TecHNIcAL RESEARCH REPORT

Single-path routing of time-varying traffic

by Abhishek Kashyap, Bobby Bhattacharjee, Richard La,
Mark Shayman, Vahdi Tabatabaee

TR 2006-5

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu



Single-Path Routing of Time-varying Traffic

Abhishek Kashyap*, Bobby Bhattacharjeef, Richard La*, Mark Shayman* and Vahid Tabatabaee
*Department of Electrical and Computer Engineering
University of Maryland, College Park, USA
Email: {kashyap, hyongla, shayman}@glue.umd.edu
fDepartment of Computer Science
University of Maryland, College Park, USA
Email: {bobby, vahid}@cs.umd.edu

Abstract— We consider the problem of finding a single-path
intra-domain routing for time-varying traffic. We characterize
the traffic variations by a finite set of traffic profiles with
given non-zero probabilities. Our goal is to optimize the average
performance over all of these traffic profiles. We solve the optimal
multi-path version of this problem using linear programming
and develop heuristic single-path solutions using randomized
rounding and iterated rounding. We show through simulations
that the single-path routings produced by proposed algorithms
are good oblivious routing, i.e., the routing performs well in the
worst case as well.

We analyze our single-path heuristic (finding the optimal
single-path routing is V P-Hard), and prove that the randomized
rounding algorithm has a worst case performance bound of
O(log(K N)/log(log(K N))) compared to the optimal multi-path
routing with a high probability, where K is the number of traffic
profiles, and N number of nodes in the network. Further, our
simulations show the iterated rounding heuristics perform close
to the optimal multi-path routing on a wide range of topologies,
including synthetic graphs, and measured ISP topologies, in
both the average and the worst-case. We also show that the
naive shortest-path routing on these same topologies and traffic
profiles would lead to much higher congestion. Overall, these
results are extremely positive since they show that in a wide-
range of practical situations, it is not necessary to deploy multi-
path routing; instead, an appropriately computed single-path
routing is sufficient to provide both good average and worst-case
performance.

Keywords: Traffic engineering, Oblivious routing, Unsplittable flow,
Randomized rounding, Mathematical programming/optimization.

I. INTRODUCTION

One of the main techniques used to manage network
resources and ensure reliable performance in IP networks
is intra-domain traffic engineering. Intra-domain traffic en-
gineering uses information about the network traffic profile
(traffic matrix) to manage and possibly optimize the network
performance. A traffic matrix specifies the expected traffic rate
between every ingress-egress pair in the network. The output
of traffic engineering is a routing policy f, which is a set of
paths and their corresponding relative rate vector. The relative
rate vector specifies the fraction of traffic assigned to each
path. For optimal traffic engineering, we need to (i) change the
routing parameters to adapt to traffic profile variations, which
leads to disruption of traffic in the network, along with signal-
ing overhead for forwarding the new routing information [1],
and (ii) significantly change the IP forwarding mechanism

to support arbitrary traffic distribution among multiple paths
between every ingress-egress pair in the network.

In this paper, we propose an approach that uses a fixed
single-path routing that works well for a given set of traffic
profiles. Since the routing is fixed we do not need to change
the routing parameters, and since it is single-path we do not
need to distribute the load among multiple paths. Specifically,
we address the problem of finding a fixed single-path routing
for time-varying traffic, characterized by a set of traffic profiles
with known probability distribution. In other words, multiple
traffic profiles, and the probability distribution on these profiles
are given, and our goal is to find a fixed single-path routing
policy for all of these profiles.

Let 71,75, -- , Tk, be the traffic profiles, occurring with
non-zero probabilities py,po,--- ,pK, respectively. For any
given routing policy f and traffic profile T}, let Util;(f, Tx)
be the utilization of link I. We want to find a single-path
routing policy f that minimizes the average maximum link
utilization (with average taken with respect to the traffic
profiles). Therefore, the routing policy f* we seek is,

K
f argmfmkz:lpk max Util; (f, Tk )- 1)

The traffic profile within a domain can either be predicted
by observing the traffic in the network ([2], [3], [4], [5]), or
can be inferred from the Service Level Agreements (SLAS). It
has been shown that the traffic profile has a pseudo-periodic
behavior on different time-scales (like day, week, etc.), which
is predictable given past history of the traffic [2], [6]. Thus, the
traffic profiles can be estimated based on the previous observa-
tions and we can assume the existence of afew traffic profiles
sufficient to characterize the traffic over atime period (eg. over
a day). Depending on the traffic profiles frequency over the
observed history, we can assign a probability distribution on
their occurrence.

Given a traffic profile, an optimal multi-path routing can
be formulated as a multi-commodity flow (MCF). If the cost
function is linear, as is the case in our problem, the MCF
problem can be solved by a linear program [7]. In this
paper, we extend the MCF formulation to find a routing that
minimizes the average cost function of multiple traffic profiles.
The problem of routing a single traffic profile using single path



per demand is known as the unsplittable flow problem and is
N P-Hard [8]. The case of multiple traffic profiles, which we
consider, is a generalization of the problem and is thus N P-
Hard as well.

We propose two sets of heuristic algorithms for fixed single-
path routing. The first algorithm is based on randomized
rounding [9], [10], and the second set consists of iterated
rounding schemes for the problem. We provide analytical and
simulation results which show that the performance of our
proposed fixed single-path routing algorithms is very close to
the optimal multi-path routing. The main contributions of this
paper are:

o Extensive simulation results on the NSF-Net [11] and
Rocketfuel [12] topologies show that the randomized
rounding algorithm is within 10%, and the iterated round-
ing algorithm is within 5% of the optimal fixed multi-path
routing.

o Simulations show that the iterated rounding schemes
work well irrespective of the number of traffic profiles.

« We show that, for probability at least p for any p € (0, 1),
the performance of the randomized rounding algorithm
isan O(log(K N)/log(log(K N)))-approximation of the
optimal multiple path routing. K is the number of traffic
profiles and NV is the number of nodes in the network.

o For Sprintlink and Tiscali networks [12], which have the
properties of small-world topology networks [13], [14],
the simulation results show that the randomized rounding
and the iterated rounding performance are respectively
within 0.4% and 0.2% of the optimal multi-path routing
performance.

o Simulation results on small-world topology networks
show that for each one of the given traffic profiles
T:,Ts,--- , Tk, the performance of the iterated rounding
algorithm is within 10% of the respective optimal multi-
path routings f1, fa, -, fx-

The first and third items confirm that for typica network
graphs, routings produced by rounding algorithms perform
close to optimal. The second item shows that the routing
produced by rounding algorithm has scalable performance
with respect to the network size and the number of traffic
profiles. The last item goes one step further, and for each
one of the traffic profiles, compares the iterative rounding
algorithm routing to the multi-path routing produced by the
optimal algorithm for the corresponding traffic profile. In fact,
in this way, we are comparing our algorithm to an idealistic
multiple-path routing policy that can simultaneously adapt to
the traffic profile variations.

A. Related Work

The idea of having a fixed routing for multiple traffic
profiles in the OSPH/IS-IS framework was proposed in [1].
The authors consider multiple traffic profiles, and provide a
set of OSPF/IS-IS link weights which works well for all the
traffic profiles. They give algorithms based on loca search,
after starting from an initial set of link weights. Then, OSPF
or SIS routing uses the weights for routing the traffic in the

network. We consider the problem of finding optimal routes
directly rather than finding OSPF/IS-1S weights. Another work
that considers multiple traffic profiles is that of joint logical
topology configuration and routing of traffic on lightpaths in
MPLS over WDM networks [15]. They formulate the problem
as an Integer Linear Program (ILP) and use space-reduction
heuristics to find a feasible solution. Then, they use the static
routing inside the domain. Optimal source-destination multi-
path routing and destination multi-path routing algorithms for
multiple traffic matrices have been proposed in [16]. The
objective considered in [16] is the average performance over
the traffic matrices, as in our problem. Another performance
metric has been proposed for multi-path routing in [17] that
takes a weighted average of average and worst case perfor-
mance of the routing.

Oblivious routing has recently been proposed as a static
routing good for the space of al traffic matrices. The objective
of oblivious routing is to find arouting f which minimizes the
objective function (called oblivious ratio) of Equation 2, i.e.,
it minimizes the maximum of the ratio of the maximum link
utilization of routing f for traffic profile ¢ to the maximum
link utilization of optimal routing OPT; for traffic profile ¢,
with ¢ being in the space of al possible traffic profiles T

B max; Util;(f, )
o(f) = hax max; Util;(OPT;, t) @

Optimal oblivious multi-path routing algorithms have been
proposed in [18] and [19]. The first optima polynomial-time
algorithm for finding an oblivious multi-path routing was
given in [18], but it uses Ellipsoid agorithm [20], which is
extremely slow. A single linear program (LP) for finding the
optimal routing was given in [19]. We consider our problem
(with objective of Equation 1), that is different from the
oblivious routing problem, due to the following reasons: First,
oblivious routing looks at performance relative to the optimal
routing for each traffic matrix. As an example to illustrate
why this can lead to a suboptimal routing, consider a situation
in which there are a few low-demand traffic profiles that
have a low maximum link utilization for a routing that is
good (relative to optimal) for other traffic profiles. But, the
ratio between the maximum utilization of this routing to the
optimal for these low-demand profiles may be very high. Thus,
even though the congestion caused for these profiles for a
routing good for other profilesis low, these profiles may affect
the determination of optimal oblivious routing and lead to a
routing that is not as good for traffic profiles which have a
high load on the network. Second, oblivious routing considers
the worst case performance among the traffic profiles. There
may be traffic profiles with very low probability of occurrence,
and considering the worst case performance among all traffic
profiles may give a routing with a worse performance most
of the time compared to the routing given by our algorithms
that consider the average performance over the traffic profiles.
Third, the traffic profiles are pseudo-periodic and not usualy
totally unpredictable, and can be assumed to be from among a
discrete set of traffic profiles [1], [15]. Thus, considering only




adiscrete set of traffic profilesis sufficient, and the complexity
introduced by considering the whole traffic profile space can
be avoided. Fourth, the problem we consider is easier to extend
to finding a single-path routing, which is simpler and enables
efficient fair queueing, whereas the LP formulation of [19] is
too complex for any analysis when extended to single-path
routing. We also show by simulations that for the given set
of traffic profiles, the oblivious ratio of the optimal multi-
path routing for our objective function is very low. Thus, our
routing strategy is good in the oblivious sense too.

For unsplittable routing of a single profile (K = 1),
an O(log(N)/log(log(NN)))-approximation randomized algo-
rithm was proposed in [21]. For the case when the maximum
path length for each demand is restricted to d in the MCF
formulation, an O(log(d)/ log(log(d))) randomized agorithm
is provided in [22], and deterministic algorithms of the same
approximation factor using the method of pessimistic estima-
tors [23] have been proposed in [24].

The organization of this paper is as follows: Section 2
gives the network model and a formal statement of the
problem. Section 3 gives the MCF formulation of the multi-
path routing problem, and gives simulation results illustrating
the performance in terms of the oblivious ratio. Section 4
gives the single-path routing algorithms. Section 5 gives the
simulation results, and Section 6 concludes the paper. The
proof of approximation ratio for the randomized rounding
algorithm is given in the Appendix.

II. NETWORK MODEL AND PROBLEM STATEMENT

The network consists of routers, and bidirectional links
between pairs of routers (nodes) forming a topology. We
denote the set of links between the nodes as E;. We mode
the network by a graph G = (V, E), where the vertices in V
are nodes in the network, and F is the set of unidirectional
edges between pairs of vertices, with two anti-parallel edges
for each bidirectional link in E;. We use the term link when
we refer to bidirectional links and edge when we refer to one
of the corresponding unidirectional edges. We assume all the
links have the same capacity, thus the traffic rate on the links
represents the utilization of al links. The algorithms work for
non-uniform link capacity as well.

We ae given a collection of traffic matrices
(profiles) {T1,..,Tx} with probabilities of occurrence
{1, px}, Sk pr = 1. Each traffic matrix is a set of
traffic demands between ingress-egress node pairs, and each
traffic demand is between 0 and 1. The set of ingress-egress
pairs is assumed to be the same in al traffic profiles. The
objective is to find a routing which minimizes the mean
maximum link load (total load on a bidirectional link) in the
network?®. Equation 3 represents the cost function for routing
f,» and our objective is to find a routing that minimizes it.
Here, tfﬂ- represents the traffic demand between source :
and destination j in traffic profile 7. fj represents the

1The formulation and algorithms also work with the objective of minimizing
mean maximum edge load with a slight modification.

TABLE |

NOTATION

Symbol Definition
Ty Traffic profile k
Pk Probability of occurrence of profile T},
tf’ j Dem_and between ingress-egress pairs 1,7 in profile T},
ok Maximum edge utilization for profile T}
s j Fraction of demand between 4, j routed on edge e

ef, e? Anti-parallel edges for link !

outy, inn Set of outgoing and incoming edges at node n

fraction of flow between source ¢ and destination j routed
through (bidirectional) link [, i.e., it is the sum of total traffic
flowing through the two anti-parallel edges corresponding
to link [ in E. For multi-path routing, f/, € [0,1] while
for single-path routing, fj € {0,1}. The formulation can
be easily extended to work with multiple classes of traffic
between each ingress-egress pair by indexing the traffic
demands as (source,destination,class).

K

cost(f) =Y _(pemax Y tF; /1)) ©)

k=1 (4,9)
I1l. LINEAR PROGRAM FOR SPLITTABLE TRAFFIC

For routing unsplittable demands, we propose some algo-
rithms which find an optimal multi-path routing and then select
a single path for each traffic demand from the set of paths in
the optima multi-path solution. In this section, we present
the algorithm to compute an optimal multi-path routing. We
formulate the problem as a multi-commodity flow problem
with a linear objective function, which can be formulated as
a single linear program (LP). We call each entry of a traffic
profile as a (traffic) demand between an ingress-egress pair.
The linear program is as given in Equation 4. The notation is
given in Table |, and explained below. The sets of outgoing
and incoming edges at vertex n are denoted by out,, and in,,
respectively. The fraction of traffic demand for an ingress-
egress pair (7, j) through edge e is represented by f7,. The
anti-parallel edges corresponding to link { are denoted by e}
and e?. The first constraint along with the objective function
minimizes the mean maximum link load. The second, third and
fourth constraints are flow conversation laws for the routing
f. The third constraint ensures the total flow fraction going
out of a source is one, while the second constraint ensures
the total outgoing and incoming flows for a traffic demand
are equa at the nodes which are not a source or destination
for the traffic demand. The fourth constraint ensures the total
traffic going out of the destination of a demand is zero. The
output of the LP isarouting f, which is used to route all the
traffic profiles. The last constraint bounds the routing variables
between 0 and 1.
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The output of the LP may give a routing with loops if the load
on the links in the loop is less than the maximum link load in
the network. The loops are removed by subtracting the flows
of each demand between the anti-parallel edges of each link.

A. Oblivious Ratio Performance

We show via simulations that the routing computed by the
LP formulation to minimize the mean maximum link load
works well according to the oblivious ratio. The oblivious ratio
of arouting f is the maximum over the traffic profiles (7}) of
the ratio between the maximum link load of f for the traffic
profile and the maximum link load of the optimal routing for
the traffic profile (Equation 5). Util;(f, T}) represents the load
on link [ when routing f is used to route the traffic profile
Ty.. OPT}, represents the optimal routing for minimizing the
maximum link load for traffic matrix Tj.

max; Util;(f, Tk)
max T
k  max; Ut||l(OPTk,Tk)

We evaluate the routing given by the LP of Equation 4 for
oblivious ratio on the NSF-Net topology (Figure 1) and the
Exodus network topology (Figure 2) given by Rocketfuel [12].
We assume each node in the network can be a source and a
destination. The traffic profiles are generated randomly, with
each traffic demand being an independent uniform random
variable between [0, 1]. The traffic profiles are assumed to
have equal probabilities p,, = 1/K. The number of traffic
profiles is varied from 5 to 50, and as the number of traffic
profiles is increased in each simulation, the set of profiles
includes the previous traffic profiles as well. The simulations
arerun 20 times, and the oblivious ratio of the routing is noted.
Figures 3 and 4 show the average and maximum of oblivious
ratio of the routings output by the LP of Equation 4 over
the 20 simulations for the NSF-Net and Exodus topologies
respectively. The oblivious ratio is very small (within 1.2 in
the worst case for NSF-Net and 1.14 for Exodus), and thus
the algorithm works well in terms of oblivious ratio. Note that
even though the traffic profiles in all simulations include the
traffic profilesin corresponding simulation with less number of
traffic profiles, the maximum oblivious ratio of our algorithm

O(f) =
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Fig. 1. NSF-Net Backbone Topology

Fig. 2. Exodus US Backbone Topology

can decrease with increase in number of traffic profilesin some
instances. This is because our agorithm is not an optimal
oblivious routing, and so addition of traffic profiles to a set of
traffic profiles may give a routing which works better in terms
of the oblivious ratio than the routing found on the original
set of profiles for some instances. The average performance
in terms of oblivious ratio gets worse with increasing number
of traffic profiles, as is expected.

IV. SINGLE PATH ROUTING OF TRAFFIC FLOWS

We now discuss the algorithms for finding a single-path
routing. The problem of routing traffic demands on single
paths to minimize congestion is N P-Hard [8]. Thus, we resort
to heuristic algorithms to compute the routing. Changing the
bounds on the routing variables in the LP of Equation 4 from
[0,1] to {0, 1} would make sure only a single path is selected
for each demand, but this is an Integer Linear Program, and
solving it is N P-Hard as well. We solve the LP to get an
optimal multi-path solution and round the solution to get a
single path from among the corresponding multiple paths for
each traffic demand?. We propose afew deterministic rounding
schemes and randomized rounding schemes. We prove an

2We show by simulations that single-path routing performs nearly as well
as optimal multi-path routing, so single-path routing is sufficient.
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approximation ratio bound for one of the randomized rounding
algorithms.

After solving the LP, we perform path decomposition [25]
on the routing variables. This gives a set of paths for each
traffic demand, each path having a value assigned to it that
represents the fraction of the traffic demand being routed
through the path. Then, we perform rounding on the fractional
path assignments to get an integer solution, i.e., we select
one path from the set of paths corresponding to each traffic
demand for routing. We propose different rounding algorithms,
each following the same procedure, but doing the rounding
(selecting the paths) according to a different criteria. The
outline of the algorithms is as follows:

1) Solve the LP of Equation 4.
2) Use path decomposition to get /; paths for each traffic

demand . Let x; ; denote the fraction of traffic carried
by path j of demand <. For each ¢, «; ;’s sum to 1.

3) For each traffic demand 4, round one of the z; ;’sto 1,
and the rest to zero, i.e., select path j according to some
criteria

A. Shortest Path Rounding

In shortest path rounding, the shortest path (chosen arbi-
trarily if multiple exist) among the paths given by the LP is
selected for each traffic demand. As selecting the shortest path
from the candidate paths utilizes minimum network resources,
so this strategy is a natural strategy for rounding.

B. Maximum Utilization Rounding

Among the set of paths for a traffic demand 7, the one with
the maximum fraction (x; ; on path j) routed through it can be
viewed as the most favored by the LP. A path more favored in
the LP solution is expected to lead to the lowest value of the
objective function. Thus, in this rounding strategy, we pick
the path with the maximum fraction assigned to it, and the
shortest path if multiple such paths exist. We call this path as
the maximum utilization path for a traffic demand. The path
decomposition is not unique, so this path may be different
under different decompositions, but once a decomposition is
done, the path with the maximum fraction assigned is the most
favored.

C. Randomized Rounding

In randomized rounding, for each traffic demand i, we
treat the fraction of demand routed on each path as the
probability of its occurrence and round one of the z; ;’'sto 1
with probability x; ;, round the remaining to 0. We treat this
rounding as rolling an [;-face dice for each traffic demand ¢
with face probabilities equal to z; ;'s. The resulting paths form
the solution. The whole rounding procedure is repeated a fixed
number of times and then until the ratio of the standard devi-
ation of the objective value (over the repetitions) and average
value of the objective falls below a certain threshold €. We
take the threshold to be 0.1 for simulations, and the minimum
number of repetitions is taken to be 10. The best solution
from the repetitions is taken as the output. We prove that the
randomized rounding described above has a worst case perfor-
mance bound of O(log(KN)/log(log(KN))) relative to the
optimal with probability at least p for any p € (0,1). Here, N
is the number of nodes in the network and K is the number
of traffic profiles. Thus, in the worst case, the algorithm will
produce a solution within O(log(K N)/log(log(KN))) times
the optimal in a finite number of repetitions. The bound is
stated in Theorem 4.1.

Theorem 4.1: Randomized rounding produces a solution
with approximation ratio of O(log(KN)/log(log(KN)))
with probability at least p for any p € (0, 1).

Proof: See Appendix.



D. Iterated Rounding

We propose another set of heuristics, in which we perform
iterated rounding, i.e., we round the paths for a few demands,
fix the paths for these demands in the solution, resolve the
LP and repeat the procedure. The criteria for selecting the
traffic demands to be rounded in an iteration is by selecting
the demands with maximum sum of the squares of the path
utilizations. The reason for using this measure is that the de-
mands with higher value of this measure will have a path with
high fraction routed through it (indicating a strong preference
for this path by the LP), and thus will incur less penalty while
rounding. A demand with a lower value of this measure has
a more even distribution of traffic among the paths and thus
incurs more penalty on the objective value by rounding. So, at
each step, we round only a few demands which are expected
to increase the objective value the least among al the traffic
demands. The agorithm is given in Algorithm 1.

Algorithm 1 Iterated Rounding
1. Define the set of demandsas 7. Set U =T
2. While U # (), repeat:

(a). Solve the LP of equation 4.

(b). Do path decomposition for traffic demands in U to
get the candidate paths for each demand. Let [;
denote the number of candidate paths for demand
1. Let the fraction routed on each path 5 € {1,..,/;}
for demand i be z; ;.

(c). Find the set R C U of demands according to
Equation 6. Here, ¢ is a constant used to include
demands for which the measure is close to the
maximum. We take ¢ to be 0.9 in the simulations.

R={ilieU, Z :c?] > Clmaz |

Je{1,...l:}
2
Umag = MAX E T (6)
1
Je{1,..,l;}

(d). Select apath from the set of candidate paths for each
demand in R according to some rounding scheme
(like maximum utilization or randomized rounding).
(). Set U = U\R, fix the paths of demands in R and
repeat Step 2 if U # 0.
3. Output the resulting paths.

We can use any rounding scheme to round the selected
demands at each step of the algorithm. We propose the
use of three rounding schemes to do the rounding: Iterated
Maximum Utilization Rounding, Iterated Randomized
Rounding and Iterated Hybrid Rounding. Iterated maximum
utilization rounding uses maximum utilization rounding and
iterated randomized rounding uses randomized rounding. In
iterated randomized rounding, the whole iterated rounding
procedure is repeated multiple times according to the same
criteria as in randomized rounding. There are no repetitions
within a run of the iterated rounding procedure.

e
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Fig. 5. Sprintlink US Backbone Topology

Simulations show that the two iterated rounding schemes
have similar performance. Maximum utilization rounding of a
demand incurs a higher penalty in an iteration when the frac-
tions are evenly split for the demands selected in set R. Thus,
doing randomized rounding for such demands is expected
to give a solution at least as good as maximum utilization
rounding of these demands, if the randomized rounding is
repeated sufficient number of times. For such demands 4, the
sum of the squares of the «; ;'s over j (Equation 6) is low.

In iterated hybrid rounding, we modify the iterated maxi-
mum utilization rounding to do randomized rounding when-
ever the maximum value of the measure in Equation 6 is
less than a threshold. We call this algorithm iterated hybrid
rounding. We set the threshold at 0.55 for the simulations,
after observing the threshold bel ow which the rounding penalty
is high for maximum utilization rounding. As there is a
randomization component for some traffic demands in this
algorithm, so asin iterated randomized rounding, we repeat the
whole iterated rounding procedure multiple times (according
to the same criteria as before).

V. SIMULATION RESULTS AND DISCUSSION

We implemented the algorithms in C, and used CPLEX [26]
for solving the linear programs. The experiments are done on
the NSF-Net topology (Figure 1: 14 nodes, 21 bidirectional
links), the Exodus topology (shown in Figure 2: 15 nodes,
33 bidirectiona links), the Sprintlink topology (Figure 5: 27
nodes, 69 bidirectiona links) and the Tiscali topology (51
nodes, 129 bidirectional links). Exodus, Sprintlink and Tiscali
topologies are taken from Rocketfuel [12]. The traffic profiles
are taken to be equiprobable in all simulations.

A. Comparison of rounding schemes

The first set of experiments are done with 20 randomly
generated traffic profiles, with each traffic demand in each
traffic profile being a uniform r.v. between 0 and 1. The
traffic profiles are assumed to be equiprobable. All nodes are
assumed to be sources and destinations, and traffic demands
are generated between all pairs. The simulations are run 20
times, and the objective value for the solution of single-
path routing algorithms is compared to the LP optimal value
(optima multi-path solution given by Equation 4). For each
simulation, the randomized rounding algorithms are run at



least 10 times (and at most until the conditions, given in
algorithm description, on the mean and standard deviation
values of the results are met). We note that 10 runs of the
randomized algorithms are always sufficient, as the solutions
of each run are very close to each other. The optimal single-
path routing has the objective value at least as high as the
LP optimal, as the LP feasible solution set contains the ILP
feasible solution set. Thus, the performance relative to LP
optimal is an upper bound for the performance relative to the
single-path optimal routing.

Figures 6, 7 and 8 show the ratio of the objective values
given by the single-path algorithms and the LP optimal value
for the NSF-Net, Exodus and Sprintlink topologies. Table Il
gives the average and the maximum value of this ratio (over
the 20 runs) for the topologies. For the Exodus and NSF-Net
topologies, al the iterated rounding algorithms give a solution
with the objective value within 5% of the LP optima value,
and the iterated hybrid rounding works dightly better than
other iterated rounding schemes. Also, the solutions returned
by the iterated rounding algorithms and the randomized algo-
rithm are al in a very small performance range, whereas the
solution returned by the maximum utilization rounding and
shortest path (SP) rounding deviate from the average much
more, and lead to a very high rounding penalty in the worst
case. For the Sprintlink topology, al the rounding schemes
work very close to the LP optimal (the worst performance
for SP rounding being 1.5%, and the worst performance for
iterated rounding schemes being 0.14%). Simulations show
that the solution returned by the LP has very few traffic
demands being split among multiple paths, i.e., the routing
consists of most demands being routed on single paths. Thus,
even SP rounding, which led to a 51% penalty in the objective
value over the LP solution in the worst case in simulations on
Exodus, gives only a 1.5% worst case penalty for Sprintlink.
Also, iterated randomized rounding gives a solution within
0.1% of the LP optimal for all simulations on Sprintlink. This
suggests that the optimal single-path routing is very close to
the optimal routing that allows multi-path.

The results show that all the iterated rounding schemes
have similar performance on al the topologies. Thus, we use
iterated maximum utilization rounding scheme as a represen-
tative iterated rounding scheme for rest of the simulations. The
iterated maximum utilization rounding algorithm is evaluated
on the Tiscali network for 10 randomly generated traffic
profiles and the simulations are done 20 times (with a different
set of equiprobable profilesin each). Figure 9 gives the average
and maximum value of the performance of the single-path
routing algorithm with respect to the LP optimal objective
vaue. Simulations show that the computed single-path routing
has the same performance as optimal multi-path routing in half
the simulations, and the rounding penalty is only 0.15% in the
worst case. Thus, single-path routing is near-optimal (optimal
multi-path) for the Tiscali network too.

The near-optimal performance of single-path routing on
Sprintlink and Tiscali networks shows that single-path routing
is sufficient on some topologies. The topologies of Sprintlink
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and Tiscali have a few very high-degree nodes and other
nodes have a much lower degree (i.e., there is some sort of
clustering and hierarchy in the backbone network). This leads
to a few short hop paths between al nodes in the network,
and most paths go through the set of high-degree nodes and
thus the optimal multi-path routing selects mostly single paths
using the high-degree nodes for each source-destination pair.
In NSF-Net and Exodus topologies, all the nodes have similar
degrees and thus the optimal routing gains over single-path
routing by splitting the traffic among multiple paths. We will
show by simulations on random graphs that increasing the
degree at al nodes actualy increases the performance gap
between multi-path and single-path routing. Thus the key idea
is to have a few nodes having a very high degree compared



TABLE Il
AVERAGE AND WORST CASE PERFORMANCE ON DIFFERENT TOPOLOGIES

Topology SP Round. Rand. Round Max. Util. Round. Iter. Max. Util. Round. Iter. Rand. Round. Iter. Hybrid Round.
NSF-Net Mean 1.1950 1.1037 1.1011 1.0455 1.0503 1.0454
Maximum 1.4077 1.1220 1.2365 1.0579 1.0560 1.0549
Exodus Mean 1.3302 11135 11195 1.0538 1.0538 1.0502
Maximum 1.5194 1.1422 1.2044 1.0717 1.0671 1.0647
Sprintlink Mean 1.0051 1.0010 1.0034 1.0003 1.0002 1.0003
Maximum || 1.01433 1.0031 1.0080 1.0014 1.0010 1.0014
to the other nodes, leading to clustering, as is the case with
Sprintlink and Tiscali networks. Networks with this property
1016 —— are caled small-world networks [13], [14], and it has been
- oundin .
- Randomized Rouncing shown that the Internet network is a small-world network at
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on the Tiscali topology

performance measure over the 20 simulations for different
number of traffic profiles. Results show that the performance
of the randomized and maximum utilization rounding schemes
degrades as the number of traffic profiles is increased. The
maximum utilization rounding gives much worse worst case
performance than randomized rounding and iterated maximum
utilization rounding, as the previously discussed simulations
also showed. The performance is expected to degrade, as is
suggested by Theorem 4.1. The degradation in performance
with increasing number of traffic profilesis due to the increase
in the number of correlated link load constraints in the LP
(there is a set of link load constraints for each traffic profile).
Thus, rounding a demand affects more constraints if there are
more traffic profiles and leads to a higher penalty. This correla-
tion between constraints is the cause of the introduction of the
number of traffic profiles (K) in the bound of Theorem 4.1.
For the iterated rounding scheme, there is hardly any
degradation with the increase in number of traffic profiles.
Also, the worst case performance is very close to the average
case performance for the iterated rounding scheme. Thus,
the single-path routing computed using the iterated algorithm
works well irrespective of the number of traffic profiles. Note
that the performance of single-path routing relative to optimal
multi-path routing can improve with increase in the number
of profiles in some simulation instances. This is because the
optimal multi-path routing changes with addition of traffic
profiles, and thus the rounding penalty can be less for this
routing than for the optimal multi-path routing for a smaller
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set of traffic profiles.

C. Results on random graphs

We next evaluate the algorithms on random graphs. We
generate random graphs of type G(n, p), where n isthe number
of nodes in the network, and p is the probability of forming
alink between a pair of nodes [27]. For the simulations, n is
taken to be 20, a set of 20 traffic profilesis generated at random
(and used in al simulations), p is varied between 0.04 and 0.4,
and the agorithms are evaluated on 10 randomly generated
graphsfor each value of p. Figure 11 shows the performance of
iterated maximum utilization rounding in terms of the ratio of
objective value to the L P optimal objective value. It shows both
the average and maximum over the 10 randomly generated
graphs for each value of p. The performance of the algorithm
degrades with the increase in the value of p as the number of
alternate paths between each source-destination pair increases,
and so do the gains achieved by routing over multiple paths.
In the routing given by the LP (optimal multi-path routing),
more routes are expected to split over paths, and over more
paths for a higher value of p, and thus the rounding leads to
a higher penalty. However, as worst case performance shows,
the algorithm may have a better performance on a random
graph generated with a higher value of p than a random graph
generated with a lower value of p in some instances, as the
graph generation is random.

Thus, increasing the degree of nodes increases the perfor-
mance gap between multi-path and single-path routing, and
multi-path routing is more desirable for networks with many
high-degree nodes.

D. Comparison with min-hop routing for link loads

We aso compute a single-path routing using minimum
number of hops for each source-destination pair. We evaluate
the min-hop routing with respect to the routing computed
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Iterated Max. Util. Rounding on random graphs

by iterated maximum utilization rounding for 20 simulations
with 20 randomly generated traffic profiles in each simulation.
For each simulation, we find the mean of the link utilization
(taken with respect to the traffic profile distribution, which is
taken to be uniform) of each link, and normalize the mean
utilization at each link for both min-hop and our agorithm
by the maximum among the links of mean link utilization
achieved by our algorithm in that simulation. Figures 12
and 13 show the distribution of the average number of links
(over 20 simulations) for min-hop agorithm having mean
link loads greater than the maximum of mean link loads
for our algorithm, for the NSF-Net and Exodus topologies.
Each bar represents the average number of links which had
the normalized mean utilization using min-hop routing in a
particular range. The min-hop algorithm gives an mean link-
load value as high as 2.2 times the maximum of mean link
load given by our agorithm on the Exodus topology, and 1.3
times on the NSF-Net topology. Also, the average number of
links having mean link loads for min-hop agorithm greater
than our agorithm is 10 links (out of total 33 links) for the
Exodus topology and 6 links (out of 20 links) for the NSF-
Net topology. Thus, min-hop algorithm would cause more
congestion than the maximum congestion for our algorithm
on about 30% of the links on both the topologies.

E. Evaluation of oblivious ratio

We also evaluate the routing given by iterated maximum
utilization rounding algorithm for the oblivious ratio, i.e., the
worst case performance over the traffic profiles. We compute
the single-path routing for 20 simulations, each having a set
of 20 randomly generated equiprobable traffic profiles. For
each simulation, we compute the optimal multi-path routing
for each traffic profile, and take the ratio of the maximum
link utilization by the single-path routing to the optimal multi-
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path routing for each traffic profile. The maximum of this
ratio over the traffic profiles gives an upper bound on the
oblivious ratio of our single-path routing as the optimal single-
path routing cannot perform better than the optimal multi-path
routing for each traffic profile. Table Il gives the average and
maximum of the oblivious ratio over the 20 smulations for
the NSF-Net, Exodus, Sprintlink and Tiscali topologies. The
average oblivious ratio bound is around 1.16 for NSF-Net
and Exodus, and maximum is 1.36 for NSF-Net and 1.25 for
Exodus. Thus, the oblivious ratio (worst case performance over
the traffic profiles) for the single-path routing is reasonable,
considering that they give close to optimal performance for our
objective function, which optimizes the average performance

TABLE Il
AVERAGE AND WORST CASE OBLIVIOUS RATIO UPPER BOUNDS FOR
SINGLE PATH ROUTING USING ITERATED MAX. UTIL. ROUNDING ON
DIFFERENT TOPOLOGIES

Topology || Avg. Oblivious Ratio || Max. Oblivious Ratio
NSF-Net 1.1602 1.3606
Exodus 1.1556 1.2485
Sprintlink 1.0043 1.0162
Tiscali 1.0163 1.0878

over the traffic profiles. For Sprintlink and Tiscali, the upper
bound on oblivious ratio is within 1.02 and 1.09, which can
be considered quite close to optimal. Thus, the small-world
property leads to an average case optimal routing performing
close to optimal in the oblivious (worst-case) sense too.

VI. CONCLUSION

We consider the problem of single-path routing of time-
varying traffic. We modd the traffic as a discrete set of
traffic profiles, and propose LP rounding-based heuristics.
The simulations show the multi-path LP formulation of the
problem is a good routing according to the oblivious ratio
measure. For the single-path routing formulation, we propose
the use of a randomized rounding agorithm and prove it to
be an O(log(K N)/log(log(K N)))-approximation algorithm
with probability at least p for any fixed p € (0,1), with
K being the number of traffic profiles, and N being the
number of nodes in the network. We propose some iterated
rounding schemes which give a performance within 5% for
the Rocketfuel [12] topologies considered. For the Sprintlink
and Tiscali topologies, the optimal multi-path algorithm gives
a routing consisting of mostly single-paths, and thus rounding
the multi-path solution to single-path routing leads to an
insignificant increase in the objective value. The single-path
routing computed by iterated agorithms are shown to be
within 0.2% of the optima on these ISP topologies. The
characterizing property of these topologies is the existence
of some very high-degree nodes and other nodes having low
degree; such networks are called small-world networks. Also,
on small-world networks, the single-path routing is shown to
be close to optimal (oblivious ratio) in the worst case as well.
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APPENDIX
Proof of Theorem 4.1

We now prove the approximation ratio of Theorem 4.1 for
the randomized rounding algorithm. The problem of finding
single-path routing for multiple traffic profiles can be written
as an integer linear program (ILP). The linear relaxation of the
ILPis given by the LP of Equation 4. In randomized rounding,
the LP is solved, and the paths are selected from the paths



given by the LP randomly. Let the number of nodes in the
network be N, the number of links in the network be m, the
number of traffic demands in each traffic profile (assumed to be
same, some can be zero in some profiles) be n, and the number
of traffic profiles be K. Let the number of paths after path
decomposition of the LP solution be I; for each traffic demand
1. We will write a sequence {1, .., k} as [k] from now on. Let
the variables z; ; represent the fraction of demand ¢ routed
on path j € [l;]. Let py denote the probability of occurrence
of traffic profile k. Also, let y* be the objective value for the
solution returned by the LP, and y; be the maximum link load
in the network when the routing given by the LP is used on
traffic profile Tj,. Thus, y* = ", pry;-

If there is just one traffic profile (K = 1), the problem
of rounding the routing given by the LP to a routing using
single path per demand can be formulated as a minimax integer
program (MIP) [9]. An I\ﬂP for the problem can be written
as in Equation 7. Here, W is a m-dimensional vector with
al entries as W and A € [0,1]™*", where L = 37, ;.
The first and last constraints ensure that exactly one path is
chosen for each traffic demand. The second set of m inequality
constraints (one for each link) and the objective function
minimizes the maximum link load (W) in the network.

Minimize W
st. Z x;; =1 Vi€ [n]
JEli]
Ax < V—[)/'
zi; € {0,1} ¥i,j %

For multiple traffic profiles, we modify the MIP. The
problem of minimizing the mean of the maximum link load
over the traffic profiles can be written as in Equation 8. In
this formulation, there are m K inequality constraints which
represent the maximum link |CE)d constraints in the network
for each traffic profile. Here, W}, is a m-dimensional vector
with all entries as W), and A4, € [0,1]™*L for k € [K]. We
will call this formulation as the MIP in what follows.

Minimize > py W
kek
st. Z Tij = 1Vie [n]
Jella]
.
Az < Wy Vk € [K]
Ti,j5 € {07 1} VZ,] (8)

For analyzing the randomized rounding algorithm, we give
some useful large deviation bounds on sums of independent
random variables. Let X, Xo,...X,, be random variables
distributed between O and 1. Let X = )", X; with E[X] = p.
The inequalities of Equations 9 and 10 are useful for mini-
mization and maximization problems respectively [28], [29],
[30], [10]. We will use the first bound for our optimization
problem.

65 "
PriX > u(1+6)] < G(p,d) = <(1+5)(1+5)) V6 >0
9
PriX < p(l1—26)] < H(p,6) =e 7 /2¥5€[0,1] (10)

Another very commonly used bound is the union bound
(Boole's inequality) (Equation 11). Here, E; is any set of
events.

Pr| \/

i€[m]

Ej] < > Pr(E|] (11)
1€[m)]

We now present a lemma [9] that will be useful in the
analysis of the problem.

Lemvma 1.1: (&@. Yu > 0,¥p € (0,1),38 = D(u,p)

such that: (i) G(p,6) < p, and (i) D(p,p) =

log( 71) . _ .

@(,/%) otherwise.
(b). If 0 < py1 < po, then for any 6 > 0, G(u1, 12d/p1) <
G(p2,9).

We now come back to the MIP we defined in Equation 8.
We index the inequality constraints as (profile number,link
number). We can rewrite the (k, [)th inequality constraint (for
kth profile and ith link) of the MIP as in Equation 12, where
index 7 indicates a traffic demand and ; indicates a path for i.

> X < Wi where X[ = Y ARG
iem) Jel)

(12)

We define the randomly rounded variables corresponding to
each z; ; as z; j, i € [n],j € [l;]. In the rounding scheme, for
each 4, there is exactly one z; ; equal to one with probability
z; j, and rest are zero. Thisleadsto E[(Axz),] = b < y; due
to linearity of expectation. As there are maximum m paths
per traffic demand and each demand lies in [0, 1], we assume
yx < m. This assumption leads to a term of min{y*, m} in
the results, so the results are valid even when this assumption
does not hold. Define ¢, = y; D(min{y;, m},1/(AmK)) for
any fixed A > 1, and bad events {EF : | € [m],k € [K]} by
EF ="(Agz); > bF + c;”. Define 6F = ¢, /bF for each [ and
k. Definether.v. Z{; = 3= Al ;. ;%.;- Note that for each
(k,1), therv.s {Zf, : i € [n]} liein [0, 1] and are independent.
Also, the events can be written as Ef =*3, 1 ZF';, > b +
cr”. Since bf < yi, foreach [ € [m] and k € [K] :

PriEf] < G(bf,0p)
< Gy cx/yr) = Gy, D(yy, 1/(AmK)))
< 1/(AmK) (13)

The first inequality comes from Equation 9, the second
inequality comes from part (b) of Lemma 1.1 and the last
inequality comes from the definition of D. Here, 1 =



yr and p = 1/(AmK). Applying the union bound on
the events Ef,l € [m],k € [K], we see that the prob-
ability that at least one bad event happens is less than
1/A. Thus, the probability that no bad event happens is
greater than 1 — 1/A. Thus, for each ftraffic profile k,
the resulting maximum link utilization, W, is within y; +
man{y;, m}D(min{y;, m}, 1/(AmK)) with probability at
least 1 — 1/A, which is y;O((log(Km)/log(log(Km))).
Thus the objective value of the rounded solution is given by
Equation 14.

W =

> Wi

keK

= 3 puyO((log(Km)/ log(log(K'm))
keK

=y O((log(Km)/log(log(Km)))
= Y O((log(KN)/log(log(KN))) (14)

The last inequality follows from m < N2. Note that
optimal objective value for single-path routing cannot be
less than y* as the LP covers the ILP instance and thus
its solution is aways better than the optimal ILP solu-
tion. Thus, the randomized rounding agorithm produces
an O((log(KN)/log(log(K N)))-approximate solution with
probability at least p, withp=1—-1/A. O
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