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Image processing applications often demand powerful calculations and real-time 

performance with low power and energy consumption. Programmable hardware 

provides inherent parallelism and flexibility making it a good implementation choice 

for this application domain. In this work we introduce a new modeling technique 

combining Cyclo-Static Dataflow (CSDF) base model semantics and Homogeneous 

Parameterized Dataflow (HPDF) meta-modeling framework, which exposes more 

levels of parallelism than previous models and can be used to reduce buffer sizes. We 

model two different applications and show how we can achieve efficient scheduling 

and memory organization, which is crucial for this application domain, since large 

amounts of data are processed, and storing intermediate results usually requires the 

use of off-chip resources, causing slower data access and higher power consumption. 

We also designed a reusable wishbone compliant memory controller module that can 

be used to access the Xilinx Multimedia Board’s memory chips using single accesses 

or burst mode. 



  

 

 
 
 
 
 
 
 
 
 
 

INTEGRATED INPUT MODELING AND MEMORY MANAGEMENT FOR 
IMAGE PROCESSING APPLICATIONS 

 
 
 

By 
 
 

Fiorella Geraldine Haim Hoffer 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2005 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Shuvra Bhattacharyya, Chair 
Professor Gang Qu 
Professor Ankur Srivastava 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Fiorella Geraldine Haim Hoffer 

2005 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii
 

Dedication 

To Julián, Marion, Eddy, Guido. To my friends.  



 

 iii
 

Acknowledgements 

I would like to thank my advisor Shuvra Bhattacharyya for giving me the opportunity 

of being part of his research group and for his valuable guidance, and my committee 

members for their useful feedback. I’m very thankful to my lab-mates, the members 

of the DSPCAD group, who provide me important assistance in several occasions; 

however, I’m especially thankful to my friend Mainak Sen, joint developer of the 

HPDF/CSDF integration, for his help, advice and suggestions. I would also like to 

thank Juan Pablo Oliver, Julio Pérez, Sebastián Fernández and the other members of 

the Applied Electronics Group (Universidad de la República, Uruguay) for their 

advice and for always being available for my questions. I also want to thank the 

Fulbright Commission for giving me this great opportunity. Finally, I would like to 

thank the essential support of my friends and family (from Montevideo, Potomac, 

Vancouver, College Park, Bordeaux, London and many other cities) and the patient 

proofreading of Marion and Julián, my main supporter.   



Integrated Input Modeling and Memory Management for Image Processing Applications                                                                    iv

 Table of Contents

Dedication........................................................................................................................... ii

Acknowledgements............................................................................................................ iii

Table of Contents ............................................................................................................... iv

List of Tables...................................................................................................................... vi

List of Figures ................................................................................................................... vii

Chapter 1:Introduction.........................................................................................................1
1.1 Related Work .......................................................................................................................2
1.2 Contributions of this Work...................................................................................................3
1.3 Organization of the Thesis ...................................................................................................3

Chapter 2:Dataflow Representation of Algorithms .............................................................5
2.1 Dataflow Graphs ..................................................................................................................6
2.2 Properties of Dataflow Graphs ............................................................................................6
2.3 Synchronous Dataflow Graph (SDF)...................................................................................7
2.4 Cyclo-Static Dataflow Graph (CSDF) .................................................................................8
2.5 Parameterized Dataflow Graph..........................................................................................10
2.6 Homogenous Parametrized Dataflow Graph (HPDF) .......................................................10

Chapter 3:Image Processing Algorithms ...........................................................................12
3.1 Basic Definitions................................................................................................................12
3.2 Typical Image Processing Problems and Techniques Used...............................................15

3.2.1 Pre-processing Techniques ..................................................................................15
3.2.2  High-level Processing Techniques .....................................................................17

3.3 Smart Cameras...................................................................................................................18
3.4 Applications .......................................................................................................................19

3.4.1 Gesture Recognition Application ........................................................................20
3.4.2 Motion Detection Application.............................................................................22

Chapter 4:FPGA-based Boards for Digital Signal Processing ..........................................27
4.1 Classification of FPGA......................................................................................................29

4.1.1 Capacity...............................................................................................................29
4.1.2 Speed ...................................................................................................................29
4.1.3 User Pins..............................................................................................................30
4.1.4 FPGA Vendors.....................................................................................................30

4.2 Boards ................................................................................................................................30
4.3  Characteristics of Xilinx Multimedia Board.....................................................................31

4.3.1 Overview .............................................................................................................31
4.3.2 XCV2000 FPGA .................................................................................................31
4.3.3 Memory ...............................................................................................................33
4.3.4 Video input ..........................................................................................................34
4.3.5 Serial Ports ..........................................................................................................34

4.4 Reuse Methodologies.........................................................................................................35
4.4.1 IP Cores ...............................................................................................................35
4.4.2 IP Cores Interface ................................................................................................36



Integrated Input Modeling and Memory Management for Image Processing Applications                                                                      v

Chapter 5:Proposed Modeling Technique: HPDF/CSDF ..................................................38
5.1 Description.........................................................................................................................38
5.2 Examples............................................................................................................................40
5.3 Scheduling .........................................................................................................................41

Chapter 6:Modeling Applications with HPDF/CSDF .......................................................43
6.1 Modeling the input.............................................................................................................43
6.2 Modeling Dynamicity ........................................................................................................44
6.3 Scheduling .........................................................................................................................46
6.4 Motion Detection Application ...........................................................................................47

Chapter 7:Memory Management .......................................................................................49
7.1 HPDF/SDF Modeling, Single Frame.................................................................................50

7.1.1 Power and energy consumption analysis.............................................................52
7.2 HPDF/SDF Modeling, Video Stream ................................................................................53

7.2.1 Power and energy consumption analysis.............................................................56
7.3 HPDF/CSDF Modeling......................................................................................................56
7.4 Memory Controller Core ...................................................................................................58

7.4.1 Input and Output Signals .....................................................................................58
7.4.2 State Diagram ......................................................................................................59

Chapter 8:Experiments and Results ...................................................................................61
8.1 Swapping Banks Method Generalization ..........................................................................61
8.2 Comparison of Memory Organization Schemes................................................................61
8.3 Memory Controller ............................................................................................................63
8.4 Video Speed .......................................................................................................................65

Chapter 9:Conclusions and Future Directions ...................................................................67
9.1  Integrating DIF .................................................................................................................67
9.2 Automatic Hardware Generation .......................................................................................68

Appendix A:Matlab Scripts ...............................................................................................69

Appendix B:Multimedia Board Brief Tutorial...................................................................70
B.1 Creating a Design...............................................................................................................70
B.2 Programming the FPGA chip ............................................................................................71
B.3 Other designs .....................................................................................................................71

Appendix C:Wishbone Interface Specification Overview.................................................73
C.1 Signals................................................................................................................................73
C.2 Wishbone Registered Cycles .............................................................................................74

Appendix D:Wishbone Static Memory Controller Datasheet............................................76

References and Bibliography.............................................................................................77



Integrated Input Modeling and Memory Management for Image Processing Applications                                                                     vi

List of Tables

TABLE 1. Possible token consumptions for one invocation of actor B......................41
TABLE 2. Memory access cycles and energy needed for each configuration ............53
TABLE 3. Results of optimized memory organization in different scenarios. ...........63
TABLE 4. Pin numbers that are connected to leds and switches in the Multimedia 

Board..........................................................................................................71
TABLE 5. Cycle Type Identifiers (columns 1 and 2) and Burst Type Extensions 

(columns 3 and 4) ......................................................................................74
TABLE 6. Revision 1.0 - Wishbone Memory Controller Core Datasheet ..................76



Integrated Input Modeling and Memory Management for Image Processing Applications                                                                 vii

List of Figures

FIGURE 1. Example of a Syncronous dataflow graph ...................................................7
FIGURE 2. Example of a CSDF graph with three actors and two edges. ......................9
FIGURE 3. Example of an HPDF graph.......................................................................11
FIGURE 4. Example of an RGB Color image (a) and its grey level (b). In (a) each 

pixel has 3 8-bit components, one for each color channel. In (b) the 
intensity was calculated for each pixel using Equation 3. .........................13

FIGURE 5. Example of different subtasks that can be present in a Smart Camera 
system ........................................................................................................19

FIGURE 6. Block diagram of the gesture recognition algorithm from [37].................20
FIGURE 7. Original color input frame .........................................................................21
FIGURE 8. Region’s input, YUV components of the input frame. ..............................22
FIGURE 9. Block diagram for the motion detection algorithm....................................23
FIGURE 10. Four frames for the motion detection algorithm, the first one is considered 

the background...........................................................................................24
FIGURE 11. Processing frame 3: on top, outputs from the difference block with 

threshold = 15 and the erosion filter; bottom, detection of motion in red 
with grey and color background frame ......................................................25

FIGURE 12. Processing frame 4: on top, outputs from the difference block with 
threshold = 60 and the erosion filter; bottom, detection of motion in red 
with grey and color background frame ......................................................26

FIGURE 13. Example of a simple Logic Block consisting of a four-input lookup table 
and one register. .........................................................................................28

FIGURE 14.  Comparison of Microprocessor, FPGAs and ASICs performance and 
flexibility. ...................................................................................................28

FIGURE 15. Virtex II arquitecture: a) CLB organization. b) Slice components (figure 
from [30])...................................................................................................33

FIGURE 16. Video input to the FPGA ...........................................................................34
FIGURE 17. Example of an HPDF/CSDF graph............................................................40
FIGURE 18. Model of the static part of the system........................................................44
FIGURE 19. Model of the dynamic part of the system ..................................................45
FIGURE 20. Modeling of the motion detection application...........................................48
FIGURE 21. Modeling of the gesture recognition application with HPDF/SDF with 

frame granularity........................................................................................50
FIGURE 22.  Possible memory organizations for a single frame. a) Case 1: Simple 

organization, each image in a different bank; b) Case 2: Minimum number 
of banks used. c) Case 3: Optimizing number of memory access cycles; d) 
Case 4: Another possibility........................................................................52

FIGURE 23. 4:2:2 YUV pixel description: the values of chrominance are subsampled 
by a factor of 2. ..........................................................................................54



Integrated Input Modeling and Memory Management for Image Processing Applications                                                                  viii

FIGURE 24. Memory organization to pipeline the algorithm when having a stream of 
frames: V writes the three images in blocks 0 and 1; Region reads from 1 
and 0 and writes to banks 2 and 3; Contour reads from banks 3 and 2 and 
writes to internal selectRAM; Ellipse reads from internal selectRAM. ....55

FIGURE 25. Memory organization inferred from the HPDF/CSDF modeling of the 
application: while region writes the four bytes of banks 2 and 3, Contour 
reads the previously written four bytes from banks 0 and 1. .....................58

FIGURE 26. Input / Output signals from the wishbone memory controller designed....59
FIGURE 27. Simplified State Diagram for the Wishbone Memory Controller, the 

dashed states are needed for the registered design. ...................................60
FIGURE 28. Example of swapping banks ......................................................................62
FIGURE 29. Simulation of two reading cycles followed by two writing cycles for the 

memory controller without output registers; each memory access cycle 
takes up to three clock cycles ....................................................................64

FIGURE 30. Simulation of a reading cycle followed by a writing cycle of the memory 
controller with output registers. It takes up to five clock cycles to complete 
a reading cycle and up to four for a writing cycle .....................................65

FIGURE 31. First design: controlling leds with switches...............................................70
FIGURE 32. Clock division module ...............................................................................72
FIGURE 33. Wishbone classic registered reading cycle.................................................75



Integrated Input Modeling and Memory Management for Image Processing Applications 1

Chapter 1: Introduction

Image processing applications are becoming more and more elaborated in the sense

that more processing calculations need to be performed in order to extract more informa-

tion, but, at the same, applications that provide real-time analysis require higher speed.

Moreover, other features such as low power and energy consumption need to be consid-

ered in a design. This is really clear when having autonomous (battery-powered) applica-

tions, but is also important for high performance applications that need to be able to

dissipate this power. On the other hand, hardware designs are inherently parallel, and usu-

ally higher speeds and lower power consumptions can be achieved with hardware rather

than with software designs. Consequently, demanding image processing applications are

often implemented using hardware; in this work we focus on programmable hardware. 

In order to be able to exploit eventual concurrency inherent to an application in the

process of mapping it into the targeted parallel platform, its specification has to reflect this

characteristic. If the application is specified using a sequential language, then it becomes

hard to exploit concurrency. In this work we introduce a new modeling technique combin-

ing Cyclo-Static Dataflow (CSDF) base model semantics and Homogeneous Parameter-

ized Dataflow (HPDF) meta-modeling framework, that exposes different levels of

parallelism and is very suitable for specifying some image processing applications. We

model two different applications and show how we can achieve efficient scheduling and

memory organization.

A particular problem related to image processing applications is that they process

large amounts of data. Storing intermediate results often requires the use of off-chip

resources, which results in slower data access and higher power consumption. That is why
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having an effficient memory organization is so crucial for this particular application

domain.

In this study we focus on two image processing applications: a gesture recognition

application and a motion detection one, and a particular hardware platform: the Xilinx

Multimedia Board. 

1.1  Related Work

There are different Model of Computation (MoC) suitable for exposing concurrency.

In this work we concentrate on Dataflow Graphs, an account of other MoCs and in partic-

ular a description of different types of Dataflow graphs is given in Chapter 2.

In embedded systems, the access to external memory can be extremly costly in terms

of time and power consumption, causing memory organization to be a critical issue for

some applications. In [35] the authors introduce a method to efficiently allocate data into

available memories for reconfigurable architectures. They assume a system with a CPU

with its main memory connected through a system bus to an accelerator constituted by an

FPGA and RAM chips. They start from a sequential description of an algorithm and try to

detect data that are accessed repeteadly in arrays. First they give some guidelines to allo-

cate data in the different hierarchical memory levels, then they develop a integer linear

program to determine how to map data efficiently in the external chips.

Chapter 3 provides a background on image processing applications and Chapter 4 on

FPGAs-based Boards. 
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1.2  Contributions of this Work

A central contribution of this work is demonstrating the integration of CSDF base

model semantics into the Homogeneous Parameterized Dataflow HPDF meta-modeling

framework. This integration, which was developed jointly with Mainak Sen, has both the

advantages of HPDF which provides bounded memory, dynamic parameterization, and

those of CSDF which offers the finer granularity, phased decomposition of actor execu-

tion. In this work we precisely specify how we integrated HPDF and CSDF and provide a

method to find a valid schedule when such a schedule exists. Furthermore, we modeled

two different image processing applications using HPDF/CSDF and integrating the input

to the model, which exposed further levels of parallelism.

Another relevant contribution is our analysis on how different memory organization

can affect the application’s performance and energy consumption and more importantly

we present a method to infer an efficient memory organization from a given application

HPDF/CSDF modeling.

Finally, we also designed a reusable Wishbone memory controller core for the Multi-

media Board that can be used to access the board’s external memory chips.

1.3  Organization of the Thesis

In the first three chapters we study previous work; in the next chapter in particular we

introduce Dataflow Graphs and present different types of Dataflows; in Chapter 3 we give

an overview of different image processing algorithms and techniques; and in Chapter 4 we

discuss the use of FPGAs and describe different board concepts, including the Multimedia

Board. In Chapter 5 we formally specify HPDF meta-model for CSDF base actors and
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give a method to find valid schedules when they exist, while in Chapter 6 we apply this

modeling technique to two different image processing applications. Chapter 7 studies dif-

ferent memory organization schemes and shows how to infer an efficient memory organi-

zation given an HPDF/CSDF algorithm specification; Chapter 8 presents the experiments

and results, and finally Chapter 9 concludes and introduces future directions to explore. 
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Chapter 2: Dataflow Representation of Algorithms

Having different teams work on the algorithm and its implementation in hardware is

an usual practice. Algorithm signal engineers specify the algorithm in a formal language

in order to avoid ambiguities. Thus, C language is often used to specify algorithms. How-

ever, since C is a sequential language, using it makes it very difficult for hardware engi-

neers to find eventual inherent concurrency of the application. In this way, operations that

could be done in parallel end up scheduled sequentially, causing a sub optimum hardware

implementation.

In order to avoid these problems, many teams are specifying their algorithms using

languages and tools that allow them to show the concurrency of the application. In this

thesis we are going to focus on Dataflows, which are a model of computation (MoC) suit-

able to express the functional parallelism of an application. However, there are other

MoCs that enable us to exploit concurrency of algorithms. For example, Celoxica’s Han-

del C [19] is a subset of C (without pointers and floating point data types) extended with

parallel constructs, created to provide C familiar programmers with a way to specify paral-

lelism in an application to be ported in hardware. Another tool used to describe algorithms

exposing their inherent parallelism is Compaan [22], which tries to compile programs in

Matlab language into a concurrent representation.

In the following subsections we present Dataflow graphs, discuss some of their prop-

erties and then describe some particular types of Dataflows.    
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2.1  Dataflow Graphs

Digital signal processing, and image processing in particular, usually requires high

speed and low power consumption. As it was previously stated, extracting concurrency

present in sequential algorithms can become a very hard job. Dataflow then becomes an

interesting way to specify algorithms exposing their intrinsic concurrency properties,

facilitating the generation of an efficient parallel circuit synthesis. 

A Dataflow Graph is a multidirected graph [29], where the vertices represent compu-

tation (actors), and the edges (arcs) represent the data communication among actors,

implemented as FIFO queues. Each actor will fire when it has the required number of

tokens in its input edges, producing a certain number of tokens in its output edges. 

In this work we are going to use the following notation [29]. If  is the set of vertices

and  is the set of edges, then each edge is an ordered pair  where . An

edge  is said to be directed from , the source vertex of  or ,

to , the sink vertex of  or 

2.2  Properties of Dataflow Graphs 

In general, dataflow graphs can represent any Turing machine. This makes the prob-

lems of deadlock and determining the maximum buffer sizes to implement the edges unde-

cidable. Several restrictions can be imposed on general dataflows, generating new models

that lose some of the descriptive power of general dataflows, but favoring, on the other

hand, the possibility to analyze if the dataflow graph can be implemented with bounded

V

E v1 v2,( ) v1 v2 V∈,

e v1 v2,( ) e E∈,= v1 e src e( )

v2 e snk e( )
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buffer memory size (consistency) and analyze deadlock ocurrence. In the following sec-

tions we present some particular restricted Dataflow Graphs.     

2.3  Synchronous Dataflow Graph (SDF)

SDF was introduced in [16]. The main characteristic of SDF is that the number tokens

produced and consumed by each actor when they fire are known a priori. This means that

the system can be scheduled at compile time, avoiding the overhead of scheduling at run-

time. Figure 1 shows an example from [29] of an SDF graph with actors A, B, C and two

edges. The number of tokens produced as well as the number of tokens consumed are indi-

cated on the edges. The edge (A, C) has a delay on it, the delays, or initial tokens, indicate

that the data comes from previous firings of the precedent actor.     

An SDF graph can be represented by its topology matrix , that has one column for

each vertex of the graph and one row for each edge.  represents the number of

tokens produced in edge  by actor . In our example, if we number actor A as 1, B as 2

and C as 3, and edges (A, B) as 1 and (A, C) as 2, we have that the topology matrix  is:

FIGURE 1. Example of a Syncronous dataflow graph

Γ

Γ i j,( )

i j

Γ
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(EQ 1)

The repetitions vector  for an SDF graph has length  equal to the total number of

actors in the graph and  is the smallest integer vector for which if each actor  is invoked a

number of times equal to the th component of  then the number of tokens in each edge

of the SDF remains unchanged. If a connected SDF graph with  actors has consistent

sample rates, it is guaranteed to have  and  can be found solving the

following set of linear equations, also called balance equations: 

 (EQ 2)

SDF is very well-suited to represent a wide class of digital signal processing algo-

rithms. For instance, systems with decimators can be modeled in a natural way with SDF. 

Also, an algorithm modeled as an SDF graph can afterwards be translated to hard-

ware. For instance, in [36] synthesizable VHDL is generated from an SDF graph while in

[25] synthesizableVerilog code is generated from an SDF graph.

Although SDF is suitable to represent systems as those previously described, systems

where the amount of tokens generated or consumed by an actor are not known at compile

time cannot be represented with this model. 

2.4  Cyclo-Static Dataflow Graph (CSDF)

The CSDF model introduced in [3] is particularly suitable for representing applica-

tions that cyclically change their behavior. As with SDF, the number of tokens produced

and consumed is known at compile time, but this number changes periodically. Figure 2

Γ 2 3– 0
1 0 1–

=

q s

i

i q

s

rank Γ( ) s 1–= q

Γq 0=
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shows an example of a CSDF graph with three actors, A, B and C, and two edges, u and v,

where  and . Actor A produces in edge  a number ,

, of tokens every th time it is invoked, and similarly, in edge  a

number ,  of tokens every th time it is invoked.  is the

period of the production sequence of actor  on edge  while  is the period of the

consumption sequence of actor  on edge . The period  of actor  is defined as the

least common multiple of all  and  taken among all incoming and outcoming

edges of actor . Necessary and sufficient conditions for the existence of a static sched-

ule are given in [3]. In [20] SDF and CSDF are compared, showing that CSDF actors can

be transformed into SDF actors, and hence use SDF scheduling techniques. On the other

hand, in certain applications, CSDF can expose more parallelism and this property would

be lost during the transformation unless some multirate actors are included in the SDF

graph. 

u A B,( )= v A C,( )=

FIGURE 2. Example of a CSDF graph with three actors and two edges. 

A

B

C
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u(1), xA

u(2), … , xA
u(PA

u)
yA

u(1), yA
u(2), … , yA
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v(1), xA
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v(PA

v)
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v(2), … , yA

v(QA
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u xA
u i( )

1 i PA
u≤ ≤( ) nPA

u i+( ) v
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v i( ) 1 i PA
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v i+( ) PM

u
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2.5  Parameterized Dataflow Graph 

As we discussed in the previous sections, SDF and CSDF are models for which a

static schedule can be calculated. However, some signal applications, in particular those

that have dynamic production or consumption of tokens, cannot be described using SDF

or CSDF. In [2] a hierarchic parameterized dataflow modeling framework was introduced.

This meta-model can be applied to different base dataflow graphs, in [2] formal semantics

for parameterized synchronous dataflow (PSDF) are developed. PSDF can be considered

an augmentation of the SDF model, incorporating parameterization and run-time manage-

ment of parameter configurations. Formally, a PSDF graph is composed by PSDF actors

and edges. The architecture of this framework is based on the decomposition of a specifi-

cation (subsystem) in three different graphs: init, subinit and body, where the latter models

the main functionality and the init and subinit graphs control the body behavior by config-

uring its parameters. In this way, the number of tokens produced or consumed by the

actors can change dynamically. 

2.6  Homogenous Parametrized Dataflow Graph (HPDF)

HPDF, proposed in [26], is, like PSDF, a meta-modeling technique that tries to model

dynamicity. An HPDF subsystem is said to be homogeneous in two ways: first, the top

level actors in an HPDF subsystem execute at the same rate; and second, reconfiguration

across subsystems can be achieved without introducing hierarchy, although hierarchy can

be used when desired. This meta modeling technique can be applied to composite actors

that have SDF, CSDF or PSDF actors as their constituent actors.
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In [26] the base actors were specified using SDF. Figure 3 shows an example of an

HPDF graph. In this example actor A produces 2 tokens in edge (A, B) and n tokens in

edge (A, C) and actor C fires after consuming n tokens from this edge. Actor B consumes

the two tokens produced by A and after firing produces m tokens which are in turn con-

sumed by D. A delay token is present in edge (A, C). It can be observed that we need to

distinguish the tokens produced by A onto (A, C) and B onto (B, D) in different invoca-

tions. In [26] they implement an “end of packet” to know when an actor finishes produc-

ing the tokens corresponding to one invocation.

In general, scheduling of an HPDF graph is very simple. In our example, for instance,

a valid schedule is ABCD. Also, unlike PSDF, HPDF always executes in bounded mem-

ory when the component models do so as well.

FIGURE 3. Example of an HPDF graph

A

D

C

B2

2

n

n

m m



Integrated Input Modeling and Memory Management for Image Processing Applications 12

Chapter 3: Image Processing Algorithms

Image processing is a continuously growing knowledge area. It has applications as

diverse as medical research, automated manufacturing, space exploration and surveil-

lance. In Section 3.1 we define basic concepts such as digital images and image process-

ing. In Section 3.2 we present different techniques both for low and high-level image

processing. Then, in Section 3.3 we give an overview of a particular application domain

image processing algorithms, smart cameras, that have special time processing and some-

times energy consumption requirements. Finally, in Section 3.4, we describe two particu-

lar applications. 

3.1  Basic Definitions

An image can be defined as a function , : , where  and  are real

numbers representing spatial coordinates and the functional value  at each coordinate

gives the grey level or intensity at that position [6]. A digital image has a finite number of

discrete  coordinates and the function  can only take discrete finite values. Each

element located at coordinates  is called pixel. 

In color images each pixel needs to have at least three different components, each one

being a coordinate in a color space. There are several color models, among them we can

highlight the RGB and YUV models. RGB is an additive color model, in the sense that the

colors red, green and blue are added to make other colors. This YUV model is the one

used for analog television, Y is the intensity or luminance or luma, while U and V are the

chroma or color difference components. Each color model can lead to different color

spaces, for instance the RGB color model does not specify what red, green and blue are. A

f x y,( ) f ℜ2 ℜ→ x y

f

x y,( ) f

x y,( )
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color space is defined by the color model and the color map. An important color space

defined in the ITU-R BT 601/656 standard is the YCrCb (sometimes also called YUV),

which is a digital version of YUV. In this work we are going to use indistinctly the terms

YUV and YCrCb in the understanding that when talking about digital image encoding we

are referring to the YCrCb digital space. In order to convert the components of an RGB

pixel to YUV components, we can use the following equations:

(EQ 3)
 (EQ 4)

(EQ 5)
(EQ 6)
(EQ 7)
(EQ 8)

In Figure 4 a) a color RGB image with 300x225 pixels is shown, Figure 4 b) shows

the grey level of image a) calculated using Equation 3. 

Y 0.299R 0.587G 0.114B+ +=
U 0.147R– 0.289G– 0.436B+=
V 0.615R 0.515G– 0.100B–=

R Y 1.140V+=
G Y 0.395U– 0.581V–=

B Y 2.032U+=

50 100 150 200

50

100

150

200

250

300

FIGURE 4. Example of an RGB Color image (a) and its grey level (b). In (a) each pixel has 3 8-bit 
components, one for each color channel. In (b) the intensity was calculated for each pixel using 
Equation 3. 
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In [6] and in [23] the authors distinguish two main different purposes for image pro-

cessing, the first one is to enhance an image for human perception, the second one is to

extract information for further machine understanding of them. Although several process-

ing techniques can be used for both situations, in particular for noise reduction and image

enhancement, in this work we are going to focus on the latter category; some useful pro-

cessing techniques targeted mainly for the first purpose can be found in [23]. 

In a broad sense, Image Processing includes all processing that has an image as its

input. However, this definition overlaps with other areas such as Image Analysis, Com-

puter Vision and Artificial Intelligence (AI). The borders between these areas are not strict

and there is not a unique criterion to distinguish among them. For instance, in [4] the

authors consider that low-level processing or image pre-processing is when the output of

the processing stage is also an image, and they associate high-level processing to Com-

puter Vision and AI if the output of the algorithm consists of other type of information

extracted from the original image. On the other hand, in [6] the authors consider that since

there are several simple image processing techniques (such as calculating the average

intensity of an image) that produce outputs other than images, limiting image processing

only to computations that yield another image is somewhat artificial. They define three

categories: low-, mid- and high-level processing. Low-level processing is characterized by

having images as inputs and outputs and consists of tasks such as noise filtering and image

enhancement; mid-level processing usually has images as inputs and some of their

attributes as outputs and it includes tasks such as identifying different objects; high-level

processing usually consists in interpreting those attributes extracted from mid-level pro-
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cessing. They then consider both low- and mid-level processing as belonging to the image

processing domain, while extracting sense of this processing is associated to AI. 

Low-level processing involves large amounts of data, thus requiring considerable

power consumption and computational time. However, usually these tasks can be done

concurrently at pixel or region levels; therefore, parallel processing can significantly

reduce computational time [4]. In this work we focus on low-level and mid-level process-

ing. In the next section we briefly introduce some typical low-level and high-level digital

image processing problems along with some processing techniques.

3.2  Typical Image Processing Problems and Techniques Used

The first assumption that we make is that the image or video has been acquired with

the best achievable quality. Thus, the processing techniques discussed in this section are

applied to these digital images. For a discussion on optimizing the image acquisition refer

to [23]. In the following subsection we first focus on low-level problems and then we dis-

cuss high-level ones. 

3.2.1  Pre-processing Techniques

A typical low-level problem is removing noise from images. Depending on the type

of noise present in a particular image, different techniques can be used [6], [23]. These

techniques can be applied to grey level or color images, for simplicity we will mainly

address techniques targeted for grey level image. 

Random or gaussian noise can be removed with linear filters. The simplest linear fil-

ter is the 3x3 average filter where each pixel  is replaced by the averaged value of thep
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pixels belonging to the 3x3 square centered in . This exploits spatial locality which

means that close pixels will have similar values; time locality could also be exploited by

averaging different consecutive frames. The size of the filter can be increased (i.e. 5x5,

7x7) and the weight assigned to each pixel in the box can be changed. However, some

problems are associated with this kind of filter, for instance, the image can be blurred, in

particular edges among different regions would tend to soften. In order to avoid these

problems, non-linear filters can be used. One example of these filters is the 3x3 median

filter. In this case, the value of each pixel  is replaced by the median of the pixels belong-

ing to the 3x3 square centered in . This is specially useful when in the presence of shot

noise, also known as salt and pepper noise, where the small dots would disappear.

Although now the blurring of the image is avoided, thin lines (compared to the size of the

filter) may disappear.

Morphological filters such as erosion and dilation ones, are also very often used for

image pre-processing. Dilation filters tend to fill structures that may have holes, while ero-

sion filters tend to do just the opposite. 

Finally, edge detection is also a complex and interesting low-level problem. Edge

points contain a high grey value gradient, that means a high gray value difference in a

local neighborhood [4]. Edge detectors perform either the first (gradient) or the second

(gradient change) derivative of the intensity of an image in order to find where a region

changes. Some well-known edge detectors are the Laplace and the Sobel Operators, in [4]

pixel level parallel algorithms are given to detect edges using these operators. 

p

p

p
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3.2.2   High-level Processing Techniques

High-level images and video streams processing may consist in the ability to recog-

nize objects or persons, expressions, gestures or motion. In order to appreciate the com-

plexity of these tasks, we must be aware that very often, variations between images of the

same face due to illumination and viewing direction are more significant than image vari-

ations due to change in face identity [7]. The application domains where it is important to

solve these kind of problems includes surveillance, medicine and machine-human inter-

faces. 

As it was previously stated, the techniques used for high-level processing are very

close to machine learning and computer vision areas. Some tools used are Neural Net-

works, Support Vector Machines (SVM) and Hidden Markov Models (HMM). Neural net-

works which were inspired by the brain functionment, consist of a group of interconnected

nodes, each one being a different processing element. There is a choice of several configu-

rations for the connections (i.e. feedforward or recurrent, multilayered, self-organized),

the processing elements (i.e. linear or sigmoid activation functions), and the learning pro-

cesses (supervised versus unsupervised) [8]. SVM is another learning method generally

used as a classifier. An introductory presentation along with some application examples,

including a face detection application, can be found in [9]. HMM is a stochastic signal

model where by observing the output of hidden states inferences can be made [21]. 

Each of the high-level problems presented here has its own particular difficulties to be

overcome. For instance, in order to recognize faces, an intelligent system needs to separate

accessories such as glasses, from distinctive features. On the other hand, it is a great chal-

lenge for the automatic system to recognize expression and gesture and to abstract them
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independently of the face. For a human being, it is usually easy to detect a smile in a per-

son, even if it comes from a total stranger and in spite of the fact that people smile in many

different ways. Similarly, gestures can be very difficult for a machine to interpret, since

big differences in positions can convey the same meaning, whereas subtle changes can

have a deep impact on meaning. In spite of all these difficulties, machine learning tech-

niques usually achieve good results in these applications. 

3.3  Smart Cameras 

Smart Cameras perform high-level processing of a scene in real-time [37]. We can

identify different subtasks with increasing information extraction levels for the process-

ing: first, pre-processing, which can consist of removing noise, improving the quality of

the image, or even distinguish different regions in the image, such as finding skin tone

regions [5]. This would be the low-level processing stage. Then the second group of tasks

detects objects present in the frames and represents them conveniently; we can classify

these tasks as mid-level processing. Finally, the third type of tasks performs high-level

processing, analyzing the video stream and recognizing faces present on a database for

instance or recognizing gestures independently of the identified person. Finally, the sys-

tem may respond in a certain way, such as firing an alarm or transmitting or recording cer-

tain frames or some characteristics extracted from them. Figure 5 summarizes this

classification of subtasks. An intelligent camera-based system can implement one or sev-

eral high-level subtasks and execute different actions depending on the analysis and the

concrete application.   
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Smart Cameras then, have to be fast, processing frames at a high enough rate to have

real-time information; the minimum acceptable rate is determined by the particular appli-

cation requirements. Another usually desirable characteristic for these systems is that they

have low energy consumption. There are two main reasons for this: the first one is to

power them with batteries without having to replace them too frequently; but even if the

system does not need to be powered with batteries, there is a second reason for choosing a

low-energy design, which is the reduction in heat dissipation that this would entail. 

3.4  Applications

In particular, for this work we studied two algorithms. The first one proposed by Lv

and Wolf in [37] is a smart camera gesture recognition application. The second one is a

motion detection algorithm proposed by Andrew Kirillov in [15]. In the following subsec-

tions we describe these algorithms. 

FIGURE 5. Example of different subtasks that can be present in a Smart Camera system
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3.4.1  Gesture Recognition Application

Figure 9 adapted from [37] shows the block diagram for the gesture recognition algo-

rithm presented in [37]. We can see that there are two processing levels. The four blocks of

the low-level processing are Region extraction, Contour following, Ellipse fitting and

Graph matching while the high-level processing consists of several parallel HMM pro-

cessing blocks that evaluate the body’s overall activity. In this work we focus on the low-

level processing of this algorithm.

Region extraction assumes a YUV color model with the chroma components down-

sampled by a factor of two to detect the skin areas of the input image. Contour following

then uses 3x3 filters to follow the edges of the regions detected by Region. The next step is

to find ellipses that fit the pixels belonging to the contours found previously. Parametric

surface approximations are used to compute geometric descriptors for segments such as

area, compactness, weak perspective invariants and spatial relationships. Finally, Graph

matching uses a piecewise Bayesian classifier with the calculated ellipse parameters to

compute feature vectors and then matches them to feature vectors of body parts (computed

previously offline).
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FIGURE 6. Block diagram of the gesture recognition algorithm from [37]



Integrated Input Modeling and Memory Management for Image Processing Applications 21

Figure 7 shows a 240x384 pixels color image used as frame input for Region, while

Figure 8 shows the exact format of Region’s input, a 480x384 pixels file consisting of the

YUV components and image. The top part of Figure 8 is the Y component, in the middle

we have the U and V downsampled components while the bottom part of the figure shows

a replication of the first half of the Y component. 

FIGURE 7. Original color input frame 
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3.4.2  Motion Detection Application

The basic approach of the motion detection algorithm presented in [15] consists in

comparing the new frames with a background frame stored. The difference for each pixel

between two images is then compared to a threshold and finally an erosion filter is applied

to it. These operations are performed to the grey scale images, so the first pre-processing

FIGURE 8. Region’s input, YUV components of the input frame.
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step would be to find the grey level component of the color RGB image. A block diagram

description of this algorithm is shown in Figure 9. 

We created a grey function using Matlab Software whose input is a color image and

its output is the grey level of this image, using Equation 3. Then a difference function was

implemented. This function takes two grey frames and a threshold level as inputs, and out-

puts the difference at each pixel provided this difference is larger than the threshold level,

otherwise, the difference for that pixel is assumed to be 0. To implement the erosion filter,

we followed the morphological erosion filter for grey images presented in [13]. In this

way, the value of each central pixel is the minimum value of its neighbors. The output

image from the erosion function is finally added to the red channel of the background

frame. All the scripts developed using Matlab can be found in Appendix A. Figure 10

shows an example of a four color frame sequence where the first one is considered to be

the background..

Figure 11 shows the output of the different blocks for frame 3, using a threshold value

of 15 and applying the erosion filter twice. Figure 12, on the other hand, shows the outputs

for a threshold voltage of 60 for frame 4. The number of pixels that have different grey

level between frames 1 and 2 after applying the erosion filter twice for a threshold value of

15 is 434 out of 124848 (less that 0.5%) while for a threshold value of 60 this number

drops to 5 for the whole image.   

GREY
LEVEL

NOISE 
REDUCTIONDIFFERENCE DETECTION

Color
frame

FIGURE 9. Block diagram for the motion detection algorithm
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The output of the detection block can be, for instance, the number of pixels of the cur-

rent frame that differ from the background. Another possibility is to output a signal that

indicates whether there is movement or not.

The setting of the threshold value would depend on the noise introduced by the cam-

era, as well as the precision in shapes needed. In our example, a threshold value of 60

eliminates most of the shadows generated by the person moving. However, the erosion fil-

ter is still needed to eliminate the noise present in the right side of the frame. On the other

hand, a threshold value of 15 would still be very efficient to detect movement since noise

can be easily discriminate in the detection stage, i.e. establishing a certain percentage of
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FIGURE 10. Four frames for the motion detection algorithm, the first one is considered the 
background. 
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pixels to differ as threshold for movement detection, but the shape of the moving object

would be more diffuse.   

FIGURE 11. Processing frame 3: on top, outputs from the difference block with threshold = 15 
and the erosion filter; bottom, detection of motion in red with grey and color background frame
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FIGURE 12. Processing frame 4: on top, outputs from the difference block with threshold = 60 
and the erosion filter; bottom, detection of motion in red with grey and color background frame
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Chapter 4: FPGA-based Boards for Digital Signal Processing

Algorithms in the DSP application domain can be implemented in different platforms.

Microprocessors, general purpose ones but in particular DSP processors, are commonly

used; for instance, in [26], the C64xx DSP processor family from Texas Instrument was

targeted to implement the gesture recognition algorithm presented in [37]. Microproces-

sors provide high flexibility, since different algorithms can be programmed to make them

perform different tasks. However, the processing speed that can be achieved using micro-

processors is lower than the speed provided by custom-designed hardware for the same

technology process fabrication. Application Specific Integrated Circuits (ASIC) are

widely used when performance needs to be improved, usually when real-time processing

is needed, or for low power or energy consumption systems. 

FPGAs are programmable logic devices (PLD): they contain programmable hardware

logic blocks that can be programmed to perform different logic functions. Moreover, the

interconnection among these logic units can also be programmed and in this way, the same

chip can implement different circuits depending on its programing. In general, each array

element is a block consisting of some lookup tables (LUT) and registers interconnected.

Figure 13 shows an example of a simple Logic Block. The design of each array element as

well as their organization on chip depends on the vendor and on the FPGA family. In Sec-

tion 4.3 the architecture of the Xilinx Virtex II family devices is studied in more detail.

For a given technology process, FPGAs are faster than microprocessors but slower

than ASICs, and usually not as power-efficient as the latter. The cost of FPGAs, for small

quantities, is less than the cost of ASICs, but this relationship is inverted for large quanti-

ties. That is why, traditionally, designs were prototyped in FPGAs and then implemented
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in ASICs for high production volumes. However, the gap in cost for large quantities is

sometimes compensated by the time needed to translate and debug the design to ASICs, as

shown in [28], where some FPGA families provide enough flexibility and performance

results at a reasonable cost when compared to a similar process fabrication ASIC. Figure

14 summarizes the comparison between microprocessors, FPGAs and ASICs. 

In Section 4.1 we discuss the most relevant characteristics of FPGAs, as well as their

main vendors; Section 4.2 presents different kinds of FPGA-based boards; Section 4.3
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FIGURE 13. Example of a simple Logic Block consisting of a four-input lookup table and one 
register. 

ASIC

FPGA

Microprocessor

Flexibility

Pe
rfo

rm
an

ce

FIGURE 14.  Comparison of Microprocessor, FPGAs and ASICs performance and flexibility. 
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describes the characteristics of the Xilinx Multimedia Board and finally Section 4.4 intro-

duces some design guidelines to build reusable blocks. 

4.1  Classification of FPGA

We can distinguish FPGAs depending on their capacity, the number of user available

pins, speed, and cost. In the following subsections we discuss these characteristics. Also,

the main FPGA vendors are presented. 

4.1.1  Capacity

The capacity of an FPGA gives an idea of the amount of logic that can be imple-

mented with it. There are different metrics to determine the capacity. One of these metrics

is “gate-counting”, which consists in establishing the number of two-input nand gates that

would implement an equivalent circuit. Xilinx uses logic cells [32] to give an idea of the

capacity. A logic cell is defined as a four-input LUT associated with a register, so that the

output of the LUT may be connected to it. Figure 13 is an example of a logic cell. This

metric does not take into account other resources that may be available in the array ele-

ments, such as multiplexers or RAM blocks, their system gate metric try to reflect these

other resources as well. Altera has different metrics, its logic elements are analog to Xil-

inx’s logic cells. 

4.1.2  Speed

The maximum frequency achievable in general depends on the design. FPGAs have

different delay times associated to their logic implementation and usually within a family

chips have different delays. Those chips having the smallest delays in a family are said to

be the fastest, this information is reflected by the speed degree of the device.
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4.1.3  User Pins

The number of pins for a FPGA chip varies widely. Xilinx FPGAs have from 100 to

1513 pins, depending on the family and the type of package. A large number of these pins,

however, is used for power and ground connections, others are reserved, for instance to

program the FPGA, and the rest can be used for input / output (I/O) purposes. A Virtex 4

chip with 1513 pins has 960 pins for I/O.   

4.1.4  FPGA Vendors

The main companies are Xilinx and Altera, followed by Lattice Semi and Actel. In

the second quarter of 2004 they had respectively 52%, 34%, 8% and 6% of the PLD mar-

ket, according to [10]. The newest Xilinx FPGA family is Virtex 4, introduced in 2004

manufactured with a 90 nm triple-oxide process technology and a voltage as low as 1.2 V.

These FPGAs have up to 200.000 logic cells. The newest FPGA family from Altera is

Stratix II, manufactured on the Taiwan Semiconductor Manufacturing Company (TSMC)

1.2 V, 90 nm, 9-layer-metal, all-layer-copper, low-k dielectric process technology. The

first samples were available in 2004. having up to 180K equivalent logic elements (LEs)

and 9 Mbits of embedded memory. Both families can achieve speeds of 500 MHz. 

4.2  Boards

FPGAs need to be connected to a power supply and a clock signal in order to work,

and they also need to be connected to I/O devices. These circuits can be custom-designed

and made for a given application, or bought out of the shelf. We can find boards for evalu-

ation, for general purpose or domain-specific. Xilinx and Altera provide a wide range of

evaluation boards for their chips as well as links to boards of other companies featuring
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their chips. The boards may include only one FPGA or several of them with different char-

acteristics, as well as other processing elements such as microprocessors or DSP proces-

sors. Other resources such as A/D converters or memory may also be on board. Usually

they provide at least power and clock distribution and some practical input and output

connectors. In Section 4.3 we present the Xilinx Multimedia Development Board. 

4.3   Characteristics of Xilinx Multimedia Board 

4.3.1  Overview

The Xilinx MicroBlaze and Multimedia Development Board is a platform for multi-

media applications development. It has a Virtex II family FPGA, Video and TV input and

output ports, communication ports such as RS-232 and ethernet, 10 Mbytes of static RAM

and audio codecs, besides having power supply and system clock distribution. In the fol-

lowing subsections a description of the board’s most relevant components for our applica-

tion can be found. For a more complete description of the board, please refer to the board

manual [31] and its schematics which are available online.    

4.3.2  XCV2000 FPGA

A full description of the board’s Xilinx Virtex II XC2V2000 FPGA can be found in its

data sheet [30]. In this sub section we present its most relevant features, as well as a brief

description of its architecture. For more information and a complete pin description of the

chip please refer to [30].

Virtex II family FPGAs were introduced in 2001 and are manufactured using 0.15

 / 0.12  CMOS 8-layer metal process. The XC2V2000 FPGA has 24192 logic cells

and 2 M system gates. It also has 1008 Kbits of Block RAM, organized in 56 different

µm µm
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blocks, each of size 18 Kbit, which is a total capacity of 126 Kbytes. In our case, the pack-

age is flip-chip fine-pitch ball grid array (BGA) with 1.00 mm pitches and dimensions of

31 x 31 mm. It has 896 pins, 624 of which are available for user input and output. 

The device can be programmed by loading its configuration memory in 5 different

ways: using slave-serial mode, master-serial mode, slave SelectMAP mode, master Select-

MAP mode or Boundary-Scan mode (IEEE 1532). The configuration information can be

optionally encrypted using Data Encryption Standard (DES) since a DES decryptor is

available on-chip.

The chip has 2688 internal configurable logic blocks (CLBs), each CLB having four

slices and two 3-state buffers. Each slice contains: two function generators (F and G), two

storage elements, arithmetic logic gates, large multiplexers, wide function capability, fast

carry look-ahead chain and horizontal cascade chain (OR gate). The function generators F

and G can be configured as 4-input look-up tables (LUTs), 16-bit shift registers, or 16-bit

distributed RAM memory. The two storage elements are either edge-triggered D-type flip-

flops or level-sensitive latches. Each CLB has internal fast interconnect and connects to a

switch matrix to access general routing resources. Figure 15 a) shows a Virtex 2 CLB

composed by four slices, Figure 15 b) shows one of the slices structure. 

The input and output blocks (IOBs) are programmable and have an optional single-

data-rate or double-data-rate register. These registers can be D flip-flops triggered by

either edge or level-sensitive latches. Several single-ended and differential standards are

supported, including: LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V), PCI-X (133 MHz
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and 66 MHz) at 3.3V, PCI (66 MHz and 33 MHz) at 3.3V, BLVDS (Bus LVDS), ULVDS,

LDT, LVPECL.

4.3.3  Memory

One of the key features of this board is the five fully-independent banks of 512k x32

ZBT Synchronous Static RAM [24] with a maximum clock rate of 130 MHz. Although

the memory devices support a 36-bit data bus and have a sleep input, pinout limitations on

the FPGA prevent the use of the four parity bits as well as the low power consumption

mode. The banks operate completely independent of each other, since the control signals,

address and data busses and clock are unique to each bank with no sharing of signals

between the banks. The byte writing capability is fully supported as is the burst-mode, in

which the sequence starts with an externally supplied address. 

FIGURE 15. Virtex II arquitecture: a) CLB organization. b) Slice components (figure from [30]).
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4.3.4  Video input

The multimedia board accepts two different video input formats: Composite video

and S-video (also known as Y/C video), and the signal can be either from a PAL or a

NTSC source. Only one input can be processed by the board at a time, there are two

switches to select the source type and the format, and this can also be configured from the

FPGA through a I2C protocol. The analog signal is then decoded by the ADS7581 chip,

which outputs a 10 bit digital signal with YCbCr 4:2:2 CCIR601/CCIR656 format, as well

as two clock lines. Figure 16 summarizes the video signal path in the Multimedia Board.

4.3.5  Serial Ports

Three serial ports are provided on board. A RS-232 port shares its connections to the

FPGA with two PS2 ports for mouse and keyboard. In order to determine which ones are

active, the board has two switches (Serial Port Selection switches) which provide four

possible choices: disable all the ports, use RS-232 with handshake signals (CTS, RTS and

CSR signals), use RS-232 without handshake and the PS2 keyboard port, or use the two

PS2 ports.   

FIGURE 16. Video input to the FPGA
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4.4  Reuse Methodologies

Nowadays it is very difficult to develop a complex hardware project consisting of

millions of gates from scratch. In [14] the authors state that casual reuse of code lowers the

costs between 2 and 3 times, and that this rate is still insufficient to make competitive

designs. Some guidelines are provided in their book, both to write reusable code and to be

able to reuse third-parties’ code. Although they focus on SoC ASICs, most of the RTL

coding recommendations also are applicable to FPGA-targeted code. In this work we

implemented some generic blocks taking into account these guidelines. In particular, the

memory and video controller blocks for the Multimedia Board were designed to be easily

reused in other projects. In the following subsections we present the Intellectual Property

(IP) cores, a key concept for reuse and then we show different standards available to estab-

lish their interfaces.   

4.4.1  IP Cores

IP cores, also called IP, IP blocks, macros and virtual components are design units

that can reasonably be seen as stand-alone subcomponents of a complete design [14]. Hav-

ing blocks which are already verified and tested available for a new design, enables the

designer to build complex systems faster and in a more reliable way.

Several companies are selling IP cores, some of them are FPGA Companies, such as

Xilinx and Altera, that provide IP cores targeted for their chips. Others provide generic IP

cores; for instance, Mentor Graphics offers communication interfaces and microcontrol-

lers as well as products in Ethernet, USB, Storage and PCI Express. ARM also offers sev-

eral IP blocks, such as processors, memory, and cores for secure applications. Opencores

[18] is a dynamic group of people interested in “developing hardware with a similar ethos
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to free software movements”. Several IP cores are freely available at their webpage, where

they are classified in different categories such as communications, dsp, memory, micro-

processor. 

4.4.2  IP Cores Interface

In order to be reusable, IP cores need to have a common, standard, interface. There

are several standards for interfacing IP cores. In this section we present three of them,

each one recommended by different organizations. 

The VSI Alliance (VSIA) recommends the Open Core Protocol (OPC) maintained by

the OPC International Partnership (OPC-IP). This standard is available for members only.

Non-members can have a royalty-free license but only for evaluation and research of the

protocol. 

The Advanced Microcontroller Bus Architecture (AMBA) specification [1] from

ARM, an IP company established in 1990, is a widely used on-chip bus. This is the stan-

dard recommended in [14]. The AMBA specification defines three different buses and a

test methodology for the interface. These buses are: the Advanced High-performance Bus

(AHB), the Advanced System Bus (ASB) and the Advanced Peripheral Bus (APB). The

first two are very similar, their bus cycles start and end in positive clock edges, and they

are both recommended for high-performance system modules. The APB has bus cycles

starting and ending in negative clock edges, and is recommended for low power applica-

tions, since its reduced interface complexity consumes less power. 

As it is stated in its objectives, the AMBA specification targets embedded microcon-

troller products with one or more CPU or DSP processor. Although the specification is
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practical for a microprocessor-based architecture, in a system without microprocessor

cores, the standard turns out to be less convenient considering the overhead added.

The Wishbone interface [17] is the specification recommended by Opencores to inter-

connect cores in a chip (FPGA, ASIC, etc). This standard is not copyrighted, and is in the

public domain. It may be freely copied and distributed by any means, and used for the

design and production of integrated circuit components without having to pay royalties or

other financial obligations. The standard includes read and write single cycles as well as

block transfers. There are two types of cycles: unregistered and registered. Although the

protocol clearly specifies these cycles, it also provides some tags that can be defined by

the user, providing design flexibility. Also, in order to be Wishbone compliant, their docu-

mentation standard has to be followed. This is to ensure easy reuse of previously designed

modules, specially if user tags are defined. The standard is independent from the hardware

used to implement the circuit as well as from the testing and verification methods chosen.

Among the IP cores that Opencores offers, several are Wishbone compliant, and can be

used in a more complex design.

In this work we chose to follow the Wishbone standard for registered cycles. A more

detailed description of the registered read and write cycles is presented in Chapter 7 along

with the designed blocks.
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Chapter 5: Proposed Modeling Technique: HPDF/CSDF

One important contribution of this work is demonstrating the integration of CSDF

base model semantics into the HPDF meta-modeling framework. This integration, which

was developed jointly with Mainak Sen, provides simultaneous application of the bounded

memory, dynamic parameterization of HPDF and the finer granularity, phased decomposi-

tion of actor execution in CSDF. In this Chapter we describe how we integrated HPDF and

CSDF. Furthermore, we present an example where a compact looped notation is intro-

duced. Finally, we show how to find valid schedules for HPDF/CSDF and discuss their

advantages. 

5.1  Description

As it was presented in Section 2.6, the homogeneity requirement in HPDF is in the

sense that data transfer across an edge (production and consumption) must be equal (but

not necessarily constant or statically-known) across corresponding invocations of the

source and sink actors. On the other hand, in CSDF a complete invocation of an actor

involves execution of all of the phases in a fundamental period of the actor, as it was

explained in Section 2.4. Integration of CSDF with HPDF allows the number of phases in

a fundamental period to vary dynamically, and also allows the number of tokens produced

or consumed in a given phase to vary dynamically. Such dynamic variation must adhere to

the general HPDF constraint, however, that the total number of tokens produced by a

source actor of a given edge in a given invocation (which, in the case of phased actors,

means a given fundamental period) must equal the total number of tokens consumed by

the sink in its corresponding invocation. Thus, for all positive , the number of tokensn
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produced by the th complete invocation of a source actor must equal the number of

tokens consumed by the th complete invocation of the associated sink actor.

For fundamental periods that involve dynamic token transfer, this can be accommo-

dated by employing a special token that delimits the end of a fundamental period of a

source actor. The source actor produces this special end-of-invocation (EOI) delimiter just

after the end of each complete invocation. The HPDF restriction then requires the follow-

ing:

 Suppose that the sink actor of a dynamically parameterized HPDF edge  consumes

the last token in its th invocation (fundamental period of phases) at time . Then just

after completing  more consumption operations after time , the sink actor will

consume an EOI token, and it will not consume any EOI tokens before that. This pattern

must hold for all positive integers  (i.e., all invocation indices); that is, after each com-

plete sink invocation, the next EOI token is consumed after exactly  consumption

operations. Furthermore no EOI token should be consumed during the first invocation

 of the sink actor.

The above formulation is useful for precisely specifying how HPDF applies to

dynamic parameterization of CSDF actors. The formulation can also be used to generate

code for quasi-static schedules, and to verify consistency of HPDF specifications at run-

time (i.e., to detect violations of HPDF behavior as soon as they occur).

n

n

e

i zi t( )

δ e( ) zi t( )

i

δ e( )

i 1=( )
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5.2  Examples

Figure 17 shows an example of an HPDF/CSDF graph where we adapted the dataflow

looped schedule notation (e.g., see [2]) to represent the tokens being produced and con-

sumed in a fundamental period. This graph has four actors. Actor A has a cycle period

equal to 4; in each phase it produces one token in edge AB and 2 tokens in edge AC. Actor

B has a parameterized number of phases 2  and also consumes a parameterized number

of tokens during its odd phases. In this example, in order to remain homogeneous, the val-

ues that  can take in any invocation are limited to 1, 2, 3 and 4; Table 1 shows the differ-

ent combinations of tokens consumed that can happen in any actor invocation. Actor C has

8 phases, in each phase it consumes 1 token from edge AC and produces a different

parameterized number of tokens in edge CD depending on its phase: in the first two

phases it produces  tokens, in the following two it does not produce any token, in the

next two phases it produces  tokens and finally in each of the two remaining phases of

FIGURE 17. Example of an HPDF/CSDF graph
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its invocation it produces  tokens. Actor D always consumes  tokens from edge CD.

An initial delay is present in edge AC.  

5.3  Scheduling

Due to the homogeneity property along edges for each invocation, we can have in a

very simple way a consistent schedule, such as with HPDF; the only difference is that now

the repetition number for each actor instead of being one equals the number of phases it

has. Moreover, for a DAG, if we fire the actors a number of times equally to their repeti-

tion number in topological order we have a valid schedule.

Formally, let Pa be the least common multiple number of phases from all incoming

and outgoing edges from actor , then we say that the fundamental period of actor a is Pa.

Now let’s first prove that we have a consistent schedule, that is to say that if we fire each

actor  of the graph Pa times then all the tokens produced are consumed, ending up only

with the initial tokens in the buffers. In order to prove this statement, let’s suppose that we

have an extra token in an edge . That means that after a full invocation of actor 1,

 tokens were produced in the edge  but only  were consumed by

TABLE 1. Possible token consumptions for one invocation of actor B 

p
tokens consumed in a fundamental period 
invocation

1 (3, 1)
2 (1, 1, 1, 1)
2 (0, 1, 2, 1)
2 (2, 1, 0, 1)
3 (1, 1, 0, 1, 0, 1)
3 (0, 1, 1, 1, 0, 1)
3 (0, 1, 0, 1, 1, 1)
4 (0, 1, 0, 1,  0, 1, 0, 1)

n 8n

a

a

a1a2 a

m a1a2 δ a1a2( ) m 1–+
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actor 2, leaving  in that edge instead of just . But this is in contra-

diction with the homogeneous property of the HPDF/CSDF graph. Therefore, if each actor

 fires Pa (its repetition number) times we have a consistent schedule.

Furthermore, if now we traverse the graph in topological order firing each actor Pa

times we also have a valid schedule.

Accordingly, in our example, a consistent and valid schedule would be:

(EQ 9)

However, a more efficient schedule in terms of buffer requirements would be:

   (EQ 10)

In the schedule represented by Equation 9 actor A fires four times producing eight

tokens in edge AC, however in the schedule from Equation 10 C, each time A produces

two tokens C consumes them. Therefore, in the first case a buffer of size 8 is needed while

in the second case a buffer of size 2 is enough. 

Furthermore, there can be other valid schedules as well, but we will always get a valid

schedule in the proposed way, provided that such a schedule exists.

a δ a1a2( ) 1+ δ a1a2( )

a

4A( ) 2pB( ) 8C( )D

4 A 2C( )( ) 2pB( )D
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Chapter 6: Modeling Applications with HPDF/CSDF

In this chapter we show how to use HPDF/CSDF to model the gesture recognition

application [37] that was described in Section 3.4.1. We focus on aspects that were not

considered before [25], such as integrating the input to the model and exploiting further

levels of parallelism without losing the modeling advantages introduced before. We also

provide different schedules for this application in Section 6.3, whereas an analysis on how

these different schedules can affect the memory organization of the system and conse-

quently its performance and energy consumption is introduced in Chapter 7. Finally in

Section 6.4 we show how to model the motion detection algorithm [15] that we described

in Section 3.4.2.

6.1  Modeling the input

The input to the gesture recognition system comes from a video camera. In the algo-

rithm, each frame of the video is assumed to have 384 x 240 pixels. Although each pixel

has 3 components, the luminance , and the chrominances  and , in this application

the chroma components are downsampled as described in Section 3.4.1. In a first

approach, we assume that the video output produces all  components and that the

downsampling is performed in Region. We model the input as a cyclo-static actor having

384 x 240 = 92160 =  phases, where each phase corresponds to a different pixel. Using

the same adapted looped notation that we introduced in Section 5.2, the input (source)

actor can be compactly represented as producing  tokens in its fundamental period (1

token on each of  successive phases).

Y Cr Cb

YCrCb

s( )

s 1( )

s



Integrated Input Modeling and Memory Management for Image Processing Applications 44

The static part of our system is now modeled as shown in Figure 18. The model cap-

tures now the pixel-level parallelism present in Region, and also expresses the frame regu-

larity of the algorithm — i.e., after  phases, we start processing a new frame. With this

regular, fine granularity CSDF representation, we can explore implementations with dif-

ferent architectures that may exploit both the pixel and frame parallelism.

In particular, we take advantage of this representation of the algorithm for our imple-

mentation in two aspects. First, we observe that the application can be pipelined into five

blocks, each one processing a different frame. The second improvement is in the memory

organization and is discussed in detail in Chapter 7.

6.2  Modeling Dynamicity

Contour needs to wait until the whole frame is available to start executing. Although

this is true for the worst case, most of the times Contour can fire prior to having the whole

frame. In order to model this, we divide the behavior of Contour into two phases, as shown

in Figure 19: the first one scans the image looking for a contour and continues until it finds

the starting point of one, thus consuming  pixels, without producing any output tokens;

the second phase follows the contour and finds all the contours that are overlapping with

each other. Now instead of processing the whole image, it will only process the subimage

FIGURE 18. Model of the static part of the system
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that goes from where a contour starts until all overlapping contours present are completed,

thus consuming  pixels. The output of this phase consists of  tokens. Each one of

these output tokens is made up of a list of pixels belonging to a contour.

The HPDF condition as previously developed is respected here since no matter how

the processing of Contour gets broken down into phases (based on the actual input image),

the total number of pixels consumed in a frame by Contour equals the number of tokens

produced for that frame by Region. That is,

. (EQ 11)

We model the input edge of Ellipse as a dynamically parameterized CSDF edge, cap-

turing the dynamicity of Contour’s production in the number of phases of Ellipse. The out-

put of Ellipse is a set of parameters describing the ellipse whenever it can fit one to the

contour, so for each of the  contours its output is either one token or zero token. The

Match actor has to wait to have all the  ellipses available before it can execute. The

HPDF condition is also respected here since match has to wait for all the Ellipses found,

that is: 

Yi ki

FIGURE 19. Model of the dynamic part of the system
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 with  (EQ 12)

It is easy to verify that the associated edges remain homogeneous in the sense of

HPDF: an invocation of Contour will produce  tokens, based on the contours found in

the current frame, while Ellipse will consume one token in each of its  phases (dynami-

cally parameterized number of phases configured based on the pattern of EOI tokens on

the edge). Similarly, Ellipse outputs tokens throughout  phases such that the sum of

tokens over the phases is , which is the number of tokens consumed by Match.

6.3  Scheduling

We can have different scheduling strategies depending on the implementation con-

straints that are most important. This is an advantage of dataflow modeling in general, and

the utilization of HPDF enhances this advantage for the targeted class of applications. If

data is passed between actors as vectors of different lengths, so that a static number of vec-

tor tokens whose lengths are dynamic are exchanged between a source and a sink, then we

can have a very simple scheduler in place. In the HPDF/SDF model, if the edges

 and  receive and deliver one vector token each of

length  and  respectively, and we consider a frame granularity, then a valid schedule of

the graph would be

. (EQ 13)

We can apply this concept of variable length tokens to find the schedule for a general

HPDF graph. However if more granularity is expressed in the model, as we have done by

integrating HPDF and CSDF, and if we want to exploit this finer granularity specification,

p pi
i
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we need to have a parameterized schedule and exchange data in a more fine-grained way.

For our application, if it is modeled as in Figure 18 and Figure 19, a valid schedule that

can be easily found exploiting the homogeneous property as shown in Section 5.3 would

be:

. (EQ 14)

In this schedule, the video input fires  times to provide the  pixels of a frame, while

Region also fires  times, once per frame pixel. Contour fires  times, where  is the

number of non-overlapping contours found in the current frame, since in its odd phases it

searches for contours and in its even phases it follows the detected contours, and this hap-

pens  times in each frame. Ellipse fires  times, once for each contour and Match fires

only once per frame. However, this basic schedule can be improved by grouping execu-

tions of Video and Region phases using the following modified schedule:

. (EQ 15)

Efficient quasi-static schedules of this form are enabled by the integrated HPDF/

CSDF methodology that we have developed in this work. Moreover, buffer requirements

decrease as it is shown in Chapter 8. Here, detection of EOI tokens as described before,

can be used to control the loops whose iteration counts are based on dynamically parame-

terized CSDF structures.

6.4  Motion Detection Application

The motion detection algorithm [15] described in Section 3.4.2 can be modeled with 5

actors as shown in Figure 20, where Greylevel takes the grey level of the image, Differ-

ence performs the difference of the two images and compares it with the threshold, Noise
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Reduction implements the erosion filter and outputs the contour of the moving object, and

a Video actor was added to model the input. Count is a high-level processing actor that

identifies and counts the number  of moving blocks in the frame and a following actor

may take a decision depending on this number. We are going to focus on the low-level

processing stage in the dashed box in Figure 20. We observe that both the grey scale com-

putation and the difference with threshold have pixel level parallelism, which is captured

by the model. 

 Using again the homogeneous property as shown in Section 5.3, a valid schedule for

this application would be:

(EQ 16)

We observe that a more efficient schedule in terms of buffer size would be: 

 (EQ 17)

n

FIGURE 20. Modeling of the motion detection application
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Chapter 7: Memory Management

Image processing applications in general require large amounts of memory to imple-

ment buffers between actors. In several cases the amount of memory available on chip is

insufficient, and consequently external memory has to be used. Accessing external mem-

ory can be very costly both in terms of performance and energy consumption and that is

why having an efficient memory organization becomes so critical. 

In this chapter we study different possible memory organizations that can be inferred

from a given application HPDF modeling. In general, the amount of memory needed to

store data produced by the actors of a HPDF model will depend on the input. However,

some actors may consume or produce a fixed amount of data. For this study we focus on a

particular image processing application: the gesture recognition algorithm [37] described

in Section 3.4.1, and a particular hardware platform: the Xilinx Multimedia Board

described in Section 4.3. First we analyze the memory requirements and possible memory

configurations when using HPDF/SDF modeling for this application [26]. In Section 7.1

we discuss these requirements and configurations for a single frame [27] and in Section

7.2 we extend the discussion for a stream of frames by adding some input actor informa-

tion to the model. Then, in Section 7.3 we propose a method to find a convenient memory

organization using HPDF/CSDF to model the application. Finally, in Section 7.4 we

design a reusable memory controller core for the Multimedia Board that can be used to

access the board’s external memory. 
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7.1  HPDF/SDF Modeling, Single Frame

In [27] the application is modeled at a frame level using HPDF/SDF, as shown in Fig-

ure 21. Region consumes three tokens and produces two, each one of them having

384x240 pixels. It can be observed that modules Region and Contour always process the

whole image, even though Contour's output is data dependent. In the dataflow graph we

have two tokens, each representing a whole image as the input needed for Contour. Con-

tour needs to wait to have the whole images before starting with the processing, and will

scan serially each image. 

Consequently, our static memory requirements, for each frame being processed, are

such that we can store three input images and two output images for Region. These frame

sizes are considerably big, in our case 384 x 240 pixels occupy 90 Kbytes, so for storing a

total of five images we would need 450 Kbytes. Our Virtex II chip has 56 selectRAM

blocks, each of them of 18 Kbit, giving a total on-chip storage capacity of 126 Kbytes.

However, external on board memory is available (as described in Section 4.3 we have 5

RAM banks that can store 512 K words 32 bits long each), having a total on-board storage

capacity of 10 Mbytes. The total amount of memory needed for image storing, 450

Kbytes, is then less than 5 % of the external memory capacity available on board. Yet, the

organization of the images in the memory can dramatically change the number of memory

access cycles performed and the number of banks used. These trade-offs also involve the

total power and energy consumption. 

REGION CONTOUR ELLIPSE MATCH2 23 n n p p

FIGURE 21. Modeling of the gesture recognition application with HPDF/SDF with frame 
granularity
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Several strategies are possible for storing these images in the memory. The simplest

one (Case 1) would be to store each of the five images in a different memory bank, using

90 K addresses and the first byte of each word. In this way, the five images can be

accessed in the same clock cycle (Figure 22a). The HPDF/SDF model does not provide

information about the existing pixel level parallelism, however, we observe that Region

reads and writes the images always in the same order. Taking advantage of this fact we can

minimize the number of memory banks used (Case 2). Thus, we can store the images in

only two blocks, using each of the bytes of a memory word for a different image, and still

access all the images in the same clock cycle (Figure 22b). 

On the other hand, the best configuration in order to minimize the number of memory

access cycles (Case 3) would be to store each image in a different bank, but using the four

bytes of each memory word consecutively (Figure 22c). Other configurations are possible:

for example (Case 4) we can have two images per bank, storing 2 pixels of each image in

the same word (Figure 22d). Table 2 summarizes the number of banks and memory access

cycles needed for each of these configurations. 

Case 3 seems to be the most convenient memory organization form, the time associ-

ated to the images reading and writing is 69120 memory access cycles, and the total num-

ber of memory access cycles is also the lowest, 161280, which makes us assume that the

power consumption will be lowest in this configuration though we are using all five mem-

ory banks. However, since Contour does not process pixels in a consecutive way, in order

to use this configuration we may require a higher number of internal buffers. Figure 22

shows all the cases we discussed.
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7.1.1  Power and energy consumption analysis

According to the memory datasheet, each bank consumes a maximum of 1.254 W

when selected and 0.099 W otherwise. Assuming writing and reading cycles that last 3

clock periods (see design implemented in Section 7.4) and working at the maximum mem-

ory supported frequency (133 MHz), we can calculate E, the energy needed to write and

read the images using Equation 18, 

FIGURE 22.  Possible memory organizations for a single frame. a) Case 1: Simple organization, 
each image in a different bank; b) Case 2: Minimum number of banks used. c) Case 3: 
Optimizing number of memory access cycles; d) Case 4: Another possibility
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(EQ 18)

where P is the power consumed by the memory when selected, C is the total number

of memory cycles and fmax is the maximum frequency supported by the memory chips.

The factor of 3 can be reduced to 1 using burst mode for Region memory accesses. 

This analysis assumes that Contour only reads memory location once, that is to say

that internal buffers are available when needed. Table 2 shows the number of cycles

required for each case analyzed as well as the energy consumed.

7.2  HPDF/SDF Modeling, Video Stream

With our model of the application, we have now two strategies to tackle the problem

of having a stream of frames instead of a single frame as input. The first strategy would be

to consider the execution and completion of the four stages of the algorithm serially before

processing the next frame. However, the HPDF/SDF modeling shows frame level parallel-

ism which we can exploit by pipelining the four modules, obtaining in this way a more

efficient implementation. The second strategy would then consist in taking advantage of

this property. The challenge is now to store the images in such a way that the different

modules do not stall waiting for memory access. For instance, if Region is writing in a

memory chip, Contour cannot access at the same time other location of the same chip

TABLE 2. Memory access cycles and energy needed for each configuration analyzed

Configur
ation Banks 

used

Read 
cycles 
Region

Write 
cycles 
Region

Read 
cycles - 
Contour

Total 
non-
overlappi
ng cycles

Total 
number 
of cycles

Energy 
(mJ) at 
max freq

Case 1 5 92160x3 92160x2 184320x1 276480 645120 18.25
Case 2 2 92160x1 92160x1 184320x1 276480 368640 10.43
Case 3 5 23040x3 23040x2 46080x1 69120 161280 4.56
Case 4 3 46080x2 46080x1 92160x1 138240 230400 6.52

E P C
fmax
------------× 3×=
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memory, since there is only a single data bus in each memory bank. It is clear then that the

cases analyzed for the single frame are not well-suited for the multiple frames case. 

Another aspect that we need to consider now is how we obtain in our hardware plat-

form the inputs to Region, since we need to organize adequately the way the images are

stored in memory. As explained in Section 4.3.4, the board video decoder output has the

YCbCr 4:2:2 format, where the 4:2:2 ratio refers to the subsampling of the chroma compo-

nents. It also provides two clocks, one at 27 MHz and the other at 13.5 MHz. Figure 23

explains how the three components of each pixel are serialized. Each of these component

levels is coded with 10 bits. In our analysis we are only going to consider the eight most

significant bits of the digitalization.. 

Figure 24 shows a suitable memory organization to solve these issues. The key idea is

to receive each pixel as it is being received with the Video Acquiring module (V), that

then stores the three images needed by Region in one of the external memory chips. This

module will alternatively use banks 0 and 1 to store the images. While V is writing a new

frame in bank 1, Region will be processing the previous frame stored in bank 0. Thus both

modules can execute at the same time while working in different frames (pipeline). The

same idea is applied for the Region-Contour interface: Region writes its output alternating

banks 2 and 3, so Contour can process a frame while region is processing a new frame.

FIGURE 23. 4:2:2 YUV pixel description: the values of chrominance are subsampled by a factor 
of 2. 
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Contour’s output is data dependent. However, most of the times the number of pixels

belonging to the contours will be much smaller than the total number of pixels of a frame.

Knowing this, we can use the internal selectRAM blocks to write different contours in

them; in the rare cases where there would be more than 56 contours or the storage would

not be enough, we can use other options such as stalling the pipeline or using external

memory bank 4. The main advantage of this approach is that we can have several

instances of ellipse working at the same time with different contours, and they would not

have to wait to have all the contours to start working. Even though Match needs to wait for

all the ellipses to be done before starting, ellipse will complete much faster in this way. 

FIGURE 24. Memory organization to pipeline the algorithm when having a stream of frames: 
V writes the three images in blocks 0 and 1; Region reads from 1 and 0 and writes to banks 2 
and 3; Contour reads from banks 3 and 2 and writes to internal selectRAM; Ellipse reads 
from internal selectRAM. 
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7.2.1  Power and energy consumption analysis

In order to estimate the energy needed to access the external memory per frame, we

can also use Equation 18, where the total number of memory access cycles C is calculated

adding the writing cycles of module V. In this way, for the memory organization proposed

in this section we have a total of 90 K writing cycles from V, 90 K reading cycles from

Region, 45 K writing cycles from Region and 90 K reading cycles from Contour, assum-

ing again the availability of internal buffers for Contour. For the total number of accesses

C = 315 K, the energy consumed by the external memory when selected, assuming maxi-

mum frequency, would be 9.12 mJ. 

7.3  HPDF/CSDF Modeling

In the previous sections we observed that in this particular example the HPDF/SDF

modeling had some limitations: for instance, although frame level parallelism was

expressed by the model, pixel level parallelism also existing in the application was not

explicitly shown. When analyzing different memory organizations we took advantage of

this property, however, as shown in Chapter 6, HPDF/CSDF modeling of the application

expresses both pixel level and frame level parallelism, as well as includes an input actor.

In this section we find an efficient memory organization from the HPDF/CSDF modeling

of the application as shown in Figure 18 and Figure 19.

For our hardware platform, we consider a given memory organization scheme to be

the best from an energy consumption point of view if it is the one that minimizes the num-

ber of accesses to memory chips. This consideration can be justified by noticing that the

power consumption of memory chips is more than ten times higher when accessed, so we

want to minimize the total number of memory accesses. It could be argued that using dif-
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ferent chips also requires more switching logic programmed in the FPGA and that there-

fore, minimizing the number of chips accessed would be also desirable. But, as it is shown

in Chapter 8, the power overhead of a memory controller core is negligible. 

Similarly, we consider a given memory organization scheme to be the best from a per-

formance point of view if it minimizes the total number of non-overlapping accesses to

memory chips, where two accesses are overlapping if they happen at the same time. 

For a sequential frame execution of the algorithm (i.e., without pipelining) a configu-

ration where we use all the possible memory bandwidth at every access is then the best

possible memory organization in terms of performance, since it obviously minimizes the

number of non-overlapping memory accesses. Interestingly, this configuration also mini-

mizes the total number of memory accesses and in this way it is the one that consumes the

least energy as well. 

If we implement a pipelined architecture, however, using the whole bandwidth is not

the best option anymore. Memory management can be better adapted in this case in the

same way we did in Section 7.2, by swapping banks. The difference now is that we are

modeling the application with HPDF/CSDF. Therefore, we can use the efficient schedule

in Equation 15 to infer that Region can process each pixel as it is arriving from Video and

thus, the whole Video output frames do not need to be stored before Region starts process-

ing them. In this way, trying to maximize the memory bandwidth for each set of swapping

banks being used, we proposed to store Region’s output tokens in banks 0, 1, 2 and 3,

swapping the first two with the latter pair as shown in Figure 25. With this scheme, the

total number of memory accesses is 92160 per frame while the total number of non-over-
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lapping accesses for two pipelined frames is 23040 and the corresponding energy con-

sumption is 2.66 mJ. A comparison with the other memory organization schemes

discussed in this chapter is given in Chapter 8.

7.4  Memory Controller Core

In this section we briefly describe the Wishbone compliant slave memory controller

core that we designed. Its Wishbone Datasheet is provided in Appendix D. 

7.4.1  Input and Output Signals

The core interface signals can be classified in two groups: on one side the signals that

are wired to the memory chip and implement the chip access cycles as specified in [24]

and on the other side the signals that provide the Wishbone interface. A description of the

Wishbone specification signals that we used in this design are described in Appendix C.

Figure 26 shows the input signals on the left side and the output and bidirectional ones on

the right side. All the signals communicating with the memory chip have a name starting

with MEMORY_BANK0_ and a suffix _P or _N indicating if these signals are active high

or low respectively. This notation was adopted from a Xilinx core example. The Wishbone
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FIGURE 25. Memory organization inferred from the HPDF/CSDF modeling of the application: 
while region writes the four bytes of banks 2 and 3, Contour reads the previously written four 
bytes from banks 0 and 1.  
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interface signals, on the other hand, are all active high and have a suffix _I when they are

inputs and _O if they are outputs. 

7.4.2  State Diagram

Figure 27 shows a simplified state diagram of our design, where inputs were omitted

to enhance clarity and only possible transitions are shown. The states in dashed circles

have to be present if we want to follow the guidelines from [14] (commented in Section

4.4) and have registered outputs. We implemented two designs, the first one did not have

registered outputs; this feature was added to the second design to follow the guidelines for

reusability. 

FIGURE 26. Input and Output signals from the wishbone memory controller designed
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Our state machine has an asynchronous reset state, after a reset we always go to the

initial state where we wait for the Master core to initiate a cycle and depending on the

cycle type (CTI_I and WE_I) we either start a single or burst read or write cycle. After fin-

ishing the current cycle the handshake signal ACK_O is set to 0 and we return to the initial

state, to wait for the next cycle. Simulations, synthesis results and descriptions of the

experiments done on board are provided in Chapter 8.

RESET
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READ_
MEM

INI_
WRITE

WRITE_
MEM
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DOWN

INI_
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R
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R
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(CTI_I = 010)

WAIT

WAIT

WAIT

FIGURE 27. Simplified State Diagram for the Wishbone Memory Controller, the dashed states 
are needed for the registered design. 
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Chapter 8: Experiments and Results

As we saw in the previous chapters, the new HPDF/CSDF modeling technique intro-

duced in this work provides enough information to infer efficient schedules and memory

organizations. In Section 8.1 we generalized the swapping banks method introduced in

Section 7.2 and then in Section 8.2 we compare the performance and energy consumption

achieved by using this method with other memory organization schemes. In Section 8.3

we describe the experiments performed with the memory controller core designed, as well

as the simulations and synthesis results obtained using Xilinx ISE Project Navigator and

Mentor Graphics Modelsim softwares. Finally Section 8.4 calculates the maximum frame

rate provided by the board’s video decoder chip. 

8.1  Swapping Banks Method Generalization

 In general, we swap banks so that an actor reads from a bank  data from frame ,

while the preceding actor through edge  is writing in another bank data from frame ,

where  and  are “swapping banks” associated with edge . In this way, an efficient

memory organization consists of using half the banks available for each edge. An example

with four memory banks is illustrated in Figure 28. .

8.2  Comparison of Memory Organization Schemes 

In this section we compare different memory organization schemes for the gesture

recognition algorithm [37] described in Section 3.4.1 and the hardware platform is the Xil-

inx Multimedia Board. 

b i

e i 1+

b b′ e
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In Table 3, we compare three cases with frames sized at 384x240 pixels. The first case

considers an effective memory organization that can be achieved from the information

given by the HPDF/SDF model, considering a single frame. In this case, Region needs to

read the frame from memory and then write its output to memory from where Contour will

read it next. An appropriate configuration is achieved by storing the three components of

the frame in the first 22.5K addresses of three memory banks and storing Region’s output

in 22.5K addresses of the other two memory banks. The second case is an efficient mem-

ory organization for a single frame that exploits the pixel-level parallelism shown with the

precise modeling of the input stream (Figure 18). Region does not need to have a whole

frame stored in memory anymore, and a more effective memory configuration is accom-

plished when we write Region’s output in the first 9216 addresses of the 5 banks. 

Case 3 considers a stream of frames, extracting the frame level parallelism repre-

sented in the HPDF/CSDF model, where we swap between two pairs of banks to write

Region’s output in the first 23040 addresses in each case. In this case, at the same time that

Contour is reading Region’s output for frame , Region is writing its output for frame

FIGURE 28. Example of swapping banks
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Ai5 Ai6 Ai8Ai7

Ai13 Ai14 Ai16Ai15
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during frame i
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.(Figure 28). Consequently, the buffer usage gets reduced from 184 Kb between

Region and Contour to 3 bytes while the other edges still have the same worst case buffer

size as the previous representation [25]. This worst case arises when there is only one

body part filling the whole image. However, in a typical scenario, the buffer sizes will be

reduced significantly compared to the HPDF/SDF model of [25]

8.3  Memory Controller

Both memory controllers implemented were simulated using ModelSim and tested on

the Xilinx Multimedia Board. Figure 29 shows a simulation with two reading cycles fol-

lowed by two writing cycles for the memory controller core that does not have output reg-

isters. As it was expected, since the Master requests or sends data until it has the answer

we can have up to three clock cycles. Figure 30 shows a simulation with one reading cycle

followed by a writing cycle for the memory controller that has output registers. In this

case, the number of clock cycles since the Master requests or sends data until it has the

answer can be up to five for a reading request and four for a writing task. 

The Xilinx ISE Project Navigator synthesis results in terms of resources consumed

are similar for both implementations. For the registered implementation the number of

slices used is 101 out of 10752 (0 %), the number of Slice Flip Flops is 175 out of 21504

(0 %) and the number of 4 input LUTs used is 45 out of 21504 (0 %). Since those percent-

TABLE 3. Results of optimized memory organization in different scenarios.

Scenario Total # of access cycles # of non-overlapping cycles Energy (mJ)
Single 
frame w/R

161280 69120 4.56

Single 
frame

92160 18432 2.61

Stream 92160 23040 
(2 frames pipelined)

2.66

i 1+( )
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ages are very low, the XPower analysis utility reports a low dynamic power consumption

(79 mW for a 133 MHz clock frequency) compared to the 367 mW quiescient FPGA con-

sumption. The maximum combinational delay found by the software in both cases is

around 6.2 ns, that is to say a maximum operating frequency around 160 MHz, which is

larger than the maximum operation frequency of the board’s memory chips. 

FIGURE 29. Simulation of two reading cycles followed by two writing cycles for the memory 
controller without output registers; each memory access cycle takes up to three clock cycles
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8.4  Video Speed

As described in Section 4.3 the board’s video decoder provides a new Y value for the

pixels at a rate of 13.5 MHz. Equation 19 shows the relationship between the pixel and the

frame rate.

FIGURE 30. Simulation of a reading cycle followed by a writing cycle of the memory controller 
with output registers. It takes up to five clock cycles to complete a reading cycle and up to four for 
a writing cycle
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 (EQ 19)

That is to say that the frame rate equals the pixel rate divided by the total number of

pixels in a frame. In our case, the video input maximum rate is then approximately 146

frames per second. We notice that the pixel rate is almost ten times slower than the mem-

ory chips maximum operating frequency. 

Frate
Prate

nopixels
---------------------=



Integrated Input Modeling and Memory Management for Image Processing Applications 67

Chapter 9: Conclusions and Future Directions

In this thesis we studied different Dataflow models, we reviewed some image pro-

cessing techniques and we described FPGA-based boards. Then we introduced a new

modeling technique that combines HPDF meta-model and base actor CSDF modeling. We

modeled two different image processing applications and showed that this new technique

exposes more levels of parallelism than previous models, which can be exploited causing

buffer sizes to reduce. Moreover, the model remains homogeneous, enabling us to find

simple schedules. Furthermore, the CSDF firing granularity allows actors (static as well as

dynamic) to fire without having to stall for all the tokens of a complete invocation to be

produced, when this is not necessary. 

We also provided a method to find valid schedules whenever they exist and a method

to infer efficient memory organization from an application HPDF/CSDF modeling infor-

mation. 

Finally, we designed a reusable wishbone compliant memory controller module that

can be used to access the Xilinx Multimedia Board’s memory chips using single accesses

or burst mode. 

In the following sections we suggest some future work directions that could be inter-

esting to explore.

9.1   Integrating DIF

The dataflow interchange format (DIF) [12], [11], is a textual language that captures

the semantics of graphical design tools for DSP systems design. It is designed to be

exported and imported automatically by these tools. DIF supports different kinds of data-
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flow graphs such as SDF, CSDF and PSDF. It would be useful to have HPDF/CSDF also

supported by DIF to take advantage of some of the utilities that are available in design

tools.

9.2  Automatic Hardware Generation

Since our modeling technique exposes parallelism at different granularities, for

instance in the application we modeled we had pixel level parallelism as well as frame

level parallelism, it seems to be a very convenient way to specify an algorithm in order to

produce automatic hardware generation. Taking into account previous work in synthesiz-

able code generation from dataflow specifications [36], [25], [27], and the methods we

proposed in this work to find valid schedules and efficient memory organization directly

from the information given by the model, we consider that another interesting line of

research would be to design a tool that automatically generates synthesizable hardware. 
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 Appendix A - Matlab Scripts

In the following boxes we have the Matlab Scripts used to study the motion detection

algorithm [15] described in Section 3.4.2. 

y2 = gris(ori2);
y3 = gris(ori3);
y6 = gris(ori6);
y7 = gris(ori7);

res = difer(y2,y3,60);
erodo = erosion(res);
erodo = erosion(erodo);
figure
imshow(uint8(255-erodo));

R = uint8(double(ori1(:,:,1))+erodo);
I(:,:,1) = R;
I(:,:,2) = ori2(:,:,2);
I(:,:,3) = ori2(:,:,3);
figure
image(I);

J(:,:,2) = uint8(y2);
J(:,:,3) = uint8(y2);
J(:,:,1) = uint8(y2+erodo);
figure
image(J);

R = double(ori2(:,:,1));
G = double(ori2(:,:,2));
B = double(ori2(:,:,3));

Yori2 =  0.299*R + 0.587*G + 0.114*B;   
Uori2 = -0.147*R - 0.289*G + 0.436*B;   
Vori2 =  0.615*R - 0.515*G - 0.100*B;

R = Yori2 + 1.140*(Vori2);
G = Yori2 - 0.395*(Uori2) - 0.581*(Vori2);
B = Yori2 + 2.032*(Uori2);

ver(:,:,1) = uint8(R);
ver(:,:,2) = uint8(G);
ver(:,:,3) = uint8(B);
image(ver);

function res = difer(a,b,thre);

res = abs(a-b);
l = size(res);
for i=1:l(1)
    for j=1:l(2)
        if (res(i,j) < thre)
            res(i,j) = 0;
        end
    end
end         

function Y = gris(M);

R = double(M(:,:,1));
G = double(M(:,:,2));
B = double(M(:,:,3));

Y = 0.299*R + 0.587*G + 0.114*B;

function sal = erosion(M);

l = size(M);
N = uint8(M);
for i = 2:(l(1)-1)
    for j = 2:(l(2)-1)
        if (N(i,j) ~= 0)
            vecinos = [N(i-1,j) 
                             N(i+1,j) 
                             N(i,j-1) 
                             N(i,j+1)];
            M(i,j) = min(vecinos);
        end
    end
end

sal = M;



Integrated Input Modeling and Memory Management for Image Processing Applications 70

 Appendix B - Multimedia Board Brief Tutorial

This appendix is a simple tutorial to rapidly become familiar with the Xilinx Multi-

media Board and its programming environment, basic verilog knowledge is assumed.

More advanced tutorials for general FPGA design and programming can be found in Xil-

inx’s webpage. Some manuals also available online such as [30], [31], [33] and [34] pro-

vide more detailed information. 

B.1  Creating a Design

In order to specify a design we use Xilinx’s ISE software. First we need to create a

new project in the ISE Project Navigator, selecting New Project from the file menu. A

wizard will help us create the new project, the important thing is to select the board device

which is xc2v2000 from virtex II family, ff896 package and -4 speed.

After creating the project we select the New source option in the Project menu. We

can choose different types of files; in this example we are going to work with the Verilog

Module type. Figure 31 shows the verilog code of our first design which consists only of

connecting the user input switches to the user output leds.

module simple1(SW1,SW2,Led1,Led2);
    input SW1;
    input SW2;
    output Led1;
    output Led2;

assign Led1 = SW1;
assign Led2 = SW2;
 
endmodule

FIGURE 31. First design: controlling leds with switches. 
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B.2  Programming the FPGA chip

The following step is to assign package pins in the user constraints section. In [31] we

can find which pins are connected to the leds and switches, Table 4 shows which pins were

assigned to our design signals (always check your board manual before assigning pins). 

Once the pins are assigned, we need to select the Synthesize, Implement Design and

Generate Programming File options in this order. Then we connect Xilinx’s kit power sup-

ply to the multimedia board, the MultiLINX Flying Lead Connector to the board and to

the Parallel Cable IV Pod, power up the Parallel Cable IV, go to the section Configure

Device (iMPACT), choose Boundary-Scan Mode and then Automatically connect to cable

and identify Boundary-Scan Chain. After these settings are done, right click over the Xil-

inx xc2v2000 device and choose Program.

B.3  Other designs

The first design we introduced was combinational, but we can also have very simple

sequential designs. In this design we switch each led alternatively, however, since the

board clock frequency is 27 MHz, we need to implement a frequency divider in order to

appreciate the changes. We divide the board master clock using a 22 bits counter, achiev-

ing in this way a 6.75 Hz switching frequency. The clock divider code shown in Figure 32

is an independent module instantiated by a top module. After the design is ready, we fol-

TABLE 4.  Pin numbers that are connected to leds and switches in the Multimedia Board 

Signal 
Name

Pin 
number

Led1 B27
Led2 B22
SW1 D10
SW2 F14
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low the same previous steps for downloading the top module’s programming bit stream to

the board, the only difference is that now we also have to assign pin AH15 to our clock

signal. 

In order to use communication ports such as the RS-232 port, IP cores can be down-

loaded from [18]. A PC can communicate with the board serially through applications

such as HyperTerminal, Terminal or Matlab, using an RS-232 straight cable where only

pins 2 (Rx), 3 (Tx) and 5 (Ground) are needed. Furthermore, the board’s serial port selec-

tion switches should be set properly, for instance in the XO position.

module clock_counter(MASTER_CLOCK, reset, slow_clock);
input MASTER_CLOCK;
input reset;
output slow_clock;

reg[21:0] clock;
assign slow_clock = clock[21:21];

always @(posedge MASTER_CLOCK or posedge reset) begin
    if (reset)
        clock <= 0; 
    else
        clock <= clock + 1;
    end
end
endmodule

FIGURE 32. Clock division module
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 Appendix C - Wishbone Interface Specification Overview

This appendix compiles some Wishbone signals and cycles specified in [17] where

the complete specification is provided.

C.1  Signals

All the Wishbone interface signals are active high and the ‘_I’ or ‘_O’ tags are

attached to the signal names to indicate if they are inputs or outputs of a particular core.

The specification defines signals for the syscon module, a master core and a slave core. 

The syscon module generates signals CLK_O to coordinates all activities for the

internal logic within the Wishbone interconnect and RST_O to force all Wishbone inter-

faces to restart. 

Some of the signals that are common to master and slave interfaces are: CLK_I, the

clock input coordinates all activities, all output signals are registered at the rising edge of

[CLK_I] and all input signals are stable before its rising edge; DAT_I() and DAT_O():

(data input/output array) are used to pass binary data, their boundaries are determined by

the port size, with a maximum port size of 64-bits (e.g. [DAT_I(63..0)]); RST_I is the reset

input and forces the Wishbone interface to restart. Furthermore, all internal self-starting

state machines will be forced into an initial state. 

Some Master signals are: ACK_I: (acknowledge input), when asserted indicates the

normal termination of a bus cycle; ADR_O(): (address output array) is used to pass a

binary address; CYC_O (cycle output), when asserted indicates that a valid bus cycle is in

progress, it is asserted for the duration of all bus cycles; SEL_O() (select output array)

indicates where valid data is expected on the [DAT_I()] signal array during READ cycles,
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and where it is placed on the [DAT_O()] signal array during WRITE cycles; STB_O:

(strobe output) indicates a valid data transfer cycle; WE_O: (write enable output) indicates

whether the current local bus cycle is a READ or WRITE cycle, it is negated during

READ cycles, and is asserted during WRITE cycles.

The corresponding slave signals are: ACK_O that indicates the termination of a nor-

mal bus cycle, ADR_I(), CYC_I, SEL_I() and STB_I that indicates that the SLAVE is

selected.

Additional signals for registered cycles: CTI_IO(): (Cycle Type Idenfier) Address Tag

provides additional information about the current cycle. The master sends this information

to the slave which can use this information to prepare its response for the next cycle. The

other signal is BTE_IO() (Burst Type Extension) sent by the master to the slave, which

provides additional information about the current burst. Table 5 describes the different

CTI and BTE values.

C.2  Wishbone Registered Cycles

Figure 33 shows an example of a Wishbone classic registered reading cycle. 

TABLE 5. Cycle Type Identifiers (columns 1 and 2) and Burst Type Extensions (columns 3 and 4)

CTI_O(2:0) Description BTE_IO(1:0) Description
000 Classic cycle 00 Linear burst
001 Constant address burst cycle 01 4-beat wrap burst
010 Incrementing burst cycle 10 8-beat wrap burst
011 Reserved 11 16-beat wrap burst
100 Reserved
101 Reserved
110 Reserved
111 End-of-Burst
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FIGURE 33. Wishbone classic registered reading cycle
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 Appendix D - Wishbone Static Memory Controller Datasheet

        

TABLE 6. Revision 1.0 - Wishbone Memory Controller Core Datasheet

Type of interface: slave
Port size: 32-bit
Granularity: 8-bit 
Maximum operand size: 32-bit
Data Organization: little endian
Interface signals:

ACK_O
ADR_I (18:0)
SEL_I(3:0)
STB_I
WE_I
CTI_I
BTE_I  -- only linear burst (00) supported. Classic
                 Wishbone is provided by default
CYC_I
CLK_I
RST_I
DAT_I(31:0)
DAT_0(31:0)
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