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The demand for energy is constantly rising in the world while most of the
conventional sources of energy are getting more scarce and expensive. Additionally,
environmental issues such as dealing with excessive greenhouse gas emissions
(especially CO2) impose further constraints on energy industry all over the globe.
Therefore, there is an increasing need for the energy sector to raise the share of clean
and renewable sources of energy in power generation. Wind power has specifically
attracted large scale investment in recent years since it is ample, widely distributed
and has minimal environmental impact.
Wind flow and consequently wind-generated power have a stochastic nature.
Therefore, wind power should be used in combination with more reliable and fuel-
based power generation methods. As a result, it is important to investigate how much
capacity from each source of energy should be installed in order to meet electricity

demand at the desired reliability level while considering cost and environmental



implications. For this purpose, a probabilistic optimization model is proposed where
demand and wind power generation are both assumed stochastic.

The stochastic model uses a combination of recourse and chance-constrained
approaches and is capable of assigning optimal production levels for different sources
of energy while considering the possibility of importation, exportation and storage of

electricity in the network.
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1. Introduction

1.1. Demand for Energy in the World

According to recent studies, population of the world has more than tripled in the past

century (UN, 2009). The consequent rapid development of the infrastructure required

for sustaining the enormous metropolitan societies coupled with the industrial

revolution has led to an ever-increasing demand for energy. Figure 1 demonstrates the

rate of energy consumption in the world from 1965 to 2005 divided by source (BP,

2006). This ascending trend has been present so far with the exception of year 2009,

when a 1% decrease was seen in energy consumption as a result of the economic

crisis. In 2010, however, the demand recovered firmly with a 5% growth (Enerdata,

2011).
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Figure 1- World energy consumption in terawatts for 1965-2005 (Graph by Frank Van Mierlo)



Electric power generation sector is the largest consumer of primary sources of energy
in the US followed by transportation, industrial and residential/commercial sectors
(USEIA, 2012). Figure 2 shows US energy consumption (in quadrillion Btu) by
source and sector. As it can be seen, the majority of this huge energy demand is met
by combustion of different types of fossil fuel. In 2008, approximately 81% of the
energy consumed in the world was originated by burning oil (33.5%), coal (26.8%)
and gas (20.9%) (Swedish Energy Agency, 2010). As a result, the available reserves
of fossil fuel are depleting quickly while the unit prices are rising steadily. Therefore,
there is a necessity to gradually decrease the share of fossil fuel in energy production

and replace it with other alternatives.

P P
ercent of Sources Total =97.5 ercent of Sectors

Electnic Power
396
(41%)

Source Sector
Figure 2- US energy consumption by source and sector (USEIA, 2011)

Additionally, political considerations as well as environmental issues such as global

warming in the recent years have further emphasized the urgency of switching to



other (and preferably cleaner) sources of energy. Global warming is believed to be
closely related to greenhouse gas emissions, especially CO2. Figure 3 demonstrates

the abrupt increase in carbon emissions in recent years due to fossil fuel combustion.
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Figure 3- Global fossil carbon emissions (Marland, 2007)

1.2. Non-fossil Energy Sources

As discussed in the previous section, scientists have been constantly working on
discovering efficient and eco-friendly methods to extract and harness other forms of
energy in order to diversify the energy production portfolio. As a result of this effort,
a variety of power generation methods are readily available. Figure 4 shows the major

sources of energy production in 2005 (BP, 2006).
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Figure 4- Sources of energy production in the world in 2005 (Omegatron, 2007)

As it can be seen, nuclear power is leading the chart in non-fossil fuel categories.
Although this method has been used quite reliably for a few decades, there are still
many environmental, safety and security concerns regarding nuclear fuel usage.
Incidents such as Chernobyl disaster and more recently the 2011 Tohoku earthquake
and tsunami which damaged Fukushima reactors and caused radioactive material
leakage are some examples revealing the costly, life-threatening and extensive impact
of failure in these systems. Therefore, renewable energy sources are by far better

candidates to replace fossil fuel or even nuclear energy.



1.3. Renewable Energy

According to the International Energy Agency, “Renewable energy is derived from
natural processes that are replenished constantly. In its various forms, it derives
directly from the sun, or from heat generated deep within the earth. Included in the
definition is electricity and heat generated from solar, wind, ocean, hydropower,
biomass, geothermal resources, and biofuels and hydrogen derived from renewable
resources. “ (IEA Renewable Energy Working Party, 2002)

One of the oldest forms of renewable energy utilized by mankind is the traditional
biomass. Woods and dry plants have been used for heating for thousands of years.
Modern biomass renewables mainly include biofuels such as bioethanol, biodiesel,
etc. used as transport fuel. Combustible gasses generated in landfills are also in this
category.

Hydropower is another form of renewable energy with a usage history dating back to
thousands of years ago. Ancient water irrigation systems and watermills indicate that
early civilizations knew how to harness and benefit from the water power. With the
advent of the modern technology, water power has been extensively used for
electricity generation. Figure 5 shows a schematic view of a hydroelectric dam. A
large number of dams have been constructed for this purpose in the past century. In
recent years, however, this technique has somewhat lost its popularity due to
environmental issues since large-scale flooding and disturbance of the local
hydrological regime can have substantial negative impacts on the eco-system. Tidal
power is another source of hydroelectric energy which is unencumbered by this

setback.
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Figure 5- Schematic layout of a hydroelectric dam (Bonsor, 2001)

1.4. New Renewables

Besides the huge progresses achieved in techniques and technologies of utilizing the
traditional sources of power, novel sources of energy have been successfully
harnessed and exploited in recent years. Geothermal energy is one of the new
renewables which is favorable in those regions of the earth with a thin crust layer. In
this technology, the heat from the depth of the earth is used either directly for heating
purposes or for powering the steam generators used in electricity generation. Figure 6

shows a schematic layout of a geothermal power plant.
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Figure 6- Schematic view of a geothermal power plant (U.S. DOE, 2012)

Solar energy is another example of the new renewables which is growing rapidly in
applications. It consists of two sub-categories; one is the solar thermal energy where
the heat from sunlight is utilized as the energy source. It includes a range of
applications from direct heating (for hot water for instance) to power generation with

heat engines. Figure 7 shows the layout of a solar thermal power generation facility.
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Figure 7- A concentrated solar thermal system (U.S. DOE, 2011)

The other sub-category is called Photovoltaics (PV) where electricity is directly

generated from the sunlight by exposing semiconductors with photovoltaic effect to



sun radiation. Although at the present solar energy covers a small fraction of the
energy demand of the world, new achievements in this technology are very
promising. Scientists have expressed hope that in fifty years, solar energy could meet
most of our energy needs while the other renewables cover the rest.

Wind power is another source of renewable energy which has attracted a great deal of
attention and investment in recent years. Wind power is discussed in more detail in

the next section.

1.5. Wind Power

Although wind energy is considered one of the new renewable technologies, mankind
has benefitted from wind energy for thousands of years. Wind propelled ships and
sailboats have been around as a means of transportation throughout the recorded
history. Moreover, windmills were used in Middle East, Holland and some other
regions of the world for grinding grains or pumping water in early ages. The modern
techniques of electricity generation from wind power, however, are no more than a

few decades old. A wind power generator has been depicted in Figure 8.

Main Shaft Braka
Gearbox f
T:ans;nhsiont,f Genaralor
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Y
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Tower

Figure 8- Wind power generator layout (California Energy Commission, 2012)



Wind power generation is one of the most promising technologies among the new
methods of energy generation and it has grown faster than any other type of
renewable technology in recent years. A study by Stanford University shows that the
total potential for wind generated power on earth is several times greater than the total
energy consumption of the world (Archer & Jacobson, Evaluation of global wind
power, 2005).

Generation of electricity from wind power has several advantages over conventional
methods. The main advantage is its cleanliness; there is no greenhouse gas emission
during operation of wind turbines (the emissions during the construction and
installation processes are negligible) and also no other contaminating byproduct is
produced.

Furthermore, wind is ample and widely distributed. Unlike fossil fuel resources, high
speed winds gust across many countries, at least locally or seasonally. Another
specific advantage of wind power is that the periods of peak electricity demand often
coincide with the periods of high wind speeds. In other words, wind generally blows
stronger during the daylight hours when the businesses and industries are running. As
a result, it would be easier to adjust to demand fluctuations in the network. Moreover,
wind and solar energy can complement one another since normally windy days are
cloudy and sunny days are calm.

Nevertheless, there are some disadvantages associated with wind power generation as
well. For example, wind farms occupy extensive lots of land. The rotors usually make

a lot of noise and can be a life hazard for the avian population in the region.



Therefore, some critics have raised aesthetic and environmental concerns over
construction of large wind farms.

Apart from the problems mentioned above, utilization of wind generated electricity is
limited by some other technical and operational shortcomings as well. For instance,
wind power is not a reliable source of energy. As formerly discussed, wind is a
stochastic phenomenon. Therefore, short-term prediction of wind speed and
estimation of the quantity of the resulting power cannot be made with sufficient
accuracy. Another setback of this technology is that wind power is not dispatchable
either. In other words, when there is an increase in demand, there is no way to
intentionally increase the production.

In spite of these shortcomings, several methods are available to mitigate their impact.
Energy demand management is an efficient method to reduce fluctuations in demand
profile in order to make it more predictable. Furthermore, some spare generation
capacity of dispatchable type could be made available in order to handle the residual
demand (or supply) variations. This additional generation capacity can supplement
the electricity production upon demand. Operating reserve, which is specified as the
extra capacity available through connecting spare generators to the grid or increasing
the output of underutilized generators is a common method of maintaining reliability
in grids. Some other approaches to deal with this problem are grid energy storage and
system interconnection.

Pumped-storage hydroelectricity is an effective technique for creating grid power
storage and load leveling capability. As illustrated in Figure 9, this system roughly

consists of two nearby reservoirs with considerable elevation difference, a dam at the

10



higher elevation, a pump station to refill the higher reservoir and also the power
generators. When there is a supply surplus in the grid, the pump station is switched on
in order to pump the water from the downstream lake to the upstream reservoir
behind the dam, creating gravitational potential energy. When demand increases
beyond the normal generation capacity in the grid, water is released from the
upstream reservoir to generate extra electricity at the power station embedded in the

dam.

High-level
reservoir

PE.=mgh

Flow of water during pumping
(low electricity demand)

Low-leve
reservoil

........

Figure 9- Schematic of a pumped storage hydroelectric power plant (BBC, 2013)

Large-scale batteries can also be used for grid storage. Flow batteries with capacities
as much as 12 MW.hr have been manufactured for this purpose (Wachter, 2006).

Mass production of electric vehicles (EV) provides another great opportunity for
large-scale energy storage. In a smart grid network, in the event of a deficit in

electricity production, power can be drawn back to the grid from the batteries of the

11



cars which are plugged in. This system is called Vehicle-to-Grid (V2G). Although
this idea seems somewhat far from reality right now, it is quite possible in the near
future for some communities to rely significantly on storage capacity of electric
vehicles (Levitan, 2010).

System interconnection is another method which takes advantage of available surplus
supply in other linked network grids. HVDC (High Voltage Direct Current) cables are
usually used for long distance electricity transmission since their energy loss is less
than AC (Alternating Current) lines. A special application of this technique would
involve interconnection of several wind farms located in different regions. Although
operating reserve would still be required, studies indicate that the reliability of wind
farm systems would increase as more wind farms are linked together. A Study by
Stanford University has reported that under specific circumstances, interconnecting
more than ten wind farms can increase reliability up to 33% on average (Archer &
Jacobson, Supplying Baseload Power and Reducing Transmission Requirements by
Interconnecting Wind Farms, 2007). The capacity credit generally reported for a
single wind turbine is in 20% range.

Obviously, all of these methods for creating operating reserve increase the unit cost of
wind generated power. However, continuous progresses in research and technology as
well as commercial and large scale production of wind power generation equipment
have resulted in descending unit prices for wind power technology in recent years.
Some other contributing factors to the economies of wind generated power are

governmental incentives and imposition of carbon taxes.

12



A few countries have already developed strong infrastructure for wind technology.
Denmark, Spain, China, Portugal, United States, Ireland and Germany are among the
countries with the highest installed capacities for wind power generation. Denmark is
producing more than 20% of its power demand from wind energy (WWEA, 2011).
Although United States of America has been one of the leading countries in terms of
installed capacity, the total wind generated power in the US is only about 2% of the
electricity demand. It is interesting to know that based on a study sponsored by the
Department of Energy, the wind power potential in the Great Plain States is more
than sufficient to supply the entire nation (Lu, McElroy, & Kiviluoma, 2009). Figure
10 demonstrates the distribution of annual average wind speeds at 80 m elevation

across the North America.
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Figure 10- Annual average wind speed at 80 m across the North America (Archer & Jacobson, Evaluation
of global wind power, 2005)
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Furthermore, studies show that up to 20% of the total electricity demand in the
network can be supplied from wind power with minimal complications (American
Solar Energy Society, 2007). Therefore, a huge progress over the current status is

easily achievable.

1.6. Motivation for the Research

As discussed in the previous sections, wind speed has a stochastic nature and
consequently, the power generated from wind is intermittent. Most of the power is
generated from high speed winds which occur for short periods of time. Therefore,
wind power is mainly regarded as fuel-saver rather than capacity-saver. In other
words, it is treated as an auxiliary source in most power supply systems and full
standby capacity is available for backup when wind flow subsides. Accordingly, it
appears that more research and deliberation is required to further demonstrate the
capacity adequacy of wind technology.

In order to take advantage of the potential capacity credit of wind power generators,
capacity planners should be provided with a modeling tool capable of simulating
demand and anticipating power production from different available sources of energy
with reasonable accuracy. In this study, we will first review the literature to
investigate how this subject has been addressed by other researchers and identify
areas for improvement. Then, we will try to implement some of these improvements
and develop a new mathematical model for optimal allocation of capacities for each
type of available energy source in the network. Capacities should be assigned such
that the electricity demand is met at the desired reliability level while minimizing cost

and environmental impacts.
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1.7. Organization of the Dissertation

In the following chapters, a literature review on the capacity adequacy of wind power
generators and their reliability is presented and then a brief theoretical background is
provided for popular methods of dealing with these types of problems. Subsequently,
the problem under investigation is specified and a mathematical formulation is
introduced for modeling the problem. In the next stage, a numerical example is
constructed and solved in order to evaluate the validity of the formulation. Sensitivity
analysis is carried out to verify reasonable behavior of the model in a variety of
circumstances.

Furthermore, since the size of the model can become too large for certain instances of
the problem, a heuristic method will be developed in order to enable the model to deal
with a reasonably large problem. And finally, a conclusive summary is presented and

some ideas for extension of this work are discussed.
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2. Literature Review

2.1. Review of research on wind power reliability and capacity credit

Power generation from wind energy has been a very popular field of study in multiple
disciplines in recent decades. Planning and reliability issues have always been among
the important topics investigated by several researchers. Although a couple of
decades ago only a handful of countries were active in wind power generation field,
many countries have studied potentials of the wind technology in their territory
nowadays. One such study has been done in early 2000s in Hong Kong. In this work,
based on the local climate analysis, an optimum wind speed for power generation is
calculated and used for selection of a suitable and efficient wind turbine. The results
of a case study simulation show that a capacity factor (The ratio of average actual
power generated to the rated power) of 35% is achievable by using these guidelines.
Figure 11 shows the expected quantity of generated power from a 10kW wind turbine

in different months of the year in Waglan Island (Lu, Yang, & Burnett, 2002).
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Figure 11- Monthly power generation for a 10kW wind turbine (Lu, Yang, & Burnett, 2002)
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One of the early studies on reliability of wind technology pertains to wind power
generation in Oahu Island in Hawaii. Before construction of wind farms, nearly all of
the consumed electricity in the island was generated by oil fueled power plants.
Evidently, such systems are both expensive and detrimental to the environment. As a
result, a contract was awarded for construction of a wind farm in multiple stages. The
ultimate planned capacity of the wind farm was 80 MW to be reached by 1985.

Obviously, reliability of the new system was in question. In order to investigate this
issue, statistical data was collected on seasonal wind speeds at the wind farm location.
Then, considering the production curve for a single wind turbine and Forced Outage
Rates (the probability of wind turbines not operating due to mechanical or electrical
failure), the aggregate cumulative distribution function for the production of the wind
farm is derived. In the next step, this aggregate function is incorporated into the
reliability model of the utility system using simple convolution. Finally, reliability of
the utility system including the wind farm is calculated in terms of Loss of Load
Expectation (the annual expected duration of outages in hours) using a computer
code. In addition, LOLE values have been used to calculate Equivalent Conventional
Unit (ECU) and Equivalent Load Carrying Capacity (ELCC) values in order to
provide a better baseline for comparison of wind power generators and conventional
units. ECU is equal to the capacity of a conventional unit which could maintain the
same reliability level as the wind farm. ELCC is the amount of increase in demand
that the system can handle without violating the reliability requirements. In other
words, ELCC is equal to the capacity of an equivalent perfect conventional unit (i.e.

ECU with zero outages) capable of supplying the increased demand. Figure 12 shows
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LOLE versus peak load graphs for the system before and after addition of wind power
generators (WPG). The ELCC value is visually illustrated as the horizontal distance

between the two curves (Giorsetto & Utsurogi, 1983).
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Figure 12- LOLE graphs for the system before and after addition of WPGs (Giorsetto & Utsurogi, 1983)

A few years later, researchers at the National Technical University of Athens
developed a similar approach for reliability modeling of utilities systems
incorporating intermittent supplies. In this method, each generating unit is represented
by a (two-state or multi-state) Markov model. The system is divided into
conventional generation subsystem and intermittent generation subsystems. Using
Forced Outage Rates, the capacity availability model for each subsystem is built by
adding up the generator unit models sequentially until every generator in the
subsystem is added. Finally, treating each subsystem as a multi-state Markovian
model, the overall generation availability model for the whole system is constructed.
Rounding is used to reduce the number of states and computational burden. Finally,
the aggregated model is used to calculate Loss of Load Expectation. The application
of this technique has also been illustrated by calculating LOLE in a test system based

on a utility network in a Greek island. Figure 13 shows the results of this case study
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for three wind/conventional generation capacity ratios (0.427, 0.4, and 0.347). It is
observed that increasing this ratio (moving from curve 3 towards 1) leads to higher
LOLE values (Dialynas & Machias, Reliability modelling interactive techniques of
power systems including wind generating units, 1989).
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Figure 13- LOLE vs. load curve for different wind power penetration levels (Dialynas & Machias, Dialynas,
E. N,, and A. V. Machias. "Reliability modelling interactive techniques of power systems including wind
generating units." Electrical Engineering (Archiv fur Elektrotechnik) 72, no. 1 (1989): 33-41., 1989)

In the same field of research, scientists at University of Saskatchewan have published
several papers on wind power reliability. In one of their earlier works, reliability of
small isolated power systems (SIPS) including wind power generators has been
addressed. These systems conventionally run on diesel fuel. Wind power generators
and photovoltaic systems have also become very popular recently since they have

lower operational costs.
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For the purpose of reliability analysis, a basic system consisting of diesel generators
has been considered in the first step. Subsequently, historical data on weather
conditions including wind speeds and solar radiation is collected. This data is used to
generate hourly average values for electricity production rates. Finally, considering an
increasing demand within a ten year time horizon, reliability of the system is assessed
for different combinations of power generation systems. Monte Carlo simulation has
been used to model energy production for wind power generators and photovoltaic
systems. Loss of Health Expectation (the expected number of hours in a year when
the reserve capacity requirements of the system cannot be met) and Loss of Load
Expectation (the annual expected duration of outages in hours) values are used as
measures of reliability. It has been concluded that wind and solar power generation
systems are not capable of maintaining reliability requirements beyond a certain rise
in demand. This conclusion has been illustrated in Figure 14. More diesel generator
units are needed to be installed in order to maintain reliability beyond this limit

(Billinton & Karki, 2001).
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Figure 14- LOLE & LOHE forecast over a ten year period (Billinton & Karki, 2001)
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Same authors have also separately studied capacity credit and reliability issues of
wind generated power for planning purposes. The approach they have utilized is
similar to the method used for the analysis of small isolated power systems (previous
work). Karki has used an ARMA (Auto Regressive Moving Average) time series to
model the chronological variation of wind speeds. Based on this model, the power
produced by wind turbines is calculated for the duration of the analysis.
Subsequently, these results are aggregated with the energy production from other
sources of electricity generation to obtain the total amount of energy produced.
Finally, the total production values are compared to demand magnitude
chronologically through a Monte Carlo simulation in order to calculate the Loss of
Load Expectation. For validation purposes, the IEEE (Institute of Electrical and
Electronics Engineers) reliability test system is analyzed with this model and up to
350MW of electricity production capacity is replaced by wind power generators. It is
demonstrated that under such circumstances, the reliability level would deteriorate
and it would not be possible to restore the system reliability by using merely wind

power generators (Figure 15).
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Figure 15- LOLE variation with increased wind power capacity (Karki, Wind power in power generation
planning, 2004)
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Furthermore, it is shown that distribution of wind turbines in two or three sites with
independent wind conditions would lead to an improved reliability state compared to
installation in a single site. Results of this analysis are depicted in Figure 16 (Karki,

Wind power in power generation planning, 2004).
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Figure 16- Effect of integration of multiple independent wind farms in the system (Karki, Wind power in
power generation planning, 2004)

Billinton and Bai have presented a similar method for assessing the capacity
adequacy gained from introducing wind power generators to existing power
production systems. Identical results are observed regarding early saturation of

improvements in reliability levels as wind generation capacity increases (Figure 17).
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Figure 17- Early saturation of reliability benefits with increased WPG capacity (Billinton & Bai, 2004)
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Furthermore, the reliability benefits of wind power generation from multiple

independent wind farm sites are verified as demonstrated in Figure 18 (Billinton &

Bai, 2004).
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Figure 18- Positive effect of multiple independent wind farms on reliability (Billinton & Bai, 2004)

In another joint paper, Billinton and Karki have taken a similar approach for studying
reliability issues along with budget concerns in large-scale power generation
planning. While they have applied an analogous simulation procedure, new indices
have been introduced to represent efficiency and cost implications. Expected Surplus
Wind Energy (ESWE) is defined as the amount of wind generated power in excess of
demand which would not be utilized. Also, Wind Utilization Factor (WUF) is defined
as the ratio of the Expected Wind Energy Supplied (EWES) to the total generated
energy, or EWES/ (EWES+ESWE). Finally, the Wind Utilization Efficiency (WUE)
is introduced as the product of Wind Utilization Factor and Capacity Factor (Capacity
Factor for a wind turbine is defined as the ratio of average actual generated power to

the nominal power of the turbine) or WUE = WUF x CF. Healthy state probability
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(i.e. operation with adequate reserve capacity) has been used as the reliability
measure.

It is observed that increasing the number of installed wind turbines decreases the
Wind Utilization Efficiency (WUE) index (Figure 19). So, the efficiency of the wind
generation system drops as more units are installed (i.e. wind turbines become
increasingly underutilized). The authors suggested imposing a lower bound on WUE
to limit excessive investment on wind power and supply the additional required
capacity through conventional generators. They have also demonstrated through a
numerical example that adding wind power generators to an already adequate energy
network can lead to cost savings resulting from less fuel consumption and less
contamination (Karki & Billinton, Cost-Effective Wind Energy Utilization for

Reliable Power Supply, 2004).
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Figure 19- WUE declining with increased number of turbines (Karki & Billinton, Cost-Effective Wind
Energy Utilization for Reliable Power Supply, 2004)

It should be noted, however, that the possibility of energy storage or trade has not
been considered in this model. While the availability of large-scale grid storage is
very limited at the present, development of technologies for economical storage of

electricity in larger capacities can highly impact these results.
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In another collaborative effort at the University of Saskatchewan, a simplified model
has been introduced for evaluation of reliability in wind generation systems. This
model is based on a parametric probability distribution function for local wind

speeds. The initial model encompassing 100 points is presented in Figure 20.
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Figure 20- Parametric wind speed model (Karki, Hu, & Billinton, A Simplified Wind Power Generation
Model for Reliability Evaluation, 2006)

The wind model is derived from historical data collected over several wind farm sites
in Canada. The input parameters in this model are mean and standard deviation of
wind speed. Once these parameters are obtained for a site, the probability distribution
function for wind power production can be generated using respective power curves
for the specified wind turbines. A typical wind turbine power curve is illustrated in

Figure 21.
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Figure 21- Power generation curve for a wind turbine (Karki, Hu, & Billinton, A Simplified Wind Power
Generation Model for Reliability Evaluation, 2006)

In order to demonstrate the applicability of this approach, reliability of a test system
is evaluated using both the proposed wind model and also the common ARMA model
and the results are compared. Eventually, in an attempt to further simplify the model,

a six-step model is proposed to replace the original 100 point curve. This model is

depicted in Figure 22.
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Figure 22- The simplified six step wind speed model (Karki, Hu, & Billinton, A Simplified Wind Power
Generation Model for Reliability Evaluation, 2006)

Another example problem is analyzed in the paper to validate the accuracy of the six-
step model (Figure 23). The results show that this model is adequate for accurate

calculation of the Loss of Load Expectation for a given power generation system
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including wind farms (Karki, Hu, & Billinton, A Simplified Wind Power Generation

Model for Reliability Evaluation, 2006).
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Figure 23- Comparison of different wind speed models (Karki, Hu, & Billinton, A Simplified Wind Power
Generation Model for Reliability Evaluation, 2006)

Wind farm interconnection advantages have also been noticed by several authors in
the literature as mentioned earlier. For instance, Archer and Jacobson have
investigated the hypothetical reliability gains achievable by interconnecting up to 19
wind farms. Figure 24 shows the complementary cumulative distribution function of
wind generated power for arrangement of wind turbines in one, seven and nineteen
wind farm locations. As it can be seen, although the probability of power generation
at peak rates decreases with increased number of wind farm sites, the likelihood of
power generation at very low rates drops as well. Results of this analysis demonstrate
that an average of 33% capacity credit could be achieved by interconnecting multiple
wind farms in Mid-Western United States. It is also concluded that the capacity ratio
could be further increased by interconnecting more wind farms (Archer & Jacobson,
Supplying Baseload Power and Reducing Transmission Requirements by

Interconnecting Wind Farms, 2007).
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Figure 24- Effect of distribution of wind turbines in multiple sites (American Solar Energy Society, 2007)

There has also been several works in the literature dedicated to exploring the
limitations on wind farm sizes resulting from technical constraints. Wiik et al have
proposed a simulation-based method for calculation of the maximum allowable
number of wind turbines in a wind farm without violating thermal and voltage
constraints (Wiik, Gjerde, Gjengedal, & Gustafsson, 2002). While they have based
their calculations on maximum power output from the wind turbines, Zhao et al have
utilized a probabilistic model to account for wind speed variations and also tolerance
margins of grid constraints. They have confirmed that the probabilistic approach
allows for better utilization of wind power generators and larger wind farms
compared to the more conservative deterministic approaches (Zhao, Chen, &
Blaabjerg, 2006). Ju et al have addressed the same problem with a different
probabilistic approach. They have used a combination of simulation and genetic
algorithm to come up with the maximum allowable capacity for wind farms (Wu, Li,

Cheng, & Sun, 2006).
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Maximizing wind farm capacity subject to probabilistic reliability constraints has also
been considered in the literature. Xiaoqing and Yong have developed a model in
MATLAB which uses a combination of simulation and genetic algorithm approaches
to calculate the maximum installed wind power capacity with respect to load
reliability requirements. These probabilistic constraints are defined in terms of LOLE
(Loss of Load Expectation) and EENS (Expectation of Energy Not Supplied). No
other system configuration constraints are considered in this model (Xiaoqing &
Yong, 2009).

As briefly demonstrated in this section, power generation from wind has been
investigated in various senses in the literature. Nevertheless, there still remain lots of

possibilities for improvements.

2.2. Potential Contribution Area

As discussed earlier, several mathematical methods have been developed for
modeling different characteristics of wind power generation. Most of them, however,
focus on a specific element. For instance, some researches have concentrated on
reliability whereas financial implications are not discussed. In some other cases, the
objective has been to maximize wind power utilization although it might not result in
the best power source combination with respect to cost and other considerations.

Moreover, most of the models are based on Monte Carlo simulation. While
simulation is a very good approach for modeling stochastic processes, it generally
involves a huge computational effort. In addition, since simulation is a descriptive
method, it is usually not the most efficient way for dealing with optimization

problems compared to prescriptive methods. The reason is that finding the best
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solution generally involves some sort of trial and error which translates into several
simulation runs. And in the end, optimality of the obtained solution is not guaranteed.
Genetic Algorithm and other meta-heuristic approaches are normally more efficient
than simulation for optimization purposes. However, they suffer from the same
shortcoming (i.e. sub-optimality is highly probable).

Finally, effective use of wind power in electricity generation is greatly dependent on
energy storage and power transferring capabilities. Wind power generators cannot
achieve a high capacity credit if there is no use for wind generated power surplus.
Hence, any plan for effective and substantial utilization of wind power in electricity
generation must include provisions for grid storage and out-of-network electricity
transfer. This is an area of the subject matter which has not been explored quite as
thoroughly.

These observations have provided the incentive for this research project. In the next
chapters, a model has been introduced in response to some of the issues mentioned
above. While every model has its own limitations, we have tried to incorporate some

of the most important details in power generation planning in our formulation.
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3. Model Assumptions and Theoretical Background

3.1 Model outline

As discussed earlier, the purpose of this research project is to develop a mathematical
model which is capable of obtaining the best combination of capacities for each type
of energy source in the network. The capacities should be assigned such that the
designed network would meet the electricity demand at the desired reliability level
while cost is minimized and environmental impact is kept under control. As
mentioned before, a prescriptive method will work the best in this case. Also, since
there are stochastic parameters involved in the problem, a probabilistic approach is
favored. Accordingly, a stochastic optimization model is proposed for this purpose
where both demand and wind power are assumed probabilistic.

The stochastic model uses a combination of recourse and chance-constrained
approaches for assigning optimal installed capacities for each type of power source
while considering energy storage, import and export possibilities within the network.
These two approaches are explained in detail in the next section. More specifically,
the chance-constrained method is used to model the stochastic nature of electricity
demand while recourse action is incorporated in the formulation to accommodate
electricity exchanges based on the actual realization of wind speed scenarios.

Some other factors which can be considered in the model include carbon emission
cap and carbon tax. Bounds are also imposed on the capacities for each type of power
generation source to address a variety of restrictions such as technical, geographical,

financial and regulatory constraints.
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3.2. Probabilistic analysis

Probabilistic analysis is used in various fields of science. There exist a variety of
approaches to deal with such problems in every discipline. Nonetheless, some of the
most frequently used methods belong to one of the two broad families of techniques:
simulation and analytical approaches.

In simulation, we need to study the characteristics of input parameters and their
distributions first. Then, a model is developed to replicate the process under
investigation. The more realistic the model, the more precise the results would be. In
the next step, using the results from the input analysis, several instances of input
parameters are generated and fed to the model. Consequently, we would have a
distribution for each output variable which could be used to extract the unknown
parameters or performance measures. As mentioned earlier, if the model and the
sampling process are sufficiently realistic, simulation can be a straightforward and
powerful tool to study probabilistic phenomena. Simulation is specifically useful
when the complexity of the problem makes using a direct analytical method
cumbersome or impossible.

Analytical approaches involve calculation or estimation of output parameters by
manipulating input parameters using probability laws. For example, we might be able
to analytically calculate the mean and standard deviation of the output variables based
on the functional relationship and statistical measures of the input data. In many
instances, the expected value is used for representing a scenario case and making
comparisons. The decision making process involved in selecting an investment option

among different alternatives based on the expected profit is an example of this
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application. While an analytical solution is generally preferred to simulation, it is not
always possible to easily solve a problem analytically without making simplifications.
That is when simulation comes in handy. Therefore, it is quite common to use a

combination of these methods for probabilistic analysis purposes.

3.3. Stochastic Optimization

The general approaches discussed earlier have also been used in optimization studies
as well. Starting from the last years of the previous century, simulation has been
increasingly used to improve user-defined configurations in order to enhance
performance measures of a stochastic discrete-event system (Fu, 2002). Similarly,
several stochastic programming approaches are available for modeling uncertainty in
optimization problems. In this category, “Two-Stage Stochastic Programming with
Fixed Recourse” and “Chance Constrained programming” are two powerful
probabilistic programming techniques which have been used in this research. These

methods are briefly introduced in the following sections.

3.3.1. The Recourse Method
This approach is suitable for those types of problems involving two-stage (or multi-
stage) decision making. In this family of problems, a set of variables represents the
decisions made before the stochastic event turnout is revealed (here and now) while a
second set of variables denotes the recourse action available after the realization of
the stochastic event (wait and see). For example, in a production problem with
stochastic demand, the first stage variables can be the assigned production capacities

while the second stage variables could be the surplus or the deficit in production
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amounts after the realization of the stochastic demand, which could translate into
commodity exchange at the market. So, the second stage variables are used to further
optimize the objective function given a specific realization of the stochastic event.

As it can be inferred from the discussion above, the objective function in these
problems consists of the first stage costs plus the expected value of the second stage
costs. The first stage costs are deterministic; however, since the second stage costs
involve uncertainty, their expected value is used as their deterministic equivalent. The
general extensive form of formulation for this type of problem is as follows (Birge &

Louveaux, 1997):

min ¢’ x + E¢ [min q(®)" y(o)] 3.1
s.t.

Ax=Db 3.2
T(w)x + Wy(®) = h(o) 33
x>0,y(0w)>0 34

Where x is the first stage decision variable vector and c is the corresponding cost
matrix (¢’ is the transpose matrix). Equation 3.2 is the constraint set for the first stage
problem with A and b as coefficients and right hand side matrices respectively.

Equation 3.3 is the constraint set for the second stage problem. y(®) is the second
stage decision variable vector and W is the fixed recourse matrix. ® € € is a specific
realization of the random phenomenon &. The values of the coefficient matrix T(w)
and the right hand side h(w) as well as the second stage decision variable y(®)
depend on the particular realization of the stochastic event, ®. Once o is specified,

T(w) and h(w) are determined and y(®) can be calculated.

34



The second term in the objective function is the expected value of the second stage

cost which is taken over all possible realizations of the random occurrence, & The

cost matrix in this term, q(®), can also be scenario dependent.

The problem can be formulated in the following implicit form as well:

min ¢" x + B: Q(x, &)

s.t.

With the second stage problem being:

Q(x,&=minq'y
S.t.
Wy =h-Tx

y=0

3.5

3.6

3.7

3.8

3.9

3.10

As it could be inferred from the above discussion, using this method involves

assigning a number of scenario cases to the random phenomenon and defining the

values of input parameters for every scenario, which can sometimes be a cumbersome

and time-consuming process. With respect to its scenario based approach, the

recourse method is similar to simulation and it can be regarded as a hybrid between

analytical and simulation approaches.

3.3.2. The Chance Constrained Programming Method

A conventional optimization programming is comprised of an objective function and

a set of deterministic constraints. Obviously, every point in the feasible region must

satisty these constraints at all times. In chance constrained programming, however,
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one or more of the constraints are stated using probabilistic terms. This means that a
point in feasible region may not necessarily satisfy all the constraints at all times.
Nevertheless, the relationship must hold at a prescribed frequency or probability. The
general form of a probabilistic constraint is demonstrated below (Birge & Louveaux,
1997):

P{A(0)x>h(n)} >a 3.11
Which basically asserts that the probability of satisfying constraint A(m)x > h(w)
should be equal to or greater than o where 0 <o < 1.

One effective approach for solving such problems is to replace each probabilistic
constraint with its deterministic equivalent. This process involves deriving the
cumulative distribution function (CDF) of the random parameter and sometimes
obtaining its inverse function. For example, assume that A is a constant matrix and h
is a random parameter with a known CDF, F. That is:

F(Z)=P(h<Z) 3.12
Then we have:

P{A(®)x >h(mn)} = F{A(0)x} 3.13
So, 3.11 can be rewritten as:

F{A(o)x} = a 3.14
And inverting both sides of the inequality yields:

A()x > Fl(a) 3.15
Equation 3.15 is the deterministic equivalent of Equation 3.11.

Thus, application of this technique is most convenient when the random parameter

has a closed form cumulative distribution function (CDF). It should also be noted that
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even if this condition is met, the deterministic equivalent constraint is most probably
non-linear and possibly non-convex. So, solving the problem might still be quite

complicated and labor-intensive.

3.4. Justification of the Method Used

As discussed earlier, prescriptive methods are the better options for solving
optimization problems. So, a stochastic optimization model is used for this problem.
In addition, since energy exchange and storage are to be included in the formulation,
a scenario-based method is deemed necessary. Moreover, as two stochastic
phenomena (wind and demand) are considered, scenarios would typically represent
different realizations of these random parameters. The reliability requirements,
however, can be incorporated in the formulation using chance constraints. Under such
circumstances, demand scenarios would no longer be necessary.

This approach has two main advantages. Firstly, there is always some inaccuracy in
scenario-based analysis when a finite number of realizations are used to model a
continuous random parameter. Using chance constrained method avoids dealing with
this type of error. Yet, it should be noted that some inaccuracy may also be involved
in chance constrained method, especially in fitting distribution function to demand.
However, there is more control over this kind of error and it can generally be kept
within a reasonable margin.

The other obvious advantage is the smaller number of scenarios since we do not have
to deal with demand values explicitly. It should be noted that in this manner, we also
manage to keep the problem homogenous. The importance of homogeneity is that it

makes scenario reduction techniques much easier to apply. For example, if we
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consider multiple wind farm sites and generate scenarios for each location, since the
identifier of the scenarios is power production, they can easily be combined and
aggregated. This could not as easily and effectively be done if the identifier of a

scenario is a two dimensional vector (production and demand).

3.5. Wind Energy and Wind Generated Power

The total amount of kinetic energy available in the wind can easily be calculated
using basic physics laws. The kinetic energy in a moving object is equal to the
product of half of its mass (m) and square of its velocity (V). So, the energy passing
through a specific area (A) during a time interval (t) is equal to:

Wind energy = 0.5 m V= 0.5 (p.A.V.t) V* 3.16
Where p is the air density. Dividing by time (t) to obtain the power, we have:

Py =0.5 p.AV’ 3.17
However, not all of this power can be harnessed with a turbine. Albert Betz has
proven that only about %59 of this energy can theoretically be captured with a turbine
(Betz, 1966). Considering mechanical, friction and other types of losses, the amount
that actually can be converted is even less.

The actual power curve of a practical wind turbine is shown in Figure 25. This curve
is characterized by four regions which are defined by three wind speeds. At very low
speeds, the kinetic energy of the wind is not enough to overcome friction and other
losses and thus no power will be generated (Region 1). At Cut-In wind speed (equal
to 3.5 m/s in the figure), power generation begins (Region 2) and rises with increased
wind speed up to the Rated Power of the turbine at the Rated Speed (14 m/s in the

figure). From this point on (Region 3), the power production remains constant up to
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Cut-Out wind speed (25 m/s in the figure). At wind velocities beyond this limit, the

turbine is shut down to avoid mechanical damage (Region 4).

Power (kilowatts)
A Rated output speed Cut-out speed

.

Rated output power ~¢ <

Cut-in speed

35 14 25
Steady wind speed (metres/second)

Typical wind turbine power output with steady wind speed.

Figure 25- Power curve for a practical turbine (PelaFlow Consulting)

So, we have:
0 V<V,orV=V,

B, (V) = Pisc(V) V<V <V, 3.18
P, Vo<V <V,

Where V is the wind velocity, V; is cut-in wind speed, V,, is the cut-out wind speed
and V; and P; are the rated wind speed and power respectively. Several models have
been proposed for the ascending segment (P,s) of the power curve (Region 2)
including linear, quadratic and cubic formulations (Albadi & El-Saadany, 2010).
Some of these models are more flexible since they possess regression coefficients to
fit specific power curves better. However, our preference is to use more generic
models defined only by cut-in and rated wind speeds so that the input process of the

model is simplified. Among these generic models, linear and quadratic formulations
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have been reported to have a closer fit on average (Akdag & Giiler, 2010). For our
model, we have picked the quadratic formulation since it has a smaller absolute error

according to the same report. So, we use the following equation for Region 2 of the

curve:
v2-vg
Pasc(V) = Pr (W) 3.19
3.6. Wind Speed Distribution

Another issue that we have to address in the model is the variability of wind speed.
Since wind is modeled as a stochastic parameter, a distribution has to be assigned to
it. Based on many instances of reported data, Weibull distribution is generally
accepted as a good fit for wind speed variability over time (EWEA, 2009). The shape
factor is usually taken equal to 2 (Rayleigh distribution). We will use the same

approach in our model. So we have:
2v_—( v )2
f) = =e ‘2 3.20

v 2
FO)=1- e @ 321
Where f is the probability density function, F is the cumulative distribution function

and A is the scale factor. A and mean wind speed (Vmean) are linearly related:

Vean = 22 3.22

3.7. Demand Distribution

Electricity demand is the other stochastic parameter in the model. We need to assign a
distribution to this parameter as well. Once we have the historical or forecasted data,

fitting a distribution is straightforward. However, it should be noted that since we
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intend to solve the problem analytically, it will be greatly helpful to pick a less
mathematically complex distribution. Specifically, those distributions with closed
form cumulative probability function are preferable.

The electricity demand pattern for small communities or specific isolated systems can
be significantly variable in time and space (different from a location to another).
However, for large communities consisting of industries, commercial centers and
households, like towns and cities, a common trend can be found.

Considering a typical day, demand starts to grow from a minimum level during early
hours of morning to a peak value as the industries start up and then gradually fall as
businesses shut down. Therefore, the probability density function (PDF) curve is
expected to have two peaks, one corresponding to low demand periods and one for
high demand periods. The high demand peak is expected to be greater in frequency
since high consumption period lasts longer in a typical day. As a result, bell shaped or
triangular distributions are often a good fit for the electricity demand histogram,
especially in the vicinity of the high demand peak. Some examples of triangular
shaped demand functions used in the literature are Normal distribution (Davies &
Paterson, 1962), Beta distribution (Herman & Kiritzinger, 1993), and Gamma
distribution (McQueen, Hyland, & Watson, 2004).

While the shape of the fitted distribution does not impose a limitation on our model, it
is always helpful to know what to expect in advance. Based on the above discussion,
we know that a closed form triangular distribution function serves our model best. A
suitable distribution for this purpose is the Weibull distribution since it is very

flexible and capable of taking a triangular form and also it possesses a closed form
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cumulative distribution function (CDF). Some other distributions with similar
characteristics include Dagum distribution, Fréchet distribution, Logistic distribution
and Erlang distribution. It is worthwhile noting that Erlang distribution is a special
case of Gamma distribution, which has already been used in the literature for

modeling demand.

3.8. Intended Users of the Proposed Model

The main task of the model is to allocate optimal capacities for power generation.
Therefore, in a small scale, the model is directly applicable for designing an isolated
power system using multiple types of generators or evaluating the reliability of such a
system. In a larger scale, almost all of the parties concerned with capacity planning or
grid reliability can benefit from this model. It can include several agents and

institutions based on the market structure.

3.8.1. Regulated Market
In a regulated system, there are typically several governmental agencies in charge of
managing electricity supply. One of the most important functions of these agencies is
to plan and invest on new generation capacity based on the forecasted future demand.
The proposed model provides a suitable instrument for such analyses for individuals

with monopolistic privileges.

3.8.2. Deregulated Market
A deregulated market, on the other hand, is more complex and involves interactions
among numerous players. The participants trade power in energy pools and futures

markets. Pool is used for short term electricity trade and comprises of “day-ahead”,
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“adjustment” and “balancing” markets. Most of power delivery transactions and
exchanges are consolidated at the day-ahead market. Several adjustment markets may
follow the day-ahead market later in order to modify the initial transactions.
Eventually, the balancing market provides a final opportunity to bridge the gap
between supply and demand. It is cleared in real-time and deals with the production
surplus or deficit which may result from unforeseen conditions such as sudden
demand fluctuations or failures. The final result of market clearing in the pool is the
assignment of accepted energy blocks from specific producers and hourly electricity
prices. These values are defined such that the total cost of meeting demand is
minimized.

Futures markets, on the other hand, are designed for mid-term and long-term
transaction. Options and derivatives on electricity prices are offered in this
marketplace. The purpose of futures market is to provide opportunities for market
participants to hedge against price volatility. It also helps to somewhat stabilize
energy prices in a longer time horizon.

Additionally, in order to ensure reliable delivery of electricity, other types of markets
are also necessary. Stand-by power is acquired through “reserve market” to provide a
safety net against demand fluctuations and facility outages. Load following capability
and real-time leveling of supply and demand balance is accommodated within the
“regulation market”. Arrangements are made in this market such that the system
frequency is preserved.

A typical electricity market includes the following agents and institutions (Conejo,

Carrion, & Morales, 2010):
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Producers: Producers are the owners of power generation units and they can
sell electricity through bilateral contracts or in the pool. They can also sell
reserve and regulation power in the market.

Consumers: They are the end users of electricity and they can purchase energy
in the market, through bilateral contracts or from retailers.

Retailers: Generally speaking, retailers do not produce power. They buy
electricity in the market or through bilateral contracting and sell it to their
customers.

Non-Dispatchable Producers: These producers operate non-dispatchable
sources of energy such as wind turbines and solar power systems. They need
to participate in balancing market to cover the deviations from their
commitments.

Market Operator (MO): It runs the market and determines the quantities and
rates in power transactions using market clearing procedures.

Independent System Operator (ISO): ISO is a non-profit entity which is
responsible for technical management of the grid. It should provide all of the
market agents with equal access to the grid and promote smooth and efficient
trade in the market. ISO is generally in charge of clearing the reserve and
regulation markets and supports MO in clearing the balancing market.

Market Regulator: It is an authority supervising the adequacy and
competitiveness of the market. It can enact and enforce rules and regulations

in order to fulfill this purpose.
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A schematic diagram of the electricity market and its players are depicted in Figure
26. As stated earlier, the objective of all of the interactions in this marketplace is to
supply the demand for electricity and also to determine the price. The targeted time

span for these transactions mainly covers short-term and mid-term energy supply.

MO
Consumers
FM
Producers
\ Pool:
DAM
];*7\\;; Clients
) Non- / RM T
dispatchable RGM
producers
SO Retailers

FM: futures market, DAM: day-ahead market, AMs: adjustment markets, BMs:
balancing markets, RM: reserve market, RGM: regulation market.

Figure 26- Electricity market (Conejo, Carrion, & Morales, 2010)

For long-term functionality of energy trade in the market, another type of market is
required. These markets are called capacity markets and they serve the purpose of
long-term system reliability. Market mechanism is not capable of ensuring resource
adequacy in energy market due to several reasons. One of the main reasons for this
failure is demand inelasticity (Cramton & Ockenfels, 2011). So, in most markets,
Load Serving Entities (LSE) such as retailers who deliver electricity to end-users are
required to contract capacity in excess of their monthly expected peak load to provide
a reserve margin. This can be done through bilateral agreements or capacity markets

(Creti & Fabra, 2003).
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The brief outline of a fully-fledged energy market described in previous paragraphs
indicates that the developed model can also be used by entities engaging in such
markets. This model can best be used by large consumers (such as large industrial
plants, etc.) who should fulfill their demand through a combination of bilateral
contracts, forward contracts, pool trading and self-production (Conejo, Carrion, &
Morales, 2010).

Furthermore, retailers can use this model to plan for their medium-term electricity
trading. The reason is that unlike the pool, prices of medium-term transactions are
fixed through forward contracting. So, the retailer can evaluate several available
forward contract offers and sign the most profitable agreements.

Producers can also be among the potential users of this model. Similar to any other
business entity, producers should invest in their future by planning for reconstruction
and expansion. While they can capitalize on the same technology they have used
traditionally, it is always a good idea to diversify the investment portfolio. Especially,
considering the fact that environmental restrictions on carbon emission and other
contaminating refuses of power plants are getting more stringent while sustainable
energy production is incentivized, investing in renewable energy seems like a smart
move by producers. This model can help a producer plan for capacity expansion
while evaluating the potential for saving on fuel consumption and reducing carbon
emissions by incorporating wind power generation.

Finally, the model can be used to check the reliability of existing systems (feasibility

check). So, entities responsible for ensuring system reliability such as Independent
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System Operator (ISO) or Market Regulator can use the model for that purpose. It can

also serve as a simulation tool to evaluate the impacts of new regulations.
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4. Model Formulation

4.1. Overview

In this chapter, the mathematical formulation of the proposed model will be
presented. The objective is to assign optimal production capacities for wind power
generators and other power production resources subject to meeting demand at a
predefined reliability level with the provision of different types of recourse action for
dealing with deviations. The electricity demand and wind power are both assumed

stochastic.

4.2. Decision Variables

As the above explanation indicates, the solution should determine the amounts of
electricity to be produced, traded, stored and released. As Figure 27 shows, the major
sources of electricity generation in U.S. are coal, natural gas and nuclear energy.
Therefore, a separate decision variable has been considered for each one of these
main sources in the model. We have also included an additional variable to cover all
of the remaining sources of power generation which are not represented explicitly
(such as hydropower, petroleum, etc.). A weighted average cost should be calculated
for this variable.

For wind power generation, while it is possible to assign a variable for the amount of
electricity produced, the number of wind turbines appears to be a better
representative. The reason is that there is no fuel cost associated with wind power
generation and most of the expense is incurred during construction. So, using the

number of installed wind turbines (which is equivalent to the total nameplate

48



capacity) is straightforward especially with respect to cost considerations. In addition,
while integer variables are naturally expected to denote the wind turbine counts in the
model, real valued variables are used to avoid the extra complexity of solving a
mixed-integer program and the solution will be rounded up. The rounding error is so
small compared to the objective function that it can easily be ignored as demonstrated

in the numerical example solution in the next chapter.
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Figure 27- U.S. electricity production by source (U.S. Energy Information Administration, 2013)

The remaining groups of decision variables are scenario dependent and include the
amounts of electricity being imported, exported, stored and released in each

realization of the random phenomenon. They are all second stage (wait-and-see)
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variables and represent the recourse actions available after first stage decisions are

made (After electricity production levels are determined).

4.3. Model Inputs

Several scalar parameters and a function must be defined prior to running the model.
Scalar parameters include unit cost and capacity factor for each energy source, total
cost of wind power generators (construction, setup and maintenance), specifications
of wind turbines (cut-in, cut-out and rated speed and rated power), average wind
speed in wind farm site, carbon emission per unit of electricity production from fossil
fuel plants, carbon emission cap, upper bounds and lower bounds for electricity
production units and finally the reliability level.

The input function is the electricity demand distribution which is based on historical
or forecasted demand data. This data is generally traced and reported on an hourly
basis over several days. So, a distribution function can easily be fitted to this hourly
demand data. As discussed in the assumptions (previous chapter), a function with
closed form cumulative distribution function (CDF) such as Weibull distribution is
favorable. A list of useful functions for this purpose has been presented in the

previous chapter.

4.4. Mathematical Formulation

As explained earlier, the objective of this optimization model is to minimize
electricity procurement cost subject to certain physical, environmental and reliability

constraints. The mathematical formulation of the objective function and the
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constraints which collectively constitute the optimization model are presented in

following sections.

4.4.1. Objective Function

Everything needs to be expressed in the same dimension in the objective function. As
mentioned earlier, electricity demand is usually recorded on an hourly basis.
Likewise, it is more convenient to scale power production amounts and costs to
hourly values. Subsequently, the objective function would yield the expense of
meeting demand in one hour.

Furthermore, it should be noted that since we are using the recourse method, several
wind speed scenarios must be defined. The cost incurred by scenario-dependent
decision variables is the stochastic component of the objective function and it should
be expressed in terms of expected value. Thus, the objective function can be written

in the following form:
MinZ = {C.. X+ Cy. X5+ Cp. Xy + (. X + Gy, . X,
4.1
+ 2P . Ci - Ximy — X Py Py . Xex; + 2 Py . Cgp . XSt }

The first four terms of the formulation represent cost of power generation using coal,
natural gas, nuclear energy and other available sources (except wind) respectively.
The terms on the second line of equation 4.1 stand for the expected cost of imported
energy, the expected revenue from energy export and the expected cost of energy
storage respectively. The problem shall be solved for any reasonable time span, e.g.
hour, day, week, month, etc. However, solving for an hour is straightforward as

explained earlier. The decision variables are:

X,: The amount of energy produced from coal
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X,: The amount of energy produced from natural gas

Xy: The amount of energy produced by nuclear power stations

X;: The amount of energy produced by total residual capacity from all other sources
Xw: Total number of wind turbine units of the designated type in the wind farm

Xim;: Amount of imported energy in scenario i

Xexi: Amount of exported energy in scenario i

Xsti: Amount of stored energy in scenario i

Xrel;: Amount of energy released from storage in scenario i

The last decision variable (amount of released energy) will be used in constraints. The
parameters are:

C.: Cost of power generation from coal ($/unit energy)

C,: Cost of power generation from natural gas ($/unit energy)

C,: Cost of power generation from nuclear energy ($/unit energy)

C.: Weighted average cost of power generation using residual capacity ($/unit energy)
Cyw: Cost of power generation from wind energy ($/unit time)

Cim: Cost of imported energy ($/unit energy)

Pex: Price of exported energy ($/unit energy)

Cst: Cost of energy storage ($/unit energy)

I: Set of all scenarios

Pi: Probability of scenario i

4.4.2. Constraints

The problem should be solved subject to the following constraints:

P(Production = Demand) > « 4.2
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ZIPi.XTeli = EStZlPi'XSti 4.3

XcCo2c + X;-Co2g < CCap 4.4
Lc <X, <U, 4.5
Ly <X, <U, 4.6
L, <X,<U, 4.7
L. <X, <U, 4.8
L, <X, =<U, 4.9
Xst; < Ug 4.10
Xrel; < Ug 4.11
Xim; < Upypy, 4.12
Xex; < U,y 4.13
Xy Xg, Xny Xy Xy, Ximy, Xex;, Xst; = 0 4.14

The parameters used in these constraints are:

o System reliability

Eq: Efficiency factor for energy storage

E.: Capacity factor for fossil fuel power stations running on coal

E,: Capacity factor for fossil fuel power stations running on natural gas

E.: Capacity factor for nuclear power stations

E.: Weighted average capacity factor for other types of available power stations

E.: Healthy state probability for wind turbines (i.e. when they are not shut down for
repair or maintenance)

Co2c: Amount of carbon emission per unit of power generated from coal (weight/unit

energy)
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Co2g: Amount of carbon emission per unit of power generated from natural gas
(weight/unit energy)

CCap: Carbon cap (weight)

L. & U, : Lower and upper bound on energy generated from coal

L, & U, : Lower and upper bound on energy generated from natural gas

L, & U, : Lower and upper bound on energy generated from nuclear plants

L; & U; : Lower and upper bound on energy generated from other sources

Ly & U, : Lower and upper bound on number of wind turbines installed

Ust : Upper bound on energy storage

Uim : Upper bound on energy import

Uex : Upper bound on energy export

The first constraint is the reliability requirement. It states that the total energy
production should be greater than demand with probability a. This includes all the
energy generated by deterministic sources, as well as stochastic ones. For wind
power, however, the actual amount of production is a random variable. So, the model
calculates the amount of wind generated power for each scenario based on installed
wind power capacity and wind speed. The installed capacity is incorporated in the
model in terms of the number of designated wind turbines in the wind farm.

Since we are considering a scenario-based approach, the probability of production
exceeding demand can be obtained by calculating the product of probability of each
scenario and probability of production exceeding demand in that scenario and then
summing these products up over all possible realizations. Therefore, we can rewrite

equation 4.2 as:
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2 P .P(ECXC + EgX, + En Xy + E- X, + E R X, + Xim; — Xex; + Xrel; — Xst; =
Demand) > a 4.15
Where R; is the amount of energy generated from a single wind turbine in the wind
farm for scenario i over the selected time span, which can be calculated by power
curve formulations in equation 3.18. The time span used here should correspond to
the time span assigned to demand function. As the equation shows, the net amount of
electricity counterbalancing demand should be calculated on the left hand side of the
first inequality. This includes all the power generated from available sources
including wind plus imported energy and the amount of stored energy released minus
exported energy and the amount being stored in current scenario.

Assuming F as the cumulative distribution function (CDF) of Demand, we have:

2 P .F(ECXC + EgX, + En Xy + E- X, + E\ R X,, + Xim; — Xex; + Xrel; —

Xst;)) > a 4.16
Equation 4.16 is the deterministic equivalent of equation 4.2. This constraint will
almost always be non-linear for all practical demand distributions. So, as discussed
earlier, F should be defined carefully to avoid unnecessary complications. Several
suitable distribution functions were introduced in the previous chapter for fitting to
demand data.

On the other hand, the good news is that this constraint is a convex constraint for
sufficiently large reliability values (a). The reason is that for all continuous
cumulative distribution functions, beyond a threshold probability, the curve should
monotonically increase and asymptotically approach unit probability. Therefore, the

left hand side of equation 4.16 constitutes a concave function for any a larger than
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the threshold value and since the inequality is of “greater than or equal” type, this
constraint specifies a convex region. As other constraints and the objective function
are also convex, the problem will become a convex program for sufficiently large a.
Generally, o values used in the model are greater than 90% since systems are
designed with high reliabilities for almost all practical purposes. Fortunately, the
concavity threshold for fit distributions is well below this limit. For instance, the
farthest (rightmost) inflection point possible for the cumulative distribution function
of Weibull distribution falls approximately at 63% probability. Therefore,
presumption of sufficiently high reliability is not really a restricting assumption for
the model and the problem will be convex for most applications.

Convexity of the formulation has a great significance with respect to computational
effort. In a convex program, any locally optimal solution will also be globally
optimal. So, the solution process is over once a local optimum is found. Otherwise,
the program should be solved with several initial points to find the global extremums.
So, this attribute saves us a lot of time and effort.

The next equation (4.3) is the energy conservation constraint. It basically ensures that
there is a balance between the amount of stored energy and the released quantities.
Loss has also been considered in this equation since regardless of the technology
utilized, there will always be some loss and a fraction of the stored energy would not
be recovered. Additionally, the amounts of energy exchanged between scenarios have
been normalized by probability weights to account for how frequent each scenario is
realized. This modification would not be needed if the scenarios had equal

probabilities of occurrence.
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Equation 4.4 imposes a restriction on carbon emissions. There are two major sources
of carbon emission in our model: coal and natural gas. The average amount of carbon
dioxide released in the air from power generation in the US is 1135 Ib/MWh and
2249 Ib/MWh for gas and coal combustion respectively (US EPA, 2012). That is
equal to approximately 1 metric ton for coal and half a ton for gas per megawatt-hour
of power generation. This constraint allows for incorporation of environmental
policies in the model.

The next five constraints (4.5—4.9) impose upper and lower limits on capacities of
different types of power generation facilities. Lower limits can represent existing
capacities, or minimum production levels which must be fulfilled as a result of
policies, strategies or other commitments. Likewise, upper bounds could replicate
policy, logistic and budget limitations or other types of restrictions.

The next constraint (4.10) limits the maximum amount of energy storage in each
scenario. As discussed earlier, grid storage is quite expensive at the present and
regardless of the technology used, provision of storage capacity is confined by several
technical and practical restrictions.

Equation 4.11 is also needed to limit the amount of energy released in each scenario.
Without this constraint, the electricity accumulated from several scenarios could be
released in a single scenario which might exceed the total storage capacity. This
would virtually violate the storage constraint. So, equations 4-10 & 4-11 collectively
enforce the storage constraint.

The next two equations (4.12—4.13) restrict the amount of electricity exchange in each

scenario. The capacity of transmission lines connecting the grid to external networks
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has a limitation too. These constraints are used to reflect such restrictions on energy
importation and exportation.

Finally, equation 4.14 introduces non-negativity constraints to the formulation.

Now that the model is mathematically defined, we can proceed to solve a numerical

example in the next chapter in order to validate and verify the model.
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5. Model Implementation

In this chapter, we will solve a numerical example in order to evaluate the
performance of the model. In the first step, we should define the problem by
assigning values and functions to input variables. In other words, we should construct
a case study and specify the demand values, available energy generation facilities,

wind speeds, costs, etc. in a coherent fashion.

5.1 Input Data
In order to obtain realistic results, it is necessary to feed realistic data to the model.
Therefore, we have attempted to use actual numbers or historical records for input

parameters wherever possible.

5.1.1. Demand

One of the core inputs of the model is the demand function. In order to build this
function, we need to fit a distribution to demand values. Actual demand data can be
obtained from electricity retailers and distributors. PJM Interconnection (PJM) is a
Regional Transmission Organization (RTO) which mainly serves North East USA.
This company has made valuable hourly load data available to general public through
its website (PJM, 2013). We have used 2012 historical data from the southern region
of this market for our case study. The company in charge of power distribution for
this region is Dominion Virginia.

Now, we have to fit a distribution to this data so that we can replace its cumulative
distribution function in equation 4.15. There are several application packages

available for distribution fitting. In this study, we have used @risk. Statistical
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analysis of the data shows that several distributions are suitable for our problem such

as Lognormal, Weibull and even Triangular. As discussed earlier, Weibull

distribution is preferred for its closed and differentiable form (Triangular distribution

also has a closed form, but it needs to be defined piecewise. So Weibull distribution is

more convenient in this sense. In addition, it is a closer fit). Figure 28 shows the fitted

distribution.
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Figure 28- Fitting Weibull distribution to demand data
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The demand data appears to have two peaks corresponding to the high consumption

(around 10,000 MWh) and low consumption (around 7000 MWh) periods. While the

fitted curve seems unable to fully embrace the high peak of sampled data (none of the

distributions considered in this analysis are bimodal), considering the fact that the
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cumulative distribution function (CDF) of demand is engaged in the formulation,
Weibull distribution can actually be a good fit for such application.

Figure 29 shows the cumulative distribution functions of the data and the fitted curve.
As it can be seen, the two curves do not deviate much from one another and they
follow an identical path. Moreover, in most cases where there is a discrepancy, the
blue curve (actual demand) is above the red curve. This means that the fitted curve
tends to slightly overestimate the demand volume, which works towards increased
reliability in our solution. Furthermore, in almost any power network, the objective is
to maintain a high level of reliability at all times. Therefore, throughout the
mathematical analysis, the right portion of the CDF curve in Figure 29 comes to play,

which has a negligible discrepancy from the actual data.
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17.50
94.0% 1.0%
95.2% 0.6% &
—
0.8 1
= Jnput
Minimum  6287.0000
Maximum  19249.0000
0.6 1 Mean 10614.5332
Std Dev 2300.1915
Values 8782
m— Weibull
0.4 1 S
Minimum  6279.2000
Maximum +00
Mean 10615.4073
Std Dev 2297.5852
0.2 1
0.0 !
© <) o ~ < o [=°] o
— — — — ~— o~

Values in Thousands

Figure 29- Cumulative distribution function for fitted curve and input data
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Additionally, there is another concern in the formulation which mandates a minimum
on the reliability level. As discussed in chapter 3, in order to be able to solve this non-
linear optimization problem, we need to have a convex program. For this purpose, the
concave portion of the CDF curve should be binding as a constraint. According to
Figure 29, this segment roughly corresponds to reliabilities above 40%. The exact
value can be calculated by finding the inflection point of demand CDF curve which is
defined as follows:

F(x) =1 — exp(- (x/A)") 5.1

Where A is the scale parameter and k is the shape factor. At the inflection point we

have:

F’(x)=0 5.2
So:

X2 (k (k-1) / A= kX4 /A% =0 5.3

One solution for equation 5.3 is x = 0, which is not the inflection point. The other

solution is:

x=x(1-1/k)" 5.4
Or:
x/N)5=1-1/k 5.5

Replacing in 5.1 we have:

F(inflection point) =1 —¢ " k-1 5.6
The upper limit for equation 5.6 is obtained when k is increased toward infinity. So,
the highest reliability beyond which concavity of the CDF function is guaranteed is

equal to:
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F(inflection point) <1 — 1/e = 63.2% 5.7
For our fitted Weibull distribution, k is equal to 1.97 and so the reliability at the
inflection point is about 38.9% which is way below the values we will be considering.
Furthermore, it should be noted that we can always add a constraint set mandating the
total supply to be greater than the inflection point value which is not necessary for
high reliabilities as discussed.

Finally, it should be noted that since the upper section of the curve is important to us,
the best fit for the whole curve might not be the best fit for the segment we are
interested in. So, we can adjust the parameters of the fitted distribution to obtain a
better fit for the upper segment. For example, using a shape factor (k) of 1.81 gives us
a tighter fit for reliabilities above 92%. So, we can use this shape factor when solving
the problem in that range of numbers. Alternatively, we can add a fixed amount to
demand values as safety factor to make sure that the reliability will never drop below
the designated level. This is equivalent to shifting the fitted curve further to the right
so that it falls slightly below the actual demand curve. Depending on the situation,
one or both of these approaches can be used to obtain a better fit if necessary.

The parameters of the Weibull distribution we have used are as follows:

k=1.97

A =4891.4 MWh

Shift = 6279.2 MWh

The standard Weibull distribution starts at zero. Since the minimum demand value is
much higher than zero, we should shift the standard function to the right so that it

roughly starts at minimum demand. This is done by replacing x with (x — shift).
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5.1.2. Wind Speed

As discussed earlier, Weibull distribution with a shape parameter of 2 has been
widely used in the literature for modeling the wind speed distribution in North
America. The same approach has been used in this work. In order to define the scale
parameter (1), we just need to measure the average wind speed (Viean) at the wind
farm site. Then, the scale parameter can be easily calculated as follows:

A =2Viean / 1 5.8
Figure 30 shows the map of annual average wind speeds at the height of 80 meters for
the United States. As it can be seen, the central parts of the country get the highest
winds with average speeds above 9 m/s. Since we have adopted our demand database

from PJM, we will assume that the wind farm site is located in the North East.

United States - Annual Average Wind Speed at 80 m
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Figure 30- Annual average wind speeds at 80 m across the US (NREL, 2012)
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While locations with stronger winds might exist as well, the highest average wind
speeds visible in that area of the map at this resolution are in the vicinity of 6m/s.
Furthermore, it should be noted that offshore wind speeds in this area are much
higher, as depicted in Figure 31. However, the cost of construction and installation for
an offshore wind turbine is several times greater compared to an onshore unit.
Accordingly, for this problem, we will consider an onshore wind farm with an
average wind speed of 6 m/s at 80 meters. The reason for taking the wind speed at
such height is that most of the modern grid-scale wind power generators have hub
heights of 80 meters and above. So, the scale parameter is equal to:

A=2x6/n"?=6.77ms

United States - Annual Average Offshore Wind Speed at 90 m
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Figure 31- Annual average offshore wind speeds at 90m for US (NREL, 2012)
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5.1.3. Wind Turbine Specifications
In order to generate power production scenarios for wind energy, we need to assign a
specific type of wind turbine to our wind farm. Since the average wind speed we have
assumed for our wind farm is on the lower range, we need a wind turbine which can
generate enough power at lower wind speeds. The rated speed (V;) for common wind
turbines varies between 11 m/s and 16 m/s. This is the wind speed at which the
nominal rated power is produced by the turbine. So, we should pick a wind turbine
from the lower end of the rated power spectrum. Considering these provisions,
Avantis AV 928 has been selected for the wind farm. This is a German made wind
turbine with the following specifications (The Wind Power, 2013):
Wind turbine brand: Avantis
Wind turbine name: AV 928
Nominal power: 2500 kW
Hub height: 80 m
Rotor diameter: 93.2 m
Swept area: 6822.2 m?
Power density: 0.03 m*kW
Number of blades: 3
Minimum rotor speed: 16 rad/min
Maximum rotor speed: 18 rad/min
Cut-in wind speed: 3 m/s
Nominal wind speed: 11.3 m/s

Cut-out wind speed: 25 m/s
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5.1.4. Wind power generation scenarios

Now that a type of wind turbine has been specified for the wind farm, we can
generate the power production scenarios. In order to do so, we have to start with wind
speed distribution and make wind speed scenarios, and then convert them to power
generation scenarios using equation 3.18.

For this purpose, we have to discretize wind speed distribution first. Figure 32 shows
how the wind speed range between 0 and 25 m/s has been divided in to 25 scenarios.
Each scenario covers an interval of 1 m/s starting from zero. The midpoint of each
interval has been selected as the representative wind speed for that scenario. For
instance, the first scenario covers the probability of wind speed being between 0 and
1 m/s and it is considered as a scenario with a wind speed of 0.5 m/s. Since the cut-
out speed for AV 928 wind turbine is 25 m/s, we can use this discretized and

truncated distribution for wind speed scenarios.

Discretized Weibull distribution for wind speed
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Figure 32- Probability mass function for wind speed scenarios
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Subsequently, we can build power generation scenarios based on wind speed
scenarios using equation 3.18. While we can simply plug the representative wind
speed values in the wind turbine power curve to get the generated power quantities
for each scenario, a smarter approach can be used to reduce the number of scenarios
and at the same time increase the accuracy of the solution.

Looking at equation 3.18, we realize that we can group wide ranges of wind speed
scenarios under two power production realizations. In other words, for all wind
speeds below turbine’s cut-in value or above its cut-out value, there is no power
generation. Also, for wind speeds ranging from the rated speed up to the cut-out
speed, the power production is equal to the rated (nominal) power (P;).

We can easily calculate the probabilities of these two cases and incorporate them as
reserved scenarios in our model. For other scenarios (wind speeds varying from the
cut-in speed up to the rated speed), the procedure depicted in Figure 32 is required. If
the original continuous Weibull wind speed CDF is denoted with G, the probabilities

for reserved scenarios can be calculated as follows:

P (Production = 0) = G(Veutin) + (1 — G(Veut-out))

=1 — exp(-(Veuein/A)* + exp(-(Veurou/L) 5.9

P (Production = P;) = G(Veutou) — G(Vy) = exp(-(V/A)? — exp(-(Veurou/ L) 5.10
Replacing the values for our numerical example we have:
P (Production = 0) = 17.8%

P (Production = P;) = 6.2%
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5.1.5. Other Parameters
The remaining input parameters mainly constitute cost, efficiency and carbon
emission information plus capacity caps for power generation facilities. There are two
sources of carbon emission in our model: Coal and gas combustion. Based on US
EPA (Environmental Protection Agency) estimates, the average emission rate for
these sources are (US EPA, 2012):
Co2c =1.02 ton/MWh
Co2g =0.51 ton/MWh
Also, we presume the carbon cap is equal to 12,750 tons:
CCap = 12,750 ton
In the basic case, no energy exchange or storage is allowed (The impact of adding
these options to the model is studied in the sensitivity analysis section):
Ug=0
Uim = Uex =0
For other sources, we assume the following caps in order to roughly replicate the
average energy source combination for the US according to Figure 27:

U, =10,000 MW

U, = 5,000 MW
U, = 5,000 MW
U, = 2,000 MW

Uy = 2,000 Units
For assigning cost and efficiency to different sources of energy, we can use the

valuable data from Table 1 provided by U.S. Energy Information Administration.
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Table 1- U.S. average levelized costs (2010 $/MWh) for Plants Entering Service in 2017 (US EIA, 2012)

Variable
Levelized Oo&M Total System
Capacity Capital Fixed (including Transmission Levelized
Plant Type Factor (%) Cost 0&M fuel) Investment Cost
Dispatchable Technologies
Conventional Coal 85 64.9 4.0 27.5 1.2 97.7
Advanced Coal 85 74.1 6.6 29.1 1.2 110.9
Advanced Coal 85 91.8 9.3 36.4 1.2 138.8
with CCS
Natural Gas-fired
Conventional 87 17.2 1.9 45.8 1.2 66.1
Combined Cycle
Advanced 87 17.5 1.9 42.4 1.2 63.1
Combined Cycle
Advanced CC 87 343 4.0 50.6 1.2 90.1
with CCS
Conventional 30 453 2.7 76.4 3.6 127.9
Combustion
Turbine
Advanced 30 31.0 2.6 64.7 3.6 101.8
Combustion
Turbine
Advanced Nuclear 90 87.5 11.3 11.6 1.1 111.4
Geothermal 91 75.1 11.9 9.6 1.5 98.2
Biomass 83 56.0 13.8 443 1.3 115.4
Non-Dispatchable Technologies
Wind 33 82.5 9.8 0.0 3.8 96.0
Solar PV 25 140.7 7.7 0.0 43 152.7
Solar Thermal 20 195.6 40.1 0.0 6.3 242.0
Hydro2 53 76.9 4.0 6.0 2.1 88.9
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Using Table 1, the following values are assigned to our input parameters:

C.=$100 /MWh

E.=0.85
C, = $70 /MWh
E, =0.87

Cn=8110 /MWh

E,=0.90

For residual power generation capacity, we will assign a higher cost so that it will
only be used if the other three sources are fully utilized. This is because the focus of
the model is on major sources of energy generation and wind power:

C,=$130 /MWh

Additionally, we will start with a high cost for energy import and low price for energy
export so that in the next stage we can study the effect of favorable import/export
prices on wind power capacity planning:

Cim = $140 /MWh

Pex = $100 /MWh

For wind power generators, manufacturers claim that Forced Outage Rate (FOR)
values are less than 4% while other sources report values around 10% (Giorsetto &
Utsurogi, 1983). We take the outage probability of 7% for our model which is
somewhere in between:

E, =0.93

The cost of wind generated power is estimated at $96 /MWh in Table 1. Since

considering the direct capital cost and maintenance is more realistic and
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straightforward in the model, we will scale the total cost down to hourly values to be
consistent with other parameters in our model. The capacity factor reported in Table 1
is 0.33, so the hourly unit cost of wind power capacity is:

Cw=96x0.33 =$31.68 /MWh

This means that 1 MW of installed wind power generator costs $31.68 per hour
throughout the life of the wind turbine.

Energy storage parameters depend on the type of technology being utilized. The most
commonly used grid storage technology in the world is pumped hydro-electricity. It is
also one of the least expensive options available. Therefore, storage parameters of the
model are assigned based on this technology. The typical capacity for this type of
facility is in the range of 200MW to 400MW. Storage cost varies between $50 /MWh
and $150 /MWh and efficiency is in the range of 0.7 to 0.8 (IEA-ETSAP & IRENA,

2012). Based on these facts, the following values have been set for storage

parameters:
Cs = $50 /MWh
Est =0.8

And finally, the reliability is initially set to 96%.
o =0.96

With all the input parameters in place, we can proceed to solve the problem.

5.2. Solution and Results

5.2.1. Transforming the Chance Constraint

At this point, we have all the input data required to define the model including the

demand function. In the final step before solving the formulation, we need to
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substitute the designated probability distribution function in constraint 4.2 and rewrite
it in the deterministic format of equation 4.15. Accordingly, equation 4.2 can be

written as:

I
i=0"1i

(ECXC+Eng+Ean+ErXr+EWRiXW+Ximi—Xexi+Xreli—Xsti—6279)1'97
P.-l1—e 4891 =>a 5.11

5.2.2. Solver
At this stage, the formulation is ready for being processed by a computer solver. It
can be coded into any optimization software package capable of solving NLP (Non-
Linear Programming) problems. The optimization package we have selected for this
purpose is GAMS (General Algebraic Modeling System). GAMS is a very powerful
optimization program which can employ a variety of solvers for dealing with different
types of problems. It is best suited for solving large-scale problems as the language
compiler is able to directly operate on indexed expressions. Some of the problem
types GAMS is capable of solving include LP (Linear Program), IP (Integer
Program), MIP (Mixed Integer Program), NLP, etc. The NLP solver used for this

model is known as CONOPT.

5.2.3. Solution
Now, we can run the model to obtain a solution. Before we proceed, however, there is
one last parameter to set: We need to assign the number of scenarios for wind speed
realizations. Since we have initially considered a single wind farm location, there is
hardly any computational restriction on the number of scenarios we can consider. So,

the model runs are completed within seconds even for unnecessarily large numbers of
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scenarios. For multiple independent wind farms, as we will see, this is not the case
since the size of the problem grows exponentially with the number of wind farms.

Table 2 shows the solution for several scenario counts. It should be noted that while
the same problem is being solved conceptually, we are dealing with an altered
numerical problem when the number of scenarios changes. As it can be seen, the
objective function value is fairly accurate even for as few as three scenarios
considered. This is mainly caused by the fact that the scenario-dependent decision
variable (wind turbine count) does not constitute a major share of supply in the
solution. This fact is reflected more conspicuously in the huge variance in the number
of wind turbines. Nonetheless, the solution converges rapidly as more scenarios are
considered. At 10 scenarios, there is not much difference in the results compared to
500 scenarios. This quick converges is also caused by the scarcity of scenario-based
decision variables in the basic case. The convergence rate will drop as different types

of energy exchange (importing, exporting and storage) are made available.

Table 2- Basic case solution considering varying number of scenarios

Number of
Scenarios | Cost ($/hr) X (MW) Xq (MW) | X, (MW) | X, (MW) | X, (Units)
3 $1,622,618 10,000 5,000 1,841 0 885
4 $1,628,352 10,000 5,000 2,394 0 190
5 $1,628,587 10,000 5,000 2,427 0 147
6 $1,628,656 10,000 5,000 2,437 0 133
10 $1,628,709 10,000 5,000 2,447 0 121
50 $1,628,728 10,000 5,000 2,450 0 117
500 $1,628,728 10,000 5,000 2,450 0 117
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According to this solution, for a reliability level of 96%, we need to have 10,000 MW
of coal, 5,000 MW of natural gas and 2,450 MW of nuclear power capacity available.
Additionally, 117 wind turbine units are also required. Therefore, fossil fueled power
stations should be utilized at maximum capacity and the rest of the load is supplied
with nuclear power and wind energy. This outcome is commensurate with the cost
structure of the problem.

An explanation is deemed necessary here regarding the type of decision variables.
Logically, all of the variables can be real valued numbers with the exception of the
variable denoting the number of wind turbines. While defining this variable as integer
is the natural way of formulating the problem, it will add another order of complexity
to this NLP model without almost any merits. In other words, this provision will turn
the formulation into a Mixed Integer Non-Linear Program (MINLP) only to avoid the
optimality gap created from rounding up a real valued solution which is less than the
unit cost of a wind turbine, or $32/hour. This is roughly around 0.002% of the
objective function value whereas it is very likely for the approximations in input
parameters, formulation and even the NLP solving algorithm to exceed that threshold.
So, we can confidently avoid the extra complexity of dealing with an MINLP and
solve the problem for real valued decision variables.

Returning to the analysis of the solution, it is observed that the share of wind power
in power generation is very low. One hundred and seventeen units of Avantis AV 928
turbines add up to 292.5 MW of nameplate capacity, which is less than 2% of the
total capacity provided by other sources combined (10,000 + 5,000 + 2,450 = 17,450

MW).
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The amount of carbon emission for this combination of sources is equal to 12,750
tons, which is equals the maximum limit (CCap). So, further restrictions on carbon
emission are required to push for utilizing other sources of energy.

In order to see how much conventional capacity can be replaced by wind power in the
basic case, we have to solve the problem assuming wind power generation is not

allowed. This provision will lead to the following solution:

Table 3- Solution for the base case without wind power

Cost($/hr) | X (MW) | X,(MW) | X,(MW) | X,(MW) | X, (Units)

1,628,974 10,000 5,000 2,536 0 0

As the solution indicates, 86 MW of extra conventional capacity (2,536 — 2,450 = 86)
is required to cover for wind energy. So, the capacity credit for wind power
generation is:

Capacity Credit = 86 /292.5 = 30%

Which is typical for wind turbines. In the next section, we will study how variation of

different parameters in the model can affect the energy supply combination.
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6. Model Testing and Sensitivity Analysis

In order to figure out the dynamics of the model and verify its functionality, we have
carried out a series of sensitivity analyses. More than eighty instances of the model
with different input parameters have been solved to ensure that the model responds

rationally when there is a change in circumstances.

6.1. Reliability level

In this analysis, the problem is solved for a set of reliability values from 80% to 99%.
The results for seven instances are summarized in Table 4. As expected, the total cost
of meeting demand grows monotonically with increased reliability levels. The
marginal increase in cost is also greater at higher reliability values, as Figure 33
demonstrates.

Furthermore, share of wind power in power supply decreases at higher reliability

levels. This behavior is illustrated in Figure 34.

Table 4- Sensitivity analysis with respect to reliability level

Reliability | Cost ($/hr) | X.(MW) | X, (MW) | X,(MW) | X,(MW) | X, (Units)
0.99 $1,844,525 10,000 5,000 4,430 0 92
0.98 $1,741,367 10,000 5,000 3,485 0 102
0.97 $1,676,804 10,000 5,000 2,893 0 109
0.96 $1,628,728 10,000 5,000 2,450 0 117
0.90 $1,459,454 10,000 5,000 890 0 146
0.85 $1,373,918 10,000 5,000 96 0 170
0.80 $1,309,551 9,555 5,000 0 0 52
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Figure 33- Cost increase at higher reliability levels

While one might initially expect the number of wind turbines to increase as the

reliability is reduced, Figure 34 shows a sudden decrease at reliability of 85%

compared to higher values. This is resulting from the fact that the more expensive

nuclear power is no longer needed at this reliability level and the wind power has to

compete with the less expensive coal generated electricity. If we slightly reduce the

cost of wind power, the previous trend will be recovered.
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Figure 34- Wind power capacity variations as a function of reliability
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6.2. Carbon Cap
In this section, we will investigate the effect of carbon emission restriction on the
model. Table 5 summarizes nine solutions covering a wide range of carbon cap
values. As these calculations show, carbon caps above 12,750 ton/hour will not affect
the solution in any fashion. Below this threshold, however, the capacity of coal-
burning facilities will be reduced in favor of other clean alternatives. At the beginning
of this trend, the capacity cut resulting from carbon emission restriction is

compensated for by utilizing additional nuclear power capacity available.

Table 5- Sensitivity analysis with respect to carbon cap limit

(tg(r::l?r) Cost ($/hr) | X (MW) | X (MW) | X,(MW) | X, (MW) | Xw (Units)
6,600 Infeasible 3,971 5,000 5,000 2,000 2,000
6,700 $1,705,118 | 4,069 5,000 5,000 2,000 1,746
7,000 $1,680,257 | 4,363 5,000 5,000 2,000 1,061
7,500 $1,664,584 | 4,853 5,000 5,000 1,995 253
8,000 $1,659,437 | 5,343 5,000 5,000 1,578 253
9,000 $1,649,143 | 6,324 5,000 5,000 745 253
10,000 | $1,639,213 | 7,304 5,000 4,996 0 117
12,750 | $1,628,728 | 10,000 5,000 2,450 0 117
14,000 | $1,628,728 | 10,000 5,000 2,450 0 117

After nuclear power reaches full capacity, the more costly residual power generation
capacity (denoted by X;) is used along with some additional wind power capacity.
When the residual capacity is also fully utilized, only the reserve wind power capacity

will be left. Therefore, a large hike in the number of wind turbines is observed at this
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point. As the carbon cap is further reduced, more wind turbine units will be deployed
until the available wind power capacity is fully installed. This trend is graphically
illustrated in Figure 35. Yet if the carbon cap is reduced further, the model will be

rendered infeasible.
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Figure 35- Impact of lowering carbon cap limit

It should be noted that even if the limit on wind power capacity is removed, the
ability of wind power to reliably satisfy demand would still be very limited. Table 6
shows the results of six more runs with the wind power capacity cap removed. As the
capacity cap is lowered under 6,000 tons, the number of wind turbines increases
rapidly to compensate for the lost capacity from coal burning facilities. However, the
efficiency of wind power generation drops according to the last column of the table

(capacity credit).
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Table 6- Sensitivity analysis on carbon emission limit with wind power capacity removed

Ccap Xw Capacity
(ton/hr) | Cost ($/hr) | X; (MW) | X, (MW) | X, (MW) | X,(MW) | (Units) | Credit (%)
6,600 | $1,717,354 | 3,971 5,000 5,000 2,000 2,024 26.5%
6,000 | $1,858,996 | 3,382 5,000 5,000 2,000 4,556 17.0%
5,500 | $2,153,679 | 2,892 5,000 5,000 2,000 8,895 10.9%
5,000 | $2,961,244 | 2,402 5,000 5,000 2,000 19,711 5.9%
4,500 | $7,514,023 | 1,912 5,000 5,000 2,000 | 77,814 1.7%
4,000 Infeasible 1,422 5,000 5,000 2,000 Inf N/A

When the carbon cap is lowered below 5,000 tons limit, there will be a sudden

increase in the rate of growth for wind power capacity as well as the total cost, as

illustrated in Figure 36.
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Figure 36- Extended observation of carbon cap impact on wind power capacity and cost
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From this point on, more than 3,000 megawatts of conventional capacity should be
replaced with wind power without any loss in system reliability. This is a challenging
task to accomplish and requires excessive investment on wind power generation. At a
cap limit of 4,500 tons, the total cost and count of wind turbines are extremely high
although they are severely underutilized. When the cap is further lowered to 4,000
tons, wind power is unable to effectively replace the lost conventional capacity at any

cost and the model becomes infeasible.

6.3. Average wind speed

Obviously, stronger winds lead to greater quantities of wind generated power. In this
subsection, we will numerically study the effect of high winds on wind power
utilization. Table 7 lists fifteen solutions for average wind speed values starting from
5.5 m/s up to 14 m/s. The last column in the table is the ratio of nominal wind power
capacity to the total capacity from all other sources.

As calculations show, for average wind speeds below 5.5 m/s, the quantity of power
generated from wind does not justify any investments in wind power considering
current cost structure of the problem. At 6 m/s however, the share of wind energy
rises to near 2% limit. From this point on, as Figure 37 demonstrates, wind power
capacity increases rapidly with a descending slope. At 12 m/s, wind capacity reaches
its maximum which amounts to more than 30% of the total capacity from other
sources. After this threshold, the number of wind turbines in the solution starts to

drop slowly.
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Table 7- Solutions for varied values of average wind speed

Vimean (M/S) | Cost ($/hr) X (MW) X (MW) | X, (MW) Xw (Units) | Xy (%)
5.5 $1,628,974 10,000 5,000 2,536 0 0.0%
6.0 $1,628,728 10,000 5,000 2,450 117 1.7%
6.5 $1,625,167 10,000 5,000 2,186 439 6.4%
7.0 $1,618,580 10,000 5,000 1,937 701 10.3%
7.5 $1,610,029 10,000 5,000 1,701 921 13.8%
8.0 $1,600,219 10,000 5,000 1,476 1,110 16.8%
8.5 $1,589,674 10,000 5,000 1,262 1,274 19.6%
9.0 $1,578,835 10,000 5,000 1,060 1,418 22.1%
9.5 $1,568,116 10,000 5,000 873 1,542 24.3%
10.0 $1,557,929 10,000 5,000 705 1,646 26.2%
11.0 $1,540,733 10,000 5,000 443 1,793 29.0%
12.0 $1,529,847 10,000 5,000 301 1,853 30.3%
13.0 $1,526,258 10,000 5,000 283 1,833 30.0%
14.0 $1,529,079 10,000 5,000 364 1,756 28.6%
15.0 $1,536,323 10,000 5,000 510 1,644 26.5%
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Figure 37- Variation of wind power capacity utilization with average wind speed
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With respect to cost, as the graph illustrates, more wind turbines result in more
savings in general. The minimum cost, however, does not correspond exactly with the
maximum number of wind turbines deployed. The reason is that the cost savings
gained from wind power generation linger briefly after the maximum utilization is
reached where slightly fewer wind turbines can produce slightly more electricity at
higher wind speeds (e.g. at 13 m/s, less wind turbines are installed compared to 12
m/s but since they produce more power (offset more conventional capacity), the total
cost is less.). After this point, further increase of the average wind speed will lead to a
reduction in objective function value and wind power utilization, as the turbines must
be shut down more frequently to avoid damage from strong winds.

In summary, higher wind speeds favor larger wind power generation capacities which
in turn lead to greater cost savings. In the best scenario of the example solved above
(Vmean=12 m/s), wind turbines have replaced 2,235 MW of non-wind power capacity
(compared to the case with no wind turbines installed: 2,536 — 301 = 2,235). So, the
capacity credit can be calculated as:

Capacity credit = 2,235 /(2.5 x 1,853) = 48%

This figure is on the high end of typical capacity credit ratios. Nonetheless, it should
be noted that it is generally very unlikely for wind speed to average 12 m/s or above
even at a height of 100 meters, especially for onshore locations. In fact, any location
on land receiving an average wind speed of 8 m/s or greater is potentially considered
as a favorable place for wind power generation. For average wind speed of 8 m/s, the
capacity credit would be around 38% which is a more realistic figure:

Capacity credit = (2,536 — 1,476) / (2.5 x 1,110) =38%
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6.4. Turbine Specifications

As discussed earlier, the type of turbine utilized in a wind farm can greatly affect the
amount of power production. Equation 3.18 demonstrates how turbine-specific
parameters determine the turbine output under different circumstances. Therefore,
wind turbine specifications should be compatible with geographical conditions of the
wind farm location in order to have optimal operation. As equation 3.18 indicates, the
main turbine-specific parameters affecting the output are the rated power, the rated
speed, cut-in speed and cut-out speed. In this subsection, we have modified some of
these parameters to see how they influence the solution.

The rated power is not altered in this analysis since the hourly wind turbine cost as
well the quantity of wind generated power is linearly correlated with this parameter.
So, changing the rated power will only change the number of wind turbines
proportionally while the total installed wind power capacity and the total cost values
are preserved. Obviously, a different cost structure could have been used to account
for the economies of scale. Equally, brand-specific pricing can be used in the model.
However, since wind power associated expenses such as construction, maintenance,
etc. are very location-specific, we have decided to use a generic linear cost model and
consequently drop this parameter from the sensitivity analysis.

In order to better understand how turbine specifications interact with the model, it is
helpful to keep track of the capacity factor. The capacity factor can be calculated as

follows:

Veo Veo

CF = [} By(V). f(V).dV = [} Page(V). f(V). AV + B, [} f(V).aV

1

= Jy7 Pase ). f(V). AV + B[F (Vi) = F(,)] 6.1
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Table 8 lists six solutions for varying cut-in speed values ranging from 1 to 3.5 m/s.
As this parameter increases, wind turbine output at low wind speeds is reduced. This
behavior is reflected in the capacity factor values. Consequently, the number of wind
turbines decreases as the capacity factor drops. At cut-in wind speeds below 3.5 m/s,
the amount of wind power production is too low to justify any investments on wind

power. This trend is illustrated in Figure 38.

Table 8- Solutions for varying cut-in speeds

V.i(m/s) | Cost ($/hr) | X (MW) | Xq(MW) | X, (MW) Xw (Units) CF (%)
1.0 $1,626,865 10,000 5,000 2,243 366 33.2%
1.5 $1,627,493 10,000 5,000 2,297 302 32.5%
2.0 $1,628,154 10,000 5,000 2,364 220 31.7%
2.5 $1,628,690 10,000 5,000 2,439 127 30.6%
3.0 $1,628,728 10,000 5,000 2,450 117 29.4%
3.5 $1,628,974 10,000 5,000 2,536 0 27.9%

Wind power capaity vs. cut-in speed
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Figure 38- Wind power capacity variation with respect to cut-in speed
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The next parameter investigated in this analysis is the cut-out wind speed. Table 9
denotes three solutions for different cut-out wind speed values. As these numbers
demonstrate, the solution is not very sensitive to this parameter. The reason is that the
typical cut-out wind speed values generally fall into the ending tail of wind speed
distribution curve where the probability densities are the lowest. In other words,
although an increased cut-out speed means the wind turbine can operate at higher
wind speeds, the probability of such scenarios is very low and it would not affect the

capacity factor much, as the last column of Table 9 indicates.

Table 9- Solution for varying wind cut-out speeds

Veo(m/s) | Cost ($/hr) | X (MW) Xq (MW) Xn (MW) | Xw (Units) | CF (%)
20.0 $1,628,733 10,000 5,000 2,451 116 29.3%
25.0 $1,628,728 10,000 5,000 2,450 117 29.4%
40.0 $1,628,728 10,000 5,000 2,450 117 29.4%

Finally, the impact of the rated speed is analyzed in this subsection. Table 10 lists
eight solutions for varying values of the rated speed. As these results indicate, the
model is very responsive to this parameter. A slight modification of the rated speed
leads to a sizeable variation in the capacity factor which in turn has a strong influence
on the total wind power capacity. Lower rated speed can be equated with higher
probability of operating the wind turbine at nominal power. Higher values for this
parameter, however, reduce the capacity factor and result in a lesser total capacity for
wind power. In our numerical example, for instance, wind power generation is no

longer economical when the rated speed rises above 12 m/s. Figure 39 illustrates
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variations of the capacity factor and total wind power capacity as the rated speed is

modified.

Table 10- Model solution for varying rated wind speed

V,(m/s) | Cost ($/hr) | X.(MW) | X, (MW) | X, (MW) | Xw (Units) | X, (%) | CF (%)
9.0 | $1,614,735 | 10,000 | 5,000 | 1,854 768 11.4% | 41.4%
95 | $1,619,623 | 10,000 | 5000 | 1,989 642 94% | 38.5%
10.0 | $1,623,477 | 10,000 | 5,000 | 2,121 508 74% | 35.7%
10.5 | $1,626,308 | 10,000 | 5000 | 2,250 365 5.3% | 33.1%
11.0 | $1,628,124 | 10,000 | 5,000 | 2,376 213 3.1% | 30.7%
11.3 | $1,628,728 | 10,000 | 5000 | 2,450 117 1.7% | 29.4%
11.5 | $1,628,929 | 10,000 | 5000 | 2,500 51 0.7% | 28.5%
12.0 | $1,628,974 | 10,000 | 5000 | 2,536 0 0.0% | 26.4%

Wind power capacity vs. the rated speed
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Figure 39- Impact of rated wind speed on wind power capacity

As this analysis shows, the rated wind speed has the greatest impact on the capacity

factor among all other wind turbine specifications, followed by cut-in wind speed.
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Therefore, when comparing similar wind turbines, more consideration should be
given to those with lower rated speeds since they are likely to generate power in

greater quantities on average.

6.5. Wind Power Cost

In this section, the influence of wind power cost on wind power utilization is
explored. Table 11 lists nine solutions over a wide range of unit cost values for wind
generated power. As expected, the total available capacity (2,000 wind turbine units)
for wind power generation is utilized when the price is sufficiently low (first row in
the table). The capacity credit, on the other hand, is the lowest at this point. As the
unit cost rises, wind turbines are used in fewer numbers yet more efficiently
(Capacity factor increases but the number of wind turbines drops). When the unit cost
exceeds $105/MWh, wind generated power becomes too expensive to use and the

number of wind turbines drops to zero. Figure 40 visually illustrates this trend.

Table 11- Sensitivity analysis with respect to the unit cost of wind power

Cw Xc Xn Xw Capacity
($/MWh) | Cost ($/hr) | (MW) | X, (MW) (MW) | (Units) | X (%) Credit (%)

40 $1,584,890 | 10,000 5,000 1,535 2,000 | 30.2% 20.0%

50 $1,600,023 | 10,000 5,000 1,681 1,579 | 23.7% 21.7%

60 $1,611,198 | 10,000 5,000 1,857 1,150 17.1% 23.6%

70 $1,619,216 | 10,000 5,000 2,024 806 11.8% 25.4%

80 $1,624,634 | 10,000 5,000 2,188 515 7.5% 27.0%
90 $1,627,804 | 10,000 5,000 2,351 259 3.7% 28.6%
96 $1,628,728 | 10,000 5,000 2,450 117 1.7% 29.4%
100 $1,628,961 | 10,000 5,000 2,517 26 0.4% 29.2%
105 $1,628,974 | 10,000 5,000 2,536 0 0.0% N/A
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Moreover, the total cost rises when the unit cost of wind generated power is increased
as expected. The rate of growth, however, decreases at higher unit costs as the graph
shows. This is resulting from the fact that lesser wind turbines are used when they

cost more.

Total cost & capacity credit vs. wind power cost
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Figure 40- Variation of total cost and wind power utilization with unit cost of wind power

6.6. Cost of Imported Electricity

At this point, we will allow electricity exchange in the model by assigning a
transmission capacity for energy importation on a scenario basis. This capacity is set
at one thousand megawatt-hours:

Uim = 1,000 MWh

Since the decision variables denoting imported power quantities in each scenario are
numerous, their expected value is used as a measure for presentation and comparison:
E(Xim) = };; Xim;. P; 6.2
The model has been solved for a set of seven unit cost values ranging from $105

/MWh to $140 /MWh. Table 12 summarizes the results. According to these
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calculations, when the cost is above $130 /MWh, energy importation is too expensive
and the demand is fulfilled using only in-network resources.

As the price falls below this limit, a combination of imported energy and wind
generated power partly replaces the nuclear power capacity, which is the most
expensive type of power station in the mix. While the expected quantity of imported
power increases monotonically as its cost drops, the behavior of wind power capacity
is more complex, as Figure 41 illustrates. Initially, a sharp growth is observed in the
number of wind turbines as the imported energy cost drops. With further cost
reductions, however, the imported energy takes precedence over wind generated
power and the number of wind turbines is decreased.

Ultimately, at energy import cost of $105/MWh, the wind power capacity drops all
the way back to its initial level (117 wind turbines) and all of the imported power
quantities are used to offset the nuclear power capacity.

A question might arise here regarding capacity combinations in the solution.
Comparison of the first row and the last row in the solution table indicates that energy
importation has offset greater nuclear power capacity than the quantity of the
imported power (Initially, the nuclear power capacity is 2,450 MW. When power is
imported at full capacity, this value drops down to 1,339. So the difference is 2,450 —
1,339 = 1,111). The reason for this apparent disparity is that the imported power has
been assumed fully reliable, while a capacity factor of 0.9 is considered for nuclear
power stations. Therefore, 1,000 MW of transmission capacity is equivalent to

1,000/0.9 = 1,111 MW of nuclear power capacity.
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Regarding total cost, the trend is pretty much expectable. Higher prices lead to higher

total costs at a decreasing rate.

Table 12- Sensitivity analysis with respect to imported energy cost

Cim Xw E(Xim)
($/MWh) | Cost($/hr) | X.(MW) | Xg(MW) | X,(MW) | (Units) (MWh)
105 $1,611,506 10,000 5,000 1,339 117 1,000
110 $1,616,504 10,000 5,000 1,335 126 997
115 $1,621,357 10,000 5,000 1,264 421 861
120 $1,625,173 10,000 5,000 1,283 598 723
125 $1,628,554 10,000 5,000 1,573 534 506
130 $1,628,728 10,000 5,000 2,450 117 0
140 $1,628,728 10,000 5,000 2,450 117 0
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Figure 41- Effect of variations in imported power price

6.7. Price of Exported Electricity

By the same token, energy exportation can also be considered in the model. Table 13

lists five solutions with varying values of unit prices for exported power. At the price
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point of $100 /MWh, energy exportation is not profitable and it will not happen.
When the price is increased to $110 /MWh, energy trade becomes marginally
rewarding. As the price rises further, more power exchange will take place until full
transmission capacity is utilized. The total wind power capacity (number of wind
turbines) follows a trend similar to the last parameter studied (power importation): It
goes up initially and reaches a maximum at around $120 /MWh and then gradually

drops back to its primary level. Figure 42 illustrates this trend.

Table 13- Model solution for varying prices of exported power

Pex E(Xex)
($/MWh) | Cost ($/hr) | X (MW) | X, (MW) | X, (MW) | Xw (Units) (MWh)
100 $1,628,728 10,000 5,000 2,450 117 0
110 $1,628,726 10,000 5,000 2,447 126 3
120 $1,627,395 10,000 5,000 2,394 598 277
125 $1,625,777 10,000 5,000 2,684 534 494

130 $1,620,950 10,000 5,000 3,561 117 1,000
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Figure 42- Impact of exported energy price on wind power capacity
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Comparison of the model behavior for energy importation and energy exportation
shows that there is some sort of symmetry (or matching) between the solutions. As it
can be seen, at any common price, identical capacities have been assigned to wind
power in both cases. Furthermore, the imported and exported quantities complement
one another. In other words:

E(Xim) + E(Xex) = 1,000 MWh 6.3
This observation is not a coincidence and it can be justified. Assuming that the
problem has been solved for an import cap of 1,000 MWHh, it can be inferred that the
price of imported energy has been fair enough so that it has partially replaced the
most expensive conventional power source in the mix. Now if the energy import is
disabled and export is allowed instead, there is no need to disturb the structure of the
solution. All needed to be done is to increase the capacity of the most expensive
source in the mix by an amount equivalent to the maximum quantity imported in a
single scenario (so that it satisfies the scenarios with highest demand for imported
energy) which is equal to the transmission cap for our example since it is binding as a
constraint. Hence, some scenarios will have production surplus which will emerge as
the exported power quantities in the solution. Consequently, the solutions for these
two cases should be related as such.

In our model, for instance, the expected quantities of exported and imported energy in
identical cases add up to 1,000 MWh while the difference between their respective
nuclear power capacities is equivalent to this value. For example, at $120, the

difference is:

Xn(ex) — Xn(im) = 2,394 — 1,283 = 1,111 MWh
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Which is equal to the transmission cap if the capacity factor is accounted for:

1,111 x 0.9=1,000 MWh

6.8. Cost of Energy Storage

Another type of recourse action embedded in the model is the energy storage. What
makes this feature more interesting is the fact that it allows for a much higher level of
interaction among the scenarios. Energy storage differs from other second stage
variables (i.e. energy importation and exportation) in the fact that the source and the
sink of energy are both scenario-based.

The storage capacity is set at 400 MWh. At an average wind speed of 6 m/s, the
amount of surplus energy generated in scenarios is not enough to favor any energy
storage. Therefore, the analysis is performed for an average wind speed of 7 m/s.
Table 14 summarizes several solutions for a range of storage costs covering values
between 0 and $75/MWh. As calculations show, lower storage costs lead to
installation of more wind turbines and greater quantities of energy being stored. In
addition, the total cost of energy procurement is reduced as expected. These

observations are visually presented in Figure 43.

Table 14- Model solution for varying energy storage costs

Cst Xw E(Xst)
($/MWh) | Cost ($/hr) | X, (MW) | Xo(MW) | X, (MW) | (Units) | (MWh) | X, (%)
0 $1,611,132 | 10,000 | 5000 | 1,581 1,101 155 16.6%

25 $1,614,627 | 10,000 | 5000 | 1,624 | 1,047 124 15.7%
50 $1,617,240 | 10,000 | 5000 | 1,702 957 85 14.3%
60 $1,618,017 | 10,000 | 5000 | 1,739 916 70 13.7%
70 $1,618,539 | 10,000 | 5000 | 1,881 761 19 11.3%
75 $1,618,580 | 10,000 | 5000 | 1,937 700 0 10.3%
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Figure 43- Impact of power storage costs on wind power capacity

6.9. Multiple Wind Farms

Finally, we will consider the effect of combining wind power generation from
multiple locations. Since the size of the problem grows exponentially as new wind
farms are added to the network (For greatest contribution, the wind speed
distributions in different locations are assumed independent), efficiency in scenario
generation is very critical when dealing with multiple sites.

In light of the comparative information provided in Table 2, we have considered ten
scenarios for each location in this analysis since the solution is barely affected at this
reduced level of detail yet the problem size is quite manageable. The analysis results

for up to four wind farms are summarized in Table 15.
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Table 15- Model solution for multiple wind farms

Number of
wind farms | Cost ($/hr) X (MW) Xq (MW) | X, (MW) | Xw (Units)
1 $1,628,709 10,000 5,000 2,447 121
2 $1,628,445 10,000 5,000 2,357 242
3 $1,628,181 10,000 5,000 2,268 363
4 $1,627,916 10,000 5,000 2,178 484

As the table shows, the number of wind turbines required at each additional wind
farm has remained constant (121 units). This result is visually demonstrated in Figure
44. As the graphs illustrate, the number of wind turbines has linearly increased while
the total cost has dropped at a constant rate.

The reason for this behavior is quite obvious. Since no recourse action (energy
import, export or storage) is allowed in this analysis, the second stage variables are all
zero. Therefore, the problem can be decomposed into separate wind farms and solved
independently. Consequently, the aggregate result can be obtained by escalating the

impact of a single wind farm by a factor equal to the number of wind farms.
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Figure 44- Effect of linking multiple wind farms
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In order to better investigate the model behavior when multiple wind farms are
involved, we have repeated the analysis with energy importation and exportation

enabled. The solutions for four instances of the problem are summarized in Table 16.

Table 16- Multiple wind farm impact with recourse

Number of X Xq X E(Xim) | E(Xex) Xw Xw

wind farms | Cost ($/hr) | (MW) | (MW) | (MW) | (MWh) | (MWh) | (/site) | (total)
1 $1,623,777 | 10,000 | 5,000 | 1,257 716 284 1,058 | 1,058
2 $1,622,600 | 10,000 | 5,000 | 1,031 653 341 769 1,538
3 $1,621,334 | 10,000 | 5,000 | 789 434 188 653 1,959
4 $1,620,166 | 10,000 | 5,000 | 549 407 207 586 2,344

As these results show, the number of wind turbines is no longer proportional to the
number of locations in this case and the growth rate has decreased. However, the
relationship between the total cost (and the total number of turbines) and the number
of wind farms is still nearly linear, as Figure 45 illustrates. A probable reason for this
observation might be the fact that the wind farms are still largely independent since

the available recourses can only induce a limited interrelation.
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Figure 45- Impact of multiple wind farms with recourse

98




7. Heuristics for Dealing with a Large Problem

As mentioned earlier, the problem size increases exponentially as more wind farms
are connected to the grid. For example, considering a network including ten wind
farms and assuming only ten wind speed scenarios for each location will lead to a
problem where the number of variables and constraints are in order of 10" (ten
billions). Therefore, we have to consider a reduced set of scenarios.

The information presented at Table 2 indicates that at least four scenarios are
necessary in order to obtain a solution within a reasonable tolerance. In such case, the
number of constraints and variables will be of order of 4'° or approximately a few
millions. While this reduction might be sufficient to enable a microcomputer to solve

the problem, there might be other ways to solve the problem more efficiently.

7.1. Standard Scenario Reduction

Fast forward selection is a well-known method used for scenario reduction. In this
approach, starting from an original set, scenarios are picked one by one in a fashion
that the probability distance of the selected set is minimized. The selection continues
until the reduced set reaches a specified size. Eventually, the probabilities of
unselected scenarios are distributed among the selected ones based on their proximity
(Conegjo, Carrion, & Morales, 2010).

In order to apply this method to our example, we have to define the initial set of
scenarios first. As discussed earlier, ten scenarios are deemed sufficiently accurate
according to Table 2. Power production rates (R;) and probabilities (P;) for this initial

scenario set are denoted in Table 17 (Efficiency is factored in production values).
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Table 17- Power production rate and probabilities considering ten scenarios

Scenario 1 2 3 4 5 6 7 8 9 10
P; 0.178 | 0.120 | 0.131 | 0.128 | 0.115 | 0.096 | 0.075 | 0.056 | 0.039 | 0.062
R; (kW) 0 66 230 437 685 976 | 1309 | 1683 | 2101 | 2325

Now we can start the selection process. The probability distance for each element of
the initial scenario set is calculated in Table 18. Each row and each column
corresponds to a specific scenario. The number in each cell denotes the power
production difference between the respective scenarios (column and row). The
probability distance for each scenario (D;) is calculated at the bottom of each column
using the following formulation:

Di=X;P.(R; —R;) 7.1

Table 18- Scenario distance calculations at step 1

Scenarios 1 2 3 4 5 6 7 8 9 10
1 66 230 | 437 | 685 976 | 1309 | 1683 | 2101 | 2325
2 66 0 164 371 619 910 | 1243 | 1617 | 2035 | 2259
3 230 164 0 207 | 455 746 | 1079 | 1453 | 1871 | 2095
4 437 371 207 0 248 539 872 | 1246 | 1664 | 1888
5 685 619 455 | 248 0 291 624 998 | 1416 | 1640
6 976 910 746 539 | 291 0 333 | 707 | 1125 | 1349
7 1309 | 1243 | 1079 | 872 | 624 333 0 374 | 792 1016
8 1683 | 1617 | 1453 | 1246 | 998 707 374 0 418 642
9 2101 | 2035 | 1871 | 1664 | 1416 | 1125 | 792 | 418 0 224

10 2325 | 2259 | 2095 | 1888 | 1640 | 1349 | 1016 | 642 | 224 0

Distance 685 642 576 547 575 675 854 1110 1444 1640
Based on the results, scenario #4 is selected at this stage since it has the smallest
probability distance. This procedure should be repeated to obtain the next element of
the reduced scenario set. However, scenario differences need to be updated. First, the
values in the row corresponding to scenario #4 are set to zero since this scenario is

already selected. In addition, since the reduced set has a member now (scenario #4),
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the scenario difference for the reduced set is the minimum of the scenario differences
for the new element and the current member. For example, calculating for scenario #2
as the new element in the reduced set, the distance with scenario #1 (the number in
column 2, row 1 of the difference matrix) would be equal to Min {R; — R;, R4 — R;}.
Based on these provisions, the updated scenario differences and the new probability
distances are calculated in Table 19. According to these calculations, scenario #8
must be picked as the second member of the reduced scenario set. Continuing with
this procedure, scenario #2 (Table 20) and scenario #6 (Table 21) will also be

selected in the third and fourth step respectively.

Table 19- Scenario distance calculations at step 2

Scenarios 1 2 3 4 5 6 7 8 9 10
1 0 66 230 437 437 437 | 437 | 437 | 437 | 437

66 0 164 371 371 371 371 371 | 371 | 371
207 164 0 207 207 207 | 207 | 207 | 207 | 207

0 0 0 0 0 0 0 0 0 0
248 248 | 248 248 0 248 | 248 | 248 | 248 | 248
539 539 | 539 539 291 0 333 | 539 | 539 | 539
872 872 872 872 624 333 0 374 | 792 | 872
1246 | 1246 | 1246 | 1246 | 998 707 374 0 418 | 642
1664 | 1664 | 1664 | 1664 | 1416 | 1125 | 792 | 418 0 224

10 1888 | 1888 | 1888 | 1888 | 1640 | 1349 | 1016 | 642 | 224 0
Distance 432 431 458 547 437 370 325 314 326 340

O |N O O|A W|N

Table 20- Scenario distance calculations at step 3

Scenarios 1 2 3 4 5 6 7 8 9 10

1 66 230 437 437 437 437 | 437 | 437 | 437
2 66 0 164 371 371 371 371 | 371 | 371 | 371
3 207 164 0 207 207 207 207 | 207 | 207 | 207
4 0 0 0 0 0 0 0 0 0 0

5 248 248 248 248 0 248 248 | 248 | 248 | 248
6 539 539 539 539 291 0 333 | 539 | 5639 | 539
7 374 374 374 374 374 333 0 374 | 374 | 374
8 0 0 0 0 0 0 0 0 0 0

9 418 418 418 418 418 418 418 | 418 0 224
10 642 642 642 642 642 642 642 | 642 | 224 0

Distance 199 198 225 314 262 259 266 314 272 266
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Table 21- Scenario distance calculations at step 4

Scenarios 1 2 3 4 5 6 7 8 9 10
1 0 66 66 66 66 66 66 66 66 66
2 0 0 0 0 0 0 0 0 0 0
3 164 164 0 164 164 164 164 | 164 | 164 164
4 0 0 0 0 0 0 0 0 0 0
5 248 248 248 248 0 248 248 | 248 | 248 248
6 539 539 539 539 291 0 333 | 539 | 539 539
7 374 374 374 374 374 333 0 374 | 374 374
8 0 0 0 0 0 0 0 0 0 0
9 418 418 418 418 418 418 418 | 418 0 224
10 642 642 642 642 642 642 642 | 642 | 224 0

Distance 186 198 176 198 145 143 150 198 155 150
The selection procedure stops here since considering more than four scenarios would
limit the computational ability to deal with a large problem. Moreover, the original
scenario generation technique of the model seems to be adequate for greater than four
scenarios as indicated by Table 2 and there is no need to use reduction techniques on
a larger scenario set.

Now, we have to redistribute the probabilities of unselected scenarios among the
selected ones based on their differences. This is a very easy process and the results
are displayed in Table 22 and Table 23 for three and four selected scenarios
respectively. The first row in Table 22, for example, shows that the probability of
scenario #2 in the reduced set {2, 4, 6} is 0.429 which is obtained by adding up the
probabilities of scenarios #1 through #3 in the original set. The elements of the
reduced scenario set in the table are marked with an asterisk to differentiate them

from the original scenario set elements (since they might have different probabilities).

Table 22- Probability redistribution for three selected scenarios

Reduced set | Production Scenario probabilities
scenarios (kW) Probability redistributed
2 66 0.429 1,2,3
4* 437 0.339 45,6
8* 1683 0.232 7,8,9,10
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Table 23- Probability redistribution for four selected scenarios

Reduced set Production Scenario probabilities
scenarios (kW) Probability redistributed
2* 66 0.429 1,2,3
4* 437 0.243 4,5
6* 976 0.171 6,7
8* 1683 0.157 8,9,10

With the reduced scenario sets defined, we are ready to run tests in order to evaluate
the effectiveness of this approach. Table 24 presents the solution for three and four
selected scenarios. As the results show, wind power generation is not utilized in any

of the cases. In other words, the stochastic aspect of the model has been completely

disregarded.
Table 24- Model solution for three and four selected scenarios
Reduced Cost
set ($/hr) X (MW) | Xg(MW) | X, (MW) | X, (MW) | X, (Units)
{2,4,8} 1,628,974 10,000 5,000 2,536 0 0
{2,4,6,8} 1,628,974 10,000 5,000 2,536 0 0

Therefore, the standard scenario reduction is not suitable for our model. The reason
for this outcome seems to be the fact that this selection approach favors the average
scenarios compared to boundary scenarios (minimum and maximum wind power
production). The second stage variables (which constitute the recourse action i.e.
energy trade), however, have the greatest influence on the boundary scenarios.
Consequently, when the boundary scenarios are eliminated, the recourse action is
downplayed and it might totally be neglected in the solution. Therefore, we need to

modify this approach accordingly so that we can address these special requirements.
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7.2. Customized Scenario Reduction

Pursuant to the discussion above, we decided to start with the boundary scenarios
(zero and maximum production) and then add new elements to this set. Again, the
underlying reason for this adjustment was the fact that these extreme cases play an
important role in dynamics of the model (especially the stochastic part), as observed
in several instances throughout the sensitivity analyses (e.g. energy storage).

Application of this adjustment to standard procedure leads to scenario #5 and scenario
#7 being selected as the third and fourth members of the reduced set. The selection

process is summarized in Table 25 and Table 26.

Table 25- Selection of the third scenario

Scenarios 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0
2 66 0 66 66 66 66 66 66 66 66
3 230 164 0 207 | 230 | 230 | 230 | 230 | 230 230
4 437 371 207 0 248 | 437 | 437 | 437 | 437 437
5 685 619 455 248 0 291 | 624 | 685 | 685 685
6 976 910 746 539 | 291 0 333 | 707 | 976 976
7 1016 | 1016 | 1016 | 872 | 624 | 333 0 374 | 792 | 1016
8 642 642 642 642 | 642 | 642 | 374 0 418 642
9 224 224 224 224 | 224 | 224 | 224 | 224 0 224
10 0 0 0 0 0 0 0 0 0 0
Distance 387 348 279 225 189 197 227 277 349 387

Table 26- Selection of the fourth scenario

Scenarios 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0
2 66 0 66 66 66 66 66 66 66 66
3 230 164 0 207 | 230 | 230 | 230 | 230 | 230 230
4 248 248 207 0 248 | 248 | 248 | 248 | 248 248
5 0 0 0 0 0 0 0 0 0 0
6 291 291 291 291 | 291 0 291 291 291 291
7 624 624 624 624 | 624 | 333 0 374 | 624 624
8 642 642 642 642 | 642 | 642 | 374 0 418 642
9 224 224 224 224 | 224 | 224 | 224 | 224 0 224

10 0 0 0 0 0 0 0 0 0

0
Distance 189 173 154 154 189 139 127 135 168 189
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Probability redistribution can also be done in two ways. We can follow the standard
procedure or preserve the boundary scenario probabilities and apply redistribution
only to other elements of the reduced set. We have considered both of these cases in
order to discover the best approach. Table 27 and Table 28 present the reduced set
alternatives for three scenarios (denoted as set 3-1 for standard probability
redistribution and set 3-2 for the modified method). Similarly, Table 29 and Table 30

illustrate the reduced sets for four scenarios (set 4-1 and set 4-2).

Table 27- Reduced set for three scenarios using standard redistribution (set 3-1)

Reduced set | Production Scenario probabilities
scenarios (kW) Probability redistributed
1* 0 0.429 1,2,3
5* 685 0.414 4,5,6,7
10* 2325 0.157 8,9,10

Table 28- Reduced set for three scenarios using modified redistribution (set 3-2)

Reduced set | Production Scenario probabilities
scenarios (kW) Probability redistributed
1* 0 0.178 1
5* 685 0.76 2 through 9
10* 2325 0.062 10

Table 29- Reduced set for four scenarios using standard redistribution (set 4-1)

Reduced set | Production Scenario probabilities
scenarios (kW) Probability redistributed
1* 0 0.429 1,2,3
5* 685 0.339 4,56
7* 1309 0.131 7,8
10* 2325 0.101 9,10

Table 30- Reduced set for four scenarios using modified redistribution (set 4-2)

Reduced set | Production Scenario probabilities
scenarios (kW) Probability redistributed
1* 0 0.178 1
5* 685 0.59 2,3,4,5,6
7* 1309 0.17 7,8,9
10* 2325 0.062 10
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In order to identify the best alternative, the original model (containing a single wind
farm) is solved for each set to compare the solutions. The data obtained from this
observation is presented in Table 31. As the results indicate, set 3-2 (three-scenario

set with intact boundary scenarios) leads to the most accurate solution.

Table 31- Comparison of reduced sets

Case Cost($/hr) | X.(MW) | X,(MW) X (MW) X (MW) | X, (Units)
3-1 $1,628,974 10,000 5,000 2,535 0 2
3-2 $1,628,859 10,000 5,000 2,454 0 114
4-1 $1,628,974 10,000 5,000 2,536 0 0
4-2 $1,623,726 10,000 5,000 1,967 0 725
Exact
solution $1,628,728 10,000 5,000 2,450 0 117

Therefore, this reduced scenario set can be used for solving a large problem. As an
example, the problem has been solved for ten wind farms with no recourse (energy
exchange). While it is not possible to solve this problem considering ten scenarios for
each location, a solution is obtained in approximately one hour when scenario set 3-2

is utilized. This solution is presented in Table 32.

Table 32- Solution for ten wind farms with no recourse

Number of
wind farms | Cost ($/hr) | X, (MW) | X, (MW) | X, (MW) | Xw (per site) | Xw (total)

10 $1,627,824 | 10,000 5,000 1,710 114 1,140

Further investigations show that the fitness of reduced scenario set 3-2 can be
associated with another parameter as well. The capacity factor of a wind turbine in
the original problem is equal to 29.4% according to Table 8. If the same turbine is

subject to scenario set 3-2, we will have:
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CF=(0x0.178 +0.76 x 685 + 0.062 x 2325) / 2325 = 28.6%

This factor is very close to the original value. Therefore, we can directly use this
result to reduce the original scenario set down to three members.

It should be noted, however, that the scenario dependent variables were not present in
this problem. When considering recourse in the model, the problem is still too large to
handle. Therefore, further approximations or assumptions are required to deal with a

fully-blown problem.

7.3. Additional Constraints

In this section, we are trying to exploit the structure of the problem in order to reduce
the solution time. One of the main sources of numerical complication in the model is
the excessive number of second stage variables. Investigation of the solution reveals
that the matrices corresponding to these variables are sparse. Therefore, we must be
able to develop some sort of a prescreening procedure to exclude redundant variables
from the optimization process.

As discussed earlier, the second stage variables represent the recourse actions which
mainly come to play at boundary and near boundary scenarios. They are less likely to
be used in scenarios with average power production. Furthermore, while there are
four types of recourse action (import, export, storage and release) available for each
realization of power production quantity, at most two and generally only one or none
of them will be used in any specific scenario. For instance, in a reasonably priced
market, power shall not be imported and exported in the same scenario. Otherwise
there will be an arbitrage opportunity (importing at lower cost and exporting at higher

price) which is a rare phenomenon in a healthy market. Therefore, according to these
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observations, the number of second stage variables can potentially be reduced by
almost half if these logical constraints are enforced.

Based on the above explanation, the idea is to identify the variables which are
unlikely to be in the solution basis and preset them to zero. As a result, the variables
standing for energy importation and release will be filtered in scenarios with high
power production. Similarly, energy exportation and storage are barred in low
production scenarios.

Obviously, the thresholds for such classification based on power production quantity
can affect the time and accuracy of the solution. It is expected that wider ranges of
low or high production scenarios would lead to shorter run times and less accurate
solutions. In other words, there is a tradeoff between the solution time and accuracy.
The procedure is discussed in detail in the following numerical example.

We will assume the same problem solved in the previous subsection (a network
including ten wind farm facilities) but energy exchange and storage will be permitted

at the following rates:

Cst=$50 /MWh Us =400 MWh
Cim = $120 /MWh Uim = 1000 MWh
Pex =$120 /MWh Uex = 1000 MWh

Considering the same three scenarios for each location (reduced set 3-2), we will have
more than 59,000 (3'%) combined scenarios for the problem. However, many of these
realizations are identical in terms of power production quantities. In fact, there are
only 66 distinct wind power generation scenarios as Table 33 indicates. The second

column in the table denotes the wind generated power quantity in Megawatts and
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column 3 to 5 show what combination of scenarios has led to this output. For

instance, in case 7, the power production is equal to 3.01 MW which occurs when 8

wind farms produce no electricity and the remaining two generate 685kW and

2,325kW. This production scenario encompasses 90 combinations considering all the

permutations for ten locations (column 6). The next column specifies the probability

of this output. The next two columns denote the cumulative count of combinations

and the cumulative probability for production values less than or equal to current row

output.
Table 33- Scenario analysis for ten wind farms
Wind Combination Cumulative | Cumulative
Case | output(MW) | 0 | 0.685 | 2.325 | Count | Probability count probability
1 0 10 0 0 1 3.19E-08 1 0.000000
2 0.685 9 1 0 10 1.36E-06 11 0.000001
3 1.37 8 2 0 45 2.62E-05 56 0.000028
4 2.055 7 3 0 120 0.0003 176 0.000326
5 2.325 9 0 1 10 1.11E-07 186 0.000326
6 2.74 6 4 0 210 0.0022 396 0.002554
7 3.01 8 1 1 90 4.27E-06 486 0.002559
8 3.425 5 5 0 252 0.0114 738 0.013976
9 3.695 7 2 1 360 7.3E-05 1098 0.014049
10 4.11 4 6 0 210 0.0406 1308 0.054673
11 4.38 6 3 1 840 0.0007 2148 0.055400
12 4.65 8 0 2 45 1.74E-07 2193 0.055400
13 4.795 3 7 0 120 0.0991 2313 0.154515
14 5.065 5 4 1 1260 0.0047 3573 0.159172
15 5.335 7 1 2 360 5.95E-06 3933 0.159178
16 5.48 2 8 0 45 0.1587 3978 0.317872
17 5.75 4 5 1 1260 0.0199 5238 0.337756
18 6.02 6 2 2 1260 8.9E-05 6498 0.337845
19 6.165 1 9 0 10 0.1506 6508 0.488416
20 6.435 3 6 1 840 0.0566 7348 0.545016
21 6.705 5 3 2 2520 0.0008 9868 0.545776
22 6.85 0 10 0 1 0.0643 9869 0.610065
23 6.975 7 0 3 120 1.62E-07 9989 0.610065
24 7.12 2 7 1 360 0.1036 10349 0.713634
25 7.39 4 4 2 3150 0.0041 13499 0.717689
26 7.66 6 1 3 840 4.84E-06 14339 0.717694
27 7.805 1 8 1 90 0.1106 14429 0.828245
28 8.075 3 5 2 2520 0.0139 16949 0.842097
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Wind Combination Cumulative | Cumulative
Case | output(MW) | 0 | 0.685 | 2.325 | Count | Probability count probability
29 8.345 5 2 3 2520 6.2E-05 19469 0.842159
30 8.49 0 9 1 10 0.0524 19479 0.894605
31 8.76 2 6 2 1260 0.0296 20739 0.924177
32 9.03 4 3 3 4200 0.0004 24939 0.924618
33 9.3 6 0 4 210 9.87E-08 25149 0.924618
34 9.445 1 7 2 360 0.0361 25509 0.960693
35 9.715 3 4 3 4200 0.0019 29709 0.962576
36 9.985 5 1 4 1260 2.53E-06 30969 0.962579
37 10.13 0 8 2 45 0.0193 31014 0.981832
38 10.4 2 5 3 2520 0.0048 33534 0.986657
39 10.67 4 2 4 3150 2.7E-05 36684 0.986684
40 11.085 1 6 3 840 0.0069 37524 0.993550
41 11.355 3 3 4 4200 0.0002 41724 0.993704
42 11.625 5 0 5 252 4.13E-08 41976 0.993704
43 11.77 0 7 3 120 0.0042 42096 0.997893
44 12.04 2 4 4 3150 0.0005 45246 0.998385
45 12.31 4 1 5 1260 8.81E-07 46506 0.998385
46 12.725 1 5 4 1260 0.0008 47766 0.999226
47 12.995 3 2 5 2520 7.52E-06 50286 0.999233
48 13.41 0 6 4 210 0.0006 50496 0.999831
49 13.68 2 3 5 2520 3.21E-05 53016 0.999863
50 13.95 4 0 6 210 1.2E-08 53226 0.999863
51 14.365 1 4 5 1260 6.85E-05 54486 0.999932
52 14.635 3 1 6 840 2.05E-07 55326 0.999932
53 15.05 0 5 5 252 5.85E-05 55578 0.999991
54 15.32 2 2 6 1260 1.31E-06 56838 0.999992
55 16.005 1 3 6 840 3.73E-06 57678 0.999996
56 16.275 3 0 7 120 2.38E-09 57798 0.999996
57 16.69 0 4 6 210 3.98E-06 58008 1.000000
58 16.96 2 1 7 360 3.05E-08 58368 1.000000
59 17.645 1 2 7 360 1.3E-07 58728 1.000000
60 18.33 0 3 7 120 1.86E-07 58848 1.000000
61 18.6 2 0 8 45 3.11E-10 58893 1.000000
62 19.285 1 1 8 90 2.66E-09 58983 1.000000
63 19.97 0 2 8 45 5.68E-09 59028 1.000000
64 20.925 1 0 9 10 2.41E-11 59038 1.000000
65 21.61 0 1 9 10 1.03E-10 59048 1.000000
66 23.25 0 0 10 1 8.39E-13 59049 1.000000

The cumulative scenario count provides us with an insight into the number of

variables being filtered at any given threshold. For example, assuming a low

production threshold of 7 MW (corresponding to case 23), we already know that
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9,989 energy export variables and an equal number of energy storage variables will
be eliminated from the model. Or for a high production threshold of 16 MW
(corresponding to case 55), 1,371 energy import variables (and same number of
energy release variables) are preset to zero (59,049 — 57,678 = 1,371). The
cumulative probability distribution function of the power output is another visual
indicator of the same parameter which is presented in Figure 46. With all of this

information available, we can proceed with our heuristics to solve the problem.
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Figure 46- Cumulative distribution function for wind generated power

Based on the above discussion, the following four sets of constraints will be added to
the formulation:

XeXIJklmnopqr:O 7.2

Xstljklmnopqr:() 7.3
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If(Ri+Rj +Rk+R1+Rm+Rn+RO+Rp +Rq +Rr)ZTH then

Ximijklmnopqr=0 7.4

If (R + R; + R + Ry + Ry + Ry + Ry + Ry +Ry +R;) > TH then
Xrelijkimnopqr=0 7.5
Where
- Rjto R are wind generated power amount at each of the ten wind farms.
- 1,j,k I, m, n, o, p, q, r are the scenario indices at each wind farm. Each one
can have three states (R = 0, R =685 kW and R = 2,325 kW).
- TL and TH are low and high power production thresholds.
- Xim, Xex, Xst and Xrel are scenario dependent variables for energy import,
energy export, storage and release amounts.
Investigation of the previous solutions reveals that the upper and lower third of wind
power output range are good approximations of high and low production scenarios
respectively. The reason is that within these intervals, one or two types of the second
stage variables are seldom utilized. So, we regard this observation as a guideline for
setting the threshold values.
Table 34 presents the solution for several instances of threshold values. The first run
specifies the solution without any filtering. The completion time for this run is about
seven hours. In the second run, the above rule of thumb has been applied (TL = 23.25
/3 =17.75 & TH = 2TL = 15.5). The solver stops after almost two hours in this case
with only a feasible solution, since no change is obtained in the objective function

after several iterations. This solution, however, is very close to the unfiltered solution

112



(Row 1). For the next run, the thresholds are rounded up (to 8 and 16). In this case, an
optimal solution is obtained after almost 6 hours which is not as good as the feasible
solution we got in the previous case, but still acceptable. In the next three steps, the
filtering bands are narrowed so that better solutions are obtained. As the calculations
demonstrate, tighter thresholds do not necessarily lead to lower runtimes, although
such a trend is loosely observed. Specifically, the thresholds in the last row of the
table are less restricting than most of other cases, but they provide the fastest runtime

for an optimal solution in approximately five hours.

Table 34- Solution for different threshold values

X X, X ();‘:evr E(Xim) | E(Xex) | E(Xst)

Run| TL | TH | Cost($/hr) | (MW) | (MW) | (MW) | site) | (MWh) | (MWh) | (MWh) | Time
1 0 24 | $1,622,198 | 10,000 | 5,000 0 329 266 168 0.40 | 6:55:10
2 |7.75]15.5| $1,622,407 | 10,000 | 5,000 0 323 280 137 0.33 | 1:50:07
3 8 16 | $1,622,479 | 10,000 | 5,000 0 301 364 81 017 | 5:42:27
4 7 17 | $1,622,398 | 10,000 | 5,000 0 327 264 152 0.39 | 6:17:52
5 6 18 | $1,622,398 | 10,000 | 5,000 0 327 264 152 0.39 | 6:31:17
6 5 19 | $1,622,398 | 10,000 | 5,000 0 327 279 168 0.39 | 6:08:56
7 5 18 | $1,622,398 | 10,000 | 5,000 0 327 265 153 0.39 | 5:09:13

Furthermore, it should be noted that this heuristics generally provides a more

conservative solution since it limits utilization of available recourses (through
reducing the number of scenarios and filtering). Therefore, in reality, costs will be
lower (compared to heuristics solution of course) and system will operate with a
higher reliability. This behavior is demonstrated in Table 35 for four wind farms. The
first row indicates the original solution (last row from Table 16). In the second run,

the scenario reduction approach is used which provides an instant solution in less than
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a second. Except for the nuclear power plant capacity, which has a very low value
even in the original solution, other variables are reasonably accurate considering the
lightning fast runtime. The objective function, on the other hand, is only about 0.2%
off. Better yet, when we plug this solution (for plant capacity variables only) in the
original formulation, the objective function gap falls below 0.1%. This result is

shown in the third row of the table.

Table 35- Comparison of original solution with heuristics for four wind farms

X Xq X Xw E(Xim) | E(Xex)

Case Cost ($/hr) | (MW) | (MW) | (MW) | (per site) | (MWh) | (MWh) | Time
Original $1,620,166 | 10,000 | 5,000 | 549 586 451 250 0:47:48
Scenario

reduction $1,623,776 | 10,000 | 5,000 | 168 674 673 324 0:00:01
Original with

SR variables | $1,621,137 | 10,000 | 5,000 | 168 674 515 187 0:39:30

7.4. Heuristics Summary

The proposed heuristics is composed of two components. The first component is the
scenario reduction module where the scenario set size for each wind farm is reduced
to only three members. Two scenarios are immediately defined: Zero production and
production at the rated power. Consequently, the probability of the third scenario is
known as well (since they should add up to 1). The generation rate for the third
scenario should be assigned in such a way that the solution for a single wind farm is
sufficiently accurate. This is generally accomplished when the original capacity factor
is not greatly disturbed.

The second component of this heuristics is the variable reduction module which

filters the second stage variables with no or little effect. In other words, this process
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eliminates those recourse variables that are less likely to be used. The filtering is
based on the power generation rates of corresponding scenarios and can be adjusted
to cover greater or smaller number of variables. Generally, wider filtering results in
faster solutions at the expense of accuracy.

In brief, the heuristic algorithm for solving a larger problem can be described as
follows:

1- Replace the reduced scenario set in the model:

a. Scenario 1: P,=P(V<V,) 7.6
R =0 7.7

b. Scenario 2: P,=P(V>V) 7.8
R,=P; 7.9

¢. Scenario 3: P;=1-P,- P4 7.10
R;=(CF —P,)/P; * P, 7.11

2- For verification, run the model for a single wind farm and make adjustment to
Rj if necessary.

3- Add the filtering constraints 7.2, 7.3, 7.4 and 7.5 and assign low production
and high production threshold values (TL & TH). The lower third and the
upper third of power generation spectrum generally work well for this
classification. If higher precision is required or a greater computational
capacity is available, the filtering bands shall be narrowed (e.g. to lower and
upper quarters).

As demonstrated in the previous section, the two components work well together and

expand the computational capability of the model when dealing with larger problems.
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8. Concluding Remarks

8.1.

Conclusions

The solutions and sensitivity analysis results confirm that the model is behaving

rationally in a variety of circumstances. Some of the observations made through this

model are summarized below:

1-

3.

Maintaining very high levels of reliability (close to 100%) involves incurring
huge additional costs and minimal use of stochastic power generation sources.
Enactment of policies for protection of the environment such as carbon
emission limitations can play an important role in promoting eco-friendly
technologies for power generation.

As a general conclusion, it can be stated that the ability of stochastic supply
resources in satisfying demand at high reliability levels is limited. In other
words, insisting on utilization of stochastic resources under such
circumstances will result in very high procurement costs or problem
infeasibility.

The average wind speed is a very important factor in determining the optimal
wind power capacity for a location. Based on our model, a difference of 1 m/s
in this parameter could justify installation of more than 1 GW of wind power
capacity in a location and result in exclusion of wind power generation in
another site.

Turbine specifications also play an important role in wind power generation

economics by modifying the capacity factor. The rated speed has the greatest
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influence on this parameter followed by cut-in wind speed. The impact of cut-
out wind speed was found to be the smallest.

Unit cost of wind generated electricity is another factor which influences the
optimal capacity of a wind farm. Since wind is not a reliable source of energy,
it should be more affordable than other reliable alternatives in order to earn a
share in energy procurement. Fortunately, as a result of recent developments
in this technology as well as acknowledgement and awareness of
environmental costs, wind power is becoming economically competitive in
many parts of the world.

We observed that the existence of a recourse action (second stage variable)
even at a high price, generally provides a more efficient and economical way
for dealing with uncertainty compared to first stage decision variables.
Additionally, availability of energy transmission and energy storage
capabilities at reasonable prices will favor higher capacities of wind power
generation in the network. As logically expected, energy importation is more
frequently utilized at lower prices whereas energy exportation generally
happens at higher prices.

Energy storage has a narrow utilization margin with respect to its price since it
is an expense incurred on top of production costs. Furthermore, it is mainly
utilized when there is an abundance of power production surplus and most of
the energy exportation capacity has already been used. In other words, energy
transmission is generally a more economical approach for dealing with power

production surplus compared to energy storage at the current cost structure.
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10- Addition of multiple wind farms with independent wind speed distributions

8.2.

can increase the share of wind power capacity in power production and result

in cost savings.

Future Work

Some ideas for continuation and extension of this work can be summarized as

follows:

1-

As discussed in the literature review, wind energy and solar power can
complement one another. Concurrent use of these two renewable sources of
energy has attracted a lot of attention in recent years. This model can be
extended to include solar power generation by considering sun radiation
scenarios. The correlation between sun radiation and wind speeds can also be
considered in these scenarios (A negative correlation is expected since sunny
days are generally less windy compared to cloudy days.).

Additional network constraints can be added to the model. For example, a
lower bound on the expected quantity of satisfied demand could be introduced
in the formulation. This constraint would ensure that supply deficits remain
localized and major outages affecting large number of customers are restricted
(In current form of formulation, the margin by which the reliability constraint
is violated in a scenario is of no significance.)

The formulation can be extended to model the interaction among multiple
utility networks. This would allow for a more realistic simulation of energy
exchange among separate grid systems considering local demand

distributions, generation capacities and network constraints at each location.
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