated

at the beginning some amount of data to be sent to the destination. For any initial

queue size vector, we explicitly characterized the optimal rate control policy that

empties the queues in the system within the shortest time. This part of work is also

described in [65,66].

6.2 Future Directions

The solid theoretical analysis in this dissertation provides useful insights for

better understanding of the communication architecture in wireless networks and

its ultimate performance limits. There remain a number of questions for future

investigation.

A fundamental issue that naturally arises is the need for a distributed coop-

erative communication protocol. The proposed cooperation strategy for the multi-

access system with N users, implicitly assumes that there exists a centralized con-

troller which activates at most one user in a time slot, such that all other users can

overhear the transmission and possibly relay the received packet. However, such

centralized controller may not exist, or too costly to implement in a real wireless

network. Further, the strategy requires all the users that capture the transmission to

send back acknowledgements, upon which the “best” of them can be selected as the

relay. This will result in the “feedback implosion” problem. As such, a distributed

cooperation policy with feedback suppression mechanism will be of both theoretical

and practical interest. The performance in our centralized policy can serve as an
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upper bound to evaluate the effectiveness of the distributed policy.

Network coding was briefly addressed in a particular simple network model in

Chapter 4. In a multi-access channel with single intended destination and unicast

traffic only, we determined that applying network coding between the relayed packets

and the source packets at the relay node will not introduce additional performance

gains. However, if network coding is performed in different ways, for example, if we

also allow inter-session network coding among the same streams of packets at the

source user, it is possible to yield enhanced performance. And, if the network is

extended to consist of multiple destinations, and hence, includes multicast traffic,

network coding is known to outperform plain store-and-forward routing in multicast

environment. Cooperative network with network coding has been investigated from

the information-theoretic standpoint; we will continue with the “layerless” approach,

and evaluate the impact of network coding with cooperation on the performance

metrics of stable throughput and delay at the network level.

Throughout this dissertation we consider stationary time-invariant channels.

An ultimate goal will be to formulate the problem over non-stationary time-variant

channels and dynamic topologies. As such, opportunistic cooperation and network

coding schemes that are adapted to the channel conditions will be necessary. The

rate control problem can also be combined with the time-varying channel formula-

tion. This extension will require rethinking of the performance objectives, as the

mean throughput or mean delay may not exist in non-stationary network environ-

ment.
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