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 Optical therapeutic (OT) devices, which range in applications from laser tissue 

ablation and surgery to photodynamic (PDT) and low-level laser therapies (LLLT), are 

assessed for safety and efficacy on the basis of Maximum Permissible Exposure (MPE), 

which measures radiation dose in J/cm2, delivered to the target area as well as 

surrounding tissues. We present the characterization of an imaging system for, and 

method of, determining the maximum dose of devices capable of delivering peak energy 

level to sub-surface tissue layers. This method utilizes a fiber optic based imaging system 

designed to allow for comparability across laser parameters, tissue sample type and layer 

thickness. 
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CHAPTER 1 INTRODUCTION 
Optical therapeutics (OT) is an emerging field of modern biophotonics that is 

increasingly being applied in various vast areas of life sciences and biomedicine ranging 

from laser tissue ablation and surgery to photodynamic (PDT) and low-level laser 

therapies (LLLT). To gain FDA approved/cleared status, OT devices are evaluated for 

safety and efficacy in compliance with the FDA recognized guidance documents and 

standards. The efficient laser radiation dose (or dose) level is heavily dependent on 

treatment goals and is determined by comprehensive scientific studies including in-vitro, 

in-vivo and clinical trials. The American National Standards Institute (ANSI) defines safe 

dose standards for laser therapeutics devices used on skin or retina in terms of Maximum 

Permissible Exposure (MPE) [1][2][3]. These standards are in the form of MPE charts 

that list safe laser radiation doses based on various laser parameters (such as power, 

wavelength, repetition rate, spot diameter, and focal length) for both types of tissue. 

Independent studies were conducted to establish and verify the MPE levels listed in the 

safety standards. Companies with devices under review must submit experimental and 

analytical data, and evaluation analysis to verify that their device’s output meets safety 

standards at standard and maximum operation levels as well as within the claimed 

effective range. However, this is only possible for devices that reach their highest 

intensities at the tissue surface. 

Currently no standards exist for devices with a subsurface focal point. For these 

devices animal tissue (ex-vivo and in-vivo) and human (clinical or cadaver) trials for 

adverse effects are the only means of evaluating device safety. The creation of guidance 

and/or standard documents for subsurface light-tissue interactions would dramatically 
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reduce the need for animal and human testing, ensure uniformity in device testing and 

safety, and reduce the amount of time for device approval. 

Extensive testing of focused laser beams across laser parameters, tissues, and 

tissue thicknesses is required for the creation of enforceable safety standard procedures 

for focused laser therapy devices for sub-dermal tissues. The same testing method could 

be used to determine the dose of an OT technique or device at any level of any tissue, 

therefore allowing companies to meet FDA requirements with fewer and less invasive 

experiments. To accomplish this, a test method must first be proven accurate and 

repeatable across all variations. 

In this thesis, we present a proof-of-concept testing method. Motivated by 

considerations for measuring sub-dermal OT dose, including LLLT and PDT dose, for 

the determination of safety standards as well as device safety and efficacy verification, 

we designed a measurement system and process. The fiber optic-based evaluation device 

has the potential to be incorporated into a needle assembly for minimally invasive ex-vivo 

and in-vivo implementation. We tested the limitations of the system, tested and compared 

measuring processes, and verified its functional viability. This work will not address the 

determination of effective or safe dose levels for any type of treatment or tissue; it will 

address a method of determining a device’s capability to deliver a specified dose to sub-

dermal tissues with a focused or collimated laser beam, which is required for efficacy and 

safety evaluations of OT techniques and devices. 
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Chapter 2 outlines proposed OT evaluation and study systems and methods, aspects of 

which are the focus of experimentation and modeling discussed in subsequent chapters. 

Discussions focus on detection system developmental considerations and limitations. 

 

Chapter 3 describes a calibration method used to verify the validity of the proposed dose 

measuring systems. We discuss sources of power attenuation and derive theoretical 

models of expected beam profiles. These models are compared to experimental 

measurements taken in various sample media. 

 

Chapter 4 focuses on system range of motion and detector limitations. Scanning methods 

are compared experimentally to find a method that can overcome limitations. We develop 

theoretical models of fiber numerical aperture induced acceptance angle limitations and 

ideal beam profiles for each input divergent beam (meant to approximate scattering by 

tissue). Theoretical models are taken into consideration along with experimental data to 

determine the optimal profile scanning method. 
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CHAPTER 2 PROPOSED LASER THERAPY DEVICE 
SAFETY AND EFFICACY TESTING METHOD 
 

 For this thesis, we conducted experiments with the intent to validate a proposed 

method of determining an OT's dose at various tissue depths. The test methods and 

devices outlined in this chapter are proposed future developments and were only 

considered theoretically to direct experimentation; they were not fully developed as a part 

of this research. All experiments included in this study were created with the goal of 

verifying the viability of the proposed devices and methods, which were considered as 

the ultimate goal of this area of research. In this Chapter, we describe the proposed 

testing methods and devices, the advantages and implementation challenges of each, and 

the means by which we addressed each concern. 

Section 2.1 Definition of Dose 
 All experiments and proposed methods and devices must determine laser radiation 

dose (or dose). Dose is a commonly used term in the areas of photobiology, 

photochemistry and optical therapeutics including LLLT, PDT, laser tissue ablation and 

surgery, and light-tissue interactions. In these areas, the dose is defined and utilized as the 

conventionally utilized quantity radiant exposure, and it has the same units of J/cm2. 

[4]Dose is defined as: 

][ Time Exposure
][ Area
][Power 

]/[ Dose 2
2 s

m
WmJ = , Equation 1 

where Area is defined as the cross-sectional area of the beam at the 2/1 e  beam diameter 

and the Power is the total power integrated over Area at a given position. A beam profile 

must be obtained to determine the 2/1 e beam diameter (from which Area is calculated in 
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all cases in this thesis because all beams used were Gaussian). The experiments of this 

thesis focus on verifying the ability of a process or device to accurately calculate dose by 

determining Power and a beam profile at various tissue depths. 

 The typical progression of verification of biomedical device testing dictates the 

use of samples in the following order: 

1. Tissue Phantom 
2. Ex-vivo Tissue Samples 
3. In-vivo Tissue Samples 
 

Experiments involving each of these sample types present their own challenges and 

often involve the use of different detection systems. However, we intend to outline a 

measurement process usable across all sample types. It should allow for comparisons 

across data sets while limiting variations and providing a single testing system and 

method usable for any OT device. Therefore we first considered the most complicated 

process, in-vivo tissue measurements, and imposed the limitations thereof on all testing, 

regardless of sample type. 

 
Section 2.2 In-vivo Tissue Testing 
 

 We propose that a minimally invasive needle based fiber-optic detector, suitable 

for use in living human beings, would provide dose measurements sufficient for 

regulatory safety standard determination and compliance verification. This device is 

illustrated in Figure 1. The use of an optical fiber allows measurements to be taken at any 

tissue depth within reach of a needle. At present, typical OT devices are only capable of 

radiating to a depth of at most a few millimeters[5][6], which is well within reach of a 

biopsy needle. We performed experiments using an optical fiber as the detector, as 

dictated by the need for minimally invasive in-vivo testing. 
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It may be difficult to measure the exact depth of a fiber within tissue or to 

compare in-vivo measurements from different needle positions even if the depth is 

determined to be essentially identical due to the high variability of biological cellular 

structures. By using an optical fiber, beam parameters, such as wavelength or power, may 

be varied without moving the detection device. This method allows for the study of laser 

beam propagation through tissue across any variety of beam parameters simultaneously. 

It also produces results legitimately comparable for any biological tissue, regardless of 

structure variability, even without statistical averaging, which is necessary to study the 

effects of OT on fine biological structures. 

Tissue 
Layers 

Incident 
Beam 

Scattered 
Beam 

Prism
 

Optical Fiber 

Needle 
 

Figure 1: Illustration of proposed needle based in-vivo dose measurement device. Light is 
directed into the optical fiber via a prism. Several experiments discussed in this thesis were 
performed as preliminary proof-of-concept verification for this end goal device. 
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Section 2.3 Ex-Vivo Tissue Testing 

 The use of ex-vivo tissue samples is not only a precursory step to the use of in-

vivo tissues, it can also be used in studies deemed excessively invasive for in-vivo 

experimentation to gather more and/or different information (for example, to study vital 

organs). We propose that thin slices of tissue samples can be used to provide two-

dimensional images of beam profiles. The images can be obtained for various types of 

tissues, tissue thicknesses, or tissue combinations and used to determine dose as well as 

study the effects of off-axis scattering or focusing due to biological cellular structures. 

Figure 2 illustrates a possible scanning technique and dose determination method.  

The advantages discussed in Section 2.2 and the limitations of in-vivo 

experimentation dictate the use of an optical fiber detector. By using an optical fiber for 

ex-vivo measurements as well, we maintain continuity across experiments, which allows 

for easier result comparisons and validity verification. Scanning a fiber along lines, such 

a1 and a2, at intervals along the y-axis could create profile images #1 and #2 shown in 

Figure 2. 

 



 
 

8 

 
 
 
 
 
 
 

 
  

 
 
 
 
 
 
 

 
  

a1 a2 
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Z 
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a1 a2 
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X 
Z Y 

 

Figure 2: Illustration of linear 2-D scanning of beam profiles of laser light scattered through 
a thin tissue sample. The beam profiles, #1 and #2, represent measurements taken at two 
different distances from the tissue sample. The dispersion angle calculated using these two 
profiles (calculated using the beam widths measured along lines a1 and a2) would be used to 
extrapolate the dose at the point that the light exits the back of the tissue sample, where 
system limitations prevent image scanning. 

 

Section 2.4 Tissue Phantom Testing 
 

Tissue phantoms are often used as a precursory experimental step to verify 

methods and hypotheses before using tissue samples (ex-vivo or in-vivo). For the 

proposed ex-vivo imaging system, solid tissue phantoms could be used to demonstrate the 

fiber scanning method validity. A liquid phantom could be used for a preliminary 

calibration before progressing to in-vivo experiments. As in previously discussed cases, 

an optical fiber detector should also be utilized for all tissue phantom experiments. 
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Section 2.5 System Calibration Feasibility 

To verify that a fiber optic based system can be calibrated for use in air (as would 

be the case for ex-vivo tissue scans) and in direct contact with a sample (as for in-vivo 

testing), we scanned beam profiles in air and a liquid tissue phantom. The liquid sample 

required a containment vat; therefore we took all measurements within the confines of the 

vat regardless of sample medium so that successive measurements could be taken without 

changing the position of the fiber. In Chapter 3 we develop and theoretically verify a 

calibration process for a fiber optic dose measurement system. While beam width 

measurements can be made with power readings in arbitrary units, an accurate power 

measurement at a single point, the peak of the profile, is required to determine dose. We 

used optical fiber and direct photo detector measurements to derive a calibration factor to 

determine accurate beam peak power. 

 

Section 2.6 System Limitations and Scan Path Considerations 
 

Both the use of an optical fiber as a detector and the process of taking 

measurements within the confines of a vat impose system detection angle and range of 

motion limitations. Chapter 4 focuses on the determination of system limitations and 

optimal scanning method. 

Optical fiber is limited in its acceptance angle by its numerical aperture. We develop and 

compare two possible scanning methods to determine the extent of this limitation, and to 

determine the optimal path along which to scan the fiber to account for it: either a linear 

or rotational path. Each of these paths has limiting factors that we model and use to 

compare to experimental measurements taken using a lens to create a divergent beam, 
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which approximates scattering in tissue while maintaining radial uniformity. Results from 

linear and rotational scans are compared across various source divergence angles and in 

various media to assess the effects of the numerical aperture of the detecting fiber on 

measured dose. 
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CHAPTER 3 CALIBRATION METHOD 
 

Section 3.1 Introduction 
 
 The ultimate goal for this area of research is to have a validated method of dose 

measurement via readings taken in-vivo or ex-vivo with a needle based fiber optic 

detector, as discussed in Chapter 2. There are several steps that must be taken to calibrate 

such a system to prove it is a viable option. Two values need to be measured to calculate 

an accurate dose: area of the beam cross-section at the depth of interest and the total 

power delivered to that area. If only the area were needed, a measurement of power in 

arbitrary units would suffice. However, the exact power is necessary for an accurate dose 

measurement. 

 The system developed in this project used an optical fiber to gather irradiation 

within a phantom sample and deliver it to a detector. Sources of inaccuracy include: 

reflection at the sample/fiber interface, attenuation in the fiber, and fiber numerical 

aperture limitation. In the following sections we discuss the effects of the first two 

factors, derive theoretical correction factors, and verify an experimental calibration 

technique. The third source of inaccuracy, related to numerical aperture, is addressed in 

Chapter 4. 

 

Section 3.2 discusses and derives reflection and transmission at the fiber’s detecting 

surface. 

Section 3.3 discusses experiments done to determine the transmission coefficient of the 

fiber. 
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Section 3.4 discusses fiber loss mechanisms other than reflection. 

Section 3.5 discusses an experimentally tested method for calibration factor 

determination to account for power loss. 

 

Section 3.2 Reflection/Transmission at the Detecting Fiber 

When a wave meets the boundary between two linear media it gives rise to a 

reflected and transmitted wave. The proportion of the initial power that is transmitted is 

dependent upon the refractive indices of the media, the incident angle at which the wave 

meets the boundary, and the polarization of the incoming wave. These factors and their 

associated coefficients will be discussed and derived in the following sections. 

Section 3.2.1 Plane Waves in a Non-Conducting Medium 

Traveling wave solutions for the transport of electromagnetic energy can be 

derived from Maxwell’s equations: 

!"B = 0 , Equation 2 

!"D = 0 , Equation 3 

!"E + #B
#t

= 0 , 
Equation 4 

!"H #
$D
$t

= 0 , 
Equation 5 

where B is magnetic field, E  is the electric field, D  is the electric displacement, H  is 

the magnetic field strength, and t  is time. The electromagnetic waves of interest are 

transverse plane waves, traveling in a uniform isotropic medium with harmonic time 

dependent solutions. Therefore, assuming ED != , HB µ= , and that the time 
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dependence is tie !" , where ! is permittivity, µ  is permeability and !  is frequency. 

Equations 2-5 can be written as 

,0=!" B  Equation 6 

,0=!" D  Equation 7 

,0=!"# BiE $  Equation 8 

.0=+!" EiB #µ$  Equation 9 

In this case !  and µ are assumed to be real (no loss). Combining Equations 8 and 6 

results in the Helmholtz wave equation 

(!2 +µ!" 2 ) E
B

"
#
$

%$

&
'
$

($
= 0.  

Equation 10 

Consider a plane wave traveling in the x direction, of the form tiikxe !" , as a possible 

solution to Equation 10. For this to be a solution the wave number k  and frequency 

! are requisitely related by  

!µ"=k . Equation 11 

From this equation the phase velocity v  and the index of refraction n  can be defined as 

n
c

k
v ===

µ!

" 1
, 

00 !
!

µ
µ

=n . 
Equation 12 

In one dimension the plane wave solution can be written 

tiikxtiikx beaetxu !! """ +=),( . Equation 13 

This solution can be rewritten, using the relation kv=! , 

)()(),( vtxikvtxik
k beaetxu +!! += . Equation 14 
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This solution represents two waves, superimposed, traveling in the positive and negative 

x  directions at phase velocity v . For the three-dimensional case the wave vector is 

defined as nkk ˆ= , where n̂  is the constant unit vector of the direction propagation of the 

traveling wave. Applying the constraints of Equation 10, the equations of the plane wave 

fields can be written as 

E(x, t) =E eikn̂!x"i! t  Equation 15 

B(x, t) =B eikn̂!x"i! t  Equation 16 

where E and B are both orthogonal to n̂  and E  and B  are constant field strength 

vectors restricted by B = µ! n̂!E .  

E  can be written as E = !̂1E1 + !̂2E2 , which is the most general homogeneous 

plane wave equation. In this equation, 1̂! , 2!̂  and n̂  form a set of mutually orthogonal 

unit vectors and amplitudes E1 and E2
 are complex numbers, between which any phase 

difference signifies a polarization other than linear. 

Section 3.2.2 Reflection and Transmission of Electromagnetic Waves at a Dielectric 
Interface 
 

Section 3.2.2.1 Boundary Conditions 

 The boundary conditions at the interface between linear mediums 1 and 2, which 

is assumed to be free of charge or current, demand that: the normal components of the 

magnetic induction and electric displacement are continuous across the surface of 

discontinuity and the tangential components of the electric vector and the magnetic vector 

are also continuous across the boundary 
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!
"
#

=$%=$%

=$&=$&

0)(ˆ ,0)(ˆ
0)(ˆ ,0)(ˆ

1212

1212

EEnHHn

DDnBBn
. 

Equation 17 

In the presence of a charge or current at the boundary a discontinuity would exist for the 

normal component of electric displacement and the tangential component of the magnetic 

vector, but this case does not need to be considered for this application. 

Section 3.2.2.2 Reflection and Transmission at Oblique Incidence 

Suppose that a monochromatic plane wave approaches an interface between two 

homogeneous media of different optical properties; in this case incident electric and 

magnetic fields 

Ei (r , t) =Eie
i(ki!r"! t )  and )ˆ1),(

1
iii Ek

v
trB != ( , 

Equation 18 

give rise to a reflected wave 

ER (r , t) =ERe
i(kR!r"! t )  and )ˆ1),(

1
RRR Ek

v
trB != (  

Equation 19 

and a transmitted wave 

ET (r , t) =ETe
i(kT !r"! t )  and )ˆ1),(

2
TTT Ek

v
trB != ( . 

Equation 20 

 These three wave field equations can be combined using the boundary conditions 

given in Equation 17 along with the fact that all three waves have the same frequency to 

draw the following conclusions: 

1. The plane of incidence can be defined as the plane formed by the incident, reflected 

and transmitted wave vectors. (In Figure 3, this is the x-z plane) 

)()()( TTRRii SinkSinkSink !!! ==  Equation 21 
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therefore  
 

2. Given the geometry defined in Figure 3, the boundary conditions become: 

!1(Ei +ER )z = !2 (ET )z
(B i +BR )z = (BT )z
(Ei +ER )x,y = (ET )x,y

(B i +BR )x,y =
1
µ2
(BT )x,y

!

"

#
##

$

#
#
#

 Equation 23 

!i 

ki 

kT 

kR 

Medium 1: µ1 "1 

Medium 2: µ2 "2 
n 

!R 

!T 
x

z 

 

Figure 3: Wave ik , is incident on the plane formed by the 0=z boundary, resulting in 
reflected wave Rk  and transmitted wave Tk . 

 

Section 3.2.2.3 Reflection and Transmission for Parallel Polarization 

 There are two polarizations possible for plane waves: parallel or perpendicular to 

the plane of incidence. In this section we address the parallel polarization case, which is 

illustrated in Figure 4. 

Ri !! =  and 
2

1

)(
)(
n
n

Sin
Sin

i

T =
!
!  (Snell’s Law) Equation 22 
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Figure 4: Wave ik , with parallel polarization, is incident on the plane formed by the 
0=z boundary, resulting in reflected wave Rk  and transmitted wave Tk . 

 

 The boundary conditions of Equation 23 are applied to the case shown in Figure 4 

to produce two of Fresnel’s equations 

ER =
! !"
! +"

Ei, ET =
2

! +"
Ei , 

Equation 24 

 
where 

 

The reflection and transmission coefficients (R and T, respectively) can be found using 

these Fresnel equations for waves polarized parallel to the plane of incidence: 

R ! IR
Ii
=

ER

Ei

"

#
$

%

&
'

2

=
! ("
! +"

"

#
$

%

&
'

2

T ! IT
Ii
=
#2v2
#1v1

ET

Ei

"

#
$

%

&
'

2
Cos(!T )
Cos(!i )

="#
2

" +#

"

#
$

%

&
'

2

)

*

+
+

,

+
+

 Equation 26 

! !
Cos("T )
Cos("i )

 and # ! µ1v1

µ2v2

=
µ1n2

µ2n1

. 
Equation 25 
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Section 3.2.2.4 Reflection and Transmission for Perpendicular Polarization 

 The case of a perpendicularly polarized monochromatic plane wave incident on a 

boundary, with no charge and no current, between two homogeneous linear media of 

different optical properties can be solved in much the same way as the case of parallel 

polarization. 

ki 

kT 

kR 
Ei 

BR 

ER 

Bi 

Medium 1: µ1 !1 

Medium 2: µ2 !2 

BT 

ET n "T 
x

z 

"i "i 

 

Figure 5: Wave ik , with perpendicular polarization, is incident on the plane formed by the 
0=z boundary, resulting in reflected wave Rk  and transmitted wave Tk . 

 

The reflection and transmission coefficients (R and T, respectively) can be found 

using the boundary conditions for waves polarized perpendicularly to the plane of 

incidence and the geometry defined in Figure 5: 

R ! IR
Ii
=
1"!"
1+!"
#

$
%

&

'
(

2

T ! IT
Ii
=

4!"
(1+!")2

)

*

+
+

,

+
+

 Equation 27 

where !  and "  are defined in Equation 25. 
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Section 3.3 Experimental Verification of Detecting Fiber Transmission 

 In the case of a collimated beam, where the polarization transmission coefficients 

are equal, they are reduced to 

2
21

21

)(
4
nn
nnT

+
=  

Equation 28 

 The following experiments were done to verify the amount of loss due to 

reflection. We took measurements, using an optical fiber, of a collimated beam in air and 

in water. The index of refraction for air and water are known, therefore T  can be 

calculated for each sample type. The ratio of the transmitted powers, PAir  or PWater , should 

be equal to the ratio of the calculated transmission coefficients: 

Water

Air

Water

Air

T
T

P
P

=  
Equation 29 

From experimentation 

06.091.0 ±=
Water

Air

P
P

 
Equation 30 

Using 11 =airn  for air, 33.11 =watern  for water, and 457.12 =n  for the fiber core, the 

transmission ratio is 

97.0=
Water

Air

T
T

 
Equation 31 

As expected, the values in Equation 30 and Equation 31 are equal, within a standard 

deviation.  

 A similar experiment was done to verify reflection effects at the sensor. For all 

experiments, the optical fiber used for detection acted as relay between the beam being 

measured and a photo detector. There is reflection at the air gap between the fiber and 
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detector. To verify the extent of this reflection, we directly measured a collimated beam 

using a sensor in air and in water (though covered with transparent plastic), rather than 

using an optical fiber relay. In that case, the transmission ratio should be the same as in 

Equation 30. The ratio of measured power in air and water for this experiment was 

PAir
PWater

= 0.95± 0.02  Equation 32 

which is also within a standard deviation of the expected value. 

Section 3.4 Optical Fiber Loss Mechanisms 

 A laser dosimetry device must be capable of determining whether or not a laser 

therapy device delivers the dose claimed by the manufacturer to the appropriate tissue, 

above an objectively verified therapeutic dose level and below standardized safety levels. 

Although the experiments of this thesis do not include an in-vivo human trial, the ultimate 

goal of this area of research is to develop a viable needle/optical fiber based system that 

is both accurate and minimally invasive. For this reason, an optical fiber was exclusively 

used in all experiments. However, the power readings obtained via a fiber optic relay 

experience losses over the length of the fiber. The degree to which the signal is attenuated 

depends heavily on the fiber material, manufacturing processes, and operation 

wavelength. The following sections discuss sources of power attenuation. 

Section 3.4.1 Material Absorption 

 Due to electronic and vibrational resonances, all materials exhibit absorption at 

certain wavelengths. This absorption falls into two categories: intrinsic and extrinsic 

absorption. Intrinsic absorption is caused by inherent optical fiber material properties and 

is dependent on wavelength. The optical fiber used (Newport F-MSC) had a 600 µm 
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diameter pure silica core (SiO2) and a 630 µm diameter bonded hard polymer cladding. 

Silica molecules resonate electronically in the ultraviolet range and vibrationally in the 

infrared range [7]. However, these absorption bands extend into the visible range, as a 

result of the amorphous nature of fused silica [7].  

 Extrinsic absorption is caused by impurities present in the fiber. Manufacturing 

processes and tolerances dictate the concentrations of impurities such as transition-metals 

(e.g. Fe, Cu, Co, Ni, Mn, Cr), but modern advancements in fiber fabrication techniques 

have allowed producers to create fibers with metal impurities below 1 part per billion, 

which can attain a loss level below 1dB/km [7]. However, the presence of water vapor 

remains the main source of vibrational resonance extrinsic absorption [7]. 

Section 3.4.2 Scattering 

 Scattering can be divided into two categories: linear and nonlinear. When light 

experiences elastic scattering, the amount of energy transferred is linearly proportional to 

the power of the initial wave and therefore the scattered light retains its initial frequency. 

This type of scattering is known as linear scattering. Nonlinear scattering of light results 

in either an upward or downward shift in frequency. However, nonlinear processes 

generally require much higher intensity electromagnetic fields than need to be considered 

for this case. Linear scattering within silica optical fibers is generally the result of either 

Rayleigh or Mie scattering [7]. 

 During fabrication, silica is temporarily molten, allowing its molecules move 

randomly before it hardens. This movement forms density fluctuations in the fiber core, 

and consequently fluctuations in the index of refraction. Rayleigh scattering is the term 

applied to the elastic scattering that occurs due to variations in the refractive index on a 
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scale smaller than the optical wavelength ! . More specifically, it is when the ratio 

between the diameter of the scatterer and the wavelength approaches zero [8]. This 

attenuation factor can be written as 

!R =
C
" 4

 
Equation 33 

where C  is a constant that is dependent on the material of the fiber core and ranges from 

0.7-0.9 dB/km-µm [7]. Attenuation occurs when the light is scattered at an angle that 

does not allow for continued propagation.  

 When light interacts with particles that are comparable in size to wavelength, it is 

more often scattered in the forward (rather than backward) direction. This phenomena is 

called Mie scattering and is generally due to imperfections such as index of refraction 

variations or impurities at the core/cladding interface and bubbles in the fiber [9]. Mie 

scattering is essentially negligible for our purposes. 

Section 3.4.3 Attenuation 

Attenuations due to the factors discussed in this section are typically rolled into a single 

attenuation coefficient, ! , which is defined as 

![dB / km]= !10
L
log10

Pout
Pin

"

#
$

%

&
'  

Equation 34 

where L  is the length of the fiber, Pin  is the input power, and Pout  is the output power. 

Because all the contributing fundamental loss mechanisms are wavelength dependent, !  

is also wavelength dependent. The optical fiber used in these experiments was 

approximately one meter in length. The manufacturer, Newport, lists !  to be 0.008 

dB/m.  



 
 

23 

 It is likely that macro-bending contributed significantly to observed loss. Macro-

bending describes the situation of physical bends in the optical fiber occurring at a radius 

small enough to sufficiently disrupt the propagating beam angle, causing leakage. The 

system set-up necessitated bending the fiber to a radius lower than its minimum bend 

toleration, which is listed as 58 mm by the manufacturer. It is not possible to 

mathematically calculate attenuation of this form, however there are ways of determining 

it experimentally. The next section will explain an experiment derived for the purpose of 

calibrating the dosimetry detection system by determining an effective attenuation 

coefficient. 

Section 3.5 Calibration 

 The system designed for this project includes an optical fiber (600 um core 

diameter), which detects the input Gaussian beam profile produced by the laser source. 

The peak data point for each beam profile measured represents the total power integrated 

over the area of the fiber core. Figure 6 illustrates that the area over which power is 

integrated for the peak value of the data collected using an optical fiber cannot be 

approximated as a single point of the actual beam profile. Figure 7 shows an example of 

one-dimensional scans produced using the fiber optic detector. 
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Figure 6: Illustrates the area (in red, circled by a black ring) of a Gaussian beam that is 
integrated for the peak value measured using an optical fiber. 

 

Figure 7: An example of the one-dimensional scans produced using the fiber optic detector 
(blue points) and the Gaussian curve fitted to the data (green line). 
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The goals of the calibration are: 

• Solve for a correction factor, F, to be applied to all future data sets so that the 

resultant data can be labeled in absolute values; and 

• Verify a method to solve for an appropriate amplitude for each data set Gaussian 

fit function such that integration over the area of the beam width of the intensity 

function yields an accurate dose measurement. 

The beam width is defined as the beam diameter at the point where the power has fallen 

to 1/e2 of the maximum power. 

Section 3.5.1 Solving for Calibration Correction Factor, F 

Three types of data were taken to calculate F 

1) Optical fiber: beam profiles collected by scanning across the beam center (Figure 8) 

2) Total power: single values of total power integrated over the entire beam (Figure 9) 

3) Aperture area power: single values of power integrated over defined area (Figure 10) 

a) Aperture #1 - 1254.61 µm diameter 

b) Aperture #2 - 2138 µm diameter 

c) Aperture #5 - 503.91 µm diameter 

Figure 8 illustrates the experimental set-up used in the determination of F. It is 

shown in the configuration used to take data by computer control, scanning along 

a straight path across the beam profile using an optical fiber (600 µm core), which 

yielded 1-dimensional beam profile data sets (data set type 2, listed above). An 

example of such sets is shown in Figure 7. Alternately, the optical fiber was 

replaced by a photodetector (Newport model 818-ST) covered in a thin plastic 
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covering (data set type 1, listed above). This configuration, which is illustrated in 

Figure 9, allowed for the use of the entire detector area (1 cm2) without the 

attenuation loss of an optical fiber relay. The third data set type used in this 

calculation resulted from beam peak measurements taken while the photodetector 

was covered by cases with a variety of apertures (illustrated in Figure 10). 

 

HeNe 

Detector  

Recessed thin glass window 

Detecting fiber 

Horizontal rotational 
scan controller 

Vertical linear 
scan controller 

Manual axial 
controls 

X 

Z 

Y 

 

Figure 8: The experimental set-up used to calibrate the system. The source was a HeNe 
laser (Melles Groit, max power measured was 26.7mW at 632.8nm, before the thin glass 
window). The beam passed through a thin glass window (Fisherbrand microscope cover 
glass 0.13-0.17mm thick) which was recessed. Lenses were placed in the window recession 
for divergent beam measurements. The detecting fiber (Newport F-MSC, step index, 600um 
core, 0.37 NA) was attached to computer controlled actuators (Newport 850G) and 
manually controlled micrometers. The beam profile was scanned linearly in the z direction 
and rotationally about the z-axis. Manual controls were used to adjust the depth within the 
liquid phantom and to locate the beam peak position. The system was manually controllable 
in x, y, and z directions. 
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Figure 9: Photodetector covered by a thin 
clear plastic cover, used for obtaining data 
set type 2. 

Figure 10: Photodetector covered by an 
opaque casing with various apertures, used 
for obtaining data set type 3. 

 First, we took several linear scans of a collimated beam's profile and fitted a 

Gaussian curve to each data set. From those fitted curves the following values were 

obtained by averaging over all of the scanned data sets: maximum value, in mW, σ, and 

beam width, in µm. The Gaussian curve is centered on 0 (to ease later integration). It 

assumes that the attenuation in the detection fiber decreased all signals linearly. The 

system configuration used to measure beam profiles utilized a different photodetector 

than the one used for total power or aperture power (data types 2 and 3, respectively). It 

is assumed that the difference between each photodetector is linear, therefore the 

correction factor F can include the factor which relates the photodetectors and can 

account for attenuation. The power measurement (type 2) take over the entire area of the 

beam profile is assumed to need no correction factor (for the purpose of solving for F), 

but it also has no beam profile structure information.  

 The goal of this calibration is to obtain an intensity function, Fndose[x] , which can 

be used to integrate mathematically over the range dictated by beam width to calculate a 

dose. The form of this Gaussian equation, for this particular case (a collimated beam of 1 

mm width in air), is as follows: 
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G[x]= A !e
"x2

2! 2 , 
Equation 35 

where the amplitude A  is unknown and the standard deviation !  was derived from the 

beam profile data (type 1). The integration of this function from 0 to infinity and rotated 

2π about the vertical axis gives the function 

22 !" ###= AAtot , Equation 36 

where Atot  is the total power measurement found by using the entire detector surface 

(type 2). Equation 36 was used to solve for an amplitude, A , associated with a particular 

! . 

 The product of the correction factor, F , and the peak value, Afiber , of the optical 

fiber beam profiles measurements (type 1), is assumed equal to the intensity function 

found using Equations 35 and 36 integrated over the radius of the fiber core, rcore : 

Afiber !F = 2! x Atot
2!" 2 e

"x2

2" 2

0

rcore

# dx . 
Equation 37 

Equation 37 was used to determine a universal correction factor F  for this optical fiber 

based detection system. Fndose[x]  must be determined for each phantom or tissue sample 

and/or source. 

Section 3.5.2 Verifying the Intensity Function 

 Fndose[x]  for the experimental parameters specified for system calibration is 

2

2

2
22

][ !

"!

x
tot

dose eAxFn
#

= , 
Equation 38 

where Atot  and !  are as defined in the previous section. To verify the accuracy of this 

function, several measurements were taken using the configuration that incorporates 
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opaque photodetector covers with various apertures (type 3). Each aperture represents a 

power integration of the beam profile over the area of the aperture. Fndose[x]  was 

integrated over the area of each aperture to calculate theoretical power measurements, 

which were then compared to the actual power measurements obtained using the 

apertures. 

Aperture Radius [um] Calc. Power [mW] Measured Power [mW] % Difference 

#2 1069 22.18 21.95 1.01% 

#1 627.3 21.23 20.28 4.67% 

#5 251.9 8.94 8.76 0.88% 

 
Table 1: Comparison of calculated and measured power values over the area of various 
apertures. 
 

To calculate the dose for this configuration:  

Dose[J / cm2 ]= Power[W ]
Area[cm2 ]

!ExposureTime[s]  

= 2.467 W
cm2

!

"#
$

%&
'ExposureTime[s]  

Equation 39 

where the Area was defined by the beam width and the power was determined by 

integrating Fndose[x]  over the area represented by the measured beam width. This verifies 

that an optical fiber based system can be accurately and precisely calibrated. A single 

calibration per fiber used is required for the calculation of the factor F . A calibration per 

data set is required to find (1) the term !  appropriate for the function Fndose[x] , the 

integration of which yields the power measurement for the dose calculation, Equation 39 
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and (2) the area encompassed by the beam width, which is also used in the calculation of 

dose. 
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CHAPTER 4 CONSIDERATIONS FOR SCAN PATH: 
LINEAR VS ROTATIONAL 
 

Section 4.1  Introduction 

 All proposed experiments utilize optical fibers for light detection. The acceptance 

angle, associated with the numerical aperture (NA) of a fiber, limits the fiber's effective 

detection range depending on the angle at which scattered light is incident upon the 

detecting surface of the fiber. The focus of this chapter is experimentation, motivated by 

NA system limitations, to determine the optimal orientation of the detection fiber with 

respect to the scattered light being measured and to determine how the shape of the fiber 

scan path maintains said orientation. In Section 4.1.1, we discuss why this is a necessary 

consideration for future experimentation. Later sections will propose two different 

methods for detection orientation (called linear and rotational) and detail how these 

methods were modeled, tested and compared. 

Section 4.1.1 Motivation 

 Proposed experiments include the study of beam propagation through liquid fat 

emulsions with optical properties similar to human tissues, and thin biological tissue 

slices. These experiments will study the structurally-induced scattering effects of various 

tissue types and tissue layer combinations on the dose of laser therapy devices as the 

beam propagates through the sample. Please note that the aforementioned future 

experiments had not yet been conducted, as of the writing of this thesis, and are not the 

focus of it. 
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 Optical fiber will be used for detection in future experiments (and was used in the 

experiments described in this thesis) so that the laser wavelength can be varied without 

changing the system alignment, allowing measurements of the same sample to be taken at 

exactly the same position for all wavelengths. Using an optical fiber also provides the 

benefits of a defined aperture, which has a smaller diameter than that of the beam profile 

to be measured, and a small cross-sectional profile without overhanging obstructions. 

These attributes allow for the derivation of a single calibration, which renders 

measurements in absolute values usable across various experiments (discussed in Chapter 

3) to determine laser dose.  

 Using an optical fiber, rather than an encased detector, allows the detecting 

surface to be in contact with the sample without interference from a sensor casing or 

cover. The motion and scan distance range of the detection fiber would be limited by the 

physical constraints of the experimental system. These limitations will be further 

discussed in this chapter along with the experiments done to determine their extent. 

Optical fibers are also limited in their detection range by the acceptance angle defined by 

their numerical aperture. The same fiber should be used for all proposed experiments 

regardless of whether measurements are taken in air or liquid for the sake of limiting 

variables between comparable data sets. 

 In future experiments, tissue samples and liquid tissue phantoms will be prepared 

so that the scattered beam's initial Gaussian profile will remain measureable at all data 

sampling positions. The Gaussian beam profile will be scanned using optical fiber to 

measure the dose of the laser beam at various depths in the tissue sample/phantom. In the 
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completed experiments Gaussian beam profiles were also measured for the purpose of 

comparing the achievable accuracy possible using different detection fiber scan paths. 

 Two scan path shapes are proposed for future experiments: linear and rotational. 

These scan paths are illustrated in Figure 11 (linear) and Figure 12 (rotational). Each 

figure shows an initial laser beam incident upon a thin slice of tissue that scatters the 

beam. At positions #1 and #2, beam profile scans a1 and a2 are taken. For linear scans, 

this one-dimensional data set is taken as the fiber is moved along the z-axis, while 

keeping the detection surface parallel to the z-y plane. This orientation allows 

measurements to be taken at increments along the z-axis. However, this optical fiber 

orientation is limited in its light acceptance angle capability for largely scattered beams 

by the fiber’s NA. For this reason, a rotational scan path was proposed. As illustrated in 

Figure 12, the rotational scan path moves the optical fiber along a circular curve, rather 

than a straight line. This curve is centered on the position at which the beam is incident 

upon the tissue sample. Again the optical fiber detection surface is oriented parallel to the 

z-y plane; however, in this case the y-axis is circularly curved. By following this path, the 

angle of light incident on the fiber is kept well below the threshold of limitation dictated 

by the NA. 
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Figure 11: Proposed linear scanning method for imaging the profile of a laser beam 
scattered through a tissue sample. Scans a1 and a2 are one-dimensional scans taken across 
the beam at positions #1 and #2 respectively. At least two scans at various positions along 
the direction of propagation (x-axis) are required to determine the dose of radiation at a 
depth within the tissue equal to the thickness of the sample by enabling measurements of 
beam width, and subsequently beam divergence angle. The divergence angle would be used 
to determine the beam width, and therefore dose, at the desired position. 
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Figure 12: Proposed rotational scanning method for imaging the profile of a laser beam 
scattered through a tissue sample. Scans a1 and a2 are one-dimensional scans taken across 
the beam at positions #1 and #2 respectively. At least two scans at various positions along 
the direction of propagation (x-axis) are required to determine the dose of radiation at a 
depth within the tissue equal to the thickness of the sample by enabling measurements of 
beam width, and subsequently beam divergence angle. The divergence angle would be used 
to determine the beam width, and therefore dose, at the desired position. 

 
 Before these proposed experiments can be completed the system limitation 

(imposed by range of motion, scan path, or NA) must be determined. Testing and 

understanding such limitations will allow us to develop a reliable testing apparatus and 

procedure for the study of laser propagation through tissue and future therapeutic laser 

device safety and efficacy verification. 
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Section 4.1.2 Goals 

 In this chapter we discuss experiments we completed for the purpose of testing 

the limitations and accuracy of the scanning system and proposed scan paths. The 

scanning system set-up is illustrated in Figure 13. The proposed scan paths were 

introduced in Section 4.1.1 and illustrated in Figure 11 (linear scan path) and Figure 12 

(rotational scan path) as proposed for future experiments involving tissue samples. 

 Regardless of scan path, physical constraints of the testing apparatus and the fiber 

itself limit the detection fiber motion. A goal of the experiment was to determine the 

extent that physical limitations impaired the system’s ability to measure scattered beams. 

In particular, we determined at what divergence angle a beam profile becomes 

unmeasurable. 

 Another goal of this experiment was to determine the optimal scan path. The 

linear scan path moved the detection fiber in a straight line, such that the perpendicular 

orientation of the fiber’s detecting surface with respect to the beam’s direction of 

propagation was maintained. The rotational scan path moved the detection fiber in a 

circular arc centered around the plane upon which the beam initially entered the sample. 

Both scan paths crossed the beam at its center and allowed measurements to be taken of 

the beam profile. 

 Linear scanning offered a simple solution, because its straight path allowed a 

straightforward determination of divergence angle. However, the NA of the detection 

fiber limited these measurements and it was hypothesized that the measured divergence 

angle using linear scan data would converge to a particular angle, dictated by the fiber’s 

NA, as the input beam divergence angle was increased. It was a goal of this experiment to 
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determine which factor imposed the greatest limitation to linear scanning: the NA of the 

fiber or physical range of motion limitations (the sample vat size and allowable fiber 

bend radius). 

 Rotational scanning was appealing because it was free from NA limitations. 

However, the measurements were taken along a curved path and therefore required a 

conversion calculation to determine the divergence angle of the scattered beam. It was a 

goal of this experiment to determine if the benefits of the rotational scan path outweighed 

the possible errors introduced by the conversion. 

To determine the optimal scan path, several beams with progressively larger 

divergence angles were scanned using both scan paths. The beams were scattered using 

lens to maintain profile uniformity. The resulting divergence angles measured using each 

path type were compared against theoretically calculated beam divergence angles for 

each scattered beam. Each scan type was also examined to determine which of the 

aforementioned scanning limitations were the most detrimental to measurement accuracy. 

In Section 4.2, the testing apparatus and the procedures used for experimentation 

are described. This includes a detailed discussion of each tested scan path. 

In Section 4.3, theoretical divergence angles provided by each of several lenses 

used in experimentation are derived. These lenses were used for the purpose of modeling 

light scattered through tissue. The experimentally determined divergence angles were 

compared to those calculated theoretically to determine which scan path yielded the most 

accurate results. Measurements were taken for various lenses until the beam was 

scattered beyond the physical detection range of the system. The angle at which this 
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occurred was determined based on the theoretical calculations and is discussed in this 

section. 

In Section 4.4, we derive a theoretical model of the divergence angle expected to 

result from measurements taken via the linear scan path. This was done by first 

calculating a function that represents the limitation imposed on the detection fiber’s 

incident angle acceptance window, which is dependent on the input beam divergence 

angle (calculated in Section 4.3), and the position of the fiber along the axis of beam 

propagation. This function was then used to alter an ideal model of a Gaussian beam to 

produce a model beam profile for expected linear data measurements. We calculated 

expected divergence angles from the modeled beam profiles. By plotting the modeled 

against the input divergence angles we determined the angle to which linear scan angle 

measurements would theoretically converge as the input divergence angle increased. The 

hypothesized convergence was used in the assessment of the accuracy yielded using a 

linear scan path. 

In Section 4.5 we derive a conversion factor for beam profile measurements taken 

using a rotational scan path. The procedure for determining divergence angle via this scan 

path included taking power readings along a circular arc; the position of each such 

reading was recorded in units of angle rather than distance. To properly determine 

divergence angle, and to ensure accurate side-by-side comparison to linearly scanned 

data, the position measurements were required to be converted to units of distance. 

In Section 4.6 we derive an equation used to determine divergence angle from 

experimental data, taken along either scan paths. 



 
 

39 

In Section 4.7 we present and discuss experimental results and compare 

measurements resulting from each scan path data set to theoretically determined 

divergence angles for the purpose of establishing the optimal scan path for testing the 

dose of laser therapy devices. The model of expected linear scan data is also compared to 

experimental results to assess the extent of limitations imposed by the fiber NA. 

 

Section 4.2  Experimental Set-up 

 The experimental set-up is illustrated in Figure 13. The source was a Melles Griot 

helium-neon (He-Ne) laser, which emitted at 632.8nm at a measured total maximum 

power of 26.7 mW. This collimated beam was directed through a lens and a thin glass 

window (1 mm thick) into the detection vat. Objective lenses, of various magnification 

powers, were placed in the beam path for successive experiments to create scattered 

beams of uniform distribution, but with varying divergence angles. These lenses will be 

discussed in greater detail in Section 4.3. The thin glass window, Fisher microscope 

cover glass 12-542-B measuring 22mm × 22mm × 1mm, was sealed to the detection vat 

in a recess. The recess was placed so that the side of the glass window closest to the 

detection fiber was positioned approximately at the rotational point of the horizontal 

rotational scanner. The detecting fiber (Newport F-MSC, step index, 600um core, 0.37 

NA) was positioned in the vat, which in other experiments would be filled with a sample 

liquid. The vat was also equipped with a sample holding stage, which directly abutted the 

glass window. The scans were taken in air, but within the confines of the vat to add 

continuity across experiments and as a proof-of-concept that measurements can be taken 
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by a large core diameter fiber within a vat without exceeding the fiber's maximum bend 

radius limit. 

 Detecting fiber motion was controlled on the x and z-axes by computerized 

Newport 850G actuators. The x-axis position was selected and entered for each data 

measurement set. A Newport SDS65 linear stage was used to control the y-axis, which 

was set manually to center the detector on the scattered beam. Linear scan measurements 

were taken by moving the detecting fiber in the z-direction using the vertical 

computerized actuator. Rotational scan measurements were taken by moving the 

detection fiber in the x-y plane using a Newport UR8755C actuator and UE34CC motor. 

 For linear scans, the detector was an Ophir 3A power/energy detector 

(P/N1Z02621) attached to an Ophir Nova II power/energy meter (P/N 1Z01550). For 

rotational scans the detector was a Newport 818-ST silicon photodetector attached to a 

Newport 841-PE power/energy meter. Each set of detectors and scanning actuators (one 

for linear scans and one for rotational scans) was attached to a computer equipped with 

an actuator motion controller/driver and a LabVIEW program capable of taking power 

and position measurements while moving the detection fiber across the beam profile 

along either scan path. 

 Two separate computer systems were required for the two different scan paths due 

to actuator controller/driver limitations. As a result, two different sensors were used for 

photo-detection. For the experiment discussed in this chapter, beam profile measurements 

were taken to determine beam width and divergence angle, these being spatial 

measurements, the absolute power values were irrelevant and therefore only given in 

terms of arbitrary units (AU). For experiments that necessitated an absolute power 
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measurement, calibrations were done which encompassed the difference between power 

meters, as well as reflection and attenuation in the fiber. These calibrations are 

derived/discussed in Chapter 3. 
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Figure 13: Experimental set-up. The source was a Melles Griot helium-neon (HeNe) laser 
that emitted at 632.8nm at a measured total maximum power of 26.7mW. This collimated 
beam was directed through a lens and a thin glass window (1 mm thick) into the detection 
vat. The detecting fiber was set in the vat. Detecting fiber motion was controlled on the x 
and z-axes by computerized Newport 850G actuators. The x-axis position was selected and 
entered for each data measurement set. A Newport SDS65 linear stage was used to control 
the y-axis, which was set manually to center the detector on the scattered beam. Linear scan 
measurements were taken by moving the detecting fiber in the z-direction using the vertical 
computerized actuator. Rotational scan measurements were taken by moving the detection 
fiber in the x-y plane using a Newport UR8755C actuator and UE34CC motor. For linear 
scans, the detector was an Ophir 3A power/energy detector (P/N1Z02621) attached to an 
Ophir Nova II power/energy meter (P/N 1Z01550). For rotational scans the detector was a 
Newport 818-ST silicon photodetector attached to a Newport 841-PE power/energy meter. 
Each set of detectors and scanning actuators (one for linear scans and one for rotational 
scans) was attached to a computer equipped with an actuator motion controller/driver and 
a LabVIEW program capable of taking power measurements while moving the detection 
fiber across the beam profile. 

 

Section 4.2.1 Scan Paths 

 Two scan paths were tested and compared: linear and rotational. Figure 14 and 

Figure 15 illustrate the difference between the two paths and show the basic set-up for the 

completed experiments. When a laser beam is incident upon a tissue sample it is 

scattered, though not in a perfectly uniform way. Lenses were used to model tissue 

sample light scattering in the experiment to compare the accuracy of scan paths. 
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 Linear scans were taken by moving the detecting fiber in a straight path across 

the beam profile in a line perpendicular to the direction of beam propagation, which 

maintained a fiber detection surface orientation perpendicular to the direction of beam 

propagation. 

 Rotational scans were taken by moving the fiber in a circular arc across the beam 

profile, which allowed the fiber detection surface to always be orientated such that the 

angle of light incident on the fiber would remain significantly smaller than the limiting 

acceptance angle dictated by the fiber NA. 

 It was particularly important that the scattered beam be uniformly distributed so 

that the beam profile could be taken at any cross-section that passed through the beam 

center. To ensure that the measurements taken along both scan paths were taken at the 

same position on the axis of beam propagation, the detection fiber had to be attached to 

the scanning controllers for both scan paths simultaneously. The scanning hardware was 

arranged so that the center positions for both scan paths were exactly the same. This 

position also coincided with the center of the scattered beam to ensure that imaged beam 

profiles accurately represented the beam. It was not physically possible to set the 

actuators to scan both paths along the same plane. As discussed in Section 4.2, the linear 

scan path actuators moved the detection fiber along the z-axis (defined in the system set-

up illustration, Figure 13) and the rotational scan path actuators moved the detection fiber 

along an arc in the x-y plane (also defined in Figure 13). The radial scattering uniformity 

provided by the lenses and the co-registered center position of the scan paths allowed the 

measurements taken via each scan path to be comparable. 
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Figure 14: Linear Scanning Path. The path of the detection fiber is shown with an arrow, 
which correlates to z-axis shown in Figure 13. 
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Figure 15: Rotational Scanning Path. The path of the detection fiber is shown with an 
arrow, which correlates to an arc in the x-y plane shown in Figure 13. 

Section 4.2.2 Data Collection Process 

 Figures 16 and 17 illustrate the data collection process for each scan path. Neither 

Figure shows the detection fiber. The arrows labeled a1 and a2 depict the motion of the 

detection fiber, the detection surface of which was oriented parallel to the y-z plane in 

both figures. Note that the y-axis in Figure 17 is circularly curved and therefore the path 

taken by the fiber includes a simultaneous rotation about the z-axis to maintain the 

detection surface orientation in relation to the curved y-z plane. In both figures part (i) 
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shows the experimental set-up, including the glass window of the sample vat, part (ii) 

shows the axis along which each scan, a1 or a2, is taken with respect to beam profile at x-

position #1 and #2, respectively, and part (iii) shows a representation of the data taken 

along scan lines a1 and a2. 

 First, the detection fiber was positioned so that it was in contact with the glass 

window. All x-positions (along the beam principle vector) were measured with respect to 

the surface of the glass window, which served as the zero-position. Starting from the 

zero-position, the x-position for the first measurement was selected and manually entered 

via the computer-controlled actuator. This position movement corresponds to the arrow 

labeled c in both figures, and was generally on the order of 1 mm per increment.  

 Next, the y-position of the detecting fiber was manually centered on the scattered 

beam using the linear translation stage by maximizing the power level reading. In Figure 

16, for linear scans, y-position adjustment corresponds to the arrow labeled b. After 

finding the center of the scattered beam, the position of the detection fiber was moved in 

the negative z-direction, away from the beam center, to a position outside of the scattered 

beam so that a single scan would cover the entire beam width. Linear scans were driven 

automatically, stopping at intervals along the linear path (a1) to record a power 

measurement from the detector. The spatial position was recorded in units of distance 

(usually nm) and power readings were recorded in AU. 

 The z-position of the fiber was again centered on the scattered beam before 

collecting data along the rotational scan path to maintain comparability between scan 

types. The z-position adjustment corresponds to the arrow labeled b, in Figure 17. For 

rotational scans, as for linear scans, the y-position could be adjusted using the linear 
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translation stage, but the center of the rotational scan was further adjusted by manual 

input to the rotational scanning actuator, along the scan path a1, which was guided by 

observed power readings. 

 After the fiber was positioned on the center of the beam, the rotation scan was 

performed. The position of the detection fiber was moved using the rotational actuator to 

a position outside of the scattered beam so that a single scan would cover the entire beam 

width. Rotational scans were driven automatically and stopped at intervals along the a1 

arrow, shown in Figure 17, to record a power measurement from the detector. The spatial 

position was recorded in units of angle and power readings were recorded in AU. To be 

able to compare linear scans to rotational scans, rotational scan spatial positions were 

converted from units of angle to those of distance. This conversion will be discussed and 

derived in Section 4.5. 

 Several linear and rotational scans were taken at each x-position. After 

completing these scans, a new x-position was set for the next set of linear and rotational 

scans and adjustments were made as necessary to ensure that the next set of scans, 

labeled a2 in Figure 16 and 17, was centered on the scattered beam. Although linear and 

rotational scans were taken across different axes of the scattered beam, the beam was 

aligned to be rotationally symmetric. At every x-position interval adjustments were 

limited to those that would not decouple the spatial correlation between the linear and 

rotational scans. Care was also taken to preserve the distance between the rotational axis 

of the rotational scans and the glass window, so that a single calibration could be applied 

to all rotational data sets. 
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 Beam widths were measured using the scan sets at all x-axis positions. Beam 

divergence angles were found using those beam widths. Several lenses were used to 

scatter the collimated laser beam into a symmetrically divergent beam: Newport M-5X, 

M-10X, M-20X, and M-40X; Edmund DIN60; and Olympus DPlan100. For each lens, 

sets of linear and rotational data were taken at several x-axis positions and were then used 

to determine the beam divergence angle. To determine which scan type yielded more 

accurate measurements, measured beam divergence angles were compared to 

theoretically calculated divergence angles for each lens/data set. 
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Figure 16: Linear scanning data collection process. (i) shows the experimental set-up, 
including the glass window of the sample vat, (ii) shows the axis along which each scan, a1 or 
a2, was taken with respect to beam profile at x-positions #1 and #2, and (iii) shows a 
representation of the data taken along scan lines a1 and a2. The detection fiber was set at an 
x-position (c arrow). The y-position (b arrow) was set manually to center the detection fiber 
on the scattered beam. Linear scans were automatically taken at intervals along the z-axis 
(a arrows). At least two scan sets (#1 and #2), from different x-positions (c arrow) were 
needed to calculate beam divergence. 
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Figure 17: Rotational scanning data collection process. (i) shows the experimental set-up, 
including the glass window of the sample vat, (ii) shows the axis along which each scan, a1 or 
a2, was taken with respect to beam profile at x-positions #1 and #2, and (iii) shows a 
representation of the data taken along scan lines a1 and a2. The detection fiber was set at an 
x-position (c arrow). The y-position (a arrow) was set manually to center the detection fiber 
on the scattered beam. Linear scans were automatically taken at intervals along the y-axis 
(a arrows). At least two scan sets (#1 and #2), from different x-axis positions (c arrow) were 
needed to calculate beam divergence. 
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Section 4.3 Theoretical Divergence Angle Derivation 

 Several lenses were used as the objective lens, illustrated in the experimental set-

up Figure 13, to scatter the collimated laser beam into a symmetrically divergent beam: 

Newport M-5X, M-10X, M-20X, and M-40X; Edmund DIN60; and Olympus DPlan100. 

For each of these lenses we calculated an input divergence angle, which was used to 

assess the accuracy of divergence angle measurements made using linear and rotational 

scan path data. 

Section 4.3.1 Gaussian Beam Parameter Functions Derivation 

 A Gaussian beam and the parameters associated with the calculation of 

divergence angle are shown in Figure 18. The beam is propagating along the z -axis, and 

the point z = 0 , is located at the beam waist, w0 , which is the minimum width of the 

beam, wherein beam width is measured at the point at which the power amplitude has 

fallen to 2/1 e  of its peak value. The Rayleigh range, z0 , is the distance along the 

direction of propagation away from the beam waist beyond which the beam divergence 

becomes linear. The Rayleigh range is defined as 

! 

z0 =
n"w0

2

#
, Equation 40 

where n  is the index of refraction of the propagation medium and !  is the wavelength of 

the beam. It is necessary to verify that measurements were taken at a position outside of 

the Rayleigh range to determine the validity of the geometrically determined divergence 

angles for each data set. 

 The divergence angle at any given point along the beam, !(z) , converges to a 

single value outside of the Rayleigh range ( z > z0 ) to 
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! 

"(z) = lim
z#$

2w(z)
z

=
2%
&w0

, Equation 41 

where w(z)  is the beam width at a given z -position. !(z)  represents the full angle, at a 

given location z , over which the beam reduces to half of its maximum intensity at the 

center of the beam. The properties of a Gaussian beam can be completely predicted if the 

beam waist and radius of curvature are known at any one z -position. The beam width is 

defined as 

! 

w(z) = w0 1+
"z
n#w0

2
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. Equation 42 

The beam wavefront curvature of a Gaussian beam located at a distance z  from the beam 

waist is 

! 

R(z) = z 1+
"w0

2

#z
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Figure 18: Gaussian beam parameters associated with angular divergence derivation: beam 
waist w0  at 2/1 e  of the power amplitude, distance from beam waist z , Rayleigh range z0 , 
confocal parameter b , beam width at distance z , w(z) , radius of curvature at distance z, 
R(z) , and divergence angle ! . 
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The calculation of the divergence angle of a beam that has passed through a lens 

involves the use of ABCD matrices. This technique consists of performing transformation 

on the complex beam parameter of a Gaussian beam, q , which is defined as 

! 

1
q

=
1
R(z)

" j #
n$w2(z)

, Equation 44 

where 

! 

j = "1 . The parameter, q , includes beam information at location z . The 

complex beam parameter at one location, q1 , can be used to calculate beam parameters at 

another location, q2 , using the ABCD matrix 

! 

q2 =
Aq1 + B
Cq1 + D

, Equation 45 

where the values of A, B, C and D are determined by transformation parameters. To more 

easily use Equation 44, Equation 45 can be rewritten as 

! 

1
q2

=
C + D(1/q1)
A + B(1/q1)

. Equation 46 

Using the form of Equation 44, Equation 46 can be written as 

! 

1
q2

=
1

R2(z)
" j #

n$w2
2(z)

. Equation 47 

Equating Equation 46 and Equation 47 yields 

! 

C + D(1/q1)
A + B(1/q1)

=
1

R2(z)
" j #

n$w2
2(z)

. Equation 48 

 For a beam passing through a thin lens and propagating in air a distance z , the 

ABCD matrix is 

A B
C D

!

"
#

$

%
&=

1 z
0 1

!

"
#

$

%
&

1 0
'1/ f 1

!

"
#
#

$

%
&
&
=

1' z / f z
'1/ f 1

!

"
#
#

$

%
&
&

, Equation 49 

where f  is the focal length of the objective lens. 
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 It is important to note that the lenses used do not necessarily fit the requirement 

for the use of the thin lens equation. It is understood that the values calculated using this 

method are estimations, and that the trend they show in divergence angles as the 

magnification of the objective lens is increased is far more important than an exact 

determination of beam divergence. The trend in angles is of more interest than exact 

values because it was hypothesized that as the divergence angle is increased the linear 

data sets will converge to an angle dictated by the detecting fiber’s NA. These theoretical 

calculations serve the purpose of showing what trend in divergence angles is expected for 

the data collected from scattered beam measurements. The hypothesized convergence 

trend in data collected using the linear scan path is discussed in Section 4.4. 

The initial complex beam parameter, q1 , was determined by assuming that the 

beam was collimated and therefore 

! 

R(z1) =" . Equation 50 

Using q1  to calculate q2  and solve for the position of the beam waist after the beam 

passes through the lens (assuming the lens is located at z = 0 ) was found to be 

! 

zm ( f ,n,w(z1),") =
fn2# 2w(z1)

4

n2# 2w(z1)
4 + f 2"2

mm . 
Equation 51 

The beam width, w , was found to be 

! 

w( f ,n,w(z1),",z) =
f 2n2# 2w(z1)

4 $ 2 fn2# 2w(z1)
4 z + n2# 2w(z1)

4 z2 + f 2z2"2

fn#w(z1)
mm  

Equation 52 
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Substituting the position of the beam waist, zm , Equation 51 into Equation 52 yielded the 

beam width, which could then be substituted into Equation 40 to solve for the Rayleigh 

range 

! 

z0( f ,n,w(z1),") =
f 2n#w(z1)

2"
n2# 2w(z1)

4 + f 2"2
mm . Equation 53 

Equation 52 was substituted into Equation 41 to solve for the divergence angle 

! 

"( f ,n,w(z1),#) =
360 n2$ 2w(z1)

4 + f 2#2

fn$ 2w(z1)
degrees. Equation 54 

Section 4.3.2 Model of Divergence Angle and Rayleigh Range 

 For all calculations the beam width, w z1( ) , used was measured experimentally 

and found to be 

! 

w(z1) =1.001mm , Equation 55 

and the wavelength of the laser was 632.8 nm (He-Ne laser). Table 2 lists the values of 

the input parameters and theoretical results for each of the lenses. The lenses are listed by 

their magnification and in which medium the detecting fiber was submerged. Two of the 

data sets were taken in water for the purpose of creating more data sets with the limited 

number of objective lenses available, but also to verify that measurements could be taken 

in a medium other than air. The input values used to calculate the theoretical beam 

parameters were the lens focal length, f, and the index of refraction for the experimental 

medium. The theoretical calculations included: the distance from the lens to the beam 

waist zm , the beam width w0 , the Rayleigh range z0, and the divergence angle ! . 
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 Input Theoretical Calculations 
Lens/Medium f  n  zm  [mm] w0  [nm] z0  [mm] !°  

5x/Air 25.4 1 25.34 5116 0.130 4.52 
5x/Water 25.4 1.33 25.40 3843 0.098 4.52 
10x/Air 16.5 1 16.50 3320 0.055 6.95 
10x/Water 16.5 1.33 16.50 2496 0.041 6.95 
20x/Air 9 1 9.00 1811 0.016 12.75 
40x/Air 4.5 1 4.50 906 0.004 25.49 
60x/Air 3.09 1 3.09 622 0.002 37.12 
100x/Air 1.75 1 1.75 352 0.001 65.55 

Table 2: Input parameters and theoretical results for each lens. The lenses are listed by 
their magnification and in which medium the detecting fiber was submerged. The input 
values are the lens focal length, f , and the index of refraction for the experimental 
medium. The theoretical calculations include: the distance from the lens to the beam waist 
zm , the beam width w0 , the Rayleigh range z0 , and the divergence angle ! . For all 
calculations the wavelength was 632.8 nm (He-Ne laser). 

 
 Table 3 lists the approximate measured distance, Dmeas , from the lenses to the 

nearest position of the detecting fiber during experimentation and the theoretically 

determined distance, Dtheory , from the lenses to the edge of the Rayleigh range, beyond 

which point the divergence angle of the beam converges and the equations used to 

calculate the divergence angle considered valid. Dtheory  was calculated 

! 

Dtheory = zm + z0 . Equation 56 

All lenses were limited in positioning by the recessed window (shown in Figure 13). 

Each lens was secured to the optics table by the same lens holder, however the length of 

each lens dictated how far it could be placed inside the tube of the recessed window of 

the sample-holding vat. These measurements and calculations verify that all 

measurements were taken outside the Rayleigh range. 
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Lens/Medium Dmeas [mm] Dtheory [mm] 
5x/Air 60 25.5 
5x/Water 60 25.5 
10x/Air 55.1 16.6 
10x/Water 55.1 16.5 
20x/Air 32.5 9.0 
40x/Air 33.4 4.5 
60x/Air 25 3.1 
100x/Air 25 1.8 

Table 3: Rayleigh range verification. Lenses are listed by their magnification and in which 
medium the detecting fiber was submerged. Dmeas is the distance measured from the lenses 
to the nearest detection fiber position. Dtheory is the theoretically calculated distance from the 
lenses to the edge of their Rayleigh range. This validates the assumption that all 
measurements were taken outside the Rayleigh range. 

 

Section 4.3.3 System Physical Limitations 

 While taking experimental measurements, the input divergence angle was 

increased by using lenses of increasing magnification. When using the Olympus 

DPlan100 lens, which had a calculated divergence angle of about 66°, the angle of the 

beam far exceeded that which was measurable by the system. The detection fiber range of 

motion was constrained by the allowable bend radius of the fiber as well as the size of the 

sample vat. Measurements taken using the Newport 60X lens, with a divergence angle of 

about 37°, were well within the range of the testing apparatus. The physical limitations of 

the system constrain measurements to be approximately within the range of 0° to 40°. It 

is possible that range extends as far as 60°, however to ascertain an exact upper limit 

further experimentation is necessary. 

Section 4.4  Linear Data Limitation Calculations 
 
 As introduced in Section 4.1.2, we expected that the experimentally determined 

divergence angles for data taken along the linear scan path would converge toward a limit 
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dictated by its NA as the input Gaussian beam divergence angle increased. The detection 

range of the scanning system itself was also limited by the size of the sample vat in which 

the detection fiber was positioned. While the main goal of this experiment was to 

determine which scanning path yielded the most accurate measurements, these 

experiments were also designed to determine if the limits imposed by the size of the 

detection vat or by the NA of the detection fiber were reached sooner during linear 

scanning. To this end, the angle to which linear data measurements of divergence angles 

converge was determined experimentally and computationally and compared. Using a 

variety of lenses, we also determined an approximate range of divergence angles small 

enough to be measured within the confines of the sample vat to compare to the 

divergence angle limit imposed by NA to determine the most obtrusive limitation factor. 

 The following sections explain the derivation of the theoretical model of expected 

linear scan-determined divergence angles. This is done by first deriving an NA-dependent 

coefficient function, Q x[ ] . Mathematical representations of Gaussian beam profiles were 

multiplied by Q x[ ] to alter the ideal beam profile to that expected from linear scan data. 

The modeled beam profiles also include a coefficient derived to account for reflection at 

the detection surface/sample medium interface based on the index of refraction of the 

sample medium. The resulting function of expected linear beam profile depends on the 

position of the detection fiber in relation to the glass window of the sample vat and the 

input Gaussian beam divergence angle. 

 A model of the input Gaussian beam was made using the theoretical Gaussian 

beam parameters calculated for each lens in Section 4.3.2. The model of the expected 

linear beam profile was combined with the model of the input Gaussian beam to create 
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plots of the expected, linear scan path-collected beam profiles for various input Gaussian 

beam divergence angles. From these plots, we calculated theoretical expected divergence 

angles for linear scan data for each lens. We found that theoretically, divergence angles 

determined by linear scans would converge to about 26° as input divergence angle is 

increased. The comparison of theoretical and experimentally measured divergence angles 

is presented in Section 4.7. 

Section 4.4.1 Optical Fiber Numerical Aperture 

 The NA of the detection fiber determines the maximum scattering angle at which 

incoming light will be detectable. For all experiments described in this chapter, the fiber 

used was Newport F-MSC fiber, which is a step index fiber for the wavelength range 

500-1100nm, with a 0.37 NA and a 600µm core. NA is defined by the optical fiber's 

critical angle for total internal reflection. It is derived from Snell's law and depends on 

the incident angle of incoming light, !i , and the refractive indexes of the fiber core n1 , 

fiber classing n2 , and the surrounding medium, n0 , which was air, water, or liquid tissue 

phantom in this study. NA, is expressed as 

( ) 2/12
2

2
10 )sin( nnnNA i !== " . Equation 57 

 When the detecting fiber scanned beam profiles in air (n0 !1), the limit of the 

accepting incident angle was 21.7°, as determined by its NA. The cutoff for !i  is 

inversely proportional to n0 , and therefore achieves a maximum in air and only decreases 

as n0  increases. For example, if the medium surrounding the detecting optical fiber was 

water, then !i  would be equal to 16.1°. The angle !NA  represents the angle associated 

with the NA of the detecting fiber. 
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Section 4.4.2 Transmission/NA Angular Dependence 

 Output power from a linear scan will be dependent on the angle of incident light 

for two reasons: (1) the angular dependence of the NA of the detecting fiber and (2) 

reflections at the surface caused by an impendence mismatch between the media that 

form the interface at the surface of the detecting fiber core. 

 Outside the range dictated by the NA, data cannot be collected by the detector, as 

illustrated in Figure 19. Q x[ ]  will be the calculation of the factor by which a theoretical 

Gaussian beam profile must be multiplied to account for the NA of the detecting fiber. 

The x-axis is also shown in Figure 19 - it represents the axis along which linear 

experimental scans across the beam profile were taken. All calculations will be derived as 

a function of the variable x. 

 

Figure 19: Illustration of the detector’s effective range as dictated by the NA of the 
detecting fiber, !NA . The fiber is assumed to move in a linear path along the direction of the 
arrow, wherein the detection surface of the fiber is kept parallel to the x-axis. 

 

Section 4.4.3 The NA Dependent Coefficient Function Q[x] 

 As the optical fiber scans a beam profile it moves through three mathematically 

significant regions. Each of these regions is considered individually because the fiber 

core diameter was a large fraction of the beam diameter, and therefore the shape of the 
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detection surface must be included in the calculation. The beam, when collimated as it 

was for several of the experiments in this study, was approximately 1 mm in diameter, 

while the fiber had a 0.6 mm diameter core. The regions include: 

(i) where the fiber core falls entirely within !NA , and therefore is capable of detecting all 

incident light:  

1Q[x] =  and ( ) 2/Tanx dh NA !" # , Equation 58 

where d  is the diameter of the fiber core and h  is the distance between the fiber's 

detecting surface and the source. See Figure 20 (i) for illustration. 

(ii) where the fiber core falls entirely outside of !NA , and is therefore unable to detect any 

incident light. This is represented by 

1Q[x] =  and ( ) 2/Tanx dh NA +! " , Equation 59 

where d  and h  are as defined for region (i). See Figure 20 (ii) for illustration. 

 (iii) Where the detecting surface area of the fiber core is split such that a portion of it can 

accept light while the other portion cannot because it has moved beyond the NA-

inducted limit. See Figure 20 (iii) for illustration. 

In this area the function Q x[ ]  is equal to the ratio of the light accepting area of the fiber, 

A , to the total surface area of the fiber, Atot . 

totA
aA ][Q[x] = , where 

2

2
A !

"

#
$
%

&=
d

tot ' and !
"

"=
a

d

dxxdaA
2/

22)2/(][ , Equation 60 

where a  is the distance from the trailing edge of the fiber (closest to the center line of 

beam propagation) to the position of the boundary dictated by the NA of the fiber, across 

which the fiber is unable to detect light. This variable is illustrated in Figure 21. In terms 

of x , a  can be written 
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( ) xha NA != "Tan . Equation 61 

By combing Equation 60 and Equation 61, an expression for Q x[ ]  in region (iii) can be 

written as 

( )

!
"

"

"=
xh

d

NA

dxxd
d

#

$

Tan

2/

22
2 )2/(
)2/(

2Q[x] . Equation 62 

Q x[ ]  will be incorporated into a more complete treatment of a modeled Gaussian beam 

in subsequent sections. 

                     

Figure 20: Illustration of the three regions, labeled (i), (ii) and (iii), considered in the 
derivation of the factor by which the theoretical Gaussian beam profile must be multiplied 
to account for the NA of the detecting fiber. d  is the diameter of the fiber, h  is the distance 
between the source and the fiber, !i  is the angle between the center of the fiber and the 
source, and x  is the horizontal distance between the center of the fiber and the center of 
beam propagation. 
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Figure 21: Illustration of the variable a . The circle represents the detecting surface of the 
fiber; the shaded region is the portion of the fiber that can detect light. The area that is not 
shaded represents the portion of the fiber that has passed the barrier dictated by the NA of 
the fiber. The variable a  is defined as the distance from the trailing edge of the fiber to this 
barrier. 

Section 4.4.4 Transmission Coefficient Functions 

 The transmission coefficients for parallel, Tpara , and perpendicular, Tperp , 

polarizations were derived in Section 3.2: 

Tpara =!"
2

! +"

!

"
#

$

%
&

2

 Equation 63 

Tperp =
4!"

(1+!")2
 Equation 64 

where 
12

21 and 
)(
)(

n
n

Cos
Cos

i

T

µ
µ

!
"
"

# =$ . Equation 65 

 Both equations are in terms of !  and ! . To scale the modeled Gaussian beam by 

a factor proportional to the transmission coefficient, !  must be written in terms of x ; but 

!  is dependent on the angle of incidence on the fiber detection surface, !i , and the angle 

of light transmitted to the fiber core, !T . In terms of x , these are: 



 
 

63 

! 

"i[x] = Tan#1(x /h)  and 

! 

"T [x] =
n1
n2
Sin("i) =

n1
n2
Sin Tan#1(x /h)[ ]  Equation 66 

These equations can be substituted into the equation for ! , which can be substituted into 

the equations for the transmission coefficients, resulting in transmission coefficients in 

terms of x , resulting in coefficients Tpara x[ ]  and Tperp x[ ] . 

Section 4.4.5 Resultant Angular Dependence 

 The final equation for a Gaussian beam profile equation that incorporates NA and 

transmission correction coefficient functions has the form: 

( )
( )

( )
( ) 2/

2/                                    0

2/        ][][][

2/0                  ][][

][ d

dhTanx

hTanxdhTanxTxQxG

dhTanxxTxG

xGaus NA

NA

NApol

NApol

pol +
!
"

!
#

$

+%

<<&''

&(<'

= )

)

)

)

 Equation 67 

where G x[ ]  is a Gaussian function with parameters calculated based on experimental 

observations, Gauspol  is the equation for either polarization, parallel and perpendicular, 

depending on which transmission coefficient, Tpol , is chosen, h is the distance from the 

source to the detector, d  is the diameter of the detecting fiber, and !NA  is the boundary 

angle dictated by the numerical aperture of the detecting fiber. Equation 67 is valid for 

sources radiating with divergence angles larger than is limited by the NA of the fiber. 

However if the relative angle between the source and the detecting surface of the fiber is 

reduced, i.e. reducing !i  to approximately match the source angle would correct the NA 

induced system limitations, thus negating the need for this equation, which is the driving 

motivation behind testing a rotational scan path rather than a linear scan path.  
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 If the beam is collimated, the only factor that needs to be included is Tpol . The 

calibration that accounts for the effect of this factor, for collimated and divergent beams, 

is discussed in Chapter 3. 

 Equation 67 was used to calculate the expected theoretical linearly scanned beam 

profiles. Figure 22 shows plots of the idealized beam profiles (dashed lines) for various 

input Gaussian beam divergence angles, ! . For the same angles, plots are also included 

of the associated expected linearly scanned beam profiles (solid lines). For a divergence 

angle of 15°, which is much lower than the limit dictated by the NA of the detection fiber 

(this limit is discussed below in association with Figure 23), the expected beam profiles 

nearly matches the ideal beam profile, excepting a slight reduction in maximum power 

due to reflection at the detecting fiber/sample medium interface. These reductions in 

maximum power are independent of divergence angle. For a divergence angle of 25° the 

expected beam profile is somewhat limited by the NA of the detecting fiber. For a 

divergence angle of 35° the expected beam profile shows extreme deviation from ideal. 
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 As input beam divergence angle increases, the deviation from ideal of the beam 

profiles also increases, and therefore the divergence angle determined using 

measurements taken from the beam profiles diverge from ideal. An ideal determination of 

divergence angle would give results that exactly match the input beam divergence angle. 

Figure 23 is a plot showing the deviation of the expected divergence angle determined 

using a linear scan path (solid line) from the ideal divergence angle (dashed line). 

Calculations showed that the divergence angles determined by linear scans should 

converge as input divergence angle increased to approximately 26º. 
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Figure 22: Variations in expected linearly scanned beam profiles by input divergence 
beam angle, θ. For each modeled input divergence beam angle a dashed line plots an ideal 
beam profile and a solid line plots the expected linearly scanned beam profile. 
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Figure 23: Variation from ideal divergence beam determination due to linear scan system 
limitations as a function of input Gaussian beam divergence. 

 
 Experimental linear scan-determined divergence angle data was compared to the 

theoretical calculations of expected divergence angles for the purpose of assessing the 

effects of NA-induced system accuracy limitations in Section 4.7. Experimental data was 

also used to determine system limitations due to range of motion restrictions. These 

limitations are discussed in Section 4.3 in conjunction with the theoretical calculations of 

input divergence beam angles provided by the lenses. In that section we determined that 

the system was capable of imaging beam profiles of beams with input divergence angles 

of up to about 40° (and perhaps higher), but no higher than 66°. By comparison, linear 

scan measurements are expected to converge to about 26°. It is apparent from the 

theoretical and experimental information discussed thus far that the accuracy of the 

system, when using a linear scan path, is limited dominantly by the NA of the detection 

fiber rather than by physical constraints. These factors will be further discussed in 
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Section 4.7 in terms of the observed convergence of linear scan determined divergence 

angles. 

Section 4.5  Rotational Data Conversion 

 Rotational scan measurements were taken in increments of degrees. To determine 

dose from rotational scan data, the angular values were converted from degrees to units 

of length. This conversion also allowed for easy comparison between linear and 

rotational data sets. 

Section 4.5.1 Rotational Scan Pivot Point Determination 

 Determining the position of the rotational scan pivotal point in relation to the 

detection fiber position was the first step in deriving a conversion for rotational data. 

Figure 24 shows the position of the detection fiber and its geometrical relationship to the 

detection vat (of which only the thin glass window is shown) and the rotational scan 

pivotal point. The thin glass window was the reference surface used for all 

measurements. The fiber was positioned in contact with the thin glass window at the start 

of all experiments, and this position was referred to as the zero distance position along 

the direction of propagation. The distance, d, is the measured position of the detection 

fiber in terms of distance from the glass window. Furthermore, the fiber was positioned 

so that the center of the scan path coincided with the center of the beam (the maximum 

measured peak power). In Figure 24, the solid line arrow shows the path of the rotational 

scan, which followed a circular path around a pivot point. The angle θ represents the 

angle traversed by the detection fiber, which contains 1/ e2  of the maximum amplitude of 

the measured power: this is the beam width in units of degrees. The distance α between 
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the pivotal point of the rotational scan and glass was unknown and therefore determined 

experimentally. 

 

d 

Center 
of beam 

! 

Rotational  
scan path 

wR 

Glass 

Pivot 

! 

 

 
NA only limits linear scanning when taking measurements of scattered light. For 

this reason, linear scans of collimated beams are assumed to be accurate. To determine 

the distance ! , linear and rotational scans of a collimated beam were taken at various 

intervals, distances d , along the direction of beam propagation. The linear scan data was 

used to determine the beam width, wL . Given the experimentally determined beam width, 

wL , in units of length, the rotational data was used to calculate !  

Figure 24: Rotational scan system geometry. The detection fiber was centered on a 
collimated beam at a distance d from the surface of the thin glass window. The rotational 
scan path moves the detection fiber along a circulator path around a pivot point. α  is the 
distance between the pivot point and the surface of the glass from which the fiber position 
was measured. The angle, ∂, represents the angular distance encompassing the collimated 
beam width, wR. 
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! 

" =
wL /2

Sin(# /2)
$ d . Equation 68 

 Table 4 lists the values for wL  measured for a collimated beam. Table 5 lists 

values of !  found using the measurements of wL  and the rotationally measured d  and 

! . 

Linear Data 
Data Set wL  [um] 

1mm 1002 
2mm 999 
3mm 997 
4mm 1000 
5mm 1004 
6mm 1001 

  
Average 1001 ±2 

Table 4: Beam width, wL , measured at various distances d . 

 

Calculation of !  
Data Set !  [um] 

1mm 540 
2mm 468 
3mm 448 
4mm 428 
5mm 404 
6mm 414 

  
Average 450 ±50 

Table 5: Values of !  determined using linear and rotational scan measurements of a 
collimated beam. 
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It was apparent from the large standard deviation in !  values that it could not 

simplified to a single constant. As such, the value of !  was determined to be best 

described in terms of a function of distance d , rather than a constant. Fitting a line by 

least squares to the values of !  yielded 

! 

"[mm] = #24.116d # 534.7 . Equation 69 

Figure 25 is the graph of !  vs. d  plotted with the function of α in terms of d  and the 

associated correlation coefficient, R2. The correlation coefficient is sufficiently high to 

support the conclusion that !  is not a function of d rather than a constant. This is most 

likely attributable to minor misalignments of the system such that the line between the 

rotational pivot point and the zero angle measurement position was not perfectly aligned 

with the central axis of the beam. 
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Figure 25: !  vs. d  plotted with the function of α  in terms of d and the associated 
correlation coefficient, R2. 
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Section 4.5.2 Rotational Data Conversion from Units of Angle to Length 

 The rotational conversation can be derived based on experimental measurements, 

including the determination of the rotational pivot point described in the previous section. 

Figure 26 illustrates the geometry of the system set-up, which includes a scattered beam, 

and the parameters involved in the calculation of a linear projection of the rotational data. 

Neither scan path data type was assumed to be accurate for this experiment. The system 

alignment was not altered between experiments so that the function for ! , determined in 

the previous section, remained valid. The goal of this conversion is to project the 

measurements taken along the curved line of the rotational scan path to a linear line 

located at the beam width. This linear line is the beam width used for determining the 

divergence angle of the beam for rotational scans and is labeled wR in Figure 26. Data 

points taken along the rotational scan path have an angular coordinate, β, which is 

converted to a distance b so that the measured power at point pR, which lies on the 

rotational scan path line, is projected onto wR to the position pp. The projection, wR, 

converts the position of all the rotational data points for the purpose of plotting linear and 

rotational data sets together. The total length of wR was used to compare trends in 

measured divergence angles of each scan type as the divergence angle of the beam 

increased. 
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 The width of the beam, wR, is 

! 

wR = 2RSin "
2( ) , Equation 70 

where !  is the angle subtended by 1/ e2  of the maximum power of the beam profile as 

measured rotationally and R  is radius of the rotational scan path. 

! 

R = d +" , Equation 71 

where the value of d  is measured for each data set and !  is dependent on d according to 

Equation 71. The length, L , represents the distance along the axis of beam propagation 

Figure 26: Parameters and system geometry used to calculate a linear projection of the 
rotational data (along the curved scan path line) to the line wR. The distance d and angle 
∂ were measured experimentally. ∂ represents the angle subtended by 1/e2 of the 
maximum profile power as measured rotationally. The function for the distance α  was 
determined in a separate experiment. The rotational scan path radius, R, which depends 
on d and α , and the distance L, which depends on ∂ and R, were used to convert the 
measured angular parameter β, to the distance b. This converstion effectively translated 
the position of each measured power reading. For example: the power reading measured 
at point pR was moved to the position pp. The straight line wR, represents the beam 
profile in the form: power [AU] vs. position [nm]. 
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from the rotational pivot point  to the position of wR . L  depends on !  and wR  and, like 

R  and ! , is therefore calculated for each data set (position d ). 

! 

L = wR
2 Tan( "2) . Equation 72 

From Equation 72 the converted position of each rotational data set to its position on the 

projected line wR is 

! 

b = LTan( "2) . Equation 73 

 The projection of the rotational data along wR  allows linear and rotational data 

sets to be compared visually on the same plot. The total length of wR , taken from several 

data sets, was used to determine the divergence angle of the beam for each beam 

scattered by a lens, measured using a rotational scan path. The divergence angle 

determined using linear and rotational scan paths are compared to theoretical calculations 

in Section 4.7. 

Section 4.6  Measured Divergence Angle 

 Divergence angles of a beam scattered through various lenses were determined 

from measurements taken along linear and rotational scan paths for the purpose of 

comparing the experimental scan type measuring techniques, wherein the rotational data 

was converted to a linear projection as described in Section 4.5. Figure 27 shows an 

example measurement of divergence angle, which relies on beam width measurements of 

the beam after it is scattered through a lens. For either scan type, the beam profile was 

measured at distances d1  and d2  from the glass of the sample vat, and the beam widths 

were found to be w1  and w2  respectively. The divergence angle was calculated from 

these measurements as 
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! 

" = 2# = 2Sin-1 w2$w1

2 w2$w1{ } / 2( )2 + d2$d1( )2

% 

& 
' 

( 

) 
* , Equation 74 

where !  is the divergence half-angle. 
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Section 4.7  Comparison of Experimental and Theoretical Data 

 One-dimensional Gaussian beam profiles were imaged across the center of a laser 

beam scattered by various lenses and were used to determine optimal system parameters 

by testing the accuracy of dose measurements made using said profiles. The experimental 

set-up and procedure were described in greater detail in Section 4.2. Parameters that 

varied during this experiment included:  

 Scan path: linear or rotational 
 Input beam divergence: θ, via variations in lens magnification 
 Sample medium: air or water, in which the detection fiber was submerged 
 Distance: d, the scan center position along beam propagation axis 
 
 The beam profile measurements, taken at various distances, d, along the direction 

of beam propagation, were used to determine beam width. The scan path followed by the 

Figure 27: Geometry and parameters used to determine divergence angle. The divergence 
half angle, φ, was determined using beam profile width measurements, w1 and w2, taken of 
a beam scattered through a lens at interval distances from the sample vat glass, d1 and d2. 
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detection fiber was either linear or rotational. The linear scan path, the more simple path 

choice for implementation and measurement extraction, allowed the detection surface of 

the fiber to remain perpendicular to the direction of beam propagation as it imaged each 

beam profile. However, the linear scan path was hypothesized to be limited in detection 

range by the NA of the fiber. A rotational scan path allowed the detection surface of the 

fiber to change orientation with respect to the angle of incident light from the scattered 

beam such that its ability to detect light remained unlimited by the fiber’s NA. The fiber 

rotated about a pivot point located at the zero position shared by both scan paths. 

Rotational position data, originally taken in units of angle, was converted to units of 

length by the process discussed in Section 4.5 before beam width measurements were 

made. Linear position data was originally taken in units of length and therefore beam 

widths were measured directly from linear profile scans. 

 Using several different objective lenses and two different sample media, air and 

water, allowed us to vary the input beam divergence angle. The theoretical calculations 

associated with these lenses are discussed in Section 4.3. In the following figures, the 

data is labeled according to the magnification of the lens and the sample media used 

when the data was taken. In the case where theoretical information is presented below, 

the calculated value was determined using parameters for the lens and media by which it 

is labeled. 

 Figure 28 shows the experimentally determined beam widths taken for each lens 

magnification and sample medium combination listed by the measured distance, d, at 

which each measurement was taken. The distance, d, represents the distance between the 
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glass window of the sample vat (zero position) and the position of the optical fiber 

detection surface along the axis of beam propagation. 

Experimentally Measured Beam Widths
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Figure 28: Experimentally determined beam widths that were measured at 1/ e2  of the 
peak power of each beam profile for linear (Lin) and rotational (Rot) scan types, at a 
distance, d, from the sample vat glass window, for various lens magnifications and sample 
media. 

 
 Measurements of the divergence angle were taken by comparing two beam width 

measurements per calculation. Figure 30 shows the geometry dictated by the 

experimental set-up considered in the measurement of the divergence half-angle, φ, 

which depends upon beam width measurements, w. Figure 29 and Figure 31 show the 

measurements of the divergence angle for each scan type, wherein

! 

" = 2#  and θ1 is the 

determined using φ1, θ2 is the determined using φ2, and so on. 



 
 

77 

Experimental Rotational Scan Divergence Angles
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Figure 29: Experimental rotational scan determined divergence angles, θ, for various 
detection fiber positions, lens magnifications, and sample media. Two beam widths, wn and 
wn+1, taken at distance dn and dn+1 from a reference plane were used to calculate θn. 
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Figure 31: Experimental linear scan determined divergence angles, θ, for various detection 
fiber positions, lens magnifications, and sample media. Two beam widths, wn and wn+1, 
taken at distance dn and dn+1 from a reference plane were used to calculate θn. 

 

Figure 30: Geometry and parameters used to determine divergence angle wherein the 
divergence half angle, φn, depends on measurements of beam widths wn and wn+1. 
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 Figure 32 compares the experimentally determined divergence angles for each 

scan type averaged for each data set (lens magnification and sample media). It can be 

seen in this figure that linear and rotational angles were similar for lenses of lower 

magnification power, which corresponds to a smaller input divergence angle. However, 

as the input divergence angle increased, linearly and rotationally determined 

measurements diverged, as was hypothesized. It is clear that these two scan types do not 

yield equally accurate measurements. These values are compared to theoretical 

calculations of input divergence beam angles for each data set based on lens and sample 

media parameters in Figure 33 for the purpose of determining which scan path results in 

the most accurate measurements. 
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Figure 32: Average experimental divergence angle for each data set from linear and 
rotational data compared. 
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Figure 33: Average experimental divergence angle for each data set from linear and 
rotational data compared to theoretical input beam divergence angles, listed by scattering 
lens magnification and sample medium. 

 
 It is clear, from Figure 33, that the NA of the detection fiber in fact limits the 

detection range of linear scanning. In Section 4.4, it was theoretically determined that 

said limit should be about 26°, but experimentation showed it to be less than 20°. 

Furthermore, we determined, in Section 4.3, that physical limitation of the system, which 

was imposed by the bend radius of the fiber and the size of the detection vat, only 

stipulated that the scattered beam be under about 40°. Obviously the NA induced 
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limitation would be exceeded well before the physical size of the system imposed 

detection constraints. 

 Based on Figure 33, we recommend that the rotational scanning be used for laser 

therapy dose analysis, as it yields more accurate results than linear scanning. 

Alternatively, a fiber with a much higher NA, or with compensation optics could be used 

to circumvent the limitation, if linear scanning is desired. It was not possible to determine 

the extent by which the rotationally determined divergence angles may have been 

erroneously skewed by the necessary conversion from angular units to those of length, 

discussed in Section 4.5. But, even assuming that error was introduced by the conversion, 

the difference between the accuracy of linear and rotational scan measurements is still 

large enough to be certain that the rotational scan path is the optimal path. 
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CHAPTER 5 CONCLUSIONS 
 

 We designed and tested a method for measuring sub-dermal OT dose capable of 

device safety and efficacy verification, the determination of sub-dermal dose safety 

standards and the study of laser beam propagation through tissue. In Chapter 3 we 

verified a calibration method usable in various sample media. In Chapter 4 we 

determined the extent of system limitations due to detector range of motion, optical fiber 

characteristics and scan path.  

Section 5.1 Fiber Optic Detection within Various Sample Media Feasibility and 
Calibration 
 
 The optical fiber we used in experiments was capable of scanning a laser beam 

profile in sufficient detail to allow for the measurement of beam width, which is essential 

to the determination of dose. This scanning was successfully completed in air, water and 

a tissue phantom (fatty emulsion) using only a collimated input beam from a He-Ne laser, 

which emitted at 632.8nm at a measured total maximum power of 26.7mW with a beam 

width of about 1 mm. However, direct measurements yield only results in arbitrary units 

due to the power lost in reflection at the sample media/fiber detection surface interface 

and attenuation due to bends in the fiber. 

 To account for all power loss we designed a method of calibration suitable across 

sample media. The measurement system utilizes an optical fiber as a relay from the 

scattered beam to a photo detector. This method involved taking measurements, at the 

same depth, using the fiber and the photo-detector directly and compared the results to 

determine an intensity function correction factor, F. The total power, Atot , measured 
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directly by the photo detector (which was large enough to include the entire beam) 

represents the amplitude of the Gaussian beam measured by the fiber (used to determine 

the standard deviation, ! ). This Gaussian beam function and total power form an 

intensity function. The product of the correction factor, F , and the peak value measured 

by the fiber, Afiber , was assumed to be equal to the intensity function integrated over the 

radius of the fiber core, rcore : 

Afiber !F = 2! x Atot
2!" 2 e

"x2

2" 2

0

rcore

# dx . Equation 75 

Equation 75 was used to determine a universal correction factor F  for this optical fiber 

based detection system. Using this equation we calculated expected values for 

measurements taken by the photo detector through variously sized apertures. Comparing 

these values to those determined experimentally, we confirmed the validity of this 

calibration method. However, a correction factor must be determined for each phantom or 

tissue sample, source and detector. 

 Although we were unable to theoretically model all sources of loss, we calculated 

and confirmed the fraction of loss due to reflection. This confirmation is valuable for 

future calibrations, for in-vivo tissue samples particularly. The method used to determine 

the correction factor cannot be used in-vivo because it would be overly invasive to 

position the photo detector directly inside living tissue. The only difference between 

detecting a signal via a fiber in air and in tissue is the reflection coefficient. Therefore, 

the correction factor actually only needs to be determined experimentally once for a 

given system (a source, fiber, and photo detector combination). Once completed, only an 
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estimate of the index of refraction of the tissue would be needed to determine and 

integrate a reflection loss factor, thus calibrating the system to the tissue. 

Section 5.2 Scanning Considerations 

 The dose measuring system and method we propose requires scanning an optical 

fiber across a scattered laser beam profile. To determine the optimal path by which to 

translate the fiber, we considered physical limitations and the beam width measurement 

accuracy of two different scan path shapes: linear and rotational. Each method presented 

different limitations, which we weighed against their unique advantages. 

Section 5.2.1 Linear Scanning 

 Linear scanning has the advantage of simple scan geometry. Data taken along this 

path results in power readings of arbitrary units in position intervals of distance, from 

which a beam width measurement can easily be taken. The size of the sample vat limits 

the range of mutation of the fiber and therefore its ability to detect widely scattered 

beams. However, an optical fiber is also limited in its acceptance angle by its NA. Linear 

scanning moves the optical fiber such that its detection surface is always perpendicular to 

the vector of beam propagation. As such, light scattered beyond a certain angle will not 

be detected by the fiber, regardless of the physical system limitations. 

 To determine the extent of physical limitations, we imaged beam profiles of laser 

beams scattered to various divergence angles by various lenses. We theoretically 

calculated the expected divergence angle of each beam and experimentally determined 

the same for comparison. The most widely scattered beam was found to have a 

divergence angle of about 66°, and was too large for either scan path method to 

completely scan the beam profile due to the restriction imposed by the sample vat size.  
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The next largest angle, about 37°, was well within the capability of the system to 

physically translate the fiber through the entire beam profile. The physical limitations of 

the system constrain measureable scattered beam divergence angles to be approximately 

within the range of 0° to 40°. 

 The same experimental measurements were used to determine the NA-imposed 

acceptance angle limitation. For comparison, we theoretically modeled the expected 

linearly scanned output beam profiles incorporating a mathematically derived NA 

limitation. This model predicted that the linearly determined divergence angles would 

converge to about 26°. Experimental results showed this convergence angle to be less 

than 20°. 

 Theoretical and experimental results prove that linear scanning accuracy is limited 

dominantly by the NA of the fiber rather than by physical constraints. A further drawback 

to linear scanning is the fact that beam profiles produced by this method result in 

Gaussian shaped curves, even if part of the profile is outside the range of detection. 

Therefore, it is impossible to tell from looking at data if a beam divergence angle found 

to be near 20° is accurate or if the beam is actually much more widely scattered but cut 

off by the acceptance angle limitation. If linear scanning is used for dose measurements, 

we recommend the use of a fiber with a very high NA or other measures be taken to 

mitigate this effect. 

Section 5.2.2 Rotational Scanning 

 Rotational scanning was tested as an alternative to linear scanning, and was 

designed to mitigate the effect of NA-induced limitations. By translating the fiber along a 

rotational path centered on the point which the laser beam is incident upon the sample 
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and simultaneously rotating the fiber, the detection surface of the fiber can be maintained 

such that the incident angle of the scattered light remain below the critical angle. This 

would allow the system to detect more widely scattered beams than possible using linear 

scanning. However, the accuracy of this method is dependent upon the positional data 

conversion made necessary by its angular scanning geometry. Data taken along this path 

results in power readings of arbitrary units in position intervals of angle, which must then 

be converted to distance to determine the beam width. 

 We derived a conversion factor for rotationally scanned data and verified 

components thereof. We found that the data could be converted as long as we could 

determine accurately the position of the rotational axis. We found experimentally that the 

distance between zero point, the position defined as where the fiber surface touches the 

glass window of the sample vat, and subsequent fiber detecting surface positions was not 

a constant. In fact it varied as a function of the distance between the zero point and the 

detection fiber. Even so, data conversion was possible and was experimentally 

determined to be accurate by comparing rotationally and theoretically determined 

divergence angles. We recommend that further iterations of dose measuring systems 

using rotational scanning include a simple and accurate means by which to determine the 

function of the rotational axis position each time the optical fiber position is adjusted. 

Section 5.2.3 Comparing Linear and Rotational Scan Paths 

 We also compared linearly, rotationally, and theoretically determined divergence 

angles for scattered beams produced using various lenses. Based on observations we 

recommend the use of rotational scanning over linear scanning. Rotational scanning 
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provides a larger range of accurate beam profile measurements and greater measurement 

certainty because it is not hindered by fiber NA. 
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