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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION
This dissertation addresses two classes of network flow probtemetworkswith
multiple, stochastic and timearying attributes. The first pbbem class is concerned
with providing routing instructionsvith the ability to make updated decisions as
information about travel conditions is revealddr individual travelersin a
transportation networkSuch instructions are useful & variety of aplications,
including selection of routes for hazardous materials transport, emergency response
operations (medical, police, fire), intelligent transportation systems (ITS), and data
networks.The second problem class is concerned tighdetermination adptimala
priori pathflows for evacuationn capacitatechetworks, where the timgependent
and stochastic nature of arc attributes and capadcitiesyent in these problems
explicitly consideredGiven arccapacity restrictions, a single path may betable to
accommodate all of the flow and it may be necessary to select a set of paths along
which the flow will be shipped. A solution in this context, thus, consistssaft af
paths and correspondirgnount offlow to be shipped along each path.

In most of the published literaturehe primary criterion used in determining
an optimal path is eithetravel time or distanceHowever, in many reakorld
applications, other criteria may be efjual or greateimportance. For example, in
transportationapgications, one may prefer a path that simultaneously minimizes

travel time, distance, cost and accident likelihddéntification ofa single solution



that is best with respect to all criteria is often impossible. Rathset of Pareto
optimal (also redrred to as efficient or nethominated) solution®ften exists A
solution is Paretoptimal if and only if there are no other solutions that are better in
at least one criterion and equal in the remaining criteria.

Numerous efficient algorithms exist féinding optimal solutions to network
flow problems, where network attributes are given by {invariant, deterministic
guantities. Howevegftenthe attributes in a transportation network are stochastic and
time-varying in nature. For example, arc tratiemes change over time due to time
of-day variations in traffic congestion. Furthermore, future travel times can at best be
known a priori with uncertainty due to unforeseen events, such as poor roadway
conditions, vehicle breakdowns, traffic acciderasd driver behavior. Uncertainty
also existsas a result of measurement inaccuraclakewise, there are many
applications for which the capacity of an arc nmay be known with certainty and
probability distribution functions or expected values may vargr time In this
dissertation, future arc capacities, travel times and other travel criteria are random
variables with probability distributiofunctions that vary with time, i.e. multicriteria,
stochastic and timearying (MSTV) networksare consideredExplicit consideration
of the dynamic and uncertain nature of multiple arc attributes in mathematical
representations of realorld problems can significantly improve the utility and actual
performance of the solutions.

In Sections 1.2 and 1.3he specifc problens that are addressed in this
dissertatiorareintroduced and discussed. A brief overview of the main contributions

of thiswork is provided in Section 1.4.



1.2 PROBLEM CLASSI

A host of efficient algorithmsexist in the literaturdor finding optmal paths in
deterministic networkswvhere onlya single criterionis consideredFew works have
explicitly and simultaneously considerdde dynamic and uncertaimature of
multiple path attributedn this dissertation, realvorld complexities of pathedection
through explicitly considering the inherent variability in travel conditions, as well as
the multiobjective nature of many path selection decisions are addressed.

In networks with stochastic, timerying (STV) travel times, tw@roblem
classesmay be considered: tha priori path and the timadaptive path strategy
problemsIn both problem classes, solutions are obtained prior to the trgoformer
results ina unique path that is defined in its entirety. The latter, in conaxtuces
a sé of path strategies that enables the traveler to select the best next direction from
each intermediate location depending on the actual arrival time at that lo&teim
path strategies can be viewed as hyperpathboth problem classes, solutions are
obtained prior to the trip. While solutions of both classes are prosaigedri, in this
dissertation the former is referred to asagwiori solution while the latter is referred
to as a hyperpath solutioA. solution approach that uséss time-adapive feature
may bedesirable inproviding reattime routing instructionsSimilar problem classes
can be defined in MSTV network&n extension of the adaptive path problanth
relation to MSTV networkds considered in this dissertatiohe adaptive pa
strategy in MSTV networks is referred toasadaptive Paretoptimal path strategy
(i.e. Pareteoptimal hyperpaths)Three specialized labetorrecting algorithms are

presented for identifying all or a subsettioé adaptivePareteoptimal solutionswith



respect to the expected value of each criteinom each node to a desired destination
for each departure time in the period of interest. A brief description sé teeact
solution techniques is given nexthe detailed conceptual framework and sfpeci

computational steps for solving these problems are presented in Chapters 2 and 3.

Adaptive Par eto-Optimal Strategy (APS) Algorithm

TheAdaptive Paret@Dptimal StrategyAPS) algorithmgenerates all adaptive Pareto
optimal path strategies iIMSTV networks. The concepts of Paretgptimality and
time-adaptive strategy are combined to generate sthie of Pareteoptimal path
strategies that enable the traveler to select a direction among all -Batiatal
solutions at each node in response to knowledgjeeodrrival time at the intermediate
nodes.Solution pathghat seek to minimize the expected value of multiple criteria are
sought from all origins to a specified destination for all departure times in a period of
interest.

The APS algorithm is a speds@d labelcorrecting algorithm for use with
multiple criteria. The algorithm proceeds in an iterative manner, working backward
starting from the destination node. One or more hyperpaths may be generated from
each node at each departure time. That is, ipg@bles are constructed through each of
the Paretepptimal subhyperpaths at a successor node. Upon termination, all-Pareto
optimal hyperpaths with respect to the expected value of the considered criteria from

each origin to the destination node for eachadeje time are generated.



Adaptive L east Expected Disutility Strategy (ALEDS1 & 11) Algorithm

The generation of all Paretiptimal hyperpaths may require enormous computational
effort; thus,the ALEDSI and Il algorithrrs are proposed to providéhe single “best
compromise” solutios by explicitly representing the decision maker’s preference
structure through a disutility function. Rather than generate all Papétoal
hyperpaths and posteriori selecta single solution, the ALEDSIgorithmrelieson

the use of a preference function in the form of a linear utility function to produce only
a single hyperpath solution, i.e. the one that minimizes the expected disutility.

The ALEDS | algorithmworks by computingthe expected value for each
criterion pria to determinng the disutility for the associated hyperpath efficiently
generate the least expected disutility (LED) hyperpathsershancment to the
ALEDS 1 algorithm is presented, referred to as the ALEDS Il algorithm. Unlike the
ALEDS | algorithmthat requires computaticend storagef the expected value for
each criterion, this second variation assesses the expected disutility directly and keeps
only the minimum value for each node and departure futh algorithns terminate
with the LED hypermths fom all nodes to a specified destination for all departure
timesin the period of interesihile the ALEDS | algorithm is more intuitive, the
ALEDS II algorithm provides substantial improvements in computational complexity

and storage requirements.

Adjustable Preference Path Strategy (APPS) Algorithm
The Adjustable Preference Path Strategy (APPS) algorithm generates adaptive path

strategieghat seek to minimize the expected value of each of multiple criteria from



all origins to a specified desthon for all departure times in a period of interest.
Thes solution strategies allow a traveler to chahge or herpreference foithe
criterion upon which path decisions should be made at intermediate locations en route
to the destination and then atlaply select the best path with respect to the expected
value of the chosen criterion at each node in response to knowledge of experienced
travel times on the arcSuch adaptive strategies are referrethéceinas adjustable
preference path strategieBRPS) The APPS algorithm is proposed to determine
such adaptive strategiesmn MSTV networks. The APPS algorithm particularly
useful for providing reatime path finding assistanae traffic networks

The APPS algorithm determines the APPS by checltreach departure time
if using the hyperpaths associated with the node along the hyperpaths from its
predecessor nodes generates a lower expected value of one or more of the criteria
from these predecessor nodes to the destination than previously ecedsid

hyperpaths.

1.3PROBLEM CLASSII

The second problem class considered in this dissertation is concernedhevith
generation othe optimal set o& priori pathflows in networks where arc capacity
restrictions are considered. While network flow peob$ in this context have wide
applicability in many different arenas, this dissertation focuses on the development of
evacuation plans for emergency escape from a large builbliogt of the related
works proposed in the literature for determining exatit®ms focus on static and

deterministic problems. In light of the intelligent evacuation, rescue and recovery



(IERR) concep(Miller-Hooks and Krauthammer, 2002galtime assessment of the
extent of blast damage to a building’s structures makes itibp@st derive
probabilistic passageway traversal times and capacities overritieés dissertation,
the uncertain and time-varying nature ofarc capacitiesinherent m emergency
situations is explicitly considere&tochastic and timearying (STV) arccapacities
impede the effectiveness of implementing the solution obtained from conventional
deterministic approaches, because there might be some probability that the capacity
of an arc cannot accommodate all the flow attempting to traverse it. Thisataetiv
consideration of a performance measure that takes into account these probabilities
evaluating solution path flows.

A brief discussion of the capacitated network flow problems addressed in this
dissertation is given next. The detailed conceptuaiméaork and specific

computational steps for solving the problems are presented in Chapters 4 and 5.

The Safest Escape Problem

The Safest Escape (SEscape) problenoidetermire optimal path flows in dynamic

(i.e. flow moves through the network over tigred arc capacities are recaptuoser

time) networks where arc traveimes are timevarying and arc capacities are random
variables with probability distribution functions that vary with time. Traditionally, the
evacuation time, i.e. the time until tHast evacuee exits the disaster area
considered in developing evacuation plans. However, when capacities of passageway
can be at best known only probabilisticallymay be beneficialo route people to a

longer time path with high likelihood of susstul arrival at the safe area thiana



faster path witlsmall likelihood of successful arrival. For this reason, the probability
of successful escapeasgplicitly considered herein.

An exact algorithm, the SEscape algorithm, is proposed to detetimne
pattern of flow thamaximizes the minimum path probability of successful arrival of
supplyat the sink. n life-threatening situations is importantto avoid routing any
evacuee to paththat would have a high likeldod of failing by the time the acuee
arrivesat that locationThe SEscape algorithextendshe TimeDependent Quickest
Flow Problem (TDQFP) algorithm d¥liller Hooks and Stock Patterso@Q04) for
solving the TDQFP in deterministic, timgarying networks for use in stochastic
environnents. That is, ititeratively determingthe maximum probabilitypathsfrom
source to sink in a residual network and incrementally gaigbw along the paths
until all demand is fulfilled.The SEscape algorithm terminates wattset of paths
from the soute to the sink and the corresponding number of units thippexalong
each path such that the minimum probability of arrival at the sink is maximized.
Through the implementation of the technique givenMiller Hooks and Stock
Patterson (2004) for efiiently converting multisource, multsink network flow
problems to single source, single sink problems, the SEstgmaethmcan be used to
solve the SEscape problem given multiple sources and multiple gintkee context
of emergency evacuation, susblutions minimize the risk incurred by the people
who are forced to take the greatest risk.

The rationale and the design of the specific computational steps for addressing

the SEscape problem are provided in Chapter 4.



Minimum Cost Network Flow Problemsin MSTV, Capacitated Networks
While the SEscape problem assumes STV capacities, arc travel timesated as
deterministic quantities. Imany situations, however, future dravel timesmay not
be known a priori with certainty Difficulty arises wherassessing exact solutions of
network flow problems with STV arc travel times and capacities, i.e. in STV
capacitated networks. Hoth quantitiesare modeleds discrete random variables, a
particular combination of possible travel tim@sd other attribtes)and capacities at
each discrete point in time results in a realization of such a STV nefWaakis, the
network can take on a number of discrete statesthis number gronsxponentially
with the size of the networ&nd number of possible trawghes and capacities along
each arc for each departure tinTehe optimal solution for onstate may not be
feasible for anothestate and it is possible that no feasible solution exists for any
network realization. ¥act solution to problems of this naturethat rely on
enumeration of all states willrequire substantial computational effortA
methodological framework that can provide competitive approximate solutions with
reasonable computational effort is proposed. Specificallpetheuristicbased on
the principles of noisy genetic algoritBm(NGASs) is presented for determining
optimal path flows in dynamic networks, where arc traversal times and capacities are
random variables with probability mass functions that vary with time.

A genetic algorithm (@) is first presentedior solving the problem of
determining the optimal flow pattermhere the ardravel times are assumed to be
deterministic and timevarying Specifically, the solution approach seeks the

minimum cost flow for shipping a given amowftsupply. The performance of the
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GA is compared with that of the exact techniques, specificallyaaning version of

the TDQFP algorithm (MilleHooks and Stock Patterson, 2004), where the arc
capacities are deterministic and thverying, and the SEape algorithm (Chapter 4),
where the arc capacities are known only with uncertainty.

In the GA, the solution representation structure is specifically designed to
accommodate only feasible solutiofsch chromosomecontairs severajenes that
form a patten of flow. Each gene consists of two parfhe first part contains a
sequence of arcs forming a pathnfrthe source to the sinkh& second part indicates
the number of flow unitdo be sent through the path. Only feasible solutions are
generated in theinitial population andsolution feasibility is maintained at
intermediate stages of the algorithm through the application of specially designed
operators, including crossover and mutation operators. In each generation, binary
tournament selection is empkxlto select solutions to enter the next generafitre
GA is extended to address the problenmiore difficult, STV and MSTV capacitated
networks, where no exact algorithensst.

To addresghe problem of finding optimal path flows in STV and MSTV
cgpacitated networks, noisy genetic algorithms (NGAs) are implemented. A sampling
fitness function is used to evaluate solutions in each iteration. Unlike in the
application of the GA to deterministic problems, infeasible solutions are permitted,
but a pendl is incurred for violating the problem constraints. In many applications
that can be modeled as network flow problems, multiple conflicting objectives are
involved. For example, a set of paths that maximize the expected flow and

simultaneously minimizeotal time may be desireoh building evacuation. Such



11

objectives may be conflicting in naturEherefore, gtension of the NGA for use in
addressing multicriteria dynamic network flow problems with stochastic,- time
varying arc attributes, including arc eagties, is presented.

Details of the GAs and NGAs proposed here for addressing single objective

and multiobjective problems related to evacuation are given in Chapter 5.

1.4 CONTRIBUTIONS

The main contributionef this dissertation are as follows.

Problem class|

I.1) The development of an exact technique for generating all adaptive-Bpatietal
solutions of a multicriteria optimal path problem in stochastic,-trarging networks.
1.2) The design of the specific procedural steps for directly datergiia single
“best” hyperpathn MSTV networksby explicitly representing the decision maker’s
preference structure through a disutility function.

1.3) The rationale and the design of the specific computational stepgetBrmining
adjustable preferengeath strategies (APP#)at permita traveler to adapt hisr her
path according to both revealadavel conditionsand the traveler's changing
preferences at intermediate locationkile traveling to the destinatiom MSTV
networks

Problem class|1

II.L1) The development of the conceptual framework and exact algorithm for

determining emergency evacuation strategies in dynamic, capacitated networks,
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where the risk incurred by the person or people who are forced to take the greatest
risk is minimized.

[I.2) The development of a meleeuristic for addressing the problem of determining
optimal path flows in dynamic networks, where multiple arc attributes and capacities

are stochastic and timarying.
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CHAPTER 2

ADAPTIVE PARETO-OPTIMAL PATH STRATEGIES

2.1 INTRODUCTION

This chapter addresses the problem of determining adaptive path strategies in
stochastic, timavarying (STV) networks with multiple arc attributes, i.e. in
multicriteria STV, or MSTV, networks. In MSTV networks, multiple araibtites

are associated with each arc, each of which is a random variable whose probability
distribution function (PDF) varies with time. With multiple criteria, it is unlikely that
there exists a single path between a given odgistination pair that ibest with
respect to all criteria. Instead, the solution of a multicriteria “optimal” path problem

will be a set of Paretoptimal (or nordominated) paths.

Let P, = {Pl,Paz,...,P;}, where r is the number of criteria under

consideration an(P;( , ke {1,2,...r}, is the value with respect to criteridfor path

ain a deterministic, timénvariant network. Then,

P, is nordominated if nd (=a) exists between the same origiastination pair

such thathk < P{f forallk € {1,2,...r} and th < Pah for someh € {1,2,...r}

(condition 1).
In this chapte exact algorithms are proposed for addressing adaptive path
problems, where arc attributes are stochastic and-wangng. Adaptive paths
comprise a set of path strategies that enable the traveler to select a direction among all

Pareteoptimal solutionsat each node in response to knowledge of the arrival time at
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the intermediate nodes. Such paths can be viewed as hyperpaths and are referred to in
this way herein. The first algorithm generates all adaptive Repimal path
strategies (referred to aaeteoptimal hyperpaths) in MSTV networks. Specifically,
solution paths that seek to minimize the expected value of multiple criteria are sought
from all origins to a specified destination for all departure times in a period of
interest.

Regardless of thetechnique employed or the application considered,
generation of all Paretoptimal paths may require generation of all possible paths,
because all paths may be Parepdimal. Any technique that generates all Pareto
optimal solutions has exponential wecstse computational complexity. Therefore,
two computationally efficient variations of an additional algorithm are proposed that
rely on the use of a preference function in the form of a linear utility function to
produce only a single hyperpath, i.e. thee that minimizes the expected disutility.
These techniques address +akld complexities of path selection through explicitly
considering the inherent variability in travel conditions, as well as the multiobjective
nature of many path selection decrso Moreover, they take advantage of the
traveler’s ability to make updated decisions as information about uncertain quantities
is revealed.

Section 2.2 provides a brief discussion of the works that have been proposed

in the literature for addressing ariy of related optimal path problems.



15

22 LITERATURE REVIEW
2.2.1 Single Criterion Shortest Path Problems
A great number of researchers have been studying a variety of optimal path problems.
These efforts to solve this problem have ranged in focus fgolutions in the
simplest static networks to very complicated stochastic, and/or multicriteria networks.
Most of these efforts concentrate on the determination of the shortest path in
deterministic networks with travel time as a single criterion. Few tato account
the stochastic nature of the network elements, where issues of random variables and
associated probability functions are addressed.

The simplest one is the classical shortest path problem in static networks with
a single arc attribute. Theelare two general approaches used to solve the shortest path
problem: labeketting and labetorrecting algorithms (see Ahuja, Magnanti and
Orlin (1993) for more detail). Both algorithms initially establish a temporary distance
label to each node from avgn origin that maintains an upper bound on the shortest
path distance from the origin to that node. The labels are updated iteratively. In the
labelsetting algorithm, a label is selected and made permanent (i.e. represents the
final shortest distancedm the origin to the considered node) at each iteration. By
contrast, in the labadorrecting algorithm, all labels are assumed to be temporary and
will become permanent only when the algorithm terminates. Note that neither
algorithm can solve for the shest path in networks containing negative cycles since
they could result in the incorrect shortest path.

Many approaches have been proposed in the literature for finding the shortest

path in networks with tim@arying but deterministic arc travel times (@&e and
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Halsey, 1966; Dreyfus, 1969; Orda and Rom, 1990; Ziliaskopoulos and Mahmassani,
1993; Kaufman and Smith, 1993; and Chabini, 1998). Of interest is the work of
Ziliaskopoulos and Mahmassani (1993). They introduced the-Diepeendent Least
Time Problen (TDLTP) algorithm for finding the shortest paths in discrete {ime
varying networks for all discrete departure times. The TDLTP algorithm is a label
correcting based algorithm where no waiting is permitted at any node. The arc travel
times are nomegatie real values. After the period of interest, the arc travel times are
fixed and are equal to those of the last time interval. Because of prohibited waiting,
the TDLTP algorithm does not deal with optimal departure times at the nodes and
cannot determine éhshorter path which may occur if delay in departure through
waiting at intermediate nodes is allowed and the network is=ie0.

Hall (1986), MillerHooks and Mahmassani (2000), and Pretolani (2000)
studied variations of this problem in stochastic,etvarying (STV) networks. Each
of these works addressed two problem classes. The first seaksian solution and
the second seeks tiraglaptive path strategies. A solution in the former problem class
is a unique path, which is chosen entirely beftaetiag the trip and is fixed for each
departure time. Like general shortest path algorithmsa preori solution provides a
single best path for a whole trip at a particular departure time from the origin. Fu and
Rilett (1998) proposed a heuristic foreta priori path problem. Alternatively, if the
traveler is permitted to adjust the path at each node in accordance with known arrival
times and trip information experienced at previously visited nodes, a more preferable
path (e.g. shorter expected tratiele) can be found, referred to as the tiagaptive

path strategies. By this tiradaptive travel decision, there no longer exists a single
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best path. The single best path cannot be revealed until the trip is completed since the
arrival time at each nodeannot be known before travel. Such tiadaptive path
strategies are referred to as hyperpaths (Mileoks, 2000), where each path
segment depends on arrival time information gained as travel is completed. Other
works that address adaptive path problems stochastic networks include
Polychronopoulos and Tsitsiklis (1996), Waller and Ziliaskopoulos (2003), Cheung
(1998), Fu (2001), and Provan (2003). The first two of these works account for arc

cost dependencies.

2.2.2 Multicriteria Optimal Path Problems

Numerous works propose solution procedures for multicriteria path problems, where
all arc attributes are assumed to be deterministically known andirtuaeant.
Climaco and Marting1982) proposed an algorithm based orKashortest paths
concept for slving bicriterion shortest path problems. Mart{®984) developed two
algorithms for generating all Paredptimal paths. One algorithm is a generalization
of Hansen’s labeetting approach to this problem (Hansen, 1980). Corley and Moon
(1985)developd a label correctingpased algorithm for generating all Parefmimal
paths. Zografos and Dav$989)employed goal programming for routing hazardous
materials in multiobjective static networks. In the context of traffic assignment, Dial
(1979) proposeda technique for generating combined rentede choices that are
Pareteoptimal. Other related works includ&arburton (1987), Stewart and White

(1989), Mote et al. (1991), Murthy and Her (1992), and Murthy and Olson (1994)
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Because any technique that gexttes all Paretoptimal solutions has
exponential worstase computational complexity, some researchers have applied
utility functions to address multidimensional optimal path problems in static
networks. Modesti and Sciomach€®98) used Dijkstra’s algithm to determine
paths that minimize linear utility functions in multimodal deterministic networks in
solving a multiobjective traffic assignment problem. L¢1®83) and Eiger et al.
(1985) showed that when the utility function is linear or exponengial; labeling
based algorithm can be used to find the optimal path in static networks without
violating Bellman’s principle. Carraway et glL990) proposed a generalization of
dynamic programming based upon the weak principle of optimality for use with no
monotonic utility functions. Their generalized dynamic programming approach
addresses the multicriteria shortest path problem in acyclic, static networks when
Bellman’s principle may be violated. Hen(@j985) proposed approaches to find the
bicriterion $ortest path when the utility function is quasiconcave or quasiconvex.
Mirchandani and Wiecek1993) reduced the stochastic shortest path problem to a
multiattribute optimal path problem with a nonlinear monotonic utility function. For
the case of a convextility function, a linesearch approach was proposed to solve
cases with two arc attributes. Mirchandani and Sor¢i885)developed an efficient
algorithm to solve the problem of finding an optimal path in stochastic networks with
a quadratic utility @inction. To solve the same problem, Murthy and Sarkar (1996)
proposed a labealetting based approach that embeds a relaxbisad pruning

technique.
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Several works investigate multicriteria path problems in stochastic; time
invariant networks. Turnquigi987)suggested the use of simulation together with a
labelingbased path algorithm to address this problem. Specifically, for each
replication a realization of each arc attribute is randomly generated and the set of
Pareteoptimal paths between an omgiestination pair is determined. This is
repeated over multiple replications and the frequency with which the paths arise as
Pareteoptimal is used to estimate the probability that each path will be Pareto
optimal. Given normally distributed arc attribsité/Vijeratne et al(1993) developed
the Stochastic Multiobjective Shortest Path algorithm for finding a set of paths in
stochastic, timenvariant networks. They presented an approximation to stochastic
dominance to compare path distribution functions dosingle stochastic criterion.
The problem is extended to multiple criteria, but the criteria are reduced to two
deterministic factors; and hence, the final problem is reduced to a deterministic,
multiobjective problem.

All of the previously discussedosks assume that the arc attributes are-time
invariant. However, there are many applications for which multiple attributes, such as
travel time, travel cost, population exposure, and incident rate, may beameg.
Nozick et al.(1997) developed an iegrated routing and scheduling approach for
solving a multicriteria problem related to hazardous materials shipments with time
varying, but deterministic, attributes. The resulting solutions are a set of route
departure time combinations. This approachnoamguarantee that all Paredptimal
paths will be generated. In STV networks, MHleooks and Mahmassani (1998b)

provided label correctinased methodologies to generateagitiori Pareteoptimal
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paths in STV networks with respect to several domieatefinitions. Chang et al.
(forthcoming) presented a heuristic for solvingagpriori multicriteria path problem

in STV networks, where all arc attributes are assumed to be continuous random
variables. Nielsen et al. (2003) studied the problem of findimgtest hyperpaths in
STV networks with two criteria. Three classes of problem were considered: 1)
minimize the expected travel time and cost; 2) minimize the maximum travel time
and cost; and 3) minimize the expected travel time and maximum cost. Gipaase
method originally designed for solving the bicriterion shortest path problem was
modified for solving the bicriterion hyperpath counterpart. The proposed approach
requires the construction of a tim&panded hypergraph. One can notice that the
capaility of the twophase method is bounded on shortest path problems with two
criteria. It appears that there are no published works that consider the generation of all
adaptive Paretoptimal strategies in multicriteria, stochastic and twagying
(MSTV) networks.

In the next section, the solution nature of the Pawptomal hyperpaths in
MSTV networks is illustrated through an example problem and properties are
developed. In Section 2.4, network notation and problem definitions are given. In
Section 2.5 exact algorithms are proposed to address path problems in MSTV
networks. This is followed by notes on algorithm implementation in Section 2.6.
Results of computational experiments designed to examine the average computational
performance of the proposeglgorithms are presented in Section 2.7. Finally,

discussion and conclusions are given in Section 2.8.
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2.3 PARETO-OPTIMAL HYPERPATHSIN STV NETWORKS

In this section, an example is given to illustrate the nature of hyperpath solutions in
MSTV networks. Tle example is also used to show that, similar to path problems in
STV networks with a single attribute associated with each arc, when multiple STV
attributes exist, one can also make improved decisions by adaptively choosing the
path. In Figure 2.1, a MSTwWetwork with two arc attributes, i.e. travel time (criterion

I) and cost (criterion II), is shown. It is assumed that both time and cost are time
varying and are known only probabilistically. Waiting is not permitted at any node
and the arc attributes amssumed to be independent over space and time and

independent of each other.

t<1 t>1

t=0 (7.38, 6)* (4, 7.4)
time cost
1(0.7) 1(0.8)
2(0.3) 6(0.2)

C (5.4,6.7) (7.5,7.8)

t<1 t>1
(5.2,6.6) (8.8,10.2)

Figure2.1. MSTV example network.

In Figure 2.1, the arc attributes are expressed either as expected values (for
subpaths B, C and D) or as probabilityass functions where the probability of each
possible outcome is given parenthetically (for arc A). For example, there are two
possible travel times on arc A when departing from node 1 at t = 0: 1 with probability

0.7 and 2 with probability 0.3. There aakso two possible costs: 1 with probability
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0.8 and 6 with probability 0.2. For the sake of simplicity, the expected values are
directly given for each attribute of subpaths B, C, and D, e.g. the expected travel time
and cost for path B at time<t1 are 738 and 6, respectively. It can be seen that three
paths, paths A, A-C and AD, exist between node 1 (origin) and node 3
(destination). Suppose the traveler departs from node 1 at t = 0. The expected path
attributes for these three paths can be foundodsws (see MillerHooks and
Mahmassani (2000) for additional detail on these computations foralqwilri and
adaptive path problems with a single arc attribute).
P,) Path AB
Expected travel time: (1+7.38)-0.7 + (2+4)-0.367.
Expected travel cos(1+6)-0.7-0.8 + (6+6)-0.7-0.2 +
(1+7.4)-0.3-0.8 + (6+7.4)-0.3-8.22

Employing similar computations to determine the expected values for pathandl
A-D, we find the expected travel time and cost of each pable t(/.33, 9.03) and
(7.58, 9.68), respectively. As discussed in more detail in Section 2.4, by extending
condition (1) for use in STV networks, dominance at a particular departure time can
be established by means of pairwise comparisons of expected (falueher thea
priori or adaptive problem). Thus, for departure time t = O, &mMariori Parete
optimal paths exist for this example problem: pathB And AC. That is, path D
is dominated by path 4.

In the adaptive version of this multicriteriatipgoroblem, the traveler can
postpone his/her choice between subpaths B, C and D until arrival at node 2. The

expected time for one such adaptive solution is computed as follows.
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H,) Path AB if arrival at node 2 is t = 1 or path @4f arrival at node 2st =2
Expected travel time: (1+7.38)-0.7 + (2+7.5)-0.3 = 8.72.
Expected travel cost: (1+6)-0.7-0.8 + (6+6)-0.7-0.2 +
(1+7.8)-0.3-0.8 + (6+7.8)-0.3-0.2 = 8.54.

Similar computations were employed to determine the eagedcavel times
and costs for each possible hyperpath for this problem. The expected travel times and
costs for all hyperpaths are provided in Table 2.1. Onpland H are nordominated.
These hyperpath strategies are portrayed in Figure 2.2. Both-Bptiebal solutions
instruct the traveler to follow arc A at t = 0. Since waiting is not permitted, both
solutions indicate that the next move from node 2 is subpath B for arrival time 2. For
arrival time 1, one can choose either subpath D bgrtsubpatB by H;. Note that,
for this example, Paretoptimal path AC to thea priori problem is dominated bysH
We establish a number of relationships betweeenori and adaptive Paretptimal

paths for MSTV networks in Propositions 2.1 through 2.5.

Table 2.1. Expected travel times and costs.

Hyperpath| Resulting strategy by (Expected time, Expected cost)
index | arrival time at node 2
t=1 t=2
H, B C (8.72, 8.54)
H, C B (6.28, 8.91)
Hs B D (9.11, 9.26)
Hy D B (6.14, 8.84)
Hs C D (7.72,9.75)
Hs D C (7.19, 8.96)
H; B B (7.67,8.42)
Hs C C (7.33, 9.03)
Ho D D (7.58, 9.68)

Note: Hyperpathsi;, Hg andHg are identical t@ priori solutions AB, A-C and AD,

respectively.
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t=0
© .
(6.14,8.84) t=2 B
=0 t=1or2
OO
(7.67,8.42)

Figure 2.2. Pareto-optimal hyper paths.

Proposition 2.1. Any Pareteoptimal solution to the adaptive path problem cannot be
dominated by ang priori solution.
Proof. Assume ara priori pathP exists that dominates a Paraiptimal hyperpath
Hi. If such arma priori path is not dominated by any other Ras@ptimal hyperpath,
this a priori path must serve as a Parefatimal hyperpath, and thus, will trivially
fulfill this statement. If, on the other hand,priori solution P is dominated by
another Paretoptimal hyperpathH,, hyperpath H would be domated by H,
contradicting our assumption thaf 14 Pareteoptimal. ¢

In the single criterion adaptive LET pgbhoblem for a given departure time
from a given origin, the expected time of the solution hyperpath provides a lower
bound on the expected tnof thea priori LET path (proof of this is given in Miller
Hooks and Mahmassani, 2000). In Proposition 2.2, we show that this concept is not

necessarily true when multiple criteria are considered.
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Proposition 2.2. A Pareteoptimal solution to the adapg@vpath problem may not
contain even one criterion for which its expected value is less than or equal to that of
all a priori solutions.
Proof. Assume a Paretoptimal hyperpath must contain at least one criterion for
which its expected value is less thanequal to that of ald priori solutions. To
establish a counter example, the example network shown in Figure 2.1 is employed
with one adjustment in arc travel time, i.e. the expected travel time on subpath C for t
> 1 is changed from 7.5 to 3.95. Withig adjustment, the threepriori solutions
have expected values for each of the two criteria as given parenthetgall}/67,
8.42),P, (6.27, 9.03) andP; (7.58, 9.68). For the same example, four Papetomal
hyperpaths can be identified; K7.65,8.54), H, (6.14, 8.84), K (6.13, 8.96) and H
(7.67, 8.42). Hyperpath ;His Pareteoptimal and does not contain a criterion for
which its expected value is less than or equal to that o& gfiori solutions,
contradicting the assumption, and thus, ld&hing a counter example.

The counter example established in the proof of Proposition 2.2 leads to
another concept for establishing a bound on the expected values for each criterion for

theapriori problem.

Proposition 2.3. The lowest expected valu# all Pareteoptimal solutions to the
adaptive path problem for each criterion is less than or equal to that afpiori
solution.

Proof. For each criterion, if aa priori solution exists such that its expected value on

this criterion is the lowesof all Pareteoptimal hyperpats, thisa priori solution
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would be Paretoptimal to the adaptive problem (i.e. would serve as a Paptimal
hyperpath), thus, providing the lowest value for that criterdson.
Another relationship that can be extendemirfrthe single criterion problem

(Miller-Hooks and Mahmassani, 2003) is given in Proposition 2.4.

Proposition 2.4. A Pareteoptimal pathto thea priori problemmay not contribute to

any Paretaptimal solution to the adaptive path problem.

Discussion. The example network shown in Figure 2.1 provides a counter example.
Although a priori solution AC is nondominated for thea priori problem, when
adaptive decisions can be made, it is never best to continue from node 2 along

subpath C since all adaptive sidms containing subpath C are dominated.

Proposition 2.5. A dominated patho the a priori problem may contribute to a
Pareteoptimal solution to the adaptive path problem.
Discussion. Again, the example network in Figure 2.1 provides a counter example.
Path AD is dominated for the priori problem. However, when adaptive solutions
are permitted, path ® will be a Paretaptimal strategy for a given departure time
from node 2, thus, contributing to a Parefmiimal solution to the adaptive path
problem

The next section provides the network notation along with problem definitions

for the two problem classes addressed in this chapter.
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24NETWORK NOTATION AND PROBLEM DEFINITIONS

Similar notation for describing the network as used by MHeoks aad Mahmassani
(2000) is employed hereibet G = (v, 4, S, ¢, 2, R) be a finite digraph, wher#is the

set of nodes and is the set of directed arcs connecting the nodég) denotes the

set of predecessor nodes of nodee. allj | (j,i) € 4. Likewise, '*(i) denotes the set

of successor nodes of noge.e. allj | (i,j)) € 4. The period of interest, referred to as

the peak period, is discretized into small time intervals representee Big+sAt} s

(012,13, Wwheredt is the length of eacimterval of time. The peak period starts at time

to and ends at timg+14t. Arc attributes are assumed to vary with time during this
period. After this period, it is assumed that the arc attributes are stationary, taking the
same values as at the lasteimterval,to+14t. Multiple attributes are associated with
each arc. The arc attributes are assumed to be discrete random variables with

probability mass functiondPMFs) given by the setg () (the set of arc attributes,

{ct,c?,...,c"}, and corresponding probabilities of occurrence{2?,...,2"}),

where seR={1,2, ...r} denotes the considered criteria.
For each arcif) € 4, k e R, ¢c*= {Ci'j(Zk ()} z.= 1...0 denotes the set &
possible arc values for criteridnfor traversing the arc at departure timé&or each

z, possible arc valuepi‘j<Zk (t) is assumed to be neregative, reavalued with

associated probability of occurrencezi'j<Zk (t)eka. In context of path finding

assistance, travel time will often be a criterion that is considémeslich instances,
we assume that travel time is the first @friteria, and thus, throughout this chapker,

= 1 refers to the travel time criterion.r@ attribute values and corresponding
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occurrence probabilities are specified upon entrance to an arc and are assuened to b
static for that particular traveler until exiting the arc. This is sometimes referred to as

the frozen link property (Orda and Rom, 1990). For each departure time occurring

after the peak period,> to+14t, ¢/* (t) = ™ (to+14t) and p{™ (t) = p|™ (to+11)

vV Kk z, and (). The arc attributes are assumed to be independent over space and

time and independent of each other. Table 2.2 summarizes this notation.

Table 2.2. Notation.

Notation

set of nodes

set of directed arcs

set of criteria

number of possible arc values for any criterion

vV

a:

S: | set of discrete time intervals
R

D

r

number of criteria

c¥: | set of discrete random variables for criverk

P¥ : | set of occurrence probabilities associated with

ci'j<Zk (t): | z, —th arc value of criteriork € {1,2,...r} for traversing arc i(j) at
departure time

pi'j‘zk (t): | probability of occurrence assotgd with ci‘jq" ()

For single criterion shortest path problems with twaeying travel times, a
FIFO (Firstin, FirstOut) network requires that any vehicle departing from a

particular node earlier than another vehicle must arrive ategkenode before this
other vehicle if they traverse the same path.dﬂ‘%(t) be the arc weight on argjj at

departure time with respect to criteriork. As described in Kaufman and Smith

(1993) for deterministic, timgarying networksthis FIFO condition (referred to as
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the consistency assumption) can be stated as follows (rechllrefers to the travel

time criterion).
For any arci(j)e, s+ci (s)< t+ ¢ () Vs, tes and s<t.

In the literature,FIFO conditions are defined with respect to travel time.
However, in this work, we consider such conditions with respect to other criteria.
Specifically, we establish similar conditions for Amavel time criteria for cases
where a cost in terms of thatiterion is or is not incurred as a consequence of
waiting. The key to establishing these conditions, and the reason this is pertinent is
that one can never do better to wait at any intermediate location in FIFO networks.
With this in mind, the general fim of the FIFO condition for any nemavel time

criterionk can be stated as follows.

For any arci(j) e 4, ci'j( (s) < a)k(t -9 + ci‘j‘ (t) Vs, tes, s<tandk(#1l)eR,

where a)k(t —s)> 0 is a cost wh respect to criteriok associated with waiting from

timet to times.
Miller-Hooks and Mahmassani (1998a) extended the consistency assumption
of Kaufman and Smith to depict the FIFO condition with respect to travel time in

STV networks.

For any arci(j)e, Pr{s+ ci(s) < t+ cj(t)}=1 Vs tesand s<t,

where cilj () is any possible travel time in a STV network.

We extend this FIFO condition to other criteria. For critekather than travel time,

the FIFO condition in STV networlcan be restated as follows.
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For any arci()e A, Pr{ci'j( (s) < a)k(t—s) + ci‘j‘ (t)}=1 Vs, tes, s<t and
k(#1)eR,
where ci'j( () is any possible value for criteriéin a MSTV network.

For manyapplications, the FIFO condition may be violated with respect to
one or more criteria. For example, one vehicle may overtake another vehicle or the
cost of a train ticket may be significantly reduced at specific times of day. Such
networks where FIFO cortibns may be, but are not necessarily, violated are referred
to as noAFIFO networks. In this work, we address this more generalFhe0
problem. While waiting in nofflIFO networks may lead to more favorable
conditions, we assume no waiting is permitteédaay intermediate location. The
problem with no waiting is considered to be more difficult to solve than one that
permits waiting (e.g. Chabini, 1998). Further, there are many applications, such as
providing routing instructions to drivers in a traffic twerk, where waiting at
intermediate locations is not an option.

Two problems are addressed in this chapter. The first problem seeks all
Pareteoptimal hyperpath strategies with respect to the expected value of each

criterion from each node to the destiion for each departure times S. Let H(t) be

the set of all possible hyperpaths connecting an edgstination pair for departure

timet and Iet§ak (t) be the random variable for tk8 criterion along a hyperpathe
H(Y). El6. O] = {E[6; ()], E[02(O)].... B[O (D] .-...E[a (D]}, where E[6X (1)]
denotes the expected value of random varia?!éﬁ(t). For given node € 7 and

departure timet € S, hyperpatha is Pareteoptimal if no other pathb € H(t) exists



31

such that

E[65(t)] < E[6X()] V k € {1,2,...r} and 3 h e {1,2,...r} such that

E[6y' ()] < EL6' (1)].

The second probhe seeks a single best hyperpath with respect to a linear
disutility function from each node to a specified destination for each departure time
€ S. Hyperpathf € H(t) is the least expected disutility (LED) hyperpath for departure
timet if

BU (O] = gTL”(t) E[U, 1],

r _—
whereE[U 4 (t)] =Zwk . E[6’gk (H)]and wX is the weight assigned to criterikn
k=1

2.5 SOLUTION APPROACHES

In this section, exact algorithms are presentmdgenerating all adaptive Pareto
optimal paths in MSTV networks. In Subsection.?,5he Adaptive ParetOptimal
Strategy (APS) algorithm is proposed to generate all Ramtmal hyperpaths for
every departure time from every node to a select destmdti Subsections 2.5.2 and
2.5.3, the Adaptive Least Expected Disutility Strategy | & Il (ALEDS | & 1I)
algorithms are developed. These algorithms find a single “best compromise”
hyperpath that minimizes the expected disutility given a linear utilitgtiom The
proposed algorithms can be viewed as extensions of the Expected Lower Bound
(ELB) algorithm for finding adaptive LET paths in single criterion STV networks
(Miller-Hooks and Mahmassani, 2000). The ELB algorithm and these extensions are

specializd labelcorrecting algorithms. Description of each algorithm, the specific
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procedural steps and associated proofs are provided.

2.5.1 The Adaptive Pareto-Optimal Strategy (APS) Algorithm

The APS algorithm extends the Expected Lower Bound (ELB) algomthMiller-

Hooks and Mahmassaii2000) for finding adaptive LET paths in single criterion
STV networks for use with multiple criteria. In the ELB algorithm, prior to
termination, a label is associated with each node and each departure time, each of
which reresents an upper bound on the expected travel time from that node to the
destination for that departure time. Upon termination, each label provides the LET to
the desired destination. Unlike solutions to the single criterion adaptive path problem,
where asingle hyperpath exists at each node and departure time, in the multicriteria
adaptive path problem, multiple Par@ptimal hyperpaths may exist at each node
and departure time. Moreover, for each node and departure time, rather than
computing a singlexpected value, expected values must be maintained (i.e. one for
each criterion). Similar to the single criterion problem, where a particular hyperpath
may only be optimal at a particular departure time, in the multiobjective problem, a
hyperpath that i®areteoptimal at one departure time may be dominated at another
departure time. The computation of these hyperpaths requires path information only
at departure times at which these hyperpaths areloonated. Thus, one need only
maintain the hyperpattet the departure times at which they are-dominated.

For each nodeé € 7, each departure timee $ and each currently Pareto

optimal hyperpathx to the destination, a vector labél, (t) = {/likx(t)}kere is

maintained,where each element of vector label componéﬁg(t) is the expected
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value with respect to criteriok along potentially Paretoptimal hyperpathx from
nodei at departure timé to the destination nodd. Until the algorithm terminates,
multiple vector labels are maintained at each node and departure time. In an

intermediate iteration of the APS algorithnX; (t) contains labels of currently
Pareteoptimal hyperpaths for nodec 4’ at departure time e S. | X; (t)| is equal to
the number of currently Paretptimal vector labels maintained for nadat timet. It

is assumed that' t € 5, i € 7, k e R, 0 <e< At, A (t+&) = AK(t). For each

departure timeccurring after the peak peridd; to+14t, /likx @t = /likx (to+14t). Figure
2.3 llustrates the structure of the vector labels at each departure time and
demonstrates that for each departure time, more than one véetoekch associated
with different hyperpaths, may be maintained. Assume the period of interest is
discretized into four intervalgit = 1, and there are two Paredptimal hyperpaths at
departure times 0, 1 and 3 and one at time 2. Tha¢;i€) = X; (@ = X;(3) = {1,
2} and X; (2) = {1}.

A temporary vector labely; (t) = {nik (t) }ker, I1s employed. To evaluate

whether or not a newly constructed hypénpes dominated, the temporary vector
label is compared with the labels of the currently Paoptomal hyperpaths at node

and timet. If the temporary hyperpath is dominated by one or more of the currently
Pareteoptimal hyperpaths, it is discarded. eise, if it dominates one or more of
the currently Paretoptimal hyperpaths, the temporary label is maintained and the

labels associated with the dominated hyperpaths are discarded.
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Time Position 1 Position 2
0 | 41(0) = {41(0),45(0),..., 241 (0)} | 4i2(0) ={ A(0),25(0),..., > (0)}

1| @ ={4H0, 40, .. A0} | 4@ ={10,25%®0,... 40}
2 | 4@ ={11(2),24(2),....41(2)} -

3 | 2@ ={H® .40 413} | 420 ={4:3),2%03),.... 03}

Figure 2.3. lllustration of Vector Labelsat Nodei.

Similar to the ELB algorithjmthe APS algorithm proceeds in an iterative
manner by scanning a node from a scan eligible (SE) list, working backward starting
from the destination node. The ELB algorithm builds a hyperpath from each node at
each departure time through the currently LEUibhyperpaths associated with
possible arrival times at a successor node. Only one hyperpath, i.e. the one with the
LET, will be maintained. The APS algorithm, on the other hand, may build more than
one hyperpath from each node at each departure timd. ihayperpaths are
constructed through each of the currently Paogtiimal subhyperpaths at a successor
node. These hyperpaths are examined to determine whether or not they are dominated
and only the nomdominated hyperpaths will be maintained.

To corstruct a vector label associated with a single hyperpath fromiraide

departure time through successor nofleemploying arci(j), the vector label of one

subhyperpathi,, (t + cﬁzl (1), xe X, (t+ cﬁzl (t)) for each value ofy € {1,2,...,D},

i.e. for a given travel time on arij], ciljZl (t), must be selected. Each combination of

z; and ﬂjx(t + cﬁzl (t)) isreferred to by the pair4, X). The hyperpath is constructed



35

from D such pairs (one for each possible travel time onigj: Because there may

be more than one combination d ( x) pairs when }(j (t+ ciljZl (t)) | > 1 for at least

one possible arrival time at nogleit may be possible to construct more than one

D
hyperpath from node In fact, there are exactlll_[ | X j (t+c

z=1

121

i1 (1)) | hyperpaths

that can be constructed. An example is given to illustrate the hyperpath construction

in Figure 2.4.

Figure 2.4. Examplefor the APS algorithm.

Figure 2.4 depicts a set of possible hyperpaths linking the origin, node 1, to
the destination, nodd in a MSTV network. There are two possible travel times on
arc (1,2) at departure time t = 0: 1 with probability 0.4 and tB wiobability 0.6,

leading to two corresponding arrival times at node 2: t = 1 and t = 3. Suppose at node
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2, there exist hyperpath A for time t = 1 with associated vector l8j€l) and two
Pareteoptimal hyperpaths B and C for time B-with associated vector labels, (3)

and 4,,(3), respectively. That isX, (1) = {1} and X,(3) = {1,2}. Then, at node 1,
two different combinations ofz , x) pairs exist, resulting in the generation of two

hyperpaths at node 1 for departure time t = 0:

Hi: (1, 1), (2, 1)

Ha: (1, 1), (2, 2)
For H in this example, two combinations contribute to the computation of the
expected travel time: (1) the first possible &latime on arc (1,2) and the first vector
label at node 2 at the arrival time corresponding to this first travel time; and (2) the
second possible travel time on arc (1,2) and the second vector label at node 2 at the
arrival time corresponding to this secbtravel time. These hyperpaths are depicted

in Figure 2.4b and 2.4c. L& be the set of thesez(, X) pairs comprising a single

hyperpath H, i.e. for J Q ={(1, 1), (2, 2)}. The expected travel time (i.e. criterion 1)
for H,can ke computed as follows.

0 = Y[ 20 + Ay (0+c2(0)] o120
(z:0<Q

= B12(0) + %510 +¢13(0)]- pi2(0) + [€F(0)+ 2320 +ci2(0)) - piZ (0).
Note that two subhyperpaths, the first at arrival time t = 1 and the second at the arrival
time t = 2were employed in this computation.
To enable efficient reconstruction of the resulting hyperpaths after termination

of the algorithm, two path pointers are employed for each natleach time along
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hyperpathx. These pointers specify the successatenand specific subhyperpath at

the successor node for each possible departure time. Specifically, for each vector
label x € X;(t), = (t) specifies the successor node to be taken from naate
departure time along thehyperpathx. Unlike in the ELB algorithm where only one
pointer is required for this purpose, in solving this multicriteria problem, agsgt)

={(z, X} z =p2..0p } must be maintained to idéify the appropriate subhyperpath

at the successor nods, (t) for each value ofz, i.e. for a particular arrival time at

the successor nodBefore a temporary vector label is checked for dominamnget)

and g, (t) are used to temporarily maintain the path information of that vector label.

For the example in Figure 2.4,,(0)= 2 andq,,(0) = {(1, 1), (2, 2)} The notation

used in this section is sumarized in Table 2.3.

Table 2.3. Notation employed in the APS algorithm.

Notation

AY%

X; (t): | set of Paretmptimal labels maintained at nodand departurg
timet

Ao (1) ={ ,1ikx (t) Yier: x" vector label miatained in X; (t)

K OF expected value with respect to criteribrof a Pareteoptimal
> hyperpath from nodeé at departure timé to the destination
nodeN

7 (t) : | successor node associated with(t) to be taken from node

at departure time

0, (t) : | specific combination of subhyperpaths at norfjg(t) that is
used to construct the hyperpath associated wit{t)

Q: | set of possible combinations of( xX) pairs, wherez, =
1,2,..D
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The steps of the APS algorithm are provided next.
Algorithm APS
Step 1 (Initialization):

Initialize the elements of the vector labetgl gath pointers.

() =0, Vie VWNkeR tes.
7 (t) =0, VieVteds.

gq.(t) =9, Vievtes

Xit) ={1},Vievtes

Aa) =0,VkeRtes.

Create the SE list and insert the destination mMbaeo the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and defeideafrom the SE
list. Call this node the current nogde

Step 3 (Update the Node Labels):

For each e I'Y(j),
For each € §,
Identify {cﬁZl ()} z=n2..0p and all possibleQ combinations of {g,

X)} 7 =(1.2...0}-
For each combinati@, compute temporary label valug(t) as follows:

for travel time k= 1):
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0= T o0+ A t+e2 @)1 20
(Zl,x)eQ

for other criteria K£1):

D
O= Y Yl + A t+e2M) ] pitM) - pi* ).
(z0eQ =1

Setr,,(t) =j andg;y(t) =Q.
Dominance Check
Check if this newly generated hyperpath with associated gl is
dominated through pairwise comparison to all otherchmminated labels in
X; (t) (see condition (1)):
If the labelr; (t) is dominated, discard it.
Otherwise, add this label t¥; (t) and remove all labels of dominated
hyperpaths fromX; (t) .
SE =SEuU{i}.
Return to step 2.
Step 4 (Termination):
Stop.
The algorithm terminates with all Paraiptimal hyperpaths with respect to

the expected value of each criterion from each origin to the destinatiorNndaie

each departure timee S. The procedural steps of this algorithm are illustrated on an

example problem in Appendix A.



40

In STV networksfor a single criteriora priori path problem, all subpaths of a
nondominated path (with respect to a variety of different dominance criteria) with
the same destination node as this path must themselves {olomaorated (Miller
Hooks, 1997). This concepd extended here to multiple criteria in STV networks

with the following lemma.

Lemma 2.1. For a given departure time € S, any hyperpath that contains a

dominated subhyperpath to the same destination as this hyperpath is itself dominated.
Proof (by courter example)Suppose vector labél, (t) associated with a hyperpath

at nodei € v for departure time < S is nordominated, i.eu € X, (t). Further,
suppose that this hyperpath contains a subhyperpath fronj sod€(i) employed at

departure time >t with associated vector labgl, (s),y ¢ X;(s) that is dominated

by another nomlominated subhyperpath at the same departure titge(s), w
€ X (s) . Without loss of generality, assume the following condition holds:
/I‘J‘W(s) = ;U}y(s)v ke{1,2,...,h-1, h+1,...r} and ﬂ?w(s) < ﬁ?y(s) (condition 2).
We proceed by showing that if the hyperpath at nodad departure timée with
associated vector labél, (t) contains this dominated subhyperpaithvassociated

vector label;, (s), it must be dominated, contrary to our assumption that it is non
dominated. Rather, another hyperpath will exist from nio@de departure time

constructed through the vector labg|, (s) that dominates it.
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Assume 4, (t) is computed from a certai@ combination of ¢, X) pairs,

where zz = {1,2,...9-10,0+1,...D}, x exj(t+ci1jzl(t)). Included in this

combination is pair ¢, y), whereg is chosen such that+ ciljg (t) =s. Since there
exists a subhyperpath at nodand times with vector label4;,,(s) that dominates
A;y(s), another hyperpath from nodecan beconstructed that employs;,(s) in
place of 1;,(s), i.e. we replaceg( y) in Q with (g, w), all else being equal. Let the
vector label corresponding to this hyperpath Agt) , v = u. By condition (2), we

can conclude thag;, (t) will dominate 4, (t). This contradicts our assumption that

the hyperpath associated with), (t) at node for departure timé is nonrdominated.

A hyperpath with a dominated subhypattpwill itself be dominatede

Proposition 2.6. Upon termination, the APS algorithm generates all Pamgtional
hyperpaths.

Proof. We begin by showing that any final label generated by the algorithm is, in
fact, Pareteoptimal. Let 4, (t) , be a label associated with one of the Papptanal

hyperpaths for departure tintefrom nodei determined by the algorithm (i.e.

€ X; (t)). No other hyperpath with associated label X; (t) can exist such that

A () < K () forallk e {1,2,...r} and A (t) < AL (t) for someh e {1,2,...r}

(condition 3).
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Suppose there exists such a hyperpath with vector 1gp@) for which condition

(3) holds. Then, one of the following must be true: A4)(t) was dominated by
another label or 2);, (t) was never constructed in step 3 of the algorithm. If there
exists a hyperpath that dominates the hyperpssiociated withd;, (t) , it would also
dominate the hyperpath associated witfi(t) , contradicting the assumption that the
hyperpath associated with, (t) is Pareteoptimal. Thus,4;, (t) musg not have been

constructed. If 4, (t) was never constructed, either it contains a subhyperpath that is

dominated and thus, by Lemma 2.1, is dominated or the SE list cannot be empty,
contradicting the assumption of termination. This esthbs that all solution
hyperpaths in the final solution set are Pamgitmal. One must next establish that
all Pareteoptimal hyperpaths are generated.

Assume there exists a hyperpath for some departure time that is not dominated
by any other hyperpathut that is not present in the final set of the Papptomal set
of solutions. This hyperpath could only be left out of the solution set if it was never
constructed. That is, a subhyperpath of this hyperpath must be dominated or a
subhyperpath of this gth was never constructed. In the former case, if the
subhyperpath is dominated, then by Lemma 2.1 any hyperpath containing this
subhyperpath must be dominated, a contradiction. The latter case could occur only if
(1) the subhyperpath contains its own sug@npath that has been dominated, and
thus, it would be dominated, or (2) there is no path between the origin of the
subhyperpath and the destination node, and thus, the hypothetical hyperpath could not

exist. Hence, no path outside the final solutiorcaatbe Paretoptimal. ¢
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Proposition 2.7. The APS algorithm has exponential werase computational
complexity.

Discussion. As discussed in Section 2.1, it is possible that in the wasst all
possible hyperpaths are Parefatimal. Consequently, thAPS algorithm, which
seeks all Paretoptimal hyperpaths, is exponential in wetase computational

complexity.

2.5.2 The Adaptive L east Expected Disutility Strategy | (ALEDSI) Algorithm

The APS algorithm described in Subsection 2.5.1 generatesasdteBptimal
hyperpaths. While a decisianaker coulda posteriori select a single “best” solution
from among all Paretoptimal hyperpaths, the generation of all such hyperpaths may
require enormous computational effort. Thus, in this subsection, anttaigas
presented to efficiently generate a single “best” hyperpath by explicitly representing
the decision maker's preference structure through a disutility fundtistead of

constructing multiple vector labels for all Paretatimal hyperpaths, thialgorithm
maintains only one vector label, (t) :{}t!‘ (1)} ker, at each node € 7 and each
departure time € S, where /15‘ (t) indicates the expected value for the path attribute
with respect to criterioR. For eachi € Vandt € s, a labelU; (t) is employed. e

disutility function U, (t) is assumed to be linear and can be written as follows:
r
U (t) = ZWK K@) (equation 1),
k=1

k

where w" is the weight for criteriork basedon the traveler's preferences and
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;
Zwk =1. Prior to terminationU;(t) provides an upper bound on the expected
k=1

disutility for traveling from node at departure time to the destinationUpon
termination of the algorithmt maintains thdeast expected disutility (LED) of any
hyperpath from nodiat departure time

Like the APS algorithm, this algorithm is an extension of the ELB algorithm.
It works iteratively by selecting a node from a SE list, working backwarm the

destination. At each node, the expected values for every criterion are computed and

the disutility is calculated using equation (1). Temporary Iab#ﬁl&) and v (t)
maintain these values prior to updatiﬁb(t) and U, (t), respectively. Ifu; (t) <

U; (t), thenU;(t) is set toy; (t) and /1!‘ (t) V k € R are updated accordingly. Upon
termination,{iik(t) }ker contains the expected values for every criterion of the
hyperpath with associated LEDJ;(t) from nodei at departure time to the
destinationN. To construct the LED hyperpaths efficiently, a single pointe(t), is

requiredto specify the successor node for trdvein node at departure time

Table 2.4. Notation employed in the ALEDS| and Il algorithms.

Notation

A (1) ={ AX(t) }uer : | vector label asxiated with nodé at timet

FOF expected value with respect to criteridn of the LED
! hyperpath from nodé at departure time to the destination
nodeN

7; (t) : | successor node to be takemfraode at departure time

wk: weight for criteriork

U, (t): | LED for traveling from node at departure timé to the
destinatiorN
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The procedural steps of the ALEDS éajiven hereatfter.

Algorithm ALEDSI
Step 1 (Initialization):

Initialize the elements of the vector labels and path pointers.
() =, Vie VINkeR tes.
U;(t) =0, Vie VN tes.
7w (t) =0, Vie vV, tes.
At =0,VvkeRtes.
Uy@®) =0,Vtes.

Create the SE list and insert the destination mbaeo the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE
list. Call this node the current node

Step 3 (Update the Node Labels):

For eacti e I'(j),

For each € s,
S
o (1) =D W (),
k=1
where

D
k=19 =L G0+ 4 (t+c20) 120
21:1
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D D kz; 1. 1.
k£ Lk =Y DL+ 2 (t+c2®) 1 o2 - pi* ().
Z]-:]_Zk:l

If v, (t) <U; (t), thenU; (1) =u; (), 7, ()=}, AX@t) = n*@) for ¥ k e R,
andSE = SEU {i}.
Return to step 2.
Step 4 (Termination):
Stop.
The algorithm results in the LED hyperpaths from each origin to the

destinationnodeN, for each departure tintec S, for a given set of criterion weights

wX and a linear utility function.

Proposition 2.8. The worstcase computational complexity of the ALEDS | algorithm
with FIFO (firstin, first-out) SE list $ ~O(V31%P*R), where V 37| is the number of
nodes in the network, | is the number of time intervals within the period of interest, P
=| 2| is the maximum number of possible arc weights for a given criterion and R =

R/|is the number of criteria.

Discussion. The worstcase computational complexity of this algorithm can be
derived in a similar manner as was the ELB algorithm in MHeoks and
Mahmassani (2000)The only difference is that step 3 of the ELB algorithm has
worstcase computational complex~O(V:1-P), whereas step 3 of the APS algorithm
has complexity ~O(\-P>R). Therefore, the proposed algorithm has woase

computational complexity~O(V:I%P~R), O(RR) worse than that of the ELB
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algorithm.

Proof of correctness will be given in $iea 2.5.3.

2.5.3 The Adaptive Least Expected Disutility Strategy 11 (ALEDS11) Algorithm

In this subsection, an improvement to AleEDS | algorithm is presented, referred to

as the ALEDS 11 algorithm. In the ALEDS | algorithm, the expected value fdr eac
criterion was computed before computing the disutility for the associated hyperpath.
To correctly accomplish this, alssociated path labels that result in the LED needed
to be maintained. The ALEDS II algorithm, however, assesses the expectedydisutilit

directly and keeps only the minimum value for each node and departure time. Thus,
there is no need to maintain the individual labglg) = {/1!‘ D}ker Vie Vtes,

which are needed in the first variation of thgaaithm. While the ALEDS |
algorithm is more intuitive, significant savings in computational complexity and
storage requirements are achieved through the modifications employed in this second

variation.

Lemma 2.2. The computation ob; (t) in step 3 of the ALEDS | algorithm can be
completed via equation (2).

v (t) =iwk i ici‘,‘zk - p*®] + iu [+ (1) - pi™ (1) (equation 2).
k=1 7z =1 Zl=1

.
Proof. v;(t) = Zwk (L),
k=1

where
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i) = Z[ i)+ AL+ M) 1- pi ()
21—1

Q=Y YO+ A(t+cB®)] 20 o™ (@), for vkeRIL
zl—lzk—l

Therefore,

v (1) = wh- z[ G+ A (t+cA M) ] pi ) +

21—1
3 k 2 < k 1z 17
zw I I @+ A (t+c2 M) ] o2 M) - o) ]
Zl—le—l
D
=w- Y ) p.fl(t>+zw [zz ) o) - o) ]+
Zl=1 zl—lzk—l

WY A m) oo +
21—1

zw [zz KE+e 1) o) - o @) 1

zl—lzk =1

Y G- p.fl(t)+2vv 1Y d* 0% m 1+

21:1 7z =1

wh z A5 (tre (1) pi (1) +Zw [z X (t+cA M) o (M) ]
21—1 k=2 21—1

—zw [zc () i (O] £ 3w [z A (t+e2 (1) ot (M) ]

7z=1 k=1 21—1

—zw (X0 o] + YU, (+e0) - 20 »

7z =1 21—1

Lemma 2.2 shows that th&LEDS | algorithm can be simplified through more

efficient computation of the expid disutility values. Identical solutions will be
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produced by both ALEDS | and Il algorithms. The algorithmic steps of this second

variation are given next.

Algorithm ALEDSI I
Step 1 (Initialization):
Initialize the labels and path pointers.
Ui(t) =, Vie V\Ntes.
i (t) =0, Vie?, tes.
Uy(@®) =0,Vtes.
Create the SE list and insert the destination mbaeo the SE list.
Step 2 (Select Nod for Scanning):
If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE
list. Call this node the current node

Step 3 (Update the Node Labels):

For eacthi e I'(j),

For each € §,

r D D
o) =YWL O p* 0] + DU+ W) - o).
k=1 =1 21:1
Ifo; (t) <U; (t), thenU; (t) =y (t), and 7; (t)=j. SE = SEU {i}.
Returnto step 2.
Step 4 (Termination):

Stop.
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It is significant to note that both ALEDS | and Il algorithms rely on the fact
that a LED hyperpath contains only subhyperpaths with the LED to the same

destination. The proof for this concept is given in Lemma 2.3.

Lemma 2.3. Any LED hyperpath contains only LED subhyperpaths to the same
destination.
Proof (by counter examplepbuppose the LED hyperpath associated with |labé)
is constructed from some nodat some departure tinte= 5 through nodg e T(i)
(i.e. employing arcif)) € 4). Assume there af@ possible travel times on arngj) for
departure time € s (i.e. z = {1,2,...D}), resulting inD possible arrival times at
nodey:

sl—t+c (t) S, —t+c (t), - Sp —t+c (t)
And, suppose that the LED hyperpath from node departure timeé contains a

subhyperpath at nodewith associated label ; (sq) for g < D that is not the LED

hyperpath from nodeat departure tims, .

Ui ()= Zw [Zc - o) + Zu (t+c2 () - P (1)

7z =1 21—1

‘ZW [ZC 1) pi* ()]

7z =1

+Uj(s) - pitt) + YU (t+citD) - ot (e).
z€{12,.9-1,0+1..D}

If the label component of the LED hyperpath from npd# time s, is given by
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U?(sq), thenU?(sq)<Uj(sq). If the LED hyperpath from nodgis employed in

place of this other hyperpath, and thus replad:iqgsq)with U](sq) , all else being

equal, a lower value of expected disutility; (t) , will be obtained. This cdradicts

our assumption that the LED hyperpath from nodedeparture timecan contain a
subhyperpath through nogles T*(i) that is not the LED hyperpath from nofat

one of the possible arrival times. Since one can extend this logic to any node
contained in the LED hyperpath from nodand for any nodeat any departure time

t, this establishes that any LED hyperpath contains only LED subhyperpaths to the

same destinatiors

Proposition 2.9. Upon termination, the ALEDS | and Il algorithms prawithe LED
hyperpaths for each node and each departure time in the period of interest.

Proof. Assume a hyperpath associated witi(t) exists in the final set of solutions

such that

; k > kz kzy o 1z 1z . +1
Ui(t)>> W[ D ci* () p* ()] + DU (t+c;2 (1) - p () for some e I ().

k=1 7z=1 21:1
For this to be true, nodecould not have been scanned and, hence, must still be in the
SE list. Since this would contradict the assumption of termination of either algorithm,
such a hyperpht could not result. Therefore, the ALEDS | and Il algorithms

terminate with the LED hyperpaths for each node at each departuretime.
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Proposition 2.10. The worstcase computational complexity of the ALEDS II
algorithm with FIFO SE list isO(V>.1%P.R).

Discussion. The complexity of the ALEDS II algorithm i8O(P) better than that of
the ALEDS 1| algorithm. This is because step 3 has complexity 4®W{) as
compared with ~O(\I-P?R) of the ALEDS | algorithm.

Note that the ALEDS Il algorithm is oniO(R) worse than the ELB algorithm of

Miller-Hooks and Mahmassani (200@hich considers only one criterion.

26 NOTESON ALGORITHM IMPLEMENTATION

In related problems that can be addressed by label correcting procedures (see for
example MillerHooks, 1997)where multiple vector labels are associated with each
node, it is sometimes advantageous to include-tadmid pairs in the SE list instead

of only the nodes. While multiple vector labels are employed in the APS algorithm,
because of the way that the éébare constructed, there is no benefit to including the
nodelabel pairs in the SE list and, as is more commonly done, only the nodes are
included in the list. A FIFO SE list structure is assumed in analyzing the complexity
of the ALEDS algorithms; howev, one could employ another structure, such as a
deque implementation of the SE list. Additional information on structuring SE lists
can be found in (Pape, 1974; Pallottino, 1984; Gallo and Pallottino, 1986; Ahuja et
al., 1993; and Bertsekas et al., 199 Yeverse star representation of the networks is

used (Ahuja et al., 1993).



53

2.7COMPUTATIONAL EXPERIMENTS

In this section,results from computational experiments conducted on randomly
generated networkaith randomly generated timaarying PMFs of thearc attribute
variables are given. The experiments were desigieeckvaluate the average
computational performance of the proposed algorithms. The number of nodes (V),
number of time intervals (I), number of elements in the PMFs (P) and number of
criteria (R) are predesignated. In accordance with transportation networks,- the in
degree and owdegree are both four, on average, and range between 2 and 9. The
same methodology used for creating the STV networks as described inHibidks

and Mahmassani (20P@s extended for use in MSTV networks and is applied here.
That is, for each criterion, a uniform distribution was fixed with a lower bound of one
unit. The upper bound was designed to linearly increase from 5 to 10 units in the first
half of the peak p&d and then linearly decrease to 5 units in the second half of the

peak period.

2.7.1 Experimental Design

The algorithms were coded in C++ and run on a DEC Alpha XP1000 professional
workstation with 1 gigabyte ram and 2 gigabyte swap, running Digit&l dp@rating
system, using Digital's C++ compiler. Three sets of experiments were conducted.
First, the average performance in terms of run time of the APS algorithm was tested.
Networks consisting of 25 nodes, peak periods of 15 and 30 time intervamehed

in each PMF and 2 criteria were considered. Second, the performance of the ALEDS |

and Il algorithms in terms of average run time was compared through experiments on
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eight networks with either 100 or 500 nodes, 60 or 120 time intervals, 5 elements i
each PMF and either 2 or 6 criteria. Finally, additional tests of the ALEDS II
algorithm were conducted on networks consisting of 50, 100, 500 and 1,000 nodes, a
peak period of 15, 30, 60 and 120 time intervals, three levels of the number of
elements irthe PMFs (5, 10 and 20) and three levels of the number of criteria ( 2, 4
and 6). In all of these experiments, a FIFO SE list was employed. For each network
and configuration of number of time intervals in the peak period, number of elements
in the PMFs ad number of criteria, 30 runs were completed, corresponding to 30

randomly selected destinations. The average of these 30 runs is reported.

2.7.2 Average Run Times of the APS Algorithm
Average run times over the 30 runs on each network configuratiornivareig Table

2.5.

Table 2.5. Average run times in c.p.u. seconds for the APS algorithm on a 25
node network.

Test| | | P| R | Average run time
(c.p.u. seconds)

1 |15(3|2 26.07

2 115134 520.9

3 [15|5|2 411.6

4 30|32 234.8

Because many Paretptimal hyperpths exist for each network, the APS
algorithm performed very poorly in these experiments in terms of run time and
memory requirements. Thus, more extensive testing on larger networks was not

completed. As suggested by Table 2.5, the average run timeasactonsiderably
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with the number of criteria and the number of elements in the PMFs, as predicted by

the worstcase computational analysis.

2.7.3 Average Run Times of the ALEDSI and Il Algorithms

In this subsection, the improvements in average compugttime attained by the
use of the ALEDS Il algorithm over the ALEDS I algorithm are examined through
tests on several network configurations. Average run times resulting from the

experiments are shown in Table 2.6.

Table 2.6. Average run times in c.p.u. seconds for the ALEDS | and II
algorithms.

P=5

Vv | |R|ALEDSI | ALEDS I
100| 60 | 2| 0.074 0.035
6| 0.153 0.056

120| 2| 0.157 0.072

6| 0.304 0.112

500( 60 | 2| 0.333 0.195
6| 0.784 0.292

120| 2 0.68 0.393

6| 1.557 0.574

From the table, the ALEDS Il algorithim approximately 1 to 2 times faster than the
ALEDS | algorithm for the problems with 2 criteria and 2 to 3 times faster for the
problems with 6 criteria. Note that for the 25 node network with 3 elements in the
PMFs, 15 time intervals in the peak periahd two criteria, the average and
maximum numbers of actual Pareptimal hyperpaths (as generated by the APS
algorithm) over all nodes and departure times are 3.3 and 119, respectively. Thus, one

can see that the ALEDS algorithms can provide significeentings in both
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computational effort and memory requirements over procedures that generate all
Pareteoptimal hyperpaths.

The computational performance of the ALEDS Il algorithm was further tested
through additional numerical experiments. The averagemestover 30 destinations
for the ALEDS Il algorithm are summarized in Table 2.7. The results show that the
ALEDS Il algorithm performed well even on networks with 1000 nodes and better
than the worstase computational complexityO(V3I1%P-R), given inProposition
2.10. For instance, the average run time for the 1000 node network with 20 elements
in the PMFs, 30 time intervals, 4 criteria is 0.629 c.p.u. seconds, which is less than
twice the average run time of the same network with 2 criteria (req@ré%$ c.p.u.
seconds). Likewise, the average run time for the 500 node network with 20 elements
in the PMFs, 30 time intervals, 4 criteria requires 0.298 c.p.u. seconds. Thus, the
computational effort required by the 1000 node network was much lesshinan t
predicted worstase of run time for the 500 node network. Despite this, as coded,
experiments on some of the large networks could not be completed due to excessive
memory requirements. Such requirements arise, at least in part, as a consequence of
the use of fourdimensional arrays (node, time, criterion, label number) used to
implement the vector labels. More efficient coding of the algorithm may enable

solution of these larger size problems.
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Table2.7. Averagerun timesin c.p.u. seconds for the ALEDS1 algorithm.

R=2

V P|I=15]1=30|1=60|1=120

50 | 5| 0.003| 0.007| 0.016| 0.034
10| 0.005| 0.012| 0.025| 0.052
20| 0.009| 0.018| 0.040| 0.082

100 | 5 | 0.007| 0.017| 0.037| 0.071
10| 0.014| 0.027| 0.055| 0.108
20] 0.019| 0.041| 0.083| 0.164

500 | 5 | 0.056| 0.110| 0.217| 0.432
10| 0.077| 0.148| 0.292| 0.539
20] 0.109| 0.212| 0.413| 0.865

1000| 5 | 0.134| 0.255| 0.503| 0.933
10| 0.173| 0.331| 0.629 -
20| 0.242| 0.453| 0.890 -

R=4

V P|I=15]1=30|1=60|1=120

50 | 5]0.004| 0.010| 0.021| 0.044
10| 0.007| 0.017| 0.035| 0.00
20| 0.013] 0.028| 0.057| 0.112

100 | 5 | 0.010| 0.022| 0.045| 0.090
10| 0.017| 0.035| 0.072| 0.143
20| 0.028| 0.057| 0.113| 0.225

500 | 5 | 0.068| 0.131| 0.255| 0.503
10| 0.100| 0.195| 0.383| 0.726
20| 0.153] 0.298]| 0.587

1000| 5 | 0.154| 0.297| 0.572| 1.071
10| 0.219| 0.424| 0.793 -
20) 0.324| 0.629| - -

R=6

V P|I=15]1=30|1=60|1=120

50 | 5| 0.006| 0.013| 0.027| 0.056
10| 0.010| 0.022| 0.043| 0.090
20| 0.017| 0.036| 0.072| 0.143

100 | 5 | 0.013| 0.028| 0.055| 0.112
10| 0.022| 0.044| 0.089| 0.179
20]| 0.036| 0.071| 0.143| 0.285

500 | 5 |0.081| 0.157| 0.305| 0.573
10| 0.119| 0.240| 0.458 -
20| 0.190| 0.372] 0.744 -

1000 5 | 0.179| 0.347| 0.641 -
10| 0.265| 0.503| - -
20) 0.4 |0.787| - -

* - memory requirements for reading the input files into variables were not sufficient
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2.8 CONCLUSIONS

The problem of generating Paraiptimal hyperpaths thateek to minimize the
expected value of multiple criteria in MSTV networks is addressed in this chapter. An
exact algorithm, the APS algorithm, is proposed for use in generating all -Pareto
optimal solutions. Given multiple criteria, such solutions enabk dhver to
adaptively choose a path to travel at each intermediate location from among-all non
dominated path strategies. As generation of all Pagtional solutions may require
generation of all solutions, the APS algorithm has exponential ‘wasst
computational complexity. Hence, an efficient algorithm that can provide a single
“best compromise” solution is required. Rather than generate all Retatwal
hyperpaths and posteriori select a single solution, if a decisioraker’s preferences

can berepresented by a linear disutility function, a more direct and efficient approach
is proposed (ALEDS | and Il algorithms). While less intuitive than the ALEDS |
algorithm, the ALEDS Il algorithm provides substantial improvements in
computational complexitgnd storage requirements.

The path strategies generated by the proposed algorithms enable travelers to
dynamically choose their paths in response to knowledge of experienced traffic
conditions. Consideration is given to the tradis among various attrilies in the
path selection process. Problems requiring the selection of such paths are encountered
in a variety of application arenas, including selection of routes for emergency
response units (medical, police, fire and other first responders), vehiclying
hazardous materials, and individual travelers in congested city streets, as well as the

selection of routes for data packets in data netwdrkshe context of supplying
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routing instructions to drivers, it is assumed that the vehicles are equiftbedr
board navigation systems. The proposed algorithms assume that estimates of future
arc attribute values (i.e. their tirvarying probability distributions) are known.
Computational experiments were conducted. Consistent with -saset
computationacomplexity, the results show that, in terms of average run times, the
APS algorithm does not perform well in large networks. However, such an exact
procedure can be quite useful in providing benchmark solutions on small problem
instances when developingore efficient, but heuristic approaches. Results of
computational experiments also show that the ALEDS Il algorithm outperforms the
ALEDS | algorithm. In addition, it appears that the average performance of the
ALEDS Il algorithm is better than predictég worstcase computational complexity

analyses.
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CHAPTER 3

ADJUSTABLE PREFERENCE PATH STRATEGIES

3.1 INTRODUCTION

In this chapter, an efficient algorithm is proposed for determining adjustable
preference path strategies (APPS) in MSTV trartaion networks. The proposed
algorithm determines adaptive path strategies that provide the next best move to take
with respect to the expected value of a chosen criterion given the actual arrival time at
an intermediate location. These strategies fuipleemit a traveler to update tosher
preference for a particular criterion to be used in selecting the remaining portion of
the path while en route to the destination. Thus, a traveler can update Hes
preference for which attribute of multiple rdtutes is of greatest importance and
should be used in selecting the next best move. The traveler can then adaptively select
the best path with respect to the selected criterion at each node in response to
knowledge of experienced travel times on previpusaveled arcsThe ability to

change preferences in this way is referred to herein as adjustable preferences and
adaptive strategies that allow for such adjustable preferences is referred to as
adjustable preference path strategies (APPS).

The abilityto update one’s preference for a particular attribute while en route
enables the traveler to respond to experienced travel conditions while traveling to the
destination. Suppose at the outset the traveler has ample time to arrive at the desired
location, ad thus, chooses the path based on maximizing aesthetics, instead of

minimizing travel time. Suppose the traveler discovers, en route, that the journey is
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taking much longer than anticipated due to unexpected travel delays and minimizing
travel time beconge more important. Allowing the traveler to adapt his/her path
according to both revealed arrival times at intermediate locations and the traveler’s
changing preferences can lead to much more desirable path outcomes.

A MSTV example network shown in Figui@l is given to illustrate the
characteristics of the APPS in a MSTV network. Two criteria are considered: travel
time and travel cost. Both attributes are assumed to be random quantities with
probability distributions that vary with time. No waiting isoated at any node and
the arc attributes are assumed to be independent over space and time and independent

of each other.

t=0 t<1 t>1
time cost (7.38,6) (4,7.4)
1(0.7) 1(0.8)
2(0.3) 6(0.2)

t<1 t>1
(5.2,6.6) (8.8,10.2)

Figure3.1. MSTV example network.

Two possible travel times on arc A when departing from node 1 att =0 are 1
with probability 0.7 and 2 with probability 0.3. There are also two possible costs: 1
with probability 0.8 and 6 with probability 0.2. For simplicity, the expected values are
directly given for each attrilte of subpaths Bnd C, e.g. the expected travel time and

cost for patiB at time < 1 are 7.38 and 6, respectively.
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The optimal APPS for traveling from node 1 at t = @ade 3 are portrayed in
Figure 3.2. The traveler starts the trip at t |al@ngarc Awith expected arrival time
at node 2of 6.14 units and expected tad 8.42 units The next move from node 2
depends on the actual arrival tinaed the traveler's preference for a particular
criterion upon arrival at that noddf the arrival time is 1 andravel time is the
preferred criteriorat that time subpath C isecommendedSubpath C incurthe least
expectedraveltime (5.2 units). However, iexpected cosis the preferred criterign
subpath Bshould be usedith the least expected cast6 units If the arrival timeis
2, the APPS instruct the traveléo follow subpath Bregardless of which criterion is
preferred, because this subpath has botHethst expected time ardast expected

Cost.

t=0
(6.14, 8.42)@

Time

Time & cost

Figure 3.2. APPS solution.
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In place of employing the proposed algwomt, identical solutions can be
obtained by runningor examplethe ELB algorithm (proposed by MilleHooksand
Mahmassani(2000 for determining adaptive least expected time paths in STV
networks) repeatedlyyith a separate run for each criterion. Thevéler could then
choose which set of solutions to use whenever the traveler's preference for a
particular attribute changes.

The primary contribution of this work is an algorithm that obviates the need
for running the ELB(or similar) algorithm multipletimes, leading to significant
computational savingResults of numerous numerical experiments show that the
computational savingsan be as large as 45% in comparison with the use of the ELB
algorithm for problems with six criteria. In the next sectitthve problem definition

and network notation employed in the proposed algorithm are provided.

3.2NETWORK NOTATION AND PROBLEM DEFINITION

For consistency, the notation given in Chapter 2 is used herein. This chapter
addresses the generation of the APRSdating a traveler in MSTV network3he
adaptivepath strategies that have the least expected vatua set ofcriteria are

sought from each node to a specified destination for every departuréstimeet

H(t) be the set of all possible hyperpathsirgecting an origidestination pair for

departure timd and let 5ak (t) be the random variable for th& criterion along a
hyperpathacH(t). E[d, )] ={ E[0+®)],E[02®)],....E[0LX (O].....E[F) (1)]}, where

E[§ak (t)] denotes the expected value of random variﬁi‘iét). HyperpathbeH(t)

that satisfieshe following condition is sought.
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3he{1,2,...,r} such thatE[4," ()] = min E[6] (1)].
VgeH (t)

3.3 THE ADJUSTABLE PREFERENCE PATH STRATEGIES (APPS)
ALGORITHM

The APPS algorithm extends the Expected Lower Bound (ELB) algorithm of Miller
Hooks and Mahmassanj2000 for finding adaptive least expected time hzain

single criterion STV networks for use with multiple criteria. The algorithm
determines the APPS in an iterative manner by scanning nodes from a scan eligible
(SE) list working backward from the destination node. It proceeds by checking at
each depautre time whether using the hyperpaths associated with the scanned node
(chosen in step 1 in the algorithm description) along the hyperpaths from its
predecessor nodes generates a lower expected value of one or more of the criteria
from these predecessor des to the destination than previously considered
hyperpaths.

For each nodeée? at each departure time=s, a vector label 4 (t) =

{ﬂik(t) }ker, IS maintained,where prior to termination,/lik(t) providesan upper

bound onthe expected value with respeotcriterionk for traveling from node at

departure timet to the destination nodB. It is assumed that'tes, ie?, keR,
O<ée <4t ﬂik (t+e) :/1}‘ (t). Foreach departure timaccurring after the peak periad,

> tg+lAt, A(t)= A (to+14t). Upon termination, for eaches and each k%, A¥(t)

provides the least expected value with respect to crit&rion
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A temporary vector labely; (t) = {nik (t) }«ker, IS used inupdating the labels
When assessing; (t) , for a giverke®,, if nik (t)</1ik (t), thenset /1ik (t) = nik (t) and
insert nodea into theSE list for subsequent scanning.pointerﬂik (t) is associated

with each/iik (t) to indicate the successor node from npds timetes with respect

to criterionk. The pointers are use treconstruct th&PPS upon termination of the
algorithm. The description of thé&PPS algorithm, procedural steps and associated

proofs are provided hereafter. In the algorithm descriptiohj) denotes the

predecessor nodes of ngdee. (: (i,j) €4).

Algorithm APPS
Step O (Initialization):

Initialize thelabel vectors

A (t) = oo, VieV\N, keR, tes.
7rik (t) =0, VieV\N, keR, tes.
/1kN (t) =0, VkeR, keR, tes.

78 (t) =N, VkeR, tes.

Create the SE list and insert the destination moaeo the SE list.
Step 1 (Select Node for Scanning):
If the & list is empty, go to step. ®therwise, select and delete the fimetde from

the SE list. Call this node the current npde
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Step 2 (Update the Node Labels):
For eactieI™(j),
For eachies,

For eackeR,

compute temporary label valua§ (t), where

D
A=Y 2+ A (t+ci (1) ] o )
21:1

BO=Y, P00+ Y, AdR0) o), voeRL
zg:1 zlzl
If 7K () <AK(t), thenAX(t) = 7K (1), 7X(t) =] andSE = SEJ{i}.

If all ieI"(j) have een considered, retuto step 1

Step 3 (Termination):

Stop.

The algorithm terminates withthe adaptive path teategies that provide the least
expectedvalue for each criterion from all origins to a select destination for each
departure time in thpeak periodlt is worth noting that a more efficient method is

proposed here (in step 2) for computing the expected value dfana time criteria,

nig (t) V geR\1, than was given iMiller-Hooks and Mahmassa#000.

Proposition 3.1. Upon termination, the RPS algorithm generat#ise adaptive path

strategies that provide the least expected vdhreeach criterion

Proof. Upon terminationﬂik (t) is the label associated with the hyperpath for riode



67

and departure timethat has the leastixpected value with respect to criteriarNo
other hyperpath with associated Iab,e,r (t), exiss such thaiz//ik (t) </1ik (t).If such a
hyperpath does exist, then one of the following two conditions neupbbsible. X)
wX(t) waseliminated by another label or)((t) was never considered in step 2
of the algorithmIf (1) is true, then this other label would also lead to the elimination

of the hyperpath associated hvittX(t), a contradiction Thus, w(t) must never
have been considered condition (2).I1f (2) holds then either y/ik (t) contains a

subhyperpath thatas eliminated and thus, the hyperpath associated wil‘ttt) must

be eliminated as it is suboptimal, rothe SE listis not empty, contradicting the
assumption of tenination. The same argument holds for each criterion, establishing
that all hyperpaths associated with the labels upon teriginat the algorithm have

the least expected value for the corresponding criteria

Proposition 3.2. In the worstcase, the algorithm has computational complexity of
~O(V3I%P.R), where V7| is the number of nodes in the networkls| is the
number oftime intervals within the period of interest, P2| is the maximum
number of possible arc weights for a given criterion and REis the number of
criteriaunder consideration

Discussion The worstcase computational complexity of this algorithm isiEmto
that of the ELB algorithmThere are at most (¢)*I repetitions of ste. However,

in this algorithm, step 2 requires at most (V1)I-P-R in place of (V1)I-P

computations The resultingworstcase computational complexity (V-1)%1 - (V-
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1)1-P-R or~O(V>I%P.R). ¢

Note that the worstase computational complexity of the ELB algorithm is
~O(V21%P). That is, the APPS algorithm has the same veas® computational
complexity as that of the ELB algorithm performed R times. However, the APPS
algorithm is superior to the ELB algorithin terms of the average computational
performance, which is examined through numerical experiments discussed in Section

3.5.

34ILLUSTRATIVE EXAMPLE PROBLEM
This section is designed to illustrate the essentigissté the APPS algorithm. A

simple example problem shown in Fig&8 is usedor thisdemonstration.

; (&

; ©

Figure 3.3. lllustrative example.



69

Table 3.1. Probabilistic time and cost data.

Time | arc(1,2)| arc(1,3)| arc(2,3)| arc(2,4)| arc(2,5)| ard3,5) | arc(4,5)

=0 | 1(0.8) | 2(1.0) | 1(0.9) | 3(0.9) | 2(0.8) | 3(0.2) | 1(0.8)
2(0.2) 3(0.1) | 4(0.1) | 6(0.2) | 5(0.8) | 2(0.2)

=1 | 2(0.3) | 1(0.8) | 2(0.8) | 2(0.8) | 5(0.9) | 2(0.5) | 1(0.9)
40.7) | 2(0.2) | 3(0.2) | 4(0.2) | 7(0.1) | 4(0.5) | 3(0.1)

=2 | 1(0.8) | 3(0.3) | 1(0.9) | 1(0.3) | 3(0.2) | 1(0.8) | 1(0.9)
2(0.2) | 4(0.7) | 3(0.1) | 2(0.7) | 6(0.8) | 2(0.2) | 2(0.1)

t=3 | 1(0.5) | 1(0.8) | 3(0.5) | 3(0.3) | 7(0.5) | 3(0.5) | 4(0.3)
3(0.5) | 2(0.2) | 4(0.5) | 4(0.7) | 8(0.5) | 4(0.5) | 7(0.7)

t=4 | 2(0.8) | 2(1.0) | 2(0.8) | 1(0.5) | 6(0.9) | 5(0.8) | 5(0.5)
3(0.2) 40.2) | 3(0.5) | 7(0.1) | 6(0.2) | 6(0.5)

t=0 | 3(0.8) | 7(0.9) | 3(0.8) | 1(0.2) | 7(0.3) | 8(0.2) | 4(0.8)
4(0.2) | 9(0.1) | 4(0.2) | 3(0.8) | 8(0.7) | 9(0.8) | 5(0.2)

t=1 | 4(0.5) | 10(0.9)| 4(0.5) | 2(0.9) | 6(0.5) | 7(0.3) | 5(0.9)
5(0.5) | 11(0.1)| 5(0.5) | 4(0.1) | 8(0.5) | 8(0.7) | 6(0.1)

t=2 | 2(0.8) | 7(0.8) | 3(09) | 2(0.9) | 6(0.5) | 7(0.3) | 3(0.4)
3(0.2) | 9(0.2) | 4(0.1) | 4(0.1) | 8(0.5) | 8(0.7) | 7(0.6)

t=3 | 3(0.8) | 5(0.1) | 3(0.8) | 2(0.5) | 7(0.3) | 5(0.9) | 2(0.1)
40.2) | 7(0.9) | 4(0.2) | 3(0.5) | 8(0.7) | 6(0.1) | 4(0.9)

t=4 | 3(0.9) | 8(0.5) | 3(0.9) | 2(0.5) | 6(0.5) | 4(0.4) | 7(0.3)
4(0.1) | 9(0.5) | 5(0.1) | 3(0.5) | 8(0.5) | 8(0.§ | 8(0.7)

*arc attribute (associated probability)

Assume there are two criteria to be considered: travel time and travel cost.
These criteria are assigned to criteria 1 and 2, respectively. The period of interest is
discretized into five time inteals, s={0,...,4}. The associated data of the example
network are provided in Table 3id the form of the possible travel time/cost with
associatedprobability of ocarrence given parenthetically. Due to the repetitive
process othe computationsonly aportion of the entire process for determining the
APPSfrom every node tthe destinationnode 5 for each departure time in the peak
period ispresengd.

Initialize the elements of theectorlabels.SE = {5}.

Iteration 1
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Scan node 55E = {}.
j=5,i {2, 3,4}

Fori =2

2
73(0)= D[ 32 (0)+ 45 (0+c32(0)) 1- p52 (0)
Zl=1

= (2+0) 0.8 + (6+0) 0.2 = 2.8.

Set 45(0) = 2.8, 73(0) = 5 andSE = {2}.

2 2
n20)=Y c22(0)-p22(0) + > 2(0+cE2(0)) - p32(0)
=1 21:1

=(70.3+80.7)+(0-0.8+0-0.2)=7.7.
Set 43(0)= 7.7, 72(0) = 5 andSE = {2}.

* (Continue to loop oveir)

Fori = 3 and 4eachtes and eaclkeR, compute the label components and assed

pointers.Make necessary updated/ithin this iteration, at least one component of

eachof the labels at nodes 2, 3 aithas been updatetihus, SE= {2,3,4} at theend
of this iteration. Figure 3.8hows X (t) and zf(t), VkeR associated with nodes 2,
3, and 4, respectivelyat the end of this iteration. The values are presented in the form

of (A (1), 7 (t)).
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Time Node 2 Time Node 3 Time Node 4
k=1 k=2 k=1 k=2 =1 =2
0 [(28,5)|(7.7,5) 0 |(4.6,5)](8.8,5) 0 |(1.2,5)|(4.2,5)
1 [(5.2,5)] (7.0, 5) 1 |(3.0,5)|(7.7,5) 1 [(.2,5)](5.1,5)
2 [(5.4,5)](7.0,5) 2 (12,5 (775) 2 |(@1,5)](5.4,5)
3 |(7.5,5)|(7.7,5) 3 |(35,5)|(5.1,5) 3 |(6.1,5) (3.8,5)
4 [(61,5)](7.0,5) 4 [(5.2,5)|(6.4,5) 4 [(55,5)|(7.7,5)

(a) (b) (c)
Figure 3.4. Solutionsfor iteration 1.
lteration 2

Scan node 2. SE ={3,4}.

j=2,ie{l}
Fori =1,
t=0

k=1,

71(0)=[c3(0)+ 25( 0 +¢{3(0)) 1 pi2(0) + [c12(0)+ 45( 0 +¢12(0)) 1+ p13(0)
= (1+2)- 0.8 + (2+5.4) 0.2 = 6.44.
Set 1(0) = 6.44, 71(0) = 2 and SE = {3,4,1}.

» (Continue to loop overandt.)

Continue in the same manner until the SE list is empty when step 1 is called.
The final APPSor every node and departure time in the peak period are provided in

Figure3.5.
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Time Node 1
k=1 k=2
(3.2,3)] (10.0, 2)
(2.9,3)| (11.7, 2)
(8.4, 2)| (9.8, 2)
(6.4, 3)] (10.2, 2)
(7.2, 3)] (10.1, 2)

(@)

Time Node 2 Time Node 3 Time Node 4

=1 =2 k=1 k=2 =1 =2
(2.8, 5)| (6.8, 4) (4.6, 5)| (8.8, 5) (1.2,5)| (4.2, 5)
(5.2,5)| (6.8, 4) (3.0, 5)| (7.7, 5) (1.2,5)| (5.1, 5)
(4.9, 3)| (7.0, 5) (1.2,5)| (7.7, 5) (1.1, 5)| (5.4, 5)
(7.5,5)| (7.7, 5) (3.5,5) | (5.1, 5) (6.1, 5)| (3.8, 5)
(6.1, 5)| (7.0, 5) (5.2, 5)| (6.4, 5) (5.5,5)| (7.7, 5)

(b) (€) (d)
Figure 3.5. APPS solutions.

AIWIN|F|O

AIWIN|FL O
A IWINFL O
A IWINFL O

As depicted in Figur&.5, upon termination of the algtrm, ﬂ%(O) = 3.2,

J2(0) = 10.0 with associated hyperpath pointersi(0) = 3 and z2(0) = 2,
respectivelyThe APPSfrom node 1 at departure time O indicatethatthe traveler
shouldhead to either nodef@r the least expected travel cost or node 3Herléast
expected travel timdf the traveler chooses to follow the instructions associated with
travel time and moves to node(8)he will be instructed to continuérettly to nock

5. On the other handf the driver chooses to depart from node 1 to go to node 2 and
the arrival time at this node is1, two efficient moves are suggested depemndin

the traveler’'s preference at that point in tifighe travelemishesto obtain he least
expected travel time, the best option is to goaden5 directlyOtherwise headng to

node 4 prior to reaching node 5 will resultle teast expected travel cost. Rorval

timet = 2at node 2, going to node 5 directly is suggested foletst expected travel
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cost and going to node 3 prior to reaching node 5 is suggestdu: flarast expected
travel time.The APPSfrom node 1 to node 5 departing from node 1 atO are

portrayed in Figure 3.6

Time t=2

Figure 3.6. APPS from node 1 to node 5.

3.5NUMERICAL EXPERIMENTS

This section presents thesults fromnumericd experiments conducted on randomly
generated networkwith randomly generated timearying PMFs of the arattribute
variables. The objective is to examimeprovements in arage computational time
attained by the use of the APPS algorithm over the ELB algorjibrformed
repeatedlypncefor each criterionThe average run time of the R8 algorithm was
compared to that of the ELB algorithitrough experiments on networksthveither
100, 5000r 1000 nodes, a pegbkeriod of 120 time intervals, @ements in each PMF

and threedvels of the number of criterid,(4 and 6).
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3.5.1 Experimental Design

The computational experiments were conducted a DEC Alpha XP1000
professionalworkstation with 1 gigabyte ram and 2 gigabyte swap, running Digital
4.0E operating system, using Digital's C++ compil€he number of nodes (V),
number of time intervals (I), number of elements in the PMFs (P) and number of
criteria (R) are predesignateln accordance wittypical traffic networks, thewverage
in-degree and otdegree areeach four,ranging between 2 and 9. The same
methodology used for creating the STV networks as described in Midleks and
Mahmassaniq000 is extended for use in 8TV networks and is applied here. Each
criterion was assumed to be uniformally distributed with fixed lower bound of one
unit. The upper bound was permitted to linearly increase from 5 to 10 units in the first
half of the peak period and then linearly @&se to 5 units in the second half of the
peak period. A FIFO SE list was employed in the APPS algorithm. For each test (i.e.
each network size and chosen number of criteria), 30 runs were completed,
corresponding to 3@andomly selected destinatiorfhe average of these 30 runs is

reported.

3.5.2 Results and Discussion

Computational savings achieved bye use of théAPPS algorithm over theELB
algorithm were evaluatedthrough experimentson several network configurations.
Average run timesn c.p.u. seends over 30 destinations for both algorithare

displayed in Table 3.2



Table 3.2. Average run time comparisons.
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Vv R=2 R=4 R=6
APPS/ELB % APPS/ELB % APPS/ELB %
Improve Improve Improve
100 | 1.48/2.06 | 28.16 2.93/5.03 | 41.75 4.35/8.03 | 45.83
500 | 8.30/11.03| 24.75 | 15.45/26.79 42.33 | 24.38/43.88 44.44
1000| 17.03/24.02 29.10 | 33.63/58.41 42.42 |52.30/94.35 44.57
100
90 -
80
70
60
O APPS
50
B ELB
40 -
30 -
20 -
10
0 Lleem o ol
2 4 6 2 4 6 2 4 6
100 nodes 500 nodes 1000 nodes

Figure 3.7. APPS/ELB run time comparisons.

The results show that the APPS algorithm improves the average run time

approximately 2580% over the ELB algorithm for theastanceswith two criteria.

Theimprovements increase with the number of criteria. For instance, the percentage

of improvement reaches 45% on average for the instances with six criteria. Thus, the

APPS algorithm provide significant savings in computational effort ovére

repetitive executiof the ELB algorithm for obtaining the same solutiaespecially

when the number of considered criteria is lafgech improvements stem directly

from the efficiency of handlingnore than one criterion in Step 2 of the APPS

algorithm. This efficiency plays a major rolediminishing the average run time.
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Furthermorethe APPS algorithm performeduchbetter tharits worstcase
computational complexity;yO(V31%P-R). For examplgthe average run time for the
1,000 node network witliive elements in the PMFs, 120 time intervals, and two
criteria is17.03c.p.u. seconds, which eensiderablyess tharone thousand timeke
average run time ahe 100 node network with, 120 timetervals and two criteria

(requiring 1.48 c.p.u. seconds).

3.6 CONCLUSIONS

In this chaptey the concept of adjustable preference path strategies (APPS) is
introduced. APPS are defined as path strategies that enable a traveler to adaptively
select the bespath in accordance with the traveler's changing preferences and
revealed arrival times at intermediate locations. Such a solution strategy permits a
traveler to alter his/her preferred criterion at each node en route to the destination and
is of importane in providing odine path finding assistance in traffic networks.

The APPS algorithm is developed for determining APPS in MSTV
transportation networks. Specifically, adaptive path strategies that seek to minimize
the expected value of each of multimeteria are generated from all origins to a
designated destination for all departure times in a period of interest. Although
identical solutions can be attained by performing the ELB algorig@@Q multiple
times, once for each criterion, the APPS atpar offers significant computational

savings as indicated by the results of numerous numerical experiments.
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CHAPTER 4

THE SAFEST ESCAPE PROBLEM

4.1 INTRODUCTION

In this chapter,an exact algorithmthe SEscape (Safest Escape) algorithm, is
proposedor determiningthe optimal set ofa priori pathflows in dynamic networks

with timevarying arc traversal times and stochastic, tuar/ing (STV) arc
capacities The SEscape algorithnseeksthe pattern of flow thamaximizes the
minimum path probabilityof successful arrival at the sink sfipply originating at
multiple sourcenodes That is, for a given flow pattern, the probability of successful
arrival by each unit of flow at the sink along each constituent path is assessed. The
path with the minimunmsuccess probability is identified. The flow pattern whose
minimum success probability path has the maximum success probability is optimal.
The problem of determining this pattern of flow is referred to as the SEcape problem.
The concept is illustrated indtire 4.1, where the minimum success probability paths

in a static network are shown in bold.

Path : Probability Path : Probability
1-24:0.72 1-24:0.24
1-34 :0.08 1-34:0.28

1-2-34:0.16

Figure4.1. SEcape problem.
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Suppose two possible patterns of flow exist for shipping three supply units
from node 1 to nodd as depicted in Figure 4.1. The flow pattern shown in Figure
4.1b is optimal for the SEscape problem since the associated minimum success
probability (0.24 on path-2-4) is greater than that of the flow pattern shown in
Figure 4.1a (0.08 on path3t4).

The SEscape algorithm was developed to provide egress instructions to
evacuees in the event that rapid evacuation of a large damaged building, e.g. a
burning building or a building that has come under attack by enemy or natural
catastrophe, is required. &lconcept of choosing the solution whose constituent paths
contain the maximum minimum probability of success (the SEscape problem) is
similar conceptually to the problem of choosing the solution with the minimum time
until the last evacuee escapes, he. $olution that leads to the minimum evacuation
time. In the SEscape problem, the risk incurred by any person who is forced to take
the greatest risk is minimized (i.e. their probability of successful escape is
maximized).

In a network representation tife building evacuation problem, the network
represents the layout of the circulation systems of the buildivigere nodes
correspondo locations inside the building (such as offices, meeting rooms, lobbies,
lavatories, and building exits) and arcs cqroesl to the passageways that connect
these locations (such as staircases, elevator shafts, doorways, corridors and ramps).
The supply units represent the people to be evacuatesl.nodes at which the
evacueesre located when the evacuation begins atedcaburce nodes and thede

corresponding to buildingxit locatiors are referred to as sink nodése arc travel
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time represesttheamount oftime required or traversingthe arc The capacity of an
arc is the number of people that can pass througlagkociatedrc per unit of time
The arc capacities are dependent upon s$ime and type of corresponding
passageway

Emergency evacuations are often characterized by dangers that strengthen and
spread over timeWhen a large number of people must beceated from the
building simultaneously, issues concerning capacity of theaai®s Circumstances
in an evacuation induce the possibility that successful egress may be inhibited by
partial or complete failure of key escape paths. Moreover, one carmethow the
situation will progress with certainty even if the exact location and type of event that
initiated the need for the evacuation is known. Thosdetermining the optimal
instructions it is important to explicitly considerthe time-varying and uncertain
nature of capacities inherent in suglcumstance Instructionsthat do not consider
the evolution of damage over time and threats of probable additional destruction and
deteriorationcan result in suboptimal decisions that can lead to unnegesgaosed
risk and unnecessary lost lividiller-Hooks and Krauthammer, 2002).

To represent such emergency evacuation conditions, in this work, a dynamic
network flow problem with timevarying arc traversal times and STV arc capacities is
consideredin dynamic networks, flow moves through the network over time and arc
capacities are recaptureer time Conventionally, network attributes (arc travel
times, arc capacities and supply) in such dynamic networks are assumed to-be time
invariant. In many realvorld applications, howevenetwork attribute$luctuateover

time, and thus, it is critical that the inherent tiwveeying nature of the network



80

attributes is explicitly considered’he SEscape problem is considered in such a
dynamic, timevarying envionment, as depicted iRigure 42. In the figure,the
period of interest imssumed to bdiscretized into threetime intervals (=0, 1 and 2)
andarc travel times are known deterministicalyc capacitiesarediscrete random
variables with probability @tributions that vary with timeThe possible capacities
and associated probabilities of occurrence are giwen.instance, dur possible
capacitieon arc (1,2when departing from node 1 at t=0 areith probability0.4, 1
with probability 0.2,2 with probability 0.1, and 4 with probability Q.Fhese values

are shown in the figure in decreasing order fromtéopottom

=0 =1 1=2
capacity capacity capacity
4(0.3) 6(0.2) 5(0.3)
2(0.1) 3(0.1) 4(0.2)
1(0.2) 2(0.1) 1(05)
0(0.4) 0(06)

trave time trave time trave time

O O

Figure4.2. Time-varying travel timesand STV capacities.

42 LITERATURE REVIEW

Existing approaches proposed in the literatio solve related network flow problems
generally do not explicitty model the variable and uncertain conditions inherent in
circumstances warranting emergency evacuation. A host of researchers have
addressechetwork flow problems in static networKsee Ahuja et al. 1993 for
additional detail orseveral network flow problems). One of the most studied network

flow problems is the minimum cost flow problem, in which the aim is to ship all
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supply units from the source to the sink with minimum total céamada (1996)
implemened a classical minimum cost flow algorithm to evaluate the evacuation plan
for Yokosuka City, JaparCalvete (2003presented modifications to the wktown
network simplex method to solvéhe minimum cost flow problem with side
condraints The side constraints require each arc in a specified subset to carry the
same amount of flowkor the sake of improving the computational complexity, Orlin
(1993) andSokkalingamet al. (2000) developed polynomial time algorithms for
solving the ame problem. Ahuja et al. (2002) proposed a new pivot rule in the
network simplex algorithm for solving the minimum cost flow problem, which
requires at mosk (k < number of nodes in the network) consecutive degenerate
pivots.

Several other authors considered tménimum cost flow problemwith
multiple objectivesNoda and Matin (2001) addressed th@Mjective minimum cost
flow problemwith integral flow varialdes. The proposed afgithm consists of two
stagesThe first stage generatall integer solutions on thefficient boundary in the
objective space by using a modified network simplex met@ocen these solutions,
the second stage identifies the fdmminated solutions that do not lie on the efficient
boundary without generating any dominated soluti@ova and Johnson (2003)
formulated a simple linear program based on the conventional minimum cost flow
problem to address the problem of finding optimalelbased evacuation routing
plans. The constraint method for mwdbjective programming was employed. The
primary objective is to minimize total distance and the secondary objectives,

minimizing vehicle mergingonflicts and preventing crosshognflicts at
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intersections, are set as constraints. Other interesting works that address network flow
problems in static environments includggarwal et al(1998), Pioroet al. (2002),
andCuret et al(2002).

Numerous worksncorporatethe dynamic nature of netwoattributes that is
present in many real world applications. A survey of algorithms, applications and
implementations of several dynamic network flow problems is provigedronson
(1989). Ford and Fulkerson (1962) studied the maximum dynamic flow gmobl
whose objective is to ship as much flow as possible from the source to the sink in a
given period of time. They proposed a technique employing a minimum cost flow
algorithm as a subroutine to find maximum flow. Sparked by their approach, several
authorshave addressed a generalization of the maximum flow problem, the universal
maximal dynamic flow problem (Minieka, 1971; Wilkinson, 1971; Halpern, 1979;
and Fleischer, 2001). The objective is to determine a pattern of flow that maximizes
the amount of flownarriving at the sink for every time interval within the considered
time bound. Anderson and Philpott (1994), and Orda and Rom (1995) dealt with both
original and generalized maximum flow problems with a continuous representation of
time. Nagy and Akl (20B) studied the maximum flow problem in a réate setting.

They proposed solution approaches for recomputing a new maximum flow without
starting from scratch when ret@ine information regarding the network structure or
capacities is received.

Closely retited to the maximum dynamic flow problem, the quickest flow
problem is concerned with determinationadfow patternfor shipping supply units

from a sourceo a sink such that the time at which the last unit arrives at the sink is
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minimized.Burkard et & (1993) conjectured a relationship between these two flow
problems and proposed several polynomial algorithms and a strongly polynomial
algorithm for solving the quickest flow problen€halmet et al (1982, and
Hamacher and Tufek¢ll997)consideredan extensionof the quickest flow problem

to multiple sourcesthe evacuation problerfloppe and Tardos (2000) presented the
first polynomiattime algorithm for the quickest transshipment problem, which
extends the quickest flow problem to multiple sources ranltiple sinksChen and

Chin (1990), Rosen et al. (1991), and Calvete (2004) studied a variant of the quickest
flow problem: the quickest path problem. The quickest path problem seeks a single
path for shipping the supply from a source to a sink withimmm total traversal

time, where the traversal time of an arc depends on the rate of flow on thiarais.

and Ratliff (1982) considered dynamic network flow problems whitiee different
objectives: 1) maximize flow in the firstime intervals, foeveryt (i.e. the universal
maximal dynamic flow problem), 2) minimize the average time and 3) minimize the
time the last unit arrives at the sink (i.e. the quickest flow problem). They showed that
the optimal solution for one objective is also optimaltf@ other two and suggested
that a standard minimum cost flow algorithm could be used to solve all three
problems.

In conjunction with building evacuatiohoi et al. (1988fonsideed three
relateddynamic network flow problem@.e. the maximum flowminimum cost and
quickest flow problemswith additional side constraints. The side constraints require
that thecapacityof an arcis a function of the rate of flow on the incoming arcs.

Francis (1981) presented a uniformity principle for building evamuatequiring that
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if the building is to be evacuated in minimum time, evacuees will be assigned to a set
of routes having the identical evacuation time. All of the aforementioned works
model time discretelyFleischer and Tardos (1998) extendsederalagorithms for
dealing with discretéime dynamic flow problems to solve their continudinse
counterparts.

While many papers have addressed network flow problems in dynamic (but
time-invariant) networks, few works have considered the -tieendent
charateristics of network attributgs.e. arc traversal times, capacities and supply at
the source)Miller-Hooks and Stock Patterson (2004) proposedrtime-Dependent
Quickest Flow Problem (TDQFP) algorithfor the quickest evacuation problem in
time-varying capacitated networks with dynamic flow characteristics. Cai et al.
(20018) developed solution algorithms to solve the twagying minimum cost flow
problem with three waiting policies tite nodes. Cai et a[2001b) also dealt with the
maximum flow and universal maximum flow problems in such thwarying
instances.

Works discussed thus far consider only deterministic network flow problems.
Several researchers have addressed stochastic flow problems in the form of network
connectivity and reliability, wére the nodes or arcs may randomly fail with known
probability. Frank and Gaul (1982pnsideredwo probabilities of connectedness: 1)
the probability that the entire network is connected and 2) the probability that two
selected nodes are connected. Thessented bounds and approximations to these

two problem classet.ucet and Manouvrier (1999 vestigated several methods for
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finding the probability that a certain subset of nodes is connected. These works do not
take into account flow through the netkor

System reliability is defined asthe probability that the network can
accommodate particularlevel of flow. Jentsch (1998) addressed the problem of
computing system reliability in special network topologies. Only two arc states are
considered: zero ofull capacity. Lin (2001, 20023 proposedan exact method to
assess theystem reliability instatic networks with stochastic arc capacitieble
further extended the method feolving the system reliability problem with two
commodities (Lin, 2002b). Lir{2003) proposed an additional conceptsgétem
reliability based on the quickest path problem. Given stochastic arc capacities, the
minimum time for shipping supply units on a single mpends on theealization of
the arc capacitiesFor each realizain, the probability of occurrence and the
corresponding quickest path for shipping supply units are identiftydtem
reliability in this work is defined as the probability théte supply units can be
shipped from the source to the sink within a timerizb

Another approach for examining the performamecapacitated networks
with random arc failures is to considBeexpected value of maximum floBecause
computing such anexpectedvalue is NRhard (as mentioned in, for example,
Nagamochi and Ibaki, 1991) upper and lower bounds on the expected maximum
flow is used asn approximation to thexact valueCarey and Hendrickson (1984)
developed several algorithms for computing bounds on the expected maximum flow.
They showed that an upper boundhe expected maximum flow can be computed

by solving the maximum flow problem on the network with arc capacities set to their
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expected values. Based on an algorithm given in the previous Magamochi and
Ibaraki (1991)proposed necessary and sufficiennditions for examining whether
the lower bound equals tlexact value of the expected maximum flail of these
works are concerned with the evaluation of the network performance, rather than
providing routing plans.Furthermore, they do not considee timedependency of
the network attributes.

Otherworks have addressetbshastic network flow problemshere routing
plans are determinedy assuming timénvariant network attributes, Talebi and
MacGregor Smith (1985) modeled the stochastic evacuptmslem with analytical
gueuingnetworkmodels. The expected evacuation time is used as the performance
measure in optimal egress analyslockner et al. (2000, 2001)presenteda
multistage stochastic linear programming formulatfon the minimum cosflow
problem indynamicnetworks with uncertainarc capacitieslravel times are assumed
to be deterministic and tirdavariant. Decomposition techniques were developed for
use in the multistage linear program. Karbowicz and Meg& Smith (1984)
proposeda simulatioAbased methodology for determining the evacuation paths along
which to send evacueelhe proposed approach employs-ahortest paths algorithm
to identify the K shortest paths from every source to every sink. Then, occupant
egress is simulatd along the set of the first shortest paths to detect queueing. If
gueueing exists, a portion of occupants who experience delay is rerouted and
gueueing is evaluated through a simulation. This iterative prooessues until the
combination of paths thaminimizestotal evacuation time isbtained. Because the

proposed procedure involves a number of computations and simulation runs, it is
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expected to perform poorlwhen significant queueing is fountl appears that no
exact algorithmhas been proposedrf efficiently determining optimal evacuation
paths, where the uncertain, dynamic and +taeing conditions inherent in
emergency circumstances are explicitly considered.

The primary contribution of thischapter is the development of the
methodologicalsteps for providing optima priori (safest escape) instructions for
egress in emergency evacuatidhe dynamic, timezarying and uncertain nature of
passageway capacities inherent in emergency incidents warranting evacuation is
explicitly consideredIn the next sectionseveral concepts and related performance

measures that one may consider in determiauaguation instructions are discussed.

4.3 CONCEPTUAL FRAMEWORK

The goal of providing evacuation plans in emergency incidents is to maximize the
sakty of evacueeLonventionally, evacuation time (i.e. the time until the last person
exits) and total time for evacuation have been used as a primary criterion in the
selection of egress path€Hhalmet et al 1982 Karbowicz and Macgregor Smith,
1984; T#ebi and MacGregor Smith, 1985; Choi et al., 1988macher and Tufekci
1997; Fleischer and Tardos, 199&ai et al.,2001a; Miller-Hooks and Stock
Patterson2004) Time is used as a surrogate for risk and the set of path flows that
yields the minimum the required for evacuating all occupants from a thsasea is
preferred. Such approaches are useful when capacities of the passageways are known
deterministically. In emergency incidents, however, how the situation will progress is

uncertain, and thusne cannot knowa priori the number of people who will be able
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to successfully pass through a given passageway at any point in time with certainty.
There may be some probability that successful egress along one or more passageways
will be inhibited. That $, capacities can be knovenpriori only probabilistically.

Such probabilities are useful for developing evacuation strategies in stochastic
environmentsFor example, one would prefer an evacuation path with long journey
time, but high likelihood of sucssful escape to a path with short journey time, but
very low probability of successful escape.

Miller-Hooks and Krauthammef2002) propose an intelligent evacuation,
rescue and recovery (IERR) concept for large buildings that would enable prediction
in red-time of future arc capacities and times including their distributions. With the
advent of new techniques and the development of concepts that exploit information
that can be retrieved via these technologies, the information required to derive the
probability of successful escape as described herein is becoming a reality.

In this section, several criteria for evaluating flow patterns in networks with
stochastic arc capacities are discussed. Specific@pacities are modeled herein as
discrete random veableswith probability distribution functions that vary with time.

The arc attributeare assumed to be independent over space and timbaeapdriod

of interest is considered discretely.

4.3.1 Expectation and Path Flows
Stochastic problems areequerly addressed by considering the expected values of
the random characteristicBy replacing the random variables by their expected

values, the stochastic problem is transformed into a deterministic one, and thus, the



89

difficulties that stem from working wh random variables are eliminated. In
networks, where arc capacities are random quantities, there may be more than one
random quantity for which the expectation is useful. For example, one might consider
the expected capacity along each arc or the expectmber of flow units that can
successfully cross each arc (referred to herein as the expected foulustrate
theseconcepts, thexamplewith discrete random variables and discrete time given in
Figure 4.2srevisited.
In the example, thexpecte capacityof arc (1,2) at t = 0 can be computed by

4

Zn-P{ulz(O): n} = 0+(0.4) + 1(0.2) + 2(0.1) + 3(0) + 4(0.3) = 1.6, where

n=0
P{u;; (t) = n} represents the probability that the capacity of gjre timet is equal
to n. If one replaces the random arc capacities by their expected values, the resulting
information that can be obtained may not be useful in the context of providing
evacuation instructions. For instance, for any chosen path, one Wilkoow the
expected number of units that can be shipped along the path. However, for a
particular realization of the network, the actual available capacity may be far less than
its expectation.

Alternatively, one might consider the expected flowhile the expected
capacity of an arat a given time intervak fixed, the expected flow along an arc
depends orthe number of units thatre shipped across the afte expected flow
along arci(j) at timet given thatk units attempt to traverse the arc, tencomputed

by equation 4.1.

k—
zln P{u; (1) =n} + k-P{u; (1) > K} (4.)
n=0
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For examplein Figure 4.2the expected flow for shipping two unttgough arc (1,2)
at t = 0 can be computed as followd:P{u;,(0)= 0} + 1-P{u;,(0)= 1} +

2-P{u;,(0)> 2} = 1.0

Lemma 4.1. The computation of the expected flow givennits attempt to traverse

K
arc (,j) at timet can be completed vi_ F{u; (t) > n} .
n=1

Pr oof.
k-1
Zon PLu; () =n} + k-P{u; (t) >k

= P(l” (t) = 1} + 2P{ uij (t) = 2} + 3P{ uij (t) = 3} +...+ kP{ uij (t)Z k}
= P{.I” (t) = 1} + P{Uij (t) = 2} + P{Uij (t) = 3} +...+ P{Uij (t)Z k} (1)
+ Py (1) = 2} + P{u;; (1) = 3} +...+ P{u; () = k} (2)

Hff) =3} +...+ P{u; () = K} ®3)

+ Rf; (=K (K

=P{uj ()= 1} + P{uy; (1) = 2} + P{u;; () = 3} +...+ P{uy; (1) = K}

K
=> Fu; (t)>n}
n=1
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4.3.2 Probabilities of Successful Path Traversal

Another criterion one may consider in determining optimal path flows in stochastic
capacity networks is the probabilibf ensuringsuccessfulrrival at the sik. Such
probabilities are directly related to the arc capacity occurrence probabilities. For
instance, the probability that units can traverse arcjj at timet is equal to the
probability that the capacity of the arc at that patér time is greateihan or equal to

n, P{Uij (t) > n}.

The static network provided in Figure 4.3 is constructed to illustrate how the
probability of successful path traversal can be useddtatepaths for completing
shipments. Arccapacities and correspding probabilities of occurrence are given
parenthetically, e.g. the possible capacities ofl aie 0 with probability 0.65 and 4

with probability 0.35P{u; = 0} = 0.65 and R§, = 4} = 0.35.

Arcl

P{u, = n} P{u > n}
4(0.3)  4(0.35)
0(0.69 —® 3(0.35)

2(0.35)
1(0.35)

Supply Demand
+4 -4

Arcll
P{uy=n} P{u,>n}
4(0.3) 4(0.3)
2(0.1) —» 3(0.3)
1(0.2) 2(0.4)
0(0.4) 1(0.6)

Figure 4.3. Example network.
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Suppose Here are four supply units at node 1. The first unit should be
assigned to arc Il since the probability that it will arrive at node 2 by way of this arc is
greater than through arc | (i.e.l{> 1} = 0.6 > P{y > 1} = 0.35). Given that one
cannot knowa priori whether or not the first shipment will successfully arrive at its
destination, arc Il is the preferred arc for shipping the second unit, because the
probability that arc Il can accommodatwo units simultaneously, B{ > 2}, is
greater than the probability that arc | can accommodate one unit; Bf. However,
for the third unit, arc | is more attractive, because the probability that arc Il can
handle three units simultaneouslyuR$ 3}, is less than the probability that arc | can
handle one unit, R{ > 1}. This is also the case for shipping the last unit, whetg P{
> 2} = 0.4 > Py, > 3} = 0.3. Given this, the best routing plan for these four supply
units is to equally split thigow across both arcs.

In Section 4.4, the relationship between the probabilities of successful path
traversal and determination of the Safest Escape paths described in Section 4.1 is

given.

4.4 SAFEST ESCAPE

In developing evacuation instruatis in emergncy events, one migltonsider the
number of evacuees who successfully escapgpadormance measure of a proposed
solution (i.e. evacuation planjt can be shown that if the evacuees follow the
instructions that result from solving the maximum expémv problem, in the long
run (i.e. over many evacuations), the maximum number of lives heillsaved.

However, the solution to the expected flow problem may require a person to follow a
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path with high likelihood of failure. That is, a single person rbayasked to take
exceptional risk for the good of the whole. This is portrayed in Figure 4.1. While the
pattern of flow shown in Figure 4.1a has the maximum expected flow for shipping
three units from node 1 to node 4, the evacuee routed on {3adhid sibject toan
extremely low probability of successful arrival at the sink. Albeit acceptable for many
applications, the suggestion of such significantly inferior paths irHifsatening
situations might raise ethical concerns.

The SEscape problem is proged to address emergency evacuations by
explicitly consideringhetime-varyingand uncertain nature phssagewagapacities
inherent in suchcircumstance Critical issues arising in such lfareatening
situations, such as exposure to risk and fairregsgiven priority. That is, rather than
focusing on the system objective, the SEscape problem provides evacuation
instructions such that the risk incurred by the occupant or occupants who are forced to
take the greatest risk minimized. Specificallyamong the constituent paths in a
pattern of flow, there is one path that has the minimum probability of successful
arrival at the exit (assume no ties). The pattern of flow for which this path with the
minimum success probability has the highest probghélihong all possible flow
patterns is optimalFigure 4.4 illustrateiow the path with theninimum success
probabilityfor a given flow pattern is determined. The probabilistic arc capacities are

assumed to be temporally and spatiaityependent.
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Arc B
Arc A 1(0.9
2(0.5) 0(0.7
1(0.3
Supply Demand
+2 -2

unit 1l

Arc C
2(02)
1(05)
0(0.3)

Figure 4.4. Stochastic ar c capacities.

Two possible flow patterns,, land kg, exist for shipping two supply units
from node 1 to node 3: (1) split the flow equally, one along each arc as illustrated in

Figure 4.4, and (I1) ship both usialong path AC.
For R, the minimum probability that the units can successfully traverse arc A
is equal to the probability that the arc can accommodate two or more unitsui,e. P{

> 2}. Upon arrival at node 2, unit | is routed tec &8, where the corresponding

probability of successful arc traversal isug{> 1}. Likewise, the success probability
of unit Il on arc C is Pdc > 1}. Therefore, for this particular flow pattern, the
minimum succss probability is Pl > 2}-P{ug > 1} = 0.2 on path AB (note that
path AC has the probability of successful arrivaluR{> 2} -P{uc > 1} = 0.35). The
minimum success probdity for Fy is P{uy > 2}-P{ucz > 2} = 0.1, computed

through similar computations as shown far F
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One can see that for shipping two supply units from node 1 to node 3 in this
network, the flow pattern,Fmaximizzs the minimum path probability of successful
arrival of supply at node 3. Thus; is chosen as the optimal solution with respect to
the SEscape problerfihis concept guarantees that the chance of successful egress of
occupants who are subject to the tgsarisk will be maximizedThe proposed
conceptual framework and specific algorithmic steps can be used in evacuation
planning,enabling safer evacuation of a building in the event of military attack, fire,

natural disaster, or other circumstances waingrguick escape.

45NETWORK NOTATION AND PROBLEM FORMULATION

Similar notation for describing the network as used by Mieoks andStock
Patterson (2004 employed hereirLet a dynamic network(= (G, U, B., T) be a

finite digraph,g = (v 4, {0,1,...,T}), where 7 is the set of nodes7 is the set of
directed arcs connecting the nodes, and {0,I}..is the time frame of interest
discretized into small time intervals. The arc capacities are assumed to be discrete

random variables witlprobability mas functions PMFs) given by the setU(3.).

Specifically, associated with each arg)(e 4 at timet € {0,1,...,T} is a set ofD
nortnegative, integevalued, timevarying capacitiesJ={ ui]Z M }ij)eatepr..m
=1...p, With coresponding probabilities of occurrendgs={ ﬂijz(t)}(i,j) cate{01,.T)
z1,.p, and a set of nenegative reavalued timevarying travel times7 ={ z;; (t) } ()
catefou1.m. The flow on arci() € 4 that leaes nodel at departure time e

{0,1,....T} and arrive at nod¢ at timet + z;; (t) is represented by; (t). P,j”(t)
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denotes the probability that the capacity of aj¢ &ttimet is nd less tham, i.e.

P{ujt)=n} for (i) € A4, t € {0,1,....T}. I"Y(i) denotes the set of predecessor nodes

of nodei, i.e. allj such that(j,i) € 4. Likewise,'*}(i) denotes the set of successor
nodes of nodeg i.e. allj such thati,j) € 4.

Travel times and capacities are assdinte be spatially and temporally
independent and independent of one anofberng theperiodof interes{0,1,...,T},
arc attributesmay vary with time. After this period, it is assumed thetey are
stationary, taking the same values as at the last timeeval, T. Network 2 is
permitted to be noRIFO. It is assuredthat if an ardas norzeroprobability of zero
capacity at times, thensome norzero probabilityof zero capacity exists fdps.

While a solution when employed in rdahe operations masequire that some of the
supply waits at intermediate nodes, a solution to this problem is not permitted to
suggestvaiting at these intermediate locations.

Miller-Hooks and Stock Patterson (2004) provide a technique for efficiently
converting multisour@, multisink network flow problems to single source, single
sink problems. Without loss of generality, the SEscape problem is described as a
single source, single sink problem for the remainder of this work. The supply at node

S at departure time is demted by bs(t) and can take on positive values for any
departure time. The demand at nbde departure timg b (t), is zero for all values
of t except fort=T. No supply is available after tinle i.e. b, (t)=0,Vi € ¥, t>T. It

is assumed that all supply can reach the sink no later thaif imal realizationsAt

departure timeT, the demand will equal the total sup@y i.e. b(T)=-B = -
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T
st(t). Thus, if flow arrivesprior to time T, it simply waits without penalty until
t=1

time T in order tofulfill the demand. Finally, the supply at all other nodes will be zero

at all departure timek; (t)=0,Vi € V\{s, I}, t € {0,...,T}.

The SEscape algthm ddermires the pattern of flow thamaximizes the
minimum path probability of successful arrival at the sinlsuglply originating aa
single sourcenode in dynamic networkaith timevarying arc traversal timeand

STV capacities. Thenathematicalormulation d the SEscape problem can be written

as follows:
. i (t
Max [min TR @], ®
(i, Heo

PRITUEEDY > x; (1) =b (1), Vie?,te{0,...T}, @)

jer* jer i ey ()=t}
0< x; (t) <maxuf(t),  V(,j)e ate{0,..T}, (3)

z

where Q) isthe set ofall possible paths from sourtesink.

A related formulation is given in MilleHooks and Stock Patterson (2004) for
the TimeDependent Quickest Flow Problem (TDQFP) in twaeying but
deterministic networks. Constraints (2), i.e. the flow conservation constraints, are
identical to tlmse given in MilletHooks and Stock Patterson’s work. However,
because the SEscape problem involves stochastic capacities, the Bevsigped
along each ard,() € 4 at timet € {0,1,...,T} is bounded by the maximum value of
all possible capacities omca(,j) at departure time (constraints (3)). Whereas the

objective of the TDQFP is to find the flow pattern for completing the shipment with
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the minimum total timer minimum evacuation timehe SEscape problem seeks the
flow pattern whose minimum suess probability path has the maximum value. An
example of the mathematical formulation of the SEscape problem as applied on a

small network is presead in Appendix B

4.6 SOLUTION APPROACH

An exact solution methodology for solving the SEscape problém 8Escape
algorithm) is described in this section. The algorithm relies on a probabiliste
dependent (PTD) residual network and solution of the Maximum Probability Path
(MPP) problem. In this section, details of the PTD residual network and of the
SEscape algorithm are given, followed by description of solution to the MPP problem

via the MPP algorithm.

4.6.1 The PTD residual network

The SEscape algorithm employs the similar concept of the-Diependent Quickest

Flow Problem (TDQFP) algorithm (Mél-Hooks and Stock Patterson, 2004 that

it extends thesuccessive shortest path algorithm for solving minimum cost flow

problems in static networks (see Ahuja et al, 1993 for additional details on the

algorithm) for use in timevarying environmentsThe basic idea is to iteratively

determine the properly defined optimal paths from source to sink in a residual

network and incrementally push flow along the paths until all demand is fulfilled.
Unlike the TDQFP algorithmthe SEscape algorithremploys the PTD

residual networkFor a given flowx, the PTD residual networiks denoted5(x). The
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arc weight valuesepresenthe probability that the capacity of arigj) at timet is not
less tham, P{u;; (t)> n}, denoted byR'(t), n = {1,2,..,m;axuif(t)}. R (t) can be
viewed as the probability of successful arc traversal forits on arci(j) at departure
time t. Associated with each ar,j) € 2 and depadre timet € {0,1,....T} isa
residual pointer &;(t) = x;(t) - X;(t+7z;(t)) + 1 This pointer works as an
indicator for the remaining capacity, i.e. the remaining capacity df,grat timet =

maxuijz(t) - 6;(t) + 1. Initially, g;(t) is set tol for all (ij) € 4, t € {0,1,....T}.
z

Figure4.5demonstrates the construction of thiéal PTD residuahetwork.

(U (1), A () =(1,0.3) R’(t)=0.7
(uf . A1) =(3,0.9 Rf ()= 0.7
Ri(t)=1.0
g;()=1
(a) Original network (b) Initial PTD residual network

Figure4.5. The PTD residual network.

In Figure 4.5a, the possible capacities of(gjrat departure timeare 1 with

probability 0.3 and 3 with probability 0.7. T D residual networkransforms this
information into theform of P,j” (t), n=1,2,3. For instance, the probability that two

units can successfully traverse the arc at the corresponding departure time is 0.7.
The SEscape algorithm useackward arcswhose attributes have a sjac

structureto enablethe return of capacity to an arorfcanceihg decisions made
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earlier (ensuring optimality in the larger problenThe backward arcs and the
associated probabilitij? (t'), ' =t+ 7;(t) <T, canbe implemented as shown in

Figure 4.6.

t(t+ 7 (1)
| P2t =1/R3()
1 PEe)=URZ()
 PE(t)=URMY)
05 (t')

Figure4.6. The PTD backward arc.

Similar to real argi,j) at timet, a residual pointerg;; (t') , is associated with
backward arcj(i) at timet’, t' =t + z; (t) < T, v{t € {0,1,....T}| x;(t)> 0} to
indicate the remaining capacity of the corresponding backward arc at the given time
0;i (t') is computed byx; (t)-x; (t'). Through the special structure of the DPT

residual networkincluding the residual pointerthe probability that each unit will

succeed in traversing each at@ particular timean be readily obtained.

4.6.2 SEscape algorithm

The SEscapealgorithm can be decomposed into two main componéhtgeneration

of paths connecting the source and sink with nonzero probability of having adequate
capacity to accommodate all supply units and 2) determination of the number of units

to be sent along each path to complete the shipmientee TDQFP algothm, at
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each iteration, the path with the earliest arrival time in a-tlepgendent residual
network is chosen. In the SEscape algorithm, rather than seek this earliest arrival time
path, the algorithm chooses the path with the maximum probability oéssfally
shipping additional units of flow from the source to sink in the PTD residual network.
An overview of the SEscape algorithm is presented next.
1. Construct a PTD residual network: Transform the network into a PTD
residual network.
2. Generate Maximum Probability Paths: Given the PTD residual network,
obtainthe path with maximum probability for sendinge additionalnit of
flow from the source to the sink by the maximum probability path (MPP)
algorithm (dscribed in Subsection 4.5)3Push one (or me)* units of flow
along the MPP

3. Update the PTD Residual Network: In the PTD residual networkpaintain

the values related t@,j” (t) along each arci,() for eachdepature timet e

{0,....,T}. Update the residuapointers, ¢;(t) a each iterdon and the

backward arcsyhere Pj? (t'), t'=t+7;(t) <T, as needed

4. Terminate: If all supply has been assignedatpath, terminate the algorithm;
otherwise, return to step 2
The SEscape algorithm terminateith a set of paths from the source to the sink and
the corresponding number of units to H@pped along each path such that the
minimum probability of arrival at the sink is maximized. The actual amount of flow

that will be able to pass through each ar a given point in time is not known until

! See how the number of flow units to be shipped on the MPP is determined in Section 4.6.3.
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the solution is implemented and values of the arc capacities are revEaéed.
procedural steps of the SEscape algorithm are provided Adgitional notation
employed in the SEscape algoritigrgiven hereadr.

e(t) = excess supply for departure titret the source node.
t = earliest time such that supply at the source exists.
Algorithm SEscape
Step 1
Initialize the following variablesx = 0, G(x) = G ande(t) = bg(t), vVt € {0,...,T}.
Setd; (t)=1,v(i)j) € 4,t € {0,...,T}.
Step 2

Determinet , wheref = min (t|e(t) >0).
t{0,...T}

Call the functiorMPP(l, T, ¢; (t) , G(x)), whose output coainsy's ando.
Determines, wheres = min (e(t) , w(f)). If £ = 0, stop, the problem is infeasible.

Augmente units of flow along pathys, i.e. increase; (t) bye, V((i,j), 1) € o

Decrease({) bye.
Step 3
Determine the residual pointers for aJj)(e 4 given the flowx.

Set&’ij (t) = Xij (t)'in (t+Tij (t)) + 1, V{tE{O,,T} |t+Tij (t) ST} ,2

It > et)=0, Stop.
tg0,....T}

2| there exists real arg,i) € 4, the backward arc of aftj) must be differentiated from the origin
arc (,i).
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Step 4

Backward arc update:

Add the backward arg,() to the residual grapl@(x), if it does not already exist, for
each(i,j) € 4, such that for somee {0,...,T}, x;; (t)> 0. For all backward arcs,i{,
update the following travel timgprobabilities of successful arc traveraatiresidual
pointers.

Tji(tl) = —Tij (t), tI:t+Tij (t)ST,V{t E{O,,T)l Xij (t)> O},
=T, v{t €{0,...,T)| X;j (t)=0}.
Pil(t') =1/RM (), n=1,...,maxug(t), t'=t+z; (t) <T,¥{t €{0,...,T)| x; (t)> 0}.

0;i ()= x;; (1) - x;i (), t'=t+7;; (1) <T, Yt €{0,....T) }.
Return toStep 2.

In Step 1, the PTD residual network is constructed from the original network.
The excess supph(t) is initialized to the supply values at each departure tjraed

g (t) is =t to 1 for all arcs and departure times. Step 2 features the MPP algorithm

for determining the MPP and the appropriate amount of flow to be sent along the
path. After the flow has been shipped, the excess sefipig reduced. In Step 3, the

residual panters ¢; (t) on theconstituentarcs along the path are updaté(t) =
X (t) - x;(t+7z;() + 1 The final step is concerned with the update of the PTD
residual network. Backward argi) at timet +z; (t) are added in response to the

presence opositive flow on arci(j) at timet. The travel timesprobabilities of

successful arc traversal and residual poindsisociated with the backward aare
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updatedaccordingly After Step 4, the algorithm returns to Step 2 and this iterative
process continues until all the supply has been shipped.
Upon completion, the algorithm providdse set of arc flows, which can be

identified through the residual pointeg;(t). That is, he flow on arc(i,j) at
departuretime t is equal tod;(t) - 1. The next subsection describes the MPP

algorithm, which is used as a subroutine within the SEscape algorithm.

4.6.3 Maximum Probability Path (M PP) algorithm
The SEscape algorithmelies onthe MPP algorithm taeterminethe MPPand the
associated number of units to be shipped along from the sourcestodbe sink
nodel in the PTD residual network.he MPPalgorithm is a specialized version of
the TDLTP dgorithm of Ziliaskopoulos and Mahmassani (1998) determining
pahs with the maximum probabilitthatone (or more) unitean successfully arrive
at the sink from each node at each departure time inFHe@, timevarying
networks.Waiting is not permied at any node.

The TDLTP algorithm determisgethe least time pashfrom all nodesto a
desired destination. In the MPP algorithm, in addition to arc travel times, the
probability of successful arc traversal is associated with eacat aach departure

time andthe objective is todetermine a path between an origgstination pair such
that the probability of successful arrival at the destination is maximized?;L(et be

the probability thatat leastone unit can successfully traveraec {,j) at departure
time t. Assume thasuch probabilities are independent over space and time. The

probability of successful arrival at the destination, given that pa&haken from the
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origin, is computed by []R; (®).
((i,j))ea

In the MPP algothm, associated witlkach node € 7 and each departure

timet € {0,1,...,T} arelabels 4, (t) andy; (t) . Prior to termination 4, (t) represergt

a lower bound orthe probability of successfully shipping (t) units from node at

departure time to the destination node Similar to the original TDLTP algorithm,
the MPP algorithm determines the MPPs in an iterative manner by scanning nodes
from a scan eligible (SE) list working backwdrdm the destination nod&éhe MPP
algorithm constructs the MPP from each node at each departure time through the
currently MPP associated with a successor node. If the newly constructeliegpath
greater success probabilityan the currently MPRom the same node at the same
departure timéo the destinatiarthis new path will become the MPP.

In each iteration of the SEscape algorittine updated PTD residual network

G(x) and associated residual capacitggt) are used as input the MPP algorithm

For each ard(i,j) € 4 and each departure tintee {0,...,T}, &;(t) indicates the

appropriate value of the probability «fuccessful arc traversaPif'j(t)(t) for

computing 4; (t) . The optinality condition of the MPP algorithm can be written as
follows.

At > R

(t) - 2 (t+7; (1)), forallj e T™(i) (equation 1)
A temporary vector labely, (t) is employed in the update of;(t). If
n; (t) > 4; (t), the label is updatedj; (t) = #; (t), and node is inserted in the&SE list

for subsequent scanning. Upon termination, each laf{€) providesthe maximum
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probability that y, (t) units can arrive athe desired destinaticstarting from node
at departure timeé A pointer z; (t) is used to indicate the successor nodes from node

i at timet.

The algorithmic steps of the MRgorithm are given next.

Algorithm MPP (I, T, ¢; (t) , G(X))

Step 1 (Initialization):
Initialize the labels and path pointers.

A4M) =0,Vie ¥\, te{01,.T}
wit) =, Viete{01,. T}
7 (t) =0, Vie Vte{0l,..Th
Di(t) =0, Vie Vte{0l,.Th
A) =1,Vte{01,..T}h

Create the SE list and insert thestinatiomodel into the SE list.

Step 2 (Select Node for Scanrgit

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE
list. Call this node the current nogde

Step 3 (Update the Node Labels):

Foreachi e I'}(j),

Foreach, {t € {0,1,... T} | t+7; (1) <T, A4 (t) <1},

j ()

n® =PI M) 2+ ).



Ifn; (t) > 4 (), then set:

A4 =n (),

7; (t) =j and SE = Sk {i},

yi(t) =min (p;(t+7; (1), x),

Y.

where x=q-6,g=min{ n|n>@and P”-”(t) < 'Di;qj

Return to step 2.
Step 4 (Termination):

Upon termination, the MPP algorithm provides the maximum probabilitpumber
of units to be shippeds; and corresponding path; (arcs along the patandthe

associated departure tinterin each arc) from all nodes= 7to the destinatioh
Proofs andthe worstcase computational complexity of tiPP algorithm
follow directly from tlose of the original TDLTP algorithm given Hiliaskopoulos

and Mahmassani (1993).

4.6.4 Proof of the SEscape algorithm

In this section, proofs of correctness and computational complexity of the SEscape
algorithm are given. For clarity, the proof of Prepion 4.1 is given in the static

case. To extend these concepts for networks with¥engng arc traversal times and
capacities, the arc travel times, capacities and flow must be expressed with respect to
the arrival time at the nodes and the path seleprocess is performed over the time

dimension.
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Proposition 4.1. The SEscape algorithm provides the pattern of flow whose
minimum path probability of successful arrival of supply at the sink is maximized.
Proof. The two possible cases, one in which backward arcs are used in the
solution and the other in which one or more backward arcs are used in the solution,

are considered separately.

Casel: The selected paths employ no backward arc

For shippingn units of flow, the SEscape requireg mostn iterations of the MPP
algorithm. Because the MPP algorithm guarantees to obtain the maximum probability
path, in each iteration the path with the maximum probability of successfully shipping
at least one unit from the source to the sink is chosen. Theréfdre,path contains

no backward arcs, the success probability of the patshipping the lasset offlow

units would have the maximum success probability.

Casell: The selected paths employ one or more backward arcs

When the MPP algorithm selects alpavith one or more backward arcs in some
iteration, and flow is shipped along the path, capacity is returned to the corresponding
arcs, and a new set of paths connecting the source to the sink results. Proof of this
second case requires proving that amghpin this new set must have a higher
probability of successful arrival at the sink than that of any path without backward
arcs.An example network given in Figure 4.7 is employed. Suppasaits of flow

must be shipped from the source ned® the sinknodel and no path employing
backward arcs has been introduced into the solution path flows up2jo unit
shipments. This implies that the probability of successfully shippingntB#(unit is

the maximum probability of completing the shipment tfausLet A, B, C, D, E, and



F be the current probabilities of successfully traversing &2% (2,3), (3), (s,3),

(2)) and 61), respectively.

Figure4.7. The PTD residual network after completion of (n-2) unit shipments.

Assume patfs-2-31 has the maximum probability for shipping tie1)™ unit. That

is, the following assumptions with respect to the current PTD residual network must
hold:

[) A-B-C > A-E. This infers that B-C-(1/E) > 1

II) A-B-C > D-C. This infers that A-B-(1/D) > 1

I A-B-C>F

After completing this shipment, backward arcs are introduced in the residual network

as portrayed in Figure 4.8.
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Figure4.8. The PTD residual network after completion of (n-1) unit shipments.

From Figure 4.8the updated PTD residual network contains a new $3at4 that
employs backward arc (3,2) with corresponding probability 1/B. For the last
shipment, a path with the maximum success probability according to the PTD
residual network must be chosen. Twougs of paths are considered here according
to whether or not backward arcs are employed. Among all paths that do not contain
backward arcs, pathl is assumed to have the maximum probability (F). We further
assume that patt3-24 with probabilityD-(1/B)-E isselected by the MPP algorithm

for shipping the last unit, i.&-(1/B)-E > F. To prove that selecting this path would
result in the maximum least probability of successfully arrival at the sink, we must
show that the new set of paths created ftbim path selection, pattss3-1 ands-2-,

have higher probabilities of successfully completing this last shipment than that of
paths-l. In other words, we need to prove that C-D > F and A-E > F. Since-p&th

| is selected over patHl, the followirng condition holds.

D-(1/B)-E > F (1)
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Equation(1), CD-(1/B)-E> C-F, infers that

C-D > [B-C-(1/E)]-F 2).
Given assumption |,

B-C-(1/E) > 1 3).
Through (2) and (3), we can conclude that

CD>F (4).
A similar process can be applied fooving A-E > F.
Equation (1), A-D-E > A-B-F, infers that

A-E > [(A-B-(1/D)]-F (5).
Given assumption I,

A-B:(1/D) > 1 (6).
Through (5) and (6), we can conclude that

A-E>F (7).

If a path employing backward arcs is selected by the MPP thiggrihat path

will result in the maximum probability of successful arrival at the Siihlerefore, the
SEscape algorithrguarantees to provide the pattern of flow whose minimum path

probability of successful arrival glipplyat the sink is maximized.

Proposition 4.2. The worstcase computational complexity of tB&scapealgorithm
is ~O(B-F), whereB is the number of supply units, and F is the running time of the

embedded path finding algorithm.

Proof. In the worst case, the SEscape algorithm requ8regns of thepath finding

algorithm for B supply units. Because the complexity of the path finding algorithm is
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~0O(F), the worstcase computational complexity of th®Escapealgorithm is
~O(B-F).

The MPP algorithm embedded in the SEscape algorithiinfding paths has
the similar complexity to the TDLTP algorithm, i.€0(V*1?%), whereV = |7/| is the
number of nodes in the network and | is the number of time intervals considered.
Therefore, theworstcase computational complexity of ttf&Escapealgorithm is
~OB-V319). ¢

It is significant to note that while each iteration of the SEscape algorithm
requires only a single path for shipping flow from the source to the sink at a particular
time, the MPP algorithm finds the MPP from all nodes to a destmddto all
depature times. The complexity of the SEscape algorithm can be considerably
improved if asimilar algorithm were to be discoverethat can avoidthe steps
required in determininghe unnecessary solutionge. solutions from nodes or at

departue times that are not needed

47ILLUSTRATIVE EXAMPLE

In this subsection, the procedural steps of the SEscape algorithm are illustrated on a
simple example network displayed in Figure 4.9. Three units of flow must be shipped
from node 1 at timé=0 to noe 4, i.e.b;(0) = 3. The corresponding arc travel times

and capacities that are necessary for determining the optimal pattern of flow for

completing the shipment are provided in Table 4.1. Table 4.2 shows the associated

P,j” (t) values for the initial PTD residual network. For instance, the probability that
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the capacity of arc (1,2) at timie0 is not less than three units is 0.3, Eﬁ(O) =

0.3.

Figure 4.9. Example network.

Table4.1. Arctravel timesand capacitiesfor the example network.

(i) (1,2) (1,3) (14) (2,3) (2,4) 3.4
zjj (1) t=0: t=0: t=0: t=2: t=2: t=4:
2 4 6 2 3 2
t=0: t=0: t=0: t=2: t=2: >4
U2 () (B2() 4(0.3) 1(0.4) 3(0.1) 2(0.9) 2(01) 2(0.90)
1) 1) 2(0.5) 0(0.6) 0(09) 1(0.1) 1(02) 1(0.05)
1(0.2) 0(0.7) 0(0.05)
Table4.2. The PTD residual network.
(i) (12)/(13))(14 (2324 R4
n| t=0 | t=0 | t=0 | t=2 | t=2 | >4
5/ 0 0 0 0 0 0
0 41 0.3 0 0 0 0 0
Ri® 37 03] 0 [01] 0 | 0 | O
2| 0.8 0 0.1 ] 09| 0.1 |0.90
1] 1 0.4 | 0.1 1 0.3 | 0.95
o 1 1 1 1 1 1

The following detailghe steps of the SEscagkgorithm on this example problem for

shipping three units from nodego node 4departing node 1 at tinte=0.
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Iteration 1
Step 1

Initialize the following variablesx=0, G(x) = G ande(t) = b (t), Vt € {0,...6}.
Setg;(t)=1, V(i) € 4, t € {0,...6}.

Step 2

—)

=0.

Call the functiorMPP(l = 4, T =6, ;(t), G(0)),

4(0)=0.95,y1(0)= 1and 0, (0) = ((1,2), 0) ((2,3), 2) ((3.,4), 4)

¢ =min (&0),y1(0)) = 1.

Augmentoneunit of flow along pathyl(O), X12(0) = Xo3(2) = X34(4) =1
Decreaseg(0)=3-¢=2

Step 3

Determine the residugbintess for all (,j) € 4 given the flowx:

012(0) = 023(2) = O34(4) = 2.

Step 4

Add backwad are (2,1) (3,2) and (4,3d the residual graph:

Table 4.3. Backward arc information.

(i) (nl ()] G2 (43)
t=2 | t=4 t=6

0 0 0
1/0.3| O 0
1/0.3| O 0
1/0.8| 1/0.9] 1/0.90

1 1 |1/0.95

1 1 1

R (®)

OIRIN|W| MO
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721(2) =-2, 735(4) =-2, 743(6) =-2.

021(2) = 035(4) = 043(6) = 1.

Figure 4.10. PTD residual network.

Iteration 2

Step 2

Call the functionMPP(I =4, T = 6, 9” ®), G(2)),
4,(0)=0.648,y,(0) = 1and 0, (0) = ((1,2), 0) ((2,3). 2) ((3,4), 4)
¢ =min (&0),y1(0)) = 1.

Augment one uniof flow alorg patho, (0), X12(0) = X23(2) = X34(4) =2
Decreasee(0)=2-¢=1

Step 3

Determine the residugbintess for all {,j) € 4 given the flowx:
O12(0) = 023(2) = O34(4) =3.

Step 4

021(2) = 035(4) = 043(6) =2.
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Iteration 3

Step 2

Call the functiorMPP(l = 4, T =6, ;(t), G(2)),

/1(0)=0.133,p,(0) = Land o (0) = ((1,3), 0) ((3.2), 4) (24), 2)

¢ = min (&(0),y1(0)) = 1.

Augment one unibf flow along pathal(O), %13(0) = X35(4) = X4(2) =1

Decreasee(0)=1-¢=0.

Step 3

Determine the residugbintess for all (,j) € 4 given the flowx:

012(0) = 0O34(4) =3, 023(2) = 013(0) = 024(2) =2.

Since ) e(t) =0, stop.

t0,... 6}

Figure4.11. Shipping one unit on path 1-3-2-4.

The optimal set of path flows for completing the shipment of three units from

node 1 to node 4 is to split the flow, one unit along each p&tht, 11-2-34 and 13-

4, as depicted in Figure 4.12. This patt of flow guarantees that the minimum



success probability has the maximum value. The minimum probability of successful

arrival at node 4 by following this solution is 0.24 through pa2+4l

Figure 4.12. Optimal solution.

Section 4.8 presents moputational results foassesag the computational

performance of taSEscapealgorithm.

4.8 NUMERICAL EXPERIMENTS

In this section, computational experiments are conducted through randomly generated
networks to examine the average run time and otheactesistics of the SEscape
algorithm. The algorithm wasoded in C++ and run on a DEC Alpha XP1000
professional workstation with 1 gigabyte ram and 2 gigabyte swap, running Digital

4.0E operating system, using Digital’'s C++ compiler.

4.8.1 Experimental Design
The same network configurations as provided in MiHeoks andStock Patterson
(2004)for testing the TDQFP algorithm were used. That is, the networks have either

25, 100 or 500 nodesh& average mand out degredor each nodés approximately
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4, varying from 2 to 9For each network topology, three sets of the number of time
intervals in the nostationary period are considered: 60, 120 and 240. Supply exists
at onequarter of the time intervals in the period of interest. Five supply units were
assigned to each selected interval.

The arc travel times for each time interval are randomly generated between 1
and 15 time units and are integral.r@ random arc capacities for each time interval
range from 1 to 20 units and also are intedgral eath networkconfiguration, a
single source was randomly chosen and 10 werecompleted, corresponding to 10
randomly selected sinks. The average of these 10 runs was reddridecequires 90

runs of 9 different network configurations.

4.8.2 Experimental Results

The results of all runs are reported in Table 4.4. In the table, the first two columns for
each combination of network topology and the number of time intervals demonstrate
the run times of the SEscape and MPP algorithiespectively. Tie run tmes do not
include I/O time, as is common practice in reporting such average run tmtée.

third column,the number of paths regad in completing the shipments is presented
The average values of the 10 runs giken in bold at the end @&ach colum. Note

that for the 100 node network with 60 time intervalshe norstationary periodthe

time boundT had to be extended to 75 @aocommodatall shipmentsSimilarly, T

was extended to 90 and 1fs0 the 500 node network with 60 and 120 time intkstva

respectively



Table 4.4. Experimental results.

25
60 120 240
# of # of # of
SEscape MPP | paths| SEscape MPP | paths| SEscapel MPP | paths
0.933 | 0.917| 32 4.866 4.783 66 30.949 | 30.649 | 179
0.900 | 0.883 | 32 7.150 7.100 92 35.032 | 34799 | 192
0.850 | 0.833| 31 5.500 5.450 81 24.449 | 24.349 | 150
1.100 | 1.067 | 40 5.883 5.833 86 30.599 | 30.415 | 165
1.433 | 1.367 | 44 4.650 4.600 65 35.049 | 34.799 | 194
1.267 | 1.233| 46 4.666 4.600 78 23.766 | 23.666 | 145
0.967 | 0.967 | 37 7.166 7.116 96 23.449 | 23.299 | 156
0983 | 0.950| 38 6.333 6.283 90 17.199 | 17.016 | 116
1.567 | 1.550| 43 7.083 6.983 99 21.766 | 21.516 | 147
0.983 | 0.967 | 37 5.566 5.500 85 30.016 | 29.799 | 173
1098 | 1.073 | 38 5.886 5825 | 83.8 | 27.227 27.031 | 162
100
60(75) 120 240
# of # of # of
SEscape MPP | paths| SEscape MPP | paths| SEscape, MPP | paths
6.550 | 6.516 | 32 | 41.415| 41.165 | 104 | 201.342| 200.592| 233
7.000 | 6.950| 34 | 37.549| 37.382 | 99 | 158.127| 157.460| 206
8.416 | 8.333| 40 | 37.282| 37.032 | 104 | 167.943| 167.293| 213
10.566 | 10.550| 49 | 40.632 | 40.432 | 110 | 141.461 | 140.794| 197
6.483 | 6.450 | 30 | 38.365| 38.182 | 105 | 145.694 | 145.011| 196
11.016 | 10.983| 50 | 31.182 | 31.049 | 91 | 134.245| 133.695| 177
9.516 | 9.450| 48 | 40.382 | 40.182 | 108 | 133.828| 133.178| 186
9.600 | 9516 | 49 | 35.732| 35565 | 99 | 115.612| 114.995| 163
9.600 | 9.450 | 49 | 38.68 | 38.448 | 102 | 151.044 | 150.294| 206
10.733 | 10.600{ 52 | 45.782 | 45.481 | 111 | 138.161| 137.645| 187
8.948 | 8.880 | 43.3 | 38.700 | 38.492 | 103 | 148.746 | 148.096 | 196
500
60(90) 120(150) 240
# of # of # of
SEscape MPP | paths| SEscape MPP | paths| SEscape] MPP paths
78.264 | 77.964| 50 | 330.437| 329.421| 118 | 1122.390 1118.721] 239
84.363 | 84.030| 55 | 413.183| 411.934| 130 | 1194.690 1190.770| 248
97.229 | 96.830| 55 | 306.738| 305.555| 115 | 1242.780 1238.984| 251
79.397 | 79.030| 51 | 343.220| 342.203| 122 | 1104.740 1101.172 231
83497 | 83.213| 54 | 332.587| 331.520| 117 | 1895.420| 1891.325 254
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78.414 | 78.047| 49 | 338.270| 337.087| 118 | 1337.900 1333.781 253
96.846 | 96.529| 60 | 354.536| 353.186| 123 | 1054.040 1050.575 226
79.947 | 79.697| 51 | 324.004| 322.937| 120 | 1247.050 1243.101 254
78.814 | 78.514| 52 | 308.704| 307.671| 113 | 1002.890 999.177| 227
80.097 | 79.680| 51 | 299.888| 298.938| 107 | 1277.920 1274.067 254
83.687 | 83.353 | 52.8 | 335.157 | 334.045 | 118 |1247.982 | 1244.167 | 244

The results in Table 4.4 show that significant portion of the computational
time is due tocalls to the MPP algorithm as the average run time of the MPP
algorithm takes over 99 percent of the total run time required by the SEscape
algorithm. An algorithm with less overhead (i.e. that seeks the path from one source
to one sink at one departureng) could reduce this ratio. Given the same amount of
supply, the average number of paths required in shipping all the supply increases with
the size of network. The SEscape algorithm perfomeseven on networks witG00
nodesand much better than pretid by the worstase complexity~O(B-V3.1?),
given inProposition 4.2For instance, the average run time for306 node network
with 240 time intervalsis 1,244 c.p.u. seconds, which is less th@y®00 timesthe
average run time of the5 nodenetwok with the same number of time interv§/

c.p.u. secondsjhat would be expected based on woeste complexity

The SEscape algorithm requires significantly more computational effort than
does the TDQFP algorithm for problems of similar size. Faant®, the average run
time of the SEscape algorithm on the network with 500 nodes and 240 time intervals
is 1,244 c.p.u. seconds; whereas the TDQFP algorithm requires 19 c.p.u. second as
reported in MillerHooks andStock Patterson (2004Many factors cotribute to this
increase in required computational effort of the SEscape algorithm over that of the

TDQFP algorithm. First, the number of paths required in the SEscape problem for
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sending all the supply is frequently larger than that required in the T2{@BRthm.

This is because the TDQFP algorithm always pushes flow up to the maximum
capacity of the chosen path, and thus, will likely require fewer paths for completing
all shipmentsThe SEscape algorithm, on the other hand, assigns flow along the path
for the amount that maximizes the probability of successful arrival at the sink.
Second, with the same amount of supply, laé&ounds are requiretb solve the
SEscape problem, which directly affects the computational steps of the MPP
algorithm. Lastly,the computational complexity of the MPP algorithv®(V>.1%), is

worse than that of the TDEAT algorithmQ(V21), the path algorithm used within

the TDQFP algorithm.

Note that the TDEAT algorithm allows waiting and cannot be used with the
SEscape algahm. However, the difference in the average run time between the
SEscape and the TDQFP algorithms is not as large as predicted bycasbrst
complexity analyses. For examplkee average run timef the SEscape algorithfor
the 500 node network with4P time intervalsrequiresl,244 c.p.u. secondswvhich is
less than 120,000 times the average timeof the TDQFP algorithm for the same
network configuration (1%.p.u. seconds as would be expected by its wecsise

computational complexity

4.9 CONCLUSIONS
In this chapterthe SEscape problem is formulated and an exact solution approach is
proposed. The SEscape problem is concerned with the determination of the optimal

evacuation instructions whose minimum probability of successful arrival of the
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evacues at the safe location is maximized. The SEscape algorithm explicitly
considers the time-varying and uncertain naturenherent in such situations.
Specifically, it determines the set afpriori path flows in capacitated dynamic
networks, where arc travaistimes are tim&arying, and arc capacities are discrete
random variables whose probability distribution functions vary with tFoeéowing

the instructions given by the SEscape algorithould maximize the likelihoodhat

any person who is subject tbet greatest risk will succeed in escapiRgsults of
extensive numerical tests show that the SEscape algorithm performs significantly
better than expected by its wecstse computational complexitythe proposed
conceptual framework andgorithmic stepscan be used in evacuation planning,
enabling safer evacuation of a building in the event of military attack, fire, natural

disaster, or other circumstances warranting quick escape.
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CHAPTER 5

HEURISTICSFOR MSTV CAPACITATED NETWORKS

5.1INTRODUCTION

The SEscape algorithm was proposed in Chapter 4 for deterntih@attern of flow

that maximizes the minimum path probability of successful arrival of supply at the
sink. Development of the SEscape algorithm was motivated by the need to provide
instructions to evacuees in the event that rapid evacuation of a large damaged or
burning building is required. While the algoritrexddresses stochastic, thwarying

(STV) capacities, the timearying arc travel times are assumed to be known
deterministicdly. In this chapternetwork flowproblens in dynamic networks, where
knowledge of arc travel times uncertain, araddressed.

Explicit consideration of stochastic and thverying travel times makes the
SEscape problem and other related problems (bgy.ptoblem of determining
evacuation routes with the minimum total travel time) significantly more difficult.
This is because arc travel times are known at best only probabilistically and,
therefore, the location of shipped flow units at any point in tarenot be identified
with certainty. It appears that no existing works in the literature address such
problems without relying on simulation. Thus, an exact solution (given discrete
random arc weights) would require enumeration of every potential conuniradtarc
travel times and capacity realizatioruch an approach would require enormous
computational effort. In this section, a technique that can provide competitive

approximate solutions with significantly less computational effort is proposed. A
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gendic algorithm (GA) is presented for determining optimal path flows with respect
to several problems in dynamic networks, where arc traversal times and capacities are
random variables with probability mass functions that vary with time. Capacitiated
networks with such stochastic and timarying arc travel times and capacities are
referred to herein as STV capacitated networks.

A GA, like any meteheuristic, cannot guarantee an optimal solution. To
assess the performance of the developed GA, one must rosgdations generated
by that technique to exact solutions or, a bound on the exact solution. However, no
efficient technique has been proposed to determine the exact solution or bounds on
the solution fometwork flow problems in STV capacitated networksthis chapter,
the framework for the GA is first presented for solving the problem of determining
optimal path flows, where the arc travel times are assumed to be deterministic and
time-dependent. The solution approach can be used to seek a pattew &dr
shipping a given amount of supply such that a single objective is achieved, e.g.
minimum total time, maximum expected flow or maximum minimum path
probability of successful arrival at the sink (the SEscape problem). Numerical
experiments were condted to assess the performance of the proposed GA. Results
of the experiments show that the GA results in solutions of high quality as compared
with exact solutions generated by exact approaches. The GA is then extended for use
in more complex STV and M3/, capacitated networks, where no exact algorithm
exists. An MSTV capacitated network is an STV capacitated network with multiple

STV arc attributes.
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GAs are powerful stochastic search techniques rifigit on the concept of
natural selection and evolutio®ne of the advantages of GAs over traditional
optimization techniques is that optimal solutions are sought from the entire decision
space. Therefore, GAs have been used in many published works to addasiety
of complicatedcombinatorial optimizatiorproblems,such as noiinear, discrete,
stochastic, or multiobjective problems, which cannot be efficiently solved by
currently existing exact techniques.

Each solution in a GA is represented by a chromosome. Each chromosome is
characterized by a serie§ genes (i.e. decision variables). A GA generally starts by
randomly generatingninitial set of solutions called @opulation. New chromosomes
are producethrough successiveopulatiors called generation# eachgeneation,a
crossover operataecombnes twochromosomeso form new chromosomesaled
offspring The offspring may beerturked using a mutationperator that randomly
changes one or more elementsairchromosomePotentially good solutions with
respect to a fitness function will be sebztto contribute to the next generation and
further reproduction. The entire process is repeated until the termination @areria
met(see for exampleGoldberg (1989) for additiondletail on GAS).

The greatest difficulty inapplying GAs to network flav problems lies in
appropriate design of solution representation andnswaint handling. A well
designed representation enables the underlying genetic operators to perform
efficiently in exploring better solutionsirary strings of 1s and Os are widebed to
represent decision variables in GA applications, because of the flexibility in encoding

and recombining solutions. That is, integer and real valued variables are transformed
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into binary strings and new solutions are created by exchanging fragndénts o
strings (during crossover) between breaking points.

One of many problems encountered in applying GAs to a network flow
problem is constraint handling. Typical constraints of network flow problems include
flow conservation constraints (i.e. inflow egjual to outflow at every transshipment
node) and capacity constraints (i.e. the amount of flow shipped along an arc cannot
exceed the capacity of that arc). Any solution that violates any of the constraints is
infeasible. Several techniques have beermpgsed in the literature for handling
constraints, for example, penalty functions, repair algorithm and constraint preserving
operators. Appropriate selection of a constraint handling method is a crucial step in
development of a GA.

While GAs havebeen use in a broad range of application areasy fvorks
apply GAs to network flow problems, perhamhie to the availability of exact and
efficient optimization technique¥ignaux and Michalewicz (1991) developeda
to solvethetransportation problenin thetransportation problepeach node is either
a sources or sink, i.e. no transshipment nodes exist. The objective is to find the
amount to be shipped from the source nodes to the sink nodes such that the total cost
is minimized. A constraint is associatedthweach source to specify the available
supply and each sink to ensure the demand is satisfied. Capacity constraints are
omitted in this work. Two representation schemwese proposed: vector amaatrix
based structures. While these representation stesctre suitable in this context,
they cannot be directly extended for use in addressing problems that involve

transshipment nodes. The genetic operators are designed such that only feasible



solutions are generated in each population. Such operatorsaillof maintain
feasibility if capacity constraints are imposed.

Genet al.(2001) summarizedeveralworks on network design problertisat
have been addressed by GAs. Thasdlemsnclude: thefixed charge transportation
problem, degreeonstrained mimhum spanning tree prabh, and shortest path
problem. Inthe first problem, the netw& structure is represented by Rxufer
number.A checking step is embedded in the procedure to prevent the generation of
infeasible solutions during the intermediate steg the procedureThe second
problem deals with theninimum spanning tree problem witfide constraintsthat
limit the degre®f each nodeA two-dimensioml structure was proposed to encode a
spanning tree: one dimension for node permutations and tiexr &r degree
constrants. The constraints are handled by setting up conditions to keep only feasible
solutions in every step of the process. In the last proldeBA for solving the bt
criteria shortest path problem static networks is discussedhd difficulties of
encoding a patlare twofold: 1) a solution may contain a large number of repeated
nodes,resultingin cycles; and 2) a random ser@sarcs might not form a path. A
priority-based encoding metlowas proposed to resolve these difficultidhe
position of eachgene represents a node and the corresponding value of the gene
represents theriority of thatnode in the path. The disadvantage of this encoding
scheme is thatifferent chromosomes may result in the same path, which in turn
decreass the diversity of solutions.

Davies and Lingra2003)developed &A for solving shortest path problems

with and without waitingat nodesin a realtime environment (i.e. where updated
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travel times are received). The algorithm is composdd/@fcomporents:Prediction
Module andGAs for rerouting shortest path§he Prediction Modulecomponent
provides the updatedravel tines. The GA componentdeterminesthe updated
shortest patlgiven the new information. In the GAae& chromosome represents a
path ketween the origin and destination aathgenerepresents nodein the path.
Such a technique guarantees that every intermediate solution is feasible.

All of the works discussed thus far consider only uncapacitated netvaks
works have proposed GA®r network flow problems in capacitated networks.
Munakata and Hashier (1993) addressed the maximum flow problem using a GA.
Each solution is represented by a flow matrix. The algorithm dbgrtsandomly
generating the initial feasible population. Twateria, flow balance at nodes and
saturation rate of the flow (i.e. the proportion of the flow to the maximum arc
capacity), are incorporated in the fitness function. To generate a new solution, two
solutions are randomly selected from the population douprto the probability
computed by the ratio of the solution fitness to the sum of the fitness of the
population.For each pair of solutions, the crossover operator compares each node in
one solution to the same node in the other and the arcs assoctihtdtewode that is
better in the two criteria will be selected to form a new solutiomoneis best with
respect to both criterjarandom selection is performed. The mutation operator
perturbs a solution by randomly adjusting the flow of each arndrements of 1.
Unlike the aforementioned works, constraints are not addressed through these two
operators, inevitably affecting the feasibildy flow patterns. Infeasible intermediate

solutions are penalized by decreasing their fitness value. Expesinnesalts show



that the GA is inefficient in comparison with already available exact procedures. The
number of generations required to determine optimal or-oy@anal solutions is
large. Moreover, the algorithm frequently converges to an infeasiblgosolu

Sadek et al. (1997) developed a GA for addressing dynamic traffic
assignment, where traffic flow limitations imposed by capacity constraints are
explicitly considered. The objective function is to minimize the total time that
vehicles spend en route their destinations. A chromosome is represented by -a real
valued vector, each element of which is the number of vehicles that are assigned to an
arc during a timgeriod. The constraints actassified into two groupshose that are
met in the generan of the initial solutions and those that are not met, but that are
addressed by a penalty function method. The authors found that the GA required less
than a third of the time required by Microsoft Excel Solver to obtain similar results in
experiments o a small (ninearc, sixnode) network.

Most of the GAs discussed thus far ignore capacity constr&aotae work
generateinitial feasible solutionsbut are not guaranteed to produce a feasible
solution at the end. None of these works has consideredinigevarying and
uncertain nature of the network attributes. Note too, as discussed in Chapter 4, that no
exact algorithm has been proposed to address netflmrk problems inSTV
capacitated network€nly a few works have employed simulation modelsddress
such problems.

The aim of this work is to develop a GA framework for determirinpgiori
path flow decisions to ship supply from a source to a sink such that the total cost is

minimized. The problem is considered in a dynamic, STV capacitated rketino
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Section 5.2, the minimum cost dynamic flow problem with deterministic,-time
varying arc attributes (i.e. travel times and capacities) is addressed. A noisy GA is
presented in Section 5.3 that extends the proposed GA for solving the minimum cost
flow problem, where arc travel times and capacities are random variables whose
probability distribution functions vary with time. In Section 5.4, the GA is further

extended for use in MSTV capacitated networks.

52 A GENETIC ALGORITHM FOR DETERMINISTIC, TIME-VARYING
NETWORKS

In this section, a GA is developed for solving the minimum cost dynamic flow
problem in deterministic, timearying networks. No waiting is permitted at any node.
Without loss of generality, the proposed GA can be used with many otleetiods,

e.g. the SEscape problem, where arc capacities are known only probabilistically. In
many of the works that have proposed GAs for solving deterministic and static
network flow problems, the performance of the GA was not particularly impressive.
Tha is, the optimal solutions are not guaranteed and if they are found, tremendous
computational effort is require@he purpose of thisectionis not to develop a GA to
compete with conventional agthms, but to design a framework that can be
extended tesolve a more complicated problem, where no exact method is available,

e.g. the minimum cost dynamic flow problem in STV capacitated networks.
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5.2.1 Network Notation and Problem Definition
Let g = (v 4,{0,1,...,T}) be a finite digraph, wher#'is the &t of nodes is the set
of directed arcs connecting the nodes &d,..., T} is the time frame of interest

discretized into small time intervalgor each ard € 4 and departure timeé e
{0,1,....T}, u;(t) and 7;(t) dende the associated capacity and traversal time,

respectively.A single source and a single sink are denotedde s and nodd,

respectively.bg(t) represents the supplythe ®urcenodes at timet.

The problem addressed in tlascton seeksthe paths along which to send a
given supply from a single source to a single sink such that a single objective is
achieved. Two network flow problems are considered. The first problem seeks the
pattern of flow that minimizes the total time speampleting all shipments in time
dependent, dynamic networks, ia.variation onthe time-dependent quickest flow
problem TDQFP of Miller-Hooks and Stock Patterson (2004). The second problem
is to maximize the minimum path probability that supply wilccessfully arrive at
the sink, i.e. the SEscape problenme proposed GA framework can be employed
with many other objectives and will be extended for use in STV and MSTV

capacitated networks fBections 5.3 and 5.4, respectively.

5.2.2 Genetic Algorithm

There are six main components to be designed in developing a GA: 1) solution
representation, 2) initialization, 3) crossover, 4) mutation, 5) evaluation/selection, and
6) criteria for termination. The details of each component embedded in the proposed

GA are provided hereatfter.
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Representation of Solutions

Severaltechniques can be used fawnstrainthandling, including penalty functions,
repair algorithm and constraint preserving operatarghis work, the constraints are
addressed through the encaglischeme. The solution representation plays an
important role in accommodating the proposed encoding scheme.

There are a variety of ways to represent a chromodeatber than relying on
the commonly used bit strings, a more sophisticated structure edoded. The
representatiostructure is specifically designed to encode only solutions that abide by
the enforced constraints. aéh solution contairs several paths together with
corresponding flowforming a flow pattern for shipping certain suppBach gne
consists of two partshe first part contains a sequence of arcs forming a path fro
the source to the sinkh€& second part indicates the number of flow ulaitbe sent

through the path. The representation of a solution is indicated by tHeP§8t,
F (1)}, fori=1,2,...,p, wherep is thetotal number of pathsequired to complete the

shipmentsNote that the number of paths required to complete the shipments depends

on the level of flow shipped along each chopath.

R = (ail(t),aiz(t),...,ai”(t)) denots a path consisting afi arcs fran
source nodes to sink nodd, where aij (t) represents thg" arc in pathi departing
from the source at time aij+1(t) IS a successor arc aa‘ij (t), and ail(t) is the first

arc on the pathF, (t) denoteshe associated number of flow units to be sent along

R().
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Figure 5.1 illustrates the representation of a chromosome for a flow pattern,
where three flow unitare to be shipped from noddo nodel, departing from the
origin at timet = 0 in a network consisting of four nodes and five arcs. Assume two
units are shipped on pathZland one unit is shipped on pat4-5 as shown in the
figure.

Gene 1 Gene 2
Chromosome Pl(o) ) Fl(o) P2 (0) ) F2 (0)

Gene L: (0, Fy(0)} ={(1,2), 2)

Gene 2{ P,(0), F>(0)} ={(1,4,9, 1}

Figure 5.1. Solution representation.

Given this representation structure, different solutions may have a different
number of genes depending on the associated path8oan levels.In addition to
assisting in constraint handling, another advantage of this representation scheme is
that only portions of the network, on which the flow is assigned, are presented in a

chromosome. For example, in Figure 5.1, the arc witlow, e.g. arc 3, is not
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included in the chromosome. This avoids consideration of insignificant portions of

the solution in subsequent recombination.

Initialization

The encoding scheme employed in tihéialization operatoris designed to generate
theinitial population For each supply timg a set of paths is randomly selected for
shipping all supply units from the source to the sihke detailed steps of the

initialization can be stated as follows

For eactsupplytimet, {t € 5| bg(t) = 0},

1) Seti =1.

2) Randomly select a path (t) = (ail(t) ,aiz ®),...,a"(t)) from the source to
the sinksuch thatthe associated amount of flof (t) = 0. F, (t) can be identified
using the following equation.

Fi () = min (bs(t) Ui (), u? 1).....u" ) (1)

where uij (t) = corresponding capaciof aij (t).

(e.ul () =uct;) k=al ), t, =t tjyg =t; + 7 (t;), i = 1.2,...n.

3) Update the remaingcapaciy along each arcuy (t;) = uy(t;) - F(t),
wherek = al (1), t; =t, tjyy =t; + 7, (t;),j = 1,2,..n.

4) Updateremainingsupply to be shippedat the sourcebg(t) = bg(t) -

F (t). If bg(t) =0, seti =i + 1 and return to Step 2.

With this initialization technique, capacity constitai and flow conservation

at transshipment nodes are satisfied. The flow conservation at the source and sink are
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fulfilled by repeating the entire process until all supply units are shippede case

that the path flows selected thus far cannot accoratedtie remaining supply, i.e.

no path with nofzero capacity exists between the source and the sink after the last
shipment, the last path introduced into the chromosome is removed and replaced with
new paths by repeating Step 2 until all the demandligldd. This initialization

process guarantees that only feasible solutions are generated in the first population.

Crossover
Offspring are producedrom parents selectedrom the currentpopulation in
crossover (mating)it is possible that the newly gerated solutions (i.e. offspring)
will violate the problem constraints if crossover is not designed to maintain
feasibility. Therefore, the crossover operator proposed here is developed such that
only feasible solutions are generated.

In this work, the crssover operatazombines two randomly selectedlutiors
to form a single child For each pair, the following steps grerformed. For each

supplytimet, {t € 5| bg(t) = 0},

1) Determine theatio of pathcostto path capacityor eachpath in thechosen
parents.

2) Rank all paths according to thatio of pathcostto path capacityn non
decreasing order

3) Pick the first path from the rank and determine the flow units shipped
on that pattby Equation 1

4) Eliminatethe choserpath from the rankUpdate the remaining capacity of

all arcs in that path.
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5) Updatebg(t) . If bg(t) = 0, return to Step.3

The method of ranking paths according to their path cost to path capacity
ratios gives highepriority to paths with lower cost per flow unit for inclusion in the
new solution. This feature enables the algorithm to explore ipimgnregions of
solution spacand can be instrumental in accelerating the algorithm to find optimal or
nearoptimal soltions. Alternatively, one might want to randomly select paths to be

includedwithin the chromosome irrespective of the rank.

Mutation
The mutation operator is aimed at increasingdikersity of solutions by peurbing
each newly generated memb®milar to theother operatorghe mutation operatas
able to maintairfieasibility of the solutiondMutation is defined here such that the last
path and corresponding flow (i.e. the last gene in the chromosome) is replaced with a
set of randomly generate@tps for covering the same amount of flow. To mutate a
child, the procedural steps provided below are perforrred.eachsupplytimet, {t
e S| bg(t) =0},

1) Assume there are paths forshipping all supply at departure timei.e.
R(t),i=1,2,...h. Eliminate thdastpath R, (t) as well as the associated fldwy (t)
from the solution. Seék = h. Return capacity to all arcs in that path.

2) Randomly choose a patiat connects thgource andhe sinkthat does not
exist in the current solution. Identify the units of fldw (t) to be sent through this

pathby Equation 1

3) Update the remaining capacity of all arcs in that path



4) Updatebg(t) : bg(t) = bg(t) - F(t). If bg(t) = 0,setk =k + 1 and return
to Step 2

Evaluation/Selection
The purpose of thistepis to promote better solutions by replacing less optimal
solutions with good onesThe solution quality is identified by the solution’s fitness.
The fitness function is formulatdzhsed orthe objective function (i.e. mimize total
cost). For the considered probleine ffitnessvalue is equal to the total cost incadt
in shippingall supplyto the sink

Some of the popular selection schemes are proportionate, tournament,
ranking, and Boltzmann selection operators. In this work, the binary tournament
selection is implementedrhe tournament selection onsidered to éthe most
efficient and least prone to premature convergence of all of the selection schemes
(Goldberg and Del1,991).Unlike proportionateselection the tournament selection is
able to handl@ minimization problendirectly withouthaving totransformit into an
equivalent maximization onén addition, it can prevent the scaling problemsen
most of the solutions have similar fitness

The binary tournament operator randomly chooses pairs of chromosomes for
tournamentsif two chromosomes competing inteurnament have differeffitness
values the one withthe better fithesss chosen. If, on the other hand, these
chromosomes have the same fitness, random selection is performed. A chromosome
that is chosen as a result of a tournament will not compstgosequent tournaments

The procedure continues until a desired number of solutions are attained.
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An overlapping model wherparents and childrecompete for population
slots is employed. In order to preserve the best solution for each generation, the
elitism technique is employed. Elitism selects the best member from the entire
population and then injects such a solution into the next generation without
replacement. This technique guarantees that the best solution found in each

population will not be indvertently eliminated by the selection operator.

Termination
The algorithm terminates when the optimal solution is obtained (in case that the
optimal solution is known) or the stopping criteffe.g. the number of iterations
exceeds a given thresholdje met. In the latter case, the best solution in the last
generation is selected as the final solution.

Figure 5.2 demonstrates the framework of the developed GA. The first step of
the algorithm is to generate the initial population consisting sélutions. Then, a
group of 2. individuals are randomly selected from the population for crossover and
mutation. After undergoing the reproduction procéssew solutions are added into
the population and the binary tournament selection is conductetheorentire
population 1 + A) for selectingu solutions to be inserted into the next population.

The procedure continues until the termination criteria are met.



Generate the initial population

l<

Randomly select parents

'

Perform crossover on
the selected solutions

'

Perform mutation on new
solutions (i.e. offspring)

'

Evaluate the fitness of each
solution in the population

'

Use tournament selection td
eliminate bad solutions

No

Check if terminatiol
criteria are reached

Stop

Figure5.2. Genetic algorithm structure.
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5.2.3 lllustrative Example

In this section, an example netwajienin Figure 5.3is constructd to illustrate the
procedure steps of throposedGA required in completing the first generatidrne
network onsists of 5 nodes and 8 arcs. The period of interest is discr@tto three
time intervals,t = {0, 1, 2}. There are 10 supply units at the source, node 1, at

departure time = 0, i.e.b)(0) = 10. For simplicity, the travel time on each arc is

assumed to be one unit of time and remains constarié entire periodThetime-
varying arc costsand capacities are given in Tabld. Theobjectiveis to determine
a pattern of flowfor shipping all supply units from node 1 to node 5 with minimum

total cost.

Figure5.3. lllustrative example.



Table5.1. Arc capacities and costs associated with each arc.

Arc | (i,)) Capacity Cost
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I nitialization
Generate initial solutions:

1) Seti =1.

2) Randomly select a pat? (0) = (1, 6 from the source to the sink.

Identify the amount of flowr; (0) = min (10, 5, 6) = 5.
3) Update supply at the sourdg(0) = 10-5 =5.
4) Update all affected arc capacities:
u;(0) =5-5=0,
ug(d =6-5=1.

5) Sinceb;(0) # 0, sti = 2 and rettn to step 2.

2) Randomly select a paf®, (0) = (2,7) from the source to the sink.

Identify the amount of flowr, (0) = min (5, 3,5) =3.
3) Update supply at the sourdg{0) =5-3=2.
4) Updéae all affected arc capacities:

u,(0) =3-3=0,

141
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u,(1) =5-3=2,
5) Sinceby;(0) = 0, seti = 3 and return to step 2.
2) Randomly select a pat®;(0) = (3, 8 from the source to ehsink.
Identify the amount of flow3(0) = min @, 4, 6) =2.
3) Update supply at the sourdg{0) =2-2 = 0.
4) Update all affected arc capacities:
u3(0) =4-2=2,
ug(l) =6-2 =4,
5) Sinceb;(0) =0, Stop
Theflow pattern consistef three pathsf(1, 6), 5}, {(2, 7), 3} and {(3, 8), 2
Supposéhree solutionsiregenerated in thirst population ashown below
Solution I: {(1, 6), 5} {(2, 7), 3} ard {(3, 8), 2}. Total cost = 155.

Solution II: {(1, 6), 5}, {(2, 4, 6), 1}{(2, 7), 2} and {(3, 8), 2}.Total cost = 156.

Solution llI: {(2, 4, 6), 2}, {(1, 6), 4}, {2, 5, 8), 1} and {(3, 8), 3}Total cost = 149.

Crossover
Assumesolutions | and 11l areandomly selected for reproduction.
1) For eactpath in solutions | and Llidetermine the cost p@ath capacity
2) Rank all paths starting from tbee with the minimum value
Path I: (3, 8): 9C/F)
Path II: (1, 6): 16
Path IIl: (2, 5, 8)18

Path IV: (2, 7): 19



14z

Path V: (2, 4, 6): 20
3) Pick patls according to the ranking startifgm Path I. Betermine the flow units
to be sent on that pat@Gontinue untilb; (0) = 0.
Upon termination, the new solution contains ¢hpaths{(3, 8), 4}, {(1, 6), 5}, and

{(2, 5, 8), 1} resulting in the total cost 4i34.

M utation
For the newly generated child {(3, 8), 4}, {(1, 6), 5}, (2, 5, 8), tt}e steps given
below are followed to perturb the solution.

1) Eliminate the laspah, P;(0): (2, 5, 8), from the solutiorbetk = 3
2) Randomly choose a new p&a@(0) = (2, 7)with F3(0) = 1 unit.

3) Updatesupplyat the sourceb,; (0) .

4) Update the affected arc cayities.

5) Sinceb;(0) =0, Sop.

The solution obtained after the mutatioperatoris {(3, 8), 4}, {(1, 6), 5}, (2, 7), 1}
with the total cost of 135This new member will be called Solution IV in the

population.

Evaluation/Selection

After the crossover and mutation operators, four members exist in the population,
including the new member. Three tournaments of two solutions are required for
selecting three solutions to be in the next population. Note that Solution IV, which

has the nmimum total cost, will be injected into theext geneation (i.e. elitism).
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After this stage, three solutions will enter to the next generation and two of them will

be randomly chosen for reproduction.

Termination

The algorithm proceeds until the stapgicriteria are met.

5.2.4 Experimental Results

This section presents experimental results conducted fopiwmmoses: 1) tuning the
parameter@and 2) comparing the algorithm performance with exact algositfiine
proposed GA was coded in C++ and run oEC Alpha XP1000 professional
workstation with 1 gigabyte ram and 2 gigabyte swap, running D@id& operating
system, using Digital's C++ compilefwo network topologies consisting of 25 and
100 nodesgachwith 60 time intervals were employed. Trerenetworksasusedin

Chapter 4or tesing the SEscape algoritharealso appkdin these experiments

5.2.4.1 Parameter Tuning
The first part of the experiments is intended ttme the parametersrior to
implementing the GA for a given problem,veeal parameters have to be set,
including:
1) The number of generations {Gthe number of times a new population is
generated.
2) Population sizéu): the number of solutions maintained in each generation.
3) Size of parents(2)): the number of solutions selected for mating and

mutation.
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4) Probability of crossover (£ the probability that pair ofchromosomes will
undergo crossover in moving to the hggneration.
5) Probability of mutation (M): the probability that each new child will undergo

a random change in the genes.

For each test, the number of generations was fixed at 10,000 and the quality of
a solution is evaluated with respect to how closes ito the optimal value. The
TDQFP algorithm for solving the timgependent quickest flow problem is modified
for determining optimal solutions with no waiting. Seven sizes of population were
examined, including: 20, 50, 80, 200, 250, 280 and 400. Thésrehiow that the
performance of the GA markedly varied with the values of the parameters and no
ideal set of parameter values exists for all problem instances. The set of parameter
values found to perform best on averageuaxeés0, 20 = 26, G =1, and M= 1.

In general, larger population sizes lead to more population diversity and are,
thus, less prone to premature convergence. However, a dilemma in population size
selection occurs as additional computations are required to process larger populations.
In this work, the population size of 50 was chosen to save computational effort in
fitness evaluations and solution selections. The loshvefsity due to ta use of a
moderate population size was compensated for by implementing both crossover and
mutatian operators with probability 1, i.e. every pair of parents is recombined and
each child must undergo mutation. This implementation permits exploration of new
search spaces without having to maintain and process an excessively large number of

chromosomes.



14¢€

5.2.4.2 Algorithm Performance Analysis

A number of tests were conducted to examine the performance of the proposed GA.
The same networks (i.e. 25 and 100 nodes with 60 time intervals) identical to those
used in tuning the parameters were employed here.skts of supply at the source
were considered, 15 and 45 units. The results from pilot tests reveal that the
procedure stopped evolving somewhat early and the final solutions were far from the
optimum irrespective of the parameters used. That is, theissplwas quickly
trapped with suboptimal solutions. Thus, adjustments to the design of the genetic
operators were made to add diversity to the solutions. The genetic operators were
adjusted as follows.

1) In every process of assigning flow on a path, instéguishing the flow equal
to the maximum capacity on that path, the amount of flow is randomly
assigned, ranging from one unit to the maximum path capacity. By altering the
structure of each chromosome, this adjustment enables the algorithm to
explore newsolution space.

2) The crossover operator is adjusted such that there is some possibility that
paths are randomly selected from parents rather than being picked according
to the cost per path capacity as discussed in Subsection 5.2.2. This option is
aimed at deterring convergence to suboptimal solutions. Numerous
experiments were conducted and it was found that the best probability value
was 0.5.

With these adjustments, the GA could reach optimal or-oy@mnal solutions with

fewer generations than requinedthe approachbriginally proposed.



In order to compare the GA’s performance to that of exact algorithms, how
close the value of the solution produced by the GA is to the optimal value is used as
the performance measure. Similar to the tuning processpumber of generations
was fixed at 10,000 and the best value found upon completion of the last generation is
recorded.To avoid oddly chosen source and sink pairs that might skew the results,
results were drawn from a single randomly selected sourca anohber of randomly
selected sinks. The experimental results obtained from 5 randomly selected sinks for

the problems with 25 nodes and 60 time intervals are demonstrated in Table 5.2.

Table5.2. Resultsfor network with 25 nodes and 60 timeintervals.

25 nodes
Supply =15 Supply =45

Optimal GA % diff Optimal GA % diff
325 325 0 871 924 6.085
443 444 0.226 1242 1366 9.984
472 473 0.212 1181 1223 3.556
438 448 2.283 781 809 3.585
497 527 6.036 888 929 4.617
Average 1.751 Average 5.565

From Tdle 5.2, the average percentages different from the optimal value
derived from five randomly selected sinks are 1.751 for the problem with 15 supply
units and 5.565 for the problem with 45 supply units. Additional experiments were
conducted on a larger medrk with 100 nodes and 60 time intervals. Again, two
levels of the number of supply units at the source, 15 and 45 units, were assumed.

The results drawn from one randomly selected source with ten randomly selected

sinks are provided in Table 5.3.
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Table5.3. Resultsfor network with 100 nodes and 60 timeintervals.

100 nodes
Supply =15 Supply =45

Optimal GA % diff Optimal GA % diff
374 398 6.417 1603 1711 6.737
313 341 8.946 1682 1860 10.583
305 314 2.951 1716 1837 7.051
263 268 1.901 1777 1879 5.740
351 363 3.419 1792 1901 6.083
294 296 0.680 1434 1491 3.975
327 327 0 1576 1638 3.934
273 273 0 1482 1510 1.889
184 184 0 1641 1656 0.914
355 365 2.817 1459 1500 2.810
Average 2.713 Average 4.972

The results from both tables indicate thag {68A could find the solution
within 10 percents of the optimal value. In all these tests, three cases could reach the
optimal solution and the percentages above the known optimal value range from 3 to
5 on average. It is significant to note that in moststefurther improvement in terms
of the results may be gained by properly adjusting the parameters of the GA.

Finally, a set of experiments were conducted for examining the GA
performance in solving the SEscape problem (addressed in Chapter 4), whose
objective is to find a flow pattern that maximizes the minimum path probability of
successful arrival at the sink Bypply One can notice that in the SEscape problem,
the gap between the optimal value (i.e. the maximum minimum path probability) and
the secod best value varies with each network configuration and could be very large.
For example, the best and the second best flow pattern for shipping certain supply
units from a given pair of source and sink nodes may have the minimum path

probabilities of suaessful arrival 0.5 and 0.03, respectively, leading to the difference



below the optimal value of 94%. Hence, the closeness to the optimal value may not
provide a good measure for judging the GA’s performance. In order to compare the
results of the GA to thexact solution found by the SEscape algorithm, the cases

where the minimum path probability of the optimal solution is 1 were considered and

the number of times the GA can reach this value was determined.

Table5.4. Resultsfor the SEscape problem.

Suppy = 15

25 nodes 100 nodes

Optimal GA Optimal GA

1 1 0.996

1

1

0.989

1

1

o

0.911

R|ORR|R|R(Rk|F

0.994

[EEN

RRR R R R R RP
RRR R R RRP Rk

0.997 0.866

As shown in Table 5.4, the GA could find the optimal solution 8 out of 10
times forthe 25 node network, and 5 out of 10 times for the 100 node counterpart.
For the tests that failed to achieve the optimal value, the differences between the

optimal and the final values fall within a reasonable range of the optimal solution.

53 A NOISY GENETIC ALGORITHM FOR STOCHASTIC, TIME-
VARYING NETWORKS
In Section 5.2, travel times were assumed to be deterministically knowhisin t

section, the GA proposed in Section 5.2 is exterfdeduse in STV capacitated
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networks, where bothra travel times ad capacitiesare discrete random variables
with probability distribution functions that vary with timEach joint realization of
the random quantities is referred to as a network state. That is, a network state is a
particular instancef the set of arcravel times and capacitieih such stochastic
environmerg, the network can take on a number of discrete statmsh of which
results in a different outcom®ne approach to evaluating the performance of a given
flow pattern with respect to an objectiienction under such circumstances is to
evaluate the flow pattern under all possible network states. The probalbilgy
particular realization isomputed by the product tife arc attributgrobabilities.One
can then sum the product of the performanoeach state and the probability of each
state over all possible stateBecause the number afietwork state grows
exponentially with the size of the netwoakd the number of possible values each
attribute can takeenumeration oéll states would requre enormous efforevenfor a
small network For example, a network witim arcs, each of which hasrpossible
travel times andc possible capacities, involves D Dc)™ possible states. Thus,
technologies that requiemplete enumeratioof all stateshould be avoided

To deal with the uncertainty in arc attribute values, the concept of noisy
genetic algorithms (NGAs) is employed in this work. NGAs extend GAs for use in
noisy conditions. Noise in this context is considered as any factor that impedes t
accurate evaluation of the fitness of a solution. These factors can come from a variety
of sources, such as the use of approximate fitness functions, the use of noisy data and
knowledge uncertainty in the problem characteristicssolving the minimuntost

dynamic network flow problem in stochastic settings, the fitness of a solution cannot
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precisely be identified withowt priori knowledge of the network state that will arise
upon use of the solution. Under such circumstances, each realization iresalts
different fitness value. A flow pattern that has a low total cost under a particular
realization may have a very high total cost when evaluated under another realization.
Such fitness functions are called noisy fitness functidhsough the use of N&s,
complete enumeration of all network states can be avoided. Instead, only a subset (i.e.
sample) of the possible realizations is employed for evaluating chromosomes in each

generation.

5.3.1 Sampling Fitness Function

Sampling fitness function is a tgf noisy fitness function, which reduces noise by
taking the mean of multiple noisy fitness evaluations of a solution. Instead of relying
on a single fitness function, each solution is evaluateds @ample sets drawn
randomly from the pool of all pos##h network states. The overall fithess of a
solution is determined by the average of the fitness evaluations for all sample sets.
Based on the Central Limit Theorem, the approximation to the actual noisy function

value with a sample size nfcan be compet by the following equation,

L 1S L
fis =§Z fij (),

j=1
where fifj = thej™ noisy fitness evaluation of solution

A challenging task of developing NGAs is the evaluation of the optimal
sample size for the sampling fitness dtion. Miller (1997) showed thatvhile a

Monte Carlo simulation modelingpeed tremendoussampling, NGAs with the
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sampling fitness function can find robust solutions with a relatively small number of
samplesin each iterationThe technique presented inIMi’'s work can be used to
determine the sample size that maximizes GA performance without the need for
experimental trial and error. An equation is proposed by Fitzpatrick and Grefenstette
(1998) for determining the optimal sample size:

. _ T

where
g* (S) = ending generation,

T = total time required by a GA,

a = fixed amount of GA overhead time per solution per generation,

Q = cost of a single fitness evahlion (a sample),

S=sample size, and

N = population size.
Given a computational bound, the optimal sample size can be identified by
evaluating the ending generation from different sample sizes. To reduce the size of
the sample seeh space, Miller (1997) established lower and upper bounds for the
optimal sample size, and proposed a pruning method for removing a large segment of
the potential sample sizes between the lower and upper bounds from consideration.
The accuracy of the pposed technique was experimentally prov@dpalakrishnan
(2001) proposed techniques to determine the optimal sampling strategy, which
required as few as 5 samples in each iteration for addressiAgagekl remediation

design.
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In order to implement the NiSfor the minimum cost dynamic flow problem
in stochastic environments, the NGA framework given in Smalley (1998) can be
followed. In his work, the algorithm started with the sample ssg@f(5 for the first
four generations and the sample size was asae by five sample sets every four
generations. At the end of generation twelve, the best four solutions from the
preceding four generations-{2) were evaluated with 500 samples. If one or more
solutions met the specified criterion, the algorithm prdedewith the same sample
size for four more generations until termination. Otherwise, five sample sets were
added and the entire process was repeated until the maximum number of iterations

was reached.

5.3.2 Sampling Design

To determine the true noisy fction value, each solution should be evaluated on all
possible network states. However, this would require enormous computational effort.
Instead, the function value may be estimated on only a subset of the network states
(each of which is referred to assample). The larger the number of samples (i.e.
randomly generated network states) used in estimating these values, the lower the
variability in the estimate. Variance reduction techniques aid in reducing the number
of samples required to accurately estienthe function value while simultaneously
considering a small number of samples. In addition, such methods can be used to
ensure that critical, albeit unlikely, events are not excluded from consideration and
that they are not given too great a signifa@nA technique that appropriately selects

samples is required to guarantee inclusion of the extreme cases in the correct
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proportion in assessing a solution. For the application considered here, it is critical
that events with very small likelihood of ocoence are considered, because such
events may lead to great loss of lives. If such occurrences are given too much
significance, however, the solutions may be overly conservative.

In this work, the stratified sampling method is chosen to deal with the
selection of sample sets. It is found that among many other techniques, stratified
sampling can effectively decrease the variance of the sample mean (Bratley et al.,
1987). In the stratified sampling method, the number of times each value of the

random varialds is sampled can be computed using equation (4) as described next.

Let rij (t) denote thejth traversal time on arc at departure timeé with
associated probability of occurrenqqf (t). Likewise, uij (t) denotes th¢" capacity
on arci at departure timewith associated probability of occurrenq.’e! (t). Given a

sample of siz&, the number of timesij (t) is sampled can be computed as

Pl )-al(t)-S

4’
> o) - of ) @
k

where aij (t) is the standard deviation of the outcome of usi;‘ig). The rationale
behind this concept is that the Iargeilj (t) is, the morerij (t) should be ampled.
The similar equation can be applied for the arc capaﬁi(y) :

If the standard deviations:ik(t), k =1,2,...j,....D are unknown, a pilot

experiment may be conducted to estimate the variacm,lfetX)z. However, the use of

variance estimates cannot guarantee variance reduction (Bratley et al., 1987). Under
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such circumstances, it is suggested that excludihg) from the formula may be
desirable, as it reduces variance. In the m@mblcontext considered in this
dissertation, the standard deviati@t#(t) IS not given and determination of such

values requires extensive pilot experiments, one for each random variable. Therefore,

the standard deviations are eliminatemf the formula in this work.

5.3.3 Constraint Handling
In the GA proposed in Section 5.2 for solving the probielynamic networks with
deterministic, timevarying arc travel times, infeasible solutions are not permitted.
When arc attributes are knowdeterministically, it is possible to allow only feasible
solutions at intermediate stages of the algorithm through the application of specially
designed operators, including crossover and mutation operators. However, this
technigue cannot guarantee fed#ipiwhen the arc attributes are known only with
uncertainty. In such situations, a feasible solution generated from one realization may
violate some of the constraints under other realizations and it may be unlikely that
there exists a single solution tha feasible for all realization3.hus, the constraint
handling technique proposed here allows infeasible solutions to be retained in the
population. Penalties are imposed on solutions that are infeasible for any realization.
The penalty function emplogas this work is described next.

Recall that each chromosome represents a set of paths and associated amount
of flow on each path. To generate the initial population, each solution is generated
from the network realization whose arc attributes are st#tetovalues that have the

maximum probability of occurrence. This guarantees that all solutions generated in
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the first generation do not violate the constraints for the most likely realization of
travel times and capacitieBr noisy fitness evaluations, rumber of samples (i.e.
randomly selected network states) are selected from the pool of all possible network
realizations for examining the fitness of each solution. Any isoluhat violates the
constraints is then penalized @gcreasing the fitnesslua.

The pattern of flow given in Figure 5.4 is used to describe the proposed
penalty method. In the figure, four supply units are shipped from the source node A to
the sink node Dalong arcs 1 and 2, departing from the source at time t = 0. The

chromosoméor this flow pattern is: £,(0), F(0)} ={(1, 2), 4}. The capacities and

travel times on arcs 1 ¢B) and 2 (BD) under the considered realization are given in
the figure. For example, arc 2 has capacity of two unitsn@ t = 2 and five units at

time t = 3.

Arcl Arc?2
t=0 t=2 t=3
travel time travel time travel time
2 3 3
capacity capacity  capacity
6 2 5

Figure5.4. Arc attributerealization on arcs 1 and 2.



As in the deterministic case, the fitness value corresponds with the objective
function value ite. minimum total timehereir). From the gien flow pattern and the
network realization, all four supply units can successfully aatveode B at time t =
2, incurring eight unit®f time in total. Upon arrival at node B, only two units can
traverse arc 2, because the available capacity onrthé departure time t = 2 is two.

In this case, the other two units must wait at this node until the capacity on the arc is
recaptured at time t = 3. A penalty is included in the fitness function that is equal to
the cost associated with waiting at nodeR8r this particular example, because the
fitness of a solution is the total time required to complete the shipmengribiypis

equal to the waiting time at node B for capacity recovery of arc 2. The fithess value of

this pattern of flow can be comak as shown in Table 5.5.

Table5.5. Fitness evaluation.

Action Associated Cost
(units of time)
(i) All four units traverse arc 1 att=0 4*2 =8
(i) Two units traverse arc 2 at t = 2 to arrive at node 4 2*3=6
(iif) Two remaining units wait at nod2for one time interval 2*1 =2
(iv) The two units traverse arc 2 at t = 3 to arrive at node 4 2*3=6
Fitness value 22

5.3.4 Illustrative Example

To illustrate the NGA for solving the minimum time dynamic flow problem in a STV
capacitated network, aetwork consisting of 4 nodes and 5 arcs as portrayed in
Figure 5.5 is considered. The period of interest is discretized into 10 time intervals,
starting fromt = 0. The probabilistic arc travel times and capacities are provided in

Table 5.6. There aré®possible realizations (i.e. network states) of this network.



Figure5.5. STV capacitated network.

Table5.6. Random travel times and capacities.

Arci 1 2 3 4 5

t<3: 1(0.3)| t=0: 2(0.7)| t<1: 1(1) |t<1:4(1) |t<2:2(1)

M (o ) 2(0.7) 3(0.3)| t>2: 1(0.2)| t>2: 3(0.1)| t=3: 3(1)
! ! t>4: 4(0.8)| t>1: 3(0.2) 2(0.8) 7(0.9)| t>4: 1(0.5)
6(0.2) 4(0.8) 3(0.5)

t<1:2(0.3)| t=0: 1(1) | t=0: 3(0.2)| t<1: 5(0.6)| t<2: 2(1)

u) (t) (ﬂj (t)) 4(0.7) 6(0.8) 7(0.4)| t<4:5(1)
' ' t>2: 1(0.8) t=1: 2(1) |t>2:2(1) |t>5:1(0.7)
2(0.2) t>2: 3(1) 4(0.3)
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For each arc and each time interval, the stratified sampling method isoused

select the sample sets of arc travel times and capacities (i.e. the number of times each

possible value of arc travel time and capacity at each departure time is selected). For

example, arc 1 at time= 0 has two possible traversal times, 'rzé(O) = 1 with

pll(O) = 0.3, andrf(O) = 2 with p12(0) = 0.7. Assume five samples are to be

selected for evaluating the noisy fitness functions in each generation. The number of

times rll(O) and 112 (0) are sampled can be computed as follows:



1
for 1(0)' p1(0)5 —
TR0+ p2(0)
2
for r2(0), 21 O5  _3g
TR0+ p2(0)

In order to accommodate these sample sets, becatlsetaation uses five sample

sets to determine the fitness vaIué(O) is randomly selected three times in every

two generations. Similar procedures are employed for other arcs and departure times.
An experiment was conducted to illcege the nature of solution on this

network example with @number of generations) = 100(population size) = 5 and

2\ (number of parents) = 4. Assume four units are to be shipped fromArtodeode

D. Experimental results show that the pattern of fthgplayed in Figure 5.6 results

in the minimum average total time of 18.67 time units.

Figure 5.6. Minimum time flow.

Additional experiments were conducted on a network with 25 nodes, 99 arcs
and 60 time intervalsThe network is constructed froa deterministic network with

some arc attributes taking on probabilistic values. In order to be able to assess optimal
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solutions for each network realization, the stochastic arc attributes are designed such
that only 27 network states exist. The objextig to find a patterrof flow for
shipping 45 units from a randomly selected source to a randomly selected sink with
minimum total time.The TDQFP algorithm was employed to determine the optimal
solution for each realization. There are four optimal valtmsnd in all 27
realizations: 878, 871, 847 and 825 time units. The optimal values and the number of

times they are found are provided in Table 5.7.

Table5.7. Optimal valuesfor 27 realizations.

Optimal value| Frequency
878 6
871 3
847 9
825 9

Becaise the probability of each realization can be computed from the product of the
arc attribute probabilities, the expected value of the optimal value can be determined
through the computedprobabilities and corresponding optimal values. For this
example netork, the expected value is 851.68 time units. The expected value of the
solution obtained from the NGA is 888 time units, leading to a difference below the
optimal value of 4.26 %. This shows that the result from the NGA falls within a

reasonable range tfe optimal solution on average.
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54 A NOISY GENETIC ALGORITHMS FOR MULTICRITERIA,
STOCHASTIC, TIME-VARYING NETWORKS

In Section 5.3, the framework of a NGA was presented for determining the optimal
flow pattern in dynamic, STV networks, where onlyrag criterion was considered.

In general, many applications that can be modeled as network flow problems involve
multiple conflicting objectivesFor instance, in building evacuation, the solution to
the expected flow problem may require a person toodgath with high likelihood

of failure or a path with excessively long travel time. Thus, a set of paths that
considers these objectives simultaneously may be desired. Because such objectives
may be conflicting in nature, the solution of such a problelinbe a set of Pareto
optimal solutions. As discussed in Chapter 2, in any multiobjective problem, it is
possible that all feasible solutions may be Paogtiimal.

A host of studies have successfully used GAs to address multicriteria
optimization problens. The advantages of implementing GAs on multicriteria
problems are twofold. First, GAs search for optimal solutions from the entire decision
spaces. Second, many potential solutions are maintained in each generation for
evaluation. By combining these tWeatures, GAs are capable of searching for a set
of Pareteoptimal solutions in large, complex spaces. Commonly, a multicriteria
problem is characterized by a vectorkafriteria and the evaluation function consists
of k attribute fithess valuesThere ae two general approaches to solving
multiobjective problems: (1) generate all Parepdimal solutions and select the “best

compromise” solutiora posteriori based on the decision maker’s preference function
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or (2) convert the multiobjective problem tsiagle objective with the use of either a
scalaraggregative or an ordaggregative (noscalar) utility function.

In the first approach, the role of GAs is to search for solutions on the efficient
frontier. By performing dominance comparisons in theneis evaluation, all
dominated solutions can be discarded before the multicriteria deosikimg
process ignade. The simplestersion of this approach is to independently perform
multiple single criterion searches. While taking advantage of algoritkimiglicity,
the drawback of this approach lies in the lack of Pareto diversity as only extreme non
dominated solutions are sought. Other methods for addressing multiobjective
problems in GAs are summarized in Back et al. (2000).

In the second approactthe decision maker's preference structuee
represented through wility function. Scalaraggregative utility functionsransform
multiple objectives into a single scalalued utility function. In conjunction with
GAs, such a utility function is incorpated into the fitness function for solution
evaluations. A scalar fitness function is necessary for particular types of selection
methods, such as roulette wheel, where the fitness values affect the probability of
being selected. Farrderaggregative utity functions, the decision maker provides
ordinal ranking of the considered criteria. In this context, GAsnapéemented such
that the solution that performs best on the most important criterion is the most
preferred solution. In case of ties, the nmxst important criterion is considered and
so on. Details of one of these approaches to handling multiobjective problems are

given next.
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A multicriteria noisy genetic algorithm (MNGA) is presented for use in
dynamic, MSTV capacitated networks with multieteria. It appears that no GA
has been proposed in the literature for addressing optimization problems in this
context. The MNGA extends the NGA framework discdsseSection 5.3 to handle
multiple objectives. Herein, design of solution representaimh genetic operators
are the same as for the single criterion NGA. No special treatment is required for
developing the encoding, crossover and mutation operators. While the proposed
MNGA can be implemented with any techniga discussed previously, theder
aggregative method is illustrated here. In this method, the binary tournament selects
the solution that has the higher fitness value with respect to the most important
criterion to enter the next population. If there are ties, the next importamtocrite
considered.

The proposed MNGA is not restricted by the type or number of considered
criteria. For example, several objectives may be simultaneously considered in
developing evacuation instructiomainimize total time, maximize expected flow and
maximize the minimum path probability of successful arrival at the sink (the SEscape
problem).The MNGA was tested on the network given in Figure 5.6. Two criteria are
considered: 1) the expected flow and 2) the time required for completing the
shipment. Theexpected flow was given the highest priorifyp assess the expected
flow for a given flow pattern, waiting is not allowed at any intermediate node and any
flow unit that cannot traverse an arc by the arrival time at that location is considered
to have dsappeared. The best flow pattern for shipping four units from node®A to

is shown in Figure 5.7.
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Figure5.7. Optimal pattern of flow.

The expected flow and expected travel time of the optimal flow pattern are
3.625 units and 19.75 time units, pestively. Note that the minimum time flow
shown in Figure 5.6 for the case when waiting is alloWwededed has aaxpected
flow of 3 units and the expected travel time of 15.25 time units in this problem
context.

To evaluate the performance of the MN@A a larger network, the same
network configuration (25 nodes, 99 ar68,time intervals27 network stateand 45
supply units at the sourcay used in Subsection 5.3.4 was tested. The results show
that the expected flow of 45 units and the minimum twheé387.6 time units are
obtained. This solution means that by following the flow pattern suggested by the

MNGA, all flow units can successfully arrive at the sink with the least total time.
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CHAPTER 6

CONCLUSIONS AND EXTENSIONS

6.1 SYNTHESIS
This disertation addresses optimal path problems with multiple conflicting objectives
in stochastic and timearying networks. Motivation for this work is primarily derived
from two applications: providing drivers with paths in traffic networks and providing
evacwees (pedestrians) with escape paths from large buildings. Exact and heuristic
technigues are proposed for determining the paths for these applications. These
solution approaches explicitly consider the stochastic andvameng nature of the
problem chaacteristics (i.e. travel times and capacities). Moreover, in capacitated
networks, the fact that capacities can be recaptured over time, i.e. dynamic network
flows, is recognized. Both applications involve multiple conflicting objectives. For
example, in dtermining optimal instructions for evacuees, one may wish to
maximize the likelihood that the person following a path with least probability of
successful arrival at the exit and simultaneously maximize the expected number of
people who will succeed in aguating, or alternatively, minimize the total time
required for all evacuees to escape. Numerous numerical experiments were conducted
to assess the average performance of the proposed procedures and to illustrate the
nature of the solutions that are prodd.

Three exact algorithms are developed for finding adaptive path strategies

when multiple conflicting objectives exist: the Adaptive Paf@ptimal Strategy
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(APS), the Adaptive Least Expected Disutility Strategy | & Il (ALEDS | & 1), and
the Adaptive Reference Path Strategy (APPS) algorithms.

The APS algorithm determines all adaptive Paogtibmal hypepatts from
all nodes to a destination for all departure time in MSTV netwdskgen multiple
criteria, suchsolution patk provide the traveler witithe ability to dynamicaly
choose a path to travel at each intermediate location from among albnonated
path strategies response to knowledge of experienced traffic conditidftsle the
APS algorithm does not perform well in large networks asidomm the numerical
experiments, such an exact procedure can be used to provide bensbiu@oks on
small problem instances when developing more efficient, but heuagioroaches.
Because generation of all adaptive Pamgibmal solutions requiresnermous
computational efforand memorythe ALEDS algorithms developed to efficiently
generate only a single “best” hyperpath by explicitpresenting thdravelets
preference structure throughiaear disutility function. The ALEDS Il algorithmis
superior tothe ALEDS 1 algorithm in both average ruimés and storage
requirementsit appears thathe problem of finding these solutions has not been
addressed in the published literature.

While the path strategies generated by the aforementionedtlatg®take
into accountall criteria simultaneouslyni the process of path selectiaghe APPS
algorithm provides path solutions that permit the traveler to adaptively select the best
path with respect to the criteriaronsidered to benost important ataeh node in
response to knowledge of experienced travel times on the arcs. Witbility to

change preferences in this wdlie traveler can adapis or her path according to



both revealed arrival times at intermediate locations and the traveler'girpan
preferencesAlthough identical solutions can bebtaired by performing the ELB
algorithm (2000) multiple times, once for each criterion, the APPS algorithm offers
significant computational savings as indicated by the results of numerous
computationakxperiments.

These algorithms consider only one traveler. In many applications, however,
the objective may be to determine paths for multiple travelers who will use the
transport facility simultaneously. In such applications, it is necessary to consider
capacity restrictions that will prevent all travelers from using the same path. For
example, in evacuating a building, only a limited humber of evacuees can use any
particular escape route at the same moment in time. Thus, solution will involve
multiple paths and assignment of travelers (or evacuees) to the paths. An exact
solution approach, the SEscape algorithm, is presented to address the problem of
determining the optimal priori flow pattern for shipping supply units from a source
to a sink in dynanai capacitated networks, where arc travel times are-\angng
and arc capacities are stochastic and-trarying (STV). The algorithm is motivated
by the need to determine optimal escape paths for evacuees sedkgefrom a
large burning building om building that has come under attack. The SEscape
algorithm takes into accourgsuesof fairness among the evacuees. Specifically, it
seeksthe pattern of flow thamaximizes the minimum path probability of successful
arrival of supply at the sink.Following the solutions provided by the SEscape
algorithmguarantees thdhe likelihoodthat any person who is subject to the greatest

risk will succeed in escaping is maximizd&esults of numerical experiments show
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that the SEscape algorithm performs siguaifitly better than its worshse
computational complexity.The algorithmcan be used in evacuation planning,
enabling safer evacuation of a building in the event of military attack, fire, natural
disaster, or other circumstances warranting quick escape.

While the SEscape problem assumes STV capacities, arc travel times are
deterministic quantitiedzor addressing the problem of determinangriori path flow
decisions to ship supply from a source to a sokh that multiple objectives are
achieved, andga-heuristicbhased on the principles abisy genetic algorithm (NGA)
is presented. First, the framework for the genetic algorithm (GAjroposedfor
determiningminimum cost flow patterm a dynamic networkyhere arc travel times
aredeterministi¢ time-dependentThe proposed GA framework can be extended for
use with many other objectives, e.g. minimize total time, maximize expected flow or
maximize the minimum path probability of successful arrival at the sink (the SEscape
problem). A specializedenmding scheme and genetic operators are developed to
handle the complexity of path flow solutions and constraints. The results of numerical
experiments on several different network configurations show d@hagveragethe
proposed GAould find the solutio within 5 percent of the optimal value

The GA framework is also extended to address the problem in more complex
STV and MSTV capacitated networks that cannot be efficiently solved by currently
existing exact techniques. The concept of noisy fitnesstifurscis employed to
evaluate the fitness value of each chromosome under uncertain conditens.
multicriteria noisy genetic algorithm (MNGA) is developed for use in MSTV

capacitateahetworks The proposed MNGA is not restricted by the type or number of



considered criteria. For example, several objectives may be simultaneously
considered in determining the optimal flow pattaminimize total time, maximize
expected flonandmaximize the minimum path probability of successful arrival at the
sink (the SEsape problem)Two generic approaches for extending the NGA for use
in solving multicriteria dynamic network flow problems with STV arc attributes
(including arc capacities) are proposed. The first approach seeks to generate all of the
Pareteoptimal solutons and the second approach reduces the problem to a single
objective problem by employing a utility function to represent a deemigker’s
preference structure. For illustration purposes, details of a preemmitved from

the second class of approashae provided. In the preemptive methtidg criteria

are ranked according to their importanoethe decisiormakerand the solution that
optimizes the most important criterion gsren greater preferenc&he preemptive
method implementation of the prged frameworks tested on two netwosk The

results indicate that neaptimal solutions can be obtaineftth this approach

6.2 FUTURE EXTENSIONS
While the procedures proposed herein show promise, there are some areas one may

consider for enhancemefmitotential future extensions are given next.

The Adaptive Par eto-optimal Strategy Problems
The APS algorithm proposed in Chapter 2 for generating all Papdioal
hyperpaths requires enormous computational effort. Upon termination of the

algorithm, a lage number ofPareteoptimal hyperpaths may exist at each node and
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departure timegeach of whichmaintains the expectadluesof all criteria. Therefore,
enormous memory storage may be required to obtain aldaorinated solutions. A
procedure that seeksly a subset of Paretiptimal hyperpaths would be beneficial.

The ALEDS algorithm relies on a linear disutility function to assess a single
“best” hyperpath solution in MSTV networks. A utility function provides a formal,
mathematical representatioh tbhe decision maker’'s (DM) preference structuriee
associatedaveight represent the relative importance among critenma thushave a
direct influenceon thedecision that will be made. In order to select a single preferred
path in a multicriteria gh problemregardless of the technique employed, the
preference structure of the traveler must be properly elicited. In reality, a traveler’s
preferences are not fixed, nor can they be represented by a single model form.
Instead, they fluctuate over tinie response to knowledge of travel conditions as a
driver travels through the network. For example, the importance of travel time might
wane once it is revealed that most of the streets between the traveler's current
location and desired destination arebjsgt to the same undesirable level of
congestion as observed on the current path. Under such circumstances, the traveler’s
preferences may change and the model used to represent the traveler's preferences
will need to be updated. Hence, updating a moti¢he traveler's preferences (e.g.
adjusting criterion weights in a utility function representation) is necessary to assure
that the most desired path will be properly chosen. The ALEDS algorithm requires
the use of a utility function that is monotonic aadditive. In many realorld

applications, however, the traveler’s preference structure may not be represented by a
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linear function. A future extension may be to develop solution approaches that can
handle less restrictive preference functions.

Once thepreferences are explorethe adjusted model of the traveler’s
preferencewill be used to determinapdatedadaptive hyperpathhe simple but
time-consuming method for determining a new solution is to resolve from scratch,
independent of any prior comfations To avoid unnecessarily excessive
computation time, a faster aptimization method that rels on only preceding

solution paths and the updated traveler preferences would be beneficial.

The SEscape Problem

The SEscapalgorithmis developed fodetermining theoptimal set ofa priori path

flows in dynamic networks with STV arc capacities. As found through the numerical
experiments, the MPP algorithm, which is used as a subroutine within the SEscape
algorithm, consumes significant portion of tbemputational timeequired by the
SEscape.This is because the MPP algorithperforms unnecessary tasks by
determiningthe MPP from all nodes to a destination for all depature ties.
approach to improve the complexity thle SEscape algorithm is tovédop a more
efficient approach that findenly a single path from the source to the sink at a
particular timeto substitute for the MPP algorithm. In addition, the SEscape
algorithm assumes arc travel times to be known deterministically. However, many
apgications require consideration of STV arc travel tiniescause only a heuristic is
proposed in this dissertation for use in such networks, the development of exact

techniques is also an interesting extension for future research.
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Network Flow Problemsin MSTV Capacitated Networks

A genetic algorithm is proposed for solving the problem of determining optimal path
flows in MSTV capacitated networks. The performance of the heuristic is evaluated
through experiments on small networks for illustrating the matdirthe solutions.
Additional testson larger networks would need to be conducted for further
evaluation. Additionally, only the preemptive approach is implemented in the
proposed NGA for addressing multicriteria problefise effectiveness of the NGA
implemented with other concepts, such as generating Rapgtoal solutions or
using a utility function, should be investigated. Moreover, future research may be the
development oftechnique for determiningthe exact solution or bounds on the
solutionof these multiobjective, stochastic and tirvarying problens in capacitated

networks
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APPENDICES

APPENDIX A ILLUSTRATIVE EXAMPLE FOR THE APSALGORITHM

This section is designed to clarify the essential steps of the APS algorithm and to
provide irsight inb the nature of the solution&.simple example problem composed

of 5 nodes and 7 arcs as shown inuFggA.1l is constructedor computational

illustration. TableA.1 contains the relevant arc attribute data.

Figure A.l. Illustrative example

Table A.1. Probabilistic time and cost data.

Travel Time

Time | arc (1,2)| arc (1,3)| arc (2,3)| arc (2,4)| arc (2,5)| arc (3,5)| arc (4,5)

t=0 | 1(0.8)* | 2(1.0) | 1(0.9) | 3(0.9) | 2(0.8) | 3(0.2) | 1(0.8)
2(0.2) 3(0.1) | 4(0.1) | 6(0.2) | 5(0.8) | 2(0.2)

t=1 | 2(0.3) | 1(0.9 | 2(0.8) | 2(0.8) | 5(0.9) | 2(0.5) | 1(0.9)
4(0.7) | 2(0.2) | 3(0.2) | 4(0.2) | 7(0.1) | 4(0.5) | 3(0.1)

t=2 | 1(0.8) | 3(0.3) | 1(0.9) | 1(0.3) | 3(0.2) | 1(0.8) | 1(0.9)
2(0.2) | 4(0.7) | 3(0.1) | 2(0.7) | 6(0.8) | 2(0.2) | 2(0.1)

t=3 | 1(0.5) | 1(0.8) | 3(0.5) | 3(0.3) | 7(0.5) | 3(0.5) | 4(0.3)
3(0.5) | 2(0.2) | 4(0.5) | 4(0.7) | 8(0.5) | 4(0.5) | 7(0.7)

t=4 | 2(0.8) | 2(1.0) | 2(0.8) | 1(0.5) | 6(0.9) | 5(0.8) | 5(0.5)
3(0.2) 4(0.2) | 3(0.5) | 7(0.1) | 6(0.2) | 6(0.5)

Cost

=0 | 3(0.8) | 7(0.9) | 3(0.8) | 1(0.2) | 7(0.3) | 8(0.2) | 4(0.8)
40.2) | 9(0.1) | 4(0.2) | 3(0.8) | 8(0.7) | 9(0.8) | 5(0.2)

t=1 | 4(0.5) | 10(0.9) | 4(0.5) | 2(0.9) | 6(0.5) | 7(0.3) | 5(0.9)
5(0.5) | 11(0.1) | 5(0.5) | 4(0.1) | 8(0.5) | 8(0.7) | 6(0.1)

t=2 | 2(0.8) | 7(0.8) | 3(0.9) | 2(0.9) | 6(0.5) | 7(0.3) | 3(0.4)
3(0.2) | 9(0.2) | 4(0.1) | 4(0.1) | 8(0.5) | 8(0.7) | 7(0.6)

t=3 | 3(0.8) | 5(0.1) | 3(0.8) | 2(0.5) | 7(0.3) | 5(0.9) | 2(0.1)
4(0.2) | 7(0.9) | 4(0.2) | 3(0.5) | 8(0.7) | 6(0.1) | 4(0.9)

t=4 | 3(0.9) | 8(0.5) | 3(0.9) | 2(0.5) | 6(0.5) | 4(0.4) | 7(0.3)
4(0.1) | 9(0.5) | 5(0.1) | 3(0.5) | 8(0.5) | 8(0.6) | 8(0.7)

*arc attribute (associated probability)
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The period of interest is discretized into five time intervals; {0,...,4}.
Suppose there are two criteria considered in the hyperpath selection: travel time
(criterion 1) and travel cost (criterion 2), respectivdgcause the computational
process for solving this simple example is large and repetitive, this section presents
only a portion of the entire process. This portion of the computational steps of
determining the complete set of Paremimal hyperpaths from all origins to node 5
for each departure time in the peak period is shown next.

Initialize the elements of thesgtor labels and path pointers. SE = {5}.
lteration 1

Scan node 5. SE ={}.

j=5,ie{2, 3,4}

Fori =2,

t=0

forQ={(1.1), (2,1)},

730 = D c2(0)+ A (0 +c32(0)) - p32(0)
(<Q

= (2+0)- 0.8 + (6+0) 0.2 = 2.8.

2
n200) = > Y[ c22(0)+ 4 (0+c32(0))] - paz(0) - p2Z2(0)
(70eQ 21

= (7+0)- 0.8- 0.3 + (8+0) 0.8 0.7 + (7+0) 0.2- 0.3 + (8+0) 0.2. 0.7 = 7.7.
2,,(0)= (2.8,7.7).

Insert 1 intaX,(0) . Set7,,(0) =5 andq,,(0) ={(1,1), (21)}. SE = {2}.
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* (Continue to loop oveir)
Fori = 3 and 4 and eadhe= S, compute the label compents and associated pointers.
Check dominace and make necessary updatésthin this iteration, at least one

component of the labels at ned2, 3 and 4 has been updated. Thus, SE = {2,3,4} at

the end of this iterationThe following figure shows the labelg (t),;, (t) and

g;, (t) associated with nodes 2, 3, and 4, respectively, at the eimd détation.

Time Node 2 Node 3 Node 4

Position 1 Position 1 Position 1

0 (2.8,7.7} (4.6,8.8) (1.2,4.2)
51{11), 21} |5{11), 21} |5{11), (21}

1 (5.2,7) (3,7.7) (1.2,5.1)
51{11), 21} |5{11), 21} |5{11),(21)}

2 (5.4,7) (1.2,7.7) (1.1,5.4)
51{11), 21} |5{11), 21} |5{11), (21}

3 (7.5,7.7) (3.5,5.1) (6.1,3.8)
5{11), 21} |5{11), 21} |5{11), (21}

4 (6.1,7) (5.2,6.4) (5.5,7.7)
5{(11), 21} [5{11), 21} [5{11)21)}

lteration 2

Figure A.2. Solutionsfor iteration 1.

Scan node 4. SE ={2,3}.

i =4,ie{2).

Fori = 2 and each € S, compute the label components and associated pointers.
Check dominance and make necessary updates. The following figure #h®ws

updates associated with node 2 at the end of this iteration.

3 2,1(0) =(2.8,7.7),7,,(0) =5, 0,,(0) ={(1,1), (2,1)}
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Time Node 2
Position 1 Position 2
0 (2.8,7.7) (9.14,6.79)
5{(1.1), 2,1)}] 4, {1,1), (2,1)}
1 (5.2,7) (8.38,6.78)
5{(1.1), 2,1} 4,{1,1), (2,1)}
2 (5.4,7)
5 {(1.1), 2,1)}
3 (7.5,7.7)
5 {(1,1), (2,1)}
4 (6.1,7)
5 {(1,1), (2,1)}

Figure A.3. Solutionsfor iteration 2.

lteration 3

Scan node 3. SE ={2}.

j=3,ie{1,2}.

Fori = 1 and each € S, compute the label components and associated pointers.
Check dominance @mmake necessary updates.

Fori = 2 and each € S, compute the label components and associated pointers.
Check dominance and make necessary updates.

The following figure shows the updates associated with nodes 1 and 2 at the end of

this iteration. & = {1,2}.



Time Node 1 Node 2
Position 1 Position 1 Position 2
0 (3.2,14.9) (2.8,7.7) (9.14,6.79)
3, {(1.1)} 5{(1.1),21)} 4 {11).2,1)}
1 (2.86,17.28) (5.2,7) (8.38,6.78)
3,{(1,1),(2,1)} 5{(1.1),21)} 4 {1,1).2,1)}
2 (8.9,13.8) (5.4,7) (4.87,8.33)
3,{(1,1),(2,1)} 5 {(1,1),2,1)}] 3,{(1,1),(21)}
3 (6.4,13.2) (7.5,7.7)
3,{(1,1),(2,1)} 5,{(1,1),(2,1)}
4 (7.2,14.9) (6.1,7)
3,{(1,1)} 5,{(1,1),(2,1)}
Figure A.4. Solutionsfor iteration 3.
lteration 4

Scan node 2. SE 4}.
j=2,i e {1}.

Fori=1

t=0

There are two possible travel times on arc (1,2) at departure tifhe
ie. 2={1,2}. ci3(0)=1 andpi3(0)=0.8,ci%(0) = 2 and p1%(0)= 0.2.
At node 2, there are two Paraiptimal labels at time 0e{3(0) and 0 4ci2(0),
ie. X,(0+ c3(0)) =X, = {1,2} and X,(0+ ¢15(0)) =X »(2) = {1,2}.
Then, four differenQ sets of g, X) pairs would be generated as follows:
Set 1: (1,1), (2,1)
Set 2: (1,1), (2,2)

Set 3: (1,2), (2,1)

Set 4: (1,2), (2,2)
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forset 1:Q={(1,1), (2,1)},

70 = D[ 20+ A5 (0+62(0) - p2(0)
(21,X)eQ

= (1+5.2)- 0.8 + (2+5.4) 0.2 = 6.44.

720 = Y Y[ c2(0)+ 23,(0+62(0)] - pi2(0) - piz2 (0)
(zl,x)eQZZ:l

=(3+7)0.8-0.8 + (4+7) 0.8- 0.2 + (3+7) 0.2- 0.8 + (4+7) 0.2- 0.2 = 10.2.
n1(0) is nordominated, thusl,,(0) = (6.44,10.2).
Insert 2 intaX;(0) . Set z,,(0) =2 andq,;,(0) ={(1,1), (2,2} SE = SEU {1}.

for set 2.0 ={(1,1), (2,2)},

70 = D[ 20+ A5 (0+52(0) - p12(0)
(z:0<Q

= (1+5.2) 0.8 + (2+4.87) 0.2 = 6.334.

n20) = Y S[cE20)+ 22,(0+c2(0)] - ;2 (0) - pZ2 (0)
(2 X)<Q 21

= (3+7)- 0.8 0.8 + (4+7) 0.8- 0.2 + (3+8.33) 0.2- 0.8 + (4+8.33) 0.2- 0.2

=10.466.
n1(0) is nordominated, thust, ;(0) = (6.334,10.466).
Insert 3 intaX;(0) . Setr,5(0) =2 andqg,5(0) ={(1,1), (2,2)}.

for set 3:0 ={(1,2), (2,1)}...

for set 4:0 ={(1,2), (2,2)}...




» (Continue to loop oveir)
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Continue in the same manner until the SE list is empty when step 2 is first called.

The final hyperpath solutions for every node and time interval are provideduire Fig

A.5.
Time Node 1
Position 1 Position 2 Position 3 Position 4
0 (3.2,14.9) (6.44,10.2) (6.334,10.466)| (8.984,10.024)
3, {(1,1)} 2,{(1,1),(21)} | 2,{(1.1).(2,2)} | 2,{(1,2),(2,1)}
1 (2.86,17.28) (9.92,11.71)
3,{1,1).,21)} | 2,{(1,1).(2,1)}
2 (8.42,9.76)
2,{(1,1),(2,1)}
3 (6.4,13.2) (8.1,10.2)
3,{(1.1),21)} | 2,{(1,1).(2,1)}
4 (7.2,14.9) (8.3,10.1)
3, {(1,1)} 2,{(1,1),(2,1)}
Time Node 2 Node 3 Node 4
Position 1 Position 2 Position 1 Position 1
0 (2.8,7.7) (9.14,6.79) (4.6,8.8) (1.2,4.2)
5{(1.1),21)} | 4,{(1,1),(2,1)} 5 {(1.1), (2,1)} 5{(1,1), 2L}
1 (5.2,7) (8.38,6.78) (3,7.7) (1.2,5.1)
5{(1.1),21)} | 4,{(1,1),(2,1)} 5 {(1.1), (2,1)} 5 {(1.1), (2,1)}
2 (5.4,7) (4.87,8.33) (1.2,7.7) (1.1,5.4)
5{(1.1),21)} | 3,{(1,1),(2,1)} 5 {(1,1), (2,1)} 5 {(1.1), (2,1)}
3 (7.5,7.7) (3.5,5.1) (6.1,3.8)
5 {(1.1),@,1)} 5 {(1.1), (2,1)} 5 {(1.1), (2,1)}
4 (6.1,7) (5.2,6.4) (5.5,7.7)
5 {(1,1),(2,1)} 5 {(1,1), (2,1)} 5 {(1,1), (2,1)}

Figure A.5. Par eto-optimal hyperpath solutions.

Upon termination of the algorithn,,(0) =(3.2,14.9),4,,(0) =(6.44,10.2),

43(0) = (6.334,10.466)and 1,,(0) = (8.984,10.024)with associated hyperpath
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pointers, z;,(0) =3 andxz;,(0) = 7,5(0) = 7,,(0) = 2, respectively. The hyperpath

from node 1 at departure time O indicates that there are two Parepdimal moves

the traveler can take: &e to either node 2 or node I18.node 2 is chosen and the
arrival time at thisnode ist = 1, two Paretaptimal moves are suggested: go to node

5 directly or go to node 4 followed by node 5. If, on the other hand, the arrival time at
node 2 ig = 2, going to node 5 directly and going to node 3 followed by node 5 are
both considera to beefficient. If the traveler departs node 1 and chooses to head to
node 3, the suggested move is to go from node 3 directly to node 5, regardless of the
actual arrival time at node. 3hese solution hyperpaths from node 1 to node 5

departing from noel 1 att = O are portrayed in FigeA.6.

Figure A.6. Pareto-optimal hyperpathsfrom node 1to node5
at departuretimeO.
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There are foua priori paths: 13-5, 1-2-45, 1-2-5 and 12-35. The expected
travd times and expected travel costs, respectively, for thegeori paths when
departing from node 1 &t 0 are as follows.

Path 13-5: (3.2,14.9)

Path 12-4-5: (9.38,10.37)

Path 12-5: (6.44,10.2)

Path 12-35: (7.006,12.754)

There are twaa priori Paetooptimal paths: paths-2-5 and 13-5. Both of these

paths are also Paretptimal hyperpath solutions for the adaptive problem.
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APPENDIX B MATHEMATICAL FORMULATION OF THE SESCAPE
PROBLEM
The mathematical formulation of the SEscape ritlgm for the example network

given in Figure 4.9 can be written as follows.

Max [ min {( P29 (0) - R2¢? (2)), (P42 (0) - P332 (2) . P34 (9y),

B339 0) - P3P (@), (PE4Y(0)) }]
Subject to
X12(0) + X%13(0) + X14(0) =3.
X53(2) + X54(2) - %5(0) =0
X34(4) - %13(0) - X»3(2) =0
- %X14(0) - X04(2) - X34(4) =-3
0< x,(0) <4
0< x3(0) <1
0< x4(0) <3
0< X5(2) <2
0< Xp4(2) <2

0< Xg4(4) <2
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