
ABSTRACT

Title of dissertation: LINEAR FORMS IN LOGARITHMS
AND INTEGER POINTS ON
GENUS-TWO CURVES

John Vogler, Doctor of Philosophy, 2006

Dissertation directed by: Professor Lawrence C. Washington
Department of Mathematics

We consider a linear form with algebraic coefficients, evaluated at points on the

analytic Jacobian of a genus-two curve whose projective coordinates are algebraic.

Previous results on the existence of a lower bound of a particular shape are made

explicit. We study various properties of Jacobians of genus-two curves, paying

particular attention to their embeddings into projective space, and give a method

which can be used to find provably all integer points on a genus-two curve. We

apply this method to one particular curve by way of example.



LINEAR FORMS IN LOGARITHMS AND

INTEGER POINTS ON GENUS-TWO CURVES

by

John Vogler

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Lawrence C. Washington, Chair/Advisor
Professor Niranjan Ramachandran
Professor Thomas Haines
Professor Harry Tamvakis
Professor William Gasarch



c© Copyright by

John Vogler
2006



To my family.

ii



Acknowledgments

I would like firstly to thank my advisor, Professor Washington, for the sug-

gestions that prompted this paper, for mathematical advice, and for all of the time

that he spent working with me to finish.

Next, I would like to thank Sinnou David, Victor Flynn, and Michel Wald-

schmidt for kindly taking the time to respond to my emails and questions about

their papers.

None of this would have been possible without the immense support from my

wife, Martha Vogler, who cared for and occupied our children countless hours in

order to give me the space and time to work on my studies.

Lastly, I owe more than I know to God, who got me through it all even when

it didn’t seem possible.

iii



Table of Contents

1 Introduction and Terminology 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Genus Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Overview of the Main Proof 14
2.1 Short Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Long Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Background Material 27
3.1 Review of Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Review of Hilbert Functions . . . . . . . . . . . . . . . . . . . . . . . 33

4 Some Lemmas 39

5 The Rank Theorem 65

6 The Inequality of the Tail 71

7 Evaluating the Constants 84

8 Jacobians of Genus 2 Curves 88
8.1 Classes of Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2 Projective Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Local Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.5 The Kummer Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.6 Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.7 Projective Group Law . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.8 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Application to Diophantine equations 120
9.1 The General Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.2 Proving the Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.3 Lattice Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.4 A Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Index of Notation 146

B Program for Computing Local Series 151

Bibliography 155

iv



Chapter 1

Introduction and Terminology

1.1 History

In [1], Baker gave an explicit lower bound for a nonzero linear form in loga-

rithms of algebraic numbers

|β0 + β1 log α1 + ... + βk log αk| > Ce−(log H)κ

.

This H denotes an upper bound on the heights of the β’s. The constant C depends

on k, the α’s, κ, and the degrees of the β’s, but not on the β’s themselves.

This theorem has since been improved in various ways, such as by tightening

the bound. For example, in [2], we have

Theorem 1.1. Let b1, ..., bn be integers, α1, ..., αn be algebraic numbers other than

0 or 1, and D be the degree of Q(α1, . . . , αn) over Q. Let B = max{|b1| , . . . , |bn| , e1/D}

and Ai = max{h(αi), |log αi| /D, 1/D}. Let L = b1 log α1 + . . .+ bn log αn. If L 6= 0,

then

log |L| ≥ −CA1 . . . An log B

where

C = 18(n + 1)!nn+1(32D)n+2 log(2nD).

Another way in which Baker’s theorem has been generalized is by allowing

different kinds of logarithms in the linear form. For example, we can generalize to
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algebraic groups. The multiplicative group Gm has a tangent space TGm
(C) which

is isomorphic to C, and its exponential map

expGm
: TGm

(C) → Gm

is given by

expGm
(z) = ez.

So we may consider our logarithms to be ui ∈ C, where expGm
(ui) = αi is an

algebraic number for each i, or, in other words, expGm
(ui) ∈ Gm(K) for some

number field K.

In fact, the linear term β0 may be considered a coefficient of u0 = 1 in the

tangent space of the additive group Ga, 1 ∈ TGa
(C), where expGa

(z) = z. Then the

linear form is

β0u0 + β1u1 + ... + βkuk,

where ui ∈ TGi
(C) and satisfies expGi

(ui) ∈ Gi(K) for certain algebraic groups,

namely G0 = Ga and Gi = Gm for 1 ≤ i ≤ k.

In this context, it seems natural to ask if the theorem still holds in other

algebraic groups. Except for the particular constants involved, the answer is yes. In

[26], for example, Philippon and Waldschmidt gave the following lower bound.

Theorem 1.2. Let G be an algebraic commutative group of dimension d ≥ 2 defined

over Q̄. Let

expG : TG(C) → G(C)

denote the exponential map of G. Fix a basis of TG(C) defined over Q̄, and also an
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embedding of G into projective space PN defined over Q̄. Then there exists a positive

real number C with the following property.

Let K be any number field on which G, the embedding into projective space,

and the basis for TG(C) are defined, and let D be its degree. Let

L(z) = β1z1 + β2z2 + ... + βdzd

be a nonzero linear form with coefficients in K (i.e. βi ∈ K). Let v ∈ TG(C) such

that γ = expG v ∈ G(K). Let B ≥ e and V ≥ e be real numbers with

log B ≥ h(βi) for 1 ≤ i ≤ d,

log V ≥max(h(γ), |v|2)

If L(v) 6= 0, then

log |L(v)| > −CD2d+2(log B + log log V )d+1(log V )d.

They also had a more precise version of the theorem which, additionally, ap-

plies in the case where the logarithms could come from different algebraic groups.

They did not, unfortunately, evaluate the constant C, or indicate how this might be

done. Hirata-Kohno later improved this bound in [14] to

Theorem 1.3. There exists a positive constant C with the following property. Let

K be a number field on which the groups Gi, the bases of the tangent spaces of the

Gi, and the embeddings of Gi in PNi are all defined. Let

L(z) = β0z0 + β1z1 + ... + βdzd
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be a nonzero linear form with coefficients in K (i.e. βi ∈ K), on the tangent space

TG(C). Let W be its kernel. For each 1 ≤ i ≤ k, let ui ∈ TGi
(C) with ui 6= 0

such that γi = expGi
(ui) belongs to Gi(K). Write v = (1, u1, . . . , uk) ∈ TG(C) and

D = [K : Q]. Let B, E, V1, ..., Vk be real numbers satisfying

D log B ≥ log Vi

log B ≥max(e, h(βj), 0 ≤ j ≤ d)

log Vi ≥max(h(γi), |ui|ρi /D, 1/D)

e ≤ E ≤min(e(D log Vi)
1/ρi/ |ui|)

One supposes additionally that for all algebraic subgroups G′ of G with TG′(C) ⊂ W ,

one has v /∈ TG′(C). If L(v) 6= 0, then

log |L(v)| > − CD2d+1(log B + log DE)×
(

log log B + log D

log E
+ 1

)d
(

k
∏

i=1

(log Vi)
δi

)

(log E)−d

Again, she did not indicate how to find the constant C.

Later, in [8], David evaluated the constant C in the particular case where Gi

is an elliptic curve for 1 ≤ i ≤ k. He proved

Theorem 1.4. Let Gi (1 ≤ i ≤ k) be the elliptic curve given by

y2 = 4x3 − g2,ix − g3,i

where g2,i and g3,i are elements of K. Let

L(z) = β0z0 + β1z1 + ... + βdzd
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be a nonzero linear form with coefficients in K (i.e. βi ∈ K). For each 1 ≤ i ≤ k,

let ui be a complex number such that γi = (1, ℘i(ui), ℘
′
i(ui)) ∈ Gi(K) ⊂ P2(K) (or

such that ui is a pole of ℘i, in which case γi = (0, 0, 1)). Write v = (1, u1, . . . , uk) ∈

TG(C) and D = [K : Q]. Let B, E, V1, ..., Vk be real numbers satisfying

D log B ≥ log Vi

log B ≥max(eh, h(βj), 0 ≤ j ≤ k)

log Vi ≥max(ĥ(γi), h,
3π |ui|2

D |ω1,i Im τi|
)

e ≤ E ≤min(
e(D log Vi)

1/2 |ω1,i|
√

Im τi√
3π |ui|

, 0 ≤ i ≤ k).

If L(v) 6= 0, then

log |L(v)| >

− CD2k+2(log B + log DE)(log E)−2k−1(log log B + h + log(DE))k+1

k
∏

i=1

(log Vi),

where

C = 2.9(106+6k)(42k2

)(k + 1)2k2+9k+12.3.

Using David’s result, Gebel, Pethö, and Zimmer in [11] and Stroeker and

Tzanakis in [36] independently showed how to find provably all integer points on

an elliptic curve in Weierstrass form. This was shortly generalized in [37], [33], and

[34] to quartics, to general nonsingular cubics, and to all genus-one plane curves,

respectively.

Their technique could also apply to curves of higher genus if two obstacles could

be overcome. Firstly, one would need to compute a set of Mordell-Weil generators

for the Jacobian of the curve in question over Q. Secondly, one would need to
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make the above theorems explicit, or, equivalently, generalize David’s theorem to

more algebraic groups, in particular, to Jacobians of dimension g > 1. This is much

harder to do than simply prove that some constant exists that verifies the inequality.

Mordell-Weil generators are routinely computed on elliptic curves using de-

scent, and this same method can also be used on higher-dimensional abelian varieties

such as Jacobians, although it becomes computationally infeasible when the genus

grows at all large, such as g > 2. But Flynn and others have recently computed a

number of Mordell-Weil groups of Jacobians of genus-two curves (see, e.g., [10]).

It will be our purpose, therefore, to overcome the second obstacle for Jacobians

of genus-two curves. In order to reduce the duplication of our work later by those

wishing to extend to higher genus, we will do as much as we can for arbitrary abelian

varieties and then we will come back and fill in the gaps for genus-two Jacobians.

Finally, we will show how to use this result to find provably all integer points on a

genus-two plane curve.

1.2 The Main Theorem

Let us suppose that Gi is an abelian variety, for 1 ≤ i ≤ k, defined over a

number field K of degree D over Q, and G0 = Ga. Then Gi embeds into projective

space, so we consider Gi to be an algebraic subset of PNi. Let di be its dimension,

and mi its degree (under the aforementioned embedding). In particular, N0 = 1,

d0 = 1, and m0 = 1. Define m = d!
∏k

i=0(mi/di!). Then the tangent space to Gi at

the origin TGi
(C) is a vector space of dimension di. By fixing a basis of TGi

(C), we
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identify TGi
(C) with Cdi . We further suppose that the basis is defined over K.

Define the product group G = Ga × G1 × ... × Gk, which is a subset of P̄ =

P1 ×PN1 × ...×PNk and also an algebraic group of dimension d, where d = 1 + d1 +

d2 + ... + dk. Its tangent space is isomorphic to TGa
(C)× TG1(C)× ...× TGk

(C) and

therefore to Cd.

We also have exponential maps on the Gi

expGi
: TGi

(C) → Gi

and an exponential map on the product group G

expG : TG(C) → G

expG(z0, z1, . . . , zk) = expG0
(z0) × expG1

(z1) × . . . × expGk
(zk).

The image of the exponential map is an element of multiprojective space. It

will be convenient to look at particular coordinates. The exponential map can be

given projectively by holomorphic functions

Φi,j : Cdi → C.

We have, therefore,

expGi
(zi) = Φi(zi) = (Φi,0(zi), . . . , Φi,Ni

(zi)) ∈ PNi

and we will also denote

Φ = (Φ0, . . . , Φk).

As pointed out in [40], section 4(b), there are maps H+
i and H−

i : R+ → R such

that for all R ≥ 0 and all z ∈ Cdi with |z| ≤ R, one has

H−
i (R) ≤ log max{|Φi,0(z)| , . . . , |Φi,Ni

(z)|} ≤ H+
i (R).
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Furthermore, H+
i and H−

i may be chosen so that H−
i is constant, and H+

i is

quadratic,

H+
i (R) = A+

i R2 + B+
i R + C+

i .

Multiplication by a scalar does not change the point in projective space, and

so these functions Φi,j are not uniquely defined, which causes certain complications.

It will, therefore, sometimes be more useful to look at the meromorphic functions

Ψi : Cdi → CNi

given by the ratios

Ψi,j = Φi,j/Φi,0.

We will also denote

Ψ = (Ψ0, . . . ,Ψk).

Notice that the first coordinate in each embedding is given a special role by this

definition of Ψ. The coordinates should be ordered so that this first coordinate

(numbered 0) is nonzero at the identity of the group Gi.

Next, let ui ∈ Cdi such that γi = expGi
(ui) ∈ Gi(K), and denote u =

(u0,u1, . . . ,uk). Notice that we use boldface to indicate a vector, and ui ∈ Cdi

for i > 0, but d0 = 1 so u0 is just a complex number.

In order to be able to apply the theorem to classes of abelian varieties Gi,

we will allow a finite list of parameters ϑi,1, . . . , ϑi,vi
, and we will denote h(Gi) =

h(1, ϑi,1, . . . , ϑi,vi
). These are assumed to be elements of K.

The fact that Gi is an algebraic group implies that the group law can be given

in terms of polynomials in projective space. In particular, for every point (p, q) of
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Gi × Gi there are polynomials R
(i)
j (Xi,0, . . . , Xi,Ni

, X ′
i,0, . . . , X

′
i,Ni

) homogeneous of

degree ci in the X variables, homogeneous of degree ci in the X ′ variables, of degree

(at most) c′i in the parameters ϑi,n, with integer coefficients, and with length (i.e.

sum of the absolute values of the integer coefficients) at most ri, such that, not all

are zero at (p, q), and, projectively (i.e. up to a scalar multiple),

Φi,j(z + z′) = R
(i)
j (Φi(z),Φi(z

′)).

Let c = max{ci}. By the remark preceding Definition 4.1 of [24], one can choose the

projective embedding of the Gi such that ci ≤ 2 for all i. While we will have c = 2

for genus-two curves (and for elliptic curves), our main theorem will not assume

that c = 2 so that it may be applied to more general embeddings.

Fix an index i and thus a group Gi. By Lemma 4.1 (pg. 291) of [26], or

Proposition 1.2.3 of [41], if one also fixes j and normalizes Gi variables by setting

Xi,j = 1, then there exist homogeneous polynomials Q
(i,j)
k,l (Xi,0, . . . , Xi,Ni

), giving

the k’th partial derivative of the variable Xi,l in the group Gi. Said differently,

Q
(i,j)
k,l (Xi,0/Xi,j, Xi,1/Xi,j, . . . , Xi,Ni

/Xi,j)

is the k’th partial derivative of the ratio Xi,l/Xi,j, and therefore

∂

∂zj

Φi,l

Φi,j

= Q
(i,j)
k,l (Φi,0, . . . , Φi,Ni

)/Φqi

i,j,

where qi is the degree of Q
(i,j)
k,l in the X variables. When j = l, we clearly have

Q
(i,j)
k,j = 0. Disregarding the case j = l, in practice qi does not depend on j, k, or l.

This is, however, not important, since the degree can be increased by multiplying

Q
(i,j)
k,l by Xi,j; so one might prefer to regard qi as the maximum of the degrees of
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Q
(i,j)
k,l over 0 ≤ j ≤ Ni, 1 ≤ k ≤ di, 0 ≤ l ≤ Ni. In fact, there is a positive integer

κi such that κiQ
(i,j)
k,l is a polynomial of degree qi in the X variables., of degree q′i in

the parameters ϑi,n, with integer coefficients and length at most r′i.

Finally, let h(P ) denote the height of the projective point P on the group Gi.

(Height functions will be discussed in greater detail in Chapter 3.) Let ĥ(P ) denote

the canonical height

ĥ(P ) = lim
n→∞

4−nh(2nP ).

Let }i be a number such that

h(P ) ≤ ĥ(P ) + }i

for all points P on Gi. (While ĥ depends on the group Gi, we will not subscript it

since the group will always be clear from the point P .)

We wish to find an explicit lower bound for the linear form

L(z) = β0z0 + β1z1 + ... + βd−1zd−1

evaluated at

(z0, z1, ..., zd−1) = (u0, u1,1, ..., u1,d1, ..., uk,1, ..., uk,dk
).

The bound will involve certain constants (i.e. depending only on the group G)

whose values will be determined in one case in the next section. The general result

will only assume that C1 is a constant satisfying the equations and inequalities given

in Chapter 4.

First we define a parameter E such that

log E ≥ 1.

10



This parameter allows for better bounds when the numbers |ui| are small, but for

many applications it is easiest simply to take E = e. Next we define parameters Vi,

for each 1 ≤ i ≤ k, which depend on the point ui. They need to satisfy

log Vi ≥ max
{

ĥ(γi), (log E)/D, A+
i |ui|2 E2/D

}

.

The numbers B+
i and C+

i can also affect the result, but to a much lesser degree, so

they only need to be considered if they are very large. About them, we will only

assume that

D log Vi ≥(2A+
i + B+

i ) |ui|E/(50d!(2(k + 1))d−1)

D log Vi ≥(A+
i + B+

i + C+
i )/(50d!(2(k + 1))d−1)2.

Finally, we have the parameter B which depends on the coefficients βi. We will

assume that

log B ≥max{h(βj), 0 ≤ j ≤ d − 1}

log log B ≥max{1, (log E)/D, (log log Vi)/D, h(Gi), }i /m, 1 ≤ i ≤ k}

Theorem 1.5. With the notation from this section, if L(u) 6= 0, then

log |L(u)| > −C1D
2d(log B)(log log B)d(log E)−(2d−1)

k
∏

i=1

(log Vi)
di ,

It will often be convenient to denote a d-tuple using subscripts from 0 to d−1,

and it will often be convenient to denote it in k + 1 groups of di elements, with

double subscripts i, j where 0 ≤ i ≤ k and 1 ≤ j ≤ di. We will use both notations.

Therefore, if z ∈ Cd, then zi ∈ C (where 0 ≤ i ≤ d) and zi,j ∈ C (where 0 ≤ i ≤ k

and 1 ≤ j ≤ di) but zi ∈ Cdi (where 0 ≤ i ≤ k).
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1.3 Genus Two

In the case where Gi is the Jacobian of a genus-two curve

y2 = fi,6x
6 + fi,5x

5 + fi,4x
4 + fi,3x

3 + fi,2x
2 + fi,1x + fi,0,

for each i > 0, we evaluate the constants in Chapter 7. Recall the definitions from

the previous section. In particular, D is the degree of K over Q, the numbers A+
i ,

B+
i , and C+

i come from the function H+
i which must be computed from the period

matrices of each Jacobian. The result is the following:

Theorem 1.6. If the parameters E, Vi, and B are chosen so that they satisfy

log E ≥1

log Vi ≥max
{

ĥ(γi), (log E)/D, A+
i |ui|2 E2/D

}

D log Vi ≥(2A+
i + B+

i ) |ui|E/(150(2k + 3)!(2k + 2)2k)

D log Vi ≥(A+
i + B+

i + C+
i )/(150(2k + 3)!(2k + 2)2k)2

log B ≥max{h(βj), 0 ≤ j ≤ 2k}

log log B ≥max{1, (log E)/D, (log log Vi)/D, h(Gi), }i /((2k + 1)!24k), 1 ≤ i ≤ k}

and if L(u) 6= 0, then

log |L(u)| > −C1D
4k+2(log B)(log log B)2k+1(log E)−(4k+1)

k
∏

i=1

(log Vi)
di ,

where an upper bound for C1 is given by the following table.
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k C1

1 2.1 × 1044

2 6.8 × 10112

3 6.6 × 10219

4 2.5 × 10369

5 4.9 × 10564

6 1.9 × 10808

7 2.1 × 101102

8 4.6 × 101448

k ≥ 9 (2k2)16k2+14k+3222k+8
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Chapter 2

Overview of the Main Proof

2.1 Short Overview

Essentially all proofs in the field of Diophantine approximation come down to

four general steps:

• Construct an auxiliary function.

• Show it is nonzero.

• Find an analytic upper bound.

• Find an arithmetic lower bound.

The first step generally uses some form of Siegel’s lemma to get an auxiliary

polynomial with the necessary properties and still have some control on its size (that

is, the size of its coefficients). In our case, we will use Lemma 2.3 (which is Lemma

6.1 of [26]).

The next three steps refer to certain values of the auxiliary function. In our

case, they refer to a large (but finite) set of points and the first several derivatives

of the auxiliary function at those points.

For the second step, we will use a variant of Philippon’s “Lemme de zéros”

([24]), which says that if the auxiliary polynomial has enough zeros of sufficiently

high order, then there exists a subgroup with certain properties. But if the para-
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meters defining the auxiliary polynomial are chosen correctly, then the existence of

this subgroup can be ruled out from the beginning. The fact that these values of

the auxiliary function are nonzero will be used to get the arithmetic lower bound.

The third step requires the bound on the size of the auxiliary polynomial

given by Siegel’s lemma, and it also generally uses some complex analysis, as well

as the hypothesis that our linear form is especially small. That is, we construct the

polynomial in such a way that, if linear form in logarithms is very small, then this

gives us a way to get a very small upper bound on the values in question on our

auxiliary function.

Finally, the lower bound comes from estimating (that is, bounding) the heights

of the values in question, and using the Louiville inequality: A nonzero algebraic

number of degree D and height h has absolute value ≥ exp(−Dh). This is why it

is important that we deal in algebraic numbers, and it is also why we needed to

perform the second step in order to prove that the values in question are nonzero.

In our case, bounding the height requires looking at the group law on our abelian

variety (on our Jacobian embedded into projective space), describing what happens

to the polynomial when one takes derivatives, examining heights of points, canonical

heights, and so forth. This lower bound is called the “Inequality of the Tail” in the

literature, and so we will use the same name.
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2.2 Long Overview

The main ideas used in this proof come from [8], although his lemmas and

theorems were not appropriate for citing, since they used particular values for the

constants which are only valid for elliptic curves. All of the constants had to be

changed, as well as a few of the arguments, but this proof follows his method.

Define the number

U0 = C2D
2d(log B)(log log B)d(log E)−(2d−1)

k
∏

i=1

(log Vi)
di ,

where C2 is a constant (i.e. depending only on G) to be determined later.

We begin by hypothesizing that

|L(u)| ≤ exp(−C3U0),

and we will use this to find a contradiction.

Our proof will follow the method of [26] and [14] and [8]. First of all, we may

assume that β0 = −1 as follows. In case β0 = 0, we change β0 to −1 and u0 to 0. In

case β0 6= 0, we change βi to −βi/β0 for all i, and we relax the condition log B > h(βi)

to 2 log B > h(βi). In what follows, we will be using the Hilbert function, which we

will denote Hf(G;L), and the leading term of the Hilbert function, which we will

denote H(G;L). Both are discussed in greater detail in the next chapter.

Ultimately, our proof will use P. Philippon’s “Lemme de zéros” [24]. The

following comes from [40] (Prop. 3.1 and the comment following) which is an appli-

cation of the method of [9] to [25].
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Lemma 2.1. Let G = Ga × G1 × ... × Gk embed in P̄ = P × PN1 × ... × PNk . Let

W be a subspace of the tangent space to G at the origin. Let k be a nonnegative

integer, and T , L0, L1, ... Lk be positive integers. Let Σ be a finite set of points of

G(C) containing the identity element 0 of the algebraic group G. Suppose that there

is a polynomial P of C[P̄] of multidegree at most (L0, L1, ...Lk), not identically zero

on G, but with a zero of order at least (k + 1)T + 1 along W at all points of Σ(k+1).

Then there exists a connected algebraic subgroup G′ of G (G′ 6= G), such that the

following inequality holds:

T r card(Σ + G′/G′) H(G′; L0, ..., Lk) ≤ H(G; L0, ..., Lk)

where r is the codimension of W ∩ TG′(C) in W .

The notation Σ(k+1) is defined to be

Σ(k+1) = {σ0 + . . . + σk : σi ∈ Σ for all i}.

In our case, W will be the kernel of our linear form, which is a subspace of TG(C) of

dimension d − 1 (hence codimension 1), and Σ = {su : s ∈ Z, 0 ≤ s < S} for some

integer S, so that Σ(k+1) ⊂ {su : s ∈ Z, 0 ≤ s < (k + 1)S}.

We will need to construct an auxiliary polynomial as in Lemma 2.1. But first

we need to choose parameters so that the conclusion of the lemma cannot be true.

We will define numbers S, T , S1, T1, U0, L#
i (for 1 ≤ i ≤ k) and various ci, and we

will define Li = bL#
i c for 0 ≤ i ≤ k, where L#

0 is given by the following lemma.

Lemma 2.2. Let T be a positive integer, and let C4, L#
1 , ..., L#

k be positive real

numbers. Let Σ be a finite set of points of G(C). Then there exists a real number
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L#
0 such that every connected algebraic subgroup G′ of G with TG′(C) ⊂ W satisfies

T r card(Σ + G′/G′) H(G′; L#
0 , . . . , L#

k ) ≥ (1 + C4) H(G; L#
0 , . . . , L#

k ),

where r + 1 is the codimension of G′ in G, and there is (at least) one such subgroup

G̃ with equality. Additionally, C5 ≤ bL#
0 c ≤ L#

0 ≤ C6U0/(D log B).

Constructing this auxiliary polynomial is the hard part. It will have the form

P =
∑

λ,i

aλ,iξiX
λ

for certain rational numbers aλ,i (in fact, they will be integers in our construction)

where the i runs from 1 to D = [K : Q] and the ξi form a basis for K as a vector

space over Q. We denote by C[P̄] the space of multihomogeneous polynomials with

complex coefficients. It is generated by monomials of the form

∏

i,j

X
λi,j

i,j ,

and by multihomogeneous we mean that the sums
∑

j λi,j (for all i) are the same in

each term of the polynomial. We write (C[P̄]/I(G))L to mean the vector subspace

of those with multidegree L, i.e.
∑

j λi,j = Li for each i. We write

λ = (λi,j)0≤i≤k,0≤j≤Ni

which satisfies, for all i,
Ni
∑

j=0

λi,j = Li.

We write Xλ to mean

∏

i,j

X
λi,j

i,j

18



We choose a set Λ such that {Xλ}λ∈Λ is a set of representatives in C[P̄] of

(C[P̄]/I(G))L

and we let λ run over Λ in the sum defining P . It will be important later that

card(Λ) =dimC

(

C[P̄]/I(G)
)

L

=Hf(G;L).

Suppose that F is a meromorphic function on Cd, and for each i, xi =

(xi,0, . . . , xi,d−1) ∈ Cd. Then we denote

Dxi
F =

d−1
∑

j=0

xi,j
∂F

∂zj

.

If V is a vector subspace of Cd, we say, as in Lemma 2.1, that P has a zero of order

≥ T along V at z if exists a basis {x1, . . . ,xh} of V such that the function

F = P ◦ Φ : Cd → C

has

Dt1
x1
◦ . . . ◦ Dth

xh
F (z) = 0

for all h-tuples t = (t1, . . . , th) ∈ Zh with ti ≥ 0 for all i and |t| = t1 + ... + th < T .

We will henceforth use the shorter notation

Dt

x
F (z) = Dt1

x1
◦ . . . ◦ Dth

xh
F (z).

This definition does not depend on the choice of basis of V .

In our case, we want our function F to have a zero of large order along the

kernel W of our linear form at many (but finitely many) points. Suppose that a
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basis for W is given by f = {f1, . . . , fd−1}. We will describe how this basis should be

chosen later. (In fact, we will eventually have need to use a different basis. It will

be denoted e = {e1, . . . , ed−1} and will also be defined later.) Therefore, we want

Dt

f
F (su) = 0

for all s ∈ Z such that 0 ≤ s < S1 and all t ∈ Zd−1 such that 0 ≤ ti and
∑d−1

i=1 ti ≤ T1,

i.e. |t| ≤ T1. (It will become apparent later why we won’t be taking, as one might

expect, S1 = (k + 1)S and T1 = (k + 1)T .)

Well, since

F = P ◦ Φ =
∑

λ,i

aλ,iξiΦ
λ

and

Dt

f
F (su) =

∑

λ,i

aλ,iξi D
t

f
(Φλ(su)),

we see that the system

Dt

f
F (su)

is linear in the unknowns aλ,i.

Therefore, we use a form of Siegel’s Lemma to solve this linear system for the

unknowns aλ,i and thereby find a polynomial P that satisfies our equations and has

bounded height. We will be using

Lemma 2.3. (Thue-Siegel) Let (ui,j)1≤i≤ν,1≤j≤µ be a matrix of complex numbers, of

rank at most ρ. Let δ, M , and p be positive real numbers such that

[

2µeδ+M+p + 1
]2ρ ≤ eνδ,
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and

max
1≤j≤µ

ν
∑

i=1

|ui,j| ≤ eM .

Then there exists (a1, ..., aν) ∈ Zν such that

0 < max
1≤i≤ν

|ai| ≤ eδ

and

max
1≤j≤µ

∣

∣

∣

∣

∣

ν
∑

i=1

ui,jai

∣

∣

∣

∣

∣

≤ e−p.

This is lemma 6.1 of [26] (pg 301) and is proved there using a Pigeonhole-

Principle argument.

In order to use this lemma, we first need an upper bound on the rank of our

system ρ, the number of equations µ, and the size of the coefficients

ξi D
t

f
Φλ(su),

and we also need a lower bound on the number of unknowns ν.

In order to satisfy the inequality in the lemma, it is necessary that 2ρ < ν,

which is why using the upper bound ν for the rank ρ will not help. Another upper

bound is µ, but we can’t prove that the ratio µ/ν is bounded, so this is also too

large for our purposes, and we need something a bit finer. We will prove

ν ≥ C7Dρ

where C7 is a small constant (less than 2/D) to be given later. We will also prove

log(2µ) ≤ 1

2
U0.
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We will prove that the number

M = log max
s,t

∑

i,λ

∣

∣ξi D
t

f
Φλ(su)

∣

∣

satisfies

M ≤ C8U0.

Then we will take

p = C9U0

and

δ = C10U0/D,

and after giving values for the constants C7, . . . , C10, we will show that

C8 + C9 + C10 + 1 ≤ 1

2
C7C10,

thereby establishing

log(2µ) + δ + M + p +
1

2µ
exp(−δ − m − p) ≤ νδ/2ρ,

and therefore

(

2µeδ+M+p + 1
)2ρ ≤ eνδ

(using the inequality log(1+x) ≤ x, which is valid for all real x > −1, and therefore

log(1 + 1
2µ

exp(−δ − M − p)) ≤ 1
2µ

exp(−δ − M − p) < 1
2

< 1
2
U0).

So we conclude that we have a polynomial P such that F = P ◦ Φ has

∣

∣Dt

f
F (su)

∣

∣ < e−p

for all |t| ≤ T1 and 0 ≤ s ≤ S1, and we also know that |aλ,i| ≤ eδ.
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Computing the rank required us to use a special basis f , but the remainder

of the argument works better using a different basis e, so we will convert between

them using the following.

Lemma 2.4.

∣

∣log max{
∣

∣Dt

f
F (z)

∣

∣ , |t| ≤ T ′} − log max{
∣

∣Dt

e
F (z)

∣

∣ , |t| ≤ T ′}
∣

∣ ≤ T ′ log(d − 1).

In particular, we have

∣

∣Dt

e
F (su)

∣

∣ < exp(−C11U0) (2.1)

for all |t| ≤ T1 and 0 ≤ s ≤ S1, and we also know that

Even if we could show that Dt

e
F (su) = 0 for all such s and t (which we will

do), we still have not used the hypothesis that

|L(u)| < exp(−C3U0),

and we can expect no useful results without using this hypothesis.

We will use the hypothesis as follows. Since L(u) is very small, u is very near

a point w on the vector space W = kerL, and since w lies in the space along which

we are taking derivatives, the function

f(z) = Dt

e
F (zu),

of a single complex variable, has small derivatives as well, and we can apply to it

the following lemma.

Lemma 2.5. (Extrapolation) Let f be a function analytic in the disc {z : |z| ≤

R} ⊂ C. Let S ′ and T ′ be two positive integers and r a real number such that S ′ ≥ 2
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and S ′ ≤ r ≤ 1
2
R. Then we have

|f |2r ≤ 2 |f |R
(

4r

R

)T ′S′

+ 5

(

18r

S ′

)T ′S′

max

{∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

, 0 ≤ t < T ′, 0 ≤ s < S ′

}

Proof. See Prop 7.5 of [8], or Lemme 2-3 of [39] (taking E = {s ∈ Z : 0 ≤ s < S ′},

l = S ′, δ = 1), or Lemma 2 of [7].

This lemma allows us to get more small values than we started with (which,

as we shall see, equates to more zeros). We will use it to prove the following:

Lemma 2.6. For all |t| ≤ (k + 1)T and 0 ≤ s < (k + 1)S,

∣

∣Dt

e
F (su)

∣

∣ < exp(−C12U0).

Making use of these lemmas requires relating the values of F (su) and F (sw).

We will prove that for all |t| ≤ T1 and 0 ≤ s < S1,

∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣ < exp(−C11U0)

and conclude therefore that for such s and t,

∣

∣Dt

e
F (sw)

∣

∣ < 2 exp(−C11U0).

Next, we will fix some t with |t| ≤ (k + 1)T and then apply Lemma 2.5 with

f(z) = Dt

e
F (zw)

r =
1

2
(k + 1)S

R =2(k + 1)SE

S ′ =S1

T ′ =(k + 1)T.
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While |f |2r might be large, (4r/R)T ′S′

= E−T ′S′

is small, and while (18r/S ′)T ′S′

might be large, the derivatives f (t)(s) are small. More precisely, we will prove that

2 |f |R
(

4r

R

)T ′S′

<
1

4
exp(−C12U0)

and

5

(

18r

S ′

)T ′S′

max

{∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

, 0 ≤ t < T ′, 0 ≤ s < S ′

}

<
1

4
exp(−C12U0)

so that we may conclude that for all |t| ≤ (k + 1)T and 0 ≤ s ≤ (k + 1)S,

∣

∣Dt

e
F (sw)

∣

∣ <
1

2
exp(−C12U0).

Then we will prove that for all such s and t,

∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣ <
1

2
exp(−C12U0),

and therefore

∣

∣Dt

e
F (su)

∣

∣ < exp(−C12U0)

for all |t| ≤ (k + 1)T and 0 ≤ s ≤ (k + 1)S,

Finally, all of the above tells us that F and many of its derivatives are small,

but Lemma 2.1 needs them to vanish completely. So we will compute bounds on

the heights of such values, with the intent to prove that any nonzero value must, in

fact, be larger than the upper bounds that we already found.

Lemma 2.7. (Inequality of the Tail) If Dt

e
F (su) 6= 0, where |t| ≤ (k + 1)T and

0 ≤ s ≤ (k + 1)S, and |t| is minimal with this property, then

∣

∣Dt

e
F (su)

∣

∣ > exp(−C12U0).
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Therefore, we may conclude that for all |t| ≤ (k + 1)T and 0 ≤ s ≤ (k + 1)S,

Dt

e
F (su) = 0, and consequently, the polynomial P has a zero of order ≥ (k+1)T +1

along W at all points su with 0 ≤ s < (k+1)S. By Lemma 2.1, there is an algebraic

connected subgroup G′ of G (G′ 6= G) with

T r card(Σ + G′/G′) H(G′; L0, ..., Lk) ≤ H(G; L0, ..., Lk).

In order to use Lemma 2.2, first we will prove

Lemma 2.8. The subgroup G′ in the Lemme de zéros has TG′(C) ⊂ W .

Finally, we will arrive at a contradiction by showing that the inequalities

T r card(Σ + G′/G′) H(G′; L0, ..., Lk) ≤ H(G; L0, ..., Lk)

T r card(Σ + G′/G′) H(G′; L#
0 , L#

1 , . . . ,L#
k ) ≥ (1 + C4) H(G; L#

0 , L#
1 , . . . , L#

k )

together imply that

T r card(Σ + G′/G′) H(G′; L#
0 , L#

1 , . . . , L#
k )

≥(1 + C4) H(G; L#
0 , L#

1 , . . . , L#
k )

≥(1 + C4) H(G; L0, ..., Lk)

≥(1 + C4)T
r card(Σ + G′/G′) H(G′; L0, ..., Lk)

>T r card(Σ + G′/G′) H(G′; L#
0 , L#

1 , . . . , L#
k ),

(see Equation 5.1 for the last inequality) which is a contradiction. Therefore, our

hypothesis that

|L(u)| < exp(−C3U0),

must be false.
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Chapter 3

Background Material

3.1 Review of Heights

The height of an algebraic number α is given by

h(α) =
1

D
log

(

CD

D
∏

i=1

max{1, αi}
)

where αi, for 1 ≤ i ≤ D, are the D Galois conjugates of α and CD is the leading

coefficient of the minimal polynomial

p(x) = CD

D
∏

i=1

(x − αi) ∈ Z[x]

normalized so that the coefficients are integers that do not share a common prime

factor. It can be shown that this height is also given in terms of valuations on a

number field by

h(α) =
1

[K : Q]
log
∏

ν

max{1, |α|nν

ν }

for any number field K which contains α. (Here, the number nν is the degree of the

local field over Qp.)

We also define the height of a k-tuple of algebraic numbers by

h(α1, α2, ..., αk) =
1

[K : Q]
log
∏

ν

max{|α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }

This height is, in fact, defined on projective points, since the product formula

∏

ν

|x|nν

ν = 1,
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implies that

h(βα1, βα2, ..., βαk) = h(α1, α2, ..., αk).

The height function has the properties

h(p/q) = log max{|p| , |q|}

for a rational number p/q in lowest terms,

h(αm) = |m| h(α)

for any integer m,

h(αβ) ≤ h(α) + h(β)

h(α1 + α2 + ... + αk) ≤ h(α1) + h(α2) + ... + h(αk) + log(k)

and any positive integer k. Furthermore,

h(1, α) = h(α)

h(α1 + α2 + ... + αk) ≤ h(1, α1, α2, ..., αk) + log(k)

h(1, α1, α2, ..., αk) ≤ h(α1) + h(α2) + ... + h(αk)

h(1, {αiβj}1≤i≤r,1≤j≤s) ≤ h(1, {αi}1≤i≤r) + h(1, {βj}1≤j≤s)

h(1, {
k
∑

i=1

αij}1≤j≤r) ≤ h(1, {αij}1≤i≤k,1≤j≤r) + log(k).

It will also be important that the height of a collection of positive integers

including 1 is equal to the logarithm of the greatest integer in the collection.

h(1, n1, n2, ..., nk) = log max{1, n1, n2, ..., nk}.
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We can prove most of these formulas easily by manipulating the product over

valuations. We write D = [K : Q] for some number field K containing all of the

algebraic numbers in the formula. First of all,

h(1, α) = h(α)

follows directly from the definition. For m > 0,

exp[D h(αm)] =
∏

ν

max{1, |αm|nν

ν }

=
∏

ν

max{1, |α|nν

ν }m

= exp[D h(α)]m

= exp[Dm h(α)].

Taking logs and dividing by D, we have the result for positive m. For m < 0,

h(αm) = h(1, αm) = h(α−m, 1) = h(α−m) = (−m) h(α).

Next,

exp[D h(αβ)] =
∏

ν

max{1, |αβ|nν

ν }

=
∏

ν

max{1, |α|nν

ν |β|nν

ν }

≤
∏

ν

max{1, |α|nν

ν }
∏

ν

max{1, |β|nν

ν }

= exp[D h(α)] exp[D h(β)]

= exp[D h(α) + D h(β)]
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More generally,

exp[D h(1,{αiβj}1≤i≤r,1≤j≤s)]

=
∏

ν

max{1, {|αiβj|nν

ν }1≤i≤r,1≤j≤s}

≤
∏

ν

max{1, {|αi|nν

ν }1≤i≤r}
∏

ν

max{1, {|βj|nν

ν }1≤j≤s}

= exp[D h(1, {αi}1≤i≤r)] exp[D h(1, {βj}1≤j≤s)]

= exp[D h(1, {αi}1≤i≤r) + D h(1, {βj}1≤j≤s)]

For sums, we need to distinguish between finite (non-Archimedean) and infinite

(Archimedean) valuations, since the former satisfy the ultrametric inequality

|x + y|ν ≤ max{|x|ν , |y|ν}

whereas the latter do not, but still satisfy the triangle inequality

|x + y|ν ≤ |x|ν + |y|ν .

We will distinguish these by writing ν - ∞ and ν | ∞. Using this, and the fact that

∑

ν|∞

nν = D,
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we have

exp[D h(α1 + α2 + ... + αk)]

=
∏

ν

max{1, |α1 + α2 + ... + αk|nν

ν }

=
∏

ν-∞

max{1, |α1 + α2 + ... + αk|nν

ν }
∏

ν|∞

max{1, |α1 + α2 + ... + αk|nν

ν }

≤
∏

ν-∞

max{1, |α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }
∏

ν|∞

max{1, |α1|nν

ν + |α2|nν

ν + ... + |αk|nν

ν }

≤
∏

ν-∞

max{1, |α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }
∏

ν|∞

knν max{1, |α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }

=
∏

ν

max{1, |α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }
∏

ν|∞

knν

= kD
∏

ν

max{1, |α1|nν

ν , |α2|nν

ν , ..., |αk|nν

ν }

= kD exp[D h(1, α1, α2, ..., αk)]

= exp[D(h(1, α1, α2, ..., αk) + log(k))]
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More generally,

exp[D h(1, {
k
∑

i=1

αij}1≤j≤r)]

=
∏

ν

max{1, {
∣

∣

∣

∣

∣

k
∑

i=1

αij

∣

∣

∣

∣

∣

nν

ν

}1≤j≤r}

=
∏

ν-∞

max{1, {
∣

∣

∣

∣

∣

k
∑

i=1

αij

∣

∣

∣

∣

∣

nν

ν

}1≤j≤r}
∏

ν|∞

max{1, {
∣

∣

∣

∣

∣

k
∑

i=1

αij

∣

∣

∣

∣

∣

nν

ν

}1≤j≤r}

≤
∏

ν-∞

max{1, {|αij|nν

ν }1≤i≤k,1≤j≤r}
∏

ν|∞

max{1, {
k
∑

i=1

|αij|nν

ν }1≤j≤r}

≤
∏

ν-∞

max{1, {|αij|nν

ν }1≤i≤k,1≤j≤r}
∏

ν|∞

knν max{1, {|αij|nν

ν }1≤i≤k,1≤j≤r}

=
∏

ν

max{1, {|αij|nν

ν }1≤i≤k,1≤j≤r}
∏

ν|∞

knν

= kD
∏

ν

max{1, {|αij|nν

ν }1≤i≤k,1≤j≤r}

= kD exp[D h(1, {αij}1≤i≤k,1≤j≤r)]

= exp[D h(1, {αij}1≤i≤k,1≤j≤r) + D log(k)]

Finally, we define the height of a polynomial with algebraic coefficients to be

the height of the projective point whose coordinates are 1 and the coefficients of the

polynomial. When the polynomial has integer coefficients, we can get more precise

bounds on sums, products, and values of such polynomials by considering, instead

of the height of the polynomial, its length, which is defined to be the sum of the

absolute values of its coefficients.

For example, if P has n terms, degree d, height h(P ), and length L, then

h(P (β)) ≤ log L + d h(β) ≤ h(P ) + log n + d h(β).

Since h(P ) is the log of the maximum of the coefficients of P , the length gives a
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better bound on h(P (β)) unless all of the coefficients are equal. The easiest way to

deal with lengths of polynomials is to consider the polynomial of length L to have

L terms and all coefficients ±1.

When n is a k-tuple of integers, we will also use the notation |n| to denote the

length of n.

|n| = |n1| + |n2| + . . . + |nk| .

3.2 Review of Hilbert Functions

The ring of homogeneous polynomials in N + 1 variables with complex co-

efficients is denoted C[X0, X1, . . . , XN ] or (for brevity, and to emphasize that the

polynomials must be homogeneous) C[PN ] with those polynomials of degree n de-

noted {C[PN ]}n.

An ideal I ⊂ C[PN ] defines an algebraic variety V and an embedding into

projective space PN . The quotient ring C[PN ]/I is the coordinate ring of the variety

and may be thought of as the ring of polynomials on the variety. The subset of

polynomials of degree n is denoted {C[PN ]/I}n.

The Hilbert function on I is the dimension of this vector space over C,

Hf(I; n) = dimC{C[PN ]/I}n.

We also write Hf(V ; n) to mean Hf(I; n), but since Hf depends on the particular

embedding of V into projective space, the notation Hf(V ; n) only makes sense when

a particular embedding of V is understood.

For every ideal I, there is a polynomial, Hp(I; x), called the Hilbert polyno-
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mial, such that

Hf(I; x) = Hp(I; x)

for all integers x that are sufficiently large. See [13] for a proof. Furthermore, the

Hilbert polynomial has degree d, where d is the dimension of I (or of V ), and the

leading term is

(m/d!)xd.

The number m is a positive integer called the degree of I (or of V ). The degree is

the maximum number of intersections of a linear space in PN of codimension d. It

turns out that this maximum is achieved generically, in the sense that the collection

of linear spaces in PN of codimension d which achieve the maximum is a Zariski

open subset of all such linear spaces.

Since the Hilbert polynomial must take on values which are positive integers

when the variable x is a sufficiently large integer, by considering finite differences of

this polynomial, it is easy to see that all of the coefficients must be rational numbers,

and, in fact, they must be integers divided by (some factor of) d!.

A lower bound is given by Nesterenko in [23] (see also [29])

(

x + d + 1
d + 1

)

−
(

x − m + d + 1
d + 1

)

≤ Hf(V ; x). (3.1)

He also gave an upper bound

Hf(V ; x) ≤ m(4x)d, (3.2)

but tighter upper bounds were given by Chardin in [6]

Hf(V ; x) ≤ m

(

x + d
d

)

(3.3)
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with a slightly more improved upper bound given by him in [5]

Hf(V ; x) ≤
(

x + d
d

)

+ (m − 1)

(

x + d − 1
d

)

. (3.4)

It is worth pointing out that the lower bound and both of Chardin’s upper bounds

are polynomials in x with the same leading term as the Hilbert polynomial. (This

is a feature not shared with Nesterenko’s upper bound.) In fact, those same three

bounds are all equal when m = 1, which means that we have an exact value for the

Hilbert function of a linear surface,

Hf(L; x) =

(

x + d
d

)

.

When x is very large, we can compare the Hilbert function to the leading term

as follows.

Lemma 3.1. If x ≥ 1 then

Hf(V ; x) ≥ m

d!
xd

(

1 − d!d(d + 2)2d+1md

x

)

Proof. From 3.1 we have

Hf(V ; x) ≥
(

x + d + 1
d + 1

)

−
(

x − m + d + 1
d + 1

)

If we expand the binomial coefficient as a polynomial, we get

(

x + d + 1
d + 1

)

=
1

(d + 1)!

d+1
∑

j=0

sjx
j,

where sj is the sum of all

(

d + 1
j

)

products of d+1−j of the integers 1, 2, . . . , d+1.

Evaluating the above at x = 1 gives

d+1
∑

j=0

sj = (d + 1)!

(

d + 2
d + 1

)

= (d + 2)!.
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Using the Binomial Theorem,

(

x + d + 1
d + 1

)

−
(

x − m + d + 1
d + 1

)

=
1

(d + 1)!

d+1
∑

j=0

sj

(

xj − (x − m)j
)

=
1

(d + 1)!

d+1
∑

j=0

j−1
∑

i=0

(−1)j−i+1

(

j
i

)

sjm
j−ixi

=
1

(d + 1)!

d
∑

i=0

d+1
∑

j=i+1

(−1)j−i+1

(

j
i

)

sjm
j−ixi

=
d
∑

i=0

rix
i,

where

ri =
1

(d + 1)!

d+1
∑

j=i+1

(−1)j−i+1

(

j
i

)

sjm
j−i.

In particular, rd = m/d!, rd−1 = m(d + 2 − m)/2(d − 1)!, and when i < d

|ri| ≤
1

(d + 1)!

(

d + 1
i

)

md+1−i
d+1
∑

j=0

sj

≤ 1

(d + 1)!

(

d + 1
i

)

md+1−i(d + 2)!

=(d + 2)

(

d + 1
i

)

md+1−i

≤(d + 2)2d+1md+1.

Therefore, we have

∣

∣

∣

∣

(

x + d + 1
d + 1

)

−
(

x − m + d + 1
d + 1

)

− m

d!
xd

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

d−1
∑

i=0

rix
i

∣

∣

∣

∣

∣

≤
d−1
∑

i=0

|ri|xi

≤d(d + 2)2d+1md+1xd−1
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and so

Hf(V ; x) ≥
(

x + d + 1
d + 1

)

−
(

x − m + d + 1
d + 1

)

≥m

d!
xd − d(d + 2)2d+1md+1xd−1

=
m

d!
xd

(

1 − d!d(d + 2)2d+1md

x

)

Since we will be dealing with products of algebraic varieties, We can generalize

this notion to multihomogeneous ideals in multiprojective space P̄ = PN1 × PN2 ×

... × PNk

I ⊂ C[X1,0, ..., X1,N1 , X2,0, ..., X2,N2, ..., Xk,0, ..., Xk,Nk
] = C[P̄].

The Hilbert function on I (or on V ) is defined by

Hf(I; n1, n2, ..., nk) = dimC{C[P̄]/I}n1,n2,...,nk
.

As in the one-variable case, there is a polynomial, Hp(V ; x1, x2, ..., xk), of

degree d, called the Hilbert polynomial, such that

Hf(I; x1, x2, ..., xk) = Hp(I; x1, x2, ..., xk)

whenever all of the xi are sufficiently large integers. This is Theorem 7 (pg 757) of

[38]. See also the appendix of [18].

Furthermore, in the special case when V = V1 × V2 × ... × Vk where Vi is a

variety in PNi , the vector space of polynomials on V is a tensor product of those on

Vi,

C[P̄]/I ∼= C[PN0 ]/I0 ⊗ . . . ⊗ C[PNk ]/Ik,
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and therefore,

Hf(V1 × V2 × ... × Vk; x1, x2, ..., xk) = Hf(V1; x1) Hf(V2; x2)... Hf(Vk; xk), (3.5)

and therefore similarly for the Hilbert polynomial.

Using the notation of [24] we write

H(V ; x1, x2, ..., xk)

to denote the homogeneous polynomial consisting of those terms of the Hilbert

polynomial of maximum degree (that is, of degree d), multiplied by the integer d!.

The extra factor is included so that the coefficients of H are all integers.

By Lemma 3.1 and the following paragraph in [24],

H(I; x1, x2, ..., xk) =
∑

α1+...+αk=d

cα(I)
d!

α1! . . . αk!
xα1

1 . . . xαk

k

for 0 ≤ αi ≤ Ni, α1+. . .+αk = d, and for all α, the coefficient cα(I) is a nonnegative

integer, a generalization of the degree of I in the one-variable case. The numbers

cα(I) are given by

cα(I) = deg
α
(V ) = H(V ∩ L1 ∩ . . . ∩ Lk; 1, . . . , 1)

where Li is a general linear subvariety of PNi of codimension αi. The reader will

notice the similarity between this formula and the formula for the leading term of

the one-variable Hilbert function.
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Chapter 4

Some Lemmas

Lemma 4.1. Let ai,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) be complex numbers, f1, . . . , fm ele-

ments of Cd, and f : Cd → C a complex-valued function analytic in a neighborhood

of z ∈ Cd. Let

ui =

m
∑

j=1

ai,jfj

and

A = max
1≤i≤n

{

m
∑

j=1

|ai,j|
}

.

Then for any positive integer T ,

max
|t|=T

{∣

∣Dt1
u1

◦ . . . ◦ Dtn
un

f(z)
∣

∣

}

≤ AT max
|τ |=T

{∣

∣Dτ1
f1
◦ . . . ◦ Dτm

fm
f(z)

∣

∣

}

Proof. This is lemma 3.1 of [26], but we will reproduce the proof here since it is

short, and we will need a variant for the next lemma. For 1 ≤ i ≤ n, we have

Dui
=

m
∑

j=1

ai,j Dfj
,

and therefore

n
∏

i=1

(

m
∑

j=1

ai,j Dfj

)ti

=

m
∑

j1=1

. . .

m
∑

jT =1

ai1,j1 . . . aiT ,jT
Dfj1

. . .DfjT
, (4.1)

where (i1, . . . , iT ) = (1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n) with each number i repeated ti

times, for 1 ≤ i ≤ n, and the result follows from

∣

∣

∣

∣

∣

m
∑

j1=1

. . .

m
∑

jT =1

ai1,j1 . . . aiT ,jT

∣

∣

∣

∣

∣

≤ AT .
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For our purposes, we need the following variant of the above lemma.

Lemma 4.2. Let ai,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) be complex numbers, f1, . . . , fm ele-

ments of Cd, and f : Cd → C a complex-valued function analytic in a neighborhood

of z, with Dt
f1

f(z) = 0 for all z when t > L. Let

ui =
m
∑

j=1

ai,jfj

and

A0 = max {1, |ai,1| , 1 ≤ i ≤ n} ,

A1 = max {1, |ai,j| , 1 ≤ i ≤ n, 2 ≤ j ≤ m} .

Then for any positive integer T ,

max
|t|=T

{∣

∣Dt1
u1

◦ . . . ◦ Dtn
un

f(z)
∣

∣

}

≤ mT AL
0 AT

1 max
|τ |=T

{∣

∣Dτ1
f1
◦ . . . ◦ Dτm

fm
f(z)

∣

∣

}

Proof. Since Dt
f0

f(z) = 0 when t > L0, we can remove from Equation 4.1 all

summands where jt = 1 for more than L values of t, and the sum of the remaining

coefficients is bounded by

∣

∣

∣

∑

ai1,j1 . . . aiT ,jT

∣

∣

∣
≤ mT AL

0 AT
1 ,

since there are at most mT terms, each of which has at most L terms ai,1 and at

most T terms ai,j with j ≥ 2.

Lemma 4.3. Let P be a polynomial in C[P̄] of multidegree ≤ (L0, . . . , Lk). Let Φi,j :

Cdi → C be holomorphic functions, and H+
i nondecreasing real-valued functions
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satisfying

log max
0≤j≤Ni

|Φi,j(z)| ≤ H+
i (|z|).

Suppose P has K terms, and all coefficients of absolute value ≤ H. Suppose t ∈ Zl

and T = |t| =
∑l

i=1 ti. Suppose xi ∈ Cd for 1 ≤ i ≤ l, and v = (v0, . . . , vd−1) ∈ Cd.

Then F = P ◦Φ satisfies

log
∣

∣Dt

x
F (v)

∣

∣ ≤T log d + L0 log max
i

{1, |xi,0|} + T log max
i,j>0

{1, |xi,j|}

+ T log T + log K + log H +
k
∑

i=0

LiH
+
i (|v| + 1).

Proof. By Lemma 4.2, we have

∣

∣Dt

x
F (v)

∣

∣ ≤dT max
i

{1, |xi,0|}L0 max
i,j>0

{1, |xi,j|}T×

max

{∣

∣

∣

∣

(

∂

∂z0

)τ1

◦ . . . ◦
(

∂

∂zd−1

)τd−1

F (v)

∣

∣

∣

∣

, |τ | = T

}

By Cauchy’s Theorem,

{∣

∣

∣

∣

(

∂

∂z0

)τ1

◦ . . . ◦
(

∂

∂zd−1

)τd−1

F (v)

∣

∣

∣

∣

, |τ | = T

}

≤ T ! sup{|F (z)| : |zi − vi| ≤ 1, 0 ≤ i ≤ k}

≤ exp

(

T log T + log K + log H +
k
∑

i=0

LiH
+
i (|v| + 1)

)

.

Recall that we defined W to be the kernel of our linear form

L(z) = −z0 + β1z1 + β2z2 + ... + βd−1zd−1.

For 1 ≤ i ≤ d − 1, let

ei = (βi, 0, . . . , 0, 1, 0, . . . , 0),
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where the 1 is in the (i + 1)’st position. Then the ei form a basis for W . Let

w =(β1u1 + ... + βd−1ud−1, u1, . . . , ud−1)

=β1e1 + ... + βd−1ed−1 ∈ W,

which has

w − u = (L(u), 0, . . . , 0).

There is an isomorphism between W and Cd−1 given by

a1e1 + . . . + ad−1ed−1 → (a1, . . . , ad−1),

and the usual metric on Cd−1 may be pulled back to a metric on W , with respect

to which the basis (e1, . . . , ed−1) is orthonormal. Recall the subgroup G̃ defined in

Lemma 2.2. Let d̃ denote its dimension, and r̃ = d − 1 − d̃. Since TG̃(C) ⊂ W , we

may also choose a basis (f1, . . . , fd̃) of TG̃(C) orthonormal with respect to our derived

metric on W , and extend it to an orthonormal basis (f1, . . . , fd−1) of W . Then the

change-of-basis matrices between (e1, . . . , ed−1) and (f1, . . . , fd−1) are unitary, so all

entries of those matrices have absolute value ≤ 1. Applying Lemma 4.1 to both of

these matrices (inverses of one another), proves

Lemma 4.4.

log max{
∣

∣Dt

f
F (z)

∣

∣ , |t| ≤ T ′} ≤ log max{
∣

∣Dt

e
F (z)

∣

∣ , |t| ≤ T ′} + T ′ log(d − 1),

log max{
∣

∣Dt

e
F (z)

∣

∣ , |t| ≤ T ′} ≤ log max{
∣

∣Dt

f
F (z)

∣

∣ , |t| ≤ T ′} + T ′ log(d − 1).

Now we will give values to the parameters mentioned in Chapter 2. Recall the
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definitions of D, B, E, and Vi from Chapter 1. Define

S = bC13D log log B/ log Ec

U0 = C2D
2d(log B)(log log B)d(log E)−(2d−1)

k
∏

i=1

(log Vi)
di

T = bU0/D log log Bc

L#
i = U0(log E)2/C15D

3(log Vi)(log log B)2, for 1 ≤ i ≤ k

Li = bL#
i c, for 1 ≤ i ≤ k

T1 = 2(k + 1)T

S1 = bS/C14c

The constants Ci are positive real numbers (with the exception that C19 can

equal zero, and C5 is required to be an integer) that only depend on the character-

istics of the group G (including k, d, m, cj, rj, etc.) and not, for example, on u, βi,

Vi, K, D, B, or E. We will give values for them later, but for now we will assume

that they satisfy the following equations and inequalities.

C1 =C3C2 C15 =C2
13/C17

C13 =C14C16 0 ≤C19 < 1

1 ≤C16 1 ≤C14

C7C18 ≤C14 2/d ≤C6

C17 ≤C2
14 (1 + C4)mC5 ≤C15

C22 + C12 ≤C11 C10 + C23 ≤C12
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C11 + log(d − 1) ≤C9

(9k + 10)C14 + 1 ≤C13

d!(2(k + 1))d−1

(

c + d − 1
c

)

(1 + C4)
3/(1 − C19) ≤C18

2 + 8 (1 + log(9k + 10) + log C14) ≤C7

2C2d−1
13 ≤mCd−1

17 C6C2

C10 + C21 + C12 ≤(k + 1)C16

C8 + C9 + 1 ≤(
1

2
C7 − 1)C10

2(k + 1) (log(2(k + 1)) + log C2 + d) ≤C20

C20 + (k + 1)(4 log d + 3) + (log C16)/d ≤C8

(k + 1)C16 log((9k + 10)C14) + 1 ≤C22

2(d log 2 + log C13 + (d − 1) log C2 + d − 1) ≤C2

2(1 + log m + d log 2 + d log C2 + d) ≤C2

max{exp(3d), 4((k + 1)C16 + log 8), 4(log(k + 1) + C13)} ≤C2

C11 + 2(k + 1) log d + C20 + C10 +
1

d
(log C16) + 3k + 3 ≤C3

(k + 1) log d +
1

2
C20 +

1

d
(log(2(k + 1)C16))

+k(4k2 + 10k + 7)C17 + k + 3 ≤C21

C11 + (k + 1) log d +
1

2
C20 + 3 + C10 +

1

d
log((k + 1)C13)

+k((k + 1)2C17 + k + 2) ≤C3
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(1/d) log C2 + 4 + (1/d) log((k + 1)C13) + (2/C15)

k
∑

i=1

log ri +
1

2
C20

+ (k + 1)
[

log 2 + log max
i

r′i + log max
i

(qi − 1) + log max
i

κi + max
i

q′i

]

+

k
∑

i=1

[

2(k + 1)2ciC17 + 2ci + 2c′i + (2ci + (k + 1)(qi − 1)) h(Ψi(0)
]

≤ C23

D log Vi ≥(2A+
i + B+

i ) |ui|E/C14 for 1 ≤ i ≤ k

D log Vi ≥(A+
i + B+

i + C+
i )/C2

14 for 1 ≤ i ≤ k

max
1≤i≤k

D log Vi ≥ max
0≤i≤d−1

|ui| /(C2/2d)

ciLi ≤(k + 1)T (qi − 1)

(1 − C19)
1

d!
H(G;L) ≤Hf(G;L)

In the general case, one can use 3.1 and a lower bound on Li to get the last

inequality, but in our case, we will know Hf(G;L) explicitly, so a more precise

estimate will be available to us.

We will also assume that there is a basis for K over Q of elements of height

≤ D log B.

From these equations, it is easy to prove the following relations:

45



T/L#
i ≥(1 + C4)mC5, for i > 0

T/Li ≥m, for i > 0

T/L0 ≥d ≥ 1

LiS
2D log Vi ≤C17U0, for i > 0

Li ≥d/ log(1 + C4), for i ≥ 0

U0 ≥ U0/ log B ≥C2

Now we can prove the lemmas used in Chapter 2.

Lemma 4.5. Every connected algebraic subgroup G′ of G = Ga ×G1 × ...×Gk has

the form G′ = B1 × B2 where B1 is a connected algebraic subgroup of Ga and B2

is a connected algebraic subgroup of G1 × ... × Gk. Furthermore, either B1 = 0 or

B1 = Ga.

Proof. The Chevalley-Rosenlicht theorem says that G′ sits in a canonical exact

sequence of group varieties

1 → B1 → G′ → B′
2 → 1,

where B1 is a connected linear algebraic group, and B ′
2 is an abelian variety.

Since B1 is connected and commutative, it is a product of Ga’s and Gm’s, and

none of these has a non-trivial map to G1 × ... × Gk, so that B1 must embed into

the Ga factor, hence must be 1 or Ga.
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If B1 = 1, then G′ is an abelian variety, so maps trivially to the Ga factor.

Hence G′ = 1 × B2, where B2 is a connected subgroup of G1 × ... × Gk isomorphic

to B′
2.

If B1 = Ga, then the composition of the inclusion B1 → G′ with the projection

Ga × G1 × ... × Gk → G1 × ... × Gk

is trivial, hence B1 injects into Ga × 1. In fact B1 maps onto Ga × 1, since both are

1-dimensional, and so G′ contains Ga × 1 as a subgroup, and this is B1. Then the

projection onto the first factor gives a splitting of the above exact sequence.

It follows that G′ = Ga×B2, where B2 is a connected subgroup of G1× ...×Gk

isomorphic to B′
2.

Lemma 4.6. Let T be a positive integer, and let L#
1 , ... L#

k be positive real numbers.

Let Σ be a finite set of points of G(C). Then there exists a real number L#
0 such

that every connected algebraic subgroup G′ of G with TG′(C) ⊂ W satisfies

T r card(Σ + G′/G′) H(G′; L#
0 , . . . , L#

k ) ≥ (1 + C4) H(G; L#
0 , . . . , L#

k ),

where r + 1 is the codimension of G′ in G, and there is (at least) one such subgroup

G̃ with equality. Additionally, C5 ≤ bL#
0 c ≤ L#

0 ≤ C6U0/(2D log B).

Proof. If G′ is a connected algebraic subgroup of G, with TG′(C) ⊂ W , then by

Lemma 4.5, G′ = L × H where L is a connected algebraic subgroup of Ga, H is a

connected algebraic subgroup of G1 × ... × Gk, and TG′(C) = TL(C) × TH(C). But

if TL(C) 6= 0, then (1, 0, . . . , 0) ∈ TG′(C), contradicting TG′(C) ⊂ W . Therefore, G′

is a subgroup of G1 × ... × Gk. Consequently, H(G′; L#
0 , . . . , L#

k ) is independent of
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L#
0 . On the other hand, by Equation 3.5,

H(G; L#
0 , . . . , L#

k ) = d!
k
∏

i=0

mi

di!
(L#

i )di = mL#
0

k
∏

i=1

(L#
i )di

is linear in L#
0 . Thus

H(G′; L#
0 , . . . , L#

k ) = H(G′; 1, L#
1 , . . . , L#

k )

H(G; L#
0 , . . . , L#

k ) = L#
0 H(G; 1, L#

1 , . . . , L#
k ).

Define

A(G′) =
T r card(Σ + G′/G′) H(G′; 1, L#

1 , . . . , L#
k )

(1 + C4) H(G; 1, L#
1 , . . . , L#

k )

on the space of all connected algebraic subgroups G′ of G satisfying TG′(C) ⊂ W .

This function is clearly everywhere positive, and we will show that it achieves its

minimum value. There are only finitely many possibilities for r (0 ≤ r ≤ d) and

only finitely many possibilities for card(Σ + G′/G′) (it is also a positive integer

and ≤ card(Σ)). Furthermore, for each such choice, there are only finitely many

polynomials whose coefficients are positive integers not bigger than

A(0)
(1 + C4) H(G; 1, L#

1 , . . . , L#
k )

T r card(Σ + G′/G′)
.

Therefore, there are only finitely many values A(G′) ≤ A(0). Let G̃ be one such

subgroup with A minimal, and let L#
0 = A(G̃).

It remains to show that C5 ≤ bL#
0 c ≤ L#

0 ≤ C6U0/(2D log B). Since C5 ∈ Z,

it suffices to show C5 ≤ L#
0 ≤ C6U0/(2D log B). We will start with the right
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inequality:

L#
0 ≤A(0)

=
T d−1S

(1 + C4)m
∏k

i=1(L
#
i )di

≤
(

U0

D log log B

)d−1

S

(

1

1 + C4

)(

1

m

) k
∏

i=1

(

DS2 log Vi

C17U0

)di

=

(

U0

D log log B

)d−1

S

(

1

1 + C4

)(

1

m

)(

DS2

C17U0

)d−1 k
∏

i=1

(log Vi)
di

=

(

C2d−1
13

(1 + C4)mCd−1
17

)

D2d−1(log log B)d(log E)−(2d−1)
k
∏

i=1

(log Vi)
di

=

(

2C2d−1
13

(1 + C4)mCd−1
17 C2

)

U0

2D log B

≤C6
U0

2D log B
.

For the lower bound, we have

L#
0 =A(G̃)

=
T r̃ card(Σ + G̃/G̃) H(G̃; 1, L#

1 , . . . , L#
k )

(1 + C4) H(G; 1, L#
1 , . . . , L#

k )

≥T r̃ H(G̃; 1, L#
1 , . . . , L#

k )

(1 + C4)m
∏k

i=1(L
#
i )di

.

Since H(G̃) is a homogeneous polynomial of degree d − 1 − r̃, with coefficients that

are positive integers, the last numerator is ≥ T r̃ times the product of the smallest

d − 1 − r̃ numbers from the multiset L#
1 , . . . , L#

1 , . . . , L#
k , . . . , L#

k where each L#
i

appears di times. Therefore

L#
0 ≥ 1

(1 + C4)m

(

min
1≤i≤k

T

L#
i

)r̃

≥ 1

(1 + C4)m
((1 + C4)mC5)

r̃ .

Now, r̃ + 1 is the codimension of G̃ in G. We already showed that G̃ is a subgroup

of G1 × ... × Gk, so the codimension must be at least 1. If the codimension were
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exactly 1, however, then we would have G̃ = G1 × ... × Gk, and therefore TG̃(C) =

{w ∈ Cd : w0 = 0}, contradicting TG̃(C) ⊂ W . Therefore, the codimension must be

at least 2, and so r̃ ≥ 1. This, together with C5 ≥ 1, gives the result.

Lemma 4.7.

log(2µ) <
1

2
U0.

Proof. We have the exact value

µ = card{s ∈ Z : 0 ≤ s < S1} × card{t ∈ Zd−1 : |t| ≤ T1}

=S1

(

T1 + d − 1
d − 1

)

.

Since log(2µ) is actually very small, we will use the crude upper bound

µ < S1(T1 + d − 1)d−1 < S1(2T1)
d−1.

Then we compute

log(2µ) ≤d log 2 + log S1 + (d − 1) log T1

≤d log 2 + log C13 + log(D log log B/ log E) + (d − 1) log(U0/D log log B)

≤d log 2 + log C13 + (d − 1) log(D log log B) + (d − 1) log(U0/D log log B)

=d log 2 + log C13 + (d − 1) log(U0)

=d log 2 + log C13 + (d − 1) log C2 + (d − 1) log(U0/C2)

≤(d log 2 + log C13 + (d − 1) log C2)(U0/C2) + (d − 1)(U0/C2)

=((d log 2 + log C13 + (d − 1) log C2 + d − 1)/C2)U0

≤1

2
U0.
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Lemma 4.8. The number of unknowns ν satisfies

log ν ≤ 1

2
U0.

Proof. The number of unknowns ν is equal to the number of i values times the

number of λ values. The former is also the number of ξi values, which is D = [K : Q].

The latter is the dimension of the space of multihomogeneous polynomials on G,

that is,

card(Λ) =dimC

(

C[P̄]/I(G)
)

L

=Hf(G;L)

=

k
∏

i=0

Hf(Gi; Li).

the Hilbert function evaluated at L. We will use 3.1 to bound Hf(G;L) from below,
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and 3.3 to bound it from above. For the upper bound, we have

log ν = log

(

D
k
∏

i=0

Hf(Gi; Li)

)

≤ log D + log Hf(Ga; L0) + log
k
∏

i=1

mi

(

Li + di

di

)

≤D + log(L0 + 1) + log
k
∏

i=1

mi

di!
(Li + di)

di

≤D + log(2L0) + log m +
k
∑

i=1

di log(Li + di)

≤D + log(2U0) + log m +

k
∑

i=1

di log(2U0)

=D + log(2U0) + log m + (d − 1) log(2U0)

=D + log m + d log(2U0)

≤D + log m + d log(2C2) + d log(U0/C2)

≤U0/C2 + (log m + d log(2C2))U0/C2 + d(U0/C2)

=(1 + log m + d log 2 + d logC2 + d)U0/C2

≤1

2
U0.

Lemma 4.9.

T1 log T1 ≤ C20U0
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Proof.

(T1 log T1)/U0 =2(k + 1)(log(2(k + 1)) + log T )(T/U0)

≤2(k + 1)(log(2(k + 1)) + log(U0/D log log B))(T/U0)

≤2(k + 1)(log(2(k + 1)) + log C2 + (2d − 1) log D + log log B+

(d − 1) log log log B +

k
∑

i=1

di log log Vi − (2d − 1) log log E)(T/U0)

≤2(k + 1)(log(2(k + 1)) + log C2 + (2d − 1)(D − 1) + log log B+

(d − 1)(log log B − 1) + (d − 1)D log log B)/(D log log B)

≤2(k + 1)((log(2(k + 1)) + log C2 − 3d + 2) + (2d − 1)D+

d log log B + (d − 1)D log log B)/(D log log B)

≤2(k + 1)(log(2(k + 1)) + log C2 + 2 − 3d + 2d − 1 + d + d − 1)

≤C20.

Lemma 4.10.

M ≤ C8U0.

Proof. We defined

M = log max
s,t

∑

i,λ

∣

∣ξi D
t

f
Φλ(su)

∣

∣ .

Since ν is the number of pairs (i, λ) in the summation,

M ≤ log ν + log max |ξi| + log max{
∣

∣Dt

f
Φλ(su)

∣

∣ : |t| ≤ T1, 0 ≤ s < S1}.

By lemma 4.4,

M ≤ log ν+log max |ξi|+T1 log(d−1)+log max{
∣

∣Dt

e
Φλ(su)

∣

∣ : |t| ≤ T1, 0 ≤ s < S1}.
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We use 4.3 to get a bound on the last expression, taking A0 = 2D log B and A1 = 1.

log max{
∣

∣Dt

e
Φλ(su)

∣

∣ : |t| ≤ T1, 0 ≤ s < S1}

≤T1 log d + L0(2D log B) + T1 log T1 + L0 log(|su0| + 1) +

k
∑

i=1

LiH
+
i (|sui| + 1).

Now we will bound each piece separately. By Lemma 4.8,

log ν ≤ 1

2
U0.

Since each ξi has height ≤ D log B, we have

log max |ξi| ≤ D2 log B ≤ (1/C2)U0 ≤
1

4
U0.

By Lemma 2.2,

2L0D log B ≤ C6U0 ≤ 2U0.

Using H+
i (R) = A+

i R2 + B+
i R + C+

i , we have

LiH
+
i (|sui| + 1) =Li(A

+
i (|sui| + 1)2 + B+

i (|sui| + 1) + C+
i )

=Li(A
+
i |s|2 |ui|2 + (2A+

i + B+
i ) |s| |ui| + A+

i + B+
i + C+

i )

≤Li(A
+
i S2

1 |ui|2 + (2A+
i + B+

i )S1 |ui| + A+
i + B+

i + C+
i )

≤LiS
2
1D log Vi + LiS1C14D log Vi + LiC

2
14D log Vi

≤(C17/C
2
14)U0 + (1/C13)U0 + (C14/C13)

2U0

≤3U0.

From the definitions of T1 and T , we have

T1 log(d − 1) ≤(2(k + 1) log(d − 1)/ log log B0)U0 ≤ (2(k + 1) log(d − 1))U0

T1 log d ≤(2(k + 1) log d/ log log B0)U0 ≤ (2(k + 1) log d)U0
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From the Mean Value Theorem, when x ≥ 1,

1/(x + 1) ≤ log(x + 1) − log x ≤ 1/x ≤ 1.

Using this, and the fact that u0 = 0 or u0 = 1,

L0 log(|su0| + 1) ≤L0 log(S1 + 1)

≤L0(1 + log C16 + log D + log log log B)

≤L0(log C16 + log D + log log B)

=L0(log C16 + log(D log B))

≤L0(log C16 − 1 + D log B)

≤L0(log C16 − 1 + 1)D log B

≤1

2
(log C16)C6U0

≤1

d
(log C16)U0.

Putting all of these together, we get

M/U0 ≤
1

2
+

1

4
+ 2(k + 1) log(d − 1) + 2(k + 1) log d + 2 + C20 +

1

d
log C16 + 3k

≤3k + 3 + 2(k + 1) log d + 2(k + 1) log d + C20 +
1

d
log C16

=(k + 1)(4 log d + 3) + C20 +
1

d
log C16

≤C8
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Lemma 4.11. Fixing some t and s with |t| ≤ (k + 1)T , if we take

f(z) = Dt

e
F (zw)

r =
1

2
(k + 1)S

R =2(k + 1)SE

S ′ =S1

T ′ =(k + 1)T.

then we have

2 |f |R
(

4r

R

)T ′S′

<
1

4
exp(−C12U0)

and

5

(

18r

S ′

)T ′S′

max

{∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

, 0 ≤ t < T ′, 0 ≤ s < S ′

}

<
1

4
exp(−C12U0).

Proof. By Lemma 4.3, we have

log |f |R = log max{Dt

e
F (zw) : |z| = R}

≤T ′ log d + L0(2D log B) + T ′ log T ′ + log ν

+ log(|ξi| eδ) + L0 log(R |w0| + 1) +

k
∑

i=1

LiH
+
i (R |wi| + 1)

≤(k + 1)T log d + C6U0 +
1

2
T1 log T1 + log ν

+ log |ξi| + δ + L0 log(R |w0| + 1) +

k
∑

i=1

LiH
+
i (R |wi| + 1)

≤((k + 1) log d)U0 + U0 +
1

2
C20U0 +

1

2
U0

+
1

2
U0 + C10U0 + L0 log(R |w0| + 1) +

k
∑

i=1

LiH
+
i (R |wi| + 1).
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We bound the last two terms as we did in the previous theorem.

LiH
+
i (R |wi| + 1) =LiH

+
i (R |ui| + 1)

=Li(A
+
i (R |ui| + 1)2 + B+

i (R |sui| + 1) + C+
i )

=Li(A
+
i R2 |ui|2 + (2A+

i + B+
i )R |ui| + A+

i + B+
i + C+

i )

=Li(4(k + 1)2A+
i S2E2 |ui|2 + 2(k + 1)(2A+

i + B+
i )SE |ui|+

A+
i + B+

i + C+
i )

≤Li(4(k + 1)2S2D log Vi + 2(k + 1)C14SD log Vi + C2
14D log Vi)

≤4(k + 1)2C17U0 + 2(k + 1)C17U0 + C17U0

=(4k2 + 10k + 7)C17U0.

L0 log(R |w0| + 1) =L0 log(R |u0 + L(u)| + 1)

≤L0 log(R + 2)

≤L0(1 + log(2(k + 1)) + log S + log E)

≤L0(1 + log(2(k + 1)) + log E + log C16 + log D + log log log B)

≤L0(log(2(k + 1)) + D log log B + log C16 + log D + log log B)

=L0(log(2(k + 1)) + D log log B + log C16 + log(D log B))

≤L0(log(2(k + 1)) + D(log B − 1) + log C16 − 1 + D log B)

≤L0(log(2(k + 1)) + log C16 − 2 + 2D log B)

≤L0(log(2(k + 1)) + log C16 − 2 + 2)D log B

≤1

2
(log(2(k + 1)) + log C16)C6U0

≤1

d
(log(2(k + 1)) + log C16)U0.
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We also have

log

(

4r

R

)T ′S′

= − T ′S ′ log E

≤− (k + 1)T (
S

C14
− 1) log E

≤− (k + 1)T (C16D log log B − log E)

≤− (k + 1)(
U0

D log log B
− 1)(C16D log log B − log E)

≤− (k + 1)C16U0 + (k + 1)C16D log log B + (k + 1)T log E

≤− (k + 1)C16U0 + (k + 1)C16D log log B + (k + 1)U0
log E

D log log B

≤− (k + 1)C16U0 + (k + 1)C16D log log B + (k + 1)U0.

which, together, give

log

(

8 |f |R
(

4r

R

)T ′S′
)

≤ log 8 + ((k + 1) log d)U0 + U0 +
1

2
C20U0 +

3

4
U0 + C10U0+

1

d
(log(2(k + 1)C16)U0 + k(4k2 + 10k + 7)C17U0

− (k + 1)C16U0 + (k + 1)C16D log log B + (k + 1)U0

≤((k + 1) log d +
1

2
C20 + C10 +

1

d
(log(2(k + 1)C16))+

k(4k2 + 10k + 7)C17 − (k + 1)C16 + k + 3)U0

≤(−(k + 1)C16 + C10 + C21)U0

≤− C12U0.
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Next, we set C24 = (9k + 10)C14 and

S ≥ C13 − 1 ≥C24 =
C14C24

C24 − 9(k + 1)C14

(C24 − 9(k + 1)C14)S ≥C14C24

C24(S − C14) ≥9(k + 1)C14S

which we use in

log

(

18r

S ′

)T ′S′

=(k + 1)TS0 log

(

9(k + 1)S

S0

)

≤(k + 1)TS0 log

(

9(k + 1)C14S

S − C14

)

≤(k + 1)
U0

D log log B

C16D log log B

log E
log C24

≤(k + 1)C16(log C24)U0

Next, we need to bound

max

{∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

, 0 ≤ t < T ′, 0 ≤ s < S ′

}

using inequality 2.1. We know that

dt

dzt
f(z) =Dt

w
Dt

e
F (zu)

=(

d−1
∑

i=1

uiDei)t Dt

e
F (zu)

Applying 2.1 and using the Taylor series for the exponential function, we have for

0 ≤ s < S1,

∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

≤(
∑d−1

i=1 |ui|)t

t!
max{|Dτ

e
F (su)| : |τ | ≤ 2(k + 1)T}

≤ exp(

d−1
∑

i=1

|ui|) exp(−C11U0).
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Therefore, we conclude that

log

(

20

(

18r

S ′

)T ′S′

max

{∣

∣

∣

∣

1

t!

dt

dzt
f(s)

∣

∣

∣

∣

, 0 ≤ t < T ′, 0 ≤ s < S ′

}

)

≤ log 20 + (k + 1)C16(log C24)U0 +
d−1
∑

i=1

|ui| − C11U0

≤ log 20 + (k + 1)C16(log C24)U0 + d
1

2d
C2D log Vi − C11U0

≤((k + 1)C16 log C24 + 1 − C11)U0

≤(C22 − C11)U0

≤− C12U0.

Lemma 4.12. For all |t| ≤ T1 and 0 ≤ s ≤ S1,

∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣ < exp(−C11U0),

and for all |t| ≤ (k + 1)T and 0 ≤ s ≤ (k + 1)S,

∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣ <
1

2
exp(−C12U0).

Proof. Fix some |t| ≤ T ′ and 0 ≤ s ≤ S ′ (where T ′ is either T1 or (k + 1)T , and

similarly for S ′). Define a holomorphic function f : C → C by

f(z) = Dt

e
F (su + sz(w − u)).

The Mean Value Theorem gives

|f(0) − f(1)| ≤ max{|f ′(x)| : 0 ≤ x ≤ 1}.

By the Chain Rule,

f ′(x) =

d−1
∑

i=0

s(wi − ui)
∂

∂zi
Dt

e
F (su + sx(w − u)),
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but since wi − ui = 0 whenever i¬0, and w0 − u0 = L(u), this is

f ′(x) = sL(u)
∂

∂z0

Dt

e
F (su + sx(w − u)).

Applying lemma 4.3 with x1 = (1, 0, . . . , 0) and xi+1 = ei, we have

log max
0≤x≤1

|f ′(x)| ≤ log S ′ + log |L(u)| + T ′ log d + 2L0D log B

+ T ′ log T ′ + log ν + log(|ξi| eδ) + L0 log(|su0 + sxL(u)| + 1)

+

k
∑

i=1

LiH
+
i (|sui| + 1).

Now we have

log(|su0 + sxL(u)| + 1) ≤ log(S ′ + 2) ≤ log S ′ +
2

S ′
≤ 1 + log S ′.

As shown in Lemma 4.10, when S ′ = S1 we have

LiH
+
i (|sui| + 1) ≤3U0

L0(1 + log S1) ≤
1

d
(log C16)U0.

and even when S ′ = (k + 1)S, the same arguments give

LiH
+
i (|sui| + 1) ≤Li(A

+
i (S ′)2 |ui|2 + (2A+

i + B+
i )S ′ |ui| + A+

i + B+
i + C+

i )

≤Li(k + 1)2S2D log Vi + Li(k + 1)SC14D log Vi + LiC
2
14D log Vi

≤((k + 1)2C17)U0 + (k + 1)(C14/C13)U0 + (C14/C13)
2U0

≤((k + 1)2C17 + k + 2)U0.
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and

L0 log((k + 1)S + 1)

≤L0(1 + log((k + 1)C13) + log D + log log log B)

≤1

d
(log((k + 1)C13))U0.

Putting these together, we have in the case T ′ = T1 and S ′ = S1,

log
∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣

≤ log S1 − C3U0 + 2(k + 1)(log d)U0 + C6U0 + C20U0+

1

2
U0 +

1

4
U0 + δ +

1

d
(log C16)U0 + 3kU0

≤(−C3 + 2(k + 1) log d + C20 + C10 +
1

d
(log C16) + 3k + 3)U0

≤− C11U0.

In the case T ′ = (k + 1)T and S ′ = (k + 1)S, we have

log
∣

∣Dt

e
F (su) − Dt

e
F (sw)

∣

∣

≤ log((k + 1)S) − C3U0 + (k + 1)(log d)U0 + C6U0 +
1

2
C20U0+

1

2
U0 +

1

4
U0 + δ +

1

d
(log((k + 1)C13))U0 + k((k + 1)2C17 + k + 2)U0

≤(−C3 + (k + 1) log d +
1

2
C20 + 3 + C10+

1

d
log((k + 1)C13) + k((k + 1)2C17 + k + 2))U0

≤− C11U0.

Lemma 4.13. The subgroup G′ in the Lemme de zéros has TG′(C) ⊂ W .
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Proof. Suppose, to the contrary, that TG′(C) * W . Then W ∩TG′(C) has dimension

one less than G′. So if G′ has dimension d′, then (since G has dimension d and W

has dimension d−1) we have r = d−d′. Since G′ is a subgroup of Ga×G1× ...×Gk,

Lemma 4.5 tells us that G′ = B1 × B2 where B1 is a connected algebraic subgroup

of Ga, B2 is a connected algebraic subgroup of G1× ...×Gk, and TG′(C) = TB1(C)×

TB2(C), and H(G′; L0, ..., Lk) = H(B1; L0) H(B2; L1, ..., Lk). Now the Lemme de

zéros tells us

T r card(Σ + G′/G′) H(G′; L0, ..., Lk) ≤ H(G; L0, ..., Lk)

and we know that

H(G; L0, . . . , Lk) = d!

k
∏

i=0

mi

di!
(Li)

di = mL0

k
∏

i=1

(Li)
di .

Since H(B2) is a homogeneous polynomial of degree d′
2 = dim B2, with co-

efficients that are positive integers, H(B2; L1, ..., Lk) is greater than or equal to

the product of the smallest d′
2 numbers from the multiset L1, . . . , L1, . . . , Lk, . . . , Lk

where each Li appears di times. Therefore

H(B2; L1, ..., Lk)

H(G; L0, . . . , Lk)
≥ 1

mL0

(

min
1≤i≤k

1

Li

)d−1−d′2

.

Now we have three cases:

Case 1: B1 = 0 and d′ = d − 1, so G′ = G1 × ... × Gk. In this case, r = 1 and

H(G′; L0, . . . , Lk) = m
k
∏

i=1

(Li)
di(d′)!

k
∏

i=1

mi

di!
(Li)

di =
m

d

k
∏

i=1

(Li)
di ,

and since T > dL0, we have

T card(Σ + G′/G′) H(G′; L0, ..., Lk) > dL0 H(G′; L0, ..., Lk) = H(G; L0, ..., Lk),
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contradicting the Lemme de zéros.

Case 2: B1 6= 0 and d′ ≤ d − 1. In this case, r ≥ 1, B1 = Ga, H(B1; L0) = L0,

d′
2 = d′ − 1 ≤ d − 2, so d − 1 − d′

2 = r and

T r card(Σ + G′/G′) H(G′; L0, ..., Lk)/ H(G; L0, ..., Lk)

≥ T r H(B1; L0) H(B2; L1, ..., Lk)/ H(G; L0, ..., Lk)

≥ 1

m

(

min
1≤i≤k

T

Li

)r

,

which is bigger than 1, since T/Li > m for all i ≥ 1.

Case 3: B1 = 0 and d′ ≤ d−2. In this case, r ≥ 2, d′
2 = d′, so d−1−d′

2 = r−1

and

T r card(Σ + G′/G′) H(G′; L0, ..., Lk)/ H(G; L0, ..., Lk)

≥ T r H(B2; L1, ..., Lk)/ H(G; L0, ..., Lk)

≥ T r

mL0

(

min
1≤i≤k

1

Li

)r−1

=
T

mL0

(

min
1≤i≤k

T

Li

)r−1

which is bigger than 1, since T > L0 and T/Li > m for all i ≥ 1.
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Chapter 5

The Rank Theorem

As in [24], if we fix an element of our group g, then the map

T : G × Cd → G

given by the group operation

T (h, z) = h + g + Φ(z)

can be defined by functions Ti,j which have degree ci in h and are analytic in z. In

fact, we can take

Ti,j(h, z) = Ri,j(h, Ri(g,Φ(z)))

where Ri = (Ri,0, . . . , Ri,Ni
) are the bihomogeneous polynomials of degree (ci, ci)

defining the group law, which were introduced in the first chapter.

For a polynomial P and t ∈ Nk write ∂t
gP to mean

∂t

∂zt
P (T1,0(X1, z), . . . , Tk,Nk

(Xk, z))|z=0

Let G̃ be the subgroup of G indicated in 2.2. Let d̃ denote its dimension and

r̃ + 1 its codimension (or r̃ the codimension of TG̃(C) in W ), so

d̃ + r̃ + 1 = d.

Recall that we defined a basis f1, ..., fd for TG(C), such that f1, ..., fd̃−1 is a basis for

TG̃(C). We use the argument from [26] that the rank of the linear system

Dt

f
F (su) = 0,
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for all 0 ≤ s < S1 and |t| ≤ T1, is less than or equal to

(

T1 + r̃
r̃

)

× S1 × dimC{C[P̄]/I(G̃)}c0L0,...,ckLk
.

To get an upper bound on the last factor, we will use inequality 3.3 (or [6]).

This, however, only applies to groups embedded in normal projective space PN

(instead of multiprojective space P̄), so first, as in [27], we use the embedding

P̄ → PN

(Xi,j)0≤i≤k,0≤j≤Ni
→
(

∏

i,j

X
αi,j

i,j

)

PNi
j=0 αi,j=Li,0≤i≤k

(We won’t need to make use of the fact that N =
∑k

i=0

(

Li + Ni

Li

)

.) Let I be the

ideal of polynomials in PN that are zero on the image of G̃ under this embedding.

Then we have the following two lemmas.

Lemma 5.1.

{C[P̄]/I(G̃)}cL0,...,cLk
∼= {C[PN ]/I}c

Proof. We will describe the isomorphism and its inverse explicitly. A term Xα on

the right maps to the monomial
∏

i,j X
αi,j

i,j on the left. Conversely, each monomial

in any polynomial on the left will have multidegree (cL0, ..., cLk). If the multidegree

is partitioned into c (k + 1)-tuples α(i) which sum to
∑

α(i) = (cL0, ..., cLk), then

the monomial maps to Xα(1) ...Xα(c) . There are, in general, many ways to choose the

α(i), but the difference of two polynomials created in this way is zero at every point

in the image of P̄ (and therefore at every point in the image of G̃), and consequently

the difference is in I. Extending both maps linearly, it is easy to see that they are

inverses of one another, hence bijective.
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Lemma 5.2.

deg I = H(G̃; L0, . . . , Lk)

Proof. Consider the Hilbert function for I. It has the form

Hf(I; x) =
1

d̃!
(deg I)xd̃ + O(xd̃−1)

for large values of x, but also equals

Hf(I; x) = dimC{C[PN ]/I}x

= dimC{C[P̄]/I(G̃)}xL0,...,xLk

= Hf(G̃; xL0, . . . , xLk).

Since this equality holds for all x, and the two functions are polynomials when x is

sufficiently large, the polynomials must also be the same,

Hp(I; x) = Hp(G̃; xL0, . . . , xLk).

Treating the right side as a polynomial in x with the Li constant, the leading terms

must be the same. The leading term on the left is

1

d̃!
(deg I)xd̃.

The leading term on the right is the homogeneous part of highest total degree in

the Li, that is, of degree d̃ in x, and this is exactly

1

d̃!
H(G̃; L0, . . . , Lk)x

d̃.
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Therefore,

dimC{C[P̄]/I(G̃)}c0L0,...,ckLk
≤ dimC{C[P̄]/I(G̃)}cL

=dimC{C[PN ]/I}c

≤(deg I)

(

c + d̃

d̃

)

=

(

c + d̃

d̃

)

H(G̃; L0, . . . , Lk).

But we have, by the definition of G̃ (see 2.2),

H(G̃; L#
0 , . . . , L#

k ) =
(1 + C4)

T r̃ card(Σ + G̃/G̃)
H(G; L#

0 , . . . , L#
k )

Since the coefficients of H(G̃) are nonnegative, and Li ≤ L#
i for all i

H(G̃; L0, . . . , Lk) ≤ H(G̃; L#
0 , . . . , L#

k )

On the other hand, recall that

H(G; L0, . . . , Lk) = d!
k
∏

i=0

mi

di!
(Li)

di = mL0

k
∏

i=1

(Li)
di ,
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so

H(G; L#
0 , . . . , L#

k )

H(G; L0, . . . , Lk)
=

k
∏

i=0

(

L#
i

Li

)di

≤
k
∏

i=0

(

Li + 1

Li

)di

≤
(

max
i

Li + 1

Li

)d

=

(

max
i

1 +
1

Li

)d

≤
(

1 +
log(1 + C4)

d

)d

< exp

(

log(1 + C4)

d

)d

=1 + C4.

In fact, for any subgroup B of G, each term of H(B; L#
0 , . . . , L#

k ) is no more

than
∏k

i=0(L
#
i /Li)

di times the corresponding term of H(B; L0, . . . , Lk), and so we

get the same upper bound for B:

H(B; L#
0 , . . . , L#

k )

H(B; L0, . . . , Lk)
< 1 + C4. (5.1)
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Therefore, we have

ρ ≤
(

T1 + r̃
r̃

)

S1

(

c + d̃

d̃

)

H(G̃; L0, . . . , Lk)

≤
(

T1 + r̃
r̃

)

S1

(

c + d̃
c

)

H(G̃; L#
0 , . . . , L#

k )

=

(

T1 + r̃
r̃

)

S1

(

c + d̃
c

)

(1 + C4)

T r̃S
H(G; L#

0 , . . . , L#
k )

=
1

T r̃

(

T1 + r̃
r̃

)

S1

S

(

c + d̃
c

)

(1 + C4)
2 H(G; L0, . . . , Lk)

≤ 1

T r̃

(T1 + r̃)r̃

r̃!

1

C14

(

c + d̃
c

)

(1 + C4)
2 H(G; L0, . . . , Lk)

≤(2(k + 1))r̃ 1

r̃!
(1 +

r̃

T1

)r̃ 1

C14

(

c + d̃
c

)

(1 + C4)
2 H(G; L0, . . . , Lk)

≤(2(k + 1))d−1(1 +
d

T1
)d 1

C14

(

c + d̃
c

)

(1 + C4)
2 H(G; L0, . . . , Lk)

≤(2(k + 1))d−1 1

C14

(

c + d̃
c

)

(1 + C4)
3 H(G; L0, . . . , Lk),

where the last inequality is true because T1 > T > dL0 > d2/ log(1 + C4).

On the other hand, we have

ν =D Hf(G; L0, . . . , Lk)

≥(1 − C19)D
1

d!
H(G; L0, . . . , Lk).

Putting these two together, we conclude that

Dρ

ν
≤d!(2(k + 1))d−1 1

C14

(

c + d̃
c

)

(1 + C4)
3/(1 − C19)

≤C18

C14

≤ 1

C7

.
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Chapter 6

The Inequality of the Tail

Before we get to the main lemma of this section, we need to prove a lemma

about derivatives of polynomials on our algebraic group.

Lemma 6.1. Suppose that P (0) is a polynomial in the coordinates of Ψ(z), in the

parameters ϑ, and in the coordinates of γ ′. Suppose also that D(0) is an integer such

that D(0)P (0) has integer coefficients. Recursively define

P (n+1) =
∂

∂ztn

[

P (n)
]

.

Suppose further that there are polynomials Qt,s with

∂

∂zt

Ψs = Qt,s(1, Ψ1, . . . , ΨN),

and a positive integer κ such that κQt,s is a polynomial of degree q in Ψ(z), of degree

q′ in the parameters ϑ, with integer coefficients and length at most r′. Suppose that

each polynomial P (n) has degree A(n) in Ψ(z), degree B(n) in the parameters ϑ, and

degree C(n) in γ′. Then κnD(0)P (n) has integer coefficients. Suppose that its length
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is E(n). Then we have

A(n) ≤A(0) + n(q − 1)

B(n) ≤B(0) + nq′

C(n) =C(0)

D(n) =κnD(0)

log E(n) ≤ log E(0) + n log r′ + n log(A(0) + n(q − 1)).

Proof. The proof is by induction on n, with the case n = 0 being clearly true. Let

us write

P (n) =

E(n)
∑

e=1

pe

D(n)
Ψλe =

E(n)
∑

e=1

pe

D(n)

N
∏

s=1

Ψλe,s

s ,

where each pe is either 0 or ±1 times a product of at most B(n) ϑj’s and at most

C(n) γ′
j’s, and

∑N
s=1 λe,s = A(n). (This is done by expanding a term with coefficient

±i into i different terms. Perhaps surprisingly, this method gives better bounds on

heights than taking heights of coefficients.) Similarly, we write

Qt,s =
r′
∑

µ=1

%µ

κ
Ψλ

′
µ.

We also write ιs for the vector with a 1 in the s’th position and zeros elsewhere, and
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we compute

P (n+1) =
∂

∂zt

[

P (n)
]

=

E(n)
∑

e=1

pe

D(n)

∂

∂zt

N
∏

s=1

Ψλe,s

s

=

E(n)
∑

e=1

pe

D(n)

N
∑

s=1

λe,sΨ
λe−ιs ∂

∂zt
Ψs

=
E(n)
∑

e=1

pe

D(n)

N
∑

s=1

λe,sΨ
λe−ιsQt,s

=
E(n)
∑

e=1

pe

D(n)

N
∑

s=1

λe,sΨ
λe−ιs

r′
∑

µ=1

%µ

κ
Ψλ

′
µ

=
E(n)
∑

e=1

N
∑

s=1

r′
∑

µ=1

λe,spe%µ

D(n)κ
Ψλe−ιs+λ

′
µ

and from this we conclude that P (n+1) has

A(n+1) ≤A(n) − 1 + q

B(n+1) ≤B(n) + q′

C(n+1) =C(n)

D(n+1) =κD(n)

and since
E(n)
∑

e=1

N
∑

s=1

r′
∑

µ=1

λe,s =

E(n)
∑

e=1

r′
∑

µ=1

(

N
∑

s=1

λe,s

)

= E(n)r′A(n),

we also have

log E(n+1) ≤ log E(n) + log r′ + log A(n).

These recurrences easily give the bounds stated in the lemma. A slightly more
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precise value for E(n) could be given by estimating

n−1
∑

i=0

log(A(0) + i(q − 1)).

with an associated integral, but when n is large, this changes very little, so we will

have no need for this more precise bound.

In order to give a lower bound on nonzero values of our polynomial, we need

to compute an upper bound on its height. Recall that we have a polynomial

P =
∑

λ,i

aλ,iξiX
λ

which we can also write as

P =
∑

λ

pλX
λ

where

pλ =

D
∑

i=1

aλ,iξi.

We also define

F = P ◦ Φ =
∑

λ

pλΦ
λ.

Then we need to compute a lower bound for

Dt

e
F (su) =

∑

λ

pλ Dt

e
(Φλ(su)).

Lemma 6.2. (Inequality of the Tail) If Dt

e
F (su) 6= 0, where |t| ≤ (k + 1)T and

0 ≤ s ≤ (k + 1)S, and t is minimal with this property, then

∣

∣Dt

e
F (su)

∣

∣ > exp(−C12U0).
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Proof. We would like to compute the height of Dt

e
F (su), but Φλ(su) is not neces-

sarily even algebraic, so for each i we let νi be such that

|Φi,νi
(su)| = max

j
|Φi,j(su)| .

Then we define

Ψi,j = Φi,j/Φi,0.

Now if we change Φ to Ψ, we can compute its height, but if we take T derivatives

and then evaluate the derivative at the point su, it is very difficult to get good

estimates on the height. Instead, we need to translate first. (In some sense, this

could be thought of as taking a Taylor series around the point in question, instead

of around zero, in order to get a better approximation to the function.) That is,

Dt

e
F (z)

∣

∣

z=su
= Dt

e
F (z + su)

∣

∣

z=0
.

For each 1 ≤ i ≤ k, let R
(i)
0 , . . . , R

(i)
Ni

be Ni + 1 polynomials in the variables

z0, . . . , zNi
, w0, . . . , wNi

which give, projectively, the sum of z and w, and are defined

at (hence in a neighborhood of) (Φi(0),Φi(su)). By assumption, we can choose such

R
(i)
j to be homogeneous of degree ci in the z variables, homogeneous of degree ci in

the w variables, of degree at most di in parameters ϑ defining Gi, and of length at

most ri.

Now, since we only have

Φi,j(z + z′) = R
(i)
j (Φi(z),Φi(z

′))

up to a scalar multiple, we will deal in ratios

Φi,j(z + su)

Φi,νi
(z + su)

=
R

(i)
j (Φi(z),Φi(su))

R
(i)
νi (Φi(z),Φi(su))

=
R

(i)
j (Ψi(z), γ

′
i)

R
(i)
νi (Ψi(z), γ′

i)
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where γ′
i is projective coordinates for sγ. This is not necessary for i = 0, since

Φ0(z) = z0. In particular, we have

F (z + su) =
∑

λ

pλΦ
λ(z + su)

=
∑

λ

pλΦ0(z + su)λ0

k
∏

i=1

Φi,νi
(z + su)Li

k
∏

i=1

Ni
∏

j=0

(

Φi,j(z + su)

Φi,νi
(z + su)

)λi,j

=
∑

λ

pλΦ0(z + su)λ0

k
∏

i=1

Φi,νi
(z + su)Li

k
∏

i=1

Ni
∏

j=0

(

R
(i)
j (Ψi(z), γ

′
i)

R
(i)
νi (Ψi(z), γ′

i)

)λi,j

=f
∑

λ

pλΦ0(z + su)λ0

k
∏

i=1

Ni
∏

j=0

(

R
(i)
j (Ψi(z), γ

′
i)
)λi,j

,

where

f =

k
∏

i=1

(

Φi,νi
(z + su)

R
(i)
νi (Ψi(z), γ

′
i)

)Li

.

By Leibniz’ Rule,

Dt

e
(F/f) = Dt

e
(F )/f

plus derivatives of F of lower order than |t|, but since |t| is minimal with Dt

e
(F ) 6= 0,

all such derivatives are zero.

A lower bound on the numerator of f is given by the inequality

log max
j

|Φi,j(su)| ≥ H−
i (|su|).

An upper bound on the denominator of f will result from an upper bound on its

height. We can also get a lower bound on the factor Dt

e
(F/f) from an upper bound

on its height.

Since e is the basis (e1, e2, ..., ek), where ei has βi in position 0, 1 in position

i, and 0 in all other positions, then

Dt

e
=

(

β1
∂

∂z0

+
∂

∂z1

)t1

◦ ... ◦
(

βd−1
∂

∂z0

+
∂

∂zd−1

)td−1

.
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Since
(

βj
∂

∂z0
+

∂

∂zj

)tj

=

tj
∑

n=0

(

tj
n

)

β
tj−n
j

(

∂

∂z0

)tj−n(
∂

∂zj

)n

,

and
(

∂

∂z0

)|t|−|n|

(z0 + su0)
λ0 =

λ0!

(λ0 − |t| + |n|)!(z0 + su0)
λ0−|t|+|n|

when λ0 −|t|+ |n| = λ0 − (t1 + ...+ td−1)+ (n1 + ...+nd−1) ≥ 0, and zero otherwise,

we have

Dt

e
(F/f) =

∑

λ

pλ Dt

e

[

Φ0(z + su)λ0

k
∏

i=1

Ni
∏

j=0

(

R
(i)
j (Ψi(z), γ

′
i)
)λi,j

]

=
∑

λ

pλ Dt

e

(

(z0 + su0)
λ0Qλ

)

=
∑

λ

pλ

∑

n

(

t1
n1

)

. . .

(

td−1

nd−1

)

× λ0!

(λ0 − |t| + |n|)! × βt1−n1
1 ...β

td−1−nd−1

d−1

× (z0 + su0)
λ0−|t|+|n| ×

(

∂

∂z1

)n1

◦ . . . ◦
(

∂

∂zd−1

)nd−1

Qλ

where the second sum is over all d − 1-tuples of integers n = (n1, ..., nd−1) with

0 ≤ nj ≤ tj and λ0 − |t| + |n| ≥ 0.

Taking the height of this formula, we get

h
(

Dt

e
(F/f)

∣

∣

0

)

≤ h ({pλ}λ
) + h

({(

t1
n1

)

. . .

(

td−1

nd−1

)}

n

)

+

h

(

{

λ0!

(λ0 − |t| + |n|)!

}

λ,n

)

+

h
({

βt1−n1
1 ...β

td−1−nd−1

d−1

}

n

)

+ h
(

{

(su0)
λ0−|t|+|n|

}

λ,n

)

+

h

(

{(

∂

∂z1

)n1

◦ . . . ◦
(

∂

∂zd−1

)nd−1

Qλ

∣

∣

∣

∣

0

}

λ,n

)
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We can bound each of these as follows:

h ({pλ}λ
) =h

({

D
∑

i=1

aλ,iξi

}

λ

)

≤ log D + h ({ξi}i) + h
(

{aλ,i}λ,i

)

≤ log D + D log B + δ

Using the fact that the height of a collection of positive integers is the log of the

largest one, we have

h

({(

t1
n1

)

. . .

(

td−1

nd−1

)}

n

)

≤ log(2t1 . . . 2td−1) = log(2|t|) ≤ (k + 1)T log 2

h

(

{

λ0!

(λ0 − |t| + |n|)!

}

λ,n

)

≤ log(λ0!) ≤ L0 log L0

h
({

βt1−n1
1 ...β

td−1−nd−1

d−1

}

n

)

≤(|t| − |n|) h ({βi}i) ≤ (L0)(k)(2 log B)

Since u0 is either 0 or 1, we have

h
(

{

(su0)
λ0−|t|+|n|

}

λ,n

)

≤ λ0 log s ≤ L0 log((k + 1)S).

Since Qλ =
∏k

i=1 Qλ,i, we have

∂n1

∂zn1
1

◦ . . . ◦ ∂nd−1

∂z
nd−1

d−1

Qλ =
k
∏

i=1

∂ni,1

∂z
ni,1

i,1

◦ . . . ◦ ∂ni,di

∂z
ni,di

i,di

Qλ,i

The polynomial

Qλ,i =

Ni
∏

j=0

(

R
(i)
j (Ψi(z), γ

′
i)
)λi,j

has degree ciLi in the Ψi(z) variables, degree ciLi in the coordinates of γ ′
i, degree

c′iLi in parameters ϑ defining Gi, and length at most rLi

i .

Therefore, by Lemma 6.1,

∂ni,1

∂z
ni,1

i,1

◦ . . . ◦ ∂ni,di

∂z
ni,di

i,di

Qλ,i
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is a polynomial of degree ciLi + |ni| (qi −1) in the Ψi(z) variables, degree ciLi in the

coordinates of γ′
i, degree at most c′iLi + |ni| q′i in parameters ϑ defining Gi, and, after

multiplying by κ
|ni|
i , length at most rLi

i (r′i)
|ni|(ciLi + |ni| (qi − 1))|ni|. Evaluating at

z = 0 and taking the height, we get the upper bound

Li log ri + |ni| log r′i + |ni| log(ciLi + |ni| (qi − 1)) + |ni| log κi + ciLi h(γ′
i)

+ (c′iLi + |ni| q′i) h(Gi) + (ciLi + |ni| (qi − 1)) h(Ψi(0)).

Summing over 1 ≤ i ≤ k, we get

h

(

{(

∂

∂z1

)n1

◦ . . . ◦
(

∂

∂zd−1

)nd−1

Qλ

∣

∣

∣

∣

0

}

λ,n

)

≤
k
∑

i=1

[Li log ri + |ni| log r′i + |ni| log(ciLi + |ni| (qi − 1)) + |ni| log κi

+ ciLi h(γ′
i) + (c′iLi + |ni| q′i) h(Gi) + (ciLi + |ni| (qi − 1)) h(Ψi(0))]

The denominator of f (evaluated at z = 0) is

k
∏

i=1

(

R(i)
νi

(Ψi(0), γ′
i)
)Li

.

Since R
(i)
νi is a polynomial of degree ci in the coordinates of Ψi(0), degree ci in the

coordinates of γ′
i, degree c′i in parameters ϑ defining Gi, and length at most ri, we

have

h

(

k
∏

i=1

(

R(i)
νi

(Ψi(0), γ′
i)
)Li

)

≤
k
∑

i=1

[Li log ri + ciLi h(Ψi(0)) + ciLi h(γ′
i) + c′iLi h(Gi)] .
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Combining all of the above, we have

h







Dt

e
(F/f)

∣

∣

0

∏k
i=1

(

R
(i)
νi (Ψi(0), γ′

i)
)Li






≤ log D + D log B + δ

+ (k + 1)T log 2 + L0 log L0 + 2kL0 log B + L0 log((k + 1)S)

+
k
∑

i=1

[2Li log ri + |ni| log r′i + |ni| log(ciLi + |ni| (qi − 1)) + |ni| log κi

+ 2ciLi h(γ′
i) + (2c′iLi + |ni| q′i) h(Gi) + (2ciLi + |ni| (qi − 1)) h(Ψi(0))].

We can bound these as follows:

log D + D log B + δ + (k + 1)T log 2 ≤ (1 + C10 + (k + 1) log 2)(U0/D)

L0 log L0 + 2kL0 log B + L0 log((k + 1)S)

≤((1/2)(C6) log C2 + kC6 + (1/2)(C6) log((k + 1)C13))(U0/D)

≤((1/d) logC2 + 2k/d + (1/d) log((k + 1)C13))(U0/D)

≤((1/d) logC2 + 2 + (1/d) log((k + 1)C13))(U0/D)

k
∑

i=1

2Li log ri ≤(2/C15)

(

k
∑

i=1

log ri

)

(U0/D)

k
∑

i=1

|ni| log r′i ≤ |n| log max
i

r′i

≤(k + 1)T log max
i

r′i

≤(k + 1)(log max
i

r′i)(U0/D)
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k
∑

i=1

|ni| log(ciLi + |ni| (qi − 1)) ≤ |n| log max
i

(2(k + 1)T (qi − 1))

≤(k + 1)T log max
i

(2(k + 1)T (qi − 1))

=(k + 1)T (log(2(k + 1)T ) + log max
i

(qi − 1))

≤(
1

2
C20 + (k + 1) log max

i
(qi − 1))(U0/D)

k
∑

i=1

|ni| log κi ≤ |n| log max
i

κi

≤(k + 1)T log max
i

κi

≤(k + 1)(log max
i

κi)(U0/D)

k
∑

i=1

2ciLi h(γ′
i)

≤
k
∑

i=1

2ciLi(ĥ(γ′
i) + }i)

≤
k
∑

i=1

2ciLi(k + 1)2S2 ĥ(γi) +
k
∑

i=1

2ciT/m }i

≤
(

k
∑

i=1

2(k + 1)2ciC17 +
k
∑

i=1

2ci

)

(U0/D)
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k
∑

i=1

(2c′iLi + |ni| q′i) h(Gi) ≤
k
∑

i=1

2c′iT h(Gi) + |n|max
i

q′i h(Gi)

≤
k
∑

i=1

2c′i(U0/D) + (k + 1)T max
i

q′i h(Gi)

≤
(

k
∑

i=1

2c′i + (k + 1) max
i

q′i

)

(U0/D)

k
∑

i=1

(2ciLi + |ni| (qi − 1)) h(Ψi(0))

≤
k
∑

i=1

(2ciT + (k + 1)T (qi − 1)) h(Ψi(0))

≤
k
∑

i=1

(2ci + (k + 1)(qi − 1)) h(Ψi(0))(U0/D)

Putting all of this together, we get

h







Dt

e
(F/f)

∣

∣

0

∏k
i=1

(

R
(i)
νi (Ψi(0), γ′

i)
)Li







≤(C10 + 1 + (k + 1) log 2 + (1/d) log C2 + 2 + (1/d) log((k + 1)C13)

+ (2/C15)
k
∑

i=1

log ri + (k + 1) log max
i

r′i

+
1

2
C20 + (k + 1) log max

i
(qi − 1) + (k + 1) log max

i
κi

+
k
∑

i=1

2(k + 1)2ciC17 +
k
∑

i=1

2ci +
k
∑

i=1

2c′i + (k + 1) max
i

q′i

+
k
∑

i=1

(2ci + (k + 1)(qi − 1)) h(Ψi(0))(U0/D)

≤(C10 + C23 − 1)U0/D

≤(C12 − 1)U0/D

82



By Louiville’s Theorem, therefore, we have

log

∣

∣

∣

∣

∣

∣

∣

Dt

e
(F/f)

∣

∣

0

∏k
i=1

(

R
(i)
νi (Ψi(0), γ′

i)
)Li

∣

∣

∣

∣

∣

∣

∣

> −(C12 − 1)U0.

Finally, since

log |Φi,νi
(su)| ≥ H−

i (|sui|) ≥ −(1/k)U0,

we conclude that

∣

∣Dt

e
F (su)

∣

∣ =
∣

∣f Dt

e
(F/f)

∣

∣ > exp(−C12U0).
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Chapter 7

Evaluating the Constants

In this chapter, we assume that for each 1 ≤ i ≤ k, the group Gi is the

Jacobian of the genus-two curve

y2 = fi,6x
6 + fi,5x

5 + fi,4x
4 + fi,3x

3 + fi,2x
2 + fi,1x + fi,0.

The parameters defining the group are ϑi = (fi,0, fi,1, fi,2, fi,3, fi,4, fi,5, fi,6), and so

we define

h(Gi) = (1, fi,0, fi,1, fi,2, fi,3, fi,4, fi,5, fi,6).

In the next chapter, we will see how to compute the polynomials R
(i)
j and Q

(i,j)
k,l . The

result is the following: The polynomials Q
(i,j)
k,l have degree qi = 2 in the variables

and degree at most q′i = 4 in the parameters fi,0, . . . , fi,6. The polynomials 2Q
(i,j)
k,l

have integer coefficients (so κi = 2) and length at most r′i = 2234. The polynomials

R
(i)
j have degree ci = 2 in each set of variables, and degree at most c′i = 8 in the

parameters fi,0, . . . , fi,6, and length at most ri = 32920512. Therefore, c = 2 as well.

Since the Jacobian has dimension di = 2, and d0 = 1, we have d = 2k + 1. By

Equations 3.5 and 8.1,

Hf(G; L0, . . . , Lk) = (L0 + 1)

k
∏

i=1

(16Li)
2

and therefore we have

m = d!16k = (2k + 1)!24k.

84



Furthermore, this simple form of the Hilbert function allows us to guarantee

1

d!
H(G;L) ≤ Hf(G;L),

allowing us to take C19 = 0.

Now we choose the constants as follows: First we define

C4 =1/5

C19 =0

C5 =6d

C17 =1

C6 =2/d = 2/(2k + 1)

C18 =(2k + 3)!(2k + 2)2k.

Then we guess an upper bound for C14 and use it to define C7. One choice is the

following:

C7 =28 + 16(2k + 3) log(2k + 3)

C14 =C7C18

Next, we guess an upper bound for C16 and use this to guess an upper bound for

C2, which we use to define C20. Then we can use these to define the remaining
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constants. The result is the following:

log C2 <16k + 4 + (16k2 + 34k + 8) log(2k + 3)

C20 =2(k + 1)(18k + 5 + (16k2 + 34k + 9) log(2k + 3))

=36k2 + 46k + 10 + (32k3 + 100k2 + 86k + 18) log(2k + 3)

C23 =4k3 + 26k2 + 61k + 39 + (16k3 + 50k2 + 51k + 24) log(2k + 3)

C21 =4k3 + 28k2 + 31k + 11 + (16k3 + 50k2 + 44k + 10) log(2k + 3)

C16 =4(4k2 + 23k + 27) + 4(16k2 + 34k + 14) log(2k + 3)

C13 =C14C16

C2 =2C2d−1
13 /mCd−1

17 C6

C10 =
1

4
(k + 1)C16

=4k3 + 27k2 + 50k + 27 + (16k3 + 50k2 + 48k + 14) log(2k + 3)

C12 =C10 + C23

=8k3 + 53k2 + 111k + 66 + (32k3 + 100k2 + 99k + 38) log(2k + 3)

C22 =(k + 1)(7/4 + 2(2k + 3) log(2k + 3))C16 + 1

C11 =(k + 1)(11/4 + 2(2k + 3) log(2k + 3))C16 + 1

C9 =(k + 1)(11/4 + 2(2k + 3) log(2k + 3))C16 + 1 + log(d − 1)

C8 =36k2 + 49k + 16 + (32k3 + 100k2 + 90k + 22) log(2k + 3)

C3 =C11 + 2(k + 1) log d + C20 + C10 + 3k + 6

<C11 + 4k3 + 63k2 + 99k + 43 + (48k3 + 150k2 + 136k + 34) log(2k + 3)
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It is readily checked that these formulas satisfy all of the inequalities from

chapter 4.

Computing the values of C1 = C3C2 from the above formulas, we get the first

8 rows of the table given in section 1.3, reproduced here:

k C1

1 2.1 × 1044

2 6.8 × 10112

3 6.6 × 10219

4 2.5 × 10369

5 4.9 × 10564

6 1.9 × 10808

7 2.1 × 101102

8 4.6 × 101448

k ≥ 9 (2k2)16k2+14k+3222k+8

The last row is computed by assuming k ≥ 9 and computing upper bounds on

C7, C14, C16, C13, C2, C3, and finally C1.
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Chapter 8

Jacobians of Genus 2 Curves

8.1 Classes of Divisors

As stated in [4] (chapter one), every curve of genus 2, over a number field K,

is birationally equivalent to a plane curve of the form

y2 = f(x) = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0,

where the polynomial f(x) has degree 5 or 6 (i.e. not both f5 and f6 are zero)

and has no multiple factors. (Indeed, the degree being at least 5 can be thought

of as ∞ not being a double root.) This form is unique up to a fractional linear

transformation of x and an associated transformation of y, of the form

x → (ax + b)/(cx + d), y → ey/(cx + d)3

where a, b, c, d, and e are elements of K, with e and ad − bc nonzero. If the

polynomial on the right has a root in K (e.g. if K is algebraically closed), then

one such transformation will make f6 = 0 and f5 = 1. This is often assumed in

the classical theory, but since number fields are not algebraically closed, and we will

not, in general, have a root in the field, we will not assume that f6 = 0.

This curve is nonsingular at all finite points (x, y) but has a singular point at

infinity. In the case where f6 6= 0, there are two distinct places at infinity, whose
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power series are given by

(t−1, st−3 + O(t−4))

for each of the two square roots s of f6. Using the notation of [4], we denote them

by ∞+ and ∞−. (If f6 is real, then we can interpret the + and − as the sign of the

square root. In most cases, however, it won’t matter which is which.) In the case

where f6 = 0, there is a single place at infinity, whose power series is given by

(t−2,
√

f5t
−5 + O(t−6))

where the choice of the square root does not matter, since the change-of-variables

t → −t

changes one into the other. In this case, we will say that ∞+ = ∞−.

The Jacobian J is the group of divisors of degree zero modulo principal divisors.

Theorem 8.1. Every divisor class of degree zero contains exactly one divisor of the

form

P + Q −∞+ −∞−

(for some points P and Q on the curve) except for the zero (i.e. identity or principal)

divisor class, which contains all divisors of the form

P + P̄ −∞+ −∞−

where P̄ denotes the conjugate of P (under the Y → −Y involution).

Proof. For the second part, if P = (a, b) is a finite point, then the line x = a

intersects the curve in the divisor

P + P̄ −∞+ −∞−.
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Similarly, if P is a point at infinity, then

P + P̄ = ∞+ + ∞−

and a nonzero constant function has the required divisor.

For the first part, let D be a divisor of degree zero, and let C be the canonical

divisor

C = ∞+ + ∞−.

Let L(C+D) and L(−D) be the vector spaces of functions with divisor greater than

or equal to −(C + D) and D, respectively. The Riemann-Roch Theorem says that

dim L(C + D) = deg(C + D) + 1 − g + dim L(−D).

The genus g = 2, and the degree of C + D is also 2. The question that remains

is the dimension of L(−D). The degree of −D is zero. Since the divisor of a

function always has degree zero, any function in L(−D) must have a divisor equal

to −D. Therefore, L(−D) has dimension zero unless −D (and therefore D) is in

the principal divisor class. So if D is not principal, then the dimension of L(C +D)

is one, which means that there is a nonzero function f in L(C + D), which must

have

div(f) = P + Q − C − D = P + Q −∞+ −∞− − D.

Therefore

D + div(f) = P + Q −∞+ −∞−

is in the same class as D. Furthermore, every other function in L(C + D) is a

constant multiple of f and therefore has the same divisor, so the pair {P, Q} is
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unique (up to exchanging P with Q).

We shall, therefore, represent points on the Jacobian by pairs of points on

the curve, {P, Q}. Every point of the Jacobian can be represented in this way, and

the representation is unique (up to order) unless it represents the zero point of the

Jacobian, in which case we will usually simply write 0.

If the coordinates of P and Q belong to a field K̄, then elements of the Galois

group of K̄ over K act on the divisor P + Q − ∞+ − ∞− and the pair {P, Q}.

The divisor (or point on the Jacobian) is rational when it is fixed by the Galois

group. Therefore, it is rational if and only if P and Q are both rational points

on the curve or are defined over a quadratic extension of K and their x (resp. y)

coordinates are conjugate to one another. In particular, ∞+ and ∞− are both

rational points if and only if f6 is a square (possibly zero), and otherwise they are

defined over a quadratic extension (namely K(
√

f6)) and conjugate. For example,

the pair {(
√

2, 1 +
√

2), (−
√

2, 1 −
√

2)} gives a rational point on the Jacobian of

the curve y2 = x5 − x3 + 3.

Addition in the Jacobian corresponds to addition of divisors, but there is some

work involved in putting the sum in the same form as the summands. In particular,

the sum of the divisor

P1 + Q1 −∞+ −∞−

and the divisor

P2 + Q2 −∞+ −∞−

91



can be written as

P1 + Q1 −∞+ −∞− + P2 + Q2 −∞+ −∞− = P3 + Q3 −∞+ −∞−

for some points P3 and Q3. One way to find these points, in the general case, is

to compute the unique polynomial g(x) of degree less than 4 such that y = g(x)

passes through all four points P1, Q1, P2, and Q2. Then the divisor of y − g(x) is

−3(∞+ + ∞−) plus six points whose x coordinates are the roots of the polynomial

g(x)2 − f(x)

and whose y coordinates are given by y = g(x). It is easily checked that four of

these six points must be P1, Q1, P2, and Q2, and the remaining two are P̄3 and Q̄3.

8.2 Projective Coordinates

The Jacobian is also a complete algebraic variety, and therefore it can be

embedded into projective space and the group law given as polynomials in the

projective coordinates. This is proved in [20] by embedding Zariski-open subsets of

the Jacobian into affine 4-space. For example, when P = (a, b) and Q = (c, d) are

distinct finite points and not conjugates of one another, then we may map the point

{P, Q} to

(a + c, ac, (b − d)/(a − c), (bc − ad)/(a − c)).

Notice that this is rational if and only if {P, Q} is a rational point of the Jacobian.

It is customary to describe this mapping in terms of polynomials. That is, the

point on the Jacobian given by the two points P and Q is represented by the pair
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of polynomials

U(T ) =(T − a)(T − c) = T 2 − (a + c)T + ac

V (T ) =T (b − d)/(a − c) − (bc − ad)/(a − c).

These are the (unique) polynomials such that U(T ) is a monic quadratic whose roots

are the x coordinates of the points P and Q, and V (T ) is a polynomial of degree less

than 2 such that both P and Q lie on the line given by y = V (x). Notice that these

polynomials have the property that U(T ) divides the polynomial f(T ) − V (T )2.

Sometimes a third polynomial W (T ) is also used, where

U(T )W (T ) = f(T ) − V (T )2.

The group law may be described in terms of these polynomials using an algo-

rithm reminiscent of the method of reduction of quadratic forms. (This is known

as “Cantor’s Algorithm” in some sources.) We shall not have need to use this

algorithm, but details may be found in [3]. (See also [15].)

The map from the Jacobian J into affine four-space given by the coefficients

of U(T ) and V (T ) is, unfortunately, singular along the so-called “theta divisor” of

the Jacobian, where P or Q is infinite, or where they are conjugates of one another.

(This is a divisor, or codimension-one subvariety, of the Jacobian, and not of the

curve.) This map can, however, be extended to the case where P = Q. When doing

group law computations, this problem may be avoided by using polynomials of

different degrees on the theta divisor, and this technique works very nicely with the

algorithm for adding points. It does not, unfortunately, lend itself well to defining

a nonsingular embedding of J .
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A different embedding is given in [4] which is not singular. Its image lies in

projective 15-space. For P and Q as above (with a 6= c), we set

X15 = (a − c)2

X14 = 1

X13 = a + c

X12 = ac

X11 = ac(a + c)

X10 = a2c2

X9 = (b − d)/(a − c)

X8 = (bc − ad)/(a − c)

X7 = (bc2 − a2d)/(a − c)

X6 = (bc3 − a3d)/(a − c)

X5 = (F0(a, c) − 2bd)/(a − c)2

X4 = (F1(a, c) − (a + c)bd)/(a − c)2

X3 = acX5

X2 = (G(a, c)b − G(c, a)d)/(a − c)3

X1 = (H(a, c)b − H(c, a)d)/(a − c)3

X0 = X2
5
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where

F0(a, c) =2f0 + f1(a + c) + 2f2(ac) + f3(a + c)(ac)

+ 2f4(ac)2 + f5(a + c)(ac)2 + 2f6(ac)3

F1(a, c) =f0(a + c) + 2f1(ac) + f2(a + c)(ac) + 2f3(ac)2

+ f4(a + c)(ac)2 + 2f5(ac)3 + f6(a + c)(ac)3

G(a, c) =4f0 + f1(a + 3c) + f2(2ac + 2c2) + f3(3ac2 + c3)

+ f4(4ac3) + f5a(ac3 + 3c4) + f6(2a)(ac4 + c5)

H(a, c) =2f0(a + c) + f1c(3a + c) + f2(4ac2) + f3ac2(a + 3c)

+ f42ac3(a + c) + f5ac4(3a + c) + f6(4a
2c5)

Ten of these variables are even in the sense that they are unchanged by the

transformation

b → −b, d → −d.

The remaining six variables are odd, for they change change sign under this trans-

formation. The even variables are X0, X3, X4, X5, X10, X11, X12, X13, X14, and

X15. The odd variables are X1, X2, X6, X7, X8, and X9.

Some of the quadratic equations that are satisfied everywhere on the Jacobian
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include the following:

X15X14 =X2
13 − 4X12X14

X11X14 =X12X13

X10X14 =X2
12

X7X14 =X8X13 − X9X12

X6X14 =X7X13 − X8X12

X5X14 = − f2X
2
14 − f3X14X13 − f4X

2
13 − 3f5X13X12 − f5X13X15

− f6X14X10 − 6f6X12X15 − 8f6X
2
12 − f6X

2
15 + X2

9

X4X14 =X9X8 − f3X14X12 − f4X14X11 − f5X12X15 − 4f5X
2
12

− f6X11X15 − 2f6X11X12 − f6X13X10

X3X14 =X12X5

X2X14 =X9X5 − f3X14X8 − 2f4X14X7 − 2f5X14X6 − 2f6X13X6 − f5X8X12

X1X14 =X5X8 − 2f6X12X6 − f5X7X12

X0X14 =X2
5

These equations are significant in that, when the variables are normalized by set-

ting X14 = 1, we can define the other variables as polynomials in only the four

X8, X9, X12, X13 (which are the coefficients of U(T ) and V (T )). In fact, the Jaco-

bian is defined, as an algebraic variety in P15, by the above polynomials together
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with the following two:

0 = −f1X
2
14 − f3X14X12 + 2f4X13X12 − f5X

2
12 − 2X4X14 − 2f4X14X11 + X5X13

0 = X2
8 − X5X12 − f0X

2
14 − f4X

2
12 − f5X12X11 − f6X15X10 − 4f6X10X12

We can take limits as P approaches Q or Q̄, and as one or both points grows

to infinity. The result are as follows: The identity (when P = Q̄) is

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

When P = Q = (a, b) (and b 6= 0 so that P 6= Q̄), the image is

X15 =0 X10 =a4

X14 =1 X9 =f ′(a)/(2b)

X13 =2a X8 = − b + af ′(a)/(2b)

X12 =a2 X7 = − 2ab + a2f ′(a)/(2b)

X11 =2a3 X6 = − 3a2b + a3f ′(a)/(2b)

Then X0 through X5 are defined from the equations above. Of course, since X14 = 1,

it suffices to define X8, X9, X12, and X13, and then the others follow from the

equations above.

When P = (a, b) and Q is the point at infinity with y/x3 = s for one of the

square roots s of f6 (note that this only gives a rational divisor, hence a rational

point on the Jacobian, when f6 is a square, and also note that f6 = 0 implies s = 0),
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then the image is

X15 = 1 X7 = sa2

X14 = 0 X6 = sa3 − b

X13 = 0 X5 = 0

X12 = 0 X4 = s2a3 − sb = sX6

X11 = a X3 = 2s2a4 + f5a
3 − 2sab

X10 = a2 X2 = 2s3a4 + f5sa
3 − 2s2ab = sX3

X9 = s X1 = 4s3a5 + 3f5sa
4 + 2f4sa

3 + f3sa
2 − 4s2a2b − f5ab

X8 = sa X0 = (2s2a3 + f5a
2 − 2sb)2 = (X3/a)2.

These formulas can be obtained by substituting into the above equations c = t,

writing d =
√

f(t) as a power series in t−1, and taking the leading coefficient in

each expansion. The same formulas are obtained in the case where f6 = 0 by

substituting c = t2 and d =
√

f(t2).

When P = Q is the point at infinity with y/x3 = s for one of the square roots
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s of f6, then the image is

X15 = 0 X7 = 16s5

X14 = 0 X6 = −8f5s
3

X13 = 0 X5 = 0

X12 = 0 X4 = −8f4s
4

X11 = 0 X3 = 4s2(f 2
5 − 4f4s

2)

X10 = 16s4 X2 = 4s3(f 2
5 − 4f4s

2) = sX3

X9 = 0 X1 = 2s(4f4f5s
2 − 3f 3

5 − 8f3s
4)

X8 = 0 X0 = (f 2
5 − 4f4s

2)2.

These formulas can be obtained by using either the formulas for Q = ∞ or the

formulas for P = Q and substituting the power series obtained from b =
√

f(a).

Notice, in particular, that this formula also applies when s = 0, in which case

P + Q −∞+ −∞− = ∞ + ∞−∞−∞ = 0,

and so we have the zero point

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

As pointed out in [4] (at the end of section 2.3), these projective variables

generate the same line bundle as Mumford’s theta functions (see [22]). Therefore,

the Hilbert function for the Jacobian is

Hf(J ; x) = (4x)2, (8.1)
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and therefore this embedding of the Jacobian into projective 15-space maps the

Jacobian onto a 2-dimensional surface of degree 32.

8.3 Local Series

It is useful to consider, as described in [4] (section 2.3), the behavior of basis

elements near the zero of the Jacobian. To do this, one normalizes to X0 = 1 and

writes the other coordinates as power series in X1 and X2. The leading terms are

X3 =X2
1 + . . . X9 =X3

2 + . . .

X4 =X1X2 + . . . X10 =X4
1 + . . .

X5 =X2
2 + . . . X11 =2X3

1X2 + . . .

X6 =X3
1 + . . . X12 =X2

1X2
2 + . . .

X7 =X2
1X2 + . . . X13 =2X1X

3
2 + . . .

X8 =X1X
2
2 + . . . X14 =X4

2 + . . .

X15 = 4

6
∑

j=0

fjX
j
1X

6−j
2 + . . . .

Cassels and Flynn point out in [4] that the local series are useful for finding

relations between the basis elements. Other uses stem from the fact that a function

given by local series has a unique form, whereas the same function can be described

in many different ways using projective coordinates. For example, it is easy to take

the square root of a square function described as a local series, but it is much more

difficult to do the same thing directly with projective coordinates.

Furthermore, even when dealing with projective coordinates directly, or when
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dealing in the x and y coordinates of the points P and Q, it is useful to speak of the

“order” of coordinates or functions, where this order is defined as the order of the

local series (or as the order of vanishing of the function at the origin). For example,

X0 has order 0, X1 and X2 have order 1, X3, X4, and X5 have order 2, X6 through

X9 have order 3, X10 through X14 have order 4, and X15 has order 6.

We describe how to compute the local series for the basis elements. Recall that

the zero of the Jacobian is the represented by the pair {(a, b), (c, d)} with a = c

and b = −d. Therefore, we first write c = a − h ([4] says c = a + h, but this is a

typo, as it gives different signs on many of the other formulas in [4]) and then we

write d =
√

f(a − h) as a power series in h with first term −b,

d = −b +
f ′(a)

2b
h +

f ′(a)2 − 2b2f ′′(a)

(2b)3
h2 + O(h3).

Then all of the basis elements can be written as power series in h by substitution.

For example,

X1 =
H(a, c)b − H(c, a)d

(F0(a, c) − 2bd)2(a − c)
=

a

2b
h +

af ′(a) − 2f(a)

(2b)3
h3 + O(h5).

Since the leading terms of X1 and X2 are, respectively, ah/2b and h/2b, one can

read off the first terms of a local series from the coefficients of a. That is, take

the coefficient of the leading term hn, multiply by (2b)n, and the result will be

expressible (possibly by changing b2 to f(a)) as a polynomial in a, of degree at most

n. The coefficient of aj in this polynomial is the coefficient of X j
1X

n−j
2 in the local

series. For example,

X3 =
ac(a − c)2

F0(a, c) − 2bd
=

a2

(2b)2
h2 +

2a(af ′(a) − 2f(a))

(2b)4
h3 + O(h4)
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has leading coefficient a2/(2b)2 of h2. Multiplying by (2b)2, we get the polynomial

a2. Therefore, the first-order terms of the local series for X3 are X2
1 . By substituting

Xj
1X

n−j
2 (as a series in h) for aj and subtracting the resulting series, one may expose

the terms of next degree and repeat the process. For example,

X3 − X2
1 = −f0 + f4a

4

(2b)4
h4 + O(h5),

and so the second-order terms of the local series for X3 are −f4X
4
1 − f0X

4
2 .

The power series that are computed in this process have rational functions for

coefficients that tend to grow large very quickly and become difficult to compute,

so certain optimizations help considerably. One can avoid the need for rational

functions and use only polynomials if one writes everything as power series in k =

h/(2b)2 instead of h. For example,

X3 = a2(2b)2k2 + 2a(af ′(a) − 2f(a))(2b)2k3 + O(k4).

Of course, this necessitates dividing the coefficient of kn by (2b)n instead of multi-

plying.

Furthermore, doing these computations requires some changing back and forth

between a and b (that is, between f(a) and b2), which is easy to do manually but

harder to automate. It turns out, however, that one can avoids all use of the variable

b, which makes the computations run significantly faster. It turns out that d/b can

be written easily as a power series in k whose coefficients are polynomials in a,

d/b = −1 + 2f ′(a)k + 2(f ′(a)2 − 2b2f ′′(a))k2 + O(k3).

Furthermore, if we let n be the order of Xi, then Xi/(2b)n can be written in terms
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of a, c, and d/b (by changing b2 to f(a)). The first term in the resulting series is kn

times a polynomial in a of degree at most n, and the coefficient of aj is the coefficient

in the local series of X j
1X

n−j
2 . Those terms of the local series should be subtracted

off in order to get the next term. Since each of the basis elements is either even

or odd, there is no kn+1 term, and the higher terms will now all be divisible by

(2b)2 = 4f(a). After dividing, the coefficient of kn+2 is a polynomial in a whose

coefficients give the next terms of the local series, and so on.

Repeating our previous example with this new method, we have

X3

(2b)2
= a2k2 + 2a(af ′(a) − 2f(a))k3 + O(k4),

and we pull off the first-order terms X2
1 from the leading coefficient. Then we

subtract the first-order terms. Notice that since we have stored X1/2b and X2/2b, we

can simply use the squares of these series, and the denominators match. Subtracting

the first-order terms also eliminates the k3 term, and the result is divisible by (2b)2,

so we divide each term of the series by 4f(a), and get

(

X3

(2b)2
−
(

X1

2b

)2
)

= (−f0 − f4x
4)k4 + O(k5).

Mathematica c© code for generating the local series can be found in Appendix B.

8.4 Quadratic Forms

The group law on the Jacobian, as will as derivatives of the coordinate func-

tions, can be given by quadratic forms in the 16 basis elements. The quadratic forms

that are zero on the Jacobian give a set of defining equations for the Jacobian as a

103



projective variety. For these reasons and others, it is worthwhile to understand the

space of quadratic forms on the Jacobian.

By 8.1, the vector space of quadratic functions on the Jacobian has dimension

64. Since there are 16 × 17/2 = 136 ways to multiply 2 of the 16 basis elements

together, the vector space of quadratic forms that are zero on the Jacobian has

dimension 72. A basis for this vector space can be downloaded from Flynn’s ftp

site, as stated in [4].

It is useful to categorize these functions by their orders, as introduced in the

previous section, and we will give an explicit basis for the vector space of quadratic

functions on the Jacobian.

Consider the vector space of all local series of order n modulo those of order

n + 1. Since this vector space is generated by the basis

Xn
1 , Xn−1

1 X2, . . . , X1X
n−1
2 , Xn

2 ,

it has dimension n + 1. Consequently, the subspace (which we will denote Vn for

the moment) of quadratic functions of order n modulo those of order n + 1 has

dimension at most n + 1. It turns out that we get equality when n ≤ 9. In fact,

when n ≤ 8, it is easy to find a basis for Vn by looking at the leading terms of the

local series. For n = 9, one has to look at second-order terms in the local series to

find ten generators.
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n Basis for Vn

0 {X2
0}

1 {X0X1, X0X2}
2 {X0X3, X0X4, X0X5}
3 {X0X6, X0X7, X0X8, X0X9}
4 {X0X10, X0X11, X0X12, X0X13, X0X14}
5 {X3X6, X4X6, X5X6, X5X7, X5X8, X5X9}
6 {X3X10, X4X10, X5X10, X4X12, X5X12, X4X14, X5X14}
7 {X6X10, X7X10, X8X10, X9X10, X8X12, X9X12, X8X14, X9X14}
8 {X10X10, X10X11, X10X12, X10X13, X10X14,

X11X14, X12X14, X13X14, X14X14}
9 {X6X15, X7X15, X8X15, X9X15, 2X7X10 − X6X11, X8X10 − X6X12,

X9X10 − X7X12, X8X12 − X6X14, X9X12 − X7X14, X9X13 − 2X8X14}

We have given 55 linearly independent quadratic forms in the above table,

which means that there are still 9 dimensions left undescribed. It turns out that

8 of them have order 10, and the remaining 1 has order 12. A basis for the 8-

dimensional space V10 is given by

X15X10 =(a − c)2a2c2

X15X11 =(a − c)2(a + c)ac

X15X12 =(a − c)2ac

X15X13 =(a − c)2(a + c)

X15X14 =(a − c)2
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−X15X5 + 4f6X10X12 + 2f5X10X13 + 4f4X10X14

+2f3X11X14 + 4f2X12X14 + 2f1X13X14 + 4f0X14X14 = F0(a, c) + 2bd

−X15X4 + 2f6X10X11 + 4f5X10X12 + 2f4X10X13

+4f3X10X14 + 2f2X11X14 + 4f1X12X14 + 2f0X13X14 = F1(a, c) + (a + c)bd

−X15X3 + 4f6X10X10 + 2f5X10X11 + 4f4X10X12

+2f3X10X13 + 4f2X10X14 + 2f1X11X14 + 4f0X12X14 = ac(F0(a, c) + 2bd)

The 1-dimensional space V12 is, of course, generated by

X2
15 = (a − c)4.

8.5 The Kummer Variety

Associated with the Jacobian of our genus-2 curve is another variety known as

the Kummer variety. It is a 2-dimensional surface embedded into projective 3-space,

and it is defined by (ξ1, ξ2, ξ3, ξ4) ∈ P3 satisfying a certain fourth-degree polynomial

which can be found in [4], chapter 3. There is a surjective map from the Jacobian

to the Kummer variety given by

(ξ1, ξ2, ξ3, ξ4) = (X14, X13, X12, X5),

which is two-to-one except at the 16 (complex) points of order 2 on the Jacobian,

where the Jacobian points P and −P map to the same point on the Kummer variety.

The above map is not properly defined at certain points where

X14 = X13 = X12 = X5 = 0,
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namely, at points corresponding to the divisors P + Q −∞+ − ∞− where P or Q

is itself a point at infinity. The map does, however, extend continuously to such

points, and the map becomes as follows. When P = (a, b) and Q is the point at

infinity with y/x3 = s for one of the square roots s of f6, the image is

(ξ1, ξ2, ξ3, ξ4) = (0, 1, a, 2s2a3 + f5a
2 − 2sb),

and when P = Q is a point at infinity, the image is

(ξ1, ξ2, ξ3, ξ4) = (0, 0, 4f6, f
2
5 − 4f4f6),

The identity maps to (0, 0, 0, 1).

The Kummer variety plays two important roles for us. One is an aid related

to the projective heights of points of the Jacobian, as the Kummer variety plays the

role that the x coordinate plays in heights of points on an elliptic curve. The other

is an aid related to the group law on the Jacobian. While the Kummer variety is

not itself an abelian variety (or an algebraic group), some elements of the group law

on the Jacobian remain, and they are simpler and easier to compute than the group

law on the Jacobian, and they are useful in computing the full group law.

8.6 Heights

We defined the Kummer variety by the map

(ξ1, ξ2, ξ3, ξ4) = (X14, X13, X12, X5).

Projectively, we also have

(ξ2
1, ξ1ξ2, ξ1ξ3, ξ1ξ4) = (X14, X13, X12, X5),
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and under this normalization, the space of linear forms in the ten even variables on

the Jacobian is the same as the space of quadratic forms on the Kummer variety.

We have the relations

ξ1ξ1 =X14 ξ2ξ3 =X11

ξ1ξ2 =X13 ξ2ξ4 =2X4 + f1X14 + f3X12 + f5X10

ξ1ξ3 =X12 ξ3ξ3 =X10

ξ1ξ4 =X5 ξ3ξ4 =X3

ξ2ξ2 =X15 + 4X12 ξ4ξ4 =X0.

This provides us with the very useful relation between projective heights on the

Jacobian and projective heights on the Kummer variety

Lemma 8.2.

2 h(ξ1, ξ2, ξ3, ξ4) ≤ h(X0, X1, . . . , X15) + log 5.

Proof. This follows from the above equations and the equality

2 h(ξ1, ξ2, ξ3, ξ4) = h(ξ2
1 , ξ

2
2 , ξ

2
3, ξ

2
4).
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Reversing the above equations, we get

X0 =ξ2
4 X11 =ξ2ξ3

X3 =ξ3ξ4 X12 =ξ1ξ3

X4 =
1

2
(ξ2ξ4 − f1ξ

2
1 − f3ξ1ξ3 − f5ξ

2
3) X13 =ξ1ξ2

X5 =ξ1ξ4 X14 =ξ2
1

X10 =ξ2
3 X15 =ξ2

2 − 4ξ1ξ3.

Unfortunately, since the ξi variables are unchanged by negating the point on the

Jacobian, we cannot express the six odd variables as polynomials in the ξi’s. We

can, however, write their squares as quadratic polynomials in the ten even variables.

X2
1 =f4X0X10 + f2f

2
5 X2

10 + f 2
3 f6X

2
10 − 4f2f4f6X

2
10 − 4f1f5f6X

2
10+

f1f
2
5 X10X11 − 4f1f4f6X10X11 + 2f0f

2
5 X10X12 − 6f1f3f6X10X12−

16f0f4f6X10X12 + 8f0f3f6X11X12 + 16f0f2f6X
2
12 − 12f0f3f6X10X13+

8f0f1f6X12X13 + f0X0X14 − 2f0f3f5X10X14 − 3f 2
1 f6X10X14−

20f0f2f6X10X14 − 8f0f1f6X11X14 − 2f0f1f5X12X14+

(f0f
2
5 − 4f0f4f6)X10X15 + X0X3 + f3f5X10X3 − 4f2f6X10X3−

4f0f6X15X3 − 8f1f6X10X4 − 4f0f5X12X4 − f1f5X10X5 − 16f0f6X10X5,
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X2
2 =f6X0X10 − 2f1f5f6X10X12 + 8f0f5f6X11X12 + 16f0f4f6X

2
12−

8f0f5f6X10X13 + 8f0f3f6X12X13 + f2X0X14 − 3f0f
2
5 X10X14−

2f1f3f6X10X14 − 20f0f4f6X10X14 − 12f0f3f6X11X14 − 6f0f3f5X12X14+

2f 2
1 f6X12X14 − 16f0f2f6X12X14 + f 2

1 f5X13X14 − 4f0f2f5X13X14+

f0f
2
3 X2

14 + f 2
1 f4X

2
14 − 4f0f2f4X

2
14 − 4f0f1f5X

2
14+

(f 2
1 f6 − 4f0f2f6)X14X15 − 4f1f6X12X4 − 8f0f5X14X4 + X0X5−

f1f5X12X5 − 16f0f6X12X5 + f1f3X14X5 − 4f0f4X14X5 − 4f0f6X15X5,

X2
6 =f4X

2
10 + f3X10X11 + 4f2X10X12 + 3f1X10X13 + 9f0X10X14+

f2X10X15 + f1X11X15 + 6f0X12X15 + f0X
2
15 + X10X3,

X2
7 =f6X

2
10 + f2X10X14 + f1X11X14 + 4f0X12X14 + f0X14X15 + X10X5,

X2
8 =4f6X10X12 + f5X10X13 + f4X10X14 + f0X

2
14 + f6X10X15 + X12X5,

X2
9 =9f6X10X14 + 3f5X11X14 + 4f4X12X14 + f3X13X14 + f2X

2
14+

6f6X12X15 + f5X13X15 + f4X14X15 + f6X
2
15 + X14X5,

This allows us to prove a counterpart to the previous lemma.

Lemma 8.3.

h(X0, X1, . . . , X15) ≤ 2 h(ξ1, ξ2, ξ3, ξ4) +
3

2
h(J) +

1

2
log 184,

where h(J) is defined as

h(J) = h(1, f0, f1, f2, f3, f4, f5, f6).

Proof. We have

2 h(X0, X1, . . . , X15) = h(X2
0 , X

2
1 , . . . , X

2
15).
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Then we can substitute the above formulas for the squares of odd variables as

homogeneous quadratic polynomials in the ten even variables. Next, we substitute

the formulas for the ten even variables as homogeneous quadratic polynomials in

the four ξi variables. Then result is sixteen homogeneous polynomials of degree 4

in the ξi, of degree at most 3 in the fi coefficients, with lengths at most 184.

One useful property of heights (shared with any positive definite quadratic

form) is

ĥ(P1 + . . . + Pn) ≤ n
(

ĥ(P1) + . . . + ĥ(Pn)
)

.

This is a corollary of the following theorem, since ĥ is a quadratic form and also

satisfies 0 ≤ ĥ(P ) for all P (i.e. ĥ is a positive definite quadratic form).

Theorem 8.4. If ĥ is any quadratic form, then

ĥ

(

n
∑

j=1

Pj

)

+

n
∑

i=1

n

i(i + 1)
ĥ

(

i
∑

j=1

Pj − iPi

)

= n

n
∑

i=1

ĥ(Pi).

For example, when n = 2, ĥ(P + Q) + ĥ(P −Q) = 2(ĥ(P ) + ĥ(Q)), and when

n = 3, ĥ(P + Q + R) + 1
2
ĥ(P + Q − 2R) + 3

2
ĥ(P − Q) = 3(ĥ(P ) + ĥ(Q) + ĥ(R)).

Proof. To say that ĥ is a quadratic form is to say that the pairing

〈P, Q〉 =
1

2

[

ĥ(P + Q) − ĥ(P ) − ĥ(Q)
]
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is a bilinear form. Therefore, we have

ĥ

(

n
∑

j=1

Pj

)

+
n
∑

i=1

n

i(i + 1)
ĥ

(

i
∑

j=1

Pj − iPi

)

=

〈

n
∑

j=1

Pj,
n
∑

k=1

Pk

〉

+
n
∑

i=1

n

i(i + 1)

〈

i
∑

j=1

Pj − iPi,
i
∑

k=1

Pk − iPi

〉

=
n
∑

j=1

n
∑

k=1

aj,k 〈Pj, Pk〉

where for j = k we have

ak,k = 1 +
n
∑

i=k

n

i(i + 1)
− (k − 1)2 n

k(k − 1)
= n

(notice that the middle term is a telescoping series), and for j < k,

aj,k = 1 +

n
∑

i=k

n

i(i + 1)
− (k − 1)

n

k(k − 1)
= 0.

Similarly for k < j.

8.7 Projective Group Law

We already described the group law in terms of divisors at the end of section

8.1, as did Cassels and Flynn in [4]. We also mentioned Cantor’s algorithm for

adding points in the form of pairs of polynomials in section 8.3, as described in [3].

The article [15] shows that these two are equivalent.

Since the Jacobian is an abelian variety, however, the group law must be

expressible as rational functions. Either of the above methods can be implemented

generically to get such rational functions, but the degrees become quite large.

Cassels and Flynn show in [4] that the group law can be expressed in bi-

quadratic forms in the following sense. Writing Xi(P ) for the i’th projective coor-
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dinate of the Jacobian point P , there are 256 biquadratic forms Ψi,j(X(P ),X(Q))

such that the 16-by-16 matrix

(Ψi,j(X(P ),X(Q)))i,j

is projectively (i.e. up to a scalar multiple) the same as

(Xi(P − Q)Xj(P + Q))i,j .

This gives 16 different group laws, none of which is defined everywhere, since any

row is all zeros whenever Xj(P − Q) = 0. For every P and Q, however, one of the

16 group laws is defined, since at least one of the coordinates of Xj(P −Q) must be

nonzero.

Cassels and Flynn indicated how these polynomials could be computed, but

they did not compute them. They did, however, compute sixteen bilinear polyno-

mials Φi,j(X(P ),X(Q)) such that the 4-by-4 matrix

(Φi,j(X(P ),X(Q)))i,j

is projectively the same as

(ξi(P − Q)ξj(P + Q))i,j .

As we saw, the even projective variables can be written as quadratic polyno-

mials in the ξi variables. Therefore, the even-even polynomials Ψi,j (that is, when

Xi and Xj are even variables) are straight-forward to compute using the following

method:

First, write Xi(P−Q) and Xj(P +Q) as quadratic polynomials in the variables

ξ1(P−Q) through ξ4(P−Q) and ξ1(P +Q) through ξ4(P +Q), respectively. Multiply
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the two polynomials together. Then each term is a product of two of the ξ(P − Q)

variables and two of the ξ(P + Q) variables. Pairing up one of each in two pairs,

replace ξa(P − Q)ξb(P − Q) with the polynomial Φa,b(X(P ),X(Q)). The result is

the polynomial Ψi,j(X(P ),X(Q)).

The even-odd and the odd-odd polynomials are much harder to compute.

Cassels and Flynn suggested the following method: First, take the square of Xi(P −

Q)Xj(P +Q) and write the square as a biquadratic polynomial in the even variables.

Then use the method from the previous paragraph to convert this to a biquartic

polynomial in X(P ) and X(Q). Finally, take the square root.

They gave no suggestions as to how the square root could be computed, and

this computation is far from trivial, since the resulting biquartic polynomial is not

the square of a polynomial except modulo the ideal of the Jacobian.

One method for computing this square root is this: Express the square as a lo-

cal series in X1(P ), X2(P ), X1(Q), and X2(Q). (It is computationally faster to write

the polynomials Φi,j as local series, and then compute the square of Ψi,j(X(P ),X(Q))

directly from these.) Since the local series are expressible in a unique way (unlike

quadratic functions on the Jacobian), the resulting local series is the square of a local

series. That is, the terms of lowest total degree form the square of a homogeneous

polynomial in X1(P ), X2(P ), X1(Q), and X2(Q). Take one of the square roots of

this polynomial. The sign can be determined later, after the full biquadratic form

is recovered, by computing its value at some P and Q and checking the sign. The

higher-order terms of the local series are easily determined from the usual formula

for the square root of a power series. If the degree-n terms of the square are given
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by sn, and the first term of the square root is rk (of degree k), then for n > k, the

degree-n terms rn of the square root are given inductively by

(sn+k −
n−1
∑

i=k+1

rirn+k−i)/(2rk).

At this point, the challenge is to convert the local series of the square root back

into a biquadratic form in projective coordinates. This can be done using a variation

of the method described in section 8.3. If the lowest-order terms have bi-order (i, j)

(that is, order i in X1(P ) and X2(P ), and order j in X1(Q) and X2(Q)) with i ≤ 8

and j ≤ 8, then they can easily be converted back to biquadratic forms since the

leading terms of the basis elements given in section 8.3 have one term each. One

can then subtract the local series given by the biquadratic forms determined in this

way, and the result is a biquadratic form with order (at least) one higher.

When there are terms of lowest order that have bi-order (i, j) with, say, i ≥ 9,

then the biquadratic forms necessary to eliminate these terms is harder to compute,

but it can be done using linear algebra. One generates a matrix expressing the

coefficients of a basis for biquadratic forms of bi-order (i, j) (modulo those of higher

order), augments the matrix with the coefficients sought, and solves. If j < 9, this

can be done for each power of X1(Q), so the result is, at worst, a system of 10

equations in 10 variables. When i ≥ 9 and j ≥ 9, the system of equations can be as

large as 100-by-100.
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8.8 Derivatives

The complex points on the Jacobian J(C) form a group isomorphic to C2/Λ

for a particular lattice Λ. The isomorphism

P + Q −∞+ −∞− → (z1, z2) mod Λ

is given by

z1 =

∫ P

∞+

dx

y
+

∫ Q

∞−

dx

y
(8.2)

z2 =

∫ P

∞+

x dx

y
+

∫ Q

∞−

x dx

y
. (8.3)

Note that
(

2

∫ ∞+

∞−

dx

y
, 2

∫ ∞+

∞−

x dx

y

)

∈ Λ,

so that switching P and Q does not change the image mod Λ.

We would like to take derivatives of functions J → C with respect to z1 and

z2. If we let P = (a, b) and Q = (c, d), then, away from the theta divisor or the

curve where P = Q, the variables a, b, c, and d are determined locally by z1 and z2.

We can, therefore, determine their derivatives by inverting the function

(a, b, c, d) → (z1, z2).

From this, we can determine the derivatives of the 16 basis elements for the Jacobian,

which will be polynomials in the same basis elements, and then the derivatives on

the theta divisor and where P = Q will follow by continuity.

Directly from the definitions of z1 and z2, and using the fact that P and Q are

116



independent of one another, we compute

∂z1

∂a
=

∂

∂a

∫ (a,b)

∞+

dx

y
=

1

b

∂z1

∂b
=

∂

∂b

∫ (a,b)

∞+

2 dy

f ′(x)
=

2

f ′(a)

∂z1

∂c
=

∂

∂c

∫ (c,d)

∞+

dx

y
=

1

d

∂z1

∂d
=

∂

∂d

∫ (c,d)

∞+

2 dy

f ′(x)
=

2

f ′(c)

∂z2

∂a
=

∂

∂a

∫ (a,b)

∞+

x dx

y
=

a

b

∂z2

∂b
=

∂

∂b

∫ (a,b)

∞+

2x dy

f ′(x)
=

2a

f ′(a)

∂z2

∂c
=

∂

∂c

∫ (c,d)

∞+

x dx

y
=

c

d

∂z2

∂d
=

∂

∂d

∫ (c,d)

∞+

2x dy

f ′(x)
=

2c

f ′(c)
.

Considering a and b as functions of z1 and z2, and z1 and z2 as functions of a, b, c,

and d, we get

1 =
∂a

∂a
=

∂a

∂z1

∂z1

∂a
+

∂a

∂z2

∂z2

∂a

0 =
∂a

∂c
=

∂a

∂z1

∂z1

∂c
+

∂a

∂z2

∂z2

∂c

1 =
∂b

∂b
=

∂b

∂z1

∂z1

∂b
+

∂b

∂z2

∂z2

∂b

0 =
∂b

∂d
=

∂b

∂z1

∂z1

∂d
+

∂b

∂z2

∂z2

∂d
.
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Substituting the above formulas and solving, we compute

∂a

∂z1

=
−bc

a − c

∂a

∂z2

=
b

a − c

∂b

∂z1

=
−cf ′(a)

2(a − c)

∂b

∂z2

=
f ′(a)

2(a − c)

∂c

∂z1

=
ad

a − c

∂c

∂z2

=
−d

a − c

∂d

∂z1

=
af ′(c)

2(a − c)

∂d

∂z2

=
−f ′(c)

2(a − c)
.

Normalizing to X14 = 1, we can compute, for example,

∂

∂z1
X13 =

∂

∂z1
(a + c) =

∂a

∂z1
+

∂c

∂z1
=

−bc

a − c
+

ad

a − c
=

ad − bc

a − c
= −X8.

The derivatives of a few of the basis elements with respect to z1 are

∂

∂z1
X8 =(−4f6X10X13 − 3f5X10X14 − f1X

2
14 − 2X14X4)/2

∂

∂z1
X9 =(−14f6X10X14 − 3f5X11X14 − 2f4X12X14 − 4f6X12X15 − X14X5)/2

∂

∂z1
X10 = − 2X12X7

∂

∂z1
X11 = − X14X6 − 2X12X8

∂

∂z1
X12 = − X14X7

∂

∂z1
X13 = − X14X8

∂

∂z1
X14 =0

∂

∂z1
X15 =2X14X7 − 2X12X9.
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Without the normalization of X14 = 1, these may be written

∂

∂z1

X8

X14

=(−4f6X10X13 − 3f5X10X14 − f1X
2
14 − 2X14X4)/2X2

14

∂

∂z1

X9

X14

=(−14f6X10X14 − 3f5X11X14 − 2f4X12X14 − 4f6X12X15 − X14X5)/2X2
14

∂

∂z1

X10

X14

= − 2X12X7/X
2
14

∂

∂z1

X11

X14

=(−X14X6 − 2X12X8)/X
2
14

∂

∂z1

X12

X14

= − X7/X14

∂

∂z1

X13

X14

= − X8/X14

∂

∂z1

X14

X14

=0

∂

∂z1

X15

X14

=(2X14X7 − 2X12X9)/X
2
14.

The derivatives of a few of the basis elements with respect to z2 are

∂

∂z2

X8

X14
=(14f6X10X14 + 3f5X11X14 + 2f4X12X14 + 4f6X12X15 + X14X5)/2X2

14

∂

∂z2

X9

X14

=(10f6X11X14 + 10f5X12X14 + 2f4X13X14+

f3X
2
14 + 4f6X13X15 + 3f5X14X15)/2X2

14

∂

∂z2

X10

X14
=2X12X8/X

2
14

∂

∂z2

X11

X14
=(X14X7 + 2X12X9)/X

2
14

∂

∂z2

X12

X14
=X8/X14

∂

∂z2

X13

X14
=X9/X14

∂

∂z2

X15

X14
=(−4X14X8 + 2X13X9)/X

2
14
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Chapter 9

Application to Diophantine equations

9.1 The General Method

The lower bound for a linear form in logarithms on algebraic groups may be

applied to solving certain Diophantine equations. By way of example, suppose that

x and y are integers, and the point (x, y) belongs to a particular curve of genus two,

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0,

with fi ∈ Q. Either x (and therefore y) is relatively small, or the point (x, y) is

near a point at infinity. In the first case, we can simply try all such x values. In the

second, we use the following method:

First we choose an embedding of the curve into its Jacobian

ι : C → J.

If Q is a rational point on the curve, then we can take ι(x, y) = (x, y)+Q−∞+−∞−.

(For example, in the case f6 = 0, where ∞ = ∞+ = ∞−, taking Q = ∞ is the same

as using the embedding ι(x, y) = (x, y) − ∞.) When no rational point is known,

or it is more desirable not to distinguish any particular rational point (particularly

when the points at infinity are not rational), we can still use the embedding ι(x, y) =

2(x, y) − ∞+ − ∞−, although this generally doesn’t give as favorable inequalities.

We let P denote the image in the Jacobian of our point (x, y), P = ι(x, y).
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Next we find a Mordell-Weil basis P1, . . . , Pr for the rational points on the

Jacobian. Then we know that

P = n1P1 + n2P2 + ... + nrPr + T

for some integers ni and a torsion point T of the Jacobian. Furthermore, by finding

the rational torsion subgroup of the Jacobian, we can get a small positive integer t

such that

tT = 0

for all rational torsion points T . Now if we write

N = max
1≤i≤r

|ni| ,

then we only need to find an upper bound N0 for N , and then we can try all

combinations

P = n1P1 + n2P2 + ... + nrPr + T

with |ni| < N0.

Let

φ : J → C2

be an inverse of the exponential map, so that reducing the image mod the lattice of

periods Λ gives an isomorphism

φ̃ : J → C2/Λ.

By equations 8.2

φ((a, b) + (c, d)−∞+ −∞−) =

(

∫ (a,b)

∞+

dx

y
+

∫ (c,d)

∞−

dx

y
,

∫ (a,b)

∞+

x dx

y
+

∫ (c,d)

∞−

x dx

y

)

.
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Then we have

φ(P ) = n1φ(P1) + n2φ(P2) + ... + nrφ(Pr) + φ(T ) mod Λ,

and since tφ(T ) = φ(tT ) ∈ Λ, we can write this as

φ(P ) = n1φ(P1) + n2φ(P2) + ... + nrφ(Pr).

If P is near, but not equal to, a point at infinity, then φ(P ) will be near, but

not equal to, φ(∞±). The lower bound we have proven gives a condition on the mi’s

which ultimately bounds them to a finite set.

More precisely, we will find positive constants ci which verify the following

inequalities:

c2N
2 ≤ ĥ(P )

ĥ(P ) ≤ h(P ) + log c3

h(P ) ≤c4 log |x| + log c5

c6 log |x| ≤ log c7 − log
∣

∣φ(P ) − φ(ι(∞±))
∣

∣ ,

which we can put together to get

N2 ≤ c8 − c9 log
∣

∣φ(P ) − φ(ι(∞±))
∣

∣ .

Then our lower bound will give us something of the form

log
∣

∣φ(P ) − φ(ι(∞±))
∣

∣ > c10(log N)k,

and our upper bound for N will result from combining these inequalities

N2 ≤ c8 − c9c10(log N)k.
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9.2 Proving the Inequalities

Lemma 9.1. The canonical height on the Jacobian of our genus 2 curve satisfies

ĥ(P ) ≥ λN2

where λ is the smallest eigenvalue of the height matrix

H =

(

1

2
〈Pi, Pj〉

)

r×r

and

〈P, Q〉 = ĥ(P + Q) − ĥ(P ) − ĥ(Q)

is the so-called Néron-Tate pairing.

Proof. Since

P =

r
∑

i=1

niPi + T,

we have

ĥ(P ) =
1

2

∑

i≤i,j≤r

〈Pi, Pj〉ninj

and therefore

ĥ(P ) = nTHn

where n is the column vector with components n1, ..., nr. Then since H is sym-

metric, if D is the diagonal matrix of eigenvalues of H then there is an orthogonal

matrix Q such that

H = QT DQ.
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Now let m = Qn, and then we have

ĥ(P ) = nTHn = nTQT DQn = mT Dm =
r
∑

i=1

λim
2
i

≥ λ
r
∑

i=1

m2
i = λmTm = λnTQTQn = λnTn

= λ
r
∑

i=1

n2
i ≥ λ max

1≤i≤r
n2

i = λN2.

Next to the rank r, which we have no control over, this constant λ is the most

significant constant in our computations. In the article [35], the authors describe an

algorithm by which a Mordell-Weil basis may be modified (if r > 1) to maximize λ.

Recall that we defined

h(J) = h(1, f0, f1, f2, f3, f4, f5, f6).

Lemma 9.2. The näıve height satisfies

ĥ(P ) ≤ h(P ) +
4

3
h(J) +

1

3
log 2744.

Proof. Theorem 3.4.1 of [4] gives biquadratic polynomials Bi,j in ξi corresponding

to a point A and ξi corresponding to a point B such that, projectively,

(ξi(A + B)ξj(A − B) + ξi(A − B)ξj(A + B)) = (2Bi,j(A, B)) .

Taking A = B, we get a formula for the ξi corresponding to the point 2A, namely

(2B4,1(A, A), 2B4,2(A, A), 2B4,3(A, A), B4,4(A, A)) .

The result is four polynomials, homogeneous of degree 4 in the ξi (corresponding to

the point A), of degree at most 4 in the fi coefficients, and of lengths at most 2744.
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Therefore, we conclude that

h(2P ) ≤ 4 h(P ) + 4 h(J) + log 2744.

By induction,

h(2nP ) ≤ 4n h(P ) + 4

(

4n − 1

4 − 1

)

h(J) +

(

4n − 1

4 − 1

)

log 2744.

So we conclude that

ĥ(P ) = lim
n→∞

h(2nP )

4n
≤ h(P ) +

4

3
h(J) +

1

3
log 2744.

Lemma 9.3. When P = 2(x, y) −∞+ −∞−, its näıve height satisfies

h(P ) ≤ 8 h(x) + 2 h(J) + log 181.

Proof.

h(ξ1, ξ2, ξ3, ξ4) = h(X14, X13, X12, X5)

=h(1, 2x, x2,

(

f ′(x)

2y

)2

− (f2 + 2xf3 + 4x2f4 + 6x3f5 + 9x4f6))

=h(4f(x), 8xf(x), 4x2f(x), f ′(x)2 − 4f(x)(f2 + 2xf3 + 4x2f4 + 6x3f5 + 9x4f6))

where each of those four expressions are polynomials in x of degree at most 8, in

the fi of degree at most 2, and the sums of the absolute values of the coefficients in

the four polynomials are, respectively, 28, 56, 28, and 181.

Notice that when x is an integer, h(x) = log |x|, so this provides the necessary

inequality. This bound may be tightened in various ways. One way is to substitute
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the values for the fi’s into the formula

h(4f(x), 8xf(x), 4x2f(x), f ′(x)2 − 4f(x)(f2 + 2xf3 + 4x2f4 + 6x3f5 + 9x4f6)),

then clear denominators, eliminate any common factors, and replace

2 h(J) + log 181

by the logarithm of the sum of the absolute values of the coefficients of the four

polynomials.

Additionally, if x is assumed to be an integer of absolute value at least M

for some number M , and any denominators in the fi’s have been cleared, then the

height is the logarithm of the max of the four polynomials in x, and terms of degree

less than 8 can be reduced by

|x|i ≤ |x|8 /M8−i,

thereby reducing the upper bound (in the case where fi ∈ Z to something slightly

larger than 8 log |x| + log max{4f6, f
2
5 − 4f4f6}.

Alternately, if there is a rational point on the curve, then one can get better

results by using a different embedding. For example, if f6 = s2 is a square (such as

zero), then we have:

Lemma 9.4. When P = (x, y) −∞−, its näıve height satisfies

h(P ) ≤ 3 h(x) +
3

2
h(J) +

1

2
log 175.

If f6 = 0, then we have the tighter bound

h(P ) ≤ 2 h(x) + h(f5).
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Proof.

h(ξ1, ξ2, ξ3, ξ4) = h(0, 1, x, 2f6x
3 + f5x

2 − 2sy)

≤ h(1, f5, f6) + h(1, x, x2, x3, y) + log 5,

since s2 = f6, and we can bound the height of y as follows.

h(1, x, x2, x3, y) =
1

2
h(1, x2, x4, x6, f(x))

≤1

2
(h(J) + 6 h(x) + log 7) ,

and the result follows. When f6 = 0, we also have s = 0 and

h(ξ1, ξ2, ξ3, ξ4) = h(0, 1, x, f5x
2)

≤ h(f5) + 2 h(x).

h(ξ1, ξ2, ξ3, ξ4) = h(0, 1, x, f5x
2) ≤ h(f5) + 2 h(x).

If we have a rational point (a, b) on the curve (not a point at infinity), then

we can also use the embedding (x, y) → (x, y) + (a, b)−∞+ −∞− and we have the

following.

Lemma 9.5. When P = (x, y) + (a, b) −∞+ −∞−, its näıve height satisfies

h(P ) ≤ 3 h(x) +
3

2
h(J) + h(1, a3, b) + 4 log 2 +

1

2
log 7.
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Proof.

h(ξ1, ξ2, ξ3, ξ4) = h(1, a + x, ax, (F0(a, x) − 2by)/(a − x)2)

= h((a − x)2, (a + x)(a − x)2, ax(a − x)2, F0(a, x) − 2by)

≤ h(J) + h(1, a, a2, a3, b) + h(1, x, x2, x3, y) + log 16,

and we have already seen that

h(1, x, x2, x3, y) ≤ 1

2
(h(J) + 6 h(x) + log 7) .

Regarding the constants c6 and c7, we have the following two lemmas.

Lemma 9.6. If f6 > 0 and |x| is bigger than two times the max of the absolute

values of the six roots of f(x), then

z = φ(P ) − φ(ι(∞±)) ∈ C2

(where the sign of ∞± is the same as that of y/x3) has

2 log |x| ≤1

2
log f6 − 4 log 2 − log |z1|

log |x| ≤1

2
log f6 − 3 log 2 − log |z2|

in the case where ι(x, y) = (x, y) + Q −∞+ −∞− and

2 log |x| ≤1

2
log f6 − 3 log 2 − log |z1|

log |x| ≤1

2
log f6 − 2 log 2 − log |z2|

in the case where ι(x, y) = 2(x, y) −∞+ −∞−.
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Proof. Suppose that x > 0. In the case where ι(x, y) = (x, y) + Q −∞+ −∞−,

|z1| =

∫ ∞

x

dt
√

f(t)

|z2| =

∫ ∞

x

t dt
√

f(t)
.

In the case where ι(x, y) = 2(x, y) −∞+ −∞−,

|z1| =2

∫ ∞

x

dt
√

f(t)

|z2| =2

∫ ∞

x

t dt
√

f(t)
.

Write

f(t) = f6(t − α1)(t − α2)(t − α3)(t − α4)(t − α5)(t − α6).

Then for t ≥ x, we have

f(t) = f6 |t − α1| |t − α2| |t − α3| |t − α4| |t − α5| |t − α6| ≥ f6(t/2)6,

and therefore (for i = 0 or i = 1)

∫ ∞

x

ti dt
√

f(t)
≤
∫ ∞

x

2−3f
1/2
6 ti−3dt =

√
f6

8(2 − i)
xi−2.

When x < 0, we have the same result up to differences in sign, which does not affect

the final result.

Lemma 9.7. If f6 = 0, f5 > 0, and x is bigger than two times the max of the

absolute values of the five roots of f(x), then

z = φ(P ) − φ(ι(∞)) ∈ C2
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has

3

2
log |x| ≤1

2
log f6 −

3

2
log 2 − log 5 − log |z1|

1

2
log |x| ≤1

2
log f6 −

3

2
log 2 − log 3 − log |z2|

in the case where ι(x, y) = (x, y) + Q − 2∞ and

3

2
log |x| ≤1

2
log f6 −

1

2
log 2 − log 5 − log |z1|

1

2
log |x| ≤1

2
log f6 −

1

2
log 2 − log 3 − log |z2|

in the case where ι(x, y) = 2(x, y)− 2∞. We have the same result if f6 = 0, f5 < 0,

and −x is bigger than two times the max of the absolute values of the five roots of

f(x).

Proof. Suppose that f5 > 0. (The other case is the same except for a few differences

in sign.) In the case where ι(x, y) = (x, y) + Q − 2∞,

z1 = −
∫ ∞

x

dt
√

f(t)

z2 = −
∫ ∞

x

t dt
√

f(t)
.

In the case where ι(x, y) = 2(x, y) − 2∞,

z1 = − 2

∫ ∞

x

dt
√

f(t)

z2 = − 2

∫ ∞

x

t dt
√

f(t)
.

As before, write

f(t) = f5(t − α1)(t − α2)(t − α3)(t − α4)(t − α5).
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Then for t ≥ x, we have

f(t) = f5 |t − α1| |t − α2| |t − α3| |t − α4| |t − α5| ≥ f5(t/2)5,

and therefore (for i = 0 or i = 1)

∫ ∞

x

ti dt
√

f(t)
≤
∫ ∞

x

2−5/2f
1/2
5 ti−5/2dt =

√
2f5

4(5 − 2i)
xi−3/2.

Finally, we need to apply Theorem 1.6 to get a lower bound on the linear form

φ(P ), so we need to compute the parameters used in that theorem.

We are using the basis {dx/y, x dx/y} for the space of one-forms on C (else-

where denoted H0(C, Ω1), but we will have a different meaning for Ω1). Let (Ω1, Ω2)

be the period matrix for this basis with respect to some symplectic basis of H1(C, Z).

Then Ω = Ω−1
1 Ω2 ∈ H2, and the analytic Jacobian is given by

J(C) ∼= C2/(Ω1Z
2 + Ω2Z

2),

which is precisely the tangent space TJ(C) mod the kernel of the exponential map.

The analytic Jacobian is isomorphic (via the isomorphism z → Ω−1
1 z) to

J(C) ∼= C2/(Z2 + ΩZ2).

In order to compute H− and H+, we need to relate Φj to the theta functions on

J . By the comment at the end of section 8.2, the projective coordinates X0, . . . , X15

generate the same line bundle as the 16 theta functions

ϑ[η](z, Ω),
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for all 2-by-2 matrices η with entries that are either 0 or 1/2. If we let η0, . . . , η15

be an enumeration of such matrices, then we can find an invertible matrix A such

that






Φ0(z)
...

Φ15(z)






= A







ϑ[η0](z, Ω)
...

ϑ[η15](z, Ω)






. (9.1)

Since this determines A only up to a scalar multiple, we can choose the scalar by

assuming that Φ0(0) = 1.

One way to compute A is the following: Choose (at least) 17 points on the

Jacobian. Compute the projective coordinates (X0, . . . , X15) for each point, as well

as the analytic coordinates z = (z1, z2). Evaluate the 16 theta functions ϑ[ηj](z, Ω)

at each point. Each point gives 15 linear equations in the entries of A by substituting

the rows from the right side of 9.1 into the equation

Φ0Xj = X0Φj.

This system of equations, together with Φ0(0) = 1, can be solved for A.

The number } can be computed using the method of [31].

One lower bound H− for

max{|Φ0(z)| , . . . , |Φ15(z)|}

is given by a lower bound for

max{|ϑ[η0](z, Ω)| , . . . , |ϑ[η15](z, Ω)|}

divided by the max (over the rows) of the sum of the absolute values of the entries

in a row of A−1. An upper bound H+ for

max{|Φ0(z)| , . . . , |Φ15(z)|}
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is given by an upper bound for

max{|ϑ[η0](z, Ω)| , . . . , |ϑ[η15](z, Ω)|}

multiplied by the max (over the rows) of the sum of the absolute values of the entries

in a row of A. An upper bound for

|ϑ[η](z, Ω)|

can be determined as follows. Since Im Ω is symmetric positive definite, Im Ω =

QT DQ with Q orthogonal (QT Q = I) and D the diagonal matrix of (positive)

eigenvectors (say ≥ λ). So if s = Qn then

nT (Im Ω)n = nT QT DQn = sT Ds = λ1s
2
1 + λ2s

2
2

≥ λ(s2
1 + s2

2) = λsT s = λnT QT Qn = nT n.

Furthermore, if a > 0, and [b] denotes the fractional part of b in the range [−1/2, 1/2],

then

∑

n∈Z

exp(−a(n + b)2) < exp(−a[b]2) +

∫ +∞

−∞

exp(−a(x + b)2) dx

≤ exp(−a/4) +
√

π/a
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Therefore,

|ϑ(z, Ω)| =

∣

∣

∣

∣

∣

∑

n∈Z2

exp(πinT Ωn + 2πinTz)

∣

∣

∣

∣

∣

≤
∑

n∈Z2

∣

∣exp(πinT Ωn + 2πinTz)
∣

∣

=
∑

n∈Z2

exp(Re (πinT Ωn + 2πinTz))

=
∑

n∈Z2

exp(−πnT (Im Ω)n − 2πnT Im z))

≤
∑

n∈Z2

exp(−πλnTn − 2πnT Im z))

=
∑

n∈Z2

2
∏

i=1

exp(−πλn2
i − 2πni Im zi))

=

2
∏

i=1

∑

n∈Z

exp(−πλn2 − 2πn Im zi))

=
2
∏

i=1

∑

n∈Z

exp(−πλ(n +
Im zi

λ
)2 +

π

λ
(Im zi)

2)

<
2
∏

i=1

(

exp(−πλ/4) +
√

1/λ
)

exp(
π

λ
(Im zi)

2)

≤
(

exp(−πλ/4) +
√

1/λ
)2

exp(
π

λ
|z|2)

Consequently, we can take A+ = π/λ, B+ = 0, and C+ given by the matrix A

described above, plus the number

2 log
(

exp(−πλ/4) +
√

1/λ
)

.

Next, one takes ui = φ(Pi) for 1 ≤ i ≤ r, and ur+1 = φ(∞±). Then k = r + 1,

γi = Pi for i ≤ r, and γr+1 = ∞±. Set K = Q (so D = 1), and Gi = J for 1 ≤ i ≤ k,

so G = Ga × Jk. Then we will have two different linear forms. For the first, set
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(β0, . . . , β2k) = (n1, 0, n2, 0, . . . , nr, 0,−1, 0) so that

L1(u) = n1u1,1 + 0u1,2 + . . . + nrur,1 + 0ur,2 − ur+1,1 + 0ur+1,2.

For the second, set (β0, . . . , β2k) = (0, n1, 0, n2, . . . , 0, nr, 0,−1) so that

L2(u) = 0u1,1 + n1u1,2 + . . . + 0ur,1 + nrur,2 + 0ur+1,1 − ur+1,2.

These are precisely the two coordinates of φ(P ) − φ(ι(∞±)). Both are nonzero,

since they are given by the integrals in 9.6 and 9.7. We can use either one to get

our upper bound on N .

Set E = e and

Vi = exp max{ĥ(γi), A+ |ui|2 e2}.

Now, either B = N is smaller than

exp max{e, log Vi, exp(h(J)), exp(} /((2k + 1)!24k))},

which gives an upper bound on N , or

log |Li(u)| > −C1(log B)(log log B)2k+1

k
∏

i=1

(log Vi)
2,

for at least one of the two linear forms (whichever is nonzero), where C1 is given in

Section 1.3.

Combining this inequality with the ones determined previously, we get an

upper bound for N .

9.3 Lattice Reduction

We currently have constants K1, K2, and N0 such that

|φ(P )| < K1 exp(−K2N
2)

135



and

N < N0.

Consider the (r + 1)-dimensional lattice generated by the columns of the matrix

A =















1 ... 0 0
0 ... 0 0
...

...
...

0 ... 1 0
[K0φ(P1)] ... [K0φ(Pr)] K0















for some large integer K0 that we will choose momentarily, and consider the lattice

point

y = A











tn1

...
tnr

tn0 + s











=











tn1

...
tnr

β











where

β = tn1[K0φ(P1)] + ... + tnr[K0φ(Pr)] + (tn0 + s)K0.

Notice that this

β = tn1[K0φ(P1)] + ... + tnr[K0φ(Pr)] + (tn0 + s)K0.

would be exactly K0tφ(P ) if not for the rounding; then

|β − K0tφ(P )| ≤ rtN ≤ rtN0.

and therefore

|y|2 ≤ t2(n2
1 + ... + n2

r) + β2

≤ rt2N2
0 + t2(K0 |φ(P )| + rN0)

2.
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But lattice reduction guarantees (see [16] or [42]) that the first element of the reduced

basis b1 has

|b1| ≤ 2r/2 |y| .

Therefore

K0 |φ(P )| ≥
√

t−22−r |b1|2 − rN2
0 − rN0

= S

N2 ≤ K−1
2 (log(K0K1) − log S)

provided S is positive, which is equivalent to

|b1| > 2r/2tN0

√
r2 + r.

Heuristically, |b1| is approximately K
1/(r+1)
0 , so we should choose K0 to be large

enough to satisfy the above inequality. Then we have a smaller bound for N . Replace

N0 by this smaller bound and repeat.

But what do we do if φ(ι(∞±)) is nonzero? Then our linear form has another

term, so that we have

∣

∣φ(P ) − φ(ι(∞±))
∣

∣ < K1 exp(−K2N
2)

and

N < N0.

Let A be as before, and reduce the basis of the same (r + 1)-dimensional lattice as

before. Now write the vector

x =











0
...
0

−t[K0φ(ι(∞±))]










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in terms of the reduced basis, so that

x = B







x1

...
xr+1







In fact, de Weger’s algorithm provides matrices U and V so that

B = AUV = U−1

so that we can compute the coordinates xj from







x1

...
xr+1






= VA−1x.

By Lemma 3.5 of [42],

d(x, Γ) ≥ 2r/2 |b1|min |xi − [xi]|.

Then we have

2r/2 |b1|min |xi − [xi]| ≤ |y − x|

which we can combine as before with our upper bound

|y − x|2 ≤ t2(n2
1 + ... + n2

r) + β2

≤ rt2N2
0 + t2(K0 |φ(P )| + 1 + rN0)

2,

and the rest follows exactly as before.

9.4 A Worked Example

The Mordell-Weil groups of Jacobians of several genus-two curves are com-

puted in [10]. For our example, we shall choose one of these curves with positive
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rank, namely, their curve 67, which we give here in normal form:

y2 = x6 + 4x5 + 2x4 + 2x3 + x2 − 2x + 1.

We will use the embedding ι : C → J given by

ι(x, y) = (x, y) −∞− = (x, y) + ∞+ −∞+ −∞−.

The group of rational points on the Jacobian has trivial torsion (so we can take

t = 1) and rank r = 2, with generators

P1 =(0, 1) −∞− = (0, 1) + ∞+ −∞+ −∞−

P2 =(0, 1) − (0,−1) = (0, 1) + (0, 1) −∞+ −∞−.

The canonical heights of these points (rounded to 30 digits) are computed as

ĥ(P1) =0.048085773597485665955583000680

ĥ(P2) =0.066600709944344287365293031597,

and the full height matrix is

[

< P1, P1 > < P1, P2 >
< P2, P1 > < P2, P2 >

]

=

[

0.04808577360 0.01851493635
0.01851493635 0.06660070994

]

,

whose eigenvalues are

λ1 =0.0366429136355862255122125949485

λ2 =0.0780435699062437278086634373282.

Consequently, we have the inequality

0.03664291363N 2 ≤ ĥ(P ).
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Next, we compute the height of the Jacobian as

h(J) = h(1, 4, 2, 2, 1,−2, 1) = log 4,

and Lemma 9.2 gives

ĥ(P ) ≤ h(P ) +
4

3
log 4 +

1

3
log 2744 < h(P ) + 4.4874498111.

By Lemma 9.4, we have

h(P ) ≤ 3 h(x) +
3

2
log 4 +

1

2
log 175 < 3 h(x) + 4.6618345286.

The polynomial

f(x) = x6 + 4x5 + 2x4 + 2x3 + x2 − 2x + 1

has the following six roots:

α1 = − 3.55960470656323123930

α2 = − 1.10047510431777050721

α3 = − 0.07883178855112289558− 1.0181884204791706431i

α4 = − 0.07883178855112289558 + 1.0181884204791706431i

α5 = 0.408871693991623768843− 0.2785649197961550704i

α6 = 0.408871693991623768843 + 0.2785649197961550704i.

The root with the largest absolute value is α1. Therefore, Lemma 9.6 tells us that

if |x| ≥ 8, then

z = φ(P ) − φ(ι(∞±)) ∈ C2
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(where the sign of ∞± is the same as that of y/x3) has

2 log |x| ≤ − 4 log 2 − log |z1|

log |x| ≤ − 3 log 2 − log |z2| .

Putting these together, we have either |x| ≤ 7 or

0.03664291363N 2 ≤4.990401257− 1.5 log |z1|

0.03664291363N 2 ≤2.910959715− 3 log |z2| .

Furthermore, it turns out that

2P1 − P2 = ∞+ −∞−.

This is not surprising, since f6 is a square and consequently ∞+ −∞− is a rational

point of the Jacobian, and P1 and P2 generate the group of rational points, but it

means that since P = n1P1 + n2P2

φ(P ) − φ(ι(∞+)) = (n1 − 2)P1 + (n2 + 1)P2

and

φ(P ) − φ(ι(∞−)) = n1P1 + n2P2.

This simplifies our calculations, since it allows us to eliminates one term in our linear

form by taking B = N + 2.
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The lattice of periods for the analytic Jacobian is generated by the four vectors

(2.023851408 + 2.880842014i, 0.9511809806− 0.1302478509i)

(1.072670427 + 4.267624951i,− 2.023851408− 5.133416484i)

(−2.25257447055313i,− 0.996039384338332i)

(−1.25653508621480i, 2.252574470553133i)

Our period matrices are

Ω1 =

[

2.023851408 + 2.880842014i 1.072670427 + 4.267624951i
0.9511809806− 0.1302478509i −2.023851408− 5.133416484i

]

Ω2 =

[

−2.25257447055313i −1.25653508621480i
−0.996039384338332i 2.252574470553133i

]

Ω =Ω−1
1 Ω2 =

[

−1 + 0.909640610271125i −1/2 − 0.0200406724789979i
−1/2 − 0.0200406724789979i −5/2 + 0.889599937792127i

]

and Ω has eigenvalues 0.877214121 and 0.922026427. Therefore, we have A+ =

π/0.877214121 = 3.58132932. We can also compute the analytic coordinates of P1

and P2, which are

u1 = φ(P1) = (0.9462002887 + 3.509109557i, 2.112372748− 1.256535086i)

u2 = φ(P2) = (−0.8626596409− 1.754554778i, − 0.8676403328 + 0.6282675431i).

These have norms

|u1| =4.38749859

|u2| =2.22938646.
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Since these are much bigger than the canonical heights of P1 and P2, we take

log V1 = A+ |u1|2 e2 = 101.848779

log V2 = A+ |u2|2 e2 = 51.7516494.

With k = 2, Theorem 1.6 gives

log |zi| > −1.9 × 10120(log B)(log log B)5.

Combining this with our earlier inequalities

0.03664291363N 2 ≤4.990401257− 1.5 log |z1|

0.03664291363N 2 ≤2.910959715− 3 log |z2| ,

and recalling that B = N + 2, we get

N2 ≤137 + 7.8 × 10121(log(N + 2))(log log(N + 2))5

N2 ≤80 + 1.6 × 10122(log(N + 2))(log log(N + 2))5.

This gives an upper bound for N . For example, Lemma 2 of [11] gives N < 1072 in

either case. Then we can iterate:

N ≤
√

137 + 7.8 × 10121(log(1072 + 2))(log log(1072 + 2))5 < 6.72 × 1063

Iterating the second inequality gives N < 9.62×1063. (Successive iterations improve

this only negligibly; one iteration after the first upper bound is generally sufficient.)

Next, we perform a lattice reduction. We choose K0 = 10196 and compute

Re φ1(P1) and Re φ1(P2) to at least 196 digits of precision in order to construct the

matrix that generates the lattice. After performing lattice reduction, we have

|b1| > 7.8 × 1064
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and therefore we have

|z1| ≥ 2.4 × 10−132.

Returning again to our inequality

0.03664291363N 2 ≤ 4.990401257− 1.5 log |z1| ,

we get the new (much improved) estimate

N < 112.

At this point, we could choose to do lattice reduction again (using K0 =

2.5 × 108 gives N < 28), but this bound is already small enough to exhaust.

Since we needed to assume that |x| ≥ 8 to get our inequalities, we check those

15 integers with −7 ≤ x ≤ 7 and see which give squares for f(x). It turns out that

three do, which gives six integer points on our curve

(−1,−1)

(−1, 1)

(0,−1)

(0, 1)

(1,−3)

(1, 3)

Next, we compute all Jacobian points

n1P1 + n2P2

144



with |n1| , |n2| < 112. The only ones that have the form ι(x, y) for some point (x, y)

on the curve are the following nine:

−2P1 + 0P2 = (1, 3) −∞−

−1P1 + 3P2 = (1/2,−7/8) −∞−

0P1 − 2P2 = (−1, 1) −∞−

1P1 − 1P2 = (0,−1) −∞−

1P1 + 0P2 = (0, 1) −∞−

2P1 − 1P2 =∞+ −∞−

2P1 + 1P2 = (−1,−1) −∞−

3P1 − 4P2 = (1/2, 7/8)−∞−

4P1 − 1P2 = (1,−3) −∞−

We conclude, therefore, that the six points determined previously are the only

integer points on the curve

y2 = x6 + 4x5 + 2x4 + 2x3 + x2 − 2x + 1.
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Appendix A

Index of Notation

• βi is a coefficient of the linear form L; after chapter 1, it is assumed that

β0 = −1.

• γi ∈ Gi, for 1 ≤ i ≤ k, is the image, under the exponential map γi =

expGi
(ui) ∈ Gi(K)

• δ is a bound on the size of the solution given by the Thue-Siegel Lemma 2.3.

• ϑ = (ϑi,1, . . . , ϑi,vi
) is a finite list of parameters describing the group Gi. In

the genus-two case, ϑ = (f0, . . . , f6).

• κi is a positive integer such that κiQ
(i,j)
k,l has integer coefficients.

• µ is the number of equations in the linear system defined in chapter 2.

• ν is the number of unknowns in the linear system defined in chapter 2.

• νi: |Φi,νi
(su)| = maxj |Φi,j(su)|

• ρ is the rank of the linear system defined in chapter 2.

• Φi,j : Cdi → C

• Φi : Cdi → CNi+1

• Φ = (Φ0, . . . ,Φk)
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• Ψi : Cdi → CNi

• Ψi,j = Φi,j/Φi,0

• Ψ = (Ψ0, . . . ,Ψk)

• A+
i : See H+

i .

• B+
i : See H+

i .

• C+
i : See H+

i .

• ci is the degree of R
(i)
j in the X variables, and the degree in the X ′ variables.

• c′i is the degree of R
(i)
j in the parameters ϑi,n.

• c = max{ci}.

• C[P̄] is the space of multihomogeneous polynomials with complex coefficients.

• (C[P̄]/I(G))(L0,...,Lk) is the vector subspace of those with multidegree

(L0, . . . , Lk).

• D = [K : Q] is the degree of K over Q.

• d = 1 + d1 + d2 + ... + dk is the dimension of the algebraic group G.

• d̃ is the dimension of G̃.

• di is the dimension of the algebraic group Gi; equivalently, it is the dimension

of TGi
(C) which is therefore isomorphic to Cdi .

• ei = (βi, 0, . . . , 0, 1, 0, . . . , 0), so (e1, . . . , ed−1) give a basis for W .
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• (f1, . . . , fd−1) is a basis for W with the property that (f1, . . . , fd̃) is a basis for

TG̃(C).

• expGi
: TGi

(C) → Gi is the exponential map on Gi

• expG : TG(C) → G is the exponential map on G

• G = Ga × G1 × ... × Gk

• G̃ is a group minimizing a certain function given in chapter 2.

• Ga is the additive algebraic group, whose exponential map is the identity map,

and whose embedding into projective 1-space is given by g → (1, g).

• Gi, for 1 ≤ i ≤ k, is the ith algebraic group, and G0 = Ga.

• h(Gi) = h(1, ϑi,1, . . . , ϑi,vi
).

• H+
i and H−

i : R+ → R are functions such that for all R ≥ 0 and all z ∈ Cdi

with |z| ≤ R, one has

H−
i (R) ≤ log max{Φi,0(z), . . . , Φi,Ni

(z)} ≤ H+
i (R).

It is assumed that H−
i is constant, and H+

i is quadratic, given by

H+
i (R) = A+

i R2 + B+
i R + C+

i .

• H(G; L0, ..., Lk) is (dim G)! times the terms of highest degree of the Hilbert

polynomial for G, which is a homogeneous polynomial of degree dim G with

positive integer coefficients.
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• Hf(G; L0, ..., Lk) is the multiprojective Hilbert function for G.

• Hp(G; L0, ..., Lk) is the Hilbert polynomial for G, which is a polynomial of

degree dim G.

• K is a number field over which G and the βi are defined.

• k is the number of algebraic groups, or the number of independent logarithms.

• L(z) = β0z0 + β1z1 + ... + βd−1zd−1

• mi is the degree of Gi so that H(Gi; x) = mi

di!
xdi .

• m = d!
∏k

i=0(mi/di!).

• M is a bound on the size of the coefficients in the linear system defined in

chapter 2.

• Ni is the dimension of the projective space into which Gi embeds; that is, Gi

is an algebraic subset of PNi.

• P is a polynomial

• P̄ = P1 × PN1 × ... × PNk

• p is a bound on the size of the linear forms given by the Thue-Siegel Lemma

2.3.

• Q
(i,j)
k,l (Xi,0, . . . , Xi,Ni

) is a polynomial giving the k’th partial derivative of the

variable Xi,l in the group Gi, i.e. satisfying

∂

∂zj

Φi,l

Φi,j
= Q

(i,j)
k,l (Φi,0, . . . , Φi,Ni

)/Φqi

i,j.
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• qi is the degree of Q
(i,j)
k,l in the X variables.

• q′i is the degree of Q
(i,j)
k,l in the parameters ϑi,n.

• r̃ is the codimension of TG̃(C) in W , or one less than the codimension of G̃ in

G.

• R
(i)
j (Xi,0, . . . , Xi,Ni

, X ′
i,0, . . . , X

′
i,Ni

) is a polynomial giving the group law on Gi,

i.e. satisfying

Φi,j(z + z′) = R
(i)
j (Φi(z),Φi(z

′)).

• ri is the length (sum of the absolute values of the integer coefficients) of R
(i)
j .

• r′i is the length (sum of the absolute values of the integer coefficients) of κiQ
(i,j)
k,l .

• u = (u0,u1, . . . ,uk) ∈ Cd (where u0 ∈ C and ui ∈ Cdi) is a d-tuple of com-

plex numbers which are the independent logarithms whose linear combination

interests us.

• W = kerL

• w ∈ W ⊂ Cd is the projection of u onto W ; w =
∑d−1

i=1 βiei or (equivalently)

w = u + (L(u), 0, . . . , 0).

• Xλ =
∏

i,j X
λi,j

i,j .

• z ∈ Cd is an element of TG(C)
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Appendix B

Program for Computing Local Series

(*

Compute the local series expansions:

u = x + h

v^2 = f(x + h) = polynomial in x and h of (total) degree 6

v = power series in h (whose coefficients are rational

functions in x and y) whose first term is -y

But let’s write these as power series in k = h/(4y^2).

*)

(* Increase this number to get more terms for all local series *)

seriesdepth = 8

(* compute the z coordinates in terms of x and u *)

xyevals = {

z15 -> (x-u)^2,

z14 -> 1,

z13 -> x+u,

z12 -> x*u ,

z11 -> x*u*(x+u),

z10 -> (x*u)^2,

z9 -> (y-v)/(x-u),

z8 -> (u*y-x*v)/(x-u),

z7 -> (u^2*y-x^2*v)/(x-u),

z6 -> (u^3*y-x^3*v)/(x-u),

z5 -> ((2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)+2*f4*(x*u)^2+

f5*(x+u)*(x*u)^2+2*f6*(x*u)^3)-2*y*v)/((x-u)^2),

z4 -> ((f0*(x+u)+2*f1*(x*u)+f2*(x+u)*(x*u)+2*f3*(x*u)^2+f4*(x+

u)*(x*u)^2+2*f5*(x*u)^3+f6*(x+u)*(x*u)^3)-(x+u)*y*v)/((x-u)^2),

z3 -> (x*u)*((2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)+2*f4*

(x*u)^2+f5*(x+u)*(x*u)^2+2*f6*(x*u)^3)-2*y*v)/((x-u)^2),

z2 -> ((f0*4+f1*(x+3*u)+f2*(2*x*u+2*u^2)+f3*(3*x*u^2+u^3)+
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f4*(4*x*u^3)+f5*x*(x*u^3+3*u^4)+f6*2*x*(x*u^4+u^5))*y-(f0*4+

f1*(u+3*x)+f2*(2*u*x+2*x^2)+f3*(3*u*x^2+x^3)+f4*(4*u*x^3)+

f5*u*(u*x^3+3*x^4)+f6*2*u*(u*x^4+x^5))*v)/((x-u)^3),

z1 -> ((f0*2*(x+u)+f1*u*(3*x+u)+f2*4*x*u^2+f3*x*u^2*(x+3*u)+

f4*2*x*u^3*(x+u)+f5*x*u^4*(3*x+u)+f6*4*x^2*u^5)*y-(f0*2*(u+

x)+f1*x*(3*u+x)+f2*4*u*x^2+f3*u*x^2*(u+3*x)+f4*2*u*x^3*(u+x)+

f5*u*x^4*(3*u+x)+f6*4*u^2*x^5)*v)/((x-u)^3),

z0 -> (((2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)+2*f4*(x*

u)^2+f5*(x+u)*(x*u)^2+2*f6*(x*u)^3)-2*y*v)/((x-u)^2))^2}

(* define the sextic *)

f[t_] := f6*t^6 + f5*t^5 + f4*t^4 + f3*t^3 + f2*t^2 + f1*t + f0

(* compute a power series (in k) square root for v/y *)

vts = Range[seriesdepth+1]

vts[[1]] = -1/2

For[i=1, i <= seriesdepth, i++,

vts[[i+1]] = Factor[Sum[vts[[j+1]]*vts[[i-j+1]], {j, 1, i-1}] -

(4*f[x])^(i-1)*Coefficient[f[x-h],h,i]]

]

voy = Sum[2*vts[[i+1]]*k^i, {i, 0, seriesdepth}] +

O[k]^(seriesdepth+1);

(* compute the z coordinates as power series in k *)

u = x-(4*f[x]*k)

f0xu = 2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)+2*f4*(x*u)^2+

f5*(x+u)*(x*u)^2+2*f6*(x*u)^3;

f1xu = f0*(x+u)+2*f1*(x*u)+f2*(x+u)*(x*u)+2*f3*(x*u)^2+

f4*(x+u)*(x*u)^2+2*f5*(x*u)^3+f6*(x+u)*(x*u)^3;

gxu = f0*4+f1*(x+3*u)+f2*(2*x*u+2*u^2)+f3*(3*x*u^2+u^3)+

f4*(4*x*u^3)+f5*x*(x*u^3+3*u^4)+f6*2*x*(x*u^4+u^5);

gux = f0*4+f1*(u+3*x)+f2*(2*u*x+2*x^2)+f3*(3*u*x^2+x^3)+

f4*(4*u*x^3)+f5*u*(u*x^3+3*x^4)+f6*2*u*(u*x^4+x^5);

hxu = f0*2*(x+u)+f1*u*(3*x+u)+f2*4*x*u^2+f3*x*u^2*(x+3*u)+

f4*2*x*u^3*(x+u)+f5*x*u^4*(3*x+u)+f6*4*x^2*u^5;

hux = f0*2*(u+x)+f1*x*(3*u+x)+f2*4*u*x^2+f3*u*x^2*(u+3*x)+

f4*2*u*x^3*(u+x)+f5*u*x^4*(3*u+x)+f6*4*u^2*x^5;

z15 = (x-u)^2/(4*f[x]);

z14 = 1;

z13 = x+u;

z12 = x*u ;

z11 = x*u*(x+u);
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z10 = (x*u)^2;

z9 = 2*f[x]*(1-voy)/(x-u);

z8 = 2*f[x]*(u-x*voy)/(x-u);

z7 = 2*f[x]*(u^2-x^2*voy)/(x-u);

z6 = 2*f[x]*(u^3-x^3*voy)/(x-u);

z5 = 4*f[x]*(f0xu-2*voy*f[x])/((x-u)^2);

z4 = 4*f[x]*(f1xu-(x+u)*voy*f[x])/((x-u)^2);

z3 = (x*u)*z5;

z2 = 8*f[x]^2*(gxu-gux*voy)/((x-u)^3);

z1 = 8*f[x]^2*(hxu-hux*voy)/((x-u)^3);

z0 = z5^2;

(* Compute the inverse of z0: *)

(* Faster than: *)

(* d = 1/z0; *)

(* d[[3]] = Together[d[[3]]]; *)

(* is: *)

numterms = z0[[5]]-z0[[4]]

d = 1 + k^(numterms-1) + O[k]^(numterms)

d[[3,1]] = Together[1/z0[[3,1]]]

For[i=1, i < numterms, i++, d[[3,i+1]] =

Together[-d[[3,1]]*Sum[z0[[3,j+1]]*d[[3,i-j+1]], {j,1,i}]]]

d[[4]] = -z0[[4]]

d[[5]] = d[[4]] + numterms

(* 73 sec (5), 154 sec (6), 316 sec (7), 625 sec (8) *)

z1 = z1*d;

z2 = z2*d;

z1[[3]] = Together[z1[[3]]];

z2[[3]] = Together[z2[[3]]];

terms = Table[0, {16}]

terms[[1]] = {1}

terms[[2]] = {0, s1}

terms[[3]] = {0, s2}

For[i = 4, i <= 16, i++, Block[{fn, j, parity, stopat},

fn = {z0, z1, z2, z3, z4, z5, z6, z7, z8,

z9, z10, z11, z12, z13, z14, z15}[[i]]*d;

parity = {0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6}[[i]];

(* fn = z_{i-1}/(z_0*(2y)^parity); *)

stopat = fn[[5]]; (* = parity + seriesdepth *)

terms[[i]] = Table[0, {stopat}];

fn[[3]] = Map[Together, fn[[3]]];

(* Print[{i, 0}]; *)

For[j = parity, j < stopat, j = j+2,
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(* fn = (z_{i-1} - portion already in "terms")/(z_0*(2y)^j); *)

polyx = Together[Coefficient[fn, k, j]];

terms[[i,j+1]] = Together[(polyx /. {x -> s1/s2})*s2^j];

If[j<stopat-1,

(* fn = fn - (terms[[i,j+1]] /. {s1 -> z1, s2 -> z2}); *)

pow=1+O[k]^(stopat - j);

dfn=Coefficient[polyx,x,0]+O[k]^(stopat - j);

For[l=1, l<=j, l++,

pow = pow*(z1 + O[k]^(stopat - j + 1));

pow[[3]] = Together[pow[[3]]];

c = Coefficient[polyx,x,l];

dfn = dfn*(z2 + O[k]^(stopat - j + 1));

dfn[[3]] = Together[dfn[[3]]];

dfn = dfn + c*pow;

dfn[[3]] = Together[dfn[[3]]];

];

fn = fn - dfn;

fn = fn/(4*f[x]);

fn[[3]] = Together[fn[[3]]];

(* Print[{i, j}] *)

]

]

]]

terms >> locals.txt
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[6] M. Chardin, “Une majorarion de la fonction de Hilbert et ses conséquences
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