
ABSTRACT

Title of dissertation: ON FINDING PATHS AND FLOWS IN
 MULTICRITERIA, STOCHASTIC AND
 TIME-VARYING NETWORKS

 Sathaporn Opasanon, Doctor of Philosophy, 2004

Dissertation directed by: Professor Elise Miller-Hooks
 Department of Civil and Environmental Engineering

This dissertation addresses two classes of network flow problems in networks

with multiple, stochastic and time-varying attributes. The first problem class is concerned

with providing routing instructions with the ability to make updated decisions as

information about travel conditions is revealed for individual travelers in a transportation

network. Three exact algorithms are presented for identifying all or a subset of the

adaptivePareto-optimal solutionswith respect to the expected value of each criterion

from each node to a desired destination for each departure time in the period of interest.

The second problem class is concerned with problems of determining the optimal

set of a priori path flows for evacuation in capacitatednetworks are addressed, where the

time-dependent and stochastic nature of arc attributes and capacities inherent in these

problems is explicitly considered.The concept of Safest Escape is formulated for

developing egress instructions. An exact algorithm is proposed to determine the pattern of

flow that maximizes the minimum path probability of successful arrival ofsupply at the

sink

While the Safest Escape problem considers stochastic, time-varying capacities,

arc travel times, while time-varying, are deterministic quantities.Explicit consideration of

stochastic and time-varying travel times makes the SEscape problem and other related

problems significantly more difficult. A meta-heuristic based on the principles of genetic

algorithms is developed for determining optimal path flows with respect to several

problems in dynamic networks, where arc traversal times and capacities are random

variables with probability mass functions that vary with time. The proposed genetic

algorithm is extended for use in more difficult, stochastic, time-varying and multicriteria,

capacitated networks, for which no exact, efficient algorithmsexist. Several objectives

may be simultaneously considered in determining the optimal flow pattern: minimize

total time, maximize expected flow and maximize the minimum path probability of

successful arrival at the sink (the objective of the SEscape problem). Numerical

experiments are conducted to assess the performance of all proposed approaches.

ON FINDING PATHS AND FLOWS IN MULTICRITERIA,

STOCHASTIC AND TIME-VARYING NETWORKS

by

Sathaporn Opasanon

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

 Professor Elise Miller-Hooks, Chair
 Professor Hani S. Mahmassani
 Professor Bruce L. Golden
 Professor Ali Haghani
 Professor Gregory B. Baecher

©Copyright by

Sathaporn Opasanon

2004

ii

ACKNOWLEDGMENTS

I wish to express my great gratitude to Dr. Elise Miller-Hooks who serves as my

advisor and mentor throughout my studies at Pennsylvania State University and

University of Maryland. I am sincerely grateful to Dr. Miller-Hooks for the opportunity

she has given me, for inspiration and encouragement, for her patience, her accessibility

and her invaluable guidance, which play a critical role in the completion of this

dissertation. I have learned a great deal from her in both academic and personal life.

Without her, I would not have come this far.

I would like to thank Dr. Konstadinos Goulias, Dr. Ageliki Elefteriadou, Dr. Paul

P. Jovanis and Dr. A. Ravi Ravindran who served on my thesis committee at

Pennsylvania State University. I am greatly honored to have Professors Hani S.

Mahmassani, Bruce L. Golden, Ali Haghani and Gregory B. Baecher in my doctoral

committee at University of Maryland. Their inestimable advice during the defense

contributes to the perfection of my dissertation. I would especially like to thank Professor

Mahmassani for his comments on the entire dissertation.

I would like to acknowledge all the friends and colleagues at Pennsylvania State

University and University of Maryland. Specifically thank to Nateekool Kriangchaiporn

for making State College my home and Hathairat Maneetes for warm support. My thanks

also go to Dr. Baiyu Yang and Dr. Hao Tang for their help and friendship. I would like to

thank Harsh Dhundia, Minseok and all the office mates who make my life in College

Park enjoyable.

iii

Finally, I would like to express my deepest appreciation to my parents for their

endless love and support, which gave me idea, motivation, strength and power to conquer

any obstacle.

iv

TABLE OF CONTENTS

List of Tables.………………………………………………………………………… viii

List of Figures.………………………………………………………………………... ix

Chapter 1. Introduction……………………………………………………………… 1

1.1. Motivation…………………………………………………………………….. 1

1.2. Problem Class I………………………….……………………………………. 3

 1.3. Problem Class II………………………..……………………………………... 6

 1.4. Contributions………………………………………………………………….. 11

Chapter 2. Adaptive Pareto-Optimal Path Strategies………………………………... 13

 2.1. Introduction…………………………………………………………………… 13

 2.2. Literature Review……………………………………………………………... 15

2.2.1. Single Criterion Shortest Path Problems………………………………….. 15

2.2.2. Multicriteria Optimal Path Problems……………………………………... 17

 2.3. Pareto-Optimal Hyperpaths in STV Networks……………………………….. 21

 2.4. Network Notation and Problem Definitions………………………………….. 27

 2.5. Solution Approaches………………………………………………………….. 31

2.5.1. The Adaptive Pareto-Optimal Strategy (APS) Algorithm………………... 32

2.5.2. The Adaptive Least Expected Disutility Strategy I (ALEDS I) Algorithm 43

 2.5.3. The Adaptive Least Expected Disutility Strategy II (ALEDS II)
Algorithm………………………………………………………………… 47

v

2.6. Notes on Algorithm Implementation…………………………………………. 52

2.7. Computational Experiments…………………………………………………... 53

2.7.1. Experimental Design……………………………………………………… 53

2.7.2. Average Run Times of the APS Algorithm………………………………. 54

2.7.3. Average Run Times of the ALEDS I and II Algorithms…………………. 55

 2.8. Conclusions…………………………………………………………………… 58

Chapter 3. Adjustable Preference Path Strategies…………………………………… 60

 3.1. Introduction…………………………………………………………………… 60

 3.2. Network Notation and Problem Definition…………………………………… 63

 3.3. The Adjustable Preference Path Strategy (APPS) Algorithm………………… 64

 3.4. Illustrative Example Problem…………………………………………………. 68

 3.5. Numerical Experiments……………………………………………………….. 73

 3.5.1. Experimental Design……………………………………………………… 74

 3.5.2. Results and Discussion……………………………………………………. 74

 3.6. Conclusions…………………………………………………………………… 76

Chapter 4. The Safest Escape Problem……………………………………………… 77

 4.1. Introduction…………………………………………………………………… 77

 4.2. Literature Review……………………………………………………………... 80

 4.3. Conceptual Framework……………………………………………………….. 87

 4.3.1. Expectation and Path Flows………………………………………………. 88

4.3.2. Probabilities of Successful Path Traversal………………………………... 91

vi

 4.4. Safest Escape………………………………………………………………….. 92

 4.5. Network Notation and Problem Formulation………………………………….95

 4.6. Solution Approach……………………………………………………………. 98

 4.6.1. The PTD residual network………………………………………………... 98

4.6.2.SEscape algorithm………………………………………………………… 100

4.6.3. Maximum Probability Path (MPP) algorithm…………………………….. 104

4.6.4. Proof of the SEscape algorithm…………………………………………... 107

 4.7. Illustrative Example…………………………………………………………... 112

 4.8. Numerical Experiments……………………………………………………….. 117

 4.8.1. Experimental Design……………………………………………………… 117

 4.8.2. Experimental Results……………………………………………………... 118

 4.9. Conclusions…………………………………………………………………… 121

Chapter 5. Heuristics for MSTV Capacitated Networks…………………………….. 123

 5.1. Introduction…………………………………………………………………… 123

5.2. A Genetic Algorithm for Deterministic, Time-V arying Networks…………… 130

5.2.1. Network Notation and Problem Definition……………………………….. 131

 5.2.2. Genetic Algorithm………………………………………………………… 131

5.2.3. Illustrative Example………………………………………………………. 140

5.2.4. Experimental Results……………………………………………………... 144

5.2.4.1. Parameter Tuning…………………………………………………… 144

5.2.4.2. Algorithm Performance Analysis…………………………………… 146

5.3. A Noisy Genetic Algorithm forStochastic, Time-V arying Networks………... 149

vii

 5.3.1. Sampling Fitness Function………………………………………………... 151

 5.3.2. Sampling Design………………………………………………………….. 153

 5.3.3. Constraint Handling………………………………………………………. 155

5.3.4. Illustrative Example………………………………………………………. 157

5.4. A Noisy Genetic Algorithm forMulticriteria, Stochastic, Time-V arying
Networks………………………………………………………………………

161

Chapter 6. Conclusions and Extensions……………………………………………... 165

 6.1. Synthesis……………………………………………………………………… 165

 6.2.Future Extensions……………………………………………………………... 169

Appendices…………………………………………………………………………... 173

 Appendix A Illustrative Example for The APS Algorithm……………………….. 173

 Appendix B Mathematical Formulation of the SEscape Algorithm………………182

References…………………………………………………………………………… 183

viii

List of Tables

Table 2.1: Expected travel times and costs……………………………………….. 23

Table 2.2: Notation……………………………………………………………….. 28

Table 2.3: Notation employed in the APS algorithm……………………………... 37

Table 2.4: Notation employed in the ALEDS I and II algorithms………………... 44

Table 2.5: Average run times in c.p.u. seconds for the APS algorithm on a 25
node network…………………………………………………………... 54

Table 2.6: Average run times in c.p.u. seconds for the ALEDS I and II
algorithms……………………………………………………………… 55

Table 2.7: Average run times in c.p.u. seconds for the ALEDS II algorithm…….. 57

Table 3.1: Probabilistic time and cost data……………………………………….. 69

Table 3.2: Average run time comparisons………………………………………... 75

Table 4.1: Arc travel times and capacities for the example network……………... 113

Table 4.2: The PTD residual network…………………………………………….. 113

Table 4.3: Backward arc information……………………………………………... 114

Table 4.4: Experimental results…………………………………………………... 119

Table 5.1: Arc capacities and costs associated with each arc…………………….. 141

Table 5.2: Results for network with 25 nodes and 60 time intervals……………... 147

Table 5.3: Results for network with 100 nodes and 60 time intervals……………. 148

Table 5.4: Results for the SEscape problem……………………………………… 149

Table 5.5: Fitness evaluation……………………………………………………... 157

Table 5.6: Random travel times and capacities…………………………………… 158

Table 5.7: Optimal values for 27 realizations…………………………………….. 160

ix

List of Figures

Figure 2.1: MSTV example network……………………………………………... 21

Figure 2.2: Pareto-optimal hyperpath solutions…………………………………... 24

Figure 2.3: Illustration of Vector Labels at Node i……………………………….. 34

Figure 2.4: Example for the APS algorithm……………………………………… 35

Figure3.1: MSTV example network……………………………………………... 61

Figure 3.2: APPS solution………………………………………………………… 62

Figure 3.3: Illustrative example…………………………………………………... 68

Figure3.4: Solutions for iteration 1………………………………………………. 71

Figure 3.5: APPS solutions……………………………………………………….. 72

Figure 3.6: APPS from node 1 to node 5…………………………………………. 73

Figure 3.7: APPS/ELB run time comparisons……………………………………. 75

Figure 4.1: SEcape problem………………………………………………………. 77

Figure 4.2: Time-varying travel times and STV capacities………………………. 80

Figure 4.3: Example network……………………………………………………... 91

Figure 4.4: Stochastic arc capacities……………………………………………… 94

Figure 4.5: The PTD residual network……………………………………………. 99

Figure 4.6: The PTD backward arc……………………………………………….. 100

Figure 4.7: The PTD residual network after completion of (n-2) unit shipments… 109

Figure 4.8: The PTD residual network after completion of (n-1) unit shipments… 110

Figure 4.9: Example network……………………………………………………... 113

Figure 4.10: PTD residual network………………………………………………… 115

x

Figure 4.11: Shipping one unit on path 1-3-2-4……………………………………. 116

Figure 4.12: Optimal solution……………………………………………………… 117

Figure 5.1: Solution representation……………………………………………….. 133

Figure 5.2: Genetic algorithm structure…………………………………………... 139

Figure 5.3: Illustrative example…………………………………………………... 140

Figure 5.4: Arc attribute realization on arcs 1 and 2……………………………… 156

Figure 5.5: STV capacitated network…………………………………………….. 158

Figure 5.6: Minimum time flow…………………………………………………... 159

Figure 5.7: Optimal pattern of flow………………………………………………. 164

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

This dissertation addresses two classes of network flow problems in networks with

multiple, stochastic and time-varying attributes. The first problem class is concerned

with providing routing instructions with the ability to make updated decisions as

information about travel conditions is revealed for individual travelers in a

transportation network. Such instructions are useful in a variety of applications,

including selection of routes for hazardous materials transport, emergency response

operations (medical, police, fire), intelligent transportation systems (ITS), and data

networks.The second problem class is concerned with the determination ofoptimal a

priori path flows for evacuation in capacitatednetworks, where the time-dependent

and stochastic nature of arc attributes and capacities inherent in these problems is

explicitly considered. Given arccapacity restrictions, a single path may not be able to

accommodate all of the flow and it may be necessary to select a set of paths along

which the flow will be shipped. A solution in this context, thus, consists of a set of

paths and corresponding amount of flow to be shipped along each path.

In most of the published literature, the primary criterion used in determining

an optimal path is either travel time or distance. However, in many real-world

applications, other criteria may be of equal or greater importance. For example, in

transportation applications, one may prefer a path that simultaneously minimizes

travel time, distance, cost and accident likelihood. Identification of a single solution

2

that is best with respect to all criteria is often impossible. Rather, a set of Pareto-

optimal (also referred to as efficient or non-dominated) solutions often exists. A

solution is Pareto-optimal if and only if there are no other solutions that are better in

at least one criterion and equal in the remaining criteria.

Numerous efficient algorithms exist for finding optimal solutions to network

flow problems, where network attributes are given by time-invariant, deterministic

quantities. However, often the attributes in a transportation network are stochastic and

time-varying in nature. For example, arc travel times change over time due to time-

of-day variations in traffic congestion. Furthermore, future travel times can at best be

known a priori with uncertainty due to unforeseen events, such as poor roadway

conditions, vehicle breakdowns, traffic accidents, and driver behavior. Uncertainty

also exists as a result of measurement inaccuracies. Likewise, there are many

applications for which the capacity of an arc may not be known with certainty and

probability distribution functions or expected values may vary over time. In this

dissertation, future arc capacities, travel times and other travel criteria are random

variables with probability distribution functions that vary with time, i.e. multicriteria,

stochastic and time-varying (MSTV) networks are considered. Explicit consideration

of the dynamic and uncertain nature of multiple arc attributes in mathematical

representations of real-world problems can significantly improve the utility and actual

performance of the solutions.

In Sections 1.2 and 1.3, the specific problems that are addressed in this

dissertation are introduced and discussed. A brief overview of the main contributions

of this work is provided in Section 1.4.

3

1.2 PROBLEM CLASS I

A host of efficient algorithms exist in the literature for finding optimal paths in

deterministic networks, where only a single criterion is considered. Few works have

explicitly and simultaneously considered the dynamic and uncertain nature of

multiple path attributes. In this dissertation, real-world complexities of path selection

through explicitly considering the inherent variability in travel conditions, as well as

the multiobjective nature of many path selection decisions are addressed.

In networks with stochastic, time-varying (STV) travel times, two problem

classes may be considered: the a priori path and the time-adaptive path strategy

problems. In both problem classes, solutions are obtained prior to the trip.The former

results in a unique path that is defined in its entirety. The latter, in contrast, produces

a set of path strategies that enables the traveler to select the best next direction from

each intermediate location depending on the actual arrival time at that location. Such

path strategies can be viewed as hyperpaths. In both problem classes, solutions are

obtained prior to the trip. While solutions of both classes are provided a priori, in this

dissertation the former is referred to as an a priori solution while the latter is referred

to as a hyperpath solution.A solution approach that uses this time-adaptive feature

may be desirable in providing real-time routing instructions. Similar problem classes

can be defined in MSTV networks. An extension of the adaptive path problem with

relation to MSTV networks is considered in this dissertation.The adaptive path

strategy in MSTV networks is referred to as an adaptive Pareto-optimal path strategy

(i.e. Pareto-optimal hyperpaths). Three specialized label-correcting algorithms are

presented for identifying all or a subset of the adaptivePareto-optimal solutionswith

4

respect to the expected value of each criterion from each node to a desired destination

for each departure time in the period of interest. A brief description of these exact

solution techniques is given next.The detailed conceptual framework and specific

computational steps for solving these problems are presented in Chapters 2 and 3.

Adaptive Pareto-Optimal Strategy (APS) Algorithm

The Adaptive Pareto-Optimal Strategy (APS) algorithm generates all adaptive Pareto-

optimal path strategies in MSTV networks. The concepts of Pareto-optimality and

time-adaptive strategy are combined to generate the set of Pareto-optimal path

strategies that enable the traveler to select a direction among all Pareto-optimal

solutions at each node in response to knowledge of the arrival time at the intermediate

nodes. Solution paths that seek to minimize the expected value of multiple criteria are

sought from all origins to a specified destination for all departure times in a period of

interest.

The APS algorithm is a specialized label-correcting algorithm for use with

multiple criteria. The algorithm proceeds in an iterative manner, working backward

starting from the destination node. One or more hyperpaths may be generated from

each node at each departure time. That is, hyperpaths are constructed through each of

the Pareto-optimal subhyperpaths at a successor node. Upon termination, all Pareto-

optimal hyperpaths with respect to the expected value of the considered criteria from

each origin to the destination node for each departure time are generated.

5

Adaptive Least Expected Disutility Strategy (ALEDS I & II) Algorithm

The generation of all Pareto-optimal hyperpaths may require enormous computational

effort; thus, the ALEDS I and II algorithms are proposed to provide the single “best

compromise” solutions by explicitly representing the decision maker’s preference

structure through a disutility function. Rather than generate all Pareto-optimal

hyperpaths and a posteriori select a single solution, the ALEDS algorithm relies on

the use of a preference function in the form of a linear utility function to produce only

a single hyperpath solution, i.e. the one that minimizes the expected disutility.

The ALEDS I algorithm works by computing the expected value for each

criterion prior to determining the disutility for the associated hyperpath. To efficiently

generate the least expected disutility (LED) hyperpaths, an enhancement to the

ALEDS I algorithm is presented, referred to as the ALEDS II algorithm. Unlike the

ALEDS I algorithm that requires computation and storage of the expected value for

each criterion, this second variation assesses the expected disutility directly and keeps

only the minimum value for each node and departure time. Both algorithms terminate

with the LED hyperpaths from all nodes to a specified destination for all departure

times in the period of interest.While the ALEDS I algorithm is more intuitive, the

ALEDS II algorithm provides substantial improvements in computational complexity

and storage requirements.

Adjustable Preference Path Strategy (APPS) Algorithm

The Adjustable Preference Path Strategy (APPS) algorithm generates adaptive path

strategies that seek to minimize the expected value of each of multiple criteria from

6

all origins to a specified destination for all departure times in a period of interest.

These solution strategies allow a traveler to change his or her preference for the

criterion upon which path decisions should be made at intermediate locations en route

to the destination and then adaptively select the best path with respect to the expected

value of the chosen criterion at each node in response to knowledge of experienced

travel times on the arcs. Such adaptive strategies are referred to herein as adjustable

preference path strategies (APPS). The APPS algorithm is proposed to determine

such adaptive strategies in MSTV networks. The APPS algorithm is particularly

useful for providing real-time path finding assistancein traffic networks.

The APPS algorithm determines the APPS by checking at each departure time

if using the hyperpaths associated with the node along the hyperpaths from its

predecessor nodes generates a lower expected value of one or more of the criteria

from these predecessor nodes to the destination than previously considered

hyperpaths.

1.3 PROBLEM CLASS II

The second problem class considered in this dissertation is concerned with the

generation of the optimal set of a priori path flows in networks, where arc capacity

restrictions are considered. While network flow problems in this context have wide

applicability in many different arenas, this dissertation focuses on the development of

evacuation plans for emergency escape from a large building. Most of the related

works proposed in the literature for determining exact solutions focus on static and

deterministic problems. In light of the intelligent evacuation, rescue and recovery

7

(IERR) concept (Miller -Hooks and Krauthammer, 2002), real-time assessment of the

extent of blast damage to a building’s structures makes it possible to derive

probabilistic passageway traversal times and capacities over time. In this dissertation,

the uncertain and time-varying nature of arc capacities inherent in emergency

situations is explicitly considered.Stochastic and time-varying (STV) arc capacities

impede the effectiveness of implementing the solution obtained from conventional

deterministic approaches, because there might be some probability that the capacity

of an arc cannot accommodate all the flow attempting to traverse it. This motivates

consideration of a performance measure that takes into account these probabilitiesin

evaluating solution path flows.

A brief discussion of the capacitated network flow problems addressed in this

dissertation is given next. The detailed conceptual framework and specific

computational steps for solving the problems are presented in Chapters 4 and 5.

The Safest Escape Problem

TheSafest Escape (SEscape) problem is to determine optimal path flows in dynamic

(i.e. flow moves through the network over time and arc capacities are recaptured over

time) networks, where arc traveltimes are time-varying and arc capacities are random

variables with probability distribution functions that vary with time. Traditionally, the

evacuation time, i.e. the time until the last evacuee exits the disaster area, is

considered in developing evacuation plans. However, when capacities of passageway

can be at best known only probabilistically, it may be beneficial to route people to a

longer time path with high likelihood of successful arrival at the safe area than to a

8

faster path with small likelihood of successful arrival. For this reason, the probability

of successful escape is explicitly considered herein.

An exact algorithm, the SEscape algorithm, is proposed to determine the

pattern of flow that maximizes the minimum path probability of successful arrival of

supply at the sink. In life-threatening situations, it is importantto avoid routing any

evacuee to apath that would have a high likelihood of failing by the time the evacuee

arrives at that location.The SEscape algorithm extends the Time-Dependent Quickest

Flow Problem (TDQFP) algorithm of Miller- Hooks and Stock Patterson (2004) for

solving the TDQFP in deterministic, time-varying networks for use in stochastic

environments. That is, it iteratively determines the maximum probabilitypaths from

source to sink in a residual network and incrementally pushes flow along the paths

until all demand is fulfilled. The SEscape algorithm terminates with a set of paths

from the source to the sink and the corresponding number of units to be shipped along

each path such that the minimum probability of arrival at the sink is maximized.

Through the implementation of the technique given in Miller- Hooks and Stock

Patterson (2004) for efficiently converting multi-source, multi-sink network flow

problems to single source, single sink problems, the SEscape algorithmcan be used to

solve the SEscape problem given multiple sources and multiple sinks. In the context

of emergency evacuation, such solutions minimize the risk incurred by the people

who are forced to take the greatest risk.

The rationale and the design of the specific computational steps for addressing

the SEscape problem are provided in Chapter 4.

9

Minimum Cost Network Flow Problems in MSTV, Capacitated Networks

While the SEscape problem assumes STV capacities, arc travel times are treated as

deterministic quantities. In many situations, however, future arc travel times may not

be known a priori with certainty. Difficulty arises when assessing exact solutions of

network flow problems with STV arc travel times and capacities, i.e. in STV

capacitated networks. Ifboth quantities are modeled as discrete random variables, a

particular combination of possible travel times (and other attributes) and capacities at

each discrete point in time results in a realization of such a STV network. That is, the

network can take on a number of discrete states and this number grows exponentially

with the size of the network and number of possible travel times and capacities along

each arc for each departure time. The optimal solution for one state may not be

feasible for another state and it is possible that no feasible solution exists for any

network realization. Exact solution to problems of this nature that rely on

enumeration of all states willrequire substantial computational effort. A

methodological framework that can provide competitive approximate solutions with

reasonable computational effort is proposed. Specifically, a meta-heuristic based on

the principles of noisy genetic algorithms (NGAs) is presented for determining

optimal path flows in dynamic networks, where arc traversal times and capacities are

random variables with probability mass functions that vary with time.

A genetic algorithm (GA) is first presentedfor solving the problem of

determining the optimal flow pattern, where the arc travel times are assumed to be

deterministic and time-varying. Specifically, the solution approach seeks the

minimum cost flow for shipping a given amount of supply.The performance of the

10

GA is compared with that of the exact techniques, specifically a no-waiting version of

the TDQFP algorithm (Miller-Hooks and Stock Patterson, 2004), where the arc

capacities are deterministic and time-varying, and the SEscape algorithm (Chapter 4),

where the arc capacities are known only with uncertainty.

In the GA, the solution representation structure is specifically designed to

accommodate only feasible solutions. Each chromosomecontains several genes that

form a pattern of flow. Each gene consists of two parts. The first part contains a

sequence of arcs forming a path from the source to the sink. The second part indicates

the number of flow units to be sent through the path. Only feasible solutions are

generated in the initial population and solution feasibility is maintained at

intermediate stages of the algorithm through the application of specially designed

operators, including crossover and mutation operators. In each generation, binary

tournament selection is employedto select solutions to enter the next generation. The

GA is extended to address the problem in more difficult, STV and MSTV capacitated

networks, where no exact algorithmsexist.

To address the problem of finding optimal path flows in STV and MSTV

capacitated networks, noisy genetic algorithms (NGAs) are implemented. A sampling

fitness function is used to evaluate solutions in each iteration. Unlike in the

application of the GA to deterministic problems, infeasible solutions are permitted,

but a penalty is incurred for violating the problem constraints. In many applications

that can be modeled as network flow problems, multiple conflicting objectives are

involved. For example, a set of paths that maximize the expected flow and

simultaneously minimize total time may be desiredin building evacuation. Such

11

objectives may be conflicting in nature. Therefore, extension of the NGA for use in

addressing multicriteria dynamic network flow problems with stochastic, time-

varying arc attributes, including arc capacities, is presented.

Details of the GAs and NGAs proposed here for addressing single objective

and multiobjective problems related to evacuation are given in Chapter 5.

1.4 CONTRIBUTIONS

The main contributions of this dissertation are as follows.

Problem class I

I.1) The development of an exact technique for generating all adaptive Pareto-optimal

solutions of a multicriteria optimal path problem in stochastic, time-varying networks.

I.2) The design of the specific procedural steps for directly determining a single

“best” hyperpath in MSTV networks by explicitly representing the decision maker’s

preference structure through a disutility function.

I.3) The rationale and the design of the specific computational steps for determining

adjustable preference path strategies (APPS) that permita traveler to adapt his or her

path according to both revealed travel conditions and the traveler’s changing

preferences at intermediate locationswhile traveling to the destinationin MSTV

networks.

Problem class II

II.1) The development of the conceptual framework and exact algorithm for

determining emergency evacuation strategies in dynamic, capacitated networks,

12

where the risk incurred by the person or people who are forced to take the greatest

risk is minimized.

II.2) The development of a meta-heuristic for addressing the problem of determining

optimal path flows in dynamic networks, where multiple arc attributes and capacities

are stochastic and time-varying.

13

CHAPTER 2

ADAPTIVE PARETO-OPTIMAL PATH STRATEGIES

2.1 INTRODUCTION

This chapter addresses the problem of determining adaptive path strategies in

stochastic, time-varying (STV) networks with multiple arc attributes, i.e. in

multicriteria STV, or MSTV, networks. In MSTV networks, multiple arc attributes

are associated with each arc, each of which is a random variable whose probability

distribution function (PDF) varies with time. With multiple criteria, it is unlikely that

there exists a single path between a given origin-destination pair that is best with

respect to all criteria. Instead, the solution of a multicriteria “optimal” path problem

will be a set of Pareto-optimal (or non-dominated) paths.

Let aP = { 1
aP , 2

aP ,…, r
aP }, where r is the number of criteria under

consideration and k
aP , k ∈ {1,2,…,r}, is the value with respect to criterion k for path

a in a deterministic, time-invariant network. Then,

aP is non-dominated if no b (≠a) exists between the same origin-destination pair

such that k
bP ≤ k

aP for all k ∈ {1,2,…,r} and h
bP < h

aP for some h ∈ {1,2,…,r}

(condition 1).

In this chapter, exact algorithms are proposed for addressing adaptive path

problems, where arc attributes are stochastic and time-varying. Adaptive paths

comprise a set of path strategies that enable the traveler to select a direction among all

Pareto-optimal solutions at each node in response to knowledge of the arrival time at

14

the intermediate nodes. Such paths can be viewed as hyperpaths and are referred to in

this way herein. The first algorithm generates all adaptive Pareto-optimal path

strategies (referred to as Pareto-optimal hyperpaths) in MSTV networks. Specifically,

solution paths that seek to minimize the expected value of multiple criteria are sought

from all origins to a specified destination for all departure times in a period of

interest.

Regardless of the technique employed or the application considered,

generation of all Pareto-optimal paths may require generation of all possible paths,

because all paths may be Pareto-optimal. Any technique that generates all Pareto-

optimal solutions has exponential worst-case computational complexity. Therefore,

two computationally efficient variations of an additional algorithm are proposed that

rely on the use of a preference function in the form of a linear utility function to

produce only a single hyperpath, i.e. the one that minimizes the expected disutility.

These techniques address real-world complexities of path selection through explicitly

considering the inherent variability in travel conditions, as well as the multiobjective

nature of many path selection decisions. Moreover, they take advantage of the

traveler’s ability to make updated decisions as information about uncertain quantities

is revealed.

Section 2.2 provides a brief discussion of the works that have been proposed

in the literature for addressing a variety of related optimal path problems.

15

2.2 LITERATURE REVIEW

2.2.1 Single Criterion Shortest Path Problems

A great number of researchers have been studying a variety of optimal path problems.

These efforts to solve this problem have ranged in focus from solutions in the

simplest static networks to very complicated stochastic, and/or multicriteria networks.

Most of these efforts concentrate on the determination of the shortest path in

deterministic networks with travel time as a single criterion. Few take into account

the stochastic nature of the network elements, where issues of random variables and

associated probability functions are addressed.

The simplest one is the classical shortest path problem in static networks with

a single arc attribute. There are two general approaches used to solve the shortest path

problem: label-setting and label-correcting algorithms (see Ahuja, Magnanti and

Orlin (1993) for more detail). Both algorithms initially establish a temporary distance

label to each node from a given origin that maintains an upper bound on the shortest

path distance from the origin to that node. The labels are updated iteratively. In the

label-setting algorithm, a label is selected and made permanent (i.e. represents the

final shortest distance from the origin to the considered node) at each iteration. By

contrast, in the label-correcting algorithm, all labels are assumed to be temporary and

will become permanent only when the algorithm terminates. Note that neither

algorithm can solve for the shortest path in networks containing negative cycles since

they could result in the incorrect shortest path.

Many approaches have been proposed in the literature for finding the shortest

path in networks with time-varying but deterministic arc travel times (Cooke and

16

Halsey, 1966; Dreyfus, 1969; Orda and Rom, 1990; Ziliaskopoulos and Mahmassani,

1993; Kaufman and Smith, 1993; and Chabini, 1998). Of interest is the work of

Ziliaskopoulos and Mahmassani (1993). They introduced the Time-Dependent Least

Time Problem (TDLTP) algorithm for finding the shortest paths in discrete time-

varying networks for all discrete departure times. The TDLTP algorithm is a label-

correcting based algorithm where no waiting is permitted at any node. The arc travel

times are non-negative real values. After the period of interest, the arc travel times are

fixed and are equal to those of the last time interval. Because of prohibited waiting,

the TDLTP algorithm does not deal with optimal departure times at the nodes and

cannot determine the shorter path which may occur if delay in departure through

waiting at intermediate nodes is allowed and the network is non-FIFO.

Hall (1986), Miller-Hooks and Mahmassani (2000), and Pretolani (2000)

studied variations of this problem in stochastic, time-varying (STV) networks. Each

of these works addressed two problem classes. The first seeks an a priori solution and

the second seeks time-adaptive path strategies. A solution in the former problem class

is a unique path, which is chosen entirely before starting the trip and is fixed for each

departure time. Like general shortest path algorithms, the a priori solution provides a

single best path for a whole trip at a particular departure time from the origin. Fu and

Rilett (1998) proposed a heuristic for the a priori path problem. Alternatively, if the

traveler is permitted to adjust the path at each node in accordance with known arrival

times and trip information experienced at previously visited nodes, a more preferable

path (e.g. shorter expected travel time) can be found, referred to as the time-adaptive

path strategies. By this time-adaptive travel decision, there no longer exists a single

17

best path. The single best path cannot be revealed until the trip is completed since the

arrival time at each node cannot be known before travel. Such time-adaptive path

strategies are referred to as hyperpaths (Miller-Hooks, 2000), where each path

segment depends on arrival time information gained as travel is completed. Other

works that address adaptive path problems in stochastic networks include

Polychronopoulos and Tsitsiklis (1996), Waller and Ziliaskopoulos (2003), Cheung

(1998), Fu (2001), and Provan (2003). The first two of these works account for arc

cost dependencies.

2.2.2 Multicriteria Optimal Path Problems

Numerous works propose solution procedures for multicriteria path problems, where

all arc attributes are assumed to be deterministically known and time-invariant.

Climaco and Martins (1982) proposed an algorithm based on a K-shortest paths

concept for solving bicriterion shortest path problems. Martins (1984) developed two

algorithms for generating all Pareto-optimal paths. One algorithm is a generalization

of Hansen’s label-setting approach to this problem (Hansen, 1980). Corley and Moon

(1985) developed a label correcting-based algorithm for generating all Pareto-optimal

paths. Zografos and Davis (1989) employed goal programming for routing hazardous

materials in multiobjective static networks. In the context of traffic assignment, Dial

(1979) proposed a technique for generating combined route-mode choices that are

Pareto-optimal. Other related works include Warburton (1987), Stewart and White

(1989), Mote et al. (1991), Murthy and Her (1992), and Murthy and Olson (1994).

18

Because any technique that generates all Pareto-optimal solutions has

exponential worst-case computational complexity, some researchers have applied

utility functions to address multidimensional optimal path problems in static

networks. Modesti and Sciomachen (1998) used Dijkstra’s algorithm to determine

paths that minimize linear utility functions in multimodal deterministic networks in

solving a multiobjective traffic assignment problem. Loui (1983) and Eiger et al.

(1985) showed that when the utility function is linear or exponential, any labeling-

based algorithm can be used to find the optimal path in static networks without

violating Bellman’s principle. Carraway et al. (1990) proposed a generalization of

dynamic programming based upon the weak principle of optimality for use with non-

monotonic utility functions. Their generalized dynamic programming approach

addresses the multicriteria shortest path problem in acyclic, static networks when

Bellman’s principle may be violated. Henig (1985) proposed approaches to find the

bicriterion shortest path when the utility function is quasiconcave or quasiconvex.

Mirchandani and Wiecek (1993) reduced the stochastic shortest path problem to a

multiattribute optimal path problem with a nonlinear monotonic utility function. For

the case of a convex utility function, a line-search approach was proposed to solve

cases with two arc attributes. Mirchandani and Soroush (1985) developed an efficient

algorithm to solve the problem of finding an optimal path in stochastic networks with

a quadratic utility function. To solve the same problem, Murthy and Sarkar (1996)

proposed a label-setting based approach that embeds a relaxation-based pruning

technique.

19

Several works investigate multicriteria path problems in stochastic, time-

invariant networks. Turnquist(1987) suggested the use of simulation together with a

labeling-based path algorithm to address this problem. Specifically, for each

replication a realization of each arc attribute is randomly generated and the set of

Pareto-optimal paths between an origin-destination pair is determined. This is

repeated over multiple replications and the frequency with which the paths arise as

Pareto-optimal is used to estimate the probability that each path will be Pareto-

optimal. Given normally distributed arc attributes, Wijeratne et al. (1993) developed

the Stochastic Multiobjective Shortest Path algorithm for finding a set of paths in

stochastic, time-invariant networks. They presented an approximation to stochastic

dominance to compare path distribution functions for a single stochastic criterion.

The problem is extended to multiple criteria, but the criteria are reduced to two

deterministic factors; and hence, the final problem is reduced to a deterministic,

multiobjective problem.

All of the previously discussed works assume that the arc attributes are time-

invariant. However, there are many applications for which multiple attributes, such as

travel time, travel cost, population exposure, and incident rate, may be time-varying.

Nozick et al. (1997) developed an integrated routing and scheduling approach for

solving a multicriteria problem related to hazardous materials shipments with time-

varying, but deterministic, attributes. The resulting solutions are a set of route-

departure time combinations. This approach cannot guarantee that all Pareto-optimal

paths will be generated. In STV networks, Miller-Hooks and Mahmassani (1998b)

provided label correcting-based methodologies to generate all a priori Pareto-optimal

20

paths in STV networks with respect to several dominance definitions. Chang et al.

(forthcoming) presented a heuristic for solving an a priori multicriteria path problem

in STV networks, where all arc attributes are assumed to be continuous random

variables. Nielsen et al. (2003) studied the problem of finding shortest hyperpaths in

STV networks with two criteria. Three classes of problem were considered: 1)

minimize the expected travel time and cost; 2) minimize the maximum travel time

and cost; and 3) minimize the expected travel time and maximum cost. The two-phase

method originally designed for solving the bicriterion shortest path problem was

modified for solving the bicriterion hyperpath counterpart. The proposed approach

requires the construction of a time-expanded hypergraph. One can notice that the

capability of the two-phase method is bounded on shortest path problems with two

criteria. It appears that there are no published works that consider the generation of all

adaptive Pareto-optimal strategies in multicriteria, stochastic and time-varying

(MSTV) networks.

In the next section, the solution nature of the Pareto-optimal hyperpaths in

MSTV networks is illustrated through an example problem and properties are

developed. In Section 2.4, network notation and problem definitions are given. In

Section 2.5, exact algorithms are proposed to address path problems in MSTV

networks. This is followed by notes on algorithm implementation in Section 2.6.

Results of computational experiments designed to examine the average computational

performance of the proposed algorithms are presented in Section 2.7. Finally,

discussion and conclusions are given in Section 2.8.

21

2 31

2.3 PARETO-OPTIMAL HYPERPATHS IN STV NETWORKS

In this section, an example is given to illustrate the nature of hyperpath solutions in

MSTV networks. The example is also used to show that, similar to path problems in

STV networks with a single attribute associated with each arc, when multiple STV

attributes exist, one can also make improved decisions by adaptively choosing the

path. In Figure 2.1, a MSTV network with two arc attributes, i.e. travel time (criterion

I) and cost (criterion II), is shown. It is assumed that both time and cost are time-

varying and are known only probabilistically. Waiting is not permitted at any node

and the arc attributes are assumed to be independent over space and time and

independent of each other.

Figure 2.1. MSTV example network.

In Figure 2.1, the arc attributes are expressed either as expected values (for

subpaths B, C and D) or as probability mass functions where the probability of each

possible outcome is given parenthetically (for arc A). For example, there are two

possible travel times on arc A when departing from node 1 at t = 0: 1 with probability

0.7 and 2 with probability 0.3. There are also two possible costs: 1 with probability

t = 0
time cost

1(0.7) 1(0.8)
2(0.3) 6(0.2)

B
C

D
A

 t ≤ 1 t > 1
 (5.4, 6.7) (7.5, 7.8)

t ≤ 1 t > 1

 (7.38, 6)* (4, 7.4)

 t ≤ 1 t > 1
 (5.2, 6.6) (8.8, 10.2)

22

0.8 and 6 with probability 0.2. For the sake of simplicity, the expected values are

directly given for each attribute of subpaths B, C, and D, e.g. the expected travel time

and cost for path B at time t ≤ 1 are 7.38 and 6, respectively. It can be seen that three

paths, paths A-B, A-C and A-D, exist between node 1 (origin) and node 3

(destination). Suppose the traveler departs from node 1 at t = 0. The expected path

attributes for these three paths can be found as follows (see Miller-Hooks and

Mahmassani (2000) for additional detail on these computations for both a priori and

adaptive path problems with a single arc attribute).

P1) Path A-B

Expected travel time: (1+7.38)·0.7 + (2+4)·0.3 = 7.67.

Expected travel cost: (1+6)·0.7·0.8 + (6+6)·0.7·0.2 +

 (1+7.4)·0.3·0.8 + (6+7.4)·0.3·0.2 = 8.42.

Employing similar computations to determine the expected values for paths A-C and

A-D, we find the expected travel time and cost of each path to be (7.33, 9.03) and

(7.58, 9.68), respectively. As discussed in more detail in Section 2.4, by extending

condition (1) for use in STV networks, dominance at a particular departure time can

be established by means of pairwise comparisons of expected values (for either the a

priori or adaptive problem). Thus, for departure time t = 0, two a priori Pareto-

optimal paths exist for this example problem: paths A-B and A-C. That is, path A-D

is dominated by path A-C.

In the adaptive version of this multicriteria path problem, the traveler can

postpone his/her choice between subpaths B, C and D until arrival at node 2. The

expected time for one such adaptive solution is computed as follows.

23

H1) Path A-B if arrival at node 2 is t = 1 or path A-C if arrival at node 2 is t = 2

Expected travel time: (1+7.38)·0.7 + (2+7.5)·0.3 = 8.72.

Expected travel cost: (1+6)·0.7·0.8 + (6+6)·0.7·0.2 +

 (1+7.8)·0.3·0.8 + (6+7.8)·0.3·0.2 = 8.54.

Similar computations were employed to determine the expected travel times

and costs for each possible hyperpath for this problem. The expected travel times and

costs for all hyperpaths are provided in Table 2.1. Only H4 and H7 are non-dominated.

These hyperpath strategies are portrayed in Figure 2.2. Both Pareto-optimal solutions

instruct the traveler to follow arc A at t = 0. Since waiting is not permitted, both

solutions indicate that the next move from node 2 is subpath B for arrival time 2. For

arrival time 1, one can choose either subpath D by H4 or subpath B by H7. Note that,

for this example, Pareto-optimal path A-C to the a priori problem is dominated by H4.

We establish a number of relationships between a priori and adaptive Pareto-optimal

paths for MSTV networks in Propositions 2.1 through 2.5.

Table 2.1. Expected travel times and costs.
Resulting strategy by
arrival time at node 2

Hyperpath
index

t = 1 t = 2

(Expected time, Expected cost)

H1 B C (8.72, 8.54)
H2 C B (6.28, 8.91)
H3 B D (9.11, 9.26)
H4 D B (6.14, 8.84)
H5 C D (7.72, 9.75)
H6 D C (7.19, 8.96)
H7 B B (7.67, 8.42)
H8 C C (7.33, 9.03)
H9 D D (7.58, 9.68)

Note: Hyperpaths H7, H8 and H9 are identical to a priori solutions A-B, A-C and A-D,

respectively.

24

Figure 2.2. Pareto-optimal hyperpaths.

Proposition 2.1. Any Pareto-optimal solution to the adaptive path problem cannot be

dominated by any a priori solution.

Proof. Assume an a priori path P exists that dominates a Pareto-optimal hyperpath

H1. If such an a priori path is not dominated by any other Pareto-optimal hyperpath,

this a priori path must serve as a Pareto-optimal hyperpath, and thus, will trivially

fulfill this statement. If, on the other hand, a priori solution P is dominated by

another Pareto-optimal hyperpath,H2, hyperpath H1 would be dominated by H2,

contradicting our assumption that H1 is Pareto-optimal. ♦
In the single criterion adaptive LET pathproblem for a given departure time

from a given origin, the expected time of the solution hyperpath provides a lower

bound on the expected time of the a priori LET path (proof of this is given in Miller-

Hooks and Mahmassani, 2000). In Proposition 2.2, we show that this concept is not

necessarily true when multiple criteria are considered.

2

3

1

3

t = 1 D

(6.14,8.84)

A
t = 0

t = 2 B

2 31

(7.67,8.42)

A B

H4

H7

t = 0 t = 1 or 2

25

Proposition 2.2. A Pareto-optimal solution to the adaptive path problem may not

contain even one criterion for which its expected value is less than or equal to that of

all a priori solutions.

Proof. Assume a Pareto-optimal hyperpath must contain at least one criterion for

which its expected value is less than or equal to that of all a priori solutions. To

establish a counter example, the example network shown in Figure 2.1 is employed

with one adjustment in arc travel time, i.e. the expected travel time on subpath C for t

> 1 is changed from 7.5 to 3.95. With this adjustment, the three a priori solutions

have expected values for each of the two criteria as given parenthetically: P1 (7.67,

8.42), P2 (6.27, 9.03) and P3 (7.58, 9.68). For the same example, four Pareto-optimal

hyperpaths can be identified: H1 (7.65, 8.54), H4 (6.14, 8.84), H6 (6.13, 8.96) and H7

(7.67, 8.42). Hyperpath H1 is Pareto-optimal and does not contain a criterion for

which its expected value is less than or equal to that of all a priori solutions,

contradicting the assumption, and thus, establishing a counter example. ♦
The counter example established in the proof of Proposition 2.2 leads to

another concept for establishing a bound on the expected values for each criterion for

the a priori problem.

Proposition 2.3. The lowest expected value of all Pareto-optimal solutions to the

adaptive path problem for each criterion is less than or equal to that of any a priori

solution.

Proof. For each criterion, if an a priori solution exists such that its expected value on

this criterion is the lowestof all Pareto-optimal hyperpaths, this a priori solution

26

would be Pareto-optimal to the adaptive problem (i.e. would serve as a Pareto-optimal

hyperpath), thus, providing the lowest value for that criterion. ♦
Another relationship that can be extended from the single criterion problem

(Miller -Hooks and Mahmassani, 2003) is given in Proposition 2.4.

Proposition 2.4. A Pareto-optimal path to the a priori problem may not contribute to

any Pareto-optimal solution to the adaptive path problem.

Discussion. The example network shown in Figure 2.1 provides a counter example.

Although a priori solution A-C is non-dominated for the a priori problem, when

adaptive decisions can be made, it is never best to continue from node 2 along

subpath C since all adaptive solutions containing subpath C are dominated.

Proposition 2.5. A dominated path to the a priori problem may contribute to a

Pareto-optimal solution to the adaptive path problem.

Discussion. Again, the example network in Figure 2.1 provides a counter example.

Path A-D is dominated for the a priori problem. However, when adaptive solutions

are permitted, path A-D will be a Pareto-optimal strategy for a given departure time

from node 2, thus, contributing to a Pareto-optimal solution to the adaptive path

problem.

The next section provides the network notation along with problem definitions

for the two problem classes addressed in this chapter.

27

2.4 NETWORK NOTATION AND PROBLEM DEFINITIONS

Similar notation for describing the network as used by Miller-Hooks and Mahmassani

(2000) is employed herein. Let G = (V, A, S, C, P, R) be a finite digraph, where V is the

set of nodes and A is the set of directed arcs connecting the nodes. Γ-1(i) denotes the

set of predecessor nodes of node i, i.e. all j | (j,i) ∈ A. Likewise, Γ+1(i) denotes the set

of successor nodes of node i, i.e. all j | (i,j) ∈ A. The period of interest, referred to as

the peak period, is discretized into small time intervals represented by S = { t0+s∆t} s =

{ 0,1,2,..,I} , where ∆t is the length of each interval of time. The peak period starts at time

t0 and ends at time t0+I∆t. Arc attributes are assumed to vary with time during this

period. After this period, it is assumed that the arc attributes are stationary, taking the

same values as at the last time interval, t0+I∆t. Multiple attributes are associated with

each arc. The arc attributes are assumed to be discrete random variables with

probability mass functions (PMFs) given by the sets (C,P) (the set of arc attributes,

{ 1C , 2C ,…, rC }, and corresponding probabilities of occurrence, {1P , 2P ,…, rP }),

where set R = {1,2, …,r} denotes the considered criteria.

For each arc (i,j) ∈ A, k ∈ R, kC = {)(tc kkz
ij }

kz = 1,…,D denotes the set of D

possible arc values for criterion k for traversing the arc at departure time t. For each

kz possible arc value,)(tc kkz
ij is assumed to be non-negative, real-valued with

associated probability of occurrence,)(tkkz
ijρ ∈ kP . In context of path finding

assistance, travel time will often be a criterion that is considered. In such instances,

we assume that travel time is the first of r criteria, and thus, throughout this chapter, k

= 1 refers to the travel time criterion. Arc attribute values and corresponding

28

occurrence probabilities are specified upon entrance to an arc and are assumed to be

static for that particular traveler until exiting the arc. This is sometimes referred to as

the frozen link property (Orda and Rom, 1990). For each departure time occurring

after the peak period, t > t0+I∆t,)(tc kkz
ij = kkz

ijc (t0+I∆t) and)(tkkz
ijρ = kkz

ijρ (t0+I∆t)

∀ k, kz and (i,j). The arc attributes are assumed to be independent over space and

time and independent of each other. Table 2.2 summarizes this notation.

Table 2.2. Notation.
Notation

V : set of nodes
A : set of directed arcs
S : set of discrete time intervals
R : set of criteria
D : number of possible arc values for any criterion
r : number of criteria

C k : set of discrete random variables for criterion k
P k : set of occurrence probabilities associated with C k

)(tc kkz
ij : th−kz arc value of criterion k ∈ {1,2,…,r} for traversing arc (i,j) at

departure time t

)(tkkz
ijρ : probability of occurrence associated with)(tc kkz

ij

For single criterion shortest path problems with time-varying travel times, a

FIFO (First-In, First-Out) network requires that any vehicle departing from a

particular node earlier than another vehicle must arrive at the next node before this

other vehicle if they traverse the same path. Let)(tck
ij be the arc weight on arc (i,j) at

departure time t with respect to criterion k. As described in Kaufman and Smith

(1993) for deterministic, time-varying networks, this FIFO condition (referred to as

29

the consistency assumption) can be stated as follows (recall, k=1, refers to the travel

time criterion).

For any arc (i,j)∈A, s+)(1 scij ≤ t +)(1 tcij ∀s, t∈S and s ≤ t.

In the literature, FIFO conditions are defined with respect to travel time.

However, in this work, we consider such conditions with respect to other criteria.

Specifically, we establish similar conditions for non-travel time criteria for cases

where a cost in terms of that criterion is or is not incurred as a consequence of

waiting. The key to establishing these conditions, and the reason this is pertinent is

that one can never do better to wait at any intermediate location in FIFO networks.

With this in mind, the general form of the FIFO condition for any non-travel time

criterion k can be stated as follows.

For any arc (i,j)∈A,)(sck
ij ≤)(stk −ω +)(tck

ij ∀s, t∈S, s ≤ t and k(≠1)∈R,

where)(stk −ω ≥ 0 is a cost with respect to criterion k associated with waiting from

time t to time s.

Miller -Hooks and Mahmassani (1998a) extended the consistency assumption

of Kaufman and Smith to depict the FIFO condition with respect to travel time in

STV networks.

For any arc (i,j)∈A, Pr{ s +)(1 scij ≤ t +)(1 tcij }=1 ∀s, t∈S and s ≤ t,

where)(1 ⋅ijc is any possible travel time in a STV network.

We extend this FIFO condition to other criteria. For criterion k other than travel time,

the FIFO condition in STV networks can be restated as follows.

30

For any arc (i,j)∈A, Pr{)(sck
ij ≤)(stk −ω +)(tck

ij }=1 ∀s, t∈S, s ≤ t and

k(≠1)∈R,

where)(⋅k
ijc is any possible value for criterion k in a MSTV network.

For many applications, the FIFO condition may be violated with respect to

one or more criteria. For example, one vehicle may overtake another vehicle or the

cost of a train ticket may be significantly reduced at specific times of day. Such

networks where FIFO conditions may be, but are not necessarily, violated are referred

to as non-FIFO networks. In this work, we address this more general non-FIFO

problem. While waiting in non-FIFO networks may lead to more favorable

conditions, we assume no waiting is permitted at any intermediate location. The

problem with no waiting is considered to be more difficult to solve than one that

permits waiting (e.g. Chabini, 1998). Further, there are many applications, such as

providing routing instructions to drivers in a traffic network, where waiting at

intermediate locations is not an option.

Two problems are addressed in this chapter. The first problem seeks all

Pareto-optimal hyperpath strategies with respect to the expected value of each

criterion from each node to the destination for each departure time t ∈ S. Let H(t) be

the set of all possible hyperpaths connecting an origin-destination pair for departure

time t and let)(
~

tk
aθ be the random variable for the kth criterion along a hyperpath a ∈

H(t).)](
~

[tE aθ = {)](
~

[1 tE aθ ,)](
~

[2 tE aθ ,...,)](
~

[tE k
aθ ,...,)](

~
[tE r

aθ }, where)](
~

[tE k
aθ

denotes the expected value of random variable)(
~

tk
aθ . For given node i ∈ V and

departure time t ∈ S, hyperpath a is Pareto-optimal if no other path b ∈ H(t) exists

31

such that

)](
~

[tE k
bθ ≤)](

~
[tE k

aθ ∀ k ∈ {1,2,…,r} and ∃ h ∈ {1,2,…,r} such that

)](
~

[tE h
bθ <)](

~
[tE h

aθ .

The second problem seeks a single best hyperpath with respect to a linear

disutility function from each node to a specified destination for each departure time t

∈ S. Hyperpath f ∈ H(t) is the least expected disutility (LED) hyperpath for departure

time t if

)]([tUE f =
)(

min
tHg∈∀)]([tUE g ,

where)]([tUE g =∑
=

⋅
r

k

k
g

k tEw
1

)](
~

[θ and kw is the weight assigned to criterion k.

2.5 SOLUTION APPROACHES

In this section, exact algorithms are presented for generating all adaptive Pareto-

optimal paths in MSTV networks. In Subsection 2.5.1, the Adaptive Pareto-Optimal

Strategy (APS) algorithm is proposed to generate all Pareto-optimal hyperpaths for

every departure time from every node to a select destination. In Subsections 2.5.2 and

2.5.3, the Adaptive Least Expected Disutility Strategy I & II (ALEDS I & II)

algorithms are developed. These algorithms find a single “best compromise”

hyperpath that minimizes the expected disutility given a linear utility function. The

proposed algorithms can be viewed as extensions of the Expected Lower Bound

(ELB) algorithm for finding adaptive LET paths in single criterion STV networks

(Miller -Hooks and Mahmassani, 2000). The ELB algorithm and these extensions are

specialized label-correcting algorithms. Description of each algorithm, the specific

32

procedural steps and associated proofs are provided.

2.5.1 The Adaptive Pareto-Optimal Strategy (APS) Algorithm

The APS algorithm extends the Expected Lower Bound (ELB) algorithm of Miller-

Hooks and Mahmassani (2000) for finding adaptive LET paths in single criterion

STV networks for use with multiple criteria. In the ELB algorithm, prior to

termination, a label is associated with each node and each departure time, each of

which represents an upper bound on the expected travel time from that node to the

destination for that departure time. Upon termination, each label provides the LET to

the desired destination. Unlike solutions to the single criterion adaptive path problem,

where a single hyperpath exists at each node and departure time, in the multicriteria

adaptive path problem, multiple Pareto-optimal hyperpaths may exist at each node

and departure time. Moreover, for each node and departure time, rather than

computing a single expected value, r expected values must be maintained (i.e. one for

each criterion). Similar to the single criterion problem, where a particular hyperpath

may only be optimal at a particular departure time, in the multiobjective problem, a

hyperpath that is Pareto-optimal at one departure time may be dominated at another

departure time. The computation of these hyperpaths requires path information only

at departure times at which these hyperpaths are non-dominated. Thus, one need only

maintain the hyperpaths at the departure times at which they are non-dominated.

For each node i ∈ V, each departure time t ∈ S and each currently Pareto-

optimal hyperpath x to the destination, a vector label)(tixλ = {)(tk
ixλ } k∈R is

maintained, where each element of vector label component)(tk
ixλ is the expected

33

value with respect to criterion k along potentially Pareto-optimal hyperpath x from

node i at departure time t to the destination node N. Until the algorithm terminates,

multiple vector labels are maintained at each node and departure time. In an

intermediate iteration of the APS algorithm,)(tX i contains labels of currently

Pareto-optimal hyperpaths for node i ∈ V at departure time t ∈ S. |)(tX i | is equal to

the number of currently Pareto-optimal vector labels maintained for node i at time t. It

is assumed that ∀ t ∈ S, i ∈ V, k ∈ R, 0 <ε < ∆t,)(ελ +tk
ix =)(tk

ixλ . For each

departure time occurring after the peak period, t > t0+I∆t,)(tk
ixλ = k

ixλ (t0+I∆t). Figure

2.3 illustrates the structure of the vector labels at each departure time and

demonstrates that for each departure time, more than one vector label, each associated

with different hyperpaths, may be maintained. Assume the period of interest is

discretized into four intervals, ∆t = 1, and there are two Pareto-optimal hyperpaths at

departure times 0, 1 and 3 and one at time 2. That is,)0(iX =)1(iX =)3(iX = {1,

2} and)2(iX = {1}.

A temporary vector label,)(tiη = {)(tk
iη } k∈R, is employed. To evaluate

whether or not a newly constructed hyperpath is dominated, the temporary vector

label is compared with the labels of the currently Pareto-optimal hyperpaths at node i

and time t. If the temporary hyperpath is dominated by one or more of the currently

Pareto-optimal hyperpaths, it is discarded. Likewise, if it dominates one or more of

the currently Pareto-optimal hyperpaths, the temporary label is maintained and the

labels associated with the dominated hyperpaths are discarded.

34

Time Position 1 Position 2

0)0(1iλ = {)0(1
1iλ ,)0(2

1iλ ,…,)0(1
r
iλ })0(2iλ = {)0(1

2iλ ,)0(2
2iλ ,…,)0(2

r
iλ }

1)1(1iλ = {)1(1
1iλ ,)1(2

1iλ ,…,)1(1
r
iλ })1(2iλ = {)1(1

2iλ ,)1(2
2iλ ,…,)1(2

r
iλ }

2)2(1iλ = {)2(1
1iλ ,)2(2

1iλ ,…,)2(1
r
iλ } _

3)3(1iλ = {)3(1
1iλ ,)3(2

1iλ ,…,)3(1
r
iλ })3(2iλ = {)3(1

2iλ ,)3(2
2iλ ,…,)3(2

r
iλ }

Figure 2.3. Illustration of Vector Labels at Node i.

Similar to the ELB algorithm, the APS algorithm proceeds in an iterative

manner by scanning a node from a scan eligible (SE) list, working backward starting

from the destination node. The ELB algorithm builds a hyperpath from each node at

each departure time through the currently LET subhyperpaths associated with

possible arrival times at a successor node. Only one hyperpath, i.e. the one with the

LET, will be maintained. The APS algorithm, on the other hand, may build more than

one hyperpath from each node at each departure time. That is, hyperpaths are

constructed through each of the currently Pareto-optimal subhyperpaths at a successor

node. These hyperpaths are examined to determine whether or not they are dominated

and only the non-dominated hyperpaths will be maintained.

To construct a vector label associated with a single hyperpath from node i at

departure time t through successor node j, employing arc (i,j), the vector label of one

subhyperpath +tjx (λ)(11 tc z
ij), x ∈ +tX j ()(11 tc z

ij) for each value of 1z ∈ {1,2,…,D},

i.e. for a given travel time on arc (i,j),)(11 tc z
ij , must be selected. Each combination of

1z and +tjx (λ)(11 tc z
ij) is referred to by the pair (1z , x). The hyperpath is constructed

35

from D such pairs (one for each possible travel time on arc (i,j)). Because there may

be more than one combination of (1z , x) pairs when | +tX j ()(11 tc z
ij) | > 1 for at least

one possible arrival time at node j, it may be possible to construct more than one

hyperpath from node i. In fact, there are exactly ∏
=

D

z 1

| +tX j ()(11 tc z
ij) | hyperpaths

that can be constructed. An example is given to illustrate the hyperpath construction

in Figure 2.4.

(a)

(b) (c)

Figure 2.4. Example for the APS algorithm.

Figure 2.4 depicts a set of possible hyperpaths linking the origin, node 1, to

the destination, node N in a MSTV network. There are two possible travel times on

arc (1,2) at departure time t = 0: 1 with probability 0.4 and 3 with probability 0.6,

leading to two corresponding arrival times at node 2: t = 1 and t = 3. Suppose at node

N

A: λ21(1)

1 2

t = 1
t = 0

1(0.4)
3(0.6)

t = 3

t = 3

B: λ21(3)

C: λ22(3)

H1 H2

A
t=1

t=3

A

1 2

t=1

C

t=3
B1 2

36

2, there exist hyperpath A for time t = 1 with associated vector label)1(21λ and two

Pareto-optimal hyperpaths B and C for time t = 3 with associated vector labels)3(21λ

and)3(22λ , respectively. That is,)1(2X = {1} and)3(2X = {1,2}. Then, at node 1,

two different combinations of (1z , x) pairs exist, resulting in the generation of two

hyperpaths at node 1 for departure time t = 0:

H1: (1, 1), (2, 1)

H2: (1, 1), (2, 2)

For H2 in this example, two combinations contribute to the computation of the

expected travel time: (1) the first possible travel time on arc (1,2) and the first vector

label at node 2 at the arrival time corresponding to this first travel time; and (2) the

second possible travel time on arc (1,2) and the second vector label at node 2 at the

arrival time corresponding to this second travel time. These hyperpaths are depicted

in Figure 2.4b and 2.4c. Let Q be the set of these (1z , x) pairs comprising a single

hyperpath H, i.e. for H2, Q = {(1, 1), (2, 2)}. The expected travel time (i.e. criterion 1)

for H2 can be computed as follows.

)0(1
1η = ∑

∈Qxz),
1

(

[)0(11
12

zc + 1
2xλ (0 +)0(11

12
zc)])0(11

12
zρ⋅

 = [)0(11
12c + 1

21λ (0 +)0(11
12c)])0(11

12ρ⋅ + [)0(12
12c + 1

22λ (0 +)0(12
12c)])0(12

12ρ⋅ .

Note that two subhyperpaths, the first at arrival time t = 1 and the second at the arrival

time t = 2 were employed in this computation.

To enable efficient reconstruction of the resulting hyperpaths after termination

of the algorithm, two path pointers are employed for each node i at each time t along

37

hyperpath x. These pointers specify the successor node and specific subhyperpath at

the successor node for each possible departure time. Specifically, for each vector

label x ∈)(tX i ,)(tixπ specifies the successor node to be taken from node i at

departure time t along the hyperpath x. Unlike in the ELB algorithm where only one

pointer is required for this purpose, in solving this multicriteria problem, a set {)(tqix

= {(1z , x)} 1z ={1,2,…D} } must be maintained to identify the appropriate subhyperpath

at the successor node)(tixπ for each value of 1z , i.e. for a particular arrival time at

the successor node. Before a temporary vector label is checked for dominance,)(0 tiπ

and)(0 tqi are used to temporarily maintain the path information of that vector label.

For the example in Figure 2.4,)0(10π = 2 and)0(10q = { (1, 1), (2, 2)}. The notation

used in this section is summarized in Table 2.3.

Table 2.3. Notation employed in the APS algorithm.
Notation

)(tX i : set of Pareto-optimal labels maintained at node i and departure
time t

)(tixλ ={)(tk
ixλ } k∈R: xth vector label maintained in)(tX i

)(tk
ixλ : expected value with respect to criterion k of a Pareto-optimal

hyperpath from node i at departure time t to the destination
node N

)(tixπ : successor node associated with)(tixλ to be taken from node i

at departure timet

)(tqix : specific combination of subhyperpaths at node)(tixπ that is

used to construct the hyperpath associated with)(tixλ
Q : set of possible combinations of (1z , x) pairs, where 1z =

1,2,…D

38

The steps of the APS algorithm are provided next.

Algorithm APS

Step 1 (Initialization):

Initialize the elements of the vector labels and path pointers.

)(1 tk
iλ = ∞, ∀ i ∈ V \N, k ∈ R, t ∈ S.

)(1 tiπ = ∞, ∀ i ∈ V, t ∈ S.

)(1 tqi = φ , ∀ i ∈ V, t ∈ S.

)(tX i = {1}, ∀ i ∈ V, t ∈ S.

)(1 tk
Nλ = 0, ∀ k ∈ R, t ∈ S.

Create the SE list and insert the destination node N into the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE

list. Call this node the current node j.

Step 3 (Update the Node Labels):

For each i ∈ Γ-1(j),

 For each t ∈ S,

 Identify {)(11 tc z
ij } 1z ={1,2,…D} and all possible Q combinations of {(1z ,

x)} 1z ={1,2,…D} .

 For each combination Q, compute temporary label value)(tiη as follows:

for travel time (k = 1):

39

)(1 tiη = ∑
∈Qxz),

1
(

[)(11 tc z
ij + 1

jxλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅

for other criteria (k≠1):

)(tk
iη = ∑ ∑

∈ =Qxz

D

zk),
1

(1

[)(tc kkz
ij + k

jxλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅)(tkkz
ijρ⋅ .

Set)(0 tiπ = j and)(0 tqi = Q.

Dominance Check

Check if this newly generated hyperpath with associated label)(tiη is

dominated through pairwise comparison to all other non-dominated labels in

)(tX i (see condition (1)):

If the label)(tiη is dominated, discard it.

Otherwise, add this label to)(tX i and remove all labels of dominated

hyperpaths from)(tX i .

SE = SE ∪ { i}.

Return to step 2.

Step 4 (Termination):

Stop.

The algorithm terminates with all Pareto-optimal hyperpaths with respect to

the expected value of each criterion from each origin to the destination node N, for

each departure time t ∈ S. The procedural steps of this algorithm are illustrated on an

example problem in Appendix A.

40

In STV networks for a single criterion a priori path problem, all subpaths of a

non-dominated path (with respect to a variety of different dominance criteria) with

the same destination node as this path must themselves be non-dominated (Miller-

Hooks, 1997). This concept is extended here to multiple criteria in STV networks

with the following lemma.

Lemma 2.1. For a given departure time t ∈ S, any hyperpath that contains a

dominated subhyperpath to the same destination as this hyperpath is itself dominated.

Proof (by counter example). Suppose vector label)(tiuλ associated with a hyperpath

at node i ∈ V for departure time t ∈ S is non-dominated, i.e. u ∈)(tX i . Further,

suppose that this hyperpath contains a subhyperpath from node j ∈ Γ+1(i) employed at

departure time s > t with associated vector label)(sjyλ , y ∉)(sX j that is dominated

by another non-dominated subhyperpath at the same departure time,)(sjwλ , w

∈)(sX j . Without loss of generality, assume the following condition holds:

)(sk
jwλ =)(sk

jyλ ∀ k ∈ {1,2,…,h−1, h+1,…,r} and)(h sjwλ <)(h sjyλ (condition 2).

We proceed by showing that if the hyperpath at node i and departure time t with

associated vector label)(tiuλ contains this dominated subhyperpath with associated

vector label)(sjyλ , it must be dominated, contrary to our assumption that it is non-

dominated. Rather, another hyperpath will exist from node i at departure time t

constructed through the vector label)(sjwλ that dominates it.

41

Assume)(tiuλ is computed from a certain Q combination of (1z , x) pairs,

where 1z = {1,2,…,g-1,g,g+1,…,D}, x ∈ +tX j ()(11 tc z
ij). Included in this

combination is pair (g, y), where g is chosen such that t +)(1 tc g
ij = s. Since there

exists a subhyperpath at node j and time s with vector label)(sjwλ that dominates

)(sjyλ , another hyperpath from node i can be constructed that employs)(sjwλ in

place of)(sjyλ , i.e. we replace (g, y) in Q with (g, w), all else being equal. Let the

vector label corresponding to this hyperpath be)(tivλ , v ≠ u. By condition (2), we

can conclude that)(tivλ will dominate)(tiuλ . This contradicts our assumption that

the hyperpath associated with)(tiuλ at node i for departure time t is non-dominated.

A hyperpath with a dominated subhyperpath will itself be dominated. ♦

Proposition 2.6. Upon termination, the APS algorithm generates all Pareto-optimal

hyperpaths.

Proof. We begin by showing that any final label generated by the algorithm is, in

fact, Pareto-optimal. Let)(tixλ , be a label associated with one of the Pareto-optimal

hyperpaths for departure time t from node i determined by the algorithm (i.e. x

∈)(tX i). No other hyperpath with associated label v ∉)(tX i can exist such that

)(tk
ivλ ≤)(tk

ixλ for all k ∈ {1,2,…,r} and)(h tivλ <)(h tixλ for some h ∈ {1,2,…,r}

(condition 3).

42

Suppose there exists such a hyperpath with vector label)(tivλ for which condition

(3) holds. Then, one of the following must be true: 1))(tivλ was dominated by

another label or 2))(tivλ was never constructed in step 3 of the algorithm. If there

exists a hyperpath that dominates the hyperpath associated with)(tivλ , it would also

dominate the hyperpath associated with)(tixλ , contradicting the assumption that the

hyperpath associated with)(tixλ is Pareto-optimal. Thus,)(tivλ must not have been

constructed. If)(tivλ was never constructed, either it contains a subhyperpath that is

dominated and thus, by Lemma 2.1, is dominated or the SE list cannot be empty,

contradicting the assumption of termination. This establishes that all solution

hyperpaths in the final solution set are Pareto-optimal. One must next establish that

all Pareto-optimal hyperpaths are generated.

Assume there exists a hyperpath for some departure time that is not dominated

by any other hyperpath, but that is not present in the final set of the Pareto-optimal set

of solutions. This hyperpath could only be left out of the solution set if it was never

constructed. That is, a subhyperpath of this hyperpath must be dominated or a

subhyperpath of this path was never constructed. In the former case, if the

subhyperpath is dominated, then by Lemma 2.1 any hyperpath containing this

subhyperpath must be dominated, a contradiction. The latter case could occur only if

(1) the subhyperpath contains its own subhyperpath that has been dominated, and

thus, it would be dominated, or (2) there is no path between the origin of the

subhyperpath and the destination node, and thus, the hypothetical hyperpath could not

exist. Hence, no path outside the final solution set can be Pareto-optimal. ♦

43

Proposition 2.7. The APS algorithm has exponential worst-case computational

complexity.

Discussion. As discussed in Section 2.1, it is possible that in the worst-case all

possible hyperpaths are Pareto-optimal. Consequently, the APS algorithm, which

seeks all Pareto-optimal hyperpaths, is exponential in worst-case computational

complexity.

2.5.2 The Adaptive Least Expected Disutility Strategy I (ALEDS I) Algorithm

The APS algorithm described in Subsection 2.5.1 generates all Pareto-optimal

hyperpaths. While a decision-maker could a posteriori select a single “best” solution

from among all Pareto-optimal hyperpaths, the generation of all such hyperpaths may

require enormous computational effort. Thus, in this subsection, an algorithm is

presented to efficiently generate a single “best” hyperpath by explicitly representing

the decision maker’s preference structure through a disutility function. Instead of

constructing multiple vector labels for all Pareto-optimal hyperpaths, this algorithm

maintains only one vector label)}({)(tt k
ii λλ = k∈R, at each node i ∈ V and each

departure time t ∈ S, where)(tk
iλ indicates the expected value for the path attribute

with respect to criterion k. For each i ∈ V and t ∈ S, a label)(tUi is employed. The

disutility function)(tUi is assumed to be linear and can be written as follows:

∑
=

⋅=
r

k

k
i

k
i twtU

1

)()(λ (equation 1),

where kw is the weight for criterion k based on the traveler’s preferences and

44

1
1

=∑
=

r

k

kw . Prior to termination,)(tUi provides an upper bound on the expected

disutility for traveling from node i at departure time t to the destination. Upon

termination of the algorithm, it maintains the least expected disutility (LED) of any

hyperpath from node i at departure time t.

Like the APS algorithm, this algorithm is an extension of the ELB algorithm.

It works iteratively by selecting a node from a SE list, working backward from the

destination. At each node, the expected values for every criterion are computed and

the disutility is calculated using equation (1). Temporary labels)(tk
iη and)(tiυ

maintain these values prior to updating)(tk
iλ and)(tUi , respectively. If)(tiυ <

)(tUi , then)(tUi is set to)(tiυ and)(tk
iλ ∀ k ∈ R are updated accordingly. Upon

termination, {)(tk
iλ } k∈R contains the expected values for every criterion of the

hyperpath with associated LED)(tUi from node i at departure time t to the

destination N. To construct the LED hyperpaths efficiently, a single pointer,)(tiπ , is

required to specify the successor node for travel from node i at departure time t.

Table 2.4. Notation employed in the ALEDS I and II algorithms.
Notation

)(tiλ ={)(tk
iλ } k∈R : vector label associated with node i at time t

)(tk
iλ : expected value with respect to criterion k of the LED

hyperpath from node i at departure time t to the destination
node N

)(tiπ : successor node to be taken from node i at departure timet

kw : weight for criterionk

)(tUi : LED for traveling from node i at departure time t to the
destination N

45

The procedural steps of the ALEDS I are given hereafter.

Algorithm ALEDS I

Step 1 (Initialization):

Initialize the elements of the vector labels and path pointers.

)(tk
iλ = ∞, ∀ i ∈ V \N, k ∈ R, t ∈ S.

)(tUi = ∞, ∀ i ∈ V \N, t ∈ S.

)(tiπ = ∞, ∀ i ∈ V , t ∈ S.

)(tk
Nλ = 0, ∀ k ∈ R, t ∈ S.

)(tU N = 0, ∀ t ∈ S.

Create the SE list and insert the destination node N into the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE

list. Call this node the current node j.

Step 3 (Update the Node Labels):

For each i ∈ Γ-1(j),

 For each t ∈ S,

∑
=

⋅=
r

k

k
i

k
i tηwt

1

)()(υ ,

 where

k = 1:)(1 tiη =∑
=

D

z 1
1

[)(11 tc z
ij + 1

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅

46

k ≠ 1:)(tk
iη =∑ ∑

= =

D

z

D

zk1
1

1

[)(tc kkz
ij + k

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅)(tkkz
ijρ⋅ .

 If)(tiυ <)(tUi , then)(tUi =)(tiυ ,)(tiπ = j,)(tk
iλ =)(tk

iη for ∀ k ∈ R,

and SE = SE ∪ { i}.

Return to step 2.

Step 4 (Termination):

Stop.

The algorithm results in the LED hyperpaths from each origin to the

destination node N, for each departure time t ∈ S, for a given set of criterion weights

kw and a linear utility function.

Proposition 2.8. The worst-case computational complexity of the ALEDS I algorithm

with FIFO (first-in, first-out) SE list is ∼O(V3⋅I2⋅P2⋅R), where V =V is the number of

nodes in the network, I is the number of time intervals within the period of interest, P

= P is the maximum number of possible arc weights for a given criterion and R =

R is the number of criteria.

Discussion. The worst-case computational complexity of this algorithm can be

derived in a similar manner as was the ELB algorithm in Miller-Hooks and

Mahmassani (2000). The only difference is that step 3 of the ELB algorithm has

worst-case computational complexity ~O(V⋅I⋅P), whereas step 3 of the APS algorithm

has complexity ~O(V⋅I⋅P2⋅R). Therefore, the proposed algorithm has worst-case

computational complexity ∼O(V3⋅I2⋅P2⋅R), O(P⋅R) worse than that of the ELB

47

algorithm.

Proof of correctness will be given in Section 2.5.3.

2.5.3 The Adaptive Least Expected Disutility Strategy II (ALEDS II) Algorithm

In this subsection, an improvement to the ALEDS I algorithm is presented, referred to

as the ALEDS II algorithm. In the ALEDS I algorithm, the expected value for each

criterion was computed before computing the disutility for the associated hyperpath.

To correctly accomplish this, all associated path labels that result in the LED needed

to be maintained. The ALEDS II algorithm, however, assesses the expected disutility

directly and keeps only the minimum value for each node and departure time. Thus,

there is no need to maintain the individual labels)(tiλ = {)(tk
iλ } k∈R, ∀ i ∈ V, t ∈ S,

which are needed in the first variation of the algorithm. While the ALEDS I

algorithm is more intuitive, significant savings in computational complexity and

storage requirements are achieved through the modifications employed in this second

variation.

Lemma 2.2. The computation of)(tiυ in step 3 of the ALEDS I algorithm can be

completed via equation (2).

)(tiυ =∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

+
D

z

z
ijj tctU

1
1

1))((1)(11 tz
ijρ⋅ (equation 2).

Proof. ∑
=

⋅=
r

k

k
i

k
i tηwt

1

)()(υ ,

 where

48

)(1 tiη =∑
=

D

z 1
1

[)(11 tc z
ij + 1

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅

)(tk
iη =∑ ∑

= =

D

z

D

zk1
1

1

[)(tc kkz
ij + k

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅)(tkkz
ijρ⋅ , for ∀ k ∈ R \1.

Therefore,

)(tiυ = ⋅1w ∑
=

D

z 1
1

[)(11 tc z
ij + 1

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅ +

∑
=

⋅
r

k

kw
2

[∑ ∑
= =

D

z

D

zk1
1

1

[)(tc kkz
ij + k

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅)(tkkz
ijρ⋅]

 = ⋅1w ∑
=

D

z 1
1

)(11 tc z
ij)(11 tz

ijρ⋅ + ∑
=

⋅
r

k

kw
2

[∑ ∑
= =

D

z

D

zk1
1

1

)(tc kkz
ij)(11 tz

ijρ⋅)(tkkz
ijρ⋅] +

⋅1w ∑
=

D

z 1
1

1
jλ (t+)(11 tc z

ij))(11 tz
ijρ⋅ +

∑
=

⋅
r

k

kw
2

[∑ ∑
= =

D D

kz z1
1

1

k
jλ (t +)(11 tc z

ij))(11 tz
ijρ⋅)(tkkz

ijρ⋅]

= ⋅1w ∑
=

D

z 1
1

)(11 tc z
ij)(11 tz

ijρ⋅ + ∑
=

⋅
r

k

kw
2

[∑
=

D

zk 1

)(tc kkz
ij)(tkkz

ijρ⋅] +

⋅1w ∑
=

D

z 1
1

1
jλ (t+)(11 tc z

ij))(11 tz
ijρ⋅ + ∑

=
⋅

r

k

kw
2

[∑
=

D

z 1
1

k
jλ (t +)(11 tc z

ij))(11 tz
ijρ⋅]

 = ∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

⋅
r

k

kw
1

[∑
=

D

z 1
1

k
jλ (t +)(11 tc z

ij))(11 tz
ijρ⋅]

 = ∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

+
D

z

z
ijj tctU

1
1

1))((1)(11 tz
ijρ⋅ . ♦

Lemma 2.2 shows that the ALEDS I algorithm can be simplified through more

efficient computation of the expected disutility values. Identical solutions will be

49

produced by both ALEDS I and II algorithms. The algorithmic steps of this second

variation are given next.

Algorithm ALEDS II

Step 1 (Initialization):

Initialize the labels and path pointers.

)(tUi = ∞, ∀ i ∈ V \N, t ∈ S.

)(tiπ = ∞, ∀ i ∈ V, t ∈ S.

)(tU N = 0, ∀ t ∈ S.

Create the SE list and insert the destination node N into the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE

list. Call this node the current node j.

Step 3 (Update the Node Labels):

For each i ∈ Γ-1(j),

 For each t ∈ S,

)(tiυ =∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

+
D

z

z
ijj tctU

1
1

1))((1)(11 tz
ijρ⋅ .

 If)(tiυ <)(tUi , then)(tUi =)(tiυ , and)(tiπ = j. SE = SE ∪ { i}.

Return to step 2.

Step 4 (Termination):

Stop.

50

It is significant to note that both ALEDS I and II algorithms rely on the fact

that a LED hyperpath contains only subhyperpaths with the LED to the same

destination. The proof for this concept is given in Lemma 2.3.

Lemma 2.3. Any LED hyperpath contains only LED subhyperpaths to the same

destination.

Proof (by counter example). Suppose the LED hyperpath associated with label)(tUi

is constructed from some node i at some departure time t ∈ S through node j ∈ Γ+1(i)

(i.e. employing arc (i,j) ∈ A). Assume there are D possible travel times on arc (i,j) for

departure time t ∈ S (i.e. 1z = {1,2,…,D}), resulting in D possible arrival times at

node j:

1s =)(11 tct ij+ , 2s =)(12 tct ij+ ,.., Ds =)(1 tct D
ij+ .

And, suppose that the LED hyperpath from node i at departure time t contains a

subhyperpath at node j with associated label)(qsU j for q ≤ D that is not the LED

hyperpath from node j at departure time qs .

)(tUi =∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

+
D

z

z
ijj tctU

1
1

1))((1)(11 tz
ijρ⋅

=∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ]

 +)(qsU j)(11 tijρ⋅ + ∑
+−∈

+
},...1,1,...2,1{

1

1))((1

Dqqz

z
ijj tctU)(11 tz

ijρ⋅ .

If the label component of the LED hyperpath from node j at time qs is given by

51

)(*
qsU j , then)(*

qsU j <)(qsU j . If the LED hyperpath from node j is employed in

place of this other hyperpath, and thus replacing)(qsU j with)(*
qsU j , all else being

equal, a lower value of expected disutility,)(tUi , will be obtained. This contradicts

our assumption that the LED hyperpath from node i at departure time t can contain a

subhyperpath through node j ∈ Γ+1(i) that is not the LED hyperpath from node j at

one of the possible arrival times. Since one can extend this logic to any node

contained in the LED hyperpath from node i and for any node i at any departure time

t, this establishes that any LED hyperpath contains only LED subhyperpaths to the

same destination. ♦

Proposition 2.9. Upon termination, the ALEDS I and II algorithms provide the LED

hyperpaths for each node and each departure time in the period of interest.

Proof. Assume a hyperpath associated with)(tUi exists in the final set of solutions

such that

)(tUi >∑ ∑
= =

⋅⋅
r

k

D

z

kz
ij

kz
ij

k

k

kk ttcw
1 1

)()([ρ] + ∑
=

+
D

z

z
ijj tctU

1
1

1))((1)(11 tz
ijρ⋅ for some j ∈ Γ +1(i).

For this to be true, node j could not have been scanned and, hence, must still be in the

SE list. Since this would contradict the assumption of termination of either algorithm,

such a hyperpath could not result. Therefore, the ALEDS I and II algorithms

terminate with the LED hyperpaths for each node at each departure time. ♦

52

Proposition 2.10. The worst-case computational complexity of the ALEDS II

algorithm with FIFO SE list is ∼O(V3⋅I2⋅P⋅R).

Discussion. The complexity of the ALEDS II algorithm is ∼O(P) better than that of

the ALEDS I algorithm. This is because step 3 has complexity ~O(V⋅I⋅P⋅R) as

compared with ~O(V⋅I⋅P2⋅R) of the ALEDS I algorithm.

Note that the ALEDS II algorithm is only ∼O(R) worse than the ELB algorithm of

Miller -Hooks and Mahmassani (2000), which considers only one criterion.

2.6 NOTES ON ALGORITHM IMPLEMENTATION

In related problems that can be addressed by label correcting procedures (see for

example Miller-Hooks, 1997), where multiple vector labels are associated with each

node, it is sometimes advantageous to include node-label pairs in the SE list instead

of only the nodes. While multiple vector labels are employed in the APS algorithm,

because of the way that the labels are constructed, there is no benefit to including the

node-label pairs in the SE list and, as is more commonly done, only the nodes are

included in the list. A FIFO SE list structure is assumed in analyzing the complexity

of the ALEDS algorithms; however, one could employ another structure, such as a

deque implementation of the SE list. Additional information on structuring SE lists

can be found in (Pape, 1974; Pallottino, 1984; Gallo and Pallottino, 1986; Ahuja et

al., 1993; and Bertsekas et al., 1996). A reverse star representation of the networks is

used (Ahuja et al., 1993).

53

2.7 COMPUTATIONAL EXPERIMENTS

In this section, results from computational experiments conducted on randomly

generated networks with randomly generated time-varying PMFs of the arc attribute

variables are given. The experiments were designed to evaluate the average

computational performance of the proposed algorithms. The number of nodes (V),

number of time intervals (I), number of elements in the PMFs (P) and number of

criteria (R) are predesignated. In accordance with transportation networks, the in-

degree and out-degree are both four, on average, and range between 2 and 9. The

same methodology used for creating the STV networks as described in Miller-Hooks

and Mahmassani (2000) is extended for use in MSTV networks and is applied here.

That is, for each criterion, a uniform distribution was fixed with a lower bound of one

unit. The upper bound was designed to linearly increase from 5 to 10 units in the first

half of the peak period and then linearly decrease to 5 units in the second half of the

peak period.

2.7.1 Experimental Design

The algorithms were coded in C++ and run on a DEC Alpha XP1000 professional

workstation with 1 gigabyte ram and 2 gigabyte swap, running Digital 4.0E operating

system, using Digital’s C++ compiler. Three sets of experiments were conducted.

First, the average performance in terms of run time of the APS algorithm was tested.

Networks consisting of 25 nodes, peak periods of 15 and 30 time intervals, 3 elements

in each PMF and 2 criteria were considered. Second, the performance of the ALEDS I

and II algorithms in terms of average run time was compared through experiments on

54

eight networks with either 100 or 500 nodes, 60 or 120 time intervals, 5 elements in

each PMF and either 2 or 6 criteria. Finally, additional tests of the ALEDS II

algorithm were conducted on networks consisting of 50, 100, 500 and 1,000 nodes, a

peak period of 15, 30, 60 and 120 time intervals, three levels of the number of

elements in the PMFs (5, 10 and 20) and three levels of the number of criteria (2, 4

and 6). In all of these experiments, a FIFO SE list was employed. For each network

and configuration of number of time intervals in the peak period, number of elements

in the PMFs and number of criteria, 30 runs were completed, corresponding to 30

randomly selected destinations. The average of these 30 runs is reported.

2.7.2 Average Run Times of the APS Algorithm

Average run times over the 30 runs on each network configuration are given in Table

2.5.

Table 2.5. Average run times in c.p.u. seconds for the APS algorithm on a 25
node network.
Test I P R Average run time

(c.p.u. seconds)
1 15 3 2 26.07
2 15 3 4 520.9
3 15 5 2 411.6
4 30 3 2 234.8

Because many Pareto-optimal hyperpaths exist for each network, the APS

algorithm performed very poorly in these experiments in terms of run time and

memory requirements. Thus, more extensive testing on larger networks was not

completed. As suggested by Table 2.5, the average run times increase considerably

55

with the number of criteria and the number of elements in the PMFs, as predicted by

the worst-case computational analysis.

2.7.3 Average Run Times of the ALEDS I and II Algorithms

In this subsection, the improvements in average computational time attained by the

use of the ALEDS II algorithm over the ALEDS I algorithm are examined through

tests on several network configurations. Average run times resulting from the

experiments are shown in Table 2.6.

Table 2.6. Average run times in c.p.u. seconds for the ALEDS I and II
algorithms.

P = 5
V I R ALEDS I ALEDS II

60 2
6

0.074
0.153

0.035
0.056

100

120 2
6

0.157
0.304

0.072
0.112

60 2
6

0.333
0.784

0.195
0.292

500

120 2
6

0.68
1.557

0.393
0.574

From the table, the ALEDS II algorithm is approximately 1 to 2 times faster than the

ALEDS I algorithm for the problems with 2 criteria and 2 to 3 times faster for the

problems with 6 criteria. Note that for the 25 node network with 3 elements in the

PMFs, 15 time intervals in the peak period, and two criteria, the average and

maximum numbers of actual Pareto-optimal hyperpaths (as generated by the APS

algorithm) over all nodes and departure times are 3.3 and 119, respectively. Thus, one

can see that the ALEDS algorithms can provide significant savings in both

56

computational effort and memory requirements over procedures that generate all

Pareto-optimal hyperpaths.

The computational performance of the ALEDS II algorithm was further tested

through additional numerical experiments. The average run times over 30 destinations

for the ALEDS II algorithm are summarized in Table 2.7. The results show that the

ALEDS II algorithm performed well even on networks with 1000 nodes and better

than the worst-case computational complexity, ∼O(V3⋅I2⋅P⋅R), given in Proposition

2.10. For instance, the average run time for the 1000 node network with 20 elements

in the PMFs, 30 time intervals, 4 criteria is 0.629 c.p.u. seconds, which is less than

twice the average run time of the same network with 2 criteria (requiring 0.453 c.p.u.

seconds). Likewise, the average run time for the 500 node network with 20 elements

in the PMFs, 30 time intervals, 4 criteria requires 0.298 c.p.u. seconds. Thus, the

computational effort required by the 1000 node network was much less than the

predicted worst-case of run time for the 500 node network. Despite this, as coded,

experiments on some of the large networks could not be completed due to excessive

memory requirements. Such requirements arise, at least in part, as a consequence of

the use of four-dimensional arrays (node, time, criterion, label number) used to

implement the vector labels. More efficient coding of the algorithm may enable

solution of these larger size problems.

57

Table 2.7. Average run times in c.p.u. seconds for the ALEDS II algorithm.
R = 2

V P I = 15 I = 30 I = 60 I = 120
50 5

10
20

0.003
0.005
0.009

0.007
0.012
0.018

0.016
0.025
0.040

0.034
0.052
0.082

100 5
10
20

0.007
0.014
0.019

0.017
0.027
0.041

0.037
0.055
0.083

0.071
0.108
0.164

500 5
10
20

0.056
0.077
0.109

0.110
0.148
0.212

0.217
0.292
0.413

0.432
0.539
0.865

1000 5
10
20

0.134
0.173
0.242

0.255
0.331
0.453

0.503
0.629
0.890

0.933
-
-

R = 4
V P I = 15 I = 30 I = 60 I = 120
50 5

10
20

0.004
0.007
0.013

0.010
0.017
0.028

0.021
0.035
0.057

0.044
0.070
0.112

100 5
10
20

0.010
0.017
0.028

0.022
0.035
0.057

0.045
0.072
0.113

0.090
0.143
0.225

500 5
10
20

0.068
0.100
0.153

0.131
0.195
0.298

0.255
0.383
0.587

0.503
0.726

-
1000 5

10
20

0.154
0.219
0.324

0.297
0.424
0.629

0.572
0.793

-

1.071
-
-

R = 6
V P I = 15 I = 30 I = 60 I = 120
50 5

10
20

0.006
0.010
0.017

0.013
0.022
0.036

0.027
0.043
0.072

0.056
0.090
0.143

100 5
10
20

0.013
0.022
0.036

0.028
0.044
0.071

0.055
0.089
0.143

0.112
0.179
0.285

500 5
10
20

0.081
0.119
0.190

0.157
0.240
0.372

0.305
0.458
0.744

0.573
-
-

1000 5
10
20

0.179
0.265
0.4

0.347
0.503
0.787

0.641
-
-

-
-
-

* - : memory requirements for reading the input files into variables were not sufficient

58

2.8 CONCLUSIONS

The problem of generating Pareto-optimal hyperpaths that seek to minimize the

expected value of multiple criteria in MSTV networks is addressed in this chapter. An

exact algorithm, the APS algorithm, is proposed for use in generating all Pareto-

optimal solutions. Given multiple criteria, such solutions enable the driver to

adaptively choose a path to travel at each intermediate location from among all non-

dominated path strategies. As generation of all Pareto-optimal solutions may require

generation of all solutions, the APS algorithm has exponential worst-case

computational complexity. Hence, an efficient algorithm that can provide a single

“best compromise” solution is required. Rather than generate all Pareto-optimal

hyperpaths and a posteriori select a single solution, if a decision-maker’s preferences

can be represented by a linear disutility function, a more direct and efficient approach

is proposed (ALEDS I and II algorithms). While less intuitive than the ALEDS I

algorithm, the ALEDS II algorithm provides substantial improvements in

computational complexity and storage requirements.

The path strategies generated by the proposed algorithms enable travelers to

dynamically choose their paths in response to knowledge of experienced traffic

conditions. Consideration is given to the trade-offs among various attributes in the

path selection process. Problems requiring the selection of such paths are encountered

in a variety of application arenas, including selection of routes for emergency

response units (medical, police, fire and other first responders), vehicles carrying

hazardous materials, and individual travelers in congested city streets, as well as the

selection of routes for data packets in data networks.In the context of supplying

59

routing instructions to drivers, it is assumed that the vehicles are equipped with on-

board navigation systems. The proposed algorithms assume that estimates of future

arc attribute values (i.e. their time-varying probability distributions) are known.

Computational experiments were conducted. Consistent with worst-case

computational complexity, the results show that, in terms of average run times, the

APS algorithm does not perform well in large networks. However, such an exact

procedure can be quite useful in providing benchmark solutions on small problem

instances when developing more efficient, but heuristic approaches. Results of

computational experiments also show that the ALEDS II algorithm outperforms the

ALEDS I algorithm. In addition, it appears that the average performance of the

ALEDS II algorithm is better than predicted by worst-case computational complexity

analyses.

60

CHAPTER 3

ADJUSTABLE PREFERENCE PATH STRATEGIES

3.1 INTRODUCTION

In this chapter, an efficient algorithm is proposed for determining adjustable

preference path strategies (APPS) in MSTV transportation networks. The proposed

algorithm determines adaptive path strategies that provide the next best move to take

with respect to the expected value of a chosen criterion given the actual arrival time at

an intermediate location. These strategies further permit a traveler to update his or her

preference for a particular criterion to be used in selecting the remaining portion of

the path while en route to the destination. Thus, a traveler can update his or her

preference for which attribute of multiple attributes is of greatest importance and

should be used in selecting the next best move. The traveler can then adaptively select

the best path with respect to the selected criterion at each node in response to

knowledge of experienced travel times on previously traveled arcs. The ability to

change preferences in this way is referred to herein as adjustable preferences and

adaptive strategies that allow for such adjustable preferences is referred to as

adjustable preference path strategies (APPS).

The ability to update one’s preference for a particular attribute while en route

enables the traveler to respond to experienced travel conditions while traveling to the

destination. Suppose at the outset the traveler has ample time to arrive at the desired

location, and thus, chooses the path based on maximizing aesthetics, instead of

minimizing travel time. Suppose the traveler discovers, en route, that the journey is

61

taking much longer than anticipated due to unexpected travel delays and minimizing

travel time becomes more important. Allowing the traveler to adapt his/her path

according to both revealed arrival times at intermediate locations and the traveler’s

changing preferences can lead to much more desirable path outcomes.

A MSTV example network shown in Figure 3.1 is given to illustrate the

characteristics of the APPS in a MSTV network. Two criteria are considered: travel

time and travel cost. Both attributes are assumed to be random quantities with

probability distributions that vary with time. No waiting is allowed at any node and

the arc attributes are assumed to be independent over space and time and independent

of each other.

Figure 3.1. MSTV example network.

Two possible travel times on arc A when departing from node 1 at t = 0 are 1

with probability 0.7 and 2 with probability 0.3. There are also two possible costs: 1

with probability 0.8 and 6 with probability 0.2. For simplicity, the expected values are

directly given for each attribute of subpaths B and C, e.g. the expected travel time and

cost for path B at time t ≤ 1 are 7.38 and 6, respectively.

2 31

t = 0
time cost

1(0.7) 1(0.8)
2(0.3) 6(0.2) B

C
A

t ≤ 1 t > 1

 (7.38, 6) (4, 7.4)

 t ≤ 1 t > 1
 (5.2, 6.6) (8.8, 10.2)

62

2

3

1

3

The optimal APPS for traveling from node 1 at t = 0 to node 3 are portrayed in

Figure3.2. The traveler starts the trip at t = 0 along arc A with expected arrival time

at node 2 of 6.14 units and expected cost of 8.42 units. The next move from node 2

depends on the actual arrival time and the traveler’s preference for a particular

criterion upon arrival at that node. If the arrival time is 1 and travel time is the

preferred criterion at that time, subpath C is recommended. Subpath C incurs the least

expected travel time (5.2 units). However, if expected cost is the preferred criterion,

subpath B should be used with the least expected cost of 6 units. If the arrival time is

2, the APPS instruct the traveler to follow subpath B regardless of which criterion is

preferred, because this subpath has both the least expected time and least expected

cost.

Figure 3.2. APPS solution.

t = 1

(6.14, 8.42)
A

t = 0

t = 2

B

B

C

Time

Cost

Time & cost

63

In place of employing the proposed algorithm, identical solutions can be

obtained by running, for example, the ELB algorithm (proposed by Miller-Hooks and

Mahmassani (2000) for determining adaptive least expected time paths in STV

networks) repeatedly, with a separate run for each criterion. The traveler could then

choose which set of solutions to use whenever the traveler’s preference for a

particular attribute changes.

The primary contribution of this work is an algorithm that obviates the need

for running the ELB (or similar) algorithm multiple times, leading to significant

computational savings. Results of numerous numerical experiments show that the

computational savings can be as large as 45% in comparison with the use of the ELB

algorithm for problems with six criteria. In the next section, the problem definition

and network notation employed in the proposed algorithm are provided.

3.2 NETWORK NOTATION AND PROBLEM DEFINITION

For consistency, the notation given in Chapter 2 is used herein. This chapter

addresses the generation of the APPS for routing a traveler in MSTV networks. The

adaptive path strategies that have the least expected value on a set of criteria are

sought from each node to a specified destination for every departure time t∈S. Let

H(t) be the set of all possible hyperpaths connecting an origin-destination pair for

departure time t and let)(
~

tk
aθ be the random variable for the kth criterion along a

hyperpatha∈H(t).)](
~

[tE aθ ={)](
~

[1 tE aθ ,)](
~

[2 tE aθ ,...,)](
~

[tE k
aθ ,...,)](

~
[tE r

aθ }, where

)](
~

[tE k
aθ denotes the expected value of random variable)(

~
tk

aθ . Hyperpathb∈H(t)

that satisfies the following condition is sought.

64

∃h∈{1,2,…,r} such that)](
~

[tE h
bθ =

)(
min

tHg∈∀)](
~

[tE h
gθ .

3.3 THE ADJUSTABLE PREFERENCE PATH STRATEGIES (APPS)

ALGORITHM

The APPS algorithm extends the Expected Lower Bound (ELB) algorithm of Miller-

Hooks and Mahmassani (2000) for finding adaptive least expected time paths in

single criterion STV networks for use with multiple criteria. The algorithm

determines the APPS in an iterative manner by scanning nodes from a scan eligible

(SE) list working backward from the destination node. It proceeds by checking at

each departure time whether using the hyperpaths associated with the scanned node

(chosen in step 1 in the algorithm description) along the hyperpaths from its

predecessor nodes generates a lower expected value of one or more of the criteria

from these predecessor nodes to the destination than previously considered

hyperpaths.

For each node i∈V at each departure time t∈S, a vector label)(tiλ =

{)(tk
iλ } k∈R, is maintained, where, prior to termination,)(tk

iλ provides an upper

bound on the expected value with respect to criterion k for traveling from node i at

departure time t to the destination node N. It is assumed that ∀t∈S, i∈V, k∈R,

0<ε <∆t,)(ελ +tk
i =)(tk

iλ . For each departure time occurring after the peak period, t

> t0+I∆t,)(tk
iλ = k

iλ (t0+I∆t). Upon termination, for each t∈S and each k∈R,)(tk
iλ

provides the least expected value with respect to criterion k.

65

A temporary vector label,)(tiη = {)(tk
iη } k∈R, is used in updating the labels.

When assessing)(tiη , for a given k∈R , if)(tk
iη <)(tk

iλ , then set)(tk
iλ =)(tk

iη and

insert node i into the SE list for subsequent scanning. A pointer)(tk
iπ is associated

with each)(tk
iλ to indicate the successor node from node i, at time t∈S with respect

to criterion k. The pointers are used to reconstruct the APPS upon termination of the

algorithm. The description of the APPS algorithm, procedural steps and associated

proofs are provided hereafter. In the algorithm description, Γ-1(j) denotes the

predecessor nodes of node j, i.e. (i: (i,j)∈A).

Algorithm APPS

Step 0 (Initialization):

Initialize the label vectors.

)(tk
iλ = ∞, ∀i∈V \N, k∈R, t∈S.

)(tk
iπ = ∞, ∀i∈V \N, k∈R, t∈S.

)(tk
Nλ = 0, ∀k∈R, k∈R, t∈S.

)(tk
Nπ = N, ∀k∈R, t∈S.

Create the SE list and insert the destination node N into the SE list.

Step 1 (Select Node for Scanning):

If the SE list is empty, go to step 3. Otherwise, select and delete the first node from

the SE list. Call this node the current node j.

66

Step 2 (Update the Node Labels):

For each i∈Γ-1(j),

 For each t∈S,

 For each k∈R,

compute temporary label values)(tk
iη , where

)(1 tiη =∑
=

D

z 1
1

[)(11 tc z
ij + 1

jλ (t +)(11 tc z
ij)])(11 tz

ijρ⋅

)(tg
iη = ∑

=

D

zg 1

)(tc ggz
ij)(tggz

ijρ⋅ + ∑
=

D

z 1
1

g
jλ (t +)(11 tc z

ij))(11 tz
ijρ⋅ , ∀g∈R\1.

If)(tk
iη <)(tk

iλ , then)(tk
iλ =)(tk

iη ,)(tk
iπ = j and SE = SE U { i}.

If all i∈Γ-1(j) have been considered, return to step 1.

Step 3 (Termination):

Stop.

The algorithm terminates withthe adaptive path strategies that provide the least

expected value for each criterion from all origins to a select destination for each

departure time in the peak period.It is worth noting that a more efficient method is

proposed here (in step 2) for computing the expected value of non-travel time criteria,

)(tg
iη ∀ g∈R\1, than was given in Miller -Hooks and Mahmassani (2000).

Proposition 3.1. Upon termination, the APPS algorithm generates the adaptive path

strategies that provide the least expected value for each criterion.

Proof. Upon termination,)(tk
iλ is the label associated with the hyperpath for node i

67

and departure time t that has the least expected value with respect to criterion k. No

other hyperpath with associated label,)(tk
iψ , exists such that)(tk

iψ <)(tk
iλ . If such a

hyperpath does exist, then one of the following two conditions must be possible. (1)

)(tk
iψ was eliminated by another label or (2))(tk

iψ was never considered in step 2

of the algorithm.If (1) is true, then this other label would also lead to the elimination

of the hyperpath associated with)(tk
iλ , a contradiction. Thus,)(tk

iψ must never

have been considered – condition (2). If (2) holds, then either)(tk
iψ contains a

subhyperpath that was eliminated and thus, the hyperpath associated with)(tk
iψ must

be eliminated as it is suboptimal, or the SE list is not empty, contradicting the

assumption of termination. The same argument holds for each criterion, establishing

that all hyperpaths associated with the labels upon termination of the algorithm have

the least expected value for the corresponding criteria. ♦

Proposition 3.2. In the worst-case, the algorithm has computational complexity of

∼O(V3⋅I2⋅P⋅R), where V=V is the number of nodes in the network, I=|S| is the

number of time intervals within the period of interest, P= P is the maximum

number of possible arc weights for a given criterion and R= R is the number of

criteria under consideration.

Discussion The worst-case computational complexity of this algorithm is similar to

that of the ELB algorithm. There are at most (V-1)2⋅I repetitions of step 2. However,

in this algorithm, step 2 requires at most (V-1)⋅I⋅P⋅R in place of (V-1)⋅I⋅P

computations. The resulting worst-case computational complexity is (V-1)2⋅I ⋅ (V-

68

1)⋅I⋅P⋅R or ∼O(V3⋅I2⋅P⋅R).♦
Note that the worst-case computational complexity of the ELB algorithm is

∼O(V3⋅I2⋅P). That is, the APPS algorithm has the same worst-case computational

complexity as that of the ELB algorithm performed R times. However, the APPS

algorithm is superior to the ELB algorithmin terms of the average computational

performance, which is examined through numerical experiments discussed in Section

3.5.

3.4 ILLUSTRATIVE EXAMPLE PROBLEM

This section is designed to illustrate the essential steps of the APPS algorithm. A

simple example problem shown in Figure 3.3 is used for this demonstration.

Figure 3.3. Illustrative example.

2 4

1

53

69

Table 3.1. Probabilistic time and cost data.
Time arc(1,2) arc(1,3) arc(2,3) arc(2,4) arc(2,5) arc(3,5) arc(4,5)
t=0 1(0.8)

2(0.2)
2(1.0) 1(0.9)

3(0.1)
3(0.9)
4(0.1)

2(0.8)
6(0.2)

3(0.2)
5(0.8)

1(0.8)
2(0.2)

t=1 2(0.3)
4(0.7)

1(0.8)
2(0.2)

2(0.8)
3(0.2)

2(0.8)
4(0.2)

5(0.9)
7(0.1)

2(0.5)
4(0.5)

1(0.9)
3(0.1)

t=2 1(0.8)
2(0.2)

3(0.3)
4(0.7)

1(0.9)
3(0.1)

1(0.3)
2(0.7)

3(0.2)
6(0.8)

1(0.8)
2(0.2)

1(0.9)
2(0.1)

t=3 1(0.5)
3(0.5)

1(0.8)
2(0.2)

3(0.5)
4(0.5)

3(0.3)
4(0.7)

7(0.5)
8(0.5)

3(0.5)
4(0.5)

4(0.3)
7(0.7)

t=4 2(0.8)
3(0.2)

2(1.0) 2(0.8)
4(0.2)

1(0.5)
3(0.5)

6(0.9)
7(0.1)

5(0.8)
6(0.2)

5(0.5)
6(0.5)

Cost
t=0 3(0.8)

4(0.2)
7(0.9)
9(0.1)

3(0.8)
4(0.2)

1(0.2)
3(0.8)

7(0.3)
8(0.7)

8(0.2)
9(0.8)

4(0.8)
5(0.2)

t=1 4(0.5)
5(0.5)

10(0.9)
11(0.1)

4(0.5)
5(0.5)

2(0.9)
4(0.1)

6(0.5)
8(0.5)

7(0.3)
8(0.7)

5(0.9)
6(0.1)

t=2 2(0.8)
3(0.2)

7(0.8)
9(0.2)

3(0.9)
4(0.1)

2(0.9)
4(0.1)

6(0.5)
8(0.5)

7(0.3)
8(0.7)

3(0.4)
7(0.6)

t=3 3(0.8)
4(0.2)

5(0.1)
7(0.9)

3(0.8)
4(0.2)

2(0.5)
3(0.5)

7(0.3)
8(0.7)

5(0.9)
6(0.1)

2(0.1)
4(0.9)

t=4 3(0.9)
4(0.1)

8(0.5)
9(0.5)

3(0.9)
5(0.1)

2(0.5)
3(0.5)

6(0.5)
8(0.5)

4(0.4)
8(0.6)

7(0.3)
8(0.7)

*arc attribute (associated probability)

Assume there are two criteria to be considered: travel time and travel cost.

These criteria are assigned to criteria 1 and 2, respectively. The period of interest is

discretized into five time intervals, S={0,...,4}. The associated data of the example

network are provided in Table 3.1 in the form of the possible travel time/cost with

associated probability of occurrence given parenthetically. Due to the repetitive

process ofthe computations, only a portion of the entire process for determining the

APPS from every node to the destination (node 5) for each departure time in the peak

period is presented.

Initialize the elements of the vector labels.SE = {5}.

Iteration 1

70

Scan node 5. SE = {}.

j = 5, i ∈ {2, 3, 4}.

For i = 2,

t=0,

k=1,

)0(1
2η =∑

=

2

1
1

[
z

)0(11
25
zc + 1

5λ (0 +)0(11
25
zc)])0(11

25
zρ⋅

 = (2+0) ⋅ 0.8 + (6+0) ⋅ 0.2 = 2.8.

Set)0(1
2λ = 2.8,)0(1

2π = 5 and SE = {2}.

k=2,

)0(2
2η = ∑

=

2

12z

)0(22
25

zc)0(22
25

zρ⋅ + ∑
=

2

1
1

z

2
5λ (0 +)0(11

25
zc))0(11

25
zρ⋅

 = (7 ⋅ 0.3 + 8 ⋅ 0.7) + (0 ⋅ 0.8 + 0 ⋅ 0.2) = 7.7.

Set)0(2
2λ = 7.7,)0(2

2π = 5 and SE = {2}.

•
• (Continue to loop over t.)
•

For i = 3 and 4, each t∈S and each k∈R, compute the label components and associated

pointers. Make necessary updates. Within this iteration, at least one component of

each of the labels at nodes 2, 3 and 4 has been updated. Thus, SE= {2,3,4} at the end

of this iteration. Figure 3.4 shows)(tk
iλ and)(tk

iπ , ∀k∈R associated with nodes 2,

3, and 4, respectively, at the end of this iteration. The values are presented in the form

of ()(tk
iλ ,)(tk

iπ).

71

Node 2 Node 3 Node 4Time
k=1 k=2

Time
k=1 k=2

Time
k=1 k=2

0 (2.8, 5) (7.7, 5) 0 (4.6, 5) (8.8, 5) 0 (1.2, 5) (4.2, 5)
1 (5.2, 5) (7.0, 5) 1 (3.0, 5) (7.7, 5) 1 (1.2, 5) (5.1, 5)
2 (5.4, 5) (7.0, 5) 2 (1.2, 5) (7.7, 5) 2 (1.1, 5) (5.4, 5)
3 (7.5, 5) (7.7, 5) 3 (3.5, 5) (5.1, 5) 3 (6.1, 5) (3.8, 5)
4 (6.1, 5) (7.0, 5) 4 (5.2, 5) (6.4, 5) 4 (5.5, 5) (7.7, 5)

(a) (b) (c)

Figure 3.4. Solutions for iteration 1.

Iteration 2

Scan node 2. SE = {3,4}.

j = 2, i ∈ {1}.

For i = 1,

t=0

k=1,

)0(1
1η = [)0(11

12c + 1
2λ (0 +)0(11

12c)])0(11
12ρ⋅ + [)0(12

12c + 1
2λ (0 +)0(12

12c)])0(12
12ρ⋅

 = (1+5.2) ⋅ 0.8 + (2+5.4) ⋅ 0.2 = 6.44.

Set)0(1
1λ = 6.44,)0(1

1π = 2 and SE = {3,4,1}.

•
• (Continue to loop over k and t.)
•

Continue in the same manner until the SE list is empty when step 1 is called.

The final APPS for every node and departure time in the peak period are provided in

Figure 3.5.

72

Node 1Time
k=1 k=2

0 (3.2, 3) (10.0, 2)
1 (2.9, 3) (11.7, 2)
2 (8.4, 2) (9.8, 2)
3 (6.4, 3) (10.2, 2)
4 (7.2, 3) (10.1, 2)

 (a)

Node 2 Node 3 Node 4Time
k=1 k=2

Time
k=1 k=2

Time
k=1 k=2

0 (2.8, 5) (6.8, 4) 0 (4.6, 5) (8.8, 5) 0 (1.2, 5) (4.2, 5)
1 (5.2, 5) (6.8, 4) 1 (3.0, 5) (7.7, 5) 1 (1.2, 5) (5.1, 5)
2 (4.9, 3) (7.0, 5) 2 (1.2, 5) (7.7, 5) 2 (1.1, 5) (5.4, 5)
3 (7.5, 5) (7.7, 5) 3 (3.5, 5) (5.1, 5) 3 (6.1, 5) (3.8, 5)
4 (6.1, 5) (7.0, 5) 4 (5.2, 5) (6.4, 5) 4 (5.5, 5) (7.7, 5)

 (b) (c) (d)

Figure 3.5. APPS solutions.

As depicted in Figure 3.5, upon termination of the algorithm,)0(1
1λ = 3.2,

)0(2
1λ = 10.0 with associated hyperpath pointers,)0(1

1π = 3 and)0(2
1π = 2,

respectively. The APPS from node 1 at departure time t = 0 indicate that the traveler

should head to either node 2 for the least expected travel cost or node 3 for the least

expected travel time. If the traveler chooses to follow the instructions associated with

travel time and moves to node 3, (s)he will be instructed to continue directly to node

5. On the other hand, if the driver chooses to depart from node 1 to go to node 2 and

the arrival time at this node is t=1, two efficient moves are suggested depending on

the traveler’s preference at that point in time. If the traveler wishes to obtain the least

expected travel time, the best option is to go to node 5 directly. Otherwise, heading to

node 4 prior to reaching node 5 will result in the least expected travel cost. For arrival

time t = 2at node 2, going to node 5 directly is suggested for the least expected travel

73

cost and going to node 3 prior to reaching node 5 is suggested for the least expected

travel time. The APPS from node 1 to node 5 departing from node 1 at t = 0 are

portrayed in Figure 3.6.

Figure 3.6. APPS from node 1 to node 5.

3.5 NUMERICAL EXPERIMENTS

This section presents theresults from numerical experiments conducted on randomly

generated networks with randomly generated time-varying PMFs of the arc attribute

variables. The objective is to examine improvements in average computational time

attained by the use of the APPS algorithm over the ELB algorithm performed

repeatedly, once for each criterion. The average run time of the APPS algorithm was

compared to that of the ELB algorithm through experiments on networks with either

100, 500 or 1000 nodes, a peak period of 120 time intervals, 5 elements in each PMF

and three levels of the number of criteria (2, 4 and 6).

1

t=2

3 5

2

4 5

t=2

t=1

3

5

t=0

Time

Cost

Time & cost

74

3.5.1 Experimental Design

The computational experiments were conducted on a DEC Alpha XP1000

professional workstation with 1 gigabyte ram and 2 gigabyte swap, running Digital

4.0E operating system, using Digital’s C++ compiler. The number of nodes (V),

number of time intervals (I), number of elements in the PMFs (P) and number of

criteria (R) are predesignated. In accordance with typical traffic networks, the average

in-degree and out-degree are each four, ranging between 2 and 9. The same

methodology used for creating the STV networks as described in Miller-Hooks and

Mahmassani (2000) is extended for use in MSTV networks and is applied here. Each

criterion was assumed to be uniformally distributed with fixed lower bound of one

unit. The upper bound was permitted to linearly increase from 5 to 10 units in the first

half of the peak period and then linearly decrease to 5 units in the second half of the

peak period. A FIFO SE list was employed in the APPS algorithm. For each test (i.e.

each network size and chosen number of criteria), 30 runs were completed,

corresponding to 30 randomly selected destinations. The average of these 30 runs is

reported.

3.5.2 Results and Discussion

Computational savings achieved by the use of the APPS algorithm over the ELB

algorithm were evaluated through experiments on several network configurations.

Average run times in c.p.u. seconds over 30 destinations for both algorithms are

displayed in Table 3.2.

75

Table 3.2. Average run time comparisons.
R = 2 R = 4 R = 6V

APPS/ELB %
Improve

APPS/ELB %
Improve

APPS/ELB %
Improve

100 1.48/2.06 28.16 2.93/5.03 41.75 4.35/8.03 45.83
500 8.30/11.03 24.75 15.45/26.79 42.33 24.38/43.88 44.44
1000 17.03/24.02 29.10 33.63/58.41 42.42 52.30/94.35 44.57

Figure 3.7. APPS/ELB run time comparisons.

The results show that the APPS algorithm improves the average run time

approximately 25-30% over the ELB algorithm for the instances with two criteria.

The improvements increase with the number of criteria. For instance, the percentage

of improvement reaches 45% on average for the instances with six criteria. Thus, the

APPS algorithm provides significant savings in computational effort over the

repetitive execution of the ELB algorithm for obtaining the same solutions, especially

when the number of considered criteria is large. Such improvements stem directly

from the efficiency of handling more than one criterion in Step 2 of the APPS

algorithm. This efficiency plays a major role in diminishing the average run time.

0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8 9 10 11

APPS
ALET

2 4 6 2 4 6 2 4 6
100 nodes 500 nodes 1000 nodes

APPS

ELB

76

 Furthermore, the APPS algorithm performed much better than its worst-case

computational complexity, ∼O(V3⋅I2⋅P⋅R). For example, the average run time for the

1,000 node network with five elements in the PMFs, 120 time intervals, and two

criteria is 17.03 c.p.u. seconds, which is considerably less than one thousand times the

average run time of the 100 node network with, 120 time intervals and two criteria

(requiring 1.48 c.p.u. seconds).

3.6 CONCLUSIONS

In this chapter, the concept of adjustable preference path strategies (APPS) is

introduced. APPS are defined as path strategies that enable a traveler to adaptively

select the best path in accordance with the traveler’s changing preferences and

revealed arrival times at intermediate locations. Such a solution strategy permits a

traveler to alter his/her preferred criterion at each node en route to the destination and

is of importance in providing on-line path finding assistance in traffic networks.

The APPS algorithm is developed for determining APPS in MSTV

transportation networks. Specifically, adaptive path strategies that seek to minimize

the expected value of each of multiple criteria are generated from all origins to a

designated destination for all departure times in a period of interest. Although

identical solutions can be attained by performing the ELB algorithm (2000) multiple

times, once for each criterion, the APPS algorithm offers significant computational

savings as indicated by the results of numerous numerical experiments.

77

CHAPTER 4

THE SAFEST ESCAPE PROBLEM

4.1 INTRODUCTION

In this chapter, an exact algorithm, the SEscape (Safest Escape) algorithm, is

proposedfor determining the optimal set ofa priori path flows in dynamic networks

with time-varying arc traversal times and stochastic, time-varying (STV) arc

capacities. The SEscape algorithm seeks the pattern of flow that maximizes the

minimum path probability of successful arrival at the sink ofsupply originating at

multiple sourcenodes. That is, for a given flow pattern, the probability of successful

arrival by each unit of flow at the sink along each constituent path is assessed. The

path with the minimum success probability is identified. The flow pattern whose

minimum success probability path has the maximum success probability is optimal.

The problem of determining this pattern of flow is referred to as the SEcape problem.

The concept is illustrated in Figure 4.1, where the minimum success probability paths

in a static network are shown in bold.

Figure 4.1. SEcape problem.

2

1

3

4

2 1

1

1 2

2

1

3

4

2 2

1 1

Path : Probability
1-2-4 : 0.72
1-3-4 : 0.08
1-2-3-4 : 0.16

Path : Probability
1-2-4 : 0.24
1-3-4 : 0.28

(a) (b)

78

Suppose two possible patterns of flow exist for shipping three supply units

from node 1 to node 4 as depicted in Figure 4.1. The flow pattern shown in Figure

4.1b is optimal for the SEscape problem since the associated minimum success

probability (0.24 on path 1-2-4) is greater than that of the flow pattern shown in

Figure 4.1a (0.08 on path 1-3-4).

The SEscape algorithm was developed to provide egress instructions to

evacuees in the event that rapid evacuation of a large damaged building, e.g. a

burning building or a building that has come under attack by enemy or natural

catastrophe, is required. The concept of choosing the solution whose constituent paths

contain the maximum minimum probability of success (the SEscape problem) is

similar conceptually to the problem of choosing the solution with the minimum time

until the last evacuee escapes, i.e. the solution that leads to the minimum evacuation

time. In the SEscape problem, the risk incurred by any person who is forced to take

the greatest risk is minimized (i.e. their probability of successful escape is

maximized).

In a network representation of the building evacuation problem, the network

represents the layout of the circulation systems of the building, where nodes

correspond to locations inside the building (such as offices, meeting rooms, lobbies,

lavatories, and building exits) and arcs correspond to the passageways that connect

these locations (such as staircases, elevator shafts, doorways, corridors and ramps).

The supply units represent the people to be evacuated. The nodes at which the

evacuees are located when the evacuation begins are called source nodes and the node

corresponding to building exit locations are referred to as sink nodes. The arc travel

79

time represents the amount of time required for traversing the arc. The capacity of an

arc is the number of people that can pass through the associated arc per unit of time.

The arc capacities are dependent upon the size and type of corresponding

passageway.

Emergency evacuations are often characterized by dangers that strengthen and

spread over time. When a large number of people must be evacuated from the

building simultaneously, issues concerning capacity of the arcs arise. Circumstances

in an evacuation induce the possibility that successful egress may be inhibited by

partial or complete failure of key escape paths. Moreover, one cannot know how the

situation will progress with certainty even if the exact location and type of event that

initiated the need for the evacuation is known. Thus, in determining the optimal

instructions, it is important to explicitly consider the time-varying and uncertain

nature of capacities inherent in such circumstances. Instructions that do not consider

the evolution of damage over time and threats of probable additional destruction and

deterioration can result in suboptimal decisions that can lead to unnecessary imposed

risk and unnecessary lost lives (Miller -Hooks and Krauthammer, 2002).

To represent such emergency evacuation conditions, in this work, a dynamic

network flow problem with time-varying arc traversal times and STV arc capacities is

considered. In dynamic networks, flow moves through the network over time and arc

capacities are recaptured over time. Conventionally, network attributes (arc travel

times, arc capacities and supply) in such dynamic networks are assumed to be time-

invariant. In many real-world applications, however, network attributes fluctuate over

time, and thus, it is critical that the inherent time-varying nature of the network

80

attributes is explicitly considered. The SEscape problem is considered in such a

dynamic, time-varying environment, as depicted in Figure 4.2. In the figure, the

period of interest is assumed to be discretized into three time intervals (t=0, 1 and 2)

and arc travel times are known deterministically. Arc capacities are discrete random

variables with probability distributions that vary with time. The possible capacities

and associated probabilities of occurrence are given. For instance, four possible

capacities on arc (1,2) when departing from node 1 at t=0 are 0 with probability 0.4, 1

with probability 0.2, 2 with probability 0.1, and 4 with probability 0.3. These values

are shown in the figure in decreasing order from top to bottom.

Figure 4.2. Time-varying travel times and STV capacities.

4.2 LITERATURE REVIEW

Existing approaches proposed in the literature to solve related network flow problems

generally do not explicitly model the variable and uncertain conditions inherent in

circumstances warranting emergency evacuation. A host of researchers have

addressed network flow problems in static networks (see Ahuja et al. (1993) for

additional detail on several network flow problems). One of the most studied network

flow problems is the minimum cost flow problem, in which the aim is to ship all

21

t=0
capacity

4(0.3)
2(0.1)
1(0.2)
0(0.4)

travel time
4

t=1
capacity

6(0.2)
3(0.1)
2(0.1)
0(0.6)

travel time
2

t=2
capacity

5(0.3)
4(0.2)
1(0.5)

travel time

1

81

supply units from the source to the sink with minimum total cost. Yamada (1996)

implemented a classical minimum cost flow algorithm to evaluate the evacuation plan

for Yokosuka City, Japan.Calvete (2003) presented modifications to the well-known

network simplex method to solve the minimum cost flow problem with side

constraints. The side constraints require each arc in a specified subset to carry the

same amount of flow.For the sake of improving the computational complexity, Orlin

(1993) and Sokkalingamet al. (2000) developed polynomial time algorithms for

solving the same problem. Ahuja et al. (2002) proposed a new pivot rule in the

network simplex algorithm for solving the minimum cost flow problem, which

requires at most k (k ≤ number of nodes in the network) consecutive degenerate

pivots.

Several other authors considered the minimum cost flow problem with

multiple objectives. Noda and Matin (2001) addressed the bi-objective minimum cost

flow problem with integral flow variables. The proposed algorithm consists of two

stages. The first stage generates all integer solutions on the efficient boundary in the

objective space by using a modified network simplex method. Given these solutions,

the second stage identifies the non-dominated solutions that do not lie on the efficient

boundary without generating any dominated solution. Cova and Johnson (2003)

formulated a simple linear program based on the conventional minimum cost flow

problem to address the problem of finding optimal lane-based evacuation routing

plans. The constraint method for multi-objective programming was employed. The

primary objective is to minimize total distance and the secondary objectives,

minimizing vehicle merging-conflicts and preventing crossing-conflicts at

82

intersections, are set as constraints. Other interesting works that address network flow

problems in static environments include Aggarwal et al. (1998), Pióro et al. (2002),

and Curet et al. (2002).

Numerous works incorporate the dynamic nature of network attributes that is

present in many real world applications. A survey of algorithms, applications and

implementations of several dynamic network flow problems is provided by Aronson

(1989). Ford and Fulkerson (1962) studied the maximum dynamic flow problem

whose objective is to ship as much flow as possible from the source to the sink in a

given period of time. They proposed a technique employing a minimum cost flow

algorithm as a subroutine to find maximum flow. Sparked by their approach, several

authors have addressed a generalization of the maximum flow problem, the universal

maximal dynamic flow problem (Minieka, 1971; Wilkinson, 1971; Halpern, 1979;

and Fleischer, 2001). The objective is to determine a pattern of flow that maximizes

the amount of flow arriving at the sink for every time interval within the considered

time bound. Anderson and Philpott (1994), and Orda and Rom (1995) dealt with both

original and generalized maximum flow problems with a continuous representation of

time. Nagy and Akl (2003) studied the maximum flow problem in a real-time setting.

They proposed solution approaches for recomputing a new maximum flow without

starting from scratch when real-time information regarding the network structure or

capacities is received.

Closely related to the maximum dynamic flow problem, the quickest flow

problem is concerned with determination of a flow pattern for shipping supply units

from a source to a sink such that the time at which the last unit arrives at the sink is

83

minimized.Burkard et al. (1993) conjectured a relationship between these two flow

problems and proposed several polynomial algorithms and a strongly polynomial

algorithm for solving the quickest flow problem. Chalmet et al. (1982), and

Hamacher and Tufekci(1997) considered an extension of the quickest flow problem

to multiple sources, the evacuation problem. Hoppe and Tardos (2000) presented the

first polynomial-time algorithm for the quickest transshipment problem, which

extends the quickest flow problem to multiple sources and multiple sinks. Chen and

Chin (1990), Rosen et al. (1991), and Calvete (2004) studied a variant of the quickest

flow problem: the quickest path problem. The quickest path problem seeks a single

path for shipping the supply from a source to a sink with minimum total traversal

time, where the traversal time of an arc depends on the rate of flow on that arc. Jarvis

and Ratliff (1982) considered dynamic network flow problems withthree different

objectives: 1) maximize flow in the first t time intervals, for every t (i.e. the universal

maximal dynamic flow problem), 2) minimize the average time and 3) minimize the

time the last unit arrives at the sink (i.e. the quickest flow problem). They showed that

the optimal solution for one objective is also optimal for the other two and suggested

that a standard minimum cost flow algorithm could be used to solve all three

problems.

In conjunction with building evacuation, Choi et al. (1988) considered three

related dynamic network flow problems (i.e. the maximum flow, minimum cost and

quickest flow problems) with additional side constraints. The side constraints require

that the capacity of an arcis a function of the rate of flow on the incoming arcs.

Francis (1981) presented a uniformity principle for building evacuation, requiring that

84

if the building is to be evacuated in minimum time, evacuees will be assigned to a set

of routes having the identical evacuation time. All of the aforementioned works

model time discretely. Fleischer and Tardos (1998) extended several algorithms for

dealing with discrete-time dynamic flow problems to solve their continuous-time

counterparts.

While many papers have addressed network flow problems in dynamic (but

time-invariant) networks, few works have considered the time-dependent

characteristics of network attributes (i.e. arc traversal times, capacities and supply at

the source). Miller-Hooks and Stock Patterson (2004) proposed the Time-Dependent

Quickest Flow Problem (TDQFP) algorithm for the quickest evacuation problem in

time-varying capacitated networks with dynamic flow characteristics. Cai et al.

(2001a) developed solution algorithms to solve the time-varying minimum cost flow

problem with three waiting policies at the nodes. Cai et al. (2001b) also dealt with the

maximum flow and universal maximum flow problems in such time-varying

instances.

Works discussed thus far consider only deterministic network flow problems.

Several researchers have addressed stochastic flow problems in the form of network

connectivity and reliability, where the nodes or arcs may randomly fail with known

probability. Frank and Gaul (1982) consideredtwo probabilities of connectedness: 1)

the probability that the entire network is connected and 2) the probability that two

selected nodes are connected. They presented bounds and approximations to these

two problem classes. Lucet and Manouvrier (1999) investigated several methods for

85

finding the probability that a certain subset of nodes is connected. These works do not

take into account flow through the network.

System reliability is defined as the probability that the network can

accommodate a particular level of flow. Jentsch (1998) addressed the problem of

computing system reliability in special network topologies. Only two arc states are

considered: zero or full capacity. Lin (2001, 2002a) proposed an exact method to

assess the system reliability in static networks with stochastic arc capacities. He

further extended the method for solving the system reliability problem with two-

commodities (Lin, 2002b). Lin (2003) proposed an additional concept of system

reliability based on the quickest path problem. Given stochastic arc capacities, the

minimum time for shipping supply units on a single path depends on the realization of

the arc capacities. For each realization, the probability of occurrence and the

corresponding quickest path for shipping supply units are identified. System

reliability in this work is defined as the probability that the supply units can be

shipped from the source to the sink within a time bound.

Another approach for examining the performanceof capacitated networks

with random arc failures is to consider the expected value of maximum flow.Because

computing such an expected value is NP-hard (as mentioned in, for example,

Nagamochi and Ibaraki, 1991), upper and lower bounds on the expected maximum

flow is used as an approximation to the exact value. Carey and Hendrickson (1984)

developed several algorithms for computing bounds on the expected maximum flow.

They showed that an upper bound to the expected maximum flow can be computed

by solving the maximum flow problem on the network with arc capacities set to their

86

expected values. Based on an algorithm given in the previous work, Nagamochi and

Ibaraki (1991) proposed necessary and sufficient conditions for examining whether

the lower bound equals the exact value of the expected maximum flow. All of these

works are concerned with the evaluation of the network performance, rather than

providing routing plans. Furthermore, they do not consider the time-dependency of

the network attributes.

Other works have addressed stochastic network flow problems where routing

plans are determined. By assuming time-invariant network attributes, Talebi and

MacGregor Smith (1985) modeled the stochastic evacuation problem with analytical

queuing network models. The expected evacuation time is used as the performance

measure in optimal egress analysis. Glockner et al. (2000, 2001) presented a

multistage stochastic linear programming formulation for the minimum cost flow

problem in dynamicnetworks with uncertain arc capacities. Travel times are assumed

to be deterministic and time-invariant. Decomposition techniques were developed for

use in the multistage linear program. Karbowicz and MacGregor Smith (1984)

proposed a simulation-based methodology for determining the evacuation paths along

which to send evacuees. The proposed approach employs a K-shortest paths algorithm

to identify the K shortest paths from every source to every sink. Then, occupant

egress is simulated along the set of the first shortest paths to detect queueing. If

queueing exists, a portion of occupants who experience delay is rerouted and

queueing is evaluated through a simulation. This iterative process continues until the

combination of paths that minimizes total evacuation time is obtained. Because the

proposed procedure involves a number of computations and simulation runs, it is

87

expected to perform poorly when significant queueing is found. It appears that no

exact algorithm has been proposed for efficiently determining optimal evacuation

paths, where the uncertain, dynamic and time-varying conditions inherent in

emergency circumstances are explicitly considered.

The primary contribution of this chapter is the development of the

methodological steps for providing optimal a priori (safest escape) instructions for

egress in emergency evacuation. The dynamic, time-varying and uncertain nature of

passageway capacities inherent in emergency incidents warranting evacuation is

explicitly considered. In the next section, several concepts and related performance

measures that one may consider in determining evacuation instructions are discussed.

4.3 CONCEPTUAL FRAMEWORK

The goal of providing evacuation plans in emergency incidents is to maximize the

safety of evacuees. Conventionally, evacuation time (i.e. the time until the last person

exits) and total time for evacuation have been used as a primary criterion in the

selection of egress paths (Chalmet et al., 1982; Karbowicz and Macgregor Smith,

1984; Talebi and MacGregor Smith, 1985; Choi et al., 1988;Hamacher and Tufekci,

1997; Fleischer and Tardos, 1998;Cai et al., 2001a; Mi ller-Hooks and Stock

Patterson, 2004). Time is used as a surrogate for risk and the set of path flows that

yields the minimum time required for evacuating all occupants from a disaster area is

preferred. Such approaches are useful when capacities of the passageways are known

deterministically. In emergency incidents, however, how the situation will progress is

uncertain, and thus, one cannot know a priori the number of people who will be able

88

to successfully pass through a given passageway at any point in time with certainty.

There may be some probability that successful egress along one or more passageways

will be inhibited. That is, capacities can be known a priori only probabilistically.

Such probabilities are useful for developing evacuation strategies in stochastic

environments. For example, one would prefer an evacuation path with long journey

time, but high likelihood of successful escape to a path with short journey time, but

very low probability of successful escape.

Miller -Hooks and Krauthammer (2002) propose an intelligent evacuation,

rescue and recovery (IERR) concept for large buildings that would enable prediction

in real-time of future arc capacities and times including their distributions. With the

advent of new techniques and the development of concepts that exploit information

that can be retrieved via these technologies, the information required to derive the

probability of successful escape as described herein is becoming a reality.

In this section, several criteria for evaluating flow patterns in networks with

stochastic arc capacities are discussed. Specifically, capacities are modeled herein as

discrete random variables with probability distribution functions that vary with time.

The arc attributes are assumed to be independent over space and time and the period

of interest is considered discretely.

4.3.1 Expectation and Path Flows

Stochastic problems are frequently addressed by considering the expected values of

the random characteristics. By replacing the random variables by their expected

values, the stochastic problem is transformed into a deterministic one, and thus, the

89

difficulties that stem from working with random variables are eliminated. In

networks, where arc capacities are random quantities, there may be more than one

random quantity for which the expectation is useful. For example, one might consider

the expected capacity along each arc or the expected number of flow units that can

successfully cross each arc (referred to herein as the expected flow). To illustrate

theseconcepts, the example with discrete random variables and discrete time given in

Figure 4.2 is revisited.

In the example, the expected capacity of arc (1,2) at t = 0 can be computed by

∑
=

4

0n

n ·P{)0(12u = n} = 0·(0.4) + 1·(0.2) + 2·(0.1) + 3·(0) + 4·(0.3) = 1.6, where

P{)(tuij = n} represents the probability that the capacity of arc (i,j) at time t is equal

to n. If one replaces the random arc capacities by their expected values, the resulting

information that can be obtained may not be useful in the context of providing

evacuation instructions. For instance, for any chosen path, one will only know the

expected number of units that can be shipped along the path. However, for a

particular realization of the network, the actual available capacity may be far less than

its expectation.

Alternatively, one might consider the expected flow. While the expected

capacity of an arc at a given time interval is fixed, the expected flow along an arc

depends on the number of units that are shipped across the arc. The expected flow

along arc (i,j) at time t given that k units attempt to traverse the arc, can be computed

by equation 4.1.

∑−
=

1

0

k

n

n ·P{)(tuij = n} + k·P{)(tuij ≥ k} (4.1)

90

For example, in Figure 4.2, the expected flow for shipping two units through arc (1,2)

at t = 0 can be computed as follows: 0·P{)0(12u = 0} + 1·P{)0(12u = 1} +

2·P{)0(12u ≥ 2} = 1.0.

Lemma 4.1. The computation of the expected flow given k units attempt to traverse

arc (i,j) at time t can be completed via ∑
=

≥
k

n
ij ntu

1

})({P .

Proof.

∑−
=

1

0

k

n

n ·P{)(tuij = n} + k·P{)(tuij ≥ k}

 = P{)(tuij = 1} + 2·P{)(tuij = 2} + 3·P{)(tuij = 3} +…+ k·P{)(tuij ≥ k}

 = P{)(tuij = 1} + P{)(tuij = 2} + P{)(tuij = 3} +…+ P{)(tuij ≥ k} (1)

 + P{)(tuij = 2} + P{)(tuij = 3} +…+ P{)(tuij ≥ k} (2)

 + P{)(tuij = 3} +…+ P{)(tuij ≥ k} (3)

·
·
·

 + P{)(tuij ≥ k} (k)

 =P{)(tuij ≥ 1} + P{)(tuij ≥ 2} + P{)(tuij ≥ 3} +…+ P{)(tuij ≥ k}

 = ∑
=

≥
k

n
ij ntu

1

})({P

91

4.3.2 Probabilities of Successful Path Traversal

Another criterion one may consider in determining optimal path flows in stochastic

capacity networks is the probability of ensuring successful arrival at the sink. Such

probabilities are directly related to the arc capacity occurrence probabilities. For

instance, the probability that n units can traverse arc (i,j) at time t is equal to the

probability that the capacity of the arc at that particular time is greater than or equal to

n, P{)(tuij ≥ n}.

The static network provided in Figure 4.3 is constructed to illustrate how the

probability of successful path traversal can be used to evaluate paths for completing

shipments. Arc capacities and corresponding probabilities of occurrence are given

parenthetically, e.g. the possible capacities of arc I are 0 with probability 0.65 and 4

with probability 0.35: P{uI = 0} = 0.65 and P{uI = 4} = 0.35.

Figure 4.3. Example network.

1 2

P{uI = n}
4(0.35)
0(0.65)

P{uII = n}
4(0.3)
2(0.1)
1(0.2)
0(0.4)

P{uI ≥ n}
4(0.35)
3(0.35)
2(0.35)
1(0.35)

P{uII ≥ n}
4(0.3)
3(0.3)
2(0.4)
1(0.6)

Supply
+4

Demand
-4

Arc I

Arc II

92

Suppose there are four supply units at node 1. The first unit should be

assigned to arc II since the probability that it will arrive at node 2 by way of this arc is

greater than through arc I (i.e. P{uII ≥ 1} = 0.6 > P{uI ≥ 1} = 0.35). Given that one

cannot know a priori whether or not the first shipment will successfully arrive at its

destination, arc II is the preferred arc for shipping the second unit, because the

probability that arc II can accommodate two units simultaneously, P{uII ≥ 2}, is

greater than the probability that arc I can accommodate one unit, P{uI ≥ 1}. However,

for the third unit, arc I is more attractive, because the probability that arc II can

handle three units simultaneously, P{uII ≥ 3}, is less than the probability that arc I can

handle one unit, P{uI ≥ 1}. This is also the case for shipping the last unit, where P{uI

≥ 2} = 0.4 > P{uII ≥ 3} = 0.3. Given this, the best routing plan for these four supply

units is to equally split the flow across both arcs.

In Section 4.4, the relationship between the probabilities of successful path

traversal and determination of the Safest Escape paths described in Section 4.1 is

given.

4.4 SAFEST ESCAPE

In developing evacuation instructions in emergency events, one might consider the

number of evacuees who successfully escape as a performance measure of a proposed

solution (i.e. evacuation plan). It can be shown that if the evacuees follow the

instructions that result from solving the maximum expected flow problem, in the long

run (i.e. over many evacuations), the maximum number of lives will be saved.

However, the solution to the expected flow problem may require a person to follow a

93

path with high likelihood of failure. That is, a single person may be asked to take

exceptional risk for the good of the whole. This is portrayed in Figure 4.1. While the

pattern of flow shown in Figure 4.1a has the maximum expected flow for shipping

three units from node 1 to node 4, the evacuee routed on path 1-3-4 is subject to an

extremely low probability of successful arrival at the sink. Albeit acceptable for many

applications, the suggestion of such significantly inferior paths in life-threatening

situations might raise ethical concerns.

The SEscape problem is proposed to address emergency evacuations by

explicitly considering the time-varying and uncertain nature of passageway capacities

inherent in such circumstances. Critical issues arising in such life-threatening

situations, such as exposure to risk and fairness, are given priority. That is, rather than

focusing on the system objective, the SEscape problem provides evacuation

instructions such that the risk incurred by the occupant or occupants who are forced to

take the greatest riskis minimized. Specifically, among the constituent paths in a

pattern of flow, there is one path that has the minimum probability of successful

arrival at the exit (assume no ties). The pattern of flow for which this path with the

minimum success probability has the highest probability among all possible flow

patterns is optimal. Figure 4.4 illustrateshow the path with the minimum success

probability for a given flow pattern is determined. The probabilistic arc capacities are

assumed to be temporally and spatiallyindependent.

94

2 31

Figure 4.4. Stochastic arc capacities.

Two possible flow patterns, FI and FII, exist for shipping two supply units

from node 1 to node 3: (I) split the flow equally, one along each arc as illustrated in

Figure 4.4, and (II) ship both units along path A-C.

For FI, the minimum probability that the units can successfully traverse arc A

is equal to the probability that the arc can accommodate two or more units, i.e. P{Au

≥ 2}. Upon arrival at node 2, unit I is routed to arc B, where the corresponding

probability of successful arc traversal is P{Bu ≥ 1}. Likewise, the success probability

of unit II on arc C is P{ Cu ≥ 1}. Therefore, for this particular flow pattern, the

minimum success probability is P{ Au ≥ 2}·P{ Bu ≥ 1} = 0.2 on path A-B (note that

path A-C has the probability of successful arrival P{Au ≥ 2}·P{ Cu ≥ 1} = 0.35). The

minimum success probability for FII is P{ Au ≥ 2}·P{ Cu ≥ 2} = 0.1, computed

through similar computations as shown for FI.

Arc A
2(0.5)
1(0.3)
0(0.2)

Arc B
1(0.4)
0(0.1)

Arc C
2(0.2)
1(0.5)
0(0.3)

Supply
+2

Demand
-2

unit I

unit II

95

One can see that for shipping two supply units from node 1 to node 3 in this

network, the flow pattern FI maximizes the minimum path probability of successful

arrival of supply at node 3. Thus,FI is chosen as the optimal solution with respect to

the SEscape problem. This concept guarantees that the chance of successful egress of

occupants who are subject to the greatest risk will be maximized. The proposed

conceptual framework and specific algorithmic steps can be used in evacuation

planning, enabling safer evacuation of a building in the event of military attack, fire,

natural disaster, or other circumstances warranting quick escape.

4.5 NETWORK NOTATION AND PROBLEM FORMULATION

Similar notation for describing the network as used by Miller-Hooks and Stock

Patterson (2004) is employed herein. Let a dynamic networkN = (G, U, BC, T) be a

finite digraph,G = (V, A, {0,1,…,T}), where V is the set of nodes, A is the set of

directed arcs connecting the nodes, and {0,1,…,T} is the time frame of interest

discretized into small time intervals. The arc capacities are assumed to be discrete

random variables with probability mass functions (PMFs) given by the set (U,BC).

Specifically, associated with each arc (i,j) ∈ A at time t ∈ {0,1,…,T} is a set of D

non-negative, integer-valued, time-varying capacities, U={)(tu z
ij } (i,j) ∈ A, t ∈ {0,1,…,T} ,

z=1,..,D, with corresponding probabilities of occurrence, BC={)(tz
ijβ } (i,j) ∈ A, t ∈ {0,1,…,T},

z=1,..,D, and a set of non-negative real-valued time-varying travel times, T ={)(tijτ } (i,j)

∈ A, t ∈ {0,1,…,T} . The flow on arc (i,j) ∈ A that leaves node i at departure time t ∈

{0,1,…,T} and arrive at node j at time t +)(tijτ is represented by)(txij .)(tPn
ij

96

denotes the probability that the capacity of arc (i,j) at time t is not less than n, i.e.

P{)(tuij ≥ n} for (i,j) ∈ A, t ∈ {0,1,…,T}. Γ-1(i) denotes the set of predecessor nodes

of node i, i.e. all j such that(j,i) ∈ A. Likewise, Γ+1(i) denotes the set of successor

nodes of node i, i.e. all j such that(i,j) ∈ A.

Travel times and capacities are assumed to be spatially and temporally

independent and independent of one another. During the period of interest {0,1,…,T} ,

arc attributes may vary with time. After this period, it is assumed that they are

stationary, taking the same values as at the last time interval, T. Network N is

permitted to be non-FIFO. It is assumed that if an arc has non-zero probability of zero

capacity at time s, then some non-zero probability of zero capacity exists for t>s.

While a solution when employed in real-time operations may require that some of the

supply waits at intermediate nodes, a solution to this problem is not permitted to

suggest waiting at these intermediate locations.

Miller -Hooks and Stock Patterson (2004) provide a technique for efficiently

converting multi-source, multi-sink network flow problems to single source, single

sink problems. Without loss of generality, the SEscape problem is described as a

single source, single sink problem for the remainder of this work. The supply at node

s at departure time t is denoted by)(tbs and can take on positive values for any

departure time. The demand at node l at departure time t,)(tbl , is zero for all values

of t except for t=T. No supply is available after time T, i.e.)(tbi = 0, ∀i ∈ V, t > T. It

is assumed that all supply can reach the sink no later than time T in all realizations. At

departure time T, the demand will equal the total supplyB, i.e.)(Tbl = - B = -

97

∑
=

T

t
s tb

1

)(. Thus, if flow arrives prior to time T, it simply waits without penalty until

time T in order to fulfill the demand. Finally, the supply at all other nodes will be zero

at all departure times,)(tbi = 0, ∀i ∈ V \{ s, l} , t ∈ {0,...,T} .

The SEscape algorithm determines the pattern of flow that maximizes the

minimum path probability of successful arrival at the sink ofsupply originating at a

single sourcenode in dynamic networks with time-varying arc traversal times and

STV capacities. The mathematical formulation of the SEscape problem can be written

as follows:

Max [∏
∈Ω∈ σσ)),,((

)(
)(min

tji

tx
ij tP ij], (1)

∑ ∑ ∑
+ −Γ∈ Γ∈ =+

∈∈∀=−
)()(})'('|'{1 1

},,...,0{,),()'()(
ij ij tttt

iijij

ji

Ttitbtxtx
τ

V (2)

},,...,0{,),(),(max)(0 Ttjitutx z
ij

z
ij ∈∈∀≤≤ A (3)

where Ω is the set ofall possible paths from source to sink.

A related formulation is given in Miller-Hooks and Stock Patterson (2004) for

the Time-Dependent Quickest Flow Problem (TDQFP) in time-varying but

deterministic networks. Constraints (2), i.e. the flow conservation constraints, are

identical to those given in Miller-Hooks and Stock Patterson’s work. However,

because the SEscape problem involves stochastic capacities, the flow to be shipped

along each arc (i,j) ∈ A at time t ∈ {0,1,…,T} is bounded by the maximum value of

all possible capacities on arc (i,j) at departure time t (constraints (3)). Whereas the

objective of the TDQFP is to find the flow pattern for completing the shipment with

98

the minimum total time or minimum evacuation time, the SEscape problem seeks the

flow pattern whose minimum success probability path has the maximum value. An

example of the mathematical formulation of the SEscape problem as applied on a

small network is presented in Appendix B.

4.6 SOLUTION APPROACH

An exact solution methodology for solving the SEscape problem (the SEscape

algorithm) is described in this section. The algorithm relies on a probabilistic, time-

dependent (PTD) residual network and solution of the Maximum Probability Path

(MPP) problem. In this section, details of the PTD residual network and of the

SEscape algorithm are given, followed by description of solution to the MPP problem

via the MPP algorithm.

4.6.1 The PTD residual network

The SEscape algorithm employs the similar concept of the Time-Dependent Quickest

Flow Problem (TDQFP) algorithm (Miller-Hooks and Stock Patterson, 2004) in that

it extends the successive shortest path algorithm for solving minimum cost flow

problems in static networks (see Ahuja et al, 1993 for additional details on the

algorithm) for use in time-varying environments.The basic idea is to iteratively

determine the properly defined optimal paths from source to sink in a residual

network and incrementally push flow along the paths until all demand is fulfilled.

Unlike the TDQFP algorithm, the SEscape algorithm employs the PTD

residual network. For a given flow x, the PTD residual networkis denotedG(x). The

99

arc weight values represent the probability that the capacity of arc (i,j) at time t is not

less than n, P{)(tuij ≥ n}, denoted by)(tPn
ij , n = {1,2,..,)(max tu z

ij
z

} .)(tPn
ij can be

viewed as the probability of successful arc traversal for n units on arc (i,j) at departure

time t. Associated with each arc (i,j) ∈ A and departure time t ∈ {0,1,…,T} is a

residual pointer)(tijθ =)(txij -))((ttx ijji τ+ + 1. This pointer works as an

indicator for the remaining capacity, i.e. the remaining capacity of arc (i,j) at time t =

)(max tu z
ij

z
-)(tijθ + 1. Initially,)(tijθ is set to 1 for all (i,j) ∈ A, t ∈ {0,1,…,T}.

Figure 4.5 demonstrates the construction of the initial PTD residual network.

 (a) Original network (b) Initial PTD residual network

Figure 4.5. The PTD residual network.

In Figure 4.5a, the possible capacities of arc (i,j) at departure time t are 1 with

probability 0.3 and 3 with probability 0.7. The PTD residual network transforms this

information into the form of)(tPn
ij , n = 1,2,3. For instance, the probability that two

units can successfully traverse the arc at the corresponding departure time is 0.7.

The SEscape algorithm uses backward arcs, whose attributes have a special

structureto enable the return of capacity to an arc for canceling decisions made

i

j

i

j()(1 tuij ,)(1 tijβ) = (1, 0.3)

()(2 tuij ,)(2 tijβ) = (3, 0.7)

)(3 tPij = 0.7

)(2 tPij = 0.7

)(1 tPij = 1.0

)(tijθ = 1

100

earlier (ensuring optimality in the larger problem). The backward arcs and the

associated probability,)'(tPn
ji , t′ = t +)(tijτ ≤ T, can be implemented as shown in

Figure 4.6.

Figure 4.6. The PTD backward arc.

Similar to real arc (i,j) at time t, a residual pointer,)'(tjiθ , is associated with

backward arc (j,i) at time t′, t′ = t +)(tijτ ≤ T, ∀{ t ∈ {0,1,…,T} |)(txij > 0} to

indicate the remaining capacity of the corresponding backward arc at the given time.

)'(tjiθ is computed by)(txij -)'(tx ji . Through the special structure of the PTD

residual network, including the residual pointers, the probability that each unit will

succeed in traversing each arc at a particular time can be readily obtained.

4.6.2 SEscape algorithm

The SEscape algorithm can be decomposed into two main components: 1) generation

of paths connecting the source and sink with nonzero probability of having adequate

capacity to accommodate all supply units and 2) determination of the number of units

to be sent along each path to complete the shipments.In the TDQFP algorithm, at

i

j
t′: (t +)(tijτ)

)'(3 tPji =1/)(3 tPij

)'(2 tPji =1/)(2 tPij

)'(1 tPji =1/)(1 tPij

t

)(3 tPij

)(2 tPij

)(1 tPij

)'(tjiθ

101

each iteration, the path with the earliest arrival time in a time-dependent residual

network is chosen. In the SEscape algorithm, rather than seek this earliest arrival time

path, the algorithm chooses the path with the maximum probability of successfully

shipping additional units of flow from the source to sink in the PTD residual network.

An overview of the SEscape algorithm is presented next.

1. Construct a PTD residual network: Transform the network into a PTD

residual network.

2. Generate Maximum Probability Paths: Given the PTD residual network,

obtain the path with maximum probability for sending one additional unit of

flow from the source to the sink by the maximum probability path (MPP)

algorithm (described in Subsection 4.5.3). Push one (or more)1 units of flow

along the MPP.

3. Update the PTD Residual Network: In the PTD residual network, maintain

the values related to)(tPn
ij along each arc (i,j) for each departure time t ∈

{0,...,T} . Update the residual pointers,)(tijθ at each iteration and the

backward arcs, where)'(tPn
ji , Tttt ij ≤+=)(' τ , as needed.

4. Terminate: If all supply has been assigned to a path, terminate the algorithm;

otherwise, return to step 2.

The SEscape algorithm terminates with a set of paths from the source to the sink and

the corresponding number of units to be shipped along each path such that the

minimum probability of arrival at the sink is maximized. The actual amount of flow

that will be able to pass through each arc at a given point in time is not known until

1 See how the number of flow units to be shipped on the MPP is determined in Section 4.6.3.

102

the solution is implemented and values of the arc capacities are revealed. The

procedural steps of the SEscape algorithm are provided next. Additional notation

employed in the SEscape algorithm is given hereafter.

e(t) = excess supply for departure time t at the source node.

t̂ = earliest time t such that supply at the source exists.

Algorithm SEscape

Step 1

Initialize the following variables: x = 0, G(x) = G and e(t) =)(tbs , ∀t ∈ {0,...,T}.

Set)(tijθ = 1, ∀(i,j) ∈ A, t ∈ {0,...,T}.

Step 2

Determine t̂ , where t̂ =)0)(|(min
},...,0{

>∈ tet
Tt

.

Call the function MPP(l, T,)(tijθ , G(x)), whose output contains sψ and sσ .

Determine ε, where ε = min ()ˆ(te ,)ˆ(tsψ). If ε = 0, stop, the problem is infeasible.

Augment ε units of flow along path sσ , i.e. increase)(txij by ε, ∀((i,j), t) ∈ sσ .

Decrease)ˆ(te by ε.

Step 3

Determine the residual pointers for all (i,j) ∈ A given the flow x.

Set)(tijθ =)(txij -))((ttx ijji τ+ + 1, })(|},...,0{{ TttTt ij ≤+∈∀ τ ,2

If ∑
∈

=
},...,0{

0)(
Tt

te , Stop.

2 If there exists real arc (j,i) ∈ A, the backward arc of arc (i,j) must be differentiated from the original
arc (j,i).

103

Step 4

Backward arc update:

Add the backward arc (j,i) to the residual graph, G(x), if it does not already exist, for

each (i,j) ∈ A, such that for some t ∈ {0,...,T},)(txij > 0. For all backward arcs, (j,i),

update the following travel times, probabilities of successful arc traversal and residual

pointers.

)'(tjiτ =)(tijτ− ,),...,0{{,)(' TtTttt ij ∈∀≤+= τ |)(txij > 0},

= T,),...,0{{ Tt ∈∀ |)(txij = 0}.

)'(tPn
ji = 1/)(tPn

ij , n = 1,…,)(max tu z
ij

z
,),...,0{{,)(' TtTttt ij ∈∀≤+= τ |)(txij > 0}.

)'(tjiθ =)(txij -)'(tx ji ,),...,0{{,)(' TtTttt ij ∈∀≤+= τ }.

Return to Step 2.

In Step 1, the PTD residual network is constructed from the original network.

The excess supply e(t) is initialized to the supply values at each departure time t, and

)(tijθ is set to 1 for all arcs and departure times. Step 2 features the MPP algorithm

for determining the MPP and the appropriate amount of flow to be sent along the

path. After the flow has been shipped, the excess supply e(t) is reduced. In Step 3, the

residual pointers)(tijθ on the constituent arcs along the path are updated:)(tijθ =

)(txij -))((ttx ijji τ+ + 1. The final step is concerned with the update of the PTD

residual network. Backward arc (j,i) at time t +)(tijτ are added in response to the

presence of positive flow on arc (i,j) at time t. The travel times, probabilities of

successful arc traversal and residual pointersassociated with the backward arcs are

104

updated accordingly. After Step 4, the algorithm returns to Step 2 and this iterative

process continues until all the supply has been shipped.

Upon completion, the algorithm provides the set of arc flows, which can be

identified through the residual pointers)(tijθ . That is, the flow on arc (i,j) at

departure time t is equal to)(tijθ - 1. The next subsection describes the MPP

algorithm, which is used as a subroutine within the SEscape algorithm.

4.6.3 Maximum Probability Path (MPP) algorithm

The SEscape algorithm relies on the MPP algorithm to determinethe MPPand the

associated number of units to be shipped along from the source node s to the sink

node l in the PTD residual network.The MPP algorithm is a specialized version of

the TDLTP algorithm of Ziliaskopoulos and Mahmassani (1993)for determining

paths with the maximum probability that one (or more) units can successfully arrive

at the sink from each node at each departure time in non-FIFO, time-varying

networks. Waiting is not permitted at any node.

The TDLTP algorithm determines the least time paths from all nodes to a

desired destination. In the MPP algorithm, in addition to arc travel times, the

probability of successful arc traversal is associated with each arc at each departure

time andthe objective is to determine a path between an origin-destination pair such

that the probability of successful arrival at the destination is maximized. Let)(tPij be

the probability that at least one unit can successfully traverse arc (i,j) at departure

time t. Assume that such probabilities are independent over space and time. The

probability of successful arrival at the destination, given that path a is taken from the

105

origin, is computed by ∏
∈atji

ij tP
)),,((

)(.

In the MPP algorithm, associated with each node i ∈ V and each departure

time t ∈ {0,1,…,T} are labels)(tiλ and)(tiψ . Prior to termination,)(tiλ represents

a lower bound on the probability of successfully shipping)(tiψ units from node i at

departure time t to the destination node l. Similar to the original TDLTP algorithm,

the MPP algorithm determines the MPPs in an iterative manner by scanning nodes

from a scan eligible (SE) list working backward from the destination node. The MPP

algorithm constructs the MPP from each node at each departure time through the

currently MPP associated with a successor node. If the newly constructed pathhas

greater success probabilitythan the currently MPP from the same node at the same

departure time to the destination, this new path will become the MPP.

In each iteration of the SEscape algorithm, the updated PTD residual network

G(x) and associated residual capacities)(tijθ are used as input to the MPP algorithm.

For each arc (i,j) ∈ A and each departure timet ∈ {0,...,T} ,)(tijθ indicates the

appropriate value of the probability of successful arc traversal)(
)(

tP
t

ij
ijθ

 for

computing)(tiλ . The optimality condition of the MPP algorithm can be written as

follows.

)(tiλ ≥)(
)(

tP
t

ij
ijθ

))((tt ijj τλ +⋅ , for all j ∈)(i+Γ (equation 1)

A temporary vector label,)(tiη is employed in the update of)(tiλ . If

)(tiη >)(tiλ , the label is updated,)(tiλ =)(tiη , and node i is inserted in the SE list

for subsequent scanning. Upon termination, each label)(tiλ provides the maximum

106

probability that)(tiψ units can arrive at the desired destination starting from node i

at departure time t. A pointer)(tiπ is used to indicate the successor nodes from node

i at time t.

The algorithmic steps of the MPP algorithm are given next.

Algorithm MPP (l, T,)(tijθ , G(x))

Step 1 (Initialization):

Initialize the labels and path pointers.

)(tiλ = 0, ∀ i ∈ V \l, t ∈ {0,1,…,T}.

)(tiψ = ∞, ∀ i ∈ V, t ∈ {0,1,…,T}.

)(tiπ = ∞, ∀ i ∈ V, t ∈ {0,1,…,T}.

)(tDi = ∞, ∀ i ∈ V, t ∈ {0,1,…,T}.

)(tlλ = 1, ∀ t ∈ {0,1,…,T}.

Create the SE list and insert the destination node l into the SE list.

Step 2 (Select Node for Scanning):

If the SE list is empty, go to step 4. Otherwise, select and delete a node from the SE

list. Call this node the current node j.

Step 3 (Update the Node Labels):

For each i ∈ Γ-1(j),

 For each t, { t ∈ {0,1,…,T} | Ttt ij ≤+)(τ ,)(tiλ < 1},

)(tiη =)(
)(

tP
t

ij
ijθ

))((tt ijj τλ +⋅ .

107

 If)(tiη >)(tiλ , then set:

)(tiλ =)(tiη ,

)(tiπ = j and SE = SE ∪ { i},

)(tiψ = min ())((tt ijj τψ + ,κ),

where κ = q - θ, q = min { n | n > θ and)(tPn
ij <)(

)(
tP

t
ij

ijθ
}.

Return to step 2.

Step 4 (Termination):

Upon termination, the MPP algorithm provides the maximum probability iλ , number

of units to be shipped iψ and corresponding path iσ (arcs along the path and the

associated departure time from each arc) from all nodes i ∈ V to the destination l.

Proofs and the worst-case computational complexity of the MPP algorithm

follow directly from those of the original TDLTP algorithm given in Ziliaskopoulos

and Mahmassani (1993).

4.6.4 Proof of the SEscape algorithm

In this section, proofs of correctness and computational complexity of the SEscape

algorithm are given. For clarity, the proof of Proposition 4.1 is given in the static

case. To extend these concepts for networks with time-varying arc traversal times and

capacities, the arc travel times, capacities and flow must be expressed with respect to

the arrival time at the nodes and the path selection process is performed over the time

dimension.

108

Proposition 4.1. The SEscape algorithm provides the pattern of flow whose

minimum path probability of successful arrival of supply at the sink is maximized.

Proof. The two possible cases, one in which no backward arcs are used in the

solution and the other in which one or more backward arcs are used in the solution,

are considered separately.

Case I: The selected paths employ no backward arc

For shipping n units of flow, the SEscape requires at mostn iterations of the MPP

algorithm. Because the MPP algorithm guarantees to obtain the maximum probability

path, in each iteration the path with the maximum probability of successfully shipping

at least one unit from the source to the sink is chosen. Therefore, if the path contains

no backward arcs, the success probability of the path for shipping the last set offlow

units would have the maximum success probability.

Case II: The selected paths employ one or more backward arcs

When the MPP algorithm selects a path with one or more backward arcs in some

iteration, and flow is shipped along the path, capacity is returned to the corresponding

arcs, and a new set of paths connecting the source to the sink results. Proof of this

second case requires proving that any path in this new set must have a higher

probability of successful arrival at the sink than that of any path without backward

arcs.An example network given in Figure 4.7 is employed. Suppose n units of flow

must be shipped from the source node s to the sink node l and no path employing

backward arcs has been introduced into the solution path flows up to (n-2) unit

shipments. This implies that the probability of successfully shipping the (n-2)th unit is

the maximum probability of completing the shipment thus far. Let A, B, C, D, E, and

109

F be the current probabilities of successfully traversing arcs (s,2), (2,3), (3,l), (s,3),

(2,l) and (s,l), respectively.

Figure 4.7. The PTD residual network after completion of (n-2) unit shipments.

Assume path s-2-3-l has the maximum probability for shipping the (n-1)th unit. That

is, the following assumptions with respect to the current PTD residual network must

hold:

I) A·B·C > A·E. This infers that B·C·(1/E) > 1

II) A·B·C > D·C. This infers that A·B·(1/D) > 1

III) A·B·C > F

After completing this shipment, backward arcs are introduced in the residual network

as portrayed in Figure 4.8.

2

s l3

A

CD

B
E

F

110

2

s l3

Figure 4.8. The PTD residual network after completion of (n-1) unit shipments.

From Figure 4.8, the updated PTD residual network contains a new path s-3-2-l that

employs backward arc (3,2) with corresponding probability 1/B. For the last

shipment, a path with the maximum success probability according to the PTD

residual network must be chosen. Two groups of paths are considered here according

to whether or not backward arcs are employed. Among all paths that do not contain

backward arcs, path s-l is assumed to have the maximum probability (F). We further

assume that path s-3-2-l with probability D·(1/B)·E is selected by the MPP algorithm

for shipping the last unit, i.e. D·(1/B)·E > F). To prove that selecting this path would

result in the maximum least probability of successfully arrival at the sink, we must

show that the new set of paths created from this path selection, paths s-3-l and s-2-l,

have higher probabilities of successfully completing this last shipment than that of

paths-l. In other words, we need to prove that C·D > F and A·E > F. Since path s-3-2-

l is selected over path s-l, the following condition holds.

D·(1/B)·E > F (1)

1/C
D

1/B
E

F

1/A

111

Equation (1), C·D·(1/B)·E > C·F, infers that

C·D > [B·C·(1/E)]·F (2).

Given assumption I,

B·C·(1/E) > 1 (3).

Through (2) and (3), we can conclude that

C·D > F (4).

A similar process can be applied for proving A·E > F.

Equation (1), A·D·E > A·B·F, infers that

A·E > [(A·B·(1/D)]·F (5).

Given assumption II,

A·B·(1/D) > 1 (6).

Through (5) and (6), we can conclude that

A·E > F (7).

If a path employing backward arcs is selected by the MPP algorithm, that path

will result in the maximum probability of successful arrival at the sink.Therefore, the

SEscape algorithmguarantees to provide the pattern of flow whose minimum path

probability of successful arrival ofsupply at the sink is maximized. ♦

Proposition 4.2. The worst-case computational complexity of the SEscape algorithm

is ∼O(B⋅F), where B is the number of supply units, and F is the running time of the

embedded path finding algorithm.

Proof. In the worst case, the SEscape algorithm requires B runs of thepath finding

algorithm for B supply units. Because the complexity of the path finding algorithm is

112

∼O(F), the worst-case computational complexity of the SEscape algorithm is

∼O(B⋅F).

The MPP algorithm embedded in the SEscape algorithm for finding paths has

the similar complexity to the TDLTP algorithm, i.e. ∼O(V3⋅I2), where V =V is the

number of nodes in the network and I is the number of time intervals considered.

Therefore, the worst-case computational complexity of the SEscape algorithm is

∼O(B⋅V3⋅I2). ♦
It is significant to note that while each iteration of the SEscape algorithm

requires only a single path for shipping flow from the source to the sink at a particular

time, the MPP algorithm finds the MPP from all nodes to a destination for all

depature times. The complexity of the SEscape algorithm can be considerably

improved if a similar algorithm were to be discovered that can avoid the steps

required in determining the unnecessary solutions, i.e. solutions from nodes or at

departure times that are not needed.

4.7 ILLUSTRATIVE EXAMPLE

In this subsection, the procedural steps of the SEscape algorithm are illustrated on a

simple example network displayed in Figure 4.9. Three units of flow must be shipped

from node 1 at time t=0 to node 4, i.e.)0(1b = 3. The corresponding arc travel times

and capacities that are necessary for determining the optimal pattern of flow for

completing the shipment are provided in Table 4.1. Table 4.2 shows the associated

)(tPn
ij values for the initial PTD residual network. For instance, the probability that

113

the capacity of arc (1,2) at time t=0 is not less than three units is 0.3, i.e.)0(3
12P =

0.3.

Figure 4.9. Example network.

Table 4.1. Arc travel times and capacities for the example network.
(i,j) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

)(tijτ t=0:
2

t=0:
4

t=0:
6

t=2:
2

t=2:
3

t=4:
2

)(tu z
ij ()(tz

ijβ)

t=0:
4(0.3)
2(0.5)
1(0.2)

t=0:
1(0.4)
0(0.6)

t=0:
3(0.1)
0(0.9)

t=2:
2(0.9)
1(0.1)

t=2:
2(0.1)
1(0.2)
0(0.7)

t≥4:
2(0.90)
1(0.05)
0(0.05)

Table 4.2. The PTD residual network.
(i,j) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

n t=0 t=0 t=0 t=2 t=2 t≥4
5 0 0 0 0 0 0
4 0.3 0 0 0 0 0
3 0.3 0 0.1 0 0 0
2 0.8 0 0.1 0.9 0.1 0.90
1 1 0.4 0.1 1 0.3 0.95

)(tPn
ij

0 1 1 1 1 1 1

The following details the steps of the SEscape algorithm on this example problem for

shipping three units from node 1 to node 4, departing node 1 at time t =0.

2

1 43

114

Iteration 1

Step 1

Initialize the following variables: x=0, G(x) = G and e(t) =)(1 tb , ∀t ∈ {0,...,6}.

Set)(tijθ = 1, ∀(i,j) ∈ A, t ∈ {0,...,6}.

Step 2

t̂ = 0.

Call the function MPP(l = 4, T = 6,)(tijθ , G(0)),

)0(1λ = 0.95,)0(1ψ = 1 and)0(1σ = ((1,2), 0) ((2,3), 2) ((3,4), 4).

ε = min ()0(e ,)0(1ψ) = 1.

Augment one unit of flow along path)0(1σ ,)0(12x =)2(23x =)4(34x = 1.

Decrease)0(e = 3 - ε = 2.

Step 3

Determine the residual pointers for all (i,j) ∈ A given the flow x:

)0(12θ =)2(23θ =)4(34θ = 2.

Step 4

Add backward arcs (2,1) (3,2) and (4,3)to the residual graph:

Table 4.3. Backward arc information.
(i,j) n (2,1) (3,2) (4,3)

t=2 t=4 t=6
5 0 0 0
4 1/0.3 0 0
3 1/0.3 0 0
2 1/0.8 1/0.9 1/0.90
1 1 1 1/0.95

)(tPn
ij

0 1 1 1

115

)2(21τ = -2,)4(32τ = -2,)6(43τ = -2.

)2(21θ =)4(32θ =)6(43θ = 1.

Figure 4.10. PTD residual network.

Iteration 2

Step 2

Call the function MPP(l = 4, T = 6,)(tijθ , G(1)),

)0(1λ = 0.648,)0(1ψ = 1 and)0(1σ = ((1,2), 0) ((2,3), 2) ((3,4), 4).

ε = min ()0(e ,)0(1ψ) = 1.

Augment one unit of flow along path)0(1σ ,)0(12x =)2(23x =)4(34x = 2.

Decrease)0(e = 2 - ε = 1.

Step 3

Determine the residual pointers for all (i,j) ∈ A given the flow x:

)0(12θ =)2(23θ =)4(34θ = 3.

Step 4

)2(21θ =)4(32θ =)6(43θ = 2.

2

1 43

116

Iteration 3

Step 2

Call the function MPP(l = 4, T = 6,)(tijθ , G(2)),

)0(1λ = 0.133,)0(1ψ = 1 and)0(1σ = ((1,3), 0) ((3,2), 4) ((2,4), 2).

ε = min ()0(e ,)0(1ψ) = 1.

Augment one unit of flow along path)0(1σ ,)0(13x =)4(32x =)2(24x = 1.

Decrease)0(e = 1 - ε = 0.

Step 3

Determine the residual pointers for all (i,j) ∈ A given the flow x:

)0(12θ =)4(34θ = 3,)2(23θ =)0(13θ =)2(24θ = 2.

Since ∑
∈ }6,...,0{

)(
t

te = 0, stop.

Figure 4.11. Shipping one unit on path 1-3-2-4.

The optimal set of path flows for completing the shipment of three units from

node 1 to node 4 is to split the flow, one unit along each path: 1-2-4, 1-2-3-4 and 1-3-

4, as depicted in Figure 4.12. This pattern of flow guarantees that the minimum

2

1 43

117

success probability has the maximum value. The minimum probability of successful

arrival at node 4 by following this solution is 0.24 through path 1-2-4.

Figure 4.12. Optimal solution.

Section 4.8 presents computational results for assessing the computational

performance of theSEscape algorithm.

4.8 NUMERICAL EXPERIMENTS

In this section, computational experiments are conducted through randomly generated

networks to examine the average run time and other characteristics of the SEscape

algorithm. The algorithm was coded in C++ and run on a DEC Alpha XP1000

professional workstation with 1 gigabyte ram and 2 gigabyte swap, running Digital

4.0E operating system, using Digital’s C++ compiler.

4.8.1 Experimental Design

The same network configurations as provided in Miller-Hooks and Stock Patterson

(2004) for testing the TDQFP algorithm were used. That is, the networks have either

25, 100 or 500 nodes. The average in- and out- degree for each node is approximately

2

1 43

2

21

1
1

118

4, varying from 2 to 9. For each network topology, three sets of the number of time

intervals in the non-stationary period are considered: 60, 120 and 240. Supply exists

at one-quarter of the time intervals in the period of interest. Five supply units were

assigned to each selected interval.

The arc travel times for each time interval are randomly generated between 1

and 15 time units and are integral. Three random arc capacities for each time interval

range from 1 to 20 units and also are integral.For each network configuration, a

single source was randomly chosen and 10 runs were completed, corresponding to 10

randomly selected sinks. The average of these 10 runs was recorded. This requires 90

runs of 9 different network configurations.

4.8.2 Experimental Results

The results of all runs are reported in Table 4.4. In the table, the first two columns for

each combination of network topology and the number of time intervals demonstrate

the run times of the SEscape and MPP algorithms, respectively. The run times do not

include I/O time, as is common practice in reporting such average run times. In the

third column, the number of paths required in completing the shipments is presented.

The average values of the 10 runs are given in bold at the end of each column. Note

that for the 100 node network with 60 time intervals in the non-stationary period, the

time bound T had to be extended to 75 to accommodate all shipments. Similarly, T

was extended to 90 and 150 for the 500 node network with 60 and 120 time intervals,

respectively.

119

Table 4.4. Experimental results.
25

60 120 240

SEscape MPP
of
paths SEscape MPP

of
paths SEscape MPP

of
paths

0.933 0.917 32 4.866 4.783 66 30.949 30.649 179
0.900 0.883 32 7.150 7.100 92 35.032 34.799 192
0.850 0.833 31 5.500 5.450 81 24.449 24.349 150
1.100 1.067 40 5.883 5.833 86 30.599 30.415 165
1.433 1.367 44 4.650 4.600 65 35.049 34.799 194
1.267 1.233 46 4.666 4.600 78 23.766 23.666 145
0.967 0.967 37 7.166 7.116 96 23.449 23.299 156
0.983 0.950 38 6.333 6.283 90 17.199 17.016 116
1.567 1.550 43 7.083 6.983 99 21.766 21.516 147

0.983 0.967 37 5.566 5.500 85 30.016 29.799 173

1.098 1.073 38 5.886 5.825 83.8 27.227 27.031 162
100

60(75) 120 240

SEscape MPP
of
paths SEscape MPP

of
paths SEscape MPP

of
paths

6.550 6.516 32 41.415 41.165 104 201.342 200.592 233
7.000 6.950 34 37.549 37.382 99 158.127 157.460 206
8.416 8.333 40 37.282 37.032 104 167.943 167.293 213
10.566 10.550 49 40.632 40.432 110 141.461 140.794 197
6.483 6.450 30 38.365 38.182 105 145.694 145.011 196
11.016 10.983 50 31.182 31.049 91 134.245 133.695 177
9.516 9.450 48 40.382 40.182 108 133.828 133.178 186
9.600 9.516 49 35.732 35.565 99 115.612 114.995 163
9.600 9.450 49 38.682 38.448 102 151.044 150.294 206

10.733 10.600 52 45.782 45.481 111 138.161 137.645 187

8.948 8.880 43.3 38.700 38.492 103 148.746 148.096 196
500

60(90) 120(150) 240

SEscape MPP
of
paths SEscape MPP

of
paths SEscape MPP

of
paths

78.264 77.964 50 330.437 329.421 118 1122.390 1118.721 239
84.363 84.030 55 413.183 411.934 130 1194.690 1190.770 248
97.229 96.830 55 306.738 305.555 115 1242.780 1238.984 251
79.397 79.030 51 343.220 342.203 122 1104.740 1101.172 231
83.497 83.213 54 332.587 331.520 117 1895.420 1891.325 254

120

78.414 78.047 49 338.270 337.087 118 1337.900 1333.781 253
96.846 96.529 60 354.536 353.186 123 1054.040 1050.575 226
79.947 79.697 51 324.004 322.937 120 1247.050 1243.101 254
78.814 78.514 52 308.704 307.671 113 1002.890 999.177 227

80.097 79.680 51 299.888 298.938 107 1277.920 1274.067 254

83.687 83.353 52.8 335.157 334.045 118 1247.982 1244.167 244

The results in Table 4.4 show that significant portion of the computational

time is due to calls to the MPP algorithm as the average run time of the MPP

algorithm takes over 99 percent of the total run time required by the SEscape

algorithm. An algorithm with less overhead (i.e. that seeks the path from one source

to one sink at one departure time) could reduce this ratio. Given the same amount of

supply, the average number of paths required in shipping all the supply increases with

the size of network. The SEscape algorithm performs well even on networks with 500

nodes and much better than predicted by the worst-case complexity, ∼O(B⋅V3⋅I2),

given in Proposition 4.2. For instance, the average run time for the 500 node network

with 240 time intervals is 1,244 c.p.u. seconds, which is less than 8,000 times the

average run time of the 25 node network with the same number of time intervals (27

c.p.u. seconds), that would be expected based on worst-case complexity.

The SEscape algorithm requires significantly more computational effort than

does the TDQFP algorithm for problems of similar size. For instance, the average run

time of the SEscape algorithm on the network with 500 nodes and 240 time intervals

is 1,244 c.p.u. seconds; whereas the TDQFP algorithm requires 19 c.p.u. second as

reported in Miller-Hooks and Stock Patterson (2004). Many factors contribute to this

increase in required computational effort of the SEscape algorithm over that of the

TDQFP algorithm. First, the number of paths required in the SEscape problem for

121

sending all the supply is frequently larger than that required in the TDQFP algorithm.

This is because the TDQFP algorithm always pushes flow up to the maximum

capacity of the chosen path, and thus, will likely require fewer paths for completing

all shipments. The SEscape algorithm, on the other hand, assigns flow along the path

for the amount that maximizes the probability of successful arrival at the sink.

Second, with the same amount of supply, larger T bounds are required to solve the

SEscape problem, which directly affects the computational steps of the MPP

algorithm. Lastly, the computational complexity of the MPP algorithm, ∼O(V3⋅I2), is

worse than that of the TDEAT algorithm, ∼O(V2⋅I), the path algorithm used within

the TDQFP algorithm.

Note that the TDEAT algorithm allows waiting and cannot be used with the

SEscape algorithm. However, the difference in the average run time between the

SEscape and the TDQFP algorithms is not as large as predicted by worst-cast

complexity analyses. For example, the average run time of the SEscape algorithm for

the 500 node network with 240 time intervals requires 1,244c.p.u. seconds, which is

less than 120,000 times the average run time of the TDQFP algorithm for the same

network configuration (19 c.p.u. seconds), as would be expected by its worst-case

computational complexity.

4.9 CONCLUSIONS

In this chapter,the SEscape problem is formulated and an exact solution approach is

proposed. The SEscape problem is concerned with the determination of the optimal

evacuation instructions whose minimum probability of successful arrival of the

122

evacuees at the safe location is maximized. The SEscape algorithm explicitly

considers the time-varying and uncertain nature inherent in such situations.

Specifically, it determines the set of a priori path flows in capacitated dynamic

networks, where arc traversal times are time-varying, and arc capacities are discrete

random variables whose probability distribution functions vary with time. Following

the instructions given by the SEscape algorithm would maximize the likelihood that

any person who is subject to the greatest risk will succeed in escaping.Results of

extensive numerical tests show that the SEscape algorithm performs significantly

better than expected by its worst-case computational complexity. The proposed

conceptual framework and algorithmic steps can be used in evacuation planning,

enabling safer evacuation of a building in the event of military attack, fire, natural

disaster, or other circumstances warranting quick escape.

123

CHAPTER 5

HEURISTICS FOR MSTV CAPACITATED NETWORKS

5.1 INTRODUCTION

The SEscape algorithm was proposed in Chapter 4 for determining the pattern of flow

that maximizes the minimum path probability of successful arrival of supply at the

sink. Development of the SEscape algorithm was motivated by the need to provide

instructions to evacuees in the event that rapid evacuation of a large damaged or

burning building is required. While the algorithm addresses stochastic, time-varying

(STV) capacities, the time-varying arc travel times are assumed to be known

deterministically. In this chapter, network flow problems in dynamic networks, where

knowledge of arc travel times is uncertain, are addressed.

Explicit consideration of stochastic and time-varying travel times makes the

SEscape problem and other related problems (e.g. the problem of determining

evacuation routes with the minimum total travel time) significantly more difficult.

This is because arc travel times are known at best only probabilistically and,

therefore, the location of shipped flow units at any point in time cannot be identified

with certainty. It appears that no existing works in the literature address such

problems without relying on simulation. Thus, an exact solution (given discrete

random arc weights) would require enumeration of every potential combination of arc

travel times and capacity realizations.Such an approach would require enormous

computational effort. In this section, a technique that can provide competitive

approximate solutions with significantly less computational effort is proposed. A

124

genetic algorithm (GA) is presented for determining optimal path flows with respect

to several problems in dynamic networks, where arc traversal times and capacities are

random variables with probability mass functions that vary with time. Capacitiated

networks with such stochastic and time-varying arc travel times and capacities are

referred to herein as STV capacitated networks.

A GA, like any meta-heuristic, cannot guarantee an optimal solution. To

assess the performance of the developed GA, one must compare solutions generated

by that technique to exact solutions or, a bound on the exact solution. However, no

efficient technique has been proposed to determine the exact solution or bounds on

the solution for network flow problems in STV capacitated networks. In this chapter,

the framework for the GA is first presented for solving the problem of determining

optimal path flows, where the arc travel times are assumed to be deterministic and

time-dependent. The solution approach can be used to seek a pattern of flow for

shipping a given amount of supply such that a single objective is achieved, e.g.

minimum total time, maximum expected flow or maximum minimum path

probability of successful arrival at the sink (the SEscape problem). Numerical

experiments were conducted to assess the performance of the proposed GA. Results

of the experiments show that the GA results in solutions of high quality as compared

with exact solutions generated by exact approaches. The GA is then extended for use

in more complex STV and MSTV, capacitated networks, where no exact algorithm

exists. An MSTV capacitated network is an STV capacitated network with multiple

STV arc attributes.

125

GAs are powerful stochastic search techniques that rely on the concept of

natural selection and evolution. One of the advantages of GAs over traditional

optimization techniques is that optimal solutions are sought from the entire decision

space. Therefore, GAs have been used in many published works to address a variety

of complicated combinatorial optimization problems, such as non-linear, discrete,

stochastic, or multiobjective problems, which cannot be efficiently solved by

currently existing exact techniques.

Each solution in a GA is represented by a chromosome. Each chromosome is

characterized by a series of genes (i.e. decision variables). A GA generally starts by

randomly generating an initial set of solutions called a population. New chromosomes

are produced through successive populations called generations. In each generation, a

crossover operator recombines twochromosomes to form new chromosomes called

offspring. The offspring may be perturbed using a mutationoperator that randomly

changes one or more elements in a chromosome. Potentially good solutions with

respect to a fitness function will be selected to contribute to the next generation and

further reproduction. The entire process is repeated until the termination criteria are

met (see, for example, Goldberg (1989) for additional detail on GAs).

The greatest difficulty inapplying GAs to network flow problems lies in

appropriate design of solution representation and constraint handling. A well

designed representation enables the underlying genetic operators to perform

efficiently in exploring better solutions. Binary strings of 1s and 0s are widely used to

represent decision variables in GA applications, because of the flexibility in encoding

and recombining solutions. That is, integer and real valued variables are transformed

126

into binary strings and new solutions are created by exchanging fragments of two

strings (during crossover) between breaking points.

One of many problems encountered in applying GAs to a network flow

problem is constraint handling. Typical constraints of network flow problems include

flow conservation constraints (i.e. inflow is equal to outflow at every transshipment

node) and capacity constraints (i.e. the amount of flow shipped along an arc cannot

exceed the capacity of that arc). Any solution that violates any of the constraints is

infeasible. Several techniques have been proposed in the literature for handling

constraints, for example, penalty functions, repair algorithm and constraint preserving

operators. Appropriate selection of a constraint handling method is a crucial step in

development of a GA.

While GAs have been used in a broad range of application areas, few works

apply GAs to network flow problems, perhapsdue to the availability of exact and

efficient optimization techniques. Vignaux and Michalewicz (1991) developed a GA

to solve the transportation problem. In thetransportation problem, each node is either

a sources or sink, i.e. no transshipment nodes exist. The objective is to find the

amount to be shipped from the source nodes to the sink nodes such that the total cost

is minimized. A constraint is associated with each source to specify the available

supply and each sink to ensure the demand is satisfied. Capacity constraints are

omitted in this work. Two representation schemeswere proposed: vector and matrix

based structures. While these representation structures are suitable in this context,

they cannot be directly extended for use in addressing problems that involve

transshipment nodes. The genetic operators are designed such that only feasible

127

solutions are generated in each population. Such operators will fail to maintain

feasibility if capacity constraints are imposed.

Genet al. (2001) summarized several works on network design problems that

have been addressed by GAs. These problems include: the fixed charge transportation

problem, degree-constrained minimum spanning tree problem, and shortest path

problem. In the first problem, the network structure is represented by a Prufer

number.A checking step is embedded in the procedure to prevent the generation of

infeasible solutions during the intermediate steps of the procedure. The second

problem deals with theminimum spanning tree problem withside constraints that

limit the degree of each node. A two-dimensional structure was proposed to encode a

spanning tree: one dimension for node permutations and the other for degree

constraints. The constraints are handled by setting up conditions to keep only feasible

solutions in every step of the process. In the last problem, a GA for solving the bi-

criteria shortest path problem in static networks is discussed. The difficulties of

encoding a path are twofold: 1) a solution may contain a large number of repeated

nodes, resulting in cycles; and 2) a random series of arcs might not form a path. A

priority-based encoding method was proposed to resolve these difficulties. The

position of each gene represents a node and the corresponding value of the gene

represents the priority of that node in the path. The disadvantage of this encoding

scheme is that different chromosomes may result in the same path, which in turn

decreases the diversity of solutions.

Davies and Lingras (2003) developed a GA for solving shortest path problems

with and without waiting at nodes in a real-time environment (i.e. where updated

128

travel times are received). The algorithm is composed of two components: Prediction

Module and GAs for rerouting shortest paths. The Prediction Module component

provides the updated travel times. The GA componentdetermines the updated

shortest path given the new information. In the GA, each chromosome represents a

path between the origin and destination and each gene represents a node in the path.

Such a technique guarantees that every intermediate solution is feasible.

All of the works discussed thus far consider only uncapacitated networks. Few

works have proposed GAs for network flow problems in capacitated networks.

Munakata and Hashier (1993) addressed the maximum flow problem using a GA.

Each solution is represented by a flow matrix. The algorithm starts by randomly

generating the initial feasible population. Two criteria, flow balance at nodes and

saturation rate of the flow (i.e. the proportion of the flow to the maximum arc

capacity), are incorporated in the fitness function. To generate a new solution, two

solutions are randomly selected from the population according to the probability

computed by the ratio of the solution fitness to the sum of the fitness of the

population. For each pair of solutions, the crossover operator compares each node in

one solution to the same node in the other and the arcs associated with the node that is

better in the two criteria will be selected to form a new solution.If none is best with

respect to both criteria, random selection is performed. The mutation operator

perturbs a solution by randomly adjusting the flow of each arc in increments of 1.

Unlike the aforementioned works, constraints are not addressed through these two

operators, inevitably affecting the feasibility of flow patterns. Infeasible intermediate

solutions are penalized by decreasing their fitness value. Experimental results show

129

that the GA is inefficient in comparison with already available exact procedures. The

number of generations required to determine optimal or near-optimal solutions is

large. Moreover, the algorithm frequently converges to an infeasible solution.

Sadek et al. (1997) developed a GA for addressing dynamic traffic

assignment, where traffic flow limitations imposed by capacity constraints are

explicitly considered. The objective function is to minimize the total time that

vehicles spend en route to their destinations. A chromosome is represented by a real-

valued vector, each element of which is the number of vehicles that are assigned to an

arc during a time period. The constraints are classified into two groups:those that are

met in the generation of the initial solutions and those that are not met, but that are

addressed by a penalty function method. The authors found that the GA required less

than a third of the time required by Microsoft Excel Solver to obtain similar results in

experiments on a small (nine-arc, six-node) network.

Most of the GAs discussed thus far ignore capacity constraints. Some works

generate initial feasible solutions, but are not guaranteed to produce a feasible

solution at the end. None of these works has considered the time-varying and

uncertain nature of the network attributes. Note too, as discussed in Chapter 4, that no

exact algorithm has been proposed to address network flow problems in STV

capacitated networks. Only a few works have employed simulation models to address

such problems.

The aim of this work is to develop a GA framework for determining a priori

path flow decisions to ship supply from a source to a sink such that the total cost is

minimized. The problem is considered in a dynamic, STV capacitated network. In

130

Section 5.2, the minimum cost dynamic flow problem with deterministic, time-

varying arc attributes (i.e. travel times and capacities) is addressed. A noisy GA is

presented in Section 5.3 that extends the proposed GA for solving the minimum cost

flow problem, where arc travel times and capacities are random variables whose

probability distribution functions vary with time. In Section 5.4, the GA is further

extended for use in MSTV capacitated networks.

5.2 A GENETIC ALGORITHM FOR DETERMINISTIC, TIME-VARYING

NETWORKS

In this section, a GA is developed for solving the minimum cost dynamic flow

problem in deterministic, time-varying networks. No waiting is permitted at any node.

Without loss of generality, the proposed GA can be used with many other objectives,

e.g. the SEscape problem, where arc capacities are known only probabilistically. In

many of the works that have proposed GAs for solving deterministic and static

network flow problems, the performance of the GA was not particularly impressive.

That is, the optimal solutions are not guaranteed and if they are found, tremendous

computational effort is required. The purpose of this section is not to develop a GA to

compete with conventional algorithms, but to design a framework that can be

extended to solve a more complicated problem, where no exact method is available,

e.g. the minimum cost dynamic flow problem in STV capacitated networks.

131

5.2.1 Network Notation and Problem Definition

Let G = (V, A, {0,1,…,T}) be a finite digraph, where V is the set of nodes, A is the set

of directed arcs connecting the nodes and {0,1,…,T} is the time frame of interest

discretized into small time intervals.For each arc i ∈ A and departure time t ∈

{0,1,…,T} ,)(tui and)(tiτ denote the associated capacity and traversal time,

respectively.A single source and a single sink are denoted bynode s and node l,

respectively.)(tbs represents the supply at the source node s at time t.

The problem addressed in this section seeks the paths along which to send a

given supply from a single source to a single sink such that a single objective is

achieved. Two network flow problems are considered. The first problem seeks the

pattern of flow that minimizes the total time spent completing all shipments in time-

dependent, dynamic networks, i.e. a variation on the time-dependent quickest flow

problem (TDQFP) of Miller-Hooks and Stock Patterson (2004). The second problem

is to maximize the minimum path probability that supply will successfully arrive at

the sink, i.e. the SEscape problem.The proposed GA framework can be employed

with many other objectives and will be extended for use in STV and MSTV

capacitated networks in Sections 5.3 and 5.4, respectively.

5.2.2 Genetic Algorithm

There are six main components to be designed in developing a GA: 1) solution

representation, 2) initialization, 3) crossover, 4) mutation, 5) evaluation/selection, and

6) criteria for termination. The details of each component embedded in the proposed

GA are provided hereafter.

132

Representation of Solutions

Several techniques can be used for constraint handling, including penalty functions,

repair algorithm and constraint preserving operators. In this work, the constraints are

addressed through the encoding scheme. The solution representation plays an

important role in accommodating the proposed encoding scheme.

There are a variety of ways to represent a chromosome. Rather than relying on

the commonly used bit strings, a more sophisticated structure is developed. The

representation structure is specifically designed to encode only solutions that abide by

the enforced constraints. Each solution contains several paths together with

corresponding flow, forming a flow pattern for shipping certain supply. Each gene

consists of two parts. The first part contains a sequence of arcs forming a path from

the source to the sink. The second part indicates the number of flow units to be sent

through the path. The representation of a solution is indicated by the set {)(tPi ,

)(tFi }, for i = 1,2,…, p, where p is the total number of paths required to complete the

shipments. Note that the number of paths required to complete the shipments depends

on the level of flow shipped along each chosen path.

)(tPi = ()(1 tai ,)(2 tai ,…,)(tan
i) denotes a path consisting of n arcs from

source node s to sink node l, where)(ta j
i represents the jth arc in pathi departing

from the source at time t.)(1 ta j
i

+ is a successor arc of)(ta j
i , and)(1 tai is the first

arc on the path.)(tFi denotes the associated number of flow units to be sent along

)(tPi .

133

a ls

b

Figure 5.1 illustrates the representation of a chromosome for a flow pattern,

where three flow unitsare to be shipped from node s to node l, departing from the

origin at time t = 0 in a network consisting of four nodes and five arcs. Assume two

units are shipped on path 1-2 and one unit is shipped on path 1-4-5 as shown in the

figure.

 Gene 1 Gene 2

Chromosome

Gene 1: {)0(1P ,)0(1F } = {(1,2), 2}

Gene 2: {)0(2P ,)0(2F } = {(1,4,5), 1}

Figure 5.1. Solution representation.

Given this representation structure, different solutions may have a different

number of genes depending on the associated paths and flow levels. In addition to

assisting in constraint handling, another advantage of this representation scheme is

that only portions of the network, on which the flow is assigned, are presented in a

chromosome. For example, in Figure 5.1, the arc with no flow, e.g. arc 3, is not

3

5

t = 0
1

2

4

)0(1P ,)0(1F)0(2P ,)0(2F

134

included in the chromosome. This avoids consideration of insignificant portions of

the solution in subsequent recombination.

Initialization

The encoding scheme employed in the initialization operator is designed to generate

the initial population. For each supply time t, a set of paths is randomly selected for

shipping all supply units from the source to the sink. The detailed steps of the

initialization can be stated as follows.

For each supply time t, { t ∈ S |)(tbs ≠ 0},

1) Set i =1.

2) Randomly select a path)(tPi = ()(1 tai ,)(2 tai ,…,)(tan
i) from the source to

the sink such that the associated amount of flow)(tFi ≠ 0.)(tFi can be identified

using the following equation.

)(tFi = min ()(tbs ,)(1 tui ,)(2 tui ,…,)(tu n
i) (1),

where)(tu j
i = corresponding capacity of)(ta j

i .

(i.e.)(tu j
i =)(jk tu , k =)(ta j

i , 1t = t, 1+jt = jt +)(jk tτ , j = 1,2,…,n.

3) Update the remaining capacity along each arc:)(jk tu =)(jk tu -)(tFi ,

where k =)(ta j
i , 1t = t, 1+jt = jt +)(jk tτ , j = 1,2,…,n.

4) Update remaining supply to be shipped at the source:)(tbs =)(tbs -

)(tFi . If)(tbs ≠ 0, set i = i + 1 and return to Step 2.

With this initialization technique, capacity constraints and flow conservation

at transshipment nodes are satisfied. The flow conservation at the source and sink are

135

fulfilled by repeating the entire process until all supply units are shipped.In the case

that the path flows selected thus far cannot accommodate the remaining supply, i.e.

no path with non-zero capacity exists between the source and the sink after the last

shipment, the last path introduced into the chromosome is removed and replaced with

new paths by repeating Step 2 until all the demand is fulfilled. This initialization

process guarantees that only feasible solutions are generated in the first population.

Crossover

Offspring are produced from parents selected from the current population in

crossover (mating). It is possible that the newly generated solutions (i.e. offspring)

will violate the problem constraints if crossover is not designed to maintain

feasibility. Therefore, the crossover operator proposed here is developed such that

only feasible solutions are generated.

In this work, the crossover operatorcombines two randomly selectedsolutions

to form a single child. For each pair, the following steps are performed. For each

supply time t, { t ∈ S |)(tbs ≠ 0},

1) Determine the ratio of path cost to path capacity for eachpath in the chosen

parents.

2) Rank all paths according to the ratio of path cost to path capacityin non-

decreasing order.

3) Pick the first path from the rank and determine the flow units to be shipped

on that path by Equation 1.

4) Eliminate the chosen path from the rank. Update the remaining capacity of

all arcs in that path.

136

5) Update)(tbs . If)(tbs ≠ 0, return to Step 3.

The method of ranking paths according to their path cost to path capacity

ratios gives higher priority to paths with lower cost per flow unit for inclusion in the

new solution. This feature enables the algorithm to explore promising regions of

solution space and can be instrumental in accelerating the algorithm to find optimal or

near-optimal solutions. Alternatively, one might want to randomly select paths to be

included within the chromosome irrespective of the rank.

Mutation

The mutation operator is aimed at increasing the diversity of solutions by perturbing

each newly generated member. Similar to the other operators, the mutation operator is

able to maintain feasibility of the solutions. Mutation is defined here such that the last

path and corresponding flow (i.e. the last gene in the chromosome) is replaced with a

set of randomly generated paths for covering the same amount of flow. To mutate a

child, the procedural steps provided below are performed. For each supply time t, { t

∈ S |)(tbs ≠ 0},

1) Assume there are h paths for shipping all supply at departure time t, i.e.

)(tPi , i = 1,2,…,h. Eliminate the last path)(tPh as well as the associated flow)(tFh

from the solution. Set k = h. Return capacity to all arcs in that path.

2) Randomly choose a path that connects the source and the sink that does not

exist in the current solution. Identify the units of flow)(tFk to be sent through this

pathby Equation 1.

3) Update the remaining capacity of all arcs in that path.

137

4) Update)(tbs :)(tbs =)(tbs -)(tFk . If)(tbs ≠ 0, set k = k + 1 and return

to Step 2.

Evaluation/Selection

The purpose of this step is to promote better solutions by replacing less optimal

solutions with good ones. The solution quality is identified by the solution’s fitness.

The fitness function is formulated based on the objective function (i.e. minimize total

cost). For the considered problem, the fitness value is equal to the total cost incurred

in shippingall supply to the sink.

Some of the popular selection schemes are proportionate, tournament,

ranking, and Boltzmann selection operators. In this work, the binary tournament

selection is implemented. The tournament selection is considered to be the most

efficient and least prone to premature convergence of all of the selection schemes

(Goldberg and Deb, 1991). Unlike proportionate selection, the tournament selection is

able to handlea minimization problem directly without having to transform it into an

equivalent maximization one. In addition, it can prevent the scaling problems when

most of the solutions have similar fitness.

The binary tournament operator randomly chooses pairs of chromosomes for

tournaments. If two chromosomes competing in a tournament have different fitness

values, the one with the better fitness is chosen. If, on the other hand, these

chromosomes have the same fitness, random selection is performed. A chromosome

that is chosen as a result of a tournament will not compete in subsequent tournaments.

The procedure continues until a desired number of solutions are attained.

138

An overlapping model where parents and children compete for population

slots is employed. In order to preserve the best solution for each generation, the

elitism technique is employed. Elitism selects the best member from the entire

population and then injects such a solution into the next generation without

replacement. This technique guarantees that the best solution found in each

population will not be inadvertently eliminated by the selection operator.

Termination

The algorithm terminates when the optimal solution is obtained (in case that the

optimal solution is known) or the stopping criteria (e.g. the number of iterations

exceeds a given threshold)are met. In the latter case, the best solution in the last

generation is selected as the final solution.

Figure 5.2 demonstrates the framework of the developed GA. The first step of

the algorithm is to generate the initial population consisting of µ solutions. Then, a

group of 2λ individuals are randomly selected from the population for crossover and

mutation. After undergoing the reproduction process, λ new solutions are added into

the population and the binary tournament selection is conducted on the entire

population (µ + λ) for selecting µ solutions to be inserted into the next population.

The procedure continues until the termination criteria are met.

139

Figure 5.2. Genetic algorithm structure.

Generate the initial population

Randomly select parents

Perform mutation on new
solutions (i.e. offspring)

Evaluate the fitness of each
solution in the population

Stop

Check if termination
criteria are reached

No

Yes

Perform crossover on
the selected solutions

Use tournament selection to
eliminate bad solutions

140

5.2.3 Illustrative Example

In this section, an example network given in Figure 5.3 is constructed to illustrate the

procedure steps of the proposed GA required in completing the first generation. The

network consists of 5 nodes and 8 arcs. The period of interest is discretized into three

time intervals, t = {0, 1, 2}. There are 10 supply units at the source, node 1, at

departure time t = 0, i.e.)0(1b = 10. For simplicity, the travel time on each arc is

assumed to be one unit of time and remains constant for the entire period. The time-

varying arc costs and capacities are given in Table 5.1. The objective is to determine

a pattern of flow for shipping all supply units from node 1 to node 5 with minimum

total cost.

Figure 5.3. Illustrative example.

2

4

1 53

1

2

3

4

5

6

7

8

10 -10

141

Table 5.1. Arc capacities and costs associated with each arc.
Capacity CostArc (i,j)

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2
1 (1,2) 5 3 4 10 14 5
2 (1,3) 3 1 3 12 5 1
3 (1,4) 4 5 2 6 8 1
4 (3,2) 1 2 3 5 2 4
5 (3,4) 4 5 2 6 3 3
6 (2,5) 2 6 6 4 6 6
7 (3,5) 4 5 9 1 7 11
8 (4,5) 2 6 6 3 3 3

Initialization

Generate initial solutions:

1) Set i =1.

2) Randomly select a path)0(1P = (1, 6) from the source to the sink.

 Identify the amount of flow)0(1F = min (10, 5, 6) = 5.

3) Update supply at the source:)0(1b = 10- 5 = 5.

4) Update all affected arc capacities:

)0(1u = 5 - 5 = 0,

)1(6u = 6 - 5 = 1.

5) Since)0(1b ≠ 0, set i = 2 and return to step 2.

2) Randomly select a path)0(2P = (2, 7) from the source to the sink.

 Identify the amount of flow)0(2F = min (5, 3, 5) = 3.

3) Update supply at the source:)0(1b = 5- 3 = 2.

4) Update all affected arc capacities:

)0(2u = 3 - 3 = 0,

142

)1(7u = 5 - 3 = 2,

5) Since)0(1b ≠ 0, set i = 3 and return to step 2.

2) Randomly select a path)0(3P = (3, 8) from the source to the sink.

 Identify the amount of flow)0(3F = min (2, 4, 6) = 2.

3) Update supply at the source:)0(1b = 2 - 2 = 0.

4) Update all affected arc capacities:

)0(3u = 4 - 2 = 2,

)1(8u = 6 - 2 = 4.

5) Since)0(1b = 0, Stop.

The flow pattern consists of three paths: {(1, 6), 5}, {(2, 7), 3} and {(3, 8), 2}.

Suppose three solutions are generated in the first population as shown below.

Solution I: {(1, 6), 5}, {(2, 7), 3} and {(3, 8), 2}. Total cost = 155.

Solution II: {(1, 6), 5}, {(2, 4, 6), 1}, {(2, 7), 2} and {(3, 8), 2}. Total cost = 156.

Solution III: {(2, 4, 6), 2}, {(1, 6), 4}, {(2, 5, 8), 1} and {(3, 8), 3}. Total cost = 149.

Crossover

Assume solutions I and III are randomly selected for reproduction.

1) For each path in solutions I and III, determine the cost per path capacity.

2) Rank all paths starting from the one with the minimum value.

Path I: (3, 8): 9 (C/F)

Path II: (1, 6): 16

Path III: (2, 5, 8): 18

Path IV: (2, 7): 19

143

Path V: (2, 4, 6): 20

3) Pick paths according to the ranking starting from Path I. Determine the flow units

to be sent on that path. Continue until)0(1b = 0.

Upon termination, the new solution contains three paths, {(3, 8), 4}, {(1, 6), 5}, and

{ (2, 5, 8), 1}, resulting in the total cost of134.

Mutation

For the newly generated child {(3, 8), 4}, {(1, 6), 5}, (2, 5, 8), 1}, the steps given

below are followed to perturb the solution.

1) Eliminate the last path,)0(3P : (2, 5, 8), from the solution. Set k = 3

2) Randomly choose a new path)0(3P = (2, 7) with)0(3F = 1 unit.

3) Update supply at the source,)0(1b .

4) Update the affected arc capacities.

5) Since)0(1b = 0, Stop.

The solution obtained after the mutation operator is {(3, 8), 4}, {(1, 6), 5}, (2, 7), 1}

with the total cost of 135. This new member will be called Solution IV in the

population.

Evaluation/Selection

After the crossover and mutation operators, four members exist in the population,

including the new member. Three tournaments of two solutions are required for

selecting three solutions to be in the next population. Note that Solution IV, which

has the minimum total cost, will be injected into the next generation (i.e. elitism).

144

After this stage, three solutions will enter to the next generation and two of them will

be randomly chosen for reproduction.

Termination

The algorithm proceeds until the stopping criteria are met.

5.2.4 Experimental Results

This section presents experimental results conducted for two purposes: 1) tuning the

parameters and 2) comparing the algorithm performance with exact algorithms. The

proposed GA was coded in C++ and run on a DEC Alpha XP1000 professional

workstation with 1 gigabyte ram and 2 gigabyte swap, running Digital 4.0E operating

system, using Digital’s C++ compiler. Two network topologies consisting of 25 and

100 nodes, each with 60 time intervals were employed. The same networks as used in

Chapter 4 for testing the SEscape algorithmarealso applied in these experiments.

5.2.4.1 Parameter Tuning

The first part of the experiments is intended to tune the parameters. Prior to

implementing the GA for a given problem, several parameters have to be set,

including:

1) The number of generations (Gt): the number of times a new population is

generated.

2) Population size(µ): the number of solutions maintained in each generation.

3) Size of parents(2λ): the number of solutions selected for mating and

mutation.

145

4) Probability of crossover (Cr): the probability that a pair of chromosomes will

undergo crossover in moving to the next generation.

5) Probability of mutation (Mu): the probability that each new child will undergo

a random change in the genes.

For each test, the number of generations was fixed at 10,000 and the quality of

a solution is evaluated with respect to how close it is to the optimal value. The

TDQFP algorithm for solving the time-dependent quickest flow problem is modified

for determining optimal solutions with no waiting. Seven sizes of population were

examined, including: 20, 50, 80, 200, 250, 280 and 400. The results show that the

performance of the GA markedly varied with the values of the parameters and no

ideal set of parameter values exists for all problem instances. The set of parameter

values found to perform best on average are µ = 50, 2λ = 26, Cr = 1, and Mt = 1.

In general, larger population sizes lead to more population diversity and are,

thus, less prone to premature convergence. However, a dilemma in population size

selection occurs as additional computations are required to process larger populations.

In this work, the population size of 50 was chosen to save computational effort in

fitness evaluations and solution selections. The loss of diversity due to the use of a

moderate population size was compensated for by implementing both crossover and

mutation operators with probability 1, i.e. every pair of parents is recombined and

each child must undergo mutation. This implementation permits exploration of new

search spaces without having to maintain and process an excessively large number of

chromosomes.

146

5.2.4.2 Algorithm Performance Analysis

A number of tests were conducted to examine the performance of the proposed GA.

The same networks (i.e. 25 and 100 nodes with 60 time intervals) identical to those

used in tuning the parameters were employed here. Two sets of supply at the source

were considered, 15 and 45 units. The results from pilot tests reveal that the

procedure stopped evolving somewhat early and the final solutions were far from the

optimum irrespective of the parameters used. That is, the solution was quickly

trapped with suboptimal solutions. Thus, adjustments to the design of the genetic

operators were made to add diversity to the solutions. The genetic operators were

adjusted as follows.

1) In every process of assigning flow on a path, instead of pushing the flow equal

to the maximum capacity on that path, the amount of flow is randomly

assigned, ranging from one unit to the maximum path capacity. By altering the

structure of each chromosome, this adjustment enables the algorithm to

explore new solution space.

2) The crossover operator is adjusted such that there is some possibility that

paths are randomly selected from parents rather than being picked according

to the cost per path capacity as discussed in Subsection 5.2.2. This option is

aimed at deterring convergence to suboptimal solutions. Numerous

experiments were conducted and it was found that the best probability value

was 0.5.

With these adjustments, the GA could reach optimal or near-optimal solutions with

fewer generations than required in the approachoriginally proposed.

147

In order to compare the GA’s performance to that of exact algorithms, how

close the value of the solution produced by the GA is to the optimal value is used as

the performance measure. Similar to the tuning process, the number of generations

was fixed at 10,000 and the best value found upon completion of the last generation is

recorded. To avoid oddly chosen source and sink pairs that might skew the results,

results were drawn from a single randomly selected source and a number of randomly

selected sinks. The experimental results obtained from 5 randomly selected sinks for

the problems with 25 nodes and 60 time intervals are demonstrated in Table 5.2.

Table 5.2. Results for network with 25 nodes and 60 time intervals.
25 nodes

Supply = 15 Supply = 45
Optimal GA % diff Optimal GA % diff

325 325 0 871 924 6.085
443 444 0.226 1242 1366 9.984
472 473 0.212 1181 1223 3.556
438 448 2.283 781 809 3.585
497 527 6.036 888 929 4.617

Average 1.751 Average 5.565

From Table 5.2, the average percentages different from the optimal value

derived from five randomly selected sinks are 1.751 for the problem with 15 supply

units and 5.565 for the problem with 45 supply units. Additional experiments were

conducted on a larger network with 100 nodes and 60 time intervals. Again, two

levels of the number of supply units at the source, 15 and 45 units, were assumed.

The results drawn from one randomly selected source with ten randomly selected

sinks are provided in Table 5.3.

148

Table 5.3. Results for network with 100 nodes and 60 time intervals.
100 nodes

Supply = 15 Supply = 45
Optimal GA % diff Optimal GA % diff

374 398 6.417 1603 1711 6.737
313 341 8.946 1682 1860 10.583
305 314 2.951 1716 1837 7.051
263 268 1.901 1777 1879 5.740
351 363 3.419 1792 1901 6.083
294 296 0.680 1434 1491 3.975
327 327 0 1576 1638 3.934
273 273 0 1482 1510 1.889
184 184 0 1641 1656 0.914
355 365 2.817 1459 1500 2.810

Average 2.713 Average 4.972

The results from both tables indicate that the GA could find the solution

within 10 percents of the optimal value. In all these tests, three cases could reach the

optimal solution and the percentages above the known optimal value range from 3 to

5 on average. It is significant to note that in most tests, further improvement in terms

of the results may be gained by properly adjusting the parameters of the GA.

Finally, a set of experiments were conducted for examining the GA

performance in solving the SEscape problem (addressed in Chapter 4), whose

objective is to find a flow pattern that maximizes the minimum path probability of

successful arrival at the sink bysupply. One can notice that in the SEscape problem,

the gap between the optimal value (i.e. the maximum minimum path probability) and

the second best value varies with each network configuration and could be very large.

For example, the best and the second best flow pattern for shipping certain supply

units from a given pair of source and sink nodes may have the minimum path

probabilities of successful arrival 0.5 and 0.03, respectively, leading to the difference

149

below the optimal value of 94%. Hence, the closeness to the optimal value may not

provide a good measure for judging the GA’s performance. In order to compare the

results of the GA to the exact solution found by the SEscape algorithm, the cases

where the minimum path probability of the optimal solution is 1 were considered and

the number of times the GA can reach this value was determined.

Table 5.4. Results for the SEscape problem.
Supply = 15

25 nodes 100 nodes
Optimal GA Optimal GA

1 1 1 0.996
1 1 1 1
1 1 1 1
1 1 1 0.989
1 1 1 1
1 1 1 1
1 0.996 1 0.911
1 1 1 0.994
1 1 1 1
1 0.997 1 0.866

As shown in Table 5.4, the GA could find the optimal solution 8 out of 10

times for the 25 node network, and 5 out of 10 times for the 100 node counterpart.

For the tests that failed to achieve the optimal value, the differences between the

optimal and the final values fall within a reasonable range of the optimal solution.

5.3 A NOISY GENETIC ALGORITHM FOR STOCHASTIC, TIME-

VARYING NETWORKS

In Section 5.2, travel times were assumed to be deterministically known. In this

section, the GA proposed in Section 5.2 is extended for use in STV capacitated

150

networks, where both arc travel times and capacities are discrete random variables

with probability distribution functions that vary with time. Each joint realization of

the random quantities is referred to as a network state. That is, a network state is a

particular instance of the set of arc travel times and capacities. In such stochastic

environments, the network can take on a number of discrete states, each of which

results in a different outcome. One approach to evaluating the performance of a given

flow pattern with respect to an objective function under such circumstances is to

evaluate the flow pattern under all possible network states. The probabilityof a

particular realization is computed by the product of the arc attributeprobabilities. One

can then sum the product of the performance in each state and the probability of each

state over all possible states. Because the number of network states grows

exponentially with the size of the network and the number of possible values each

attribute can take, enumeration of all states would require enormous effort, even for a

small network. For example, a network with m arcs, each of which has DT possible

travel times andDC possible capacities, involves (DT · DC)m possible states. Thus,

technologies that require complete enumeration of all states should be avoided.

To deal with the uncertainty in arc attribute values, the concept of noisy

genetic algorithms (NGAs) is employed in this work. NGAs extend GAs for use in

noisy conditions. Noise in this context is considered as any factor that impedes the

accurate evaluation of the fitness of a solution. These factors can come from a variety

of sources, such as the use of approximate fitness functions, the use of noisy data and

knowledge uncertainty in the problem characteristics. In solving the minimum cost

dynamic network flow problem in stochastic settings, the fitness of a solution cannot

151

precisely be identified without a priori knowledge of the network state that will arise

upon use of the solution. Under such circumstances, each realization results in a

different fitness value. A flow pattern that has a low total cost under a particular

realization may have a very high total cost when evaluated under another realization.

Such fitness functions are called noisy fitness functions. Through the use of NGAs,

complete enumeration of all network states can be avoided. Instead, only a subset (i.e.

sample) of the possible realizations is employed for evaluating chromosomes in each

generation.

5.3.1 Sampling Fitness Function

Sampling fitness function is a type of noisy fitness function, which reduces noise by

taking the mean of multiple noisy fitness evaluations of a solution. Instead of relying

on a single fitness function, each solution is evaluated on S sample sets drawn

randomly from the pool of all possible network states. The overall fitness of a

solution is determined by the average of the fitness evaluations for all sample sets.

Based on the Central Limit Theorem, the approximation to the actual noisy function

value with a sample size of n can be computed by the following equation,

∑
=

=
S

j
jiSi f

S
f

1

*
,

*
,

1
(2),

where *
, jif = the jth noisy fitness evaluation of solution i.

A challenging task of developing NGAs is the evaluation of the optimal

sample size for the sampling fitness function. Miller (1997) showed that while a

Monte Carlo simulation modeling needs tremendous sampling, NGAs with the

152

sampling fitness function can find robust solutions with a relatively small number of

samples in each iteration. The technique presented in Miller’s work can be used to

determine the sample size that maximizes GA performance without the need for

experimental trial and error. An equation is proposed by Fitzpatrick and Grefenstette

(1998) for determining the optimal sample size:

NSQ

T
Sg ⋅⋅+

=
)(

)(* α (3),

where

)(* Sg = ending generation,

T = total time required by a GA,

α = fixed amount of GA overhead time per solution per generation,

Q = cost of a single fitness evaluation (a sample),

S = sample size, and

N = population size.

Given a computational bound T, the optimal sample size can be identified by

evaluating the ending generation from different sample sizes. To reduce the size of

the sample search space, Miller (1997) established lower and upper bounds for the

optimal sample size, and proposed a pruning method for removing a large segment of

the potential sample sizes between the lower and upper bounds from consideration.

The accuracy of the proposed technique was experimentally proved. Gopalakrishnan

(2001) proposed techniques to determine the optimal sampling strategy, which

required as few as 5 samples in each iteration for addressing risk-based remediation

design.

153

In order to implement the NGA for the minimum cost dynamic flow problem

in stochastic environments, the NGA framework given in Smalley (1998) can be

followed. In his work, the algorithm started with the sample size (S) of 5 for the first

four generations and the sample size was increased by five sample sets every four

generations. At the end of generation twelve, the best four solutions from the

preceding four generations (9-12) were evaluated with 500 samples. If one or more

solutions met the specified criterion, the algorithm proceeded with the same sample

size for four more generations until termination. Otherwise, five sample sets were

added and the entire process was repeated until the maximum number of iterations

was reached.

5.3.2 Sampling Design

To determine the true noisy function value, each solution should be evaluated on all

possible network states. However, this would require enormous computational effort.

Instead, the function value may be estimated on only a subset of the network states

(each of which is referred to as a sample). The larger the number of samples (i.e.

randomly generated network states) used in estimating these values, the lower the

variability in the estimate. Variance reduction techniques aid in reducing the number

of samples required to accurately estimate the function value while simultaneously

considering a small number of samples. In addition, such methods can be used to

ensure that critical, albeit unlikely, events are not excluded from consideration and

that they are not given too great a significance. A technique that appropriately selects

samples is required to guarantee inclusion of the extreme cases in the correct

154

proportion in assessing a solution. For the application considered here, it is critical

that events with very small likelihood of occurrence are considered, because such

events may lead to great loss of lives. If such occurrences are given too much

significance, however, the solutions may be overly conservative.

In this work, the stratified sampling method is chosen to deal with the

selection of sample sets. It is found that among many other techniques, stratified

sampling can effectively decrease the variance of the sample mean (Bratley et al.,

1987). In the stratified sampling method, the number of times each value of the

random variables is sampled can be computed using equation (4) as described next.

Let)(tj
iτ denote the jth traversal time on arc i at departure time t with

associated probability of occurrence,)(tj
iρ . Likewise,)(tu j

i denotes the jth capacity

on arc i at departure time t with associated probability of occurrence,)(tj
iβ . Given a

sample of size S, the number of times)(tj
iτ is sampled can be computed as

∑ ⋅
⋅⋅

k

k
i

k
i

j
i

j
i

tt

Stt

)()(

)()(

σρ
σρ

(4),

where)(tj
iσ is the standard deviation of the outcome of using)(tj

iτ . The rationale

behind this concept is that the larger)(tj
iσ is, the more)(tj

iτ should be sampled.

The similar equation can be applied for the arc capacity)(tu j
i .

If the standard deviations)(tk
iσ , k = 1,2,…,j,…,D are unknown, a pilot

experiment may be conducted to estimate the variance ()(tk
iσ)2. However, the use of

variance estimates cannot guarantee variance reduction (Bratley et al., 1987). Under

155

such circumstances, it is suggested that excluding)(tk
iσ from the formula may be

desirable, as it reduces variance. In the problem context considered in this

dissertation, the standard deviation)(tk
iσ is not given and determination of such

values requires extensive pilot experiments, one for each random variable. Therefore,

the standard deviations are eliminated from the formula in this work.

5.3.3 Constraint Handling

In the GA proposed in Section 5.2 for solving the problem in dynamic networks with

deterministic, time-varying arc travel times, infeasible solutions are not permitted.

When arc attributes are known deterministically, it is possible to allow only feasible

solutions at intermediate stages of the algorithm through the application of specially

designed operators, including crossover and mutation operators. However, this

technique cannot guarantee feasibility when the arc attributes are known only with

uncertainty. In such situations, a feasible solution generated from one realization may

violate some of the constraints under other realizations and it may be unlikely that

there exists a single solution that is feasible for all realizations.Thus, the constraint

handling technique proposed here allows infeasible solutions to be retained in the

population. Penalties are imposed on solutions that are infeasible for any realization.

The penalty function employed is this work is described next.

Recall that each chromosome represents a set of paths and associated amount

of flow on each path. To generate the initial population, each solution is generated

from the network realization whose arc attributes are set to the values that have the

maximum probability of occurrence. This guarantees that all solutions generated in

156

the first generation do not violate the constraints for the most likely realization of

travel times and capacities. In noisy fitness evaluations, a number of samples (i.e.

randomly selected network states) are selected from the pool of all possible network

realizations for examining the fitness of each solution. Any solution that violates the

constraints is then penalized by decreasing the fitness value.

The pattern of flow given in Figure 5.4 is used to describe the proposed

penalty method. In the figure, four supply units are shipped from the source node A to

the sink node Dalong arcs 1 and 2, departing from the source at time t = 0. The

chromosome for this flow pattern is: {)0(1P ,)0(1F } = {(1, 2), 4}. The capacities and

travel times on arcs 1 (A-B) and 2 (B-D) under the considered realization are given in

the figure. For example, arc 2 has capacity of two units at time t = 2 and five units at

time t = 3.

Figure 5.4. Arc attribute realization on arcs 1 and 2.

t = 0
travel time

2
capacity

6

Arc 1 Arc 2

t = 2
travel time

3
capacity

2

t = 3
travel time

3
capacity

5

A D

B

4 -4

C

4 4

157

As in the deterministic case, the fitness value corresponds with the objective

function value (i.e. minimum total time herein). From the given flow pattern and the

network realization, all four supply units can successfully arrive at node B at time t =

2, incurring eight unitsof time in total. Upon arrival at node B, only two units can

traverse arc 2, because the available capacity on this arc at departure time t = 2 is two.

In this case, the other two units must wait at this node until the capacity on the arc is

recaptured at time t = 3. A penalty is included in the fitness function that is equal to

the cost associated with waiting at node B. For this particular example, because the

fitness of a solution is the total time required to complete the shipment, the penalty is

equal to the waiting time at node B for capacity recovery of arc 2. The fitness value of

this pattern of flow can be computed as shown in Table 5.5.

Table 5.5. Fitness evaluation.
Action Associated Cost

(units of time)
(i) All four units traverse arc 1 at t = 0 4*2 = 8
(ii) Two units traverse arc 2 at t = 2 to arrive at node 4 2*3 = 6
(iii) Two remaining units wait at node 2 for one time interval 2*1 = 2
(iv) The two units traverse arc 2 at t = 3 to arrive at node 4 2*3 = 6

Fitness value 22

5.3.4 Illustrative Example

To illustrate the NGA for solving the minimum time dynamic flow problem in a STV

capacitated network, a network consisting of 4 nodes and 5 arcs as portrayed in

Figure 5.5 is considered. The period of interest is discretized into 10 time intervals,

starting from t = 0. The probabilistic arc travel times and capacities are provided in

Table 5.6. There are 260 possible realizations (i.e. network states) of this network.

158

3

2

1

5

4

B

A DC

Figure 5.5. STV capacitated network.

Table 5.6. Random travel times and capacities.
Arc i 1 2 3 4 5

)(tj
iτ ()(tj

iρ)

t≤3: 1(0.3)
 2(0.7)
t≥4: 4(0.8)
 6(0.2)

t=0: 2(0.7)
 3(0.3)
t≥1: 3(0.2)
 4(0.8)

t≤1: 1(1)
t≥2: 1(0.2)
 2(0.8)

t≤1: 4(1)
t≥2: 3(0.1)
 7(0.9)

t≤2: 2(1)
t=3: 3(1)
t≥4: 1(0.5)

3(0.5)

)(tu j
i ()(tj

iβ)

t≤1: 2(0.3)
 4(0.7)
t≥2: 1(0.8)
 2(0.2)

t≥0: 1(1) t=0: 3(0.2)
 6(0.8)
t=1: 2(1)
t≥2: 3(1)

t≤1: 5(0.6)
 7(0.4)
t≥2: 2(1)

t≤2: 2(1)
t≤4: 5(1)
t≥5: 1(0.7)
 4(0.3)

For each arc and each time interval, the stratified sampling method is used to

select the sample sets of arc travel times and capacities (i.e. the number of times each

possible value of arc travel time and capacity at each departure time is selected). For

example, arc 1 at time t = 0 has two possible traversal times, i.e.)0(1
1τ = 1 with

)0(1
1ρ = 0.3, and)0(2

1τ = 2 with)0(2
1ρ = 0.7. Assume five samples are to be

selected for evaluating the noisy fitness functions in each generation. The number of

times)0(1
1τ and)0(2

1τ are sampled can be computed as follows:

159

3

1

3

4

0

B

A DC

for)0(1
1τ ,

))0()0((

5)0(
2
1

1
1

1
1

ρρ
ρ

+
⋅

 = 1.5,

for)0(2
1τ ,

))0()0((

5)0(
2
1

1
1

2
1

ρρ
ρ

+
⋅

 = 3.5.

In order to accommodate these sample sets, because each iteration uses five sample

sets to determine the fitness value,)0(1
1τ is randomly selected three times in every

two generations. Similar procedures are employed for other arcs and departure times.

An experiment was conducted to illustrate the nature of solution on this

network example with Gt (number of generations) = 100, µ (population size) = 5 and

2λ (number of parents) = 4. Assume four units are to be shipped from node A to node

D. Experimental results show that the pattern of flow displayed in Figure 5.6 results

in the minimum average total time of 18.67 time units.

Figure 5.6. Minimum time flow.

Additional experiments were conducted on a network with 25 nodes, 99 arcs

and 60 time intervals. The network is constructed from a deterministic network with

some arc attributes taking on probabilistic values. In order to be able to assess optimal

160

solutions for each network realization, the stochastic arc attributes are designed such

that only 27 network states exist. The objective is to find a pattern of flow for

shipping 45 units from a randomly selected source to a randomly selected sink with

minimum total time.The TDQFP algorithm was employed to determine the optimal

solution for each realization. There are four optimal values found in all 27

realizations: 878, 871, 847 and 825 time units. The optimal values and the number of

times they are found are provided in Table 5.7.

Table 5.7. Optimal values for 27 realizations.
Optimal value Frequency

878 6
871 3
847 9
825 9

Because the probability of each realization can be computed from the product of the

arc attribute probabilities, the expected value of the optimal value can be determined

through the computed probabilities and corresponding optimal values. For this

example network, the expected value is 851.68 time units. The expected value of the

solution obtained from the NGA is 888 time units, leading to a difference below the

optimal value of 4.26 %. This shows that the result from the NGA falls within a

reasonable range of the optimal solution on average.

161

5.4 A NOISY GENETIC ALGORITHMS FOR MULTICRITERIA,

STOCHASTIC, TIME-VARYING NETWORKS

In Section 5.3, the framework of a NGA was presented for determining the optimal

flow pattern in dynamic, STV networks, where only a single criterion was considered.

In general, many applications that can be modeled as network flow problems involve

multiple conflicting objectives. For instance, in building evacuation, the solution to

the expected flow problem may require a person to follow a path with high likelihood

of failure or a path with excessively long travel time. Thus, a set of paths that

considers these objectives simultaneously may be desired. Because such objectives

may be conflicting in nature, the solution of such a problem will be a set of Pareto-

optimal solutions. As discussed in Chapter 2, in any multiobjective problem, it is

possible that all feasible solutions may be Pareto-optimal.

A host of studies have successfully used GAs to address multicriteria

optimization problems. The advantages of implementing GAs on multicriteria

problems are twofold. First, GAs search for optimal solutions from the entire decision

spaces. Second, many potential solutions are maintained in each generation for

evaluation. By combining these two features, GAs are capable of searching for a set

of Pareto-optimal solutions in large, complex spaces. Commonly, a multicriteria

problem is characterized by a vector of k criteria and the evaluation function consists

of k attribute fitness values. There are two general approaches to solving

multiobjective problems: (1) generate all Pareto-optimal solutions and select the “best

compromise” solution a posteriori based on the decision maker’s preference function

162

or (2) convert the multiobjective problem to a single objective with the use of either a

scalar-aggregative or an order-aggregative (non-scalar) utility function.

In the first approach, the role of GAs is to search for solutions on the efficient

frontier. By performing dominance comparisons in the fitness evaluation, all

dominated solutions can be discarded before the multicriteria decision-making

process is made. The simplest version of this approach is to independently perform

multiple single criterion searches. While taking advantage of algorithmic simplicity,

the drawback of this approach lies in the lack of Pareto diversity as only extreme non-

dominated solutions are sought. Other methods for addressing multiobjective

problems in GAs are summarized in Bäck et al. (2000).

In the second approach, the decision maker’s preference structure is

represented through a utility function. Scalar-aggregative utility functionstransform

multiple objectives into a single scalar-valued utility function. In conjunction with

GAs, such a utility function is incorporated into the fitness function for solution

evaluations. A scalar fitness function is necessary for particular types of selection

methods, such as roulette wheel, where the fitness values affect the probability of

being selected. For order-aggregative utility functions, the decision maker provides

ordinal ranking of the considered criteria. In this context, GAs are implemented such

that the solution that performs best on the most important criterion is the most

preferred solution. In case of ties, the next most important criterion is considered and

so on. Details of one of these approaches to handling multiobjective problems are

given next.

163

A multicriteria noisy genetic algorithm (MNGA) is presented for use in

dynamic, MSTV capacitated networks with multiple criteria. It appears that no GA

has been proposed in the literature for addressing optimization problems in this

context. The MNGA extends the NGA framework discussed in Section 5.3 to handle

multiple objectives. Herein, design of solution representation and genetic operators

are the same as for the single criterion NGA. No special treatment is required for

developing the encoding, crossover and mutation operators. While the proposed

MNGA can be implemented with any technique as discussed previously, the order-

aggregative method is illustrated here. In this method, the binary tournament selects

the solution that has the higher fitness value with respect to the most important

criterion to enter the next population. If there are ties, the next important criterion is

considered.

The proposed MNGA is not restricted by the type or number of considered

criteria. For example, several objectives may be simultaneously considered in

developing evacuation instructions: minimize total time, maximize expected flow and

maximize the minimum path probability of successful arrival at the sink (the SEscape

problem). The MNGA was tested on the network given in Figure 5.6. Two criteria are

considered: 1) the expected flow and 2) the time required for completing the

shipment. The expected flow was given the highest priority. To assess the expected

flow for a given flow pattern, waiting is not allowed at any intermediate node and any

flow unit that cannot traverse an arc by the arrival time at that location is considered

to have disappeared. The best flow pattern for shipping four units from nodes A to D

is shown in Figure 5.7.

164

1

1

3

2

2

B

A DC

Figure 5.7. Optimal pattern of flow.

The expected flow and expected travel time of the optimal flow pattern are

3.625 units and 19.75 time units, respectively. Note that the minimum time flow

shown in Figure 5.6 for the case when waiting is allowed if needed has an expected

flow of 3 units and the expected travel time of 15.25 time units in this problem

context.

To evaluate the performance of the MNGA on a larger network, the same

network configuration (25 nodes, 99 arcs, 60 time intervals, 27 network states and 45

supply units at the source)as used in Subsection 5.3.4 was tested. The results show

that the expected flow of 45 units and the minimum time of 887.6 time units are

obtained. This solution means that by following the flow pattern suggested by the

MNGA, all flow units can successfully arrive at the sink with the least total time.

165

CHAPTER 6

CONCLUSIONS AND EXTENSIONS

6.1 SYNTHESIS

This dissertation addresses optimal path problems with multiple conflicting objectives

in stochastic and time-varying networks. Motivation for this work is primarily derived

from two applications: providing drivers with paths in traffic networks and providing

evacuees (pedestrians) with escape paths from large buildings. Exact and heuristic

techniques are proposed for determining the paths for these applications. These

solution approaches explicitly consider the stochastic and time-varying nature of the

problem characteristics (i.e. travel times and capacities). Moreover, in capacitated

networks, the fact that capacities can be recaptured over time, i.e. dynamic network

flows, is recognized. Both applications involve multiple conflicting objectives. For

example, in determining optimal instructions for evacuees, one may wish to

maximize the likelihood that the person following a path with least probability of

successful arrival at the exit and simultaneously maximize the expected number of

people who will succeed in evacuating, or alternatively, minimize the total time

required for all evacuees to escape. Numerous numerical experiments were conducted

to assess the average performance of the proposed procedures and to illustrate the

nature of the solutions that are produced.

Three exact algorithms are developed for finding adaptive path strategies

when multiple conflicting objectives exist: the Adaptive Pareto-Optimal Strategy

166

(APS), the Adaptive Least Expected Disutility Strategy I & II (ALEDS I & II), and

the Adaptive Preference Path Strategy (APPS) algorithms.

The APS algorithm determines all adaptive Pareto-optimal hyperpaths from

all nodes to a destination for all departure time in MSTV networks. Given multiple

criteria, such solution paths provide the traveler with the ability to dynamically

choose a path to travel at each intermediate location from among all non-dominated

path strategiesin response to knowledge of experienced traffic conditions. While the

APS algorithm does not perform well in large networks as found in the numerical

experiments, such an exact procedure can be used to provide benchmark solutions on

small problem instances when developing more efficient, but heuristic, approaches.

Because generation of all adaptive Pareto-optimal solutions requires enormous

computational effort and memory, the ALEDS algorithm is developed to efficiently

generate only a single “best” hyperpath by explicitly representing the traveler’s

preference structure through a linear disutility function.The ALEDS II algorithm is

superior to the ALEDS I algorithm in both average run times and storage

requirements. It appears that the problem of finding these solutions has not been

addressed in the published literature.

While the path strategies generated by the aforementioned algorithms take

into account all criteria simultaneously in the process of path selection, the APPS

algorithm provides path solutions that permit the traveler to adaptively select the best

path with respect to the criterion considered to be most important at each node in

response to knowledge of experienced travel times on the arcs. With the ability to

change preferences in this way, the traveler can adapt his or her path according to

167

both revealed arrival times at intermediate locations and the traveler’s changing

preferences. Although identical solutions can be obtained by performing the ELB

algorithm (2000) multiple times, once for each criterion, the APPS algorithm offers

significant computational savings as indicated by the results of numerous

computational experiments.

These algorithms consider only one traveler. In many applications, however,

the objective may be to determine paths for multiple travelers who will use the

transport facility simultaneously. In such applications, it is necessary to consider

capacity restrictions that will prevent all travelers from using the same path. For

example, in evacuating a building, only a limited number of evacuees can use any

particular escape route at the same moment in time. Thus, solution will involve

multiple paths and assignment of travelers (or evacuees) to the paths. An exact

solution approach, the SEscape algorithm, is presented to address the problem of

determining the optimal a priori flow pattern for shipping supply units from a source

to a sink in dynamic capacitated networks, where arc travel times are time-varying

and arc capacities are stochastic and time-varying (STV). The algorithm is motivated

by the need to determine optimal escape paths for evacuees seekingrefuge from a

large burning building or a building that has come under attack. The SEscape

algorithm takes into account issues of fairness among the evacuees. Specifically, it

seeks the pattern of flow that maximizes the minimum path probability of successful

arrival of supply at the sink. Following the solutions provided by the SEscape

algorithm guarantees that the likelihood that any person who is subject to the greatest

risk will succeed in escaping is maximized. Results of numerical experiments show

168

that the SEscape algorithm performs significantly better than its worst-case

computational complexity. The algorithm can be used in evacuation planning,

enabling safer evacuation of a building in the event of military attack, fire, natural

disaster, or other circumstances warranting quick escape.

While the SEscape problem assumes STV capacities, arc travel times are

deterministic quantities. For addressing the problem of determining a priori path flow

decisions to ship supply from a source to a sink such that multiple objectives are

achieved, a meta-heuristic based on the principles of noisy genetic algorithm (NGA)

is presented. First, the framework for the genetic algorithm (GA) is proposedfor

determining minimum cost flow pattern in a dynamic network, where arc travel times

are deterministic, time-dependent. The proposed GA framework can be extended for

use with many other objectives, e.g. minimize total time, maximize expected flow or

maximize the minimum path probability of successful arrival at the sink (the SEscape

problem). A specialized encoding scheme and genetic operators are developed to

handle the complexity of path flow solutions and constraints. The results of numerical

experiments on several different network configurations show that, on average, the

proposed GA could find the solution within 5 percent of the optimal value.

The GA framework is also extended to address the problem in more complex

STV and MSTV capacitated networks that cannot be efficiently solved by currently

existing exact techniques. The concept of noisy fitness functions is employed to

evaluate the fitness value of each chromosome under uncertain conditions. The

multicriteria noisy genetic algorithm (MNGA) is developed for use in MSTV

capacitated networks. The proposed MNGA is not restricted by the type or number of

169

considered criteria. For example, several objectives may be simultaneously

considered in determining the optimal flow pattern: minimize total time, maximize

expected flow and maximize the minimum path probability of successful arrival at the

sink (the SEscape problem).Two generic approaches for extending the NGA for use

in solving multicriteria dynamic network flow problems with STV arc attributes

(including arc capacities) are proposed. The first approach seeks to generate all of the

Pareto-optimal solutions and the second approach reduces the problem to a single

objective problem by employing a utility function to represent a decision-maker’s

preference structure. For illustration purposes, details of a preemptivemethod from

the second class of approaches are provided. In the preemptive method, the criteria

are ranked according to their importance to the decision-maker and the solution that

optimizes the most important criterion is given greater preference. The preemptive

method implementation of the proposed framework is tested on two networks. The

results indicate that near-optimal solutions can be obtained with this approach.

6.2 FUTURE EXTENSIONS

While the procedures proposed herein show promise, there are some areas one may

consider for enhancement. Potential future extensions are given next.

The Adaptive Pareto-optimal Strategy Problems

The APS algorithm proposed in Chapter 2 for generating all Pareto-optimal

hyperpaths requires enormous computational effort. Upon termination of the

algorithm, a large number of Pareto-optimal hyperpaths may exist at each node and

170

departure time, each of which maintains the expected valuesof all criteria. Therefore,

enormous memory storage may be required to obtain all non-dominated solutions. A

procedure that seeks only a subset of Pareto-optimal hyperpaths would be beneficial.

The ALEDS algorithm relies on a linear disutility function to assess a single

“best” hyperpath solution in MSTV networks. A utility function provides a formal,

mathematical representation of the decision maker’s (DM) preference structure. The

associated weights represent the relative importance among criteria, and thus, have a

direct influence on thedecision that will be made. In order to select a single preferred

path in a multicriteria path problem regardless of the technique employed, the

preference structure of the traveler must be properly elicited. In reality, a traveler’s

preferences are not fixed, nor can they be represented by a single model form.

Instead, they fluctuate over time in response to knowledge of travel conditions as a

driver travels through the network. For example, the importance of travel time might

wane once it is revealed that most of the streets between the traveler’s current

location and desired destination are subject to the same undesirable level of

congestion as observed on the current path. Under such circumstances, the traveler’s

preferences may change and the model used to represent the traveler’s preferences

will need to be updated. Hence, updating a model of the traveler’s preferences (e.g.

adjusting criterion weights in a utility function representation) is necessary to assure

that the most desired path will be properly chosen. The ALEDS algorithm requires

the use of a utility function that is monotonic and additive. In many real-world

applications, however, the traveler’s preference structure may not be represented by a

171

linear function. A future extension may be to develop solution approaches that can

handle less restrictive preference functions.

Once the preferences are explored, the adjusted model of the traveler’s

preferences will be used to determine updated adaptive hyperpaths. The simple but

time-consuming method for determining a new solution is to resolve from scratch,

independent of any prior computations. To avoid unnecessarily excessive

computation time, a faster reoptimization method that relies on only preceding

solution paths and the updated traveler preferences would be beneficial.

The SEscape Problem

The SEscape algorithmis developed for determining the optimal set ofa priori path

flows in dynamic networks with STV arc capacities. As found through the numerical

experiments, the MPP algorithm, which is used as a subroutine within the SEscape

algorithm, consumes significant portion of the computational time required by the

SEscape. This is because the MPP algorithm performs unnecessary tasks by

determining the MPP from all nodes to a destination for all depature times.One

approach to improve the complexity of the SEscape algorithm is to develop a more

efficient approach that finds only a single path from the source to the sink at a

particular time to substitute for the MPP algorithm. In addition, the SEscape

algorithm assumes arc travel times to be known deterministically. However, many

applications require consideration of STV arc travel times. Because only a heuristic is

proposed in this dissertation for use in such networks, the development of exact

techniques is also an interesting extension for future research.

172

Network Flow Problems in MSTV Capacitated Networks

A genetic algorithm is proposed for solving the problem of determining optimal path

flows in MSTV capacitated networks. The performance of the heuristic is evaluated

through experiments on small networks for illustrating the nature of the solutions.

Additional tests on larger networks would need to be conducted for further

evaluation. Additionally, only the preemptive approach is implemented in the

proposed NGA for addressing multicriteria problems. The effectiveness of the NGA

implemented with other concepts, such as generating Pareto-optimal solutions or

using a utility function, should be investigated. Moreover, future research may be the

development of techniques for determining the exact solution or bounds on the

solution of these multi-objective, stochastic and time-varying problems in capacitated

networks.

173

APPENDICES

APPENDIX A ILLUSTRATIVE EXAMPLE FOR THE APS ALGORITHM

This section is designed to clarify the essential steps of the APS algorithm and to

provide insight into the nature of the solutions. A simple example problem composed

of 5 nodes and 7 arcs as shown in Figure A.1 is constructed for computational

illustration. Table A.1 contains the relevant arc attribute data.

Figure A.1. Illustrative example

Table A.1. Probabilistic time and cost data.
Travel Time

Time arc (1,2) arc (1,3) arc (2,3) arc (2,4) arc (2,5) arc (3,5) arc (4,5)
t=0 1(0.8)*

2(0.2)
2(1.0) 1(0.9)

3(0.1)
3(0.9)
4(0.1)

2(0.8)
6(0.2)

3(0.2)
5(0.8)

1(0.8)
2(0.2)

t=1 2(0.3)
4(0.7)

1(0.8)
2(0.2)

2(0.8)
3(0.2)

2(0.8)
4(0.2)

5(0.9)
7(0.1)

2(0.5)
4(0.5)

1(0.9)
3(0.1)

t=2 1(0.8)
2(0.2)

3(0.3)
4(0.7)

1(0.9)
3(0.1)

1(0.3)
2(0.7)

3(0.2)
6(0.8)

1(0.8)
2(0.2)

1(0.9)
2(0.1)

t=3 1(0.5)
3(0.5)

1(0.8)
2(0.2)

3(0.5)
4(0.5)

3(0.3)
4(0.7)

7(0.5)
8(0.5)

3(0.5)
4(0.5)

4(0.3)
7(0.7)

t=4 2(0.8)
3(0.2)

2(1.0) 2(0.8)
4(0.2)

1(0.5)
3(0.5)

6(0.9)
7(0.1)

5(0.8)
6(0.2)

5(0.5)
6(0.5)

Cost
t=0 3(0.8)

4(0.2)
7(0.9)
9(0.1)

3(0.8)
4(0.2)

1(0.2)
3(0.8)

7(0.3)
8(0.7)

8(0.2)
9(0.8)

4(0.8)
5(0.2)

t=1 4(0.5)
5(0.5)

10(0.9)
11(0.1)

4(0.5)
5(0.5)

2(0.9)
4(0.1)

6(0.5)
8(0.5)

7(0.3)
8(0.7)

5(0.9)
6(0.1)

t=2 2(0.8)
3(0.2)

7(0.8)
9(0.2)

3(0.9)
4(0.1)

2(0.9)
4(0.1)

6(0.5)
8(0.5)

7(0.3)
8(0.7)

3(0.4)
7(0.6)

t=3 3(0.8)
4(0.2)

5(0.1)
7(0.9)

3(0.8)
4(0.2)

2(0.5)
3(0.5)

7(0.3)
8(0.7)

5(0.9)
6(0.1)

2(0.1)
4(0.9)

t=4 3(0.9)
4(0.1)

8(0.5)
9(0.5)

3(0.9)
5(0.1)

2(0.5)
3(0.5)

6(0.5)
8(0.5)

4(0.4)
8(0.6)

7(0.3)
8(0.7)

*arc attribute (associated probability)

2 4

1

53

174

The period of interest is discretized into five time intervals, S = {0,...,4}.

Suppose there are two criteria considered in the hyperpath selection: travel time

(criterion 1) and travel cost (criterion 2), respectively. Because the computational

process for solving this simple example is large and repetitive, this section presents

only a portion of the entire process. This portion of the computational steps of

determining the complete set of Pareto-optimal hyperpaths from all origins to node 5

for each departure time in the peak period is shown next.

Initialize the elements of the vector labels and path pointers. SE = {5}.

Iteration 1

Scan node 5. SE = {}.

j = 5, i ∈ {2, 3, 4}.

For i = 2,

t = 0

for Q = {(1,1), (2,1)},

)0(1
2η = ∑

∈Qxz),
1

(

[)0(11
25
zc + 1

5xλ (0 +)0(11
25
zc)])0(11

25
zρ⋅

= (2+0) ⋅ 0.8 + (6+0) ⋅ 0.2 = 2.8.

)0(2
2η = ∑ ∑

∈ =Qxz z),
1

(1

2

2

[)0(22
25

zc + 2
5xλ (0 +)0(11

25
zc)])0(11

25
zρ⋅)0(22

25
zρ⋅

= (7+0) ⋅ 0.8 ⋅ 0.3 + (8+0) ⋅ 0.8 ⋅ 0.7 + (7+0) ⋅ 0.2 ⋅ 0.3 + (8+0) ⋅ 0.2 ⋅ 0.7 = 7.7.

)0(21λ = (2.8,7.7).

Insert 1 into)0(2X . Set)0(21π = 5 and)0(21q = {(1,1), (2,1)}. SE = {2}.

175

•
• (Continue to loop over t.)
•

For i = 3 and 4 and each t ∈ S, compute the label components and associated pointers.

Check dominance and make necessary updates. Within this iteration, at least one

component of the labels at nodes 2, 3 and 4 has been updated. Thus, SE = {2,3,4} at

the end of this iteration. The following figure shows the labels)(tivλ ,)(tivπ and

)(tqiv associated with nodes 2, 3, and 4, respectively, at the end of this iteration.

Node 2 Node 3 Node 4Time
Position 1 Position 1 Position 1

0 (2.8,7.7)3

5, {(1,1), (2,1)}
(4.6,8.8)

5, {(1,1), (2,1)}
(1.2,4.2)

5, {(1,1), (2,1)}
1 (5.2,7)

5, {(1,1), (2,1)}
(3,7.7)

5, {(1,1), (2,1)}
(1.2,5.1)

5, {(1,1), (2,1)}
2 (5.4,7)

5, {(1,1), (2,1)}
(1.2,7.7)

5, {(1,1), (2,1)}
(1.1,5.4)

5, {(1,1), (2,1)}
3 (7.5,7.7)

5, {(1,1), (2,1)}
(3.5,5.1)

5, {(1,1), (2,1)}
(6.1,3.8)

5, {(1,1), (2,1)}
4 (6.1,7)

5, {(1,1), (2,1)}
(5.2,6.4)

5, {(1,1), (2,1)}
(5.5,7.7)

5, {(1,1), (2,1)}

Figure A.2. Solutions for iteration 1.

Iteration 2

Scan node 4. SE = {2,3}.

j = 4, i ∈ {2}.

For i = 2 and each t ∈ S, compute the label components and associated pointers.

Check dominance and make necessary updates. The following figure shows the

updates associated with node 2 at the end of this iteration.

3)0(21λ = (2.8,7.7),)0(21π = 5,)0(21q = {(1,1), (2,1)}

176

Node 2Time
Position 1 Position 2

0 (2.8,7.7)
5, {(1,1), (2,1)}

(9.14,6.79)
4, {(1,1), (2,1)}

1 (5.2,7)
5, {(1,1), (2,1)}

(8.38,6.78)
4, {(1,1), (2,1)}

2 (5.4,7)
5, {(1,1), (2,1)}

3 (7.5,7.7)
5, {(1,1), (2,1)}

4 (6.1,7)
5, {(1,1), (2,1)}

Figure A.3. Solutions for iteration 2.

Iteration 3

Scan node 3. SE = {2}.

j = 3, i ∈ {1,2}.

For i = 1 and each t ∈ S, compute the label components and associated pointers.

Check dominance and make necessary updates.

For i = 2 and each t ∈ S, compute the label components and associated pointers.

Check dominance and make necessary updates.

The following figure shows the updates associated with nodes 1 and 2 at the end of

this iteration. SE = {1,2}.

177

Node 1 Node 2Time
Position 1 Position 1 Position 2

0 (3.2,14.9)
3, {(1,1)}

(2.8,7.7)
5, {(1,1),(2,1)}

(9.14,6.79)
4, {(1,1),(2,1)}

1 (2.86,17.28)
3, {(1,1),(2,1)}

(5.2,7)
5, {(1,1),(2,1)}

(8.38,6.78)
4, {(1,1),(2,1)}

2 (8.9,13.8)
3, {(1,1),(2,1)}

(5.4,7)
5, {(1,1),(2,1)}

(4.87,8.33)
3, {(1,1),(2,1)}

3 (6.4,13.2)
3, {(1,1),(2,1)}

(7.5,7.7)
5, {(1,1),(2,1)}

4 (7.2,14.9)
3, {(1,1)}

(6.1,7)
5, {(1,1),(2,1)}

Figure A.4. Solutions for iteration 3.

Iteration 4

Scan node 2. SE = {1}.

j = 2, i ∈ {1}.

For i = 1,

t = 0

There are two possible travel times on arc (1,2) at departure time t = 0,

i.e. 1z = {1,2}.)0(11
12c = 1 and)0(11

12ρ = 0.8,)0(12
12c = 2 and)0(12

12ρ = 0.2.

At node 2, there are two Pareto-optimal labels at time 0 +)0(11
12c and 0 +)0(12

12c ,

i.e. +0(2X)0(11
12c) =)1(2X = {1,2} and +0(2X)0(12

12c) =)2(2X = {1,2}.

Then, four different Q sets of (1z , x) pairs would be generated as follows:

Set 1: (1,1), (2,1)

Set 2: (1,1), (2,2)

Set 3: (1,2), (2,1)

Set 4: (1,2), (2,2)

178

for set 1: Q = {(1,1), (2,1)},

)0(1
1η = ∑

∈Qxz),
1

(

[)0(11
12

zc + 1
2xλ (0 +)0(11

12
zc)])0(11

12
zρ⋅

= (1+5.2) ⋅ 0.8 + (2+5.4) ⋅ 0.2 = 6.44.

)0(2
1η = ∑ ∑

∈ =Qxz z),
1

(1

2

2

[)0(22
12

zc + 2
2xλ (0 +)0(11

12
zc)])0(11

12
zρ⋅)0(22

12
zρ⋅

 = (3+7) ⋅ 0.8 ⋅ 0.8 + (4+7) ⋅ 0.8 ⋅ 0.2 + (3+7) ⋅ 0.2 ⋅ 0.8 + (4+7) ⋅ 0.2 ⋅ 0.2 = 10.2.

)0(1η is non-dominated, thus)0(12λ = (6.44,10.2).

Insert 2 into)0(1X . Set)0(12π = 2 and)0(12q = {(1,1), (2,1)}. SE = SE ∪ {1}.

for set 2: Q = {(1,1), (2,2)},

)0(1
1η = ∑

∈Qxz),
1

(

[)0(11
12

zc + 1
2xλ (0 +)0(11

12
zc)])0(11

12
zρ⋅

 = (1+5.2) ⋅ 0.8 + (2+4.87) ⋅ 0.2 = 6.334.

)0(2
1η = ∑ ∑

∈ =Qxz z),
1

(1

2

2

[)0(22
12

zc + 2
2xλ (0 +)0(11

12
zc)])0(11

12
zρ⋅)0(22

12
zρ⋅

= (3+7) ⋅ 0.8 ⋅ 0.8 + (4+7) ⋅ 0.8 ⋅ 0.2 + (3+8.33) ⋅ 0.2 ⋅ 0.8 + (4+8.33) ⋅ 0.2 ⋅ 0.2

= 10.466.

)0(1η is non-dominated, thus)0(13λ = (6.334,10.466).

Insert 3 into)0(1X . Set)0(13π = 2 and)0(13q = {(1,1), (2,2)}.

for set 3: Q = {(1,2), (2,1)},…

for set 4: Q = {(1,2), (2,2)},…

179

•
• (Continue to loop over t.)
•

Continue in the same manner until the SE list is empty when step 2 is first called.

The final hyperpath solutions for every node and time interval are provided in Figure

A.5.

Node 1Time
Position 1 Position 2 Position 3 Position 4

0 (3.2,14.9)
3, {(1,1)}

(6.44,10.2)
2, {(1,1),(2,1)}

(6.334,10.466)
2, {(1,1),(2,2)}

(8.984,10.024)
2, {(1,2),(2,1)}

1 (2.86,17.28)
3, {(1,1),(2,1)}

(9.92,11.71)
2, {(1,1),(2,1)}

2 (8.42,9.76)
2, {(1,1),(2,1)}

3 (6.4,13.2)
3, {(1,1),(2,1)}

(8.1,10.2)
2, {(1,1),(2,1)}

4 (7.2,14.9)
3, {(1,1)}

(8.3,10.1)
2, {(1,1),(2,1)}

Node 2 Node 3 Node 4Time
Position 1 Position 2 Position 1 Position 1

0 (2.8,7.7)
5, {(1,1),(2,1)}

(9.14,6.79)
4, {(1,1),(2,1)}

(4.6,8.8)
5, {(1,1), (2,1)}

(1.2,4.2)
5, {(1,1), (2,1)}

1 (5.2,7)
5, {(1,1),(2,1)}

(8.38,6.78)
4, {(1,1),(2,1)}

(3,7.7)
5, {(1,1), (2,1)}

(1.2,5.1)
5, {(1,1), (2,1)}

2 (5.4,7)
5, {(1,1),(2,1)}

(4.87,8.33)
3, {(1,1),(2,1)}

(1.2,7.7)
5, {(1,1), (2,1)}

(1.1,5.4)
5, {(1,1), (2,1)}

3 (7.5,7.7)
5, {(1,1),(2,1)}

(3.5,5.1)
5, {(1,1), (2,1)}

(6.1,3.8)
5, {(1,1), (2,1)}

4 (6.1,7)
5, {(1,1),(2,1)}

(5.2,6.4)
5, {(1,1), (2,1)}

(5.5,7.7)
5, {(1,1), (2,1)}

Figure A.5. Pareto-optimal hyperpath solutions.

Upon termination of the algorithm,)0(11λ = (3.2,14.9),)0(12λ = (6.44,10.2),

)0(13λ = (6.334,10.466) and)0(14λ = (8.984,10.024) with associated hyperpath

180

pointers,)0(11π = 3 and)0(12π =)0(13π =)0(14π = 2, respectively. The hyperpath

from node 1 at departure time t = 0 indicates that there are two Pareto-optimal moves

the traveler can take: head to either node 2 or node 3. If node 2 is chosen and the

arrival time at this node is t = 1, two Pareto-optimal moves are suggested: go to node

5 directly or go to node 4 followed by node 5. If, on the other hand, the arrival time at

node 2 is t = 2, going to node 5 directly and going to node 3 followed by node 5 are

both considered to be efficient. If the traveler departs node 1 and chooses to head to

node 3, the suggested move is to go from node 3 directly to node 5, regardless of the

actual arrival time at node 3. These solution hyperpaths from node 1 to node 5

departing from node 1 at t = 0 are portrayed in FigureA.6.

Figure A.6. Pareto-optimal hyperpaths from node 1 to node 5

at departure time 0.

1

t = 2

3 5

2

4 5

3

5t = 2

t = 0 t = 1

181

There are four a priori paths: 1-3-5, 1-2-4-5, 1-2-5 and 1-2-3-5. The expected

travel times and expected travel costs, respectively, for these a priori paths when

departing from node 1 at t = 0 are as follows.

Path 1-3-5: (3.2,14.9)

Path 1-2-4-5: (9.38,10.37)

Path 1-2-5: (6.44,10.2)

Path 1-2-3-5: (7.006,12.754)

There are two a priori Pareto-optimal paths: paths 1-2-5 and 1-3-5. Both of these

paths are also Pareto-optimal hyperpath solutions for the adaptive problem.

182

APPENDIX B MATHEMATICAL FORMULATION OF THE SESCAPE

PROBLEM

The mathematical formulation of the SEscape algorithm for the example network

given in Figure 4.9 can be written as follows.

Max [min {()0()0(
12

12xP ·)2()2(
24

24xP), ()0()0(
12

12xP ·)2()2(
23

23xP ·)4()4(
34

34xP),

 ()0()0(
13

13xP ·)4()4(
34

34xP), ()0()0(
14

14xP) }]

Subject to

)0(12x +)0(13x +)0(14x = 3.

)2(23x +)2(24x -)0(12x = 0

)4(34x -)0(13x -)2(23x = 0

-)0(14x -)2(24x -)4(34x = -3

0 ≤)0(12x ≤ 4

0 ≤)0(13x ≤ 1

0 ≤)0(14x ≤ 3

0 ≤)2(23x ≤ 2

0 ≤)2(24x ≤ 2

0 ≤)4(34x ≤ 2

183

REFERENCES

1. C. C. Aggarwal, R. K. Ahuja, J. Hao, J. B. Orlin, Diagnosing Infeasibilities in

Network Flow Problems,Mathematical Programming, Vol. 81, 1998, pp. 263-

280.

2. R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993, Chap. 4-5.

3. R. K. Ahuja, J. B. Orlin, P. Sharma, P. T. Sokkalingam, A Network Simplex

Algorithm with O(n) Consecutive Degenerate Pivots, Operations Research

Letters, Vol. 30, 2002, pp. 141-148.

4. E. J. Anderson, A. B. Philpott, Optimisation of Flows in Networks Over Time,

Probability, Statistics and Optimisation, John Wiley & Sons Ltd, Chichester, New

York, 1994, Chap. 27.

5. J. E. Aronson, A Survey of Dynamic Network Flows, Annals of Operations

Research, Vol. 20, 1989, pp. 1-66.

6. T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, IOP

Publishing Ltd. and Oxford University Press, 2000.

7. D. Bertsekas, F. Guerriero, R. Musmanno, Parallel Asynchronous Label-

Correcting Methods for Shortest Paths, Journal of Optimization Theory and

Applications, Vol. 88, 1996, pp. 297-320.

8. P. Bratley, B. L. Fox, L. E. Schrage, A Guide to Simulation, 2nd ed., Springer-

Verlag, New York, 1987.

9. R. E. Burkard, K. Dlaska, B. Klinz, The Quickest Flow Problem, ZOR-Methods

and Models of Operations Research, Vol. 37, 1993, pp. 31-58.

184

10.X. Cai, D. Sha, C. K. Wong, Time-Varying Minimum Cost Flow-Problems,

European Journal of Operational Research, Vol. 131, 2001a, pp. 352-374.

11.X. Cai, D. Sha, C. K. Wong, Time-Varying Universal Maximum Flow Problems,

Mathematical and Computer Modelling, Vol. 33, 2001b, pp. 407-430.

12.H. I. Calvete, Network Simplex Algorithm for the General Equal Flow Problem,

European Journal of Operational Research, Vol. 150(3), 2003, pp. 585-600.

13.H. I. Calvete, The Quickest Path Problem with Interval Lead Times, Computers &

Operations Research, Vol. 31, 2004, pp. 383-395.

14.M. Carey, C. Hendrickson, Bounds on Expected Performance of Networks with

Links Subject to Failure, Networks, Vol. 14, 1984, pp. 439-456.

15.R. L. Carraway, T. L. Morin, Theory and Applications of Generalized Dynamic

Programming: An Overview, Computers and Operations Research, Vol. 16, No.

10/11, 1988, pp. 779-788.

16.R. L. Carraway, T. L. Morin, H. Moskowitz, Generalized Dynamic Programming

for Multicriteria Optimization, European Journal of Operational Research, Vol.

44, 1990, pp. 95-104.

17. I. Chabini, Discrete Dynamic Shortest Path Problems in Transportation

Applications: Complexity and Algorithms with Optimal Run Time,

Transportation Research Record, No. 1645, 1998, pp. 170-175.

18.L. Chalmet, R. Francis, P. Saunders, Network Models for Building Evacuation,

Management Science,Vol. 28, 1982, pp. 86-105.

19.T. S. Chang, L. K. Nozick, M. A. Turnquist, Multi-Objective Path-Finding in

Stochastic Dynamic Networks, with Application to Routing Hazardous Materials

185

Shipments, forthcoming in Transportation Science.

20.Y. L. Chen, Y. H. Chin, The Quickest Path Problem, Computers & Operations

Research, Vol. 17, 1990, pp. 153-161.

21.R. K. Cheung, Iterative Methods for Dynamic Stochastic Shortest Path Problems,

Naval Research Logistics, Vol. 45, 1998, pp. 769-789.

22.W. Choi, H. W. Hamacher, S. Tufekci, Modeling of Building Evacuation

Problems by Network Flows with Side Constraints, European Journal of

Operational Research, Vol. 35, 1988, pp. 98-110.

23.J. C. N. Climaco, E. Q. V. Martins, A Bicriterion Shortest Path Algorithm,

European Journal of Operational Research, Vol. 1982, No. 11, PP.399-404.

24.K. L. Cooke, E. Halsey, The Shortest Route Through a Network with Time-

Dependent Internodal Transit Times, Journal of Mathematical Analysis and

Applications, Vol. 14, 1966, pp. 493-498.

25.H. W. Corley, I. D. Moon, Shortest Path in Networks with Vector Weights,

Journal of Optimization Theory and Applications, Vol. 46, No. 1, 1985, pp.79-86.

26.J. M. Coutinho-Rodrigues, J.C. N. Clímaco, J.R. Current, An Interactive Bi-

Objective Shortest Path Approach: Searching for Unsupported Nondominated

Solutions, Computers and Operations Research, Vol. 26, 1999, pp. 789-798.

27.T. J. Cova, J. P. Johnson, A Network Flow Model for Lane-Based Evacuation

Routing, Transportation Research PartA, Vol. 37(7), 2003, pp. 579-604.

28.N. D. Curet, J. DeVinney, M.E. Gaston, An Efficient Network Flow Code for

Finding All Minimum Cost S-T Cutsets, Computers and Operations Research,

Vol. 29, 2002, pp. 205-219.

186

29.C. Davies, P. Lingras, Genetic Algorithms for Rerouting Shortest Paths in

Dynamic and Stochastic Networks, European Journal of Operational Research,

Vol. 144, 2003, 27-38.

30.R. B. Dial, A Model and Algorithm for Multicriteria Route-Mode Choice,

Transportation Research Part B,Vol. 13B, 1979, pp. 311-316.

31.S. E. Dreyfus, An Appraisal of Some Shortest-Path Algorithms, Operation

Research, Vol. 17, 1969, pp. 395-412.

32.A. Eiger, P. B. Mirchandani, H. Soroush, Path Preferences and Optimal Paths in

Probabilistic Networks, Transportation Science, Vol. 19, No. 1, 1985, pp. 75-84.

33.J. M. Fitzpatrick, J. J. Grefenstette, Genetic Algorithms in Noisy Environments,

Machine Learning, Vol. 3, 1998, pp. 101-120.

34.L. K. Fleischer, Universally Maximum Flow with Piecewise-Constant Capacities,

Networks, Vol. 38(3), 2001, pp. 115-125.

35.L. Fleischer, É. Tardos, Efficient Continuous-Time Dynamic Network Flow

Algorithms, Operations Research Letters, Vol. 23, 1998, pp. 71-80.

36.L. R. Ford, D. R. Fulkerson, A Suggested Computation for Maximal Multi-

Commodity Network Flows, Management Science, Vol. 5, 1958, pp. 97-101.

37.L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University, Princeton,

NJ, 1962.

38.R. L. Francis, A “Uniformity Principle” for Evacuation Route Allocation, Journal

of Research of the National Bureau of Standards, Vol. 86, No. 5, 1981, pp. 509-

513.

39.O. Frank, W. Gaul, On Reliability in Stochastic Graphs, Networks, Vol. 12, 1982,

187

pp. 119-126.

40.L. Fu, An Adaptive Routing Algorithm for In-Vehicle Route Guidance Systems

with Real-Time Information, Transportation Research Part B, Vol. 35, 2001, pp.

749-765.

41.L. Fu, L. R. Rilett, Expected Shortest Paths in Dynamic and Stochastic Traffic

Networks,Transportation Research Part B,Vol. 32, No. 7, 1998, pp. 499-516.

42.G. Gallo, G. Longo, S. Pallottino, S. Nguyen, Directed Hypergraphs and

Applications, Discrete Applied Mathematics, Vol. 42, 1993, pp. 177-201.

43.G. Gallo, S. Pallottino, Shortest Path Methods: A Unifying Approach,

Mathematical Programming Study 26, North-Holland, Amsterdam, 1986, pp. 38-

64.

44.M. Gen, R. Cheng, S. S. Oren, Network Design Techniques Using Adapted

Genetic Algorithms, Advances in Engineering Software, Vol. 32, 2001, pp. 731-

744.

45.G. D. Glockner, G.L. Nemhauser, A Dynamic Network Flow Problem with

Uncertain Arc Capacities: Formulation and Problem Structure, Operations

Research, Vol. 48, No. 2, March-April 2000, pp. 233-242.

46.G. D. Glockner, G. L. Nemhauser, C. A. Tovey, Dynamic Network Flow with

Uncertain Arc Capacities: Decomposition Algorithm and Computational Results,

Computational Optimization and Applications, Vol. 18, 2001, pp. 233-250.

47.D. E. Goldberg, Genetic Algorithms in Search. Optimization and Machine

Learning, Addison-Wesley, New York,1989

48.D. E. Goldberg, K. Deb, A Comparative Analysis of Selection Schemes Used in

188

Genetic Algorithms, In Rawlins, G. J. E. (Ed.), Foundations of Genetic

Algorithms, San Mateo, CA: Morgan Kaufmann, 1991, pp. 69-93.

49.G. Gopalakrishnan, Optimal Sampling in a Noisy Genetic Algorithm for Risk-

Based Remediation Design, M. S. Thesis, University of Illinois, 2001.

50.R. Hall, The Fastest Path through a Network with Random Time-Dependent

Travel Times, Transportation Science, Vol. 20, No. 3, 1986, pp. 182-188.

51.J. Halpern, A Generalized Dynamic Flows Problem, Networks, Vol. 9, 1979, pp.

133-167.

52.W. Hamacher, S. Tufekci, On the Use of Lexicographic Min Cost Flows in

Evacuation Modeling, Naval Research Logistics, Vol. 34, 1987, pp. 487-503.

53.P. Hansen, Bicriterion Path Problems, in: G. Fandel, T. Gal, Eds, Multiple Criteria

Decision Making: Theory and Applications, Lectures Notes in Economics and in

Mathematical Systems 177 (Springer, Heidelberg), 1980, pp. 109-127.

54.M. I. Henig, The Shortest Path Problem with Two Objective Functions, European

Journal of Operational Research, Vol. 25, 1985, pp. 281-291.

55.B. Hoppe, E. Tardos, The Quickest Transshipment Problem, Mathematics of

Operations Research, Vol. 25, No. 1, February 2000, pp. 36-62.

56.J. J. Jarvis, H. D. Ratliff, Some Equivalent Objectives for Dynamic Network Flow

Problems, Management Science, Vol. 28, No. 1, January 1982, pp. 106-109.

57.J. P. Jarvis, D. R. Shier, An Improved Algorithm for Approximating the

Performance of Stochastic Flow Networks, INFORMS Journal on Computing,

Vol. 8, No. 4, Fall 1996, pp. 355-360.

58.R. Jentsch, Reliability Analysis of Flow Networks, Advances in Stochastic

189

Models for Reliability, Quality and Safety, W. Kahle, E. Collani, J. Franz and U.

Jensen (eds), Birkhäuser, Boston, 1998, pp. 235-245.

59.D. F. Jones, S. K. Mirrazavi, M. Tamiz, Multi-Objective Meta-Heuristics: An

Overview of the Current State-of-the-Art, European Journal of Operational

Research, Vol. 137, 2002, pp. 1-9.

60.C. Karbowicz, J. MacGregor Smith, A K-Shortest Path Routing Heuristic for

Stochastic Evacuation Networks, Engineering Optimization, Vol. 7, 1984, pp.

253-280.

61.D. E. Kaufman, R. L. Smith, Fastest Paths in Time-Dependent Networks for

Intelligent Vehicle-Highway Systems Application, IVHS Journal, Vol. 1(1), 1993,

pp. 1-11.

62.A. M. Law, W. D. Kelton, Simulation Modeling and Analysis, 3rd ed., McGraw-

Hill, 2000.

63.YK. Lin, A Simple Algorithm for Reliability Evaluation of a Stochastic-Flow

Network with Node Failure, Computers and Operations Research, Vol. 28, 2001,

pp. 1277-1285.

64.YK. Lin, Using Minimal Cuts to Evaluate the System Reliability of a Stochastic-

Flow Network with Failures at Nodes and Arcs, Reliability Engineering and

System Safety, Vol. 75, 2002a, pp. 41-46.

65.YK. Lin, Two-Commodity Reliability Evaluation for a Stochastic-Flow Network

with Node Failure, Computers and Operations Research, Vol. 29, 2002b, pp.

1927-1939.

190

66. YK. Lin, Extend the Quickest Path Problem to the System Reliability Evaluation

for a Stochastic-Flow Network, Computers and Operations Research, Vol. 30,

2003, pp. 567-575.

67.R. P. Loui, Optimal Paths in Graphs with Stochastic or Multidimensional

Weights, Communications of the ACM, Vol. 26, 1983, pp. 670-676.

68.C. Lucet, J. Manouvrier, Statistical and Probabilistic Models in Reliability, D.C.

Lonescu and N. Limnios (eds), Birkhäuser, Boston, 1999, pp. 279-294.

69.E. Q. V. Martins, On a Multicriteria Shortest Path Problem, European Journal of

Operational Research, Vol. 16, 1984, pp. 236-245.

70.B. L. Miller, Noise, Sampling, and Efficient Genetic Algorithms, Ph.D.

Dissertation, University of Illinois, 1997.

71.E. Miller-Hooks, Least-Expected Time Paths with Recourse in Stochastic, Time-

Varying Transportation and Data Networks, Networks, Vol. 37, No. 1, 2001, pp.

35-52.

72.E. Miller-Hooks, T. Krauthammer, Intelligent Evacuation, Rescue and Recovery

Concept, Proceedings of the 30th United States Department of Defense Explosives

Safety Seminar, Atlanta, Georgia, August 2002.

73.E. Miller-Hooks, H. Mahmassani, Least Possible Time Paths in Stochastic, Time-

Varying Networks, Computers and Operations Research, Vol. 25, No. 12, 1998a,

pp. 1107-1125.

74.E. Miller-Hooks, H. Mahmassani, Optimal Routing of Hazardous Materials in

Stochastic, Time-Varying Transportation, Transportation Research Record,No.

1645, 1998b, pp. 143-151.

191

75.E. Miller-Hooks, H. Mahmassani, Least Expected Time Paths in Stochastic,

Time-Varying Transportation Networks, Transportation Science, Vol. 34, No. 2,

2000, pp. 198-215.

76.E. Miller-Hooks, H. Mahmassani, Path Comparisons for A Priori and Time-

Adaptive Decisions in Stochastic, Time-varying Networks, European Journal of

Operational Research, Vol. 146, No. 1, 2003, pp. 67-82.

77.E. Miller-Hooks, S.S. Patterson, On Solving Quickest Time Problems in Time-

Dependent, Dynamic Networks, Journal of Mathematical Modeling and

Algorithms, Vol. 3(1), 2004, pp. 39-71.

78.E. Minieka, Maximal, Lexicographic, and Dynamic Network Flows, Operations

Research, Vol. 21, 1973, pp. 517-527.

79.P. B. Mirchandani, H. Soroush, Optimal Paths in Probabilistic Networks: A Case

with Temporary Preferences,Computers and Operations Research, Vol. 12, No. 4,

1985, pp. 365-381.

80.P. B. Mirchandani, M. M. Wiecek, Routing with Nonlinear Multiattribute Cost

Functions, Applied Mathematics and Computation, Vol. 54, 1993, pp. 215-239.

81.P. Modesti, A. Sciomachen, A Utility Measure for Finding Multiobjective

Shortest Paths in Urban Multimodal Transportation Networks, European Journal

of Operational Research, Vol. 111, 1998, pp. 495-508.

82.B. J. T. Morgan, Elements of Simulation, Chapman & Hall, London, 1984.

83.J. Mote, I. Murthy, D. L. Olson, A Parametric Approach to Solving Bicriterion

Shortest Path Problems, European Journal of Operational Research, Vol. 53,

1991, pp. 81-92.

192

84.T. Munakata, D. J. Hashier, A Genetic Algorithm Applied to the Maximum Flow

Problem, The Fifth International Conference on Genetic Algorithms 1993,

Urbana-Champaign, IL, July 17-22, 1993, pp. 488-493.

85. I. Murthy, S. Her, Solving Min-Max Shortest-Path Problems on a Network, Naval

Research Logistics, Vol. 39, 1992, pp. 669-683.

86. I. Murthy, D. L. Olson, An Interactive Procedure using Domination Cones for

Bicriterion Shortest Path Problems, European Journal of Operational Research,

Vol. 72, 1994, pp. 417-431.

87. I. Murthy, S. Sarkar, A Relaxation-Based Pruning Technique for a Class of

Stochastic Shortest Path Problems, Transportation Science, Vol. 30,No. 3, 1996,

pp. 220-236.

88.H. Nagamochi, T. Ibaraki, Maximum Flows in Probabilistic Networks, Networks,

Vol. 21, 1991, pp. 645-666.

89.N. Nagy, S. G. Akl, The Maximum Flow Problem: A Real-Time Approach,

Parallel Computing, Vol. 29, 2003, pp. 767-794.

90.L. R. Nielsen, K. A. Andersen, D. Pretolani, Bicriterion Shortest Hyperpaths in

Random Time-Dependent Networks, IMA Journal of Management Mathematics,

Vol. 14, No. 3, 2003, pp. 271-303.

91.L. K. Nozick, G. F. List, M. A. Turnquist, Integrated Routing and Scheduling in

Hazardous Materials Transportation, Transportation Science, Vol. 31, No. 3,

1997, pp. 200-215.

92.S. Opasanon, E. Miller-Hooks, Multicriteria Adaptive Hyperpaths in Stochastic,

Time-Varying Networks, Submitted for possible publication in European Journal

193

of Operational Research.

93.A. Orda, R. Rom, Shortest-Path and Minimum-Delay Algorithms in Networks

with Time-Dependent Edge-Length, Journal of the Association for Computing

Machinery, Vol. 37, No. 3, 1990, pp. 607-625.

94.A. Orda, R. Rom, On Continuous Network Flows, Operations Research Letters,

Vol. 17, 1995, pp. 27-36.

95.J. B. Orlin, A Faster Strongly Polynomial Minimum Cost Flow Algorithm,

Operations Research, Vol. 41, No. 2, 1993, pp. 338-350.

96.S. Pallottino, Shortest-Path Methods: Complexity, Interrelations and New

Propositions, Networks Vol. 14, 1984, pp. 257-267.

97.U. Pape, Implementation and Efficiency of Moore-algorithms for the Shortest

Route Problem, Mathematical Programming, Vol. 7, 1974, pp. 212-222.

98.M. Pióro, Á. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek, S. Kozdrowski,

On Open Shortest Path First Related Network Optimization Problems,

Performance Evaluation, Vol. 48, 2000, pp. 201-223.

99.G. H. Polychronopoulos, J. N. Tsitsiklis, Stochastic Shortest Path Problems with

Recourse, Networks, Vol. 27, No. 2, 1996, pp. 133-143.

100. D. Pretolani, A Directed Hypergraph Model for Random Time Dependent

Shortest Paths,European Journal of Operational Research, Vol. 123, 2000, pp.

315-324.

101. J. S. Provan, A Polynomial-Time Algorithm to Find Shortest Path with

Recourse, Networks, Vol. 41, No. 2, 2003, pp. 115-125.

102. J. B. Rosen, S. Z. Sun, G. L. Xue, Algorithms for the Quickest Path Problem

194

and the Enumeration of Quickest Paths, Computers & Operations Research, Vol.

18,1991, pp. 579-584.

103. A. W. Sadek, B. L. Smith, M. J. Demetsky, Dynamic Traffic Assignment

Genetic Algorithms Approach, Transportation Research Record, Vol. 1588, 1997,

pp. 95-103.

104. A. Sedeno-Noda, C. González-Martín, An Algorithm for the Biobjective

Integer Minimum Cost Flow Problem, Computers and Operations Research, Vol.

28, 2001, pp. 139-156.

105. J. B. Smalley, Risk-Based In Situ Bioremediation Design, M. S. Thesis,

University of Illinois, 1998.

106. P. T. Sokkalingam, R. K. Ahuja, J. B. Orlin, New Polynomial-Time Cycle-

Canceling Algorithms for Minimum-Cost Flows, Networks, Vol. 36(1), 2000, pp.

53-63.

107. B. S. Stewart, C. C. White, Three Solution Procedures for Multiobjective Path

Problems, Control-Theory and Advanced Technology, Vol.5, No. 4, 1989, pp.

443-470.

108. G. S. Sulijoadikusumo, L. K. Nozick, Multiobjective Routing and Scheduling

of Hazardous Materials Shipments, Transportation Research Record, No. 1613,

1998, pp. 96-104.

109. K. Talebi, J. MacGregor Smith, Stochastic Network Evacuation Models,

Computers & Operations Research, Vol. 12, No. 6, 1985, pp. 559-577.

110. M. A. Turnquist, Routes, Schedules and Risks in Transporting Hazardous

Materials, Strategic Planning in Energy and Natural Resources, North-Holland,

195

Amsterdam, 1987, pp. 289-302.

111. G. A. Vignaux, Z. Michalewicz, A Genetic Algorithm for the Linear

Transportation Problem, IEEE Transactions on Systems, Man, and Cybernetics,

Vol. 21, No. 2, 1991, pp. 445-452.

112. S. T. Waller, A. K. Ziliaskopoulos, On the On-Line Shortest Path Problem

with Limited Arc Cost Dependencies, Networks, Vol. 40, No. 4, 2002, pp. 216-

227.

113. A. Warburton, Approximation of Pareto Optima in Multiple-Objective,

Shortest-Path Problems, Operations Research, Vol. 35, No. 1, 1987, pp. 70-79.

114. A. B. Wijeratne, M. A. Turnquist, P. B. Mirchandani, Multiobjective Routing

of Hazardous Materials in Stochastic Networks,European Journal of Operational

Research, Vol. 65, 1993, pp. 33-43.

115. W. L. Wilkinson, An Algorithm for Universal Maximal Dynamic Flows in a

Network, Operations Research, Vol. 19, 1971, pp. 1602-1612.

116. T. Yamada, A Network Flow Approach to a City Emergency Evacuation

Planning, International Journal of Systems Science, Vol. 27, No. 10, 1996, pp.

931-936.

117. A. K. Ziliaskopoulos, Optimum Path Algorithms on Multidimensional

Networks: Analysis, Design, Implementation and Computational Experience,

Ph.D. Thesis, University of Texas at Austin.

118. A. K. Ziliaskopoulos, H. Mahmassani, Time-Dependent, Shortest-Path

Algorithm for Real-Time Intelligent Vehicle Highway System Applications,

Transportation Research Record,No. 1408, 1993, pp. 94-100.

196

119. K. G. Zografos, C. F. Davis, Multi-Objective Programming Approach for

Routing Hazardous Materials, Journal of Transportation Engineering, Vol. 115,

No. 6, 1989, pp. 661-673.

Vita

Sathaporn Opasanon, the son of Sunthorn and Laeiat Opasanon, was born in

Bangkok, Thailand on November 21, 1975. Sathaporn received his Bachelor of

Engineering with Second Class Honors from Chulalongkorn University in Bangkok,

Thailand, in May of 1997. In 1998, he entered a competitive examination arranged by

the Royal Thai Government and was granted the scholarship for pursuit of Master’s

degree in the United States. Sathaporn received the Master of Science in Civil

Engineering, majoring in transportation from the Pennsylvania State University in

May of 2000. In August 2000, Sathaporn chose to stay with his advisor, Dr. Elise

Miller -Hooks in the Pennsylvania State University to pursue a Ph.D. In January 2001,

Dr. Elise took a leave from academia, which sparked Sathaporn’s move to the

Department of Civil and Environmental Engineering at the University of Illinois at

Urbana-Champaign. In August 2001, Sathaporn and his advisor reunited at the

Pennsylvania State University. In August 2003, Sathaporn transferred to the

University of Maryland to continue his pursuit of the Ph.D. in transportationwith his

long-lasting advisor, Dr. Elise.

Permanent address: 1827-1829 Phaholyothin Rd., Ladyao, Chatuchak, Bangkok

10900, Thailand.

This dissertation was typed by the author.

