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Fabrication of complex hybrid nanostructures with tunable properties is desirable to 

fulfill functional applications in multidisciplinary areas. Manipulation of pre-designed 

nanostructure building blocks composed of distinct materials to achieve finite control 

over crystallinity, morphology, and composition is a major challenge. This 

dissertation aims to address the topic and create material with new optical properties. 

Questions explored are: How to realize delicate control on crystallinity of hybrid 

nanostructures through unconventional synthetic routes? How to achieve precise 

hybridized nanostructures with designed geometry, topology and composition? How 

do these features affect optical properties? Specifically, this dissertation contains 

recent efforts on fabrication and characterization of functional hybrid nanostructures 

made from metal and semiconducting materials. I first present a critical review of a 

monocrystalline nonepitaxially grown metallic @ semiconducting core @ shell 

hybrid nanostructures. This includes a comprehensive description of the novel 



  
 

nonepitaxial synthetic route, emphasizing critical experimental steps, anticipation of 

challenges, and ending with my perspective. This systematic review should expand 

knowledge of the newly developed nonepitaxial method and spread technical aspects 

of the experiments. I then introduce an anisotropically shaped semiconducting 

nanocrystal with binary alloy composition. The rod-shaped ensemble has exhibited 

tunable bright band gap fluorescence that is dependent on dimension. This work is the 

first to achieve binary semiconducting alloy nanocrystals with anisotropic shapes. 

Interestingly, the electronic behavior within the rod-shaped semiconducting 

nanocrystals is altered due to gradient element distribution of the binary material, 

which is of fundamental interest and potential practical importance. Lastly, a core – 

metallic satellites-styled nanoparticle assembly structure will be discussed. Control 

over Ag nanoparticles as surrounding satellites in terms of size, shape and quantity is 

achieved via a facile synthetic route, and a collective electronic (dipole – dipole 

coupling) behavior within the metallic assembly is observed, and supported by 

numerical simulation. This work provides a new facile pathway to achieve well-

controlled silica – Ag hybrid nanostructures. 
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Chapter 1: Introduction 

 

1. Motivation and Overview 

 
The rapid development of nanoscience and nanotechnology has launched a 

revolution in scientific research [1, 2]. It comprises an enormous number of popular 

research topics that have expanded into interdisciplinary areas including physics, 

chemistry, biology, and material science. As foreseen by Feynman [3], the scaling of 

size to sub 10-7 meters makes surface/interface and quantum effects play a critical 

role, with emergent physical properties in contrast to bulk materials. The new 

properties of nanomaterials can enable new technical applications.  

 

Colloidal nanoparticles are one of the most attractive nanomaterials that highlight 

novel physical phenomena under quantum confinement and enable various 

functionalities for optics, electronics, catalyst, and biosensors [4-7]. Fabrication of 

these colloidal nanoparticles is via “bottom-up” strategy, which involves building 

nanostructures from atoms, ions and molecules into self-organized and stable 

aggregates at the nanoscale. Taking advantage of chemical strategies, the synthesis 

and manipulation of nanoparticles can be realized by adjusting macroscopic variables 

such as reaction temperature and time, and judicious choice of species and 

concentrations used. In practice, it is often not straightforward to precisely control 

nanoparticles ensembles for size, shape and uniformity, needed to engineer the 
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tunable physical properties that enable applications. What’s more, it can be 

challenging to fabricate even pre-designed nanostructure building blocks composed 

of distinct materials (hybrid nanostructures) and simultaneously, achieve finite 

control over crystallinity, morphology, and composition.  

 

This dissertation has aimed to address these issues from the following perspective: 

How to realize delicate control on crystallinity of nanostructures through 

unconventional synthetic route? How to achieve precise hybridized nanostructures 

with designed geometry, topology and composition? How do these features affect 

properties of the nanostructures? 

 

With the motivation stated above, my PhD research has mainly focused on 

fabrication and characterization of functional hybrid nanostructures made from metal 

and semiconductor materials via bottom up synthetic routes. In this dissertation, a 

brief introduction of the fundamental background in nanoparticles and a selected 

review of the related field in hybrid nanostructures will be covered. Following this, 

Chapter 2 is a critical review of a monocrystalline nonepitaxial grown metallic @ 

semiconducting core @ shell hybrid nanostructures. This includes a comprehensive 

description of the novel nonepitaxial synthetic route, critical experimental steps, 

anticipation of challengings and insights drawn. In Chapter 3, I will introduce an 

anisotropically shaped semiconducting nanocrystal with binary alloy composition. 

This work is the first to achieve binary semiconducting alloy nanocrystals with 

anisotropic shapes. Interestingly, the electronic behavior within the rod-shaped 
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semiconducting nanocrystals is altered due to gradient element distribution of the 

binary material. Lastly, a core – satellite styled metallic nanoparticle assembly 

structure will be discussed in Chapter 4. Control over Ag nanoparticles as 

surrounding satellites in terms of size, shape and quantity is achieved via a facile 

synthetic route, and a collective electronic (dipole – dipole coupling) behavior within 

the metallic assembly is observed, and described by numerical simulation.  

 

2. Fundamental Background of Nanoparticles 

 
As in bulk single component materials, electronic behavior in noble metal and 

semiconducting nanoparticles with quantum confinement differ dramatically. This 

distinction is mainly due to the different bounding abilities of the nuclei toward the 

valence electrons. The background of noble metal and semiconducting nanoparticles 

and their fundamental properties are introduced as follows. 

 

2.1 Noble Metal Nanoparticles 

 
The history of noble metal nanoparticles (NPs) dates back to Roman times when 

bulk gold was dissolved and doped in glass exhibiting various lustrous colors after 

annealing [8]. However, people did not start to unveil the mystery until 1850s [9]. 

Michael Faraday prepared gold colloids by reduction of gold chloride with 

phosphorus and observed that the colloidal gold solutions have properties that differ 

from bulk gold. The fascinating properties of noble metal NPs intrinsically originate 
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from the free conductive electron in noble metal materials. Under exposure to 

irradiation of an oscillating electromagnetic wave (incident light), the free electrons 

are driven to propagate along the interface of the metal material and dielectric 

medium, coherently oscillating against the attraction of nuclei at a specific frequency 

(Figure 1-1). For bulk materials, the oscillating electron density wave is known as the 

surface plasmon polariton (SPP). When the noble metal material size is of nanoscale 

dimension, the SPP is confined within the boundary of the nanoparticle, and is called 

a localized surface plasmon (LSP) [10] (Figure 1-1b). Two important effects occur 

with a LSP. The electric field at the near vicinity of the NP is greatly enhanced, and 

concentrated locally at the nanoscale. Also, when the frequency of incident light 

matches the natural frequency of surface electron oscillations, a resonance condition 

is established and the NPs optical extinction cross-section (Cext) reaches a maximum. 

This is called a surface plasmon resonance (SPR). For noble metal NPs, the SPR 

occurs at the range of visible light.  
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Figure 1-1 Schematic illustration of the collective oscillations of free electron: (a) 

on a metal–dielectric interface (b) on a spherical gold colloid. Excited by the electric 

field of incident light, the free electrons can be collectively displaced from the lattice 

of positive ions (consisting of nuclei and core electrons). While the plasmon shown in 

(a) propagates across the surface as a charge density wave, the plasmon depicted in 

(b) is localized to each particle. (From Ref. [10]) 

 
For spherical NPs irradiated by an electromagnetic wave, Maxwell’s equation is 

exactly solvable by enforcing the boundary condition on the spherical surface. The 

exact solution describing light scattering and absorption features by the spherical NPs 

is known as Mie Theory, which predicts the extinction cross-section (sum of 

absorption and scattering cross section) to be [11]: 

Cext (ω) =
9ωεm

3/2V
c

ε2 (ω)
[ε1(ω)+ 2εm ]

2 +ε2 (ω)
2                           Eqn 1-1 

where ω is the angular frequency of the incident light, V is the volume of a single NP 

and is equal to 4/3πR3, c is the speed of light in vacuum, and εm and 

ε(ω) = ε1(ω)+ iε2 (ω)  are the dielectric constant of the surrounding medium and the 

frequency dependent metal dielectric function, respectively. If ε2 is small or weakly 

dependent on ω, the resonance condition is determined by, 

ε1(ω)+ 2εm = 0                                                     Eqn 1-2 

For arbitrary shapes (regular or irregular) of NPs, there may be no analytical solutions 

of Maxwell’s equation. Approximate methods are thus needed to simulate the 

electromagnetic interaction between arbitrary shaped NPs with incident light. The 
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Discrete Dipole Approximation (DDA) is one such method that is used in Chapter 4, 

to simulate the optical extinction by a Au and Ag NPs hybrid-assembled structure.  

 

The features of SPR are strongly dependent on NP size [12, 13], shape [14, 15] 

and the dielectric constant of the surface environment.[16-18] The SPR frequency of 

noble metal NPs is tunable across the visible-near infrared (NIR) range, by varying 

the shape and size of the NPs. Typically, increasing NP dimension results in a red 

shift of SPR wavelength (Figure 1-2 d-f). For anisotropically shaped NPs, due to the 

reduced symmetry compared with the spherical case, additional plasmon modes occur 

associated with the collective electron oscillation along the different normal axes. For 

instance, Au nanorods show a transverse plasmon mode oscillating along the short-

axes, and a longitudinal plasmon mode oscillating along the long-axis. The 

longitudinal plasmon mode has enhanced oscillator strength and a red shifted SPR 

wavelength dependent on the aspect ratio of the nanorod. As shown in Figure 1-2 a-c, 

the longitudinal plasmon wavelength is tunable from 600 nm to 1000 nm by 

increasing the aspect ratio.  
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Figure 1-2 Wavelength Tunable SPR of gold nanorods and silver nanoplate 

by varying the aspect ratios and edge lengths, respectively (a) Transmission 

Electron Microscopy (TEM) images of different aspect ratios exhibiting different 

dimensions (b) in different color and (c) different SPR wavelength. (d) 

Photographs of Ag nanoplate solutions with varying edge length and (e) the 

corresponding extinction spectra, (f) TEM image of a typical Ag nanoplate, scale 

bar is 100 nm. (a) - (c) is from Ref. [15], (d) - (f) is from Ref. [14]. 

 

Due to the novel properties of noble metal NPs, there are multiple applications 

including catalysis [19], sensing [20], and optical signals enhancement of surface 

enhanced Raman scattering (SERS) [21], enhanced fluorescence [22], and light 
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absorption [23]. Controlled synthesis and manipulation of these NPs in terms of size, 

shape and homogeneity of the NPs ensemble thus become critical.  

 

2.2 Semiconducting Nanoparticles 

 
A semiconductor nanocrystal that is small enough to exhibit quantum confinement 

effects is called quantum dot. Quantum dots colloidal solutions were firstly 

discovered in 1983 [24], and have quickly emerged as key materials in nanoscience 

and technology, due to strongly size-dependent optical and electrical properties, 

which are important for both fundamental studies and device applications.  

 

bulk Eg 

conduction band 

valence band 

bulk semiconductor 

electron 

hole 

bulk Eg 

conduction band 

valence band 

semiconductor nanocrystal 

∞ size diameter of nanocrystal 

first excitation energy 

ground state of electron 

ground state of hole 

 
Figure 1-3 Schematic spatial correlated electronic state diagram of bulk 

semiconducting material and the corresponding nanocrystal states. The 

continuous conduction and valence energy bands of a bulk semiconductor are 

separated by a fixed energy gap, Eg (bulk), whereas a semiconductor nanocrystal has 
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a larger band gap dependent on diameter and quantized energy states, due to the 

quantum confinement.  

 

In semiconducting materials, an electron in the valence band can be excited into 

the conduction band by absorbing a photon, and this leaves behind a hole in the 

valence band. The electron – hole pair is bound to each other via a Coulomb attractive 

force. The spatial separation between the electron and the hole is called the Bohr 

radius. In bulk semiconducting materials, the energy gap (Eg) between the valence 

band and the conduction band is only dependent on the nature of the material. When 

the size of the semiconducting material is decreased down to the order of the Bohr 

radius, quantum effects play an important role, and the band gap becomes dependent 

on nanocrystal size. This can be pictured by simply adapting the particle-in-a-box 

model. As shown schematically in Figure 1-3, in bulk semiconductors, the electronic 

states in the conduction band and the valence band are continuous. The energy needed 

to excite the valence electron into the conduction band is fixed (Eg), whereas in the 

semiconductor nanocrystal, the electron – hole pair is confined in a quantum well. 

Electronic states in the quantum well are quantized, as modeled by the particle in a 

box. The ground state energy of the electron and the hole in the rectangular potential 

well are:  

Ee =
!2π 2

8R2me
* 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn 1-3	
  

Eh =
!2π 2

8R2mh
* 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn 1-4	
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where ! is the reduced Plank constant, R is the radius of the nanocrystal, and me
* , mh

* 	
  

are the effective mass of the electron and the hole, respectively. Note that the electron 

and hole in a rectangular potential well has over simplified the actual spherical shape 

of the nanocrystal. A factor of 4 will be applied to the above equations to correct the 

effect of the spherically symmetric potential well, rather than a rectangular well. 

Additional energy is thus required to excite an electron from the valence band into the 

conduction band, forming an electron – hole pair, due to the quantum confinement 

effect. The summation of ground state energies of the electron and hole contributing 

the additional energy to the band gap energy is thus 

Econfinment =
!2π 2

2R2µ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Eqn 1-5 

where µ is the reduced effective mass of the electron and hole, and 	
  

1
µ
=
1
me
* +

1
mh
*
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Eqn 1-6 

Moreover, there is Coulomb attractive interaction between the negatively charged 

electron and the positively charged hole, and this part of the energy correction (Ec) is 

in the order of ~1/R [25]. The overall band gap energy of the nanocrystal is thus 

Eg = Eg(bulk)+
!2π 2

2R2µ
−Ec 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn 1-7 

This enables semiconductor nanocrystals to possess tunable optical and electronic 

properties that strongly dependent on size. Among the various semiconducting 

materials, CdSe and CdS quantum dots are most extensively studied due to the band 

gap energy lying in the visible light range. For quantum dot colloidal solutions, size 

distribution is a key factor that allows precise tuning of the ensemble optical features. 
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The first successful synthesis of quantum dot colloidal solutions with narrow size 

distribution was realized in an organic liquid phase via high temperature 

decomposition of the organic precursor [26]. Figure 1-4 demonstrates the precise 

control of the band gap absorption and photoluminescence of the nearly 

monodispersed CdSe quantum dot ensembles in hexane. The band gap emission 

wavelength is tunable across the whole visible range with varying nanocrystal size.  

 

Quantum Dot Size  

 
Figure 1-4 Size dependent band gap engineering of colloidal CdSe quantum dots 

(Left), colored fluorescent photographs of CdSe quantum dots colloidal dispersions 

in hexane and schematic models of quantum dots with varying size (Right), visible 

light absorption spectrums of the solution with different quantum dots size (from the 

website of Bawendi research group at the MIT, Department of Chemistry [27]) 

 

To date, other than spherical-shaped quantum dots, various anisotropically shaped 

semiconducting nanocrystals have been synthesized, including one-dimensional (1D) 
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nanowires, nanorods, 2D nanosheets, and tetrapods [28-32]. The band gaps of the 1D-

confined sheets, 2D-confined wires, and 3D-confined quantum dots evolve differently 

with size [33]. For nanorods, the quantum confinement is intermediate between dots 

and wires, and the band gaps thus depend on both the diameter and the length [34]. 

What’s more, the anisotropic morphology of rods and wires induces highly polarized 

optical and electrical properties [28, 35].  
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Figure 1-5 Change in optical property of CdSe quantum dot after surface 

protection with a CdS shell. (a) Normalized photoluminescence spectra of CdSe 

quantum dots before (black) and after (red) overgrowth of CdS shell (b) Schematic 

diagram showing the electronic state of a CdSe quantum dot with CdS shell 

protection surrounded by ligands (not shown in the cartoon). The 0.04 eV red shifting 

of the core @ shell is due to spreading of the wavefunction into the shell (blue) and 

the reduced kinetic energy of exciton.  

 

Both size and shape greatly influence the properties of semiconducting 

nanocrystals. Beyond that, surface passivation and modification can play a critical 
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role, because the surface to volume ratio becomes significant when the particles size 

shrinks. Controlled surface passivation and surface stoichiometry of the component 

element can impact the photoluminescence property [36, 37]. Furthermore, forming a 

core @ shell structure is another way to protect the surface and alter the optical 

properties of quantum dots. For example, a CdSe core protected with a shell of wider 

band gap material (CdS or ZnS) via epitaxial growth shows an order of magnitude 

enhanced photoluminescence[38, 39], compared with plain CdSe dots. As depicted in 

Figure 1-5b, shell passivation forms an additional layer of the potential energy well, 

reducing the chance of electron and hole overlapping with the surface. Therefore, 

fluorescence efficiency will be enhanced with less influence of the surface defect 

states and trap sites. Also, the emission wavelength of core @ shell is red shifted 

compared with the plain core of comparable size (Figure 1-5a), due to spreading of 

the wavefunction into the shell and reduction of the kinetic energy of electron and 

hole. (Figure 1-5b, blue curve) To date, except for conformal spherical shell, rod-

shaped and tetrapod CdS shells have been epitaxially grown on CdSe dots, with 

anisotropic optical emission [40-42]. These have stimulated exploitation of the 

material into functional device applications [43].  

 

In addition, the composition of pseudobinary (ABxC1-x) semiconductor alloy 

nanocrystals provides an additional degree of freedom to control the band gap and 

optical properties. In Chapter 3, an anisotropically shaped pseudobinary alloy 

semiconducting nanocrystal will be introduced and explored.   
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3. Hybrid Nanostructures 

 
Building upon knowledge of noble metal and semiconducting NPs, researchers 

have further manipulated NPs into ordered building blocks (hybrid structures), with 

pre-designed geometry and NP components. This can provide additional opportunities 

to fine-tune nanostructure properties, probe fundamental inter-nanoparticle 

interactions, and enable technical applications. There are several comprehensive 

reviews of hybrid nanostructures [44, 45], written from the somewhat different 

perspectives of synthesis, properties and applications. In the following sections, I 

briefly review select motifs of plasmonic hybrid nanostructures that are representative 

of the field and most closely related to my Phd research.  

 

3.1 Plasmonic Hybrid Nanostructures with concentric core @ shell morphology 

 
Core @ shell morphology architecture evolves with encapsulation of a 

nanoparticle in a uniform, concentric shell. One of a commonly studied plasmonic 

hybrid structure is the Au @ SiO2 core @ shell via silica encapsulation [46]. Further 

incorporation of optically active species (dye molecules) can be realized via silica 

doping [47, 48] and surface functionalization [49]. The silica shell is an electric 

insulator with high-lying energy levels far from the plasmonic or molecular energy 

levels. The silica shell is thus free from charge transfer or Coulomb interaction with 

either the plasmon or dye. In addition, silica has a mesoporous structure that allows 

for dye molecule impregnation via surface adsorption and diffusion. The successful 

coating of a uniform silica shell on Au colloidal NPs [50] has enabled further research 
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to study the interaction between the plasmon and dye molecules in the near vicinity. 

Wiesner and coworkers [4] have demonstrated a lasing system with Au @ SiO2 core 

@ shell nanostructures, in which dye molecules are doped throughout the shell. The 

stimulated emission in this colloidal nanoparticle is from surface plasmons, instead of 

the photons in a conventional laser. The dye molecules act as the energy source (gain 

medium) and couple to surface plasmons through a Forster resonance energy transfer 

process [51, 52]. This plasmon based laser could be used as a nanoscale quantum 

generator and ultrafast amplifier [53]. Bach and coworkers [49] used Au @ SiO2 to 

systematically study distant dependent dye molecule fluorescence quenching by 

surface plasmons. In this system geometry, dye molecules are functionalized on the 

surface of the silica shell, and the silica shell acts as a spacer to enable fine-tuning of 

the molecule – plasmon distance. The complete transition from strong quenching to 

full recovery of the fluorescence was observed, signaling the energy transfer from the 

molecular emitters to the localized surface plasmon mode.  

 



 16 
 

Figure 1-6 Au @ CdSe core @ shell hybrid nanostructure integrates a surface 

plasmon of the Au core with an exciton of the monocrystalline CdSe shell. (a) 

Typical large-scale TEM image showing uniform core @ shell nanostructures. The 

scale bar is 50 nm. (c) Schematic model showing transitions and resonant coupling 

(blue arrow) between core (continuum spectrum of plasmon) and shell (discrete 

interband exciton) in a core @ shell configuration under laser excitation (red arrows). 

(b) Time-resolved Faraday rotation (TRFR) experiment involving spin precession in 

the core @ shell hybrid nanostructures. (From Ref. [5]) 

 
Another interesting class of core @ shell nanostructure is built from metal @ 

semiconductor. This combination maximizes the plasmon and exciton coupling 

interaction. To overcome the synthetic difficulty of big lattice mismatch between 

semiconductor and gold, Ouyang and coworkers [54] have developed a robust, 

universal strategy, leading to nonepitaxially over growth of a monocrystalline 

conformal semiconductor shell on a spherical metal core (Figure 1-6a). The effort of 

developing the elegant nonepitaxial synthesis strategy is motivated by the intense 

interest of studying the plasmonic-exciton interaction. For 3 nm spherical Au NPs, the 

surface plasmon at 520 nm overlaps with the CdSe quantum dot first excited band gap 

transition energy. This makes it an ideal system to study the plasmonic-exciton 

resonance coupling, as schemed in Figure 1- 6c. In a follow up work by Ouyang and 

coworkers [5], the Optical Stark Effect (OSE) [55] was observed in the Au @ CdSe 

hybrid nanostructure. OSE is a fundamental light-matter interaction and typically 

observed as an energy level shift under exposure to intense optical irradiation. In 

another system without a plasmonic core (CdSe quantum dot), the light-matter 
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coupling is weakened in the nanoscale quantum dot colloid system. While in the Au 

@ CdSe hybrid nanostructure, OSE is enhanced by plasmon-exciton resonance 

coupling. The plasmonic core is used to concentrate the near field optical signal. The 

enhanced OSE signal is found to be strongly dependent on the polarization of the 

excitation light. This provides an internal tool to exert a light induced magnetic torque 

to manipulate the electron spin (Figure 1-6b). This work realized the first spin 

manipulation in a nanocolloid system, and demonstrated this class of hybrid 

nanostructures to be a candidate for quantum information and quantum computing 

[56]. 

 

New properties arise from reduced symmetry of anisotropically shaped Au NPs. 

This has motivated researchers to produce anisotropically shaped counterparts of the 

above structures. The nonepitaxial growth strategy actually has been adapted to 

synthesize anisotropically shaped monocrystalline metal @ semiconductor 

nanostructures. A detailed review of the synthetic methodology and perspectives will 

present in Chapter 2.  

 

3.2 Plasmonic Hybrid Nanostructures with dumbbell morphology 

 

Another category of hybrid nanostructure architecture is the dumbbell 

morphology. For noble metal nanostructures, new phenomena arise due to close 

proximity of multiple plasmonic NPs. Two effects occur when the plasmonic NPs are 

in proximity due to the plasmon coupling effect (1) a red shifting of the SPR [57], and 
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(2) local electric field enhancement at the gap between two NPs, i.e. “hot spot 

plasmon” formation. The hot spot plasmon has been widely applied to Raman signal 

enhancement known as SERS [58-61]. When the field enhancement is strong enough 

it has the sensitivity to detect the Raman scattering signal of a single molecule [60, 

61]. The plasmon coupling effect is extremely sensitive to the inter-particle gap 

distance (surface-to-surface distance). Precisely control of the gap distance without 

fusing is not a straight forward task in colloid solution [61]. There are several 

strategies to combine noble metal NPs closely together and form dimers and trimers, 

with controllable inter-particle gaps, those including using complementary single 

strand DNA (ssDNA) [60, 62] and organic molecule linkers [63]. With ssDNA 

linkers, Alivisatos and coworkers [62] have synthesized Au – Ag heterodimers with 

inter-particles gaps tunable to the range of 3-8 nm. The plasmon coupling induced 

Ultraviolet–visible (UV-Vis) spectroscopy has shown a set of hybridized plasmon 

modes. In another work of Suh and coworkers [60], Ag has been progressively 

deposited onto ssDNA linked Au dimers and thus the inter-particle gap can be 

shortened from ~ 3.5 nm down to ~ 1.25 nm. Further thickening of the Ag shell has 

resulted in indiscernible (by TEM imaging) gap distance and a single molecule 

Raman signal has been detected. Ensemble effects, particularly when samples include 

NPs with large variations in gap distance, can obscure targeted plasmonic features. 

Consequently, these dumbbell studies have generally been performed as single 

nanoparticles measurements.  
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Figure 1-7 Purified plasmonic monomers, dimers and trimers (a-c) TEM images 

of monomers, dimers and trimers, respectively. Scale bars are 200 nm (d) UV-Vis 

spectra of structure enriched colloidal solution correspond to a (blue), b (yellow) and 

c (green); Inset shows photographs of the solutions after density gradient 

centrifugation, where monomers, dimers, and trimers were enriched in distinct 

yellow, brown, and green bands, respectively. The different surface enhanced Raman 

factors of the corresponding structures are shown in the right panel. (From Ref. [59]) 

 

Along these lines, Chen and coworkers in Singapore have demonstrated a simple 

and clever approach to assemble Ag NPs into ultra-short dimers and trimers through 

introducing colloid aggregation in ensemble solution followed by polymer 

encapsulation [64]. Coupled with a post-purification via density gradient 

ultracentrifugation, they successfully obtained highly purified plasmonic monomers, 

dimers and trimers encapsulated in a polymer shell (Figure 1-7 a-c), with 0.8 nm 

uniform inter-particle gap distance. The monomers, dimers and trimers exhibit 

different optical features characterized by UV-Vis spectroscopy, shown in Figure 1-
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7d. Dimers and trimers have an additional plasmon mode arising from the dipole – 

dipole coupling between the individual Ag NPs. The local electric field is enhanced at 

inter-particle gaps within the dimers and the trimers, and SERS signal is determined 

to be enhanced by factors of 16 and 87, respectively, in comparison with the 

monomers. This well controlled plasmonic NPs assembly has allowed ensemble 

measurement with unambiguous calculation and interpretation of the SERS 

enhancement properties [59]. 
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Chapter 2: Monocrystalline Nonepitaxial Metal @ 
Semiconducting Hybrid Nanostructure: Synthesis, 
Challenges and Prospects 

 

 

1. Introduction 

 
Both metal nanoparticles (NPs) and semiconducting quantum dots have been 

intensively studies by researchers and emerged as key materials in today’s 

nanoscience and technology [65, 66]. Metal NPs have prominent optical properties 

with controllable absorption and scattering resonances originating from the surface 

plasmon resonance (SPR), while semiconducting quantum dots possess engineered 

electronic band gap structures that give rise to finely tunable optical properties. 

Recently, a new class of nanomaterial, which integrates metal and semiconducting 

material into a discrete nanoscale building block, has attracted attention as a 

promising route to multi-functional properties for targeted application in electronics 

[67, 68], photocatalysis [69, 70] and spintronics [5]. Such hybrid building blocks 

introduce new and attractive properties due to the coupling between the dielectric-

confined electromagnetic resonance in the metal segment and the quantum-confined 

electronic states in the semiconductor one [71]. In principle, the plasmon-exciton 

interaction within the metal-semiconducting hybrid nanostructure permits exquisite 

control of the nanoscale energy transfer path, yielding tunable absorption and 
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emission properties. In practice, the availability of high quality metal-semiconductor 

hybrid nanostructure remains a hurdle for this field.  

 

Fabrication of metal-semiconducting hybrid nanostructures with high morphology 

and crystallinity control is challenging due to the large lattice mismatch between the 

two distinct materials. For dissimilar materials prepared according to well established 

epitaxial growth methods [72, 73], the lattice mismatch between metallic and 

semiconductor materials generally leads to the formation of grain boundaries within 

the semiconducting block [67], as well as defects and strong interfacial lattice strain 

[74]. However, growth of defect-free single-crystalline semiconductor based hybrid 

nanostructures is highly desired to support high performance devices. Recently, 

Ouyang and coworkers [54] developed a delicate and versatile non-epitaxial growth 

process to fabricate spherical core @ shell metal @ semiconducting colloidal NPs 

down to 10 nm size, with perfect single-crystalline semiconducting shells, as shown 

in Figure 2-1. This method also offered remarkable control over the nanostructure 

ensemble in terms of size, uniformity and gradient of both core and shell. The essence 

of the preparation is to first synthesize the M1 @ Ag bimetallic (M1=Au, Pt, FePt) 

spherical core @ shell; and subsequently chemically convert into M1 @ Ag2X (X=S, 

Se, Te) by controlled reaction with selected chalcogenide precursors. The final step 

involves cation exchange with the desired metal ions (M2) to create M1 @ M2X 

(M2=Cd, Pb, Zn). Hybrid nanostructures synthesis by this non-epitaxial method has 

successfully overcome the big lattice mismatch problem of two distant materials 

components, permitting studies of plasmon-exciton coupling in monocrystalline Au 
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@ CdSe core @ shell hybrid nanostructures. Already this unique nanostructure has 

been harnessed for studies of the plasmon enhanced optical stark effect (OSE) [5]. 

This work provided an elegant demonstration of light-matter-spin interactions 

through plasmon-exciton resonant coupling in a colloidal nanoparticle system.  

 
Figure 2-1 Nonepitaxial growth of isotropic monocrystalline Au @ 

semiconducting core @ shells hybrid nanostructure (A) Schematic illustration of 

the synthesis procedure (Scheme 1). X: chalcogenide precursor; M2+: Metal ion 

including Cd2+, Pb2+, and Zn2+; and TBP: tributylphosphine (B) High-resolution 

Transmission electron microscopy (TEM) images showing the product of the 

corresponding S1-S5 steps. Scale bars are 5 nm. (C) X-ray Diffraction 

characterization of the nanostructure of the fives stages. From Ref [54]. Reprinted 

with permission from AAAS.  

 

The multifunctional properties of non-epitaxial metal @ semiconducting hybrid 

nanostructures become even more apparent upon moving beyond core @ shell 
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structures to nanostructure varieties with defined anisotropic shapes. The reduced 

symmetry of anisotropically shaped plasmonic NPs introduces additional plasmon 

modes associated with the corresponding collective electron oscillation. For example, 

a rod shaped gold nanoparticle has a longitudinal plasmon mode oscillating along the 

long-axis direction, with a rod-length dependent tunable resonance of 600 nm to NIR 

wavelength [15]. Moreover, the local electric field enhanced by the plasmon 

resonance of the longitudinal mode is highly polarized along the long-axis. These 

attractive optical properties enable tailored plasmon-exciton interaction in a more 

precise manner, and are of particular interest for applications such as photocatalysis 

and functional optoelectronic devices. Following the original report of the 

nonepitaxial synthesis method, Ouyang and coworkers further improved the synthetic 

methods and adapted the technique to produce various anisotropically shaped 

monocrystalline metal @ semiconducting hybrid nanostructures, from conformal and 

non-conformal core @ shell of cubic, triangular plate, rod to large aspect ratio 

nanowire up to micron-meter scale [75]. The synthetic route achieved both well-

defined anisotropic shape and perfect monocrystallinity throughout the whole 

semiconducting shell (Figure 2-2) with independent control of the two chemical 

ingredients. Improvements in the chemical synthesis of these materials are elaborated 

in the section below.  

 

Additionally, Wang et al. have adapted the nonepitaxial synthetic method for 

spherical hybrid nanostructures to fabricate anisotropically shaped Au @ 

semiconducting hybrid nanostructures [76]. In this work, sulfur powder was used as 
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the S precursor to achieve a rod shaped Au @ CdSe core @ shell with controllable 

shell thickness. A longitudinal plasmon enhanced two-photon luminescence under 

near-infrared laser excitation was thereby demonstrated. Wang et al. further reported 

a strong plasmon-exciton interaction characterized by a sign-reversed and magnitude-

enhanced absorption feature in the same system [77]. Cubic-shaped Au @ AgCdS 

hybrid core @ shell structures were similarly pursued via this method, resulting in 

incomplete cation exchange [78]. Alternatively, Su et al. used a one-pot hydrothermal 

method to make closed-shelled Au @ CdS and Au @ ZnS hybrid nanostructures, 

with rod-shaped cores and shells with flower-like outer shell edge [79]. The process 

involves direct over growth of either CdS or ZnS shells on rod-shaped Au cores, 

using transition metal thiobenzoate complexes as the metal sulfide precursor in the 

presence of Ag+. The formation mechanism is attributed to a nonepitaxial process, 

initialized by the formation of a Ag2S wetting layer, followed by cation exchange 

with Cd (II) or Zn (II).  

 

 

 
Figure 2-2 Low-revolution TEM images of different anisotropically shaped Au 

@ CdS core @ shell nanostructures showing the overall distribution and 
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morphologies (A) Rod (B) Triangular plate, right inset shows the cross section of the 

plate, and (C) Cubic shape; and high-resolution TEM images of a single anisotropic 

Au @ CdS monocrystalline nanostructure of (D) rod shape, (E) triangular plate, 

showing the monocrystallinity throughout the whole structure. In each images of (D) 

and (E) four areas outlined in green are enlarged and highlighted to the right, showing 

the identical lattice orientations (green triangles). Scale bars of insets are 5 nm.  

 

Reports of anisotropic M1 @ M2X plasmonic @ semiconducting hybrid 

nanostructures demonstrate the challenges to achieve single crystalline 

semiconducting shell with precision anisotropic shapes. Without rigorous 

understanding and control of experimental protocols, hybrid nanostructures can 

become polycrystalline and exhibit irregular edges in the semiconducting shell. 

Nonetheless, such hybrid nanostructures already demonstrate strong plasmon- exciton 

coupling, and pose considerable opportunities for further tailoring. Realizing these 

opportunities requires detailed consideration of the stepped synthetic process. Each 

step involves a subtle chemistry that must be optimized in order to achieve precision 

of the final hybrid nanostructure product. Moreover, some shape anisotropies are 

particularly challenging. In this chapter, we will review and discuss in detail the 

methodology of nonepitaxial M1 @ M2X synthesis, presenting challenges and 

prospects.  
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2. Methodology of Synthesis 

2.1 Overview of the Methodology 

 
Isotropic Hybrid Nanostructures: Nonepitaxial growth of hybrid nanostructures 

involves multiple solution chemistry steps, as shown schematically in Figure 2-1 for 

the simplest case involving an isotropic core @ shell structure. The route starts from a 

monodispersed ensemble of Au NPs in toluene solution. (S1), followed by 

overgrowth of a uniform Ag shell around the Au NP core (Au @ Ag NPs, S2). The 

Ag shell is next reacted with a chalcogenide precursor (X), forming an amorphous 

Ag2X shell (S3). Finally, the Au @ Ag2X is chemically converted to Au @ MX 

(M=Cd, Pb, Zn) via cation exchange [80] (S4-S5). Remarkably, after replacement of 

Ag+ with the desired ions, a continuous, uniform monocrystalline semiconducting 

shell forms around the core. The formation of an amorphous Ag2X shell is a key step 

that leads ultimately, but counter-intuitively, to a single crystal MX shell. This is 

because the amorphous Ag2X matrix facilitates the motion of the ions, as well as the 

growth of the monocrystalline MX domain, due to a reduced interfacial and grain 

boundary energies between amorphous Ag2X and crystalline MX [81]. For spherical 

metal @ semiconducting hybrid nanostructure, the entire process is conducted in a 

uniform dispersed organic colloidal solution.   

 
Anisotropic Hybrid Nanostructures: The production of hybrid nanostructures with 

anisotropic shapes requires phase transfer from aqueous to organic solution via ligand 

exchange. This is because as-made Au @ Ag is originally achieved in aqueous 

solution. More importantly, the additional ligand exchange steps are needed to 
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preserve the created anisotropic morphologies during subsequent reaction with the 

chalcogenide precursor. As shown for a rod-shaped hybrid nanostructure in Figure 2-

3, 1-decanethiol (–SH) was used to bind tightly onto the Ag surface and replace the 

cetyltrimethylammonium bromide (CTAB) surfactant in aqueous solution. Then the –

SH capped Au @ Ag NPs are phase transferred into a toluene-acetone mixture, where 

they react with a chalcogenide precursor. Due to the strong binding between –SH and 

Ag, the kinetics of chalcogenation reaction can be well regulated appropriately such 

that the anisotropic shape feature of shell is well maintained, since a too intense 

reaction can result in change of surface morphology of Ag2S and even lost the 

original anisotropic shape. Preparation of anisotropic metal @ semiconducting hybrid 

NPs following these protocols can preserve the original bimetallic shape, enabling 

versatile shape control of the final product regarding both core and shell. Following 

the identical protocols, this method has been extended to additional anisotropic 

shapes, including triangular plate and cubic shapes, with sharp edges and exposed 

facets. The shape preservation of rods with dome-capped ends is readily achievable, 

while preservation of sharp edges (facets) present additional challenges, discussed in 

the section below.  

Alkanethiol 
 
phase transfer 

+ Ag 
+ M2+ 
+ TBP + X 

aqueous aqueous organic organic 

Au Au@Ag Au@Ag2X 
-amorphous 

shell 

Au@MX 
-monocrystalline 

shell 

S1 S3 S2 S4 
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Figure 2-3 Schematic illustration of a precision synthetic route to achieve 

anisotropic monocrystalline Au @ semiconducting core @ shells hybrid 

nanostructure (Scheme 2). In contrast to spherical synthesis in scheme 1, additional 

steps involving ligand exchange with alkanethiol and phase transfer are required.  X: 

chalcogenide precursor; M2+: Metal ion including Cd2+, Pb2+, and Zn2+; and TBP: 

tributylphosphine. The reaction steps are labeled in green as S1 through S4. The 

overall chemical reaction can be described by the following equations:   

S1: 2Ag(aq)+ +C6H6O6(aq)
2− "→" 2Ag(colloid*) +C6H6O6(aq)  

S2: 4nAg+ 4nRSH(solv) + nO2(solv) !→! 4(RSAg)n + 2nH2O(l ) surface thiolation [82]    

S3: 2Ag(colloid*) + S(solv) !→! Ag2S(colloid*)
† 

S4: Ag2X(colloid*) +M (solv)
2+ + 4P(C4H9 )3(solv) !→! MX(colloid*) + 2[Ag(P(C4H9 )3)2 ](solv)

+

 where X = 

S, Se 

* core@shell colloid with a Au core 

† Net observable reaction; S is presumably in situ generated by organosulfur 

precursor. 

 
Figures 2-1, 2-2 demonstrate the synthetic approach of generating high quality 

monocrystalline hybrid nanostructures. A key goal is to make the approach more 

robust so that the synthesis is scalable and highly selective of the targeted structure.  

Starting from core material with high purity and narrow size distribution, each 

chemical step requires careful optimization. There are specific challenges in each step 

of nanostructure synthesis, due to the dual need to preserve morphology and achieve 

monocrystallinity. These step-wise methods and challenges are reviewed below.  
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2.2 Step 1. Au @ Ag and Effect of Ag shell thickness 

 
The Ag shell serves as the starting template to be converted to the semiconducting 

shell with conformal shape and uniform thickness. The choice of silver for the 

template is based on two considerations. (1) As shown in Figure 2-4, silver has a 0.2 

% near lattice-match to gold, facilitating epitaxial over growth on gold NPs to 

produce a conformal shell; (2) silver has more reactivity with the chalcogenide 

precursors than the core gold material, allowing for silver-to-semiconductor chemical 

conversion, while keeping the plasmonic gold core intact. For both isotropic and 

anisotropic shape Au @ Ag core @ shells, control over the initial NPs ensemble 

distribution in terms of silver shell thickness and morphology, as well as suppressing 

silver self-nucleation, is prerequisite for subsequent chemical transformation. Precise 

and independent control of the dimension of the metal core and the semiconducting 

shell is important for it provides the basis for tunable optical features. Consequently, 

methods for the strict control of Ag shell thickness during the first step of hybrid 

nanostructure synthesis have been developed. Coating of a conformal Ag shell on the 

spherical Au core is achieved by thermal reduction of silver (I) by oleylamine in 

toluene under mild temperature. Typically, as-made oleylamine capped 

monodispersed Au NPs were re-dispersed into 8 ml toluene and 0.2 ml oleylamine in 

a small vial. The silver (I) is introduced by adding 2 ml of freshly prepared Ag+-

methanol solution (10 mg of silver nitrate in 2 ml methanol) into the Au NP toluene 

solution. The reaction vial is merged in 35 °C oil bath overnight without agitation. 

The shell thickness can be precisely controlled by adjusting the reaction time and 
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temperature. For all the anisotropic conformal Au @ Ag materials prepared, 

procedures were inspired by a method previously reported for the production of Au @ 

Ag triangular nanoplates [83]. Briefly, Au NPs in as-made shapes are first washed 

and re-dispersed into 1.5 mL 0.05 M CTAB aqueous solution, followed by sequential 

addition of 0.2 mL 0.1 M ascorbic acid, 40 µL 0.01 M AgNO3 and 0.3 mL 0.1 M 

NaOH aqueous solution with mixing thoroughly. Reduction of Ag+ by ascorbic acid 

in the presence of base occurs spontaneously, yielding a uniform conformal Ag shell 

with a typical thickness of ca. 3 nm. Thickening of the Ag shell can be realized by 

repeatedly conducting the above process. The successive coating of silver by the 

addition of small aliquot, rather than a one-time coating with large amount of silver 

precursor, yields a superior control over the shape replication of the template core.  

 

The shell thickness of best quality of the Au @ semiconducting product generally 

falls within a certain range. The ideal range of shell thickness is really depending on 

the shape and dimension of the core. Take the rod shaped NPs as an example, when 

reacted with the chalcogenide precursor, a too thick (> ca. 10 nm) Ag shell leads to 

overall elliptic feature of shape due to rounding corners of Ag2X. We note that careful 

control of the reaction rate with chalcogenide precursor is particularly needed to 

prevent core from etching with a thick shell. At the other extreme, a too thin (< ca. 2 

nm) Ag shell often results in fusion of different rods through the CdS layer after 

cation exchange for chemical conversion [77]. Also, a too thin shell results in a 

multicrystalline semiconducting shell instead of the targeted monocryatlline shell, 

after cation exchange. Figure 2-4 shows TEM images of three different shaped Au @ 
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Ag NPs where the Au @ CdS was convert from. After three cycles of silver coating 

on each sample, the thickness (~6 nm) is within the ideal range to best maintain the 

quality of the Au @ CdS hybrid NPs. 

 
Figure 2-4 TEM characterization of the Au @ Ag core @ shell nanostructures 

where the Au @ CdS was convert from. (A) nanorods. (Top) large scale TEM 

image, scale bar is 50 nm. (Bottom-left) TEM image of a single nanorod, (Bottom-

right) high resolution TEM image of the green outlined area in (bottom-left) 

nanorod. (B) triangular plates. (Top) large scale TEM image, scale bar is 50 nm. Inset 

shows a typical TEM image of a cross-section Au @ Ag triangular plate. Scale bar is 

20 nm. (Bottom) a single triangular plate and its high resolution TEM image of the 

green outlined area. (C) nanocube. (Top) large scale TEM image, scale bar is 100 

nm. (Bottom) a single nanocube and its high resolution TEM image of the green 

outlined area. For eye guidance, red dash lines in each high resolution image 

distinguish the Au-Ag interface. Yellow lines show the uniform lattice orientation 

across the Au-Ag interface, revealing nature of epitaxial crystalline growth process. 
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2.3 Step 2. Ligand Exchange and Effect of Alkanethiol on Shape Regulation 

 
For anisotropic nanostructure synthesis, preservation of anisotropic shapes with 

inhomogeneous surface curvature is a great challenge. Sharp geometric features on 

the exposed surface tend to be unstable, and can spontaneously evolve into rounded 

“edges” with lower surface energies [84, 85]. In order to retain the anisotropic shell 

morphology during the subsequent chemical transformation, the as-made Au @ Ag 

surface with well-defined anisotropic shape is chemically passivated with alkanethiol. 

The alkanethiol (typically dodecanethiol C10H22S) strongly binds to Ag, forming 

robust interfacial thio-metal bonds on shell surface. As the Au @ Ag is originally 

capped by CTAB as grown in water, ligand exchange by alkanethiol can be done by 

simply re-dispersing Au @ Ag to 10 % (v/v) alkanethiol acetone solution, followed 

by mild sonication and centrifugation. Such alkanethiol capped Au @ Ag can be then 

transferred to organic phase and well dispersed into toluene and acetone mixed 

solution (with addition of alkanethiol to suppress ligand loss on re-dispersion). 

Successful ligand exchange and alkankethiol capping can be confirmed by Fourier 

Transform Infrared Spectroscopy (FTIR) (Figure 2-5).  
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Figure 2-5 Surface passivation of Au @ Ag nanorod core @ shell by 

dodecanethiol The Au @ Ag nanorods were originally capped with CTAB 

surfactants as synthesized. (A) FTIR spectra of Au @ Ag core @ shell nanorods 

before (blue) and after (red) ligand exchange with C10H22S molecules. For clarity and 

comparison, two energy regimes are further highlighted to show spectra 

characteristics of CTAB and C10H22S molecules, respectively. Peaks are assigned by 

comparing with molecular spectra as well as with literature results [86-88] (B) FTIR 

spectra of pure CTAB and pure C10H22S molecular films on ZnSe windows. 

 

Surface passivation with alkenethiol ligands on Au @ Ag plays a key role in shape 

preservation during the subsequent formation of the Ag2X shell (Scheme 2, S3). 

Control experiments have been done to clearly revealed the key roles of alkanethiol: 

(1) Reaction of Ag shell with the S precursor in the absence of alkanethiol surface 

passivation leads to irregular morphology of Ag2S shell with etched Au core, due to 
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immediate and intense reaction between the bimetallic NP and the S precursor; (2) 

Time dependent experiments indicated that alkanethiol passivation onto the Ag 

surface allows regulation of the reaction rate, which has led to homogeneous reaction 

between Ag and the S precursor over the whole shell (Figure 2-6). Such regulation is 

important for preserving morphology and preventing the occurrence of localized 

reaction zones on the NP’s [89] during the reaction. 

 
Figure 2-6 Time-evolution of reaction between Ag shell and S precursor under 

surface passivation with C10H22S molecules (A) TEM image highlighting different 

image contrast among Au, Ag and amorphous Ag2S, which has allowed us to 

distinguish and monitor reaction zone when Ag shell reacts with S-precursor. Scale 

bar is 10nm. (B) TEM images showing evolution of Ag-Ag2S boundary (yellow 

dashed line) with time. Red dashed lines represents Au-Ag interface. Scale bar is 20 

nm. 

 

2.4 Step 3. Chalcogenation and amorphization of Ag shell: Chalcogenide Precursor and 
Morphology Control 

	
  
Chemical conversion from Au @ Ag to monocrystalline Au @ MX starts with the 

reaction of the Ag shell with the chalcogenide precursor to form the amorphous Ag2X 

shell matrix. This is the key step of the overall nonepitaxial method. Both the 

crystallinity and morphology of Ag2S is highly upon on the reaction kinetics between 

the Ag and the chalcogenide precursor, so the selection of precursor is very crucial. In 
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the original work, the organic based sulfuric precursor was prepared by dissolving 2 

mmol sulfur powder into a mixture of 5 ml oleylamine and 10 ml oleic acid in 100 °C 

oil bath for 40 min with constant stirring, forming a highly viscous, clear, bright 

orange homogenous solution. In the mixture sulfur reacts with oleylamine likely 

forming a mixture of complexes including alkylammonium polysulfides, thioamide 

and byproducts [90]. The resulting sulfuric-precursor(s) react well with the Au @ Ag 

particles to generate amorphized and conformal Ag2S shells on both spherical and 

anisotropic particles. Trials of all other forms of sulfuric- precursors (such as sulfur 

powder, dimethyl sulfoxide, NaHS, etc) generally result in the formation of a 

multicrystalline Ag2S shell and change in shell morphology. For aggressive reactants 

(e.g. sulfur powder), the Ag shell can be fully or partially peeled off from the Au 

core. 

 
Figure 2-7 Different morphology of Au @ Ag2Se rod with a relative smooth 

surface shape (A), a flower-like surface shape (B), and bone shape (C). The 

morphology difference is due to the reaction with different batch of selenium 

precursor. 

	
  
We next discuss shape preservation in the formation of Au @ Ag2Se hybrid 

nanostructures. Analogous to the S precursor above, the Se precursor is prepared by 

mixing 0.5 mmol Se powder, 5 ml oleic acid and 2.5 ml oleylamine in 180 °C oil bath 
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for 19 hours with constant stirring. Dissolution of Se powder into oleic acid and 

oleylamine makes a very dark red viscous solution. However, even following 

extended reaction time and temperature relative to S precursor preparation, selenium 

reacts incompletely, leaving a black solid precipitate. After the reaction, the product 

is added with 7.5 ml toluene to decrease the viscosity and then is centrifuged in order 

to separate the unreacted selenium powder, as well as any white selenium oxide solid. 

Evidently, selenium does not react with oleic acid / oleylamine to the extent that 

sulfur does. Preparation of the selenium precursor is thus not as well controlled and as 

concentrated under parallel experiments to that of sulfur.  As shown in Figure 2-7, 

three motifs of Ag2Se surface morphology were observed by using different batch of 

Se precursor reacting with rod shaped Au @ Ag core @ shell NPs. The Au @ Ag2Se 

rod in Figure 2-7A depicts the amorphous Ag2Se shell with a relatively smooth 

surface morphology around the rod shaped core, indicating the reaction proceeded in 

relatively homogenous manner. The anisotropically shaped Ag shell converts to 

amorphous Ag2Se with original shape, accompanied with volume expansion due to 

the insertion of Se2- ions. However, the poorly controlled selenium precursor makes it 

difficult to control this reaction. As shown in Figure 2-7B, a Ag2Se shell consisting of 

multicrystalline domains forming flower-like closed shell was readily generated. 

Finally, Figure 2-7C shows bone shaped Au @ Ag-Ag2Se morphology, where there 

are spherical single crystalline Ag2Se domains only on the tips of the rod. Herein, the 

reaction between Ag and selenium occurs preferentially on the tips of the rod. This 

suggests stronger binding of alkanethiol on the cylindrical sidewalls and weaker 

binding on the tip facets of rod shaped Au @ Ag. We rationalize these observations 
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by considering the strength of the binding of the Se precursor with Ag (I). The 

binding must be sufficiently weak to maintain amorphous Ag2Se matrix, and must 

compete with the alkanethiol ligand to regulate the surface morphology. At present, 

refinement and improved reproducibility in the development of Se precursors are 

needed for generation of precision Au @ Ag2Se hybrid nanostructures.  

	
  

2.5 Step 4. Cation Exchange to Produce Monocrystalline Shell 
	
  

The last step to realize the chemical transformation is to convert Au @ Ag2X to 

Au @ MX via cation exchange, a process that can preserve the morphology of the 

initial nanostructure template upon exchange and enable the formation of new 

material with versatile composition [91]. To insure completed conversion from Ag2X 

to MX, tributylphosphine (TBP) is used to extract Ag+ from the nanocrystal to 

facilitate MX grain growth. Importantly, cation exchange from amorphous Ag2X 

leads to a monocrystalline MX shell with independent lattice orientation with respect 

to the core material. For 10 nm outer-shell spherical Au @ Ag2X, cation exchange is 

presumed to initiate and propagate from a single nucleation site, accounting for the 

formation of a monocrystalline shell. However, targeted anisotropic nanostructures 

have much larger dimensions up to 100 nm. For such cases, single site nucleation and 

propagation might not be applicable. Thus, additional reaction kinetic control may be 

needed to facilitate formation of monocrystalline semiconducting shell. In practice, 

the formation of polycrystalline shells in as-grown nanostructure is commonly 

observed in larger anisotropic NPs. However, repeatedly refluxing of Au @ Ag2S 

with alkanethiol efficiently promotes formation of monocrystalline semiconductor 
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shell after cation exchange with metal ion. Single crystalline domain growth can thus 

be thermally activated in this regime through the simple refluxing protocol. 

 

On the other hand, addition of oleylamine molecules greatly enhances the 

formation of polycrystalline semiconductor shell. This suggests that surface 

passivation of the Ag2S regulates the kinetics of cation exchange, and the subsequent 

grain crystallization-and-growth process. Studies indicate that surface passivation 

with alkanethiol can efficiently inhibit cation exchange nucleation, while introduction 

of oleylamine molecules can facilitate ion diffusions and cation exchange through 

outward surface of amorphous Ag2S matrix. Therefore, an appropriate combination of 

alkanethiol and oleylamine must be applied to regulate the number of initiated nuclei 

in a large scale of amorphous Ag2S matrix. It is also found that with high density of 

alkanethiol capping on the Ag2S surface, spontaneous nanocrystalline CdS nucleation 

occurs every ca. 0.5 µm at the initial stage of cation exchange process. 

Monocrystalline shells produced larger than this scale are dominated by a 

mechanically driven grain growth process [75].  

 
Figure 2-8 High-resolution TEM images of a single Au @ PbS rod, showing the 

monocrystallinity throughout the whole structure. Four areas outlined in green are 
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enlarged and highlighted to the right, showing the identical lattice orientations 

(yellow lines). Scale bars of the insets are 5 nm. 

 

Additional factors regulating the cation exchange kinetics include temperature, 

concentration of TBP, and identity of the metal ions to be exchanged. It is found that 

the reaction temperature up to 60 °C to 90 °C to be the optimal to produce high 

quality monocrystalline semiconducting shell. Higher temperature can accelerate the 

full exchange, at the expense of converting the amorphous Ag2X matrix into a 

multicrystalline semiconducting shell. TBP has the effect of donating its lone electron 

pair of P to Ag+, forming a stable coordinate complex thus facilitates the exchange 

with the desired metal ions. Unfortunately, the lone pair is also sensitive to oxygen in 

the air, forming tributylphosphine oxide. Thus, air-free operation is usually required 

when handling TBP. Cation identity is an important factor. The cation exchange 

method is versatile and amenable to different desired metal ions. Yet different cations 

encounter different exchange challenges, requiring adjustment of the synthesis 

condition to ensure monocrystalline of final products. To introduce the metal ions 

into the reaction mixture, the metal salts are dissolved in methanol and added into the 

toluene solution of the NPs. The solubility of the metal ions in methanol differs from 

each other and this limits the quantity of Au @ MS produced at a time. Additionally, 

Pb2+ forms coordination complex with oleylamine (Pb2+-oleylamine) and this makes 

the replacement of Pb2+ by Ag+ harder. To overcome these difficulties, repeatedly 

refluxing of the Au @ Ag2S intermediate product with alkanethiol to replace 

oleylamine ligands is especially necessary to produce high quality monocrystalline 



 41 
 

PbS shell (Figure 2-8). For producing ZnX semiconducting shell, Zn2+ is the hardest 

Lewis acid among Cd2+, Pb2+, Ag+ and Hg2+, thus has the least binding strength with 

TBP and the exchange with Ag+ become the most spontaneous. This makes the ZnX 

nuclei easily forms on multiple sites during cation exchange, resulting in 

multicrystalline shell.  

 

3. Shape Considerations: Size Scaling 

 
To date, different range of size of the hybrid nanostructure has been explored. For 

the case of spherical core @ shell particles, precision structures have been realized 

with outer diameters up to 35 nm and semiconducting shell thickness of 15 nm. For 

various anisotropic shapes, yet larger structures have been realized.  Precision cubes 

with core edge length of 50 nm have been attained. Rods with varying aspect ratios 

from 1:2 (20 nm × 40 nm) to 1:5 (15 nm × 75 nm) have been realized. Wires have 

reached up to 3.3 µm length with 30 nm Au core diameter [75]; and for triangular 

plate, different edge sized structure - from 50 nm to 200 nm, have ben produced, as 

shown in Figure 2-9. When the size of anisotropic nanostructure scales up with 

nonepitaxial synthesis method, it is not surprising that new structural features can 

emerge. For example, large aspect ratio (20-100) nanowire assume curvature, and 

bent over the length-axis, due to the mechanical force during the monocrystalline 

growth of semiconducting shell [75]. What’s more, larger sized triangular plates 

adopt a wrinkled morphology, as manifested by shape distortion in TEM images 

(Figure 2-9A, B). The wrinkle feature forms during the cation exchange process. Due 
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to reduced dimension in thickness of the triangular plate, the core is likely bent by 

mechanical force of monocrystalline CdS grain growth. For smaller sized anisotropic 

nanostructure, it is more challenging to preserve the sharp feature of the core, where 

the plasmonic material has its function of local field enhancement rely on. As shown 

in Figure 2-9 B and C, smaller triangular plate has less degree of distortion compare 

to the larger one, but exhibits more notable rounding corner of the core.  

 

 
Figure 2-9 Au @ CdS triangular plate of different edge size (A) 200 nm, (B) 150 

nm, and (C) 50 nm. The blue numbers on the images are the element molar ratio of 

Au/Ag/Cd/S. 

 

4. Remaining Challenges 

 
The general method for producing metal @ semiconducting hybrid nanostructures 

has been developed, however, the variation of the reaction kinetics with respect to 

nanostructure morphology, requires the optimization of processing conditions for 

each starting material. To date, there are a few different monocrystalline hybrid 

nanostructures consisting of combinations of materials that have been explored with 

various shapes, as summarized in Table 2-1. Synthesis of hybrid nanostructures of Au 

@ CdS and Au @ PbS have been studied most extensively, while reported work on 
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Au @ ZnS, and Au @ CdTe limited to spherical structures. Further efforts and 

attempts are needed before this chart is expanded.  

 

The kinetics of the synthetic protocol precludes its applicability to HgX. The 

binding strength of Hg2+ with TBP is comparable as Ag+ does with TBP thus cation 

exchange of Hg2+ with Ag+ will not occur. An interesting question is the extension to 

other core materials.  To date Au has been the primary core in these model studies, 

primarily because of its attractive plasmonic properties. In addition, other spherical 

core materials including platinum and Fe0.5Pt0.5 NPs have also been demonstrated 

(Science). In practical, obtaining the starting core NPs ensemble with narrow 

distribution in terms of size and morphology is a challenging, and this is especially 

the case for certain anisotropic NPs such as Au cubes. Triangular plate is grown in an 

ensemble mixture of plates and spheres and it requires preliminary purification before 

silver coating. Moreover, the feasibility of Ag shell coating is another difficulty to 

overcome when considering using varieties of core material. For example, Fe0.5Pt0.5 

@ CdS nanowire would be a very interesting hybrid nanostructure to study the effect 

of ferromagnetism on spin polarization of the semiconducting nanowire. However, 

uniform coating of Ag on the entire Fe0.5Pt0.5 slim wire remains challenging. Attempts 

of several strategies of Ag coating have resulted in silver over growth only at two 

ends of the wire. 

  

Also, as discussed above, the reaction between the Ag shell with the chalcogenide 

precursor is the key step of the nonepitaxial method. Synthesis of the amorphous 
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Ag2S shell is experimentally well developed, yet Ag2Se remains a challenging, as the 

reproducibility of a selenium precursor that leads to amorphous Ag2Se shell with 

well-controlled morphology needs to be improved in order to make the chemistry 

robust. This is more problematic for the larger dimensional anisotropic nanostructure 

than spherical one. What’s more, tellurium does not dissolve at all following the 

precursor preparation of sulfur and selenium. The development of other chemical 

forms of chalcogenide precursor is needed to address this limitation. 

 

Table 2-1 Summary of monocrystalline Au @ semiconducting hybrid nanostructures 

with various morphologies prepared via nonepitaxial method. 

!! Zn2+% Cd2+% Pb2+%

S2+% %% %% %%

Se2+% %% %% %%

Te2+% %% %% %%

a 

b,c 

c a a 

a 

a 

b,c b,c 

c 

 
a. Ref. [54] 

b. Ref.	
  [75] 

c. Huizhi Bai, original result. 
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5. Conclusion and Prospects 

 
The class of metal @ semiconducting core @ shell hybrid nanostructure has been 

synthesized with remarkable monocrystalline and morphology control by nonepitaxial 

method. This new material exhibits attracting optical properties due to strong 

plasmon-exciton coupling between the core and the shell, and has potential 

application in electronics, photocatalysis and spintronics. Promising improvements 

have been made to allow flexible combinations of both core and shell in terms of 

chemical ingredient, size and morphology. At this stage, spherical and rod shaped 

nanostructure is ready for scaling up synthesis, while cubes and triangular plates may 

require more stringent refinement of experimental protocols of the starting material 

synthesis. Furthermore, improvement and searching other possibilities of Se and Te 

precursor would open up more choices to material diversity and allow engineered 

optical properties. One aspect of the materials that is not well understood involves the 

metal-semiconductor interface. Given the lattice mismatch of the core-shell materials, 

one might expect the prevalence of defects or reconstruction at the immediate 

interface. A recent study using transient absorption spectroscopy has shown fewer 

defects in the Au-CdS interface due to the nonepitaxial nature [92]. In contrast of 

metal-semiconductor interface by epitaxial growth method showing defects due to 

lattice strain, non-radiative energy loss in the nonepitaxial grown spherical Au @ CdS 

nanostructure is significantly reduced due to fewer defect scattering. Compared with 

the thermal reduction grown Au-CdS heterostructure, charge transfer into metal 

domain of the nonepitaxial structure is relatively slow and this leads to longer exciton 

lifetime, implication of the existence of a higher potential barrier at the Au-CdS 
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interface. The nonepitaxial semiconductor lattice seems decoupled with the core 

shown by both high-resolution TEM characterization and transient optical 

spectroscopy. Gaining more knowledge of the interface is an important and 

challenging area for future study.   
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Chapter 3: Anisotropically Shaped CdSxSe1-x Pseudobinary 
Semiconductor Nanocrystals 1 

 
 

1. Introduction 
 
 

Semiconductor nanocrystals have been extensively studied over the past decade 

due to their unique electronic and optical properties [65], which largely depend on 

size, shape, and chemical composition. It is well known that band gap engineering of 

semiconductor nanocrystals can be realized by fine tuning the dimension due to 

quantum confinment on the nanoscale [93]. In addition, nanocrystal shape is another 

key property that has lead to a broad range of device functionality [94]. Changes in 

nanocrystal shape modify the band structure and attendant optical and electronic 

properties. In contrast to nonpolarized fluorescence from spherical semiconductor 

nanocrystals, rod-shaped semiconductor nanocrystals emit polarized fluorescence 

along the length-axis [95]. These properties offer new opportunities for improved 

performance in devices that include semiconductor-nanorod lasers [96], nanorod-

based solar cells [97, 98], and nanoscale transistors from a single cadium selenide 

(CdSe) tripod [99] and tetrapod [100]. Over recent years, the controlled synthesis of 

semiconductor nanocrystals in organic colloidal solution has been extensively studied 

[101]. Nonetheless, robust synthetic routes to tailor nanocrystal shape and the 

elucidation of growth mechanisms remain important issues in nanomaterial 
                                                
1	
  This	
  work	
  is	
  lead	
  by	
  Huizhi	
  with	
  collaboration	
  of	
  Joshua	
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  and	
  Dr.	
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Riba.	
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  all	
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  Joshua	
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  mapping	
  characterization,	
  with	
  advice	
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chemistry. Various anisotropically shaped semiconductor nanocrystals have been 

synthesized, including highly faceted cubes, tetrahedrons [102], and quasi two-

dimentional platelets [103]. These anistropically shaped semiconductor nanocrystals 

typically adopt the zinc blende or wurtzite crystal structure. The wurtzite-structured 

nanocrystal presents additional categories of anisotropic shape, such as the rod and 

bullet [29, 104]. Interestingly, a polycrystalline tetrapod [32] has also been 

synthesized with four wurtzite arms growing from a zinc blende seed. So far, all of 

these anisotropically shaped semiconductor nanocrystals were synthesized with 

uniform chemical composition (AB). On the other hand, pseudobinary (ABxC1-x) 

semiconductor alloy nanocrystals can provide an additional degree of freedom 

(beyond size and shape) to control the band gap properties. To date, synthesis of 

semiconductor alloy nanocrystals has been limited to sub-10 nm homogeneous [105] 

and gradient [106] alloy spherical structures [107-109], while synthesis of 

anisotropically shaped alloys has gone unreported. In this work, we present a 

synthetic route to CdSxSe1-x alloy semiconducting nanocrystals with various 

anisotropic shapes through seed-mediated growth.  

 

As shown in Figure 3-1, our synthetic route starts from 4 nm zinc blende spherical 

CdSe nanocrystals which function as seeds in the colloidal solution. Cadmium oleate 

and octanethiol are slowly injected into the reaction solution via a syringe pump at 

rate of 25 µl/min, while the reation solution is ramped up to the temperature of 310 

°C. (See the experimental section for detailed procedure.) After sufficient reaction 

time (order of 100 min), larger anisotropically shaped CdSxSe1-x alloy 



 49 
 

semiconducting nanocrystals form. By varying the concentration of the octanethiol 

solution injected and the growth time, we achieve relatively uniform ensembles of 

nanocrystal with select shapes, including polygons, bullets, and rods. Rod-shaped 

nanaocrystals can further develop into a mixture of bipods, tripods, and tetrapods with 

longer reaction times. This work achieved the first anisotropically shaped 

pseudobinary (ABxC1-x) semiconductor alloy nanocrystals with a seed-mediated 

growth method, selectively achieving a variety of shapes.  

octanethiol 
Cd(OA)2 
25 µl/min  Injection 
 
 310oC reflux 

CdSe 
seeds 

shaped CdSxSe1-x 
nanocrystals 

18 mM thiol 

longer reaction time 

48 mM thiol  

144 mM thiol  

 
Figure 3-1 Synthetic route to various anisotropically shaped CdSxSe1-x 

nanocrystals from zinc blende sphereical CdSe seeds. By varying the 

concentration of octanethiol solution injected and the growth time, pure ensembles of 

nanocrystals in different anisotropic shapes can be obtained, including polygons, 

bullets, and rods. A mixed ensemble of bipods, tripods, and tetrapods is obtained with 

longer reaction time.  

 

Using rod-shaped anisotropic nanocrystals as a model system, we further 

demonstrate that the size and chemical composition (S : Se ratio) can be fine tuned 

co-dependently through the reaction time. This further permitted optical 
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measurements on a series of rod-shaped CdSxSe1-x nanocrystals. The band gap of 

semiconducting nanorods were found to be altered by the gradient element 

distribution of S and Se within the length-axis direction of the rods. Finally, a set of 

control experiments (without cadmium precursor) were conducted to explore the 

mechanisms that lead to the formation of shaped alloy nanocrystals. Octanethiol is 

found to act as both sulfide precursor and shape-directing reagent, with rod-shaped 

nanocrystals evolving into multi-pods ensemble at late growth stages.  

 

2. Experimental Methods 

2.1 Preparation of 4.5 nm spherical zinc blende CdSe seeds 

 
Zinc blende CdSe seeds are synthesized with modification of a published method 

[110]. First, cadmium oleate precursor was prepared by mixing 1 mmol cadmium 

oxide (CdO), 10 ml octadecene (C18H36, ODE) and 1.87 ml oleic acid (OA) in a 250 

ml three neck-flask flushed by nitrogen (N2) gas for 30 min. Then the mixture was 

heated to 280 °C under N2 gas protection to allow full reaction between CdO and OA 

to produce a clear solution, upon which the reaction was stopped and cooled to room 

temperature. The production of cadmium oleate precursor is described by the reaction 

equation:   

CdO(s) + 2C17H33COOH(ODE )
280°C! →!! Cd(C17H33COO)2(ODE ) +H2O(g)     Eqn 3-1 

To the above clear cadmium oleate solution, 1 mmol selenium dioxide (SeO2) and 

63 ml ODE were added. After flushing by N2 for 30 min, the solution was heated to 

240 °C and subsequently maintained for 1 min before 1 ml OA was added dropwise 
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under N2 protection. During the process the solution became yellow, orange and then 

red. Then, the solution was held at 240 °C for another 30 min, after which the heater 

was removed and the solution returned to room temperature. During the process SeO2 

powder was dissolved in ODE forming clear solution. The reaction between ODE and 

SeO2 is described as follows [110]: 

ODE(l ) + SeO2(s)
240°C! →!! Se(ODE ) +organic byproducts(ODE )      Eqn 3-2 

Subsequent dissolution of selenium in ODE or oleylamine-forming 

organoselenium species can yield multiple byproducts [111]. In the reaction equation 

below, Se then reacts with cadmium oleate and ODE to form CdSe colloid.  

Cd(C17H33COO)2(ODE ) + Se(ODE )
240°C! →!! CdSe(colloid ) +organic byproducts(ODE )  Eqn 3-3 

The product was precipitated and washed by adding propanol or anhydrate acetone 

with centrifugation at 6500 rpm for 20 min, and re-dispersed into ~ 15 ml hexane for 

further usage. This quantum dot ensemble has a first band gap absorption peak at 583 

nm and fluorescence emission at 617 nm, as measured by UV-Vis absorption 

spectroscopy and fluorescence spectroscopy, respectively. The concentration of the 

15 ml solution was calibrated according to the absorption peak at 583 nm. A 1 : 5 

hexane dilution should have an intensity of 0.988 at 583 nm absorption peak with 2 

mm optical path.  

 

2.2 General procedure to synthesize shaped CdSxSe1-x alloy nanocrystals 

 
Shaped CdSxSe1-x alloy nanocrystals were synthesized by adaptation of a 

previously published procedure [112]. The reaction between cadmium oleate and 

octanethiol is proposed to be:  
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Cd(C17H33COO)2(ODE ) +C8H17SH(ODE )
310°C! →!! CdS(colloid*) +C17H33COOH(ODE ) +C17H33COOC8H17(ODE )   Eqn 3-4 

*Nucleate on CdSe seed 

 

The experimental set up is shown in Figure 3-2 

and detailed steps are described as follows.  

i. Combine 1.5 ml oleylamine and 1.5 ml 

ODE in a 100 ml three-neck bottle. 

ii. Take 1 ml CdSe hexane stock solution 

and combine with the solution of step 1, 

stirring 1 min to mix thoroughly. 

iii. Pump the mixture of step 2 with a 

vacuum pump at room temperature for 

1.5 hours to remove hexane.  

iv. Take 1.2 ml cadmium oleate precursor 

prepared by the above method (1 

mmol in 10 ml ODE) with a biotech 

pipette, and dilute with ODE up to 6 ml, then load into a 6 ml plastic syringe. 

The final concentration of cadmium oleate is 20 mM. 

v. In the glove box, take 1.5 mL octanethiol and add 4.5 ml ODE to make a 

sulfuric precursor stock solution. Dilute the stock solution 10 times by 

withdrawing 0.6 ml with a 1 ml syringe and adding ODE up to 6 ml. Load the 

diluted solution into a 6 ml syringe. The final concentration of octanethiol is 

144 mM.  

Figure 3-2 Illustration of the 

experimental setup to synthesize 

CdSxSe1-x alloy nanocrystals. 
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vi. Transfer the 3-neck bottle of the step 3 mixture above a heating mantle. Set up 

a condenser, a thermometer, and a two-port syringe pump on the three-neck 

bottle following Figure 3-2. Note that this synthesis process was conducted 

with flowing N2 gas, with a positive N2 pressure (15 - 30 PSI) and N2 directly 

exhausted to atmosphere from the top of the condenser. The reaction mixture 

was degassed with N2 for 1 hour at room temperature, and then heated to 120 

°C and held for 20 min, and then the temperature was quickly raised to 310 °C 

with the maximum heating power. Once temperature reached 280 °C, the 

syringe pump was started to inject the precursor of cadmium oleate and 

octanethiol, as prepared in steps 4 and 5. The syringe pump was set up with 

two 6 ml syringes injecting simultaneously, 3.0 ml total deliver volume at a 

1.5 ml/hr rate of delivery.  

vii. After ~ 2 min of the precursor injection, the temperature reached 310 °C and 

the solvent started to boil throughout. At the end the precursor injection, 0.5 

ml OA was quickly injected to the solution by penetrating a syringe needle 

through the rubber stopper and the solution was maintained at 310 °C for an 

additional hour before cooled to room temperature.  

viii. To remove the un-reacted precursors and wash the sample, anhydrate acetone 

was added to the cooled solution until white cloudy precipitation occurred. 

(The amount of anhydrate acetone addition depended on size of the 

nanocrystal product). The product was centrifuged at 3500 rpm for 15 min. 

The nanocrystals were then dispersed into hexane. Repeat the washing 

procedure three times to obtain a better-cleaned nanocrystal sample.  
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Table 3-1 Reaction conditions for different anisotropically shaped 

semiconducting nanocrystal products and compositions (based on 4.5 nm CdSe 

spherical seeds) 

shape 
Octanethiol 

Concentration (mM) 

Reaction 

Time (min) 
x=S/(S+Se) 

polygon 18 180 0.63 

bullet (2:3 aspect ratio) 48 180 0.68 

bullet (1:1 aspect ratio) 96 180 0.69 

rod (varying size) 144 12-104 varying 

rod and mixed bi-, tri- pods 144, 192 120 0.73 

 

The above procedure was used to synthesize a mixture of bi-pods, tri-pods and 

tetra-pods. By changing the octanethiol concentration prepared in step 5 and the total 

reaction time, different shapes of nanocrystals were produced (see Table 3-1). For 

rod-shaped nanocrystals, control experiments were conducted with fixed 144 mM 

octanethiol concentration and varied reaction time (Time zero was defined as when 

the reaction mixture reached 280 °C.) Multiple reaction ports permitted sample 

collection at different reaction times. To stop the reaction, the solution was extracted 

with a long needled glass syringe and injected in cold acetone in a separate vial, 

without addition of OA.  
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2.3 Characterization 

 
Transmission Electron Microscopy Characterization (TEM): 

Transmission Electron Microscopy images were obtained using a JEOL model 

JEM 2100 LaB6 microscope at an acceleration voltage of 200 kV. The specimens 

were prepared by adding a drop of hexane dispersion onto an amorphous carbon-

coated 300 mesh copper grid and drying in air.  

 

Energy-Dispersive X-ray Spectroscopy (EDS) mapping and High-angle Annular Dark 

Field Scanning Transmission Electron Microscopy (HAADF STEM) 

Characterization: 

EDS area maps, line scans and HAADF images were obtained using a JEOL JEM 

2100F field-emission transmission electron microscope equipped with an ultra-high 

resolution pole piece and an Oxford 6498 INCA X-sight EDS system with polymer 

window (energy resolution of 136 eV at the Mn-Kα line). The microscope was 

operated in scanning TEM (STEM) mode, allowing for precise analytical information 

to be obtained from a focused probe. Due to the tendency for hydrocarbon 

contamination buildup under the electron beam (from the hexane dispersion), a 

relatively large probe size of approximately 1 nm was used, together with a fast 

scanning rate (0.5 s dwell time for area maps and approximately 1 s for line scans) 

and a process time of 5 in the Oxford INCA EDS software. For each map (or line 

scan), repeated passes were collected until suitable statistics had been obtained. 

HAADF-STEM images were recorded at the same beam settings, with a camera 

length of 8 cm. 
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Photoluminescence (PL) measurement: 

The ensemble photoluminescence measurement is conducted using a portable USB 

fluorescence spectrometer by Ocean Optics™. The hexane colloidal solution was 

placed in a 2 mm quartz cuvette supported on a 10 mm sample holder across the 

diagonal direction to make a ~ 90 ° optical path. The sample was radiated with a 400 

nm blue laser and the luminescence was monitored from 350 nm to 1100 nm.  

 

3. Results and Discussion 

 
The low-resolution TEM images of various anisotropically shaped semiconductor 

nanocrystals are shown in Figure 3-3. Four ensembles of nanocrystals with different 

morphologies are discovered with the experimental condition explored; polygon, 

bullet, rod, and mixture of bi-pods, tri-pods and tetra-pods. High-resolution TEM 

images shown in Figure 3-5 better reveal the morphology of each ensemble structure. 

According to the low-resolution TEM images, the rod ensemble is the most uniform 

in shape manifestation and size distribution, as shown in Figure 3-3D. The self-

assembly of nanorods with its length-axis perpendicular to the TEM grid (Figure 3-

3D inset) confirms the narrow size distribution of the rod diameter. A histogram of 

rod diameters according to the assembly image reveals the mean diameter is 7.4 ± 1.0 

nm. (Figure 3-4A) 
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Figure 3-3 Low-resolution TEM images showing different shapes of CdSxSe1-x 

semiconducting nanocrystals prepared under different reaction conditions. (A) 

polygons synthesized with 18 mM initial thiol injection; (B) bullets, 48 mM initial 

thiol injection; (C) mixture of bi-pods, tri-pods and tetra-pods with 144 mM thiol 

injection, and (D) rods synthesized with 144 mM thiol injection. The inset is the TEM 

image of a rod-shaped nanocrystal assembly with its length-axis perpendicular to the 

TEM grid. Scale bars are 100 nm for all images. The S composition for each sample 

from A to D is 63 %, 67 %, 73 %, and 68 %, respectively.   
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Figure 3-4 (A) Histogram of rod diameter and a Gaussian fit (red line) revealing 

mean diameter is 7.4 ± 1.0 nm. (B) Histogram of joint angle of the bi-pods and its 

Gausssian fit (red line) showing the 109 ± 3 ° angle.  
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Figure 3-5 High-resolution TEM images of differently shaped semiconducting 

nanocrystals: (A) polygon, (B) bullet, (C) rod, and (D) bi-pods with a zinc blend 

seed at the joint of two wurtzite arms. Inset of (D) shows physical models of a 

truncated tetrahedron seed and the developed bi-pods from the seed model. 

 

High-resolution TEM characterization provided further details of the crystalline 

structure. The polygon- and bullet-shaped structures (in Figure 3-5 A, B ) are single 

crystalline, while rod (Figure 3-5 C) and bi-pods display two distinct crystalline 

phases (separated by red lines in the Figs) stemming from the zinc blend seed and 

wurtzite arms (Figure 3-5 D). Upon further inspection of the 2-dimensional projection 

of the TEM images in Figure 3-5 C, the layer stacking is revealed. One end of the rod 

displays …abc… stacking (marked in yellow on Figure 3-5 C), revealing a faced-
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centered cubic (fcc) zinc blende semiconducting lattice structure, while the remaining 

body of the rod has …ab… stacking pattern, revealing a hexagonal close packed 

(hcp) wurtzite semiconducting lattice structure, with the lattice vector [001] along the 

length-axis. Coincidentally, the bi-pods similarly consist of two arms of hcp lattice 

structure with the [001] vector pointing along the length-axis, and the arm joint is a 

fcc lattice. Notably, a histogram of 70 individual bipods images (Figure 3-4B) reveals 

the two arms join at an angle of 109 ± 3 °. This indicates that the pods are grown from 

a tetrahedron seed, confirming the fcc crystalline structure of the seed that joins the 

two arms. Figure 3-5 D inset shows the schematic 3D models of a truncated 

tetrahedron seed and the developed bi-pods from the seed model, consistent with the 

TEM images. Conversion from the starting zinc blende CdSe seed to the final partial 

wurtzite structured nanocrystal is achieved by annealing the nanocrystal in the 

solution at 310 °C.  

 

In order to gain information of the chemical composition and element distribution, 

we characterize the nanocrystals with large area quantitative elemental analysis using 

EDS, as well as high-resolution EDS mapping. For all of the quantitative EDS 

analysis, about 500 peak counts were obtained for the Cd, S and Se elements. Three 

or more spots on TEM grid were targeted and consistent results were acquired. The 

precision of percentage atomic ratio is estimated to be within 5 %. We found that both 

characterizations reveal closed to 1:1 atomic stoichiometry of Cd: (S + Se) on both 

averaged nanocrystals and on an individual nanocrystal. More precisely, the atomic 

composition of cadmium is measured as 51 % - 55 % relative to the combined atomic 
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composition of S and Se (49 % - 45 % correspondingly). The 1 – 1.2 ratio of Cd: (S + 

Se) measured by EDS is consistent with previous findings on CdSe nanocrystals 

synthesized by other wet lab chemistry methods [37], due to a Cd-rich surface 

stoichiometry. There is no appreciable oxygen content in the nanocrystal, according 

to both the stoichiometry of Cd: (S + Se) ratio and oxygen (O) profile of EDS 

mapping, showing that the oxygen level on the nanocrystal sample is no greater than 

the carbon film background (See Figure 3-7).  

 

We note that differently shaped nanocrystals possess distinct chalcogenide 

compositions, as quantified by the ratio of S over S and Se (x value), and summarized 

in Table 3-1. Generally, the S : Se ratio is around 1:1 to 4:1 for different nanocrystals. 

Notably, we started from 4.5 nm spherical CdSe as seed particles, without further 

addition of any selenium precursor, and surprisingly end up with anisotropically 

shaped CdSxSe1-x nanocrystals of much larger dimension. We propose the structure of 

the grown nanocrystal to be a crystalline pseudobinary alloy, rather than a core @ 

shell structure. We reason that the correspondingly sized core @ shell nanocrystal 

with a 4.5 nm CdSe core (in a 8 nm dia × 20 nm CdS rod) would display a S : Se ratio 

of ~ 20 : 1, in conflict with our observations. High-resolution EDS mapping 

characterization further confirmed this. As shown in Figure 3-6A, the Cd, Se, and S 

elements are distributed throughout the whole nanorod and thus inconstant with a 

core @ shell structure. As a control comparison, a core @ shell styled CdSe @ CdS 

nanorod was synthesized following a literature method [41] and characterized with 

the EDS mapping presented in the Figure 3-6B. Unlike the pseudobinary alloys we 
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produced, this control readily shows a CdSe core is located at about ¼ of the rod 

length-axis, in agreement with the literature result [41]. 

 
Cd Se S HAADF image O 

STEM image Cd Se S O 

A 

B 

 
 Figure 3-6 EDS mapping characterization of a single rod-shaped 

semiconducting nanocrystal. (A) EDS element mapping of an individual rod-shaped 

CdSxSe1-x semiconducting nanocrystal showing the S and Se distribute throughout the 

whole rod, rather than forming a core @ shell styled structure. The magenta frame 

outlines the scanning area by focused electron beam on STEM mode. (B) EDS 

mapping of a core @ shell styled CdSe @ CdS nanorod as a control comparison. Se 

element is located at the lower quartile of the rod length-axis as a core. Element maps 

of Cd, Se and S are shown in blue, red and green color, respectively. The left column 

schematically illustrates each structure.  

 



 62 
 

 
Figure 3-7 EDS line scan of an individual CdSxSe1-x rod (left) and its HAADF 

image (right). The magenta line represents the scanning trace. Cd, Se and S profiles 

are shown in blue, red and green curves, respectively.  

 

Closer inspection of the rod-shaped nanocrystal through EDS line scans reveals 

that the S and Se in the rod were not fully homogenously distributed along the length-

axis, but exhibited separated features with one end S-rich and the other end Se-rich. 

As shown by the EDS line profiles in Figure 3-7, the S and Se peaks appear at distinct 

positions along the long axis, while the Cd peaks at the middle of the rod, between the 

chalcogenide peaks. This means that the pseudobinary semiconducting rod has a 

gradient composition, as opposed a homogenous alloy. We did not observe such 

separated feature across the short-axis direction. At later nanorod growth stages, 

larger multi-pods structures developed with homogenous S and Se element 

distribution on the legs. This is attributed to ion diffusion under further annealing of 

the nanocrystals.  
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50nm 50nm 50nm  
Figure 3-8 TEM images showing size evolution of rod-shaped CdSxSe1-x 

nanocrystals prepared with reaction times of 12 min, 92 min and 104 min from A to 

C. Scale bars are normalized to 50 nm in each image.  

 

Besides anisotropy shape control over the nanocrystal using different 

concentrations of octanethiol, we further use the rods as a model to explore how 

reaction time affects nanocrystal growth. Not surprisingly, we found that as the 

growth time increased, the overall size (length and diameter) of the rod increased. 

Figure 3-8 shows representative TEM images of samples produced in time-lapsed 

synthesis using 12 min, 92 min, and 104 min growth time.  
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Figure 3-9 Composition control of CdSxSe1-x nanorod (A) Normalized EDS 

spectrum of a series of CdSxSe1-x nanocrystal grown in different stages. Peaks at 1.4 

keV, 2.3 keV and 3.1 keV originate from Se, S and Cd, respectively, as labeled on the 
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graph; (B) Plot of composition (x value) over the growth time as well as the sulfur 

precursor delivered to the reaction vial. Red curve is an exponential fit to the 

experimental data (red sphere). The sulfide precursor (octanethiol) was delivered 

into the reaction vial via the syringe pump at a rate of 0.025 ml/min, thus the 

corresponding volume of precursor delivered is labeled in the upper axis.  

 

As the reaction time and nanorod size increases, there is a concomitant increase in 

the sulfur content in the nanorod, characterized by quantitative EDS measurement 

(Figure 3-9A). Peaks in Figure 3-9A are normalized to the Cd-Lα peak at 3.13 keV. 

We demonstrate that the composition of the semiconducting rod nanocrystal can be 

fine tuned by varying the reaction time (Figure 3-9B). The CdS content can 

eventually take up to 77 % in the rod. This suggests that we can control the CdS 

composition along the length-axis of the semiconducting rod. Consequently, we 

adjusted the reaction time to obtain a series of rod-shaped semiconducting 

nanocrystals with both size and chemical composition co-dependently controlled. 

This has allowed us to conduct optical measurements on the series of rod-shaped 

CdSxSe1-x nanocrystals to analyze the relationship between band gap energy (Eg) of 

the semiconductor as a function of dimension and chemical composition.  
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Figure 3-10 Optical characterization and band gap energy (Eg) of a series of 

rod-shaped CdSxSe1-x nanocrystals grown with varying reaction times (A) 

Normalized fluorescence emission spectra following 400 nm laser excitation; (B) 

Peak emission wavelength versus nanocrystal growth time; (C) Band gap energy 

versus composition; red circles and the red line are experimental Eg and the best 

linear fit of the experimental data, respectively; orange solid sphere: theoretical Eg 

calculated form pure CdSe rods of the same size as the experiment; black triangle: 

Eg of bulk CdSxSe1-x; green triangle: estimated lower bound limit of Eg of the 

CdSxSe1-x rod of the same size as the experiment. (D) Schematic energy diagram of 

the spatial-dependence band gap structure of a gradient CdSxSe1-x rod. The band 

offset data of CdSe-CdS interface is from Ref [113].  
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Nanorods at different growth stages have strong band gap fluorescence, with 

emission peak full width at half maximum (FWHM) ~ 30 nm, as characterized by 

ensemble fluorescence measurement in hexane colloidal solution (Figure 3-10A). The 

data is normalized by shifting the baseline to 0 and peaks are rescaled to the same 

height. For direct band gap semiconductors, fluorescence originates from band gap 

emission following exciton recombination, providing a measure of the band gap 

energy (Eg). As shown in Figure 3-10B, the peak emission evolves with growth time. 

The band gap energy here decreases linearly in growth time from ~ 1.98 eV to ~ 1.91 

eV. Note that nanorods at a specific growth time possess a unique size in terms of 

length and diameter, and a unique chemical composition. Both rod size and 

composition can influence the width of the band gap of the semiconducting 

nanoparticle. In order to gain better understanding of the observed range of band gap 

energies, we plot the Eg of nanorods grown with different reaction times versus their 

chemical composition (Figure 3-10C, red circles) revealing the linearly decreasing 

relationship between gap energy and increasing S composition (Figure 3-10C, red 

line). Generally, the band gap energy of a homogenous alloy material (CdSxSe1-x) is a 

linear combination of Eg of the two binary materials, weighted by the molar ratio 

with the addition of a small non-linear term, expressed as [105]: 

Eg(CdSxSe1−x ) = xEg(CdS)+ (1− x)Eg(CdSe)− 0.3x(1− x)                     Eqn 3-5 

 Using Eg of 1.74 eV for CdSe and 2.42 eV for CdS bulk materials, we calculated the 

corresponding Eg of the binary bulk material CdSxSe1-x, shown in black triangles, 

without considering the quantum confinement effect. Note that our nanorods 

synthesized at different growth times have successively larger sizes and this should 
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affect an additional change in Eg. Intuitively, taking the finite size effect will further 

increase the band gap energy due to the quantum confinement. Experimentally 

determined values for the Eg of rod-shaped CdSe nanoparticles have been well 

described by the empirical formula [34]:   

Eg(CdSe)
rod =1.8563− 2.0835L−2 + 4.5507D−2 − 0.0018( L

D
)2 + 0.0001( L

D
)3 +10.5824L−3 − 0.3833D−3     Eqn 3-6

 

In this equation, L and D represent the length and diameter of the nanorod, 

respectively. Even though the corresponding empirical formula for CdS nanorods is 

not available, we can utilize the above equation to estimate the lower limit of Eg for a 

homogenous CdSxSe1-x nanorod, by plugging Eqn 3-6 and the bulk Eg data of CdS 

into Eqn 3-5, shown as the green triangle in Figure 3-10C. This yields a higher value 

of Eg than the bulk material shown as the black triangles. Evidently, when taking 

account of the homogenous chemical composition effect, both bulk and estimated 

nanorod CdSxSe1-x (black and green triangles in Figure 3-10C) result in a fast linear 

increase of Eg, as S composition increases. Our experimental data for Eg disagrees 

with the above-calculated band gaps that assume homogenous binary composition. 

Significantly, when considering a pure CdSe nanorod of the same size as the 

experiment, we obtain good agreement with experimental data (Figure 3-10C, orange 

solid spheres, and the x axis should be viewed as the size of the nanorod). This 

suggests that the photoluminescence from our binary CdSxSe1-x nanorods is 

dominated by size effects and exhibits band gap emission energy corresponding to 

CdSe composition only. However, this is not surprising, considering that the hybrid 

composition of S and Se is not uniformly distributed along the rod (See Figure 3-7 

data of EDS line scan), but distributed in a gradient with S and Se enriched at 
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separated ends. Gradient chemical composition in one dimension creates the gradient 

band gap proposed in Figure 3-10D. The exciton diffusion length is of the order of 

hundreds of nanometers [114]. Our synthesized nanorods are well within the exciton 

diffusion length. Thus, when an electron is excited from the valance band to the 

conduction band, the electron-hole pair will then transfer to the Se enriched side, 

where there is lower potential for both electron and hole and additional energy 

gained. Recombination to the ground state at the CdSe enriched side will be 

accompanied by fluorescence emission. This process should enable applications that 

require unidirectional electron and hole transfer and uniaxial emission. 

 

4. Perspective on Synthesis and Growth Mechanism 

 
The binary shaped semiconducting nanocrystals were discovered serendipitously, 

by adapting a previously published synthetic procedure [112], with modification of 

the concentration of injected octanethiol. Notably, we started from 4.5 nm spherical 

CdSe as seeds. However, instead of forming a core @ shell styled CdSe @ CdS 

product, we surprisingly produce select anisotropically shaped nanocrystals when 

varying the octanethiol injecting concentration, as summarized in Table 3-1.  

 

In order to gain more insight of the growth mechanism, we conducted additional 

control experiment. Of the two injection ports via the syringe pump, we replaced the 

Cd precursor octadecene solution by pure octadecene, retaining only the octanethiol 

injection at fixed concentration of 144 mM. In the absence of Cd precursor injection, 
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rod-shaped CdSxSe1-x nanocrystals with the previously observed S/Se ratio still result. 

This control experiment indicates that octanethiol plays an important role in the 

formation of shaped binary nanocrystals. We further explored reaction conditions by 

using different nanocrystals as seeds and varying the reaction time, while maintaining 

the octanethiol injecting concentration fixed at 144 mM and no Cd precursor 

injection. Reaction conditions and results are summarized in Table 3-2. Along with 

the experimental conditions summarized in Table 3-1 with Cd precursor injection, 

nanorods under both sets of reaction conditions evolved to successively larger size 

and increased sulfur content, before finally transforming into multi-pods shaped 

nanocrystals. These experiments show that octanethiol acts as both S precursor and 

shape-directing reagent, presumably by preferentially capping selected crystalline 

facets to confine the growth rate. Importantly, the Cd precursor is unnecessary to 

produce rod-shaped binary nanocrystal products, but the Cd precursor accelerates the 

growth process. We thus conclude that the original spherical seeds are partially 

etched, with the dissolution of Cd and Se acting as an internal material supply for 

further growth.  

 

Table 3-2 Cd precursor-free reaction conditions with fixed 144 mM octanethiol 

injection concentration.  

seed shape seed S/Se ratio 
reaction time 

(min) 
product shape 

product 

S/Se ratio 

4.5 nm CdSe sphere 0 24 sphere 0.3 

4.5 nm CdSe sphere 0 90 rod 0.5 
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CdSxSe1-x nanorod 1.1 120 rod, bi, tri-pods 1.4 

CdSxSe1-x nanorod 0.56 30 rod 1.0 

CdSxSe1-x nanorod 0.56 90 rod 1.0 

CdSxSe1-x nanorod 0.56 150 rod, bi, tri-pod 0.9 

 

Another factor resulting in anisotropically shaped CdSxSe1-x nanocrystal is the 

presence of oxygen during growth. Instead of using the open reaction set up shown in 

Figure 3-2, several control experiments were performed under nitrogen flow in an 

airtight configuration. In this anaerobic growth, 10 nm spherical CdS0.36Se0.64 

nanocrystals, rather than anisotropic structures, were produced, as shown in Figure 3-

11. We note that oxygen is known to physisorb and oxidize CdX (X = S, Se, Te) 

surfaces [115, 116]. In cooperation with octanethiol, oxygen may thus be expected to 

partially etch select facets of the CdSe spherical seeds by oxidation, resulting in SeO2 

product [115]: 

CdSe(colloid ) +
3
2
O2(g) + 2C17H33COOH(ODE )

310°C! →!! Cd(C17H33COO)2(ODE ) + SeO2(s) +H2O(g)
                         

Eqn 3-7 

The SeO2 product dissolves in octadecene at the 310 °C reaction temperature, serving 

as Se precursor for further reaction.  
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Figure 3-11 TEM image of spherical CdS0.36Se0.64 nanoparticles that results from 

anaerobic reaction conditions with 144 mM octanethiol injecting concentration. The 

scale bar is 100 nm.  

 

To corroborate further this oxygen etching effect, we heated the starting CdSe 

seeds to 310 °C using the original (aerobic) experimental condition without precursor 

addition. We sampled aliquots of the CdSe solution along the heating time and traced 

the UV-Vis spectrum after the sample was cooled to room temperature. As shown in 

Figure 3-12, the band gap excitation of CdSe undergoes a 20 nm blue shifting within 

the first 15 min of heating, corresponding to a reduction of the quantum dot size up to 

1 nm. This size reduction reflects partial oxidation and dissolution. At the initial 

growth stage, the concentration of Cd precursor supplied solely by dissolution of 

CdSe quantum dots is estimated to be ~ 7 mM in the growth solution, comparable 

with 2.5 mM Cd(OA)2 precursor introduced via syringe pump injection.  
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Figure 3-12 UV-Vis absorption spectra of time-dependent heated 4.5 nm 

spherical CdSe seed. The 4.5 nm to 3.5 nm size decrease within 15 min indicates 

CdSe dissolution. 

 

Additional kinetic studies are needed for a more detailed understanding of the 

impact of oxygen on the formation of anisotropic gradient alloy crystals. Oxygen may 

impact additional processes, including ion diffusion and fcc to hcp phase 

transformation at the 310 °C annealing temperature, impacting anisotropic growth. 

Diffusion of S2- and Se2- is occurring throughout the annealing process, so that 

gradient rod forms first, followed by the formation of more uniform alloy multi-pods. 

We reason that anisotropic growth is initiated at the facets of anisotropic nuclei at the 

very early stage. Octanethiol and oxygen cooperatively shape the original CdSe seed 

particle into an anisotropic faceted nuclei by selectively surface passivation and 

etching. In the reaction solution, the initial concentration of the CdSe quantum dots is 

estimated to be ~ 17 µM, according to measured value of the molar extinction 

coefficient [117]. The initial concentration of octanethiol in the reaction solution is ~ 
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2 mM, too low to fully cap the quantum dot surface. Thus, at the initial stage of 

spherical nanocrystal seed, the octanethiol selectively binds to particular facets. In a 

wurtzite crystal, the {100} plane is the most closed packed facet. The interaction 

within the layer is to be the strongest and thus presumably the binding with thiol to be 

the weakest. A higher initial concentration of octanethiol results in tight control on 

growth kinetics of all other facet and epitaxial growth is preferable along the [100] 

direction. While a lower initial concentration of octanethiol leads to a larger portion 

of the crystal seed exposure to O2 and multi-facets being etched at different rate 

depending on feature of the specific plane, results in polygon shaped nuclei.  

 

5. Conclusion 

 
In this work, anisotropically shaped pseudobinary CdSxSe1-x nanocrystals including 

polygon, bullet, rods and multipod structures have been synthesized for the first time 

as semiconducting nanomaterials. The nanorods ensemble exhibit tunable bright band 

gap fluorescence that is dependent on dimension. The gradient energy bands 

generated by one-dimensional gradient composition are of fundamental interest and 

potential practical importance. Such gradient energy bands could enable 

unidirectional emission and have potential applications in nanoelectronic devices. 

Experiments suggest that octanethiol acts as a shape directing reagent and oxygen is 

shown to also factor into the formation of the anisotropically shaped nanocrystals. 

Growth mechanism is proposed, and supported with control experiments.  
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Chapter 4: Silica – Ag Satellites Nanostructure – Facile 
Synthesis and Study of Plasmon – Plasmon Coupling 

 

 

1. Introduction 

 
Noble metal nanoparticles (NPs) have drawn much attention due to the unique 

optical properties of Surface Plasmon Resonances (SPR) [10]. The properties of a 

SPR are greatly dependent on the metal NP’s size, shape, and surface environment 

[12, 15, 16]. Silver (Ag) NPs, an intensively studied material, possess SPRs with 

optical absorption tunable across the whole visible spectrum by varying the NPs 

shape and size [118]. As such, Ag NPs have been applied in the field of Raman 

enhancement [119, 120], optical sensing [121], and catalysis [122, 123]. Moreover, 

various types of Ag-based nano-sized composites have also been synthesized. Ag NPs 

are immobilized on substrates of different nanomaterials, such as Ag NPs on 

polystyrene micro- beads [124] and silica nano-spheres [125, 126], and Ag NPs on 

the surface of carbonaceous nano-spheres [127]. Compared with the free standing 

metal NPs in colloidal solution, those hybridized with the substrates present higher 

stability and better catalytic performance. Immobilization on the substrate effectively 

prevents NPs forming agglomerates even in the presence of electrolytes [125]. 

Furthermore, Ag NP-decorated silica micro- beads with high NP surface coverage 

have good surface-enhanced Raman scattering (SERS) performance [126], due to the 

existence of a hot spot plasmon between the closely neighbored Ag NPs, and the 

highly rough surface [128]. Ag NPs on carbonaceous nano-spheres have 
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demonstrated selective biomolecule sensing. Because of the dissimilarity of the 

materials, direct growth of the Ag NPs on silica is often lacking in control, in terms of 

NPs size, uniformity, and shape, all potentially important factors for applications of 

SPR. The main difficulty lies in simultaneously immobilization of Ag NPs on the 

substrate with control of NP growth kinetics.  

 

In this work, I introduce a facile synthetic route to achieve a silica-Ag nano-

composite consisting of Ag NPs as satellites on a silica nano- sphere. The Ag 

satellites are well controlled in size, shape, and quantity on silica nano- spheres, and 

exhibit optical extinction spectra with features indicative of dispersion in solution. 

The silica-Ag satellites nanostructure is well suited to the manipulation of plasmonic 

NPs into coupling assemblies for generating hot spot plasmon. Herein, I selectively 

fabricated a core @ shell – satellites chain-like assembly structure by adapting a gold 

or Ag NP core into a silica shell with controlled shell thickness. By stepwise 

increasing the surface coverage of the Ag satellites, plasmon-plasmon coupling 

within the assembly structure, characterized by consistently red shifting of surface 

plasmon resonance, was directly observed. The dipole-dipole interactions among the 

metallic NPs are simulated and confirmed by Discrete Dipole Approximation 

simulation (DDA). Lastly, the Ag NPs on silica nano-sphere were converted into 

hydrophilic CdSe quantum dots on amorphous silica. The resulting silica-CdSe 

hybrid nanocomposites have shown size dependent band gap fluorescence and trap 

state emission characterized by fluorescence spectroscopy. 
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2. Experimental Methods 
 

2.1 Synthesis of Silica-Ag Satellites Nanostructure 

 
Synthesis of 50 nm silica nano- sphere 
 

Si(OC2H5 )4(l ) + 2H2O(l ) !→! SiO2(colloid ) + 4C2H5OH(l )   Eqn 4-1 

Adapted from a base-catalyzed silica formation from tetraethyl orthosilicate 

(TEOS) in a water-in-oil microemulsion method [129], 50 nm silica nano-spheres are 

prepared by mixing 34 ml cyclohexane, 1.6 ml IgePAL CO-520 and 0.26 ml (25 % - 

28 %) ammonium hydroxide solution, sonicating and stirring for 5 min at room 

temperature (R.T.), followed by quick injection of 0.3 ml TEOS. The reaction 

solution is then constantly stirred at R.T. for 24 hours. Then reaction product is 

precipitated by addition of acetone (up to 50 ml) and centrifugation (under 1000 rpm 

for 5 min). The white, semitransparent gel is re-dispersed into methanol and 

centrifuged at 5500 rpm for 15 min. After another re-dispersion/precipitation cycle in 

methanol is repeated, the resultant 50 nm silica spheres are dispersed into 50 ml 

ethanol and stored for further usage.  

 

APS functionalization on silica surface 

3SiO3/2 (OH )+ (C2H5O)3Si(C3H6NH2 )(EtOH ) !→! Si4O15/2 (C3H6NH2 )+3C2H5OH(l )     Eqn 4-2 

A 50 ml silica nano-spheres dispersion in ethanol (EtOH) is mixed with 0.5 ml (25 

% - 28 %) ammonium hydroxide, added with 30 µl pure (3-aminopropyl) 

triethoxysilane (APS, air aged or freshly opened protected in glove box), and stirred 

overnight at R.T. The resultant product is washed three times with ethanol under 5500 
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rpm centrifugation for 10 min, to remove access APS and re-disperse into 50 ml 

ethanol.  

 

Synthesis of silica-Ag Satellites Nanostructure (spherical Ag NPs) 

2Ag(EtOH )
+ +CH3CH2OH(l ) !→! 2Ag(colloid ) +CH3CHO(EtOH ) + 2H

+
(EtOH )      Eqn 4-3 

A 2.5 ml aliquot of APS functionalized silica nano-sphere in ethanol solution is 

combined with ethanol to a volume of 4 ml, and then 0.04 g polyvinylpyrrolidone 

(PVP) powder is added and mixed by fast vortex until totally dissolved, then 50 µl 

(0.1 M) AgNO3 aqueous solution is added before aged at R.T. overnight without 

perturbation. The product is washed by centrifugation at 3700 rpm for 15 min three 

times and the deep yellow precipitate is re-dispersed into 4 ml ethanol. Table 4-1 

summarizes the synthetic conditions used to fabricate silica-Ag hybrid NPs with 

controlled Ag NP size and quantity.  

 

Table 4-1 Synthetic parameters for controlled silica-Ag hybrid NPs formation 

N Ag / D* 13 Ag#/ 
5 nm 

25 Ag#/ 
3 nm 

25 Ag#/ 
5 nm 

17 Ag / 
8 nm 

80 Ag / 
3 nm† 

APS fresh aged aged aged aged 

PVP (g) 0.04 0.04 0.04 0.04 1.6 

AgNO3 concentration (M) 0.1 0.1 0.1 0.02 0.1 

AgNO3 volume (ml) 0.05 0.05 0.05 1 0.05 

temperature (°C) R.T. R.T. R.T. 70 R.T. 

Time (hours) 24 24 72 24 24 
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*N and D represent the averaged number and diameter of Ag satellites. The range of 

observed diameter from TEM images is ± 1 nm, unless otherwise noted.  

# Standard deviation of ± 8 nm was obtained according to Gaussian fit of the 

corresponding histograms.  

† Observed diameter ranges as 2 – 6 nm.  

 

Synthesis of silica-Ag Satellites Nanostructure (cube-shaped Ag NPs) 

4CF3COOAg(EG ) +HOCH2CH2OH(l )
150 oC! →!! 4Ag(colloid ) +OCHCHO(EG ) + 4CF3COOH(EG )    Eqn 4-4 

Silica-Ag Satellites Nanostructures with cube-shaped Ag NPs on silica are 

prepared by modification of Xia’s method [130]. The APS functionalized silica is 

centrifuged and re-dispersed into 5 ml ethylene glycol (EG) via sonication in a 50 ml 

flask. In 150 °C oil bath, 0.06 ml 3 mM sodium hydrosulfide EG solution was quickly 

injected into the flask. After 2 min, 0.5 ml 3 mM EG solution of hydrochloride acid 

(prepared from 37 % hydrochloride acid) was injected followed by addition of 1.25 

ml PVP (MW55000, 20 mg/ml in EG). After another 2 min, 0.4 ml 282 mM silver 

trifluoroacetate EG solution was added. During the whole process the flask was 

capped with a glass stopper except during the addition of reagents. After 15 min – 30 

min, the solution became cloudy and deep yellow, and then the reaction was 

quenched by placing the flask in an ice-water bath. To remove EG, excess PVP and 

un-reacted chemicals, the product was thrice added with acetone and centrifuged 

under 3000 rpm for 10 min and re-disperse into ethanol.  
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2.2 Synthesis of Core @ Spacer – Satellites Metallic Assembly 

 
Synthesis of Au @ silica core @ shell NPs 

2[AuCl4 ]
− +3[ −OOCC(OH )(CH2COO

− )2 ]"→" 2Au(colloid ) +3CO2 ↑+3[CO(CH2COO
− )2 ]+3H

+ +8Cl−

 
Eqn 4-5 

 
Au @ silica NPs was synthesized following a previously published method 

developed by Liz-Marzan [131]. A freshly prepared citrate stabilized Au colloidal 

must be used to prepare non-aggregated Au @ silica NPs. Firstly, 25 µl freshly 

prepared 1 mM APS water solution was added to 5 ml as made citrate stabilized 15 

nm Au colloidal solution and fast stirred at R.T. for 15 min, followed by quick 

injection of 0.2 ml 1 : 40 (v/v) sodium silicate water dilution. This mixture was 

allowed to stand at R.T. and constantly stirred for 4 days to get silica shell thickness 

of 5 nm, and 10 days for 10 nm. Ultracentrifugation at 10000 rpm for 30 min was 

then used to separate the Au @ silica NPs and re-disperse into ethanol. 

 

Synthesis of Ag @ silica core @ shell NPs 

4Ag(EG )
+ +HOCH2CH2OH(l )

120 oC! →!! 4Ag(colloid ) +OCHCHO(EG ) + 4H
+
(EG )      Eqn 4-6 

Firstly, PVP capped 20 nm sized Ag NPs were synthesized following a published 

method [132]. 40 mg AgNO3, 1 g PVP, and 7.5 ml EG were mixed and stirred at R.T. 

until dissolved. The solution was then heated to 120 °C, and remained for 1 hour at 

this temperature. The colloidal dispersion was then cooled to R.T. The product can be 

easily separated from EG after addition of 50 ml acetone followed by centrifugation. 

Finally the PVP capped Ag NPs were re-dispersed in ethanol.  
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This ethanol dispersion was washed again and re-dispersed into 8 ml ethanol, 

followed by addition of 0.336 ml ammonium hydroxide (29.3 wt % NH3 in water). 

Immediately after this 0.1 ml TEOS solution (10 v/v % in ethanol) was added with 

fast stirring. The reaction mixture was then stirred for another 12 hours and separated 

by ultracentrifugation and re-dispersion. The resulting silica shell thickness is 5 nm.  

 

Synthesis of core @ silica – satellites structure 

The above Au (Ag) @ silica core @ shell was functionalized with APS by addition 

of 10 % (v/v) APS ethanol solution in 2 ml ethanol dispersion of metal core @ silica 

NPs, allowing aging at R.T. for 2 hrs, then 50°C for 1 hr [133]. At this point, one can 

follow the above method for growth of Ag NPs satellites on a silica shell.  

 

Ensemble measurement of surface plasmon resonance 

The SPR was characterized with a Shimadzu UV-2501PC UV-Vis absorption 

spectrometer. The ethanol dispersion of different nanostructures was delivered in a 10 

mm cuvette, and the light signal is monitored from 300 nm to 800 nm.  

 

2.3 Synthesis of silica-CdSe quantum dots composites from silica-Ag composites 

 
Preparation of silica-Ag composites 

To prepare silica-Ag composites, 0.04 g PVP was added in 4 ml ethanol dispersion 

of APS functionalized silica nano-sphere, followed by addition of 0.05 ml 0.1 M 

silver nitrate aqueous solution and subsequent aging for 24 hours at R.T without 
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stirring. After washing three times with ethanol, the resulting silica-Ag composites 

were used to convert into silica-CdSe composites with a characteristic 590 nm 

emission from band edge transitions. Another batch of silica-Ag composites were 

prepared with the same protocols, except for using 0.8 g instead of 0.04 g PVP, 

resulting in silica-CdSe composites emitting at 640 nm at band edge transition.  

 

Preparation of NaHSe water solution 

2Se(s) +BH4(aq)
− + 2OH(aq)

− + 2H2O(l ) "→" 2HSe(aq)
− +B(OH )4(aq)

− + 2H2(g)      Eqn 4-7 

Freshly prepared NaHSe was used as a precursor to react with silica-Ag forming 

silica-Ag2Se. To prepare aqueous solutions of NaHSe, a 50 ml plastic centrifuging 

tube was loaded with 50 ml water, pre-cooled in ice-water bath and kept degasing 

with N2 by inserting a glass pipette into the vial bottom. 37 mg Se powder was loaded 

in a 5 ml glass vial, followed by addition of several drops of acetone to thoroughly 

soak all the Se powder. A glass pipette was inserted to gently blow the N2 gas to dry 

the acetone soaked Se powder, to obtain a clot of compacted Se powder aggregated 

on the bottom of the vial. Then, 60 mg NaBH4 powder and 1 ml cold water (taken 

from the above 50 ml ice cold water) were added into the Se glass vial and quickly 

sealed with Parafilm. A syringe needle was inserted through Parafilm to prevent O2 

admission and to avoid overpressure due to generation of H2. The reaction was left in 

the ice-water bath and allowed to react for 2 – 3 hours, until all the black Se powder 

transformed into colorless NaHSe concentrated aqueous solution. (A pink solution 

indicates presence of Se, due to oxidation of NaHSe back to Se). Then, 1 ml of the 

colorless NaHSe solution was carefully extracted and injected quickly into the 
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remaining 49 ml ice-cold degassed water in the centrifuging tube. The tube was then 

immediately capped and quickly shaken by hand for thoroughly mixing to make a 1 : 

50 dilution of NaHSe solution. This NaHSe solution is extremely sensitive to oxygen 

and decomposed quickly, and must be freshly prepared and directly used.  

 

Preparation of silica-CdSe composites 

4Ag(colloid ) + 2HSe(EtOH )
− +O2(g) "→" 2Ag2Se(colloid ) + 2OH(EtOH )

−                             Eqn 4-8 

Ag2Se(colloid ) +Cd(solv)
2+ + 4P(C4H9 )3(solv) !→! CdSe(colloid ) + 2[Ag(P(C4H9 )3)2 ](solv)

+

    Eqn 4-9 

The Ag-silica in 4 ml ethanol solution was pre-degassed by N2 at 60 °C in an oil 

bath for 15 min, followed by addition of 0.2 ml above 1 : 50 diluted NaHSe aqueous 

solution, and reaction for 15 min under gas protection at 60 °C. After the reaction was 

completed, the product was centrifuged at 3500 rpm for 10 min, and re-dispersed into 

4ml ethanol. Then, 0.5 ml methanol solution of cadmium nitrate (0.25 g dissolved in 

10 ml methanol) was added under N2 protection at room temperature, followed by 

addition of 2 drops of TBP. After 30 min, the product of silica-CdSe composite was 

washed and re-dispersed into ethanol. 

 

Measurement of fluorescence 

The ensemble fluorescence measurement of silica-CdSe composites was 

conducted using a portable USB fluorescence spectrometer by Ocean Optics™. The 

ethanol dispersion was placed in a 2 mm quartz cuvette supported on a 10 mm sample 

holder across the diagonal direction to make a ~ 90 ° optical path. The sample was 
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irradiated with a 400 nm blue laser and the luminescence was monitored from 350 nm 

to 1100 nm.  

 

3. Facile Synthesis of Silica – Ag Satellites Nanostructures 

 

-OH rich 
surface silica 

APS functional-
ization -NH2 rich 

surface 

Ag+/PVP, 
ethanol 
reduction Ag NPs on 

silica Step 1 Step 2 

 
Figure 4-1 Illustration of synthetic route for silica-Ag satellites nanostructures 

APS: (3-aminopropyl) triethoxysilane; PVP: polyvinylpyrrolidone and TBP: 

tributylphosphine 

 

The silica-Ag Satellites Nanostructure consists of Ag NPs “satellites” distributed 

on the surface of a 50 nm silica nano- sphere. The facile synthetic route is 

schematically described in Figure 4-1. The as prepared silica nanoparticles dispersed 

in ethanol possess hydroxyl-rich surfaces to prevent silica particle aggregation. 

Because of the low affinity of hydroxyl for Ag, the direct overgrowth of Ag NPs on 

silica, suffers from very limited control of the growth kinetic. To circumvent this 

difficulty, the silica surface is first functionalized with a silane coupling reagent, (3-

aminopropyl) triethoxysilane (APS) (step 1), forming an amine-rich surface which 

possess much higher affinity for Ag. Next, over growth of Ag NPs is realized by 

adding aliquots of AgNO3 aqueous solution as the precursor and polyvinylpyrrolidone 

(PVP) as the capping ligand into the ethanol dispersion of silica nano- spheres (step 

2). Ethanol then serves as a mild reducing reagent to slowly reduce Ag (I) to Ag (0), 
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forming Ag NPs on silica nano- sphere. Notably, this facile synthetic route 

successfully achieved control on quantity, size and shape of Ag NPs on silica, by 

variation of reaction conditions including temperature, time, and reagent 

concentration. 

 

This facile synthetic route allows a degree of control of Ag NPs growth. Figure 4-2 

demonstrates the control achieved over the addition of different quantities of Ag NPs 

on a silica nano-sphere of a given diameter. Figure 4-2 (a, d) and (b, e) shows 

samples with an average of 13 and 25 Ag NPs, respectively. The histograms of (d) 

and (e) are constructed from counting ~ 60 individual silica-Ag satellites 

nanostructure. Figure 4-2 (c, f) presents a sample that has more Ag NPs up to ~ 80 on 

a silica sphere. Moreover, by extending the reaction time and raising the temperature, 

the size of the Ag NPs is tunable from 3 nm up to 8 nm, as shown in Figure 4-3.  
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Figure 4-2 Low-resolution TEM images (a-c) of Silica-Ag satellites nanostructures 

with different quantity of Ag NPs per silica and the corresponding close-up view of 

TEM images (d-f) Scale bar is 50 nm on a-c and 5 nm on d-f. Histogram of number 

of Ag NPs on one silica nano-sphere is shown to the right of d and e.  
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a b c 

 
Figure 4-3 Low-resolution TEM images showing different size of Ag NPs on 

silica. The diameters of Ag NPs range as 3 nm, 5 nm, and 8 nm from (a) to (c). The 

scale bars are 10 nm.  

 

The Ag NPs satellites on silica are characterized by UV-Vis absorption 

spectroscopy shown in Figure 4-4. The Ag NPs in all samples present well-dispersed 

features in solution, according to the 420 nm peak position of surface plasmon 

resonance for individual Ag NPs. In Figure 4-4 (a), the sample of highest coverage 

with ~ 80 Ag NPs per silica has a 10 nm red-shifted SPR. However there is no 

corresponding broadening of the spectral feature, indicating that aggregation of NPs 

is unlikely. This also suggests that there is no significant dipole-dipole coupling 

between the Ag NPs due to an increase of surface coverage on silica. A randomly 

distributed Ag NPs assembly on a spherical surface plus the inhomogeneity between 

individual assemblies typically leads to broadening of the SPR, if any dipole 

couplings are presented. (See section 4 and 5) Noting that the largest Ag NPs 

loadings (~80 numbers of Ag NPs) on silica required high concentration of PVP 

capping, the red shifting of SPR is attributed to increase of the dielectric constant of 

the surface environment.  
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Figure 4-4 Normalized extinction spectra of Silica-Ag satellites nanostructures 

samples (a) Differing numbers of Ag NPs per silica. Black, blue and red represent the 

13, 25 and ~ 80 Ag NPs on average per silica, respectively (b) different size of Ag 

NPs. Black and red represent the 5 nm sized Ag NPs and 8 nm sized Ag NPs, 

respectively, and the common peak at 420 nm.  

 

I next show that the synthetic route can also produce cube-shaped Ag NPs on 

silica, by adapting a polyol process assisted by PVP. The polyol process was 

previously used to synthesize freestanding Ag nanocubes [134]. I applied the 

condition of the Ag nanocubes synthesis to the step-2 reaction described above, and 

found it works well to load Ag nanocubes on silica (Figure 4-5b). Figure 4-5a shows 

the extinction spectrum of the silica-Ag nanostructures ensemble. The main peak at 

428 nm, accompanied with an extra plasmon resonance mode as a small peak at 355 

nm, are the characteristic signature of a well dispersed cube-shaped Ag NPs.  
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Figure 4-5 Extinction spectra of cube-shaped Ag NPs on silica (a) and the 

corresponding TEM image (b) 

 
In the synthetic strategy, surface functionalization of silica with APS and addition 

of PVP play critical roles. Control experiment shows that silica without APS 

functionalization results in few to no Ag nuclei on silica, due to the low affinity of –

OH with Ag. With APS functionalization, < 1 nm Ag nuclei easily form on silica at 

the initial growth stage. Further kinetic control on Ag NPs growth can then be 

realized only with the presence of PVP. In agreement with previous studies, PVP 

plays several roles in the Ag NP growth process: (1). Ag+ and PVP form coordination 

complex with N and O atoms of PVP units sharing their lone pairs with Ag+, forming 

a complex that can serve as Ag (I) precursor [135]; (2). Enlargement of Ag nuclei on 

the silica surface is promoted by PVP [132]. PVP as a hydrophilic polymer can wrap 

on silica nano-spheres presumably via hydrogen bonding between O atoms of PVP 

and -NH2 / -OH groups on the silica surface. This enriches the silica surface of Ag (I) 

precursor, promoting the enlargement of Ag nuclei on silica. Thus, the greater PVP 

wrapping on silica, the more each Ag NP develops from the initial nuclei. This agrees 

with our general observation that a higher concentration of PVP leads to more and 

larger Ag NPs per silica. In contrast, our control experiment showed that without 
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enough PVP, only < 1 nm Ag nuclei was observed on silica. The lower bound limit of 

PVP concentration required is determined to be 0.5 %. (3). PVP serves as capping 

ligand to stabilize Ag NPs and harness the growing rate [135]. A higher concentration 

of PVP typically leads to more quantity coupled with smaller size of Ag NPs (see 

Figure 4-2), due to stronger surface capping on Ag and tight control on the growth 

rate.  

 

4. Core @ Spacer – Satellites Metallic Assembly: Dipole – Dipole Interaction 

Between Metallic NPs 

 

With the above synthetic route, I designed and synthesized a core @ shell – 

satellites metallic chain-like assembly structure, by over coating a silica shell on a Au 

(or Ag NP) core and then growing Ag NPs as satellites on the silica shell. In this 

structure silica serves as an intermediate to assemble the metallic NPs into a close 

unit. More importantly, Silica as an electric insulator has high-lying energy levels that 

are far from the plasmonic levels, thus does not have any charge transfer or Coulomb 

interaction with metallic NPs. The silica shell thus serves as a spacer of the metallic 

NPs assembly, where the dipole – dipole coupling between the metallic NPs occurred 

due to proximal distances between NPs. In order to direct the coupling between the 

metallic core and the surrounding satellites, the thickness of silica shell must be 

controlled within the interaction range of 12 nm. 
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Plasmon - plasmon coupling is observed with a decreased energy of surface 

plasmon resonance in extinction spectrum, due to collective Coulomb interaction 

between the vibrating electrons within nearby metal nanoparticles. Such coupling 

occurs in our designed synthesized Au @ silica – Ag and Ag @ silica – Ag 

nanostructures. In the case of Au @ silica – Ag nanostructure, a 13 nm Au core in 12 

nm thick silica shell, surrounded by 5 nm Ag NPs as satellites, was synthesized 

(Figure 4-6 c). The corresponding SPR feature is shown in Figure 4-6 a (red curve). 

For comparison, the extinction spectrum of the starting material of Au @ silica with 

12 nm shell in ethanol is plotted (black curve). The resonance peak at 528 nm 

confirms that the individually dispersed Au @ silica NPs are without dipole – dipole 

coupling [49]. (Due to the increased dielectric constant of silica shell and ethanol 

solvent, the 520 nm SPR of as made Au NPs in water is red shifted to 528 nm.) The 

SPR of a silica-Ag satellites nanostructure without a metallic core is also plotted in 

blue. The corresponding 420 nm SPR clearly shows non-coupling Ag NPs on silica. 

In contrast, the SPR of the Au @ silica – Ag nanostructure (red curve) exhibits a 

broadened and red shifted main peak at 451 nm, relative to the 420 nm non-coupling 

Ag NPs, and a shoulder near 528 nm non-coupling Au @ silica NPs. Notably, a linear 

combination of spectra of the two reference structures cannot lead to the broadening 

and red shifting of the SPR peak at 420 nm. Instead, since both the black and the blue 

curves have negative slopes at the peak position of the other (420 nm for the black 

curve and 528 nm for the blue curve), a linear combination of the two spectra will 

result in blue shifting of peaks at 420 nm and 528 nm. We thus attribute the 30 nm 

red shifted SPR of Ag NPs to the dipole-dipole coupling between metallic NPs.  
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Figure 4-6 Characterization of Au @ silica – Ag nanostructure with 12 nm silica 

shell as spacer (a) extinction spectra (red curve), (c) TEM images and (b) the starting 

Au @ 12 nm silica core @ shell NPs, from which the Ag NPs satellites were grown 

(extinction spectra is in black curve). Blue curve: silica-Ag satellites nanostructures 

without metallic NPs as core, showing SPR of Ag NPs without coupling. Note: 

Nanoparticles are dispersed in solvent, and aggregate on TEM grid following solvent 

evaporation.  

 

We next explore how hierarchical structure of the nanoparticles impacts the SPR. 

The Au @ silica colloids become instable and form onset of aggregates after APS 

functionalization. This is more evident when the thickness of silica shell decreases to 

6 nm, and is characterized both with TEM images as well as UV-Vis spectroscopy. 

As shown in Figure 4-7, the Au @ silica with 6 nm thickness NPs are well dispersed 

before the APS functionalization, as seen from the TEM images of Figure 4-7 a, and 

as consistent with the 528 nm peak of SPR (Figure 4-7 c black curve) for non-

aggregating Au NPs [49]. After APS functionalization, however, the SPR has red 
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shifted to 533 nm, and appears as onset of aggregates in TEM characterization, shown 

in Figure 4-7 b. SPR is very sensitive to the distance of NPs within this regime, thus 

the 5 nm red shifting likely reflects the plasmon coupling between the Au cores in the 

chain-like structures. As previously discussed [49], the reduced colloidal stability of 

APS functionalized Au @ silica NPs occurs from insufficient net charges within the 

interfacial double layer of NPs, as characterized by zeta potential measurement. For 

silica coated Au NPs with ~ 6 nm shell, the zeta potential changes from - 40 mV to + 

20 mV after APS functionalization. This means the negatively charged silica surface 

is shield by APS moiety with insufficient positive charges, producing an instable 

colloidal system. This results in onset of aggregates of subsequent Au @ silica – Ag 

nanostructures after Ag NPs growth, instead of well-isolated core – satellites (Figure 

4-7 d).  
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Figure 4-7 Characterization of Au @ silica (6 nm thickness) NPs before and 

after APS surface functionalization: (a) Typical TEM image of Au @ silica (6 nm) 
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prior to APS functionalization. Note aggregation due to solvent evaporation as in 

Figure 4-6. (b) Typical TEM image following APS functionalization. Note the chain-

like and branched structure indicative of the morphology of APS functionalized 

particles in ethanol. (c) Corresponding normalized extinction spectra; Black curve 

and red curve represent sample in (a) and (b), respectively. (d) Typical TEM image of 

the Au @ silica – Ag after subsequent growth of Ag NPs satellites. 

 

Other than Au core with Ag NPs satellites assembly, I also synthesized 22 nm Ag 

core in ~ 5 nm silica shell with increasing coverage of Ag satellites, shown in Figure 

4-8. As the surface coverage of the Ag satellites increases, there is systematic 

broadening and red shifting of SPR for Ag NPs, from 426 nm to 445 nm, suggesting 

the features of dipole – dipole coupling due to closed assembly of Ag NPs. Similar to 

the case of Au @ silica NPs, Ag @ silica NPs exhibit onset of aggregation after APS 

functionalization. Thus, extra factors must be taken into account to describe the 

plasmon coupling. Other than coupling of core – satellites and satellites – satellites on 

a silica shell, coupling between the neighboring cores within a chain (core – core) as 

well as satellites – satellites coupling at adjacent silica shells also play a role.  

 

In order to estimate the order of magnitude of SPR red shift due to plasmon 

coupling within the metallic assembly, and verify the experimental observations, 

numerical simulations are performed to calculate the extinction spectrum of an 

isolated 22 nm Ag core with a 5 nm dielectric shell surrounded by different quantity 
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of smaller Ag satellites. The simulated SPR feature shows reasonable agreement with 

the experiment, as described in detail in the next section.  
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Figure 4-8 Characterization of Ag @ silica – Ag nanostructure with ~ 5 nm silica 

shell as spacer: Close-up TEM images of the starting Ag @ silica NPs after APS 

functionalization (a) and the varying Ag @ silica – Ag nanostructure with increasing 

coverage of Ag satellites (b – d). Scale bars are 5 nm. The corresponding normalized 

extinction spectra are shown in blue, red, orange and green curves for structure (a) 

through (d), respectively. All nanostructures are dispersed in ethanol for UV-Vis 

absorption spectroscopy measurement.  
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5. Simulation of the Dipole – Dipole Interaction 

 
Numerical simulations are performed with the Discrete Dipole Approximation 

(DDA) method, using the open source code package DDSCAT developed by Draine 

and Flatau [136]. DDA is a method for computing the scattering and absorption 

property of a target with arbitrary geometry [137]. The method divides the targeted 

object onto an array of a uniform lattice, where each lattice point consists of a dipole. 

Under the framework of electrodynamics, by calculating how the dipoles are 

polarized in response to the local electromagnetic field radiating on the object, the 

scattering and absorption coefficient of the object, as well as the electromagnetic field 

distribution over the internal and surrounding space can be obtained. Other than 

interacting with the external monochromatic plane wave, individual vibrating dipoles 

also generate local electromagnetic fields that can interact with neighboring dipoles, 

thus the method take fully into account the coupling between dipoles. The only 

approximation in the DDA method is the treatment of a continuum target with an 

array of discrete dipoles. Thus the method is valid and accurate within a few percent 

only when the dipole spacing is small enough to well describe the geometry of the 

target and small compared to the wavelength. Nevertheless, smaller dipole spacing 

will give higher accuracy in sacrifice of the computing time.  

 

DDSCAT Fortran code package handles the calculation by searching the self-

consistent solution for the dipole polarization, with specified location of the dipoles 

(describing the geometry of target) and dipole polarizability via input of dielectric 

function of targeted material. For absorbing material such as gold and silver, the 
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frequency dependent complex dielectric function, ε (ω), has real and imaginary parts 

ε1 and ε2, and is direct related to refractive index (m),  

ε(ω) =m(ω)2                              Eqn 4-10 

where m is also consisted of real and imaginary parts n and k. Thus, we have  

n2 − k2 = ε1                                    Eqn 4-11a 

2nk = ε2                                        Eqn 4-11b 

From Eqn 4-11a and 4-11b, the refractive index m=n+ik is solved with 

n = ε1
2 +ε2

2 +ε1
2

                        Eqn 4-12a 

k = ε1
2 +ε2

2 −ε1
2

                        Eqn 4-12b 

The real part n accounts for refraction of incident light by the material, and the 

imaginary part, k, deals with the absorption. According to Drude model for bulk metal 

material [138], 

 ε(ω) =1−
ω p
2

ω(ω + iγ )
                 Eqn 4-13 

In the equation, ωp is plasma frequency. γ is damping frequency and inverse of the 

electron relaxation time. In bulk metal materials, the parameter γ deals with how 

frequently the collisions between the conducting electrons and lattice occur. For the 

case of nanoparticles, an additional damping frequency related to collisions of 

electrons with the particle surface need to be taken into account [139]. Thus, we 

introduce a damping correction γa  for nanoparticles, 
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γa = g×
vF
aeff

                            Eqn 4-14 

where aeff  and vF  are effective radius (equal to radius for spherical particles) and 

Fermi velocity, respectively. The g factor is of the order of 1 and is related to the 

limitation of the electron motion due to electron scattering off the surface [140]. The 

dielectric constant for bulk material (εb) over this wavelength range is available from 

reported experimental measurements [141]. Upon the damping correction the 

dielectric function becomes,  

ε = εb +
ω p
2

ω(ω + iγ )
−

ω p
2

ω(ω + iγ + iγa )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn 4-15 

The real and imaginary parts of ε are separated as, 

ε1 = Re(εb )+ω p
2[ 1
ω 2 +γ 2

−
1

ω 2 + (γ +γa )
2 ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn 4-16a	
  

ε2 = Im(εb )−
ω p
2

ω
[ γ
ω 2 +γ 2

−
γ +γa

ω 2 + (γ +γa )
2 ]              Eqn 4-16b 

The refractive index value is thus corrected accordingly using Eqn 4-16a and 4-16b. 

Other experimentally measured constants for bulk material used in the simulation are 

listed in Table 4-2 [142]. 

 

Table 4-2 Parameters for Drude model used in the simulation [142]. 

material plasma freq (THz) damping freq (Thz) Fermi Velocity (m/s) 

Au 2183 6.46 1410000 

Ag 2180 4.353 1400000 
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The accuracy of the calculation is largely determined by dipole spacing. In order to 

guarantee the error is within a few percentile, the dipole spacing needs to be small 

enough so that [136] 

|m| k d < 1                Eqn 4-17 

In the equation |m|, k, and d are the absolute value of refractive index, wave number 

of incident light and dipole spacing respectively. Figure 4-9 shows two sets of data 

demonstrating the influence of dipole spacing on the simulation results. The plots 

present the calculated extinction efficiency factor Qext, which is the summation of 

absorption (Qabs) and scattering (Qsca) efficiency factor, versus the incident 

wavelength. While keeping other fixed parameters listed in Table 4-3, increasing the 

number of dipoles N thus shortening of the dipole distance d results in a slight change 

in maximum position, line width, and band intensity. More accurate results are 

obtained by using a larger number of dipoles. For simulation of 7.5 nm radius Au 

NPs, compared with sub 1 nm dipole spacing, using d = 2.42 nm leads to obvious 

peak red shifting and broadening. For 2.5 nm radius Ag NPs, there is rather consistent 

maximum position by decrease of dipole spacing from 0.51 nm to 0.32 nm.  

        a                                                              b 
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Figure 4-9 Simulation of a single Au (a) and Ag (b) NP using different dipole 

spacing. Other parameters are kept constant and listed in Table 4-3.  

 

Table 4-3 Parameters used in simulation shown in Figure 4-9.  

material radius (nm) medium refractive index (nm)* g factor 
Au 7.5 water 1.33 0 
Ag 2.5 ethanol/silica/PVP 1.36 1 

* refractive index of the medium 

 

Other factors that are significant for the simulation are the refractive index of the 

medium enviroment (nm) and g factor. The position of the maximum extinction 

efficiency factor is largely determined by medium refrative index. When all other 

parameters are fixed, increased nm leads to red shifting of the band maximum 

accompanied with a higher band intensity and a broadened band width (Figure 4-10 

red spheres and blue triangles). Also, the g factor plays a essential role on the band 

width and intensity. As shown in black rectangles and red spheres in Figure 4-10, 

using a g factor of 1 leads to too broadened SPR for 2.5 nm radius Ag NPs, while g = 

0.3 yields reasonable agreement with experimental data (blue triangle).  
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Figure 4-10 Simulation results of a single Ag NP with two adjusted parameters 

(the medium refractive index and g factor) The two parameters are changed one at 

a time while keeping the other fixed. Values of all other simulation parameters are 

listed in Table 4-4.  

 

Table 4-4 Parameters used in simulation shown in Figure 4-10. 

material radius (nm) number of dipoles (N) 

Ag 2.5 2008 
 

After the parameters for simulation of a single Ag NPs are optimized and the 

experimental data is reproduced, a cluster of Ag NPs modeling the core @ spacer – 

satellites structure is then simulated using the optimized parameters for a single Ag 

NPs. To simplify the modeling, only an isolated structure was simulated instead of 

the chain-like structure. To guarantee a reasonable accuracy, the choice of d value 

was small so that |m| k d ~ 0.02. The medium refractive index value of 1.58 was used 

for the environment of the ethanol, PVP and silica mixture [143]. To insure no 

overlap between the small Ag satellites around the core, a set of coordinates derived 

from a truncated icosahedron, which looks as a C60 fullerene, was directly used to 

position 60 Ag satellites. Coordinates were randomly excluded for the 40 and 22 Ag 

satellites. As shown in Figure 4-11, the total 12 nm red shifting of the extinction 

efficiency band maximum for no Ag satellites to 60 Ag satellites matches the order of 

19 nm total red shifting of the experimental results. However, there is no red shifting 

from 40 to 60 Ag coverage in the simulation and the band broadening is not as 

significant as the experiment (Figure 4-8). This discrepancy is most possibly caused 
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by onset of structure aggregates in experiments, thus core – core coupling and 

satellites – satellites coupling at adjacent shells come to play a role.  
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Figure 4-11 Simulation of Ag @ 5 nm spacer – Ag satellites structures: Models of 

structures with different Ag NP loadings shown in red are plotted with Gnuplot. The 

corresponding normalized extinction efficiency factors are shown in blue, red, orange 

and green curves, with increasing Ag coverage. The dipole spacing value d = 0.7 nm 

was used in all simulations. 

 

In addition to the reduction of the plasmon resonance energy due to the near field 

Coulomb interaction, a local electric field enhancement occurring at the gap of NPs is 

expected. The electric field amplitude distribution |E/E0| upon 434 nm resonance 

excitation over the internal and surrounding space of the Ag @ 5 nm spacer – 60 Ag 

is shown in Figure 4-12. Field enhancement near the surface of small Ag satellites is 

present due to plasmon coupling with the core.  
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Figure 4-12 Simulated normalized electric field amplitude |E/E0| distribution on 

a Ag @ 5 nm spacer – 60 Ag structure, upon 434 nm resonance excitation, dipole 

spacing value d = 0.56 nm (N = 54767).  

 

6. Chemical conversion of silica-Ag into hydrophilic silica-CdSe quantum dots 

composites from silica-Ag composites 

 
Finally the Ag NPs attached on the silica nano-spheres were converted into CdSe 

quantum dots via the reaction with Se precursor and then cation exchange. This 

resulted in an assembly of quantum dots loaded on 50 nm silica nano-spheres, with 

size dependent optical feature of both band gap and trap state emission. Moreover, the 

ratio of emission intensity for band gap transition versus trap state was found to 

increase over time, indicating changes on surface states of the CdSe NPs on silica. 

Such hydrophilic silica nano-spheres integrated with quantum dots have potential 

application in drug delivery and bioimaging probes [144]. 
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Figure 4-13 Characterization of silica-CdSe composites emitting at 640 nm (a – 

c) and 590 nm (d – f): (a) (d) Low-resolution TEM images, scale bars are 50 nm; (b) 

(e) corresponding high-magnification TEM images, scale bars are 10 nm; and (c) (f) 

Normalized time-dependent fluorescence spectra (excited with 400 nm blue laser) of 

the two samples measured as made and after different aging stages, shown as curves 

in different colors. (Inset of d) ratio of emission intensity for band gap transition over 

trap state emission versus aging time (black rectangle) and the linear fit (red curve) 

 

Two batches of silica-CdSe sample with different quantum dot sizes were 

synthesized, by chemical conversion of two different silica-Ag samples. The 

morphologies of the silica-CdSe composites were characterized by TEM shown in 

Figure 4-13, and their corresponding optical emission properties are presented in 

Figure 4-13 c and f, respectively. Emission spectra are rescaled to facilitate 

comparison, by setting the baseline to zero and the maximum to one. The band gap 
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emission peaks at 640 nm and 590 nm confirm the different sizes of the quantum 

dots. Interestingly, for both sample as made and excited by a 400 nm blue laser, 

emission profiles were dominated by a broad (140 nm FWHM) trap emission band, 

accompanied by a small shoulder due to the band edge emission. Following aging in 

air for several days, the intensity of trap emission started to decrease with a 

concomitant blue shifting, and the narrower (60 nm FWHM) band edge emission 

emerged as the dominant feature. As shown in the inset of Figure 4-13 d, the intensity 

ratio of band edge emission over trap emission changed from the order of 0.1 to 10 

over eight days. The time evolution of trap state to band gap emission indicates 

changes of the surface state attributed to surface defects and vacancies [145, 146]. 

The origin for this change is undetermined, but may relate to cation exchange.  

 

7. Summary 

 
This work introduces a facile synthetic route to uniform Ag NPs on silica nano-

spheres, and demonstrates the manipulation of key Ag NPs factors: size, shape and 

surface coverage (NP loading) on silica. Further, core @ shell – satellites metallic 

chain-like assembly structures were synthesized by adapting our Ag satellites growth 

method. Dipole – dipole coupling among the metallic assembly structures was evident 

on both Au @ silica – Ag and Ag @ silica – Ag structures. The systematic red 

shifting of SPR caused by increased surface coverage of Ag satellites was observed 

and the order of shifting was accounted for by DDA simulation. The silica-Ag and 

core @ shell – Ag metallic chain-like nanostructure are candidates for highly stable, 
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performance – enhanced catalysis and general Raman enhancement applications. To 

make individually dispersed Au @ silica –Ag nanostructures, a polysorbate can be 

adsorbed to improve the colloidal stability of individual APS functionalized Au @ 

silica NPs [49]. This would allow for systematic study of distance dependent dipole – 

dipole coupling between the plasmonic core and the outer Ag satellites within a single 

isolated structure. Finally, the silica – Ag composites were converted to hydrophilic 

silica – CdSe quantum dot composites, which exhibited size dependent band gap 

fluorescence and trap emission. Notably, over several days aging in air, the intensity 

ratio of trap emission versus band edge emission increased from the order of 0.1 to 

10, due to change of surface state.  
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Chapter 5: Summary and Future Outlook 
 

 

Throughout this dissertation, I have presented recent efforts to build up 

complicated hybrid nanostructures from metal and semiconductor nanoparticles. 

Hybrid nanostructures are interesting because coupling effects can occur between 

similar/dissimilar domains that interact with each other in novel ways, e.g. plasmon – 

plasmon coupling and plasmon – exciton coupling. Tuning the composition and 

geometry can allow manipulation of nanostructure properties, and enable applications 

in multidisciplinary areas. Recently developed synthetic strategies have led to 

fabrication of new varieties of hybrid nanostructures. Chapter 2 has emphasized and 

reviewed the non-epitaxial strategy that has been applied to realize remarkable 

monocrystalline and morphology control on metal @ semiconducting core @ shell 

hybrid nanostructures. Promising improvements have been made to allow flexible 

combinations of core and shell in terms of chemical composition, size and shape. 

Further improvements such as new Se and Te precursors might be necessary to 

extend the scope of engineered optical properties. Also, improving the reproducibility 

of uniform cubic-shaped Au nanoparticles ensembles is highly desirable, for supply 

as starting material to allow for scalable hybrid product.  

The metal-semiconductor interface is not yet well understood. Prevalence of 

defects or reconstruction might be expected to occur at the interface due to the large 

lattice mismatch. One study [92] has indicated few defects, as well as the existence of 

a potential barrier at the Au-CdS interface, due to the nonepitaxial nature of the 
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material. A high potential barrier is able to serve as a spacer to prevent charge transfer 

between the metal and semiconductor, and thus critical for study of Coulomb 

interaction of plasmon and exciton. Gaining more knowledge of the interface is an 

important and challenging area for future study.  

Finite control of nanostructure over composition and morphology has been 

demonstrated in Chapter 3. Anisotropically shaped pseudobinary CdSxSe1-x 

nanocrystals including polygon, bullet, rods and multipods nanostructures have been 

synthesized for the first time. The nanorods ensemble exhibit tunable bright band gap 

fluorescence that is dependent on dimension. The gradient energy bands generated by 

one-dimensional gradient composition are of fundamental interest and potential 

practical importance. Gradient energy bands could enable unidirectional emission and 

have potential applications in nanoelectronic devices. The nanocrystal growth 

mechanism is proposed, and supported with control experiments, which suggest that 

octanethiol acts as a shape directing reagent and oxygen is shown to also factor into 

the formation of the anisotropically shaped nanocrystals. This part of work helps to 

gain better understanding of how organic molecules/oxygen can assist to shape the 

nanocrystal.  

Lastly, a core – satellites styled nanostructure has been introduced. A facile 

synthetic route is demonstrated to realize control growth of Ag NPs as satellites. 

Plasmon – plasmon coupling has occurred among the core @ shell – satellites chain-

like metallic assembly structures, characterized by systematic red shifting of SPR and 

convinced by numerical simulation. For future study of distance dependent dipole – 

dipole coupling between the plasmonic core and the surrounding Ag satellites, 
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individually dispersed (rather than onset of aggregates) core – satellites nanostructure 

needs to be prepared. The individual surface functionalized Au @ silica colloid could 

gain sufficient stability by wrapping with a polysorbate [49]. 
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