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Deep neural networks (DNNs) have achieved significant success in several fields

including computer vision, natural language processing, and robot control. The

common philosophy behind these success is the use of large amount of annotated

data and end-to-end networks with task-specific constraints and priors implicitly in-

corporated into the trained model without the need for careful feature engineering.

However, DNNs are shown to be vulnerable to distribution shifts and adversarial

perturbations, which indicates that such implicit priors and constraints are not suf-

ficient for real world applications. In this dissertation, we target three applications

and design task-specific constraints and priors for improved performance of deep

neural networks.

We first study the problem of subject clustering, the task of grouping face

images of the same person together. We propose to utilize the prior structure in

the feature space of DNNs trained for face identification to design a novel cluster-

ing algorithm. Specifically, the clustering algorithm exploits the local neighborhood



structure of deep representations by exemplar-based learning based on k-nearest

neighbors (k-NN). Extensive experiments show promising results for grouping face

images according to subject identity. As an example, we apply the proposed clus-

tering algorithm to automatically curate a large-scale face dataset with noisy labels

and show that the performance of face recognition DNNs can be significantly im-

proved by training on the curated dataset. Furthermore, we empirically find that

the k-NN rule does not capture proper local structures for deep representations

when each subject has very few face images. We then propose to improve upon the

exemplar-based approach by a density-aware similarity measure and theoretically

show its asymptotic convergence to a density estimator. We conduct experiments

on challenging face datasets that show promising results.

Second, we study the problem of metal artifact reduction in computed to-

mography (CT). Unlike typical image restoration tasks such as super-resolution and

denoising, metal artifacts in CT images are structured and non-local. Conventional

DNNs do not generalize well when metal implants with unseen shapes are presented.

We find that the imaging process of CT induces a data consistency prior that can

be exploited for image enhancement. Based on this observation, we propose a dual-

domain learning approach to CT metal artifact reduction. We design and implement

a novel Radon inversion layer that allows gradients in the image domain to be back-

propagated to the projection domain. Experiments conducted on both simulated

datasets and clinical datasets show promising results. Compared to conventional

DNN-based models, the proposed dual-domain approach leads to impressive metal

artifact reduction and has improved generalization capability.



Finally, we study the problem of robust classification. In the past few years,

the vulnerability of DNNs to small imperceptible perturbations has been widely

studied, which raises concerns about the security and robustness of DNNs against

possible threat models. To defend against threat models, Samangoui et al. proposed

DefenseGAN, a preprocessing approach which removes adversarial perturbations by

projecting the input images onto the learned data prior. However, the projection

operation in DefenseGAN is time-consuming and may not yield proper reconstruc-

tion when images have complicated textures. We propose an inversion network to

constrain the initial estimates of the latent code for input images. With the pro-

posed constraint, the number of optimization steps in DefenseGAN can be reduced

while achieving improved accuracy and robustness. Furthermore, we conduct em-

pirical studies on attack methods that have claimed to break DefenseGAN, which

shows that on-manifold robustness might be the key factor for ensuring adversarial

robustness.
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Chapter 1: Introduction

1.1 Motivation

Deep learning has achieved significant success in several fields including com-

puter vision, natural language processing, and robot control. The common philoso-

phy behind these success is the use of large amount of annotated data and end-to-

end networks with proper architectural design, which enforces domain-specific con-

straints and priors into the learning model while requiring a minimal amount of fea-

ture engineering. The most successful example is the development of convolutional

neural networks (CNNs) for images and videos. CNNs consist of a set of convolu-

tional, nonlinear, pooling, and fully connected layers, which resembles human visual

cortex system. Mathematically, the translation-equivariant property for convolution

operation is suitable for processing natural images and videos. CNNs have shown to

be extremely successful in low-level visual tasks such as super-resolution, deblurring,

and high-level visual tasks such as classification, segmentation, and understanding.

Another example is the well-developed recurrent neural networks (RNNs) in se-

quential data modeling. Unlike CNNs which treat each data independently, RNNs

use hidden state to model the dependency between data samples. RNNs have been

widely adopted for audio, natural language, and time sequence processing. Recently,

1



the work of deep image prior (DIP) [102] shows that the network architecture itself

is a suitable prior for image processing tasks such as super-resolution, denoising,

and inpainting.

Despite these successes, DNNs are shown to be vulnerable under distribution

shift, i.e. DNNs do not generalize well when the test domain has a different distri-

bution from the training domain, and adversarial examples, i.e. small perturbations

in the input can lead to undesirable changes in the output. A pioneering study by

Ilyas et al. [40] found out that DNNs trained with empirical risk minimization tend

to exploit non-robust features in images to achieve high accuracy, which indicates

that the priors and constraints enforced by the domain-specific architectural de-

signs are not sufficient in order to build reliable systems for real world applications.

In this dissertation, we aim to address these problems by designing deep learning

constraints and priors for improved generalization and adversarial robustness.

1.2 Overview

The idea of imposing constraints and priors to regularize the learning model

can be traced back to the classical Bayesian inference approach. In the Bayesian

approach, the prior knowledge about the unknown parameters of interest is speci-

fied by a probability distribution. After acquiring new data, the belief about the

parameters is updated via Bayes’ Theorem. To ensure tractability and applicabil-

ity, prior distributions are often selected to have simple analytical forms. With the

development of deep learning, constraints and priors can be purely empirical and

2



complicated. For example, generative adversarial networks (GANs), an empirical

model capturing the distribution of natural images, can be used as an image prior

to perform tasks including super-resolution, colorization and inpainting without any

supervision [5, 32]. Works in image editing [17, 46, 124] show that imposing similar-

ity constraints in deep feature space leads to superior performance than conventional

L1/L2 constraints in image space.

In this dissertation, we target three applications for which we design deep

learning constraints and priors for improved generalization and adversarial robust-

ness. In Chapters 2 and 3, we study the problem of subject clustering: grouping

face images of the same person together. Since DNNs trained for face identifi-

cation induce a special structure for the extracted features, we propose to use this

prior knowledge in the design of novel clustering algorithms. Specifically, we present

Proximity-Aware Hierarchical Clustering (PAHC) for unconstrained faces. The clus-

tering algorithm exploits the local structure of deep representations and hence has

improved capability for grouping face images according to subject identity. As a

demonstrative example, we apply PAHC to automatically curate a large-scale face

dataset, i.e. MS-Celeb-1M, and show that the performance of face recognition DNNs

can be significantly improved by training on the curated dataset.

In Chapter 4, we study the problem of metal artifact reduction in computed

tomography (CT). Unlike typical image restoration tasks such as super-resolution

and denoising, metal artifacts in CT images are structured and non-local. Conven-

tional DNNs do not generalize well when metal implants with unseen shapes are

presented. To address this issue, we show the imaging process of CT induces a
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data consistency prior that can be exploited for image enhancement. Based on this

finding, we propose the Dual Domain Network (DuDoNet) for CT metal artifact re-

duction. In DuDoNet, we introduce a novel Radon inversion layer which uses data

from the projection domain to regularize image domain enhancement. The proposed

dual domain approach leads to impressive metal artifact reduction.

In Chapter 5, we study the problem of robust classification. In the past few

years, the vulnerability of DNNs to small imperceptible perturbations has been

widely studied. To defend against the threat models, Samangoui et al. proposed

DefenseGAN, a preprocessing approach which removes adversarial perturbations.

We improve upon DefenseGAN by finding an inversion network to provide initial

estimates to the latent code of input images. With the initial estimates, the number

of optimization steps in DefenseGAN can be reduced while achieving improved accu-

racy and robustness. Furthermore, we conduct empirical studies on attack methods

that have claimed to break DefenseGAN partially (55% accuracy on MNIST) or

completely (3% accuracy on MNIST).

1.3 Contributions

• In Chapter 2, we propose an exemplar-based learning approach for face subject

clustering.

– We present a similarity measure based on exemplar-based large-margin

classification. With the proposed similarity measure, clusters are formed

by applying hierarchical clustering.
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– We show the proposed method yields promising empirical results.

– We apply the proposed clustering algorithm to automatically curate a

large-scale dataset with noisy labels. DNNs trained on the curated dataset

achieve significant performance improvement.

• In Chapter 3, we propose a density-based similarity measure for face subject

clustering.

– We propose to measure the similarity between deep features by a density-

aware measure. Clusters are then formed by the hierarchical clustering

algorithm.

– We mathematically show that the proposed similarity measure asymp-

totically converges to a density estimator.

– We conduct extensive experiments and show that the proposed density-

aware clustering method outperforms baseline approaches.

• In Chapter 4, we propose a dual-domain learning approach for CT metal

artifact reduction.

– We propose an end-to-end trainable dual-domain refinement network for

metal artifact reduction. The network is able to recover details corrupted

by metal artifacts.

– We propose a Radon inversion layer to enable efficient end-to-end dual-

domain learning.

– We propose a Radon consistency loss to penalize secondary artifacts in

the image domain. Gradients of the loss in the image domain are back-
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propagated to the sinogram domain for improved consistency.

– Experimental evaluations conducted on CT images with simulated and

real metal artifacts show the proposed dual-domain learning approach

achieves superior performance against baseline methods.

• In Chapter 5, we propose an inversion algorithm to improve the efficiency and

robustness of DefenseGAN.

– We propose to train an inversion network to constrain the initial estimates

of the latent code for input images.

– We propose to improve the attack detection accuracy of DefenseGAN by

using the semantic distance instead of the image space L2 distance.

– We show that the proposed inversion method improves the efficiency of

DefenseGAN.

– We evaluate attacks that claim to break DefenseGAN, and show they

are either not successful or some flaws exist when crafting adversarial

examples.
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Chapter 2: Proximity-Aware Hierarchical Clustering of Faces

2.1 Overview

In this chapter, we propose a face clustering algorithm called “Proximity-

Aware Hierarchical Clustering” (PAHC) that exploits the local structure of deep

representations. In the proposed method, a similarity measure between deep features

is computed by evaluating linear SVM margins, which are learned using nearest

neighbors of sample data. Clusters are then formed by applying agglomerative

hierarchical clustering (AHC). We evaluate the clustering performance using four

unconstrained face datasets, including Celebrity in Frontal-Profile (CFP), Labeled

Faces in the Wild (LFW), IARPA JANUS Benchmark A (IJB-A), and IARPA

JANUS Benchmark B (IJB-B) datasets. Experimental results demonstrate that the

proposed approach achieves improved performance over state-of-the-art methods.

Moreover, we show that the proposed clustering algorithm has the potential to

actively learn robust deep face representations by first harvesting sufficient number

of unseen face images through curation of a large-scale dataset, e.g. the MS-Celeb-

1M dataset. By training DNNs on the curated MS-Celeb-1M dataset which contains

over three million face images, improved representations for face images are learned.
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2.2 Introduction

In this chapter, we address the problem of face clustering, especially for the

scenario of grouping a set of face images without knowing the exact number of

clusters. Face clustering algorithms provide meaningful partitions for given face

image sets by combining faces with similar appearances while separating dissimilar

ones. Ideally, face images in a partition should belong to the same identity, while

images from different partitions should not. Identity-sensitive face clustering is

an active research area in computer vision with several applications, including but

not limited to organizing personal pictures, summarizing images from social media,

and surveillance applications. Clustering is also important when training a data-

hungry deep convolutional neural network (e.g. DenseNet [39] or ResNet [36]) for

face verification, classification, or detection tasks. Recently, Microsoft Research

released the MS-Celeb-1M dataset [34], which contains 1M celebrity names and

over 8 million face images. Due to its diversity, this very-large dataset has the

potential to improve the performance of face recognition systems. However, since

the MS-Celeb-1M dataset has been built from the outputs of search engines, labeling

errors could adversely affect the training of deep networks. An effective approach to

tackle this problem is to apply a reliable clustering algorithm on the MS-Celeb-1M

training dataset to harvest sufficient number of face images.

Despite extensive studies on general clustering algorithms over the past few

decades, face image clustering remains to be a difficult task. The difficulties are

mainly two-fold. Since face images of a person may have large variations in illu-
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mination, facial expressions, occlusion, age, and pose, it is challenging to measure

the similarity between two face images. The other issue is that without knowing

the actual number of clusters, many well-established clustering algorithms, such as

k-means, may not be effective.

To address these problems, we first apply a DNN to extract deep features from

given face images, which are robust to face variations. We then define a novel simi-

larity measure that is aware of local information. Based on the similarity measure,

AHC is applied to yield face clusters. Unlike [118], our approach does not require

the exact number of clusters as a prior and repeated training of a DNN. Unlike

in [73] where a similarity measure between two points is computed only through

the presence or absence of nearest neighbors, our approach measures the similarity

between neighborhoods directly in the feature space: neighborhood geometries are

first transferred to an evaluation hyperplane, pairwise similarity is then obtained by

evaluating the points on the hyperplanes.

This work builds upon [60]. In addition to the evaluations presented in [60], we

further study one application of the proposed method in active learning. Specifically,

we first curate the MS-Celeb-1M dataset using the proposed PAHC algorithm with a

light-weight DCNN. We then train two different DCNNs on the curated MS-Celeb-

1M for improved face representations. We also carry out extensive experiments

on the LFW and IJB-B datasets and gain deeper insights on how the proposed

algorithm performs when the given data has very distinct distributions.

The rest of the chapter is organized as follows. We summarize related works

in Section 2.3. The proposed algorithm is detailed in Section 2.4. In Section 2.5, we
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Figure 2.1: Overall pipeline for the proposed PAHC algorithm. Unlabeled face
images are preprocessed and passed through a DNN to obtain deep features. The
Proximity-Aware similarity between each pair of features is then computed. Based
on the Proximity-Aware similarity, hierarchical clustering is applied to yield the final
image clusters.

carry out qualitative and quantitative evaluations and demonstrate the effectiveness

of the proposed approach. Finally, conclusions are given in Section 2.6.

2.3 Backgrounds and Related Works

2.3.1 Deep Representation

Recent advances related to DNNs have brought about impressive improve-

ments for image classification and verification tasks [53, 95], which can be attributed

to their ability to extract discriminative information from each image and represent

it compactly. DCNNs trained on labeled face images have been used in [91, 98] for

face recognition tasks. Inspired by these advances, we apply a DCNN to extract

deep features from the given faces that retain sufficient amount of information to

distinguish among different identities.
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2.3.2 Conventional Clustering Algorithms

Clustering algorithms can be generally categorized into partitioning and ag-

glomerative approaches. Both approaches build upon a similarity graph G(V,E)

defined for the given data points. The graph can be either fully connected, in

ε-neighborhood or in k-nearest neighbors. For partitioning approaches, given the

number of clusters, k-means [64] iteratively updates the group centers and corre-

sponding members until convergence. Spectral clustering finds the underlying struc-

ture based on graph Laplacian [72, 93, 121]. For agglomerative approaches [31, 55],

groups of data points are merged whenever the linkage between them is above some

threshold. Finding the proper similarity measure is one of the major tasks in de-

signing clustering algorithms. Traditional approaches use non-increasing functions

of pairwise distance as the similarity measure, e.g. exp(−d(xi,xj)2/σ2).

2.3.3 Sparse Subspace Clustering

Recently, sparse subspace clustering (SSC) [20, 21] and low-rank subspace

clustering (LRSC) [62, 104], which exploit the subspace structures in a dataset, have

gained significant attention. Both methods assume data points have low-dimensional

structures. By minimizing the reconstruction error under the sparsity/low-rank

criterion, the similarity matrix can be obtained from the corresponding sparse/low-

rank representation. However, SSC and LRSC are computationally expensive and

do not scale well. In [78], dimensionality reduction and subspace clustering are

simultaneously learned to achieve improved performance and efficiency. In [120],
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high clustering performance is achieved on the Extended Yale B dataset, which

contains face images in controlled variations. However, in unconstrained settings,

face images no longer have low-dimensional structure, making SSC ineffective.

2.3.4 Image Clustering based on Deep Neural Networks

Yang et al. [118] proposed learning deep representations and image clusters

jointly in a recurrent framework. Each image is treated as a separate cluster at

the beginning, and a deep network is trained using this initial grouping. The deep

representation and cluster members are then iteratively refined until the number of

clusters reached the predefined value. Zhang et al. [129] proposed to cluster face im-

ages in videos by alternating between deep representation adaption and clustering.

Temporal and spatial information between and within video frames is exploited to

achieve high purity face image clusters. Otto et al. [73] proposed the Approximate

Rank-Order clustering algorithm that modifies the algorithm in [132] by (i) using

deep representations of images (ii) considering only the absence and presence of the

shared nearest neighbors and (iii) transitively merging only once. Superior cluster-

ing results and computational time are achieved from the modifications. In [94],

the authors formulated the clustering problem as solving a conditional random field

model built upon deep representations. The proposed ConPaC algorithm outper-

forms Approximate Rank-Order on many datasets.

Different from these studies, we propose a clustering algorithm that does not

require (i) training a deep network iteratively [118] and (ii) partial identity informa-
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tion [129]. Our approach focuses on exploiting the neighborhood structure between

samples and implicitly performs domain adaptation to achieve improved clustering

performance.

2.3.5 Domain Adaptation

Domain adaptation aims at transferring features learned in the source domain

to some unseen target domain. In the context of subject clustering, domain adap-

tation algorithms can be applied to learn reliable feature representations for unseen

subjects. However, most of the existing methods [25, 65, 86, 101] target closed set

domain adaptation, where both source and target domains contain the same classes.

In subject clustering, unsupervised open set domain adaptation [10], where source

and target domains only share a few (or no) categories, should be considered.

2.4 Proposed Method

In this section, we introduce our clustering algorithm, illustrated in Figure 2.1.

The face images first pass through a pre-trained face DCNN model to extract deep

features. Then, we compute the Proximity-Aware similarity scores using linear

SVMs trained with corresponding neighborhoods of the samples. Finally, AHC

is applied on the similarity scores to determine the cluster labels to each sample.

The details of each components are described in the following subsections.
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2.4.1 Notation

We denote the set of face images as I = {I1, . . . , IN}. Our goal is to assign

labels L = {l1, . . . , lN} for each image to indicate the cluster it belongs to. The

images are first passed through a pre-trained DCNN model to extract the deep

features, which are then normalized to unit length. Specifically, let fθ : I → X be

the DCNN network parameterized by θ, and g : X → X be the normalization. The

corresponding deep representations for the face images are given by X = g ◦fθ(I) =

{x1, . . . ,xN}. For each representation xi, we define VK(xi) as the set of K-nearest

neighbors of xi, including xi itself.

2.4.2 Proximity-Aware Similarity

Recent advances in DCNN have yielded great improvements for face verifica-

tion task, which uses cosine distance as the similarity measure to decide whether

two faces belong to the same subject. Given two features xi,xj ∈ X on the unit

hypersphere {x : ‖x‖ = 1}, the similarity between them is computed by

s(xi,xj) = xTi xj. (2.1)

The pairwise distance matrix D in this case is simply

[D]i,j = 1− s(xi,xj). (2.2)

14



Since DCNNs trained on large datasets extract discriminative features for images,

distance measure based on (2.2) can be used to distinguish faces with distinct identi-

ties if they have similar distribution as the training dataset. However, the difference

in distribution encountered in many real-world applications degrades the perfor-

mance significantly. Inspired by previous works [73, 132], we measure similarity

based on the neighborhood structure of deep features.

To have a formulation that is able to take neighborhoods VK(xi), VK(xj) into

account when measuring the similarity between xi and xj, we rewrite the inner

product as

s(xi,xj) =
xTi xj + xTj xi

2 . (2.3)

In (2.3), the similarity between xi and xj is evaluated by averaging two asymmetric

measures: How similar is xj from the view of xi and how similar is xi from the

view of xj. Specifically, xTi xj can be interpreted as evaluating xj on hyperplane

Hi = {x : xTi x = 0} and xTj xi can be interpreted as evaluating xi on hyperplane

Hj = {x : xTj x = 0}. This observation allows us to generalize the asymmetric

measure as follows.

Given a hyperplane Hwi,bi = {x : wT
i x + bi = 0} which contains information

about VK(xi), the asymmetric similarity from Hwi,bi to some set S is defined as

Hwi,bi(S) = 1
|S|

∑
x∈S

[wT
i x + bi]. (2.4)

Following (2.3), the generalized similarity measure, which we call “Proximity-Aware
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Figure 2.2: Proximity-Aware similarity. Circles in blue, yellow, green represent
samples with different identities. Blue dashed circles delineate the neighborhood
of xi (or V6(xi)) while green dashed circles delineate the neighborhood of xj (or
V6(xj)). The blue hyperplane is obtained by solving (2.7), treating VK(xi) as positive
samples, and a subset of X\VK(xi), containing blue squares in this case, as negative
samples. The green hyperplane is obtained in the same way. The Proximity-Aware
similarity between xi and xj is evaluated using (2.5). The length of the blue dashed
line and the green dashed line reflects how similar are the two neighborhoods.

similarity”, is the average of two asymmetric measures from Hwi,bi to VK(xj) and

from Hwj ,bj to VK(xi):

sPA(xi,xj) =
Hwi,bi(VK(xj)) +Hwj ,bj(VK(xi))

2 . (2.5)

Unlike cosine similarity, sPA is not bounded. We introduce a nonlinear transforma-

tion to define the Proximity-Aware pairwise distance

[DPA]ij = 1− 2
π

arctan [sPA(xi,xj)] . (2.6)

This choice of nonlinearity is for experimental simplicity. One can also consider

[DPA]i,j = exp(−sPA(xi,xj)). The above construction helps us to cast the problem

of defining the similarity function between neighborhoods into finding hyperplanes
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Hwi,bi . Our ultimate goal is to find a similarity measure for each pair of feature

vectors that reflects whether they belong to the same class. We conjecture that

Hwi,bi and Hwj ,bj should have the following property:

Hwi,bi(·) has a large value when evaluating on sets that are near VK(xi), and has a

small value otherwise.

The constraint not only forces the similarity measure to be locally geometry-sensitive

(proximity-aware) but also adaptive to the data domain. This justifies the use of lin-

ear classifiers to separate positive samples VK(xi) from their corresponding negative

samples. Figure 2.2 shows a demonstrative example. This approach is analogous to

the one-shot similarity technique [110]. In this work, we use the linear SVM as our

candidate algorithm for finding hyperplanes. Specifically, we solve

min
u

1
2uTu + Cp

Np∑
k=1

max[0, 1− ykuTzk]2

+Cn
Nn∑
k=1

max[0, 1− ykuTzk]2, (2.7)

where u = [wT b]T and zk = [xTk 1]T . We treat VK(xi) as positive samples with

cardinality Np, and a subset of X\VK(xi) as negative samples with cardinality Nn.

yk = +1 for positive samples and yk = −1 for negative samples. The regularization

constants Cp and Cn are given by Cp = C Np+Nn
Np

and Cn = C Np+Nn
Nn

.

In [110], Linear Discriminant Analysis (LDA) is used as the classifier to eval-
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uate one-shot similarity score. However, we do not consider LDA as our candidate

because the bimodal Gaussian prior assumption is not always satisfied for the posi-

tive and negative samples drawn from real-world datasets. In the proposed method,

negative samples often consist of features from different identities with variations

from nuisance factors, which do not obey a single Gaussian distribution.

2.4.3 Positive and Negative Sets Selection

The Proximity-Aware Similarity introduced in Section 2.4.2 is constructed by

associating each data point xi with its corresponding positive and negative samples.

In this work, we propose to first construct the nearest neighbor list NNListxi for

each data sample xi, where NNListxi [1] = xi. The K-nearest neighbors of xi, VK(xi)

then corresponds to NNListxi [1 : K]. We select NNListxi [K ′ : N ] as the negative

samples. Intuitively, the performance of the proximity-aware similarity depends on

the true positive rate of positive samples and true negative rate of negative samples.

In Section 2.5, we show how parameters (K,K ′) affect the clustering performance

in detail.

2.4.4 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering [31, 55] initializes all samples as separate

clusters. Based on the pairwise distance matrix D measured from the features,

clusters are iteratively merged whenever the cluster-to-cluster distance is below some

threshold η. The hierarchical clustering algorithm, denoted as Hierarchical(D, η),
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generates the cluster assignments L for all the faces in I. In our work, we use average

linkage as a measure of cluster-to-cluster distance. Specifically, the average linkage

between two clusters Ci and Cj can be computed by

d(Ci, Cj) = 1
|Ci|

1
|Cj|

∑
u∈Ci

∑
v∈Cj

d(u, v). (2.8)

The Proximity-Aware Hierarchical clustering is then characterized by the following

algorithm:

LPA ← Hierarchical(DPA, η). (2.9)

2.5 Experimental Evaluations

In this section, we first show one application of the proposed algorithm in

active learning. In Section 2.5.1, the PAHC algorithm is applied to curate the re-

cently released MS-Celeb-1M [34] dataset. During the curation process, deep face

representations are extracted by a light-weight DCNN [13] pretrained on CASIA-

WebFace [119]. The CASIA-WebFace dataset contains 10,575 subjects and 494,414

images, which provides sufficient diversity and is in a reasonable scale for a DCNN

with small capacity (i.e. number of parameters). In Section 2.5.2, we demonstrate

how the curated large-scale dataset can aid in learning improved feature represen-

tations. Specifically, we train two DCNNs with different network capacities on the

curated dataset, and show that both networks outperform the one trained on the

smaller CASIA-WebFace dataset.

For the second part, we use the two DCNNs trained in Section 2.5.2 to carry
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out extensive experiments on four datasets: LFW, CFP, IJB-A, and IJB-B. As

shown in Figure 2.5, the four datasets have distinct variations in cluster sizes: CFP

consists of uniform clusters, LFW consists of a large amount of singletons, IJB-A

consists of clusters with diverse sizes, and IJB-B has the largest variations.

To compute Proximity-Aware similarity, we use the LIBLINEAR library [23]

with L2-regularized L2-loss primal SVM. The parameter C is set at 10 throughout

the experiments.

MS-Celeb-1M [34]:

Microsoft Research recently released this very large face image dataset, consist-

ing of 1M identities. The training dataset of MS-Celeb-1M is prepared by selecting

top 99,892 identities from the 1M celebrity list. There are 8,456,240 images in total,

roughly 85 images per identity. This dataset is designed by leveraging a knowledge

base called “freebase”. Since face images are created using a search engine, label-

ing noise may be a problem when this dataset is used in supervised learning tasks.

We demonstrate the effectiveness of the proposed clustering algorithm in curating

large-scale noisy dataset in Section 2.5.1. We use aligned images provided with the

dataset.

Celebrities in Frontal-Profile (CFP) [92]:

This dataset contains 500 subjects and 7,000 face images. Of the 7,000 faces,

5,000 are in frontal view, and the remaining 2,000 are in profile views where each

subject contains 10 frontal and 4 profile images. Unlike the IJB-A dataset, the CFP
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dataset aims at isolating the factor of pose variation in order to facilitate research

in frontal-profile face verification. Extreme variations in poses can be seen in Fig-

ure 2.3. In this work, we apply our clustering algorithm on all 7,000 face images.

Labeled Faces in the Wild (LFW) [38]:

The dataset provides a set of unconstrained face images, which contains 13,233

images of 5,749 subjects. Since only faces that are detectable by the Viola-Jones

detector are retained, the amount of variations in the dataset is limited. Note that

4,069 out of 5,749 subjects contain only one image.

IARPA Janus Benchmark A (IJB-A) [52]:

The IJB-A dataset contains 500 subjects with a total of 25,813 images taken

from photos and video frames (5,399 still images and 20,414 video frames). Extreme

variations in illumination, resolution, viewpoint, pose and occlusion make it a very

challenging dataset. In this work, we cluster the templates corresponding to the

query set for each split in IJB-A 1:1 verification protocol where a template is com-

posed of a combination of still images and video frames. Figure 2.4 shows sample

images from different templates.

IARPA Janus Benchmark B (IJB-B) [108]:

The IJB-B dataset is a superset of IJB-A. It consists of 1,845 subjects with

21,798 still images and 55,026 video frames. The diversity makes IJB-B even more

challenging than IJB-A. The IJB-B dataset has a clustering protocol, which contains
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seven subtasks. These subtasks differ in the number of distinct subjects, which

involve 32, 64, 128, 256, 512, 1,024, and 1,845 subjects with a total of 1,026, 2,080,

5,224, 9,867, 18,251, 36,575, and 68,195 images, respectively.

Figure 2.3: Sample images in the CFP dataset. The first two rows are frontal face
images and the last row consists of profile face images.

Figure 2.4: Sample images in IJB-A and IJB-B. The faces contain extreme illumi-
nation, viewpoint, pose, and occlusion changes.

2.5.1 Curation of the MS-Celeb-1M dataset

To extract deep features for all the face images, we first implement the DCNN

presented in [13] and train it using the CASIA-WebFace dataset [119]. We denote

this pretrained network as ‘DNN (CASIA)’. DNN (CASIA) is trained using SGD for
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Figure 2.5: Distribution of the size of clusters.

780K iterations with a standard batch size 128 and momentum 0.9. The learning

rate is set to 1e-2 initially and is halved every 100K iterations. The weight decay

rates of all the convolutional layers are set to 0, and the weight decay of the final

fully connected layer is set to 5e-4.

We use the aligned images provided with the MS-Celeb-1M dataset. Feature

representations are obtained by passing the whole dataset through DNN (CASIA).

A total of 99,892 identities is divided into batches with size 50. For each batch,

we apply Hierarchical(DPA, η = 2.3), with [DPA]i,j = exp(−sPA(xi,xj)), and sPA

is computed by (K,K ′) = (5, 200). η, K, and K ′ are selected by cross-validating

23



on CASIA-WebFace. After PAHC, clusters whose majority identity have less than

thirty images are discarded. After manually removing overlapped identities, the

number of the curated dataset is about 3.7 millions face images of 57,440 identities.

Figure 2.14 shows one example of the curated results. Since PAHC exploits local

property, noisy labels are removed and sufficient amount of face images with extreme

pose are retained.

2.5.2 Improved deep representation using the curated MS-Celeb-1M

dataset

Deep neural networks have been shown to be successful in many machine

learning tasks at the cost of large amount of carefully annotated data. In this section,

we demonstrate that significant performance boost can be achieved by training on

the large-scale dataset curated using PAHC and the light-weight DNN (CASIA). The

result highlights an application of PAHC in collecting new training data for DCNNs

without human labor. In the following, we first train two different DCNNs on the

curated MS-Celeb-1M dataset, one with low and the other with high capacity. We

then show the two trained DCNNs yield superior performance than DNN (CASIA)

on the CFP and LFW datasets.

2.5.2.1 ResNet-101

We use ResNet-101 [36] network architecture for the task of face identification

an verification. The model was trained on the 3.7 million images, containing 57, 440
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subjects from the curated dataset described in Section 2.5.1. We train the network

using the L2-constrained softmax loss described in [81]. The loss forces the features

to lie on a hypersphere of a fixed radius α before applying the softmax classifier.

The loss ensures that positive features are close to each other and negative features

are far from one another in the cosine similarity measure. We fix the hypersphere

radius to α = 50 during training.

2.5.2.2 All-in-One-base

To ascertain that the performance improvements are not solely due to higher

network complexity but due to the extra information contained in the curated

dataset, we train the base network of the All-in-One CNN presented in [82]. The

network consists of seven convolutional layers followed by three fully connected lay-

ers, which has a very small number of parameters compared to ResNet-101. The

model was trained on the curated dataset in Section 2.5.1. At inference time, face

representations are extracted from the fc-512 layer.

2.5.2.3 Feature evaluation

To evaluate the quality of face representations learned by All-in-One-base and

ResNet-101, we cluster face images in CFP and LFW using the conventional AHC

algorithm. It is clear that after training on the curated dataset, both networks

achieve higher performance than DNN (CASIA). Moreover, since ResNet-101 has

larger capacity than All-in-One-base, it benefits even more from the additional in-
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Figure 2.6: AHC clustering performance using features extracted from DNN (CA-
SIA), ResNet-101, and All-in-One-base.

formation provided in the curated MS-Celeb-1M dataset.

2.5.3 Quantitative Study on the CFP, LFW, and IJB-A datasets

In this section, we evaluate PAHC on CFP, LFW, and IJB-A datasets. BCubed

Precision, BCubed Recall and BCubed F-measure are used as the evaluation mea-

sure. We adopt the notation in [3]. For an item e, C(e) and L(e) are used to denote

its cluster and ground truth label, respectively. For a pair of items e and e′, the

relation Correct(e, e′) is defined as:

Correct(e, e′) =


1, if C(e) = C(e′) and L(e) = L(e′),

0, otherwise.

26



The BCubed Precision and BCubed Recall are defined as:

Precision = Avge[Avge′:C(e′)=C(e)[Correct(e, e′)]], (2.10)

Recall = Avge[Avge′:L(e′)=L(e)[Correct(e, e′)]]. (2.11)

The F-measure is the harmonic mean of the two measures, which is given by:

F-measure = 2× Precision× Recall
Precision + Recall . (2.12)

The proposed method is compared with conventional agglomerative hierarchi-

cal clustering (AHC), k-means, and Approximate Rank-Order clustering [73]. On

LFW and IJB-B, we perform additional comparisons with the ConPaC algorithm

proposed in [94]. In all experiments, ‘Approximate Rank-Order clustering’ refers to

our implementation of the distance measure proposed in [73] followed by an AHC.

We use the standard MATLAB implementation for hierarchical clustering and k-

means, where we choose k as the true number of identities. The k-means algorithm

runs with maximum number of iterations equals to 100. The best performance is

reported using bold red and the second best is reported using bold blue. We use

PAHC with (K,K ′) = (1, 200), and (K,K ′) = (5, 200) for different sizes of positive

sets. As presented in Section 2.4.3, the parameter K controls the size of local neigh-

borhoods and K ′ controls the amount of data used for negative samples. From our

experiments, we found out that the performance of PAHC is more sensitive to K
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than K ′. Therefore, we fix K ′ = 200 and select K ∈ {1, 5}.

2.5.3.1 Analyze Feature Quality

Evaluations in Section 2.5.2 show that features extracted from the ResNet-101

have better quality than from the All-in-One-base since ResNet-101 has a higher

capacity to learn from the curated MS-Celeb-1M. In Figures 2.7, 2.8, and 2.9, it is

clear that by using features from ResNet-101, improved performance can be achieved

for all the algorithms. Note that PAHC outperforms other methods no matter

ResNet-101 or All-in-One-base features are used.
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Figure 2.7: Precision-Recall curve evaluated on the CFP dataset.

2.5.3.2 Analyze Neighborhood Size

Figures 2.7, 2.8, and 2.9 show the BCubed precision-recall performance com-

parisons. Table 2.1 shows optimal F-measure comparisons. It can be observed that
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Figure 2.8: Precision-Recall curve evaluated on the LFW dataset.
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Figure 2.9: Precision-Recall curve evaluated on the IJB-A dataset.

increased neighborhood size K yields improved performance on CFP and IJB-A, but

degraded performance on LFW. This is because larger K generally captures more

information than smaller K as on CFP and IJB-A. However, on the LFW dataset,

4,069 out of 5,749 identities in LFW have only one image. The information captured

by K = 5 is not local anymore. Nevertheless, as shown in the figure, PAHC has the
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Dataset CFP LFW IJB-A
Method ResNet AIO ResNet AIO ResNet AIO
k-means .9005 .7379 .7422 .6930 .8657 .8117
AHC .9643 .8036 .9891 .9389 .9325 .8792
ARO .9332 .7975 .8577 .8646 .8731 .8251
PAHC (K = 1) .9661 .8008 .9894 .9372 .9336 .8783
PAHC (K = 5) .9781 .8252 .9212 .8708 .9513 .9114
ConPaC - .9220 -

Table 2.1: BCubed F-measure performance evaluated on CFP, LFW, and IJB-A.
The scores are reported using optimal (oracle-supplied) threshold.

Figure 2.10: One sample cluster for the CFP dataset after applying the PAHC
algorithm.

flexibility of not considering neighborhood structure by setting K = 1. In applica-

tions such as curating large-scale datasets, it is common that multiple face images

are present for each identity. The PAHC algorithm, which exploits local neigh-

borhood structure, is then able to yield higher-quality clusters than conventional

approaches by selecting some K > 1.

Some example clusters are shown in Figure 2.10 and Figure 2.11.

2.5.4 Quantitative Study on the IJB-B dataset

In this section, we evaluate PAHC on the IJB-B dataset using the features

extracted by ResNet-101 and All-in-One-base. Based on the evaluations in Sec-

tion 2.5.3, we observe that the positive set size should not be large for datasets with

many singletons, as in LFW, and should be larger when there are certain neighbor-

hood structures in the dataset, as in CFP and IJB-A. However, the IJB-B dataset
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Figure 2.11: Sample clusters for the IJB-B dataset after applying the PAHC algo-
rithm. Robustness to pose variation can be seen throughout the images. Top row
shows robustness to illumination changes. Middle row shows robustness to age and
makeup. Bottom row shows robustness to blur and viewpoint changes.

has large variations in cluster sizes as shown in Figure 2.5. As a result, there is no

fixed positive and negative set sizes that can satisfy both singleton and non-singleton

cases. To tackle this problem, we propose to associate each data point xi with pos-

itive and negative sets based on the distance to its nearest neighbors. Specifically,

for each xi, the positive set consists of half of the points with linkage cosine distance

less than 0.2, and the negative set consists of 100 points with linkage cosine distance

larger than 0.25. Figures 2.12 and 2.13 show BCubed precision recall curves for the

seven subtasks. Table 2.2 shows optimal F-measures. The proposed method attains

the best performance on several subtasks.

2.6 Conclusion

We proposed an unsupervised algorithm, namely, the PAHC algorithm, to

measure the pairwise similarity between samples by exploiting their neighborhood

structures. We demonstrated that the proposed algorithm has the potential to ac-

tively learn robust feature representations by harvesting information from images
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Figure 2.12: Precision-Recall curve evaluated on the IJB-B dataset using ResNet-
101 features.

with noisy labels. The PAHC algorithm was first applied to curate the MS-Celeb-1M

training dataset. Our algorithm retains faces with variations in pose, illumination

and resolution, while separating images with different identities. We further trained

two DCNNs on the curated dataset. Feature representations extracted by these

networks attains extremely high performance. From extensive quantitative exper-
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Figure 2.13: Precision-Recall curve evaluated on the IJB-B dataset using All-in-
One-base features.

iments, we show that PAHC achieves improved precision-recall performance when

the dataset has underlying local structures, which is usually the case in applications

such as dataset curation.
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Network Method Subtask
32 64 128 256 512 1024 1845

k-means .7958 .7539 .7020 .7167 .7011 .6730 .6623
ResNet-101 AHC .9140 .8762 .8876 .8738 .8459 .8419 .8360

ARO .8967 .8576 .7911 .7794 .7830 .7799 .7765
PAHC .9127 .8770 .8944 .8828 .8564 .8498 .8483
k-means .7409 .7105 .6567 .6363 .6256 .5885 .5706

All-in-One-base AHC .8892 .8458 .8435 .8184 .7756 .7652 .7618
ARO .8728 .8365 .7703 .7483 .7296 .7231 .7180
PAHC .9064 .8583 .8753 .8373 .7949 .7768 .7664

- ConPaC .7510 .6560 .5630 .4930 .4810 .4520 .4290

Table 2.2: BCubed F-measure performance evaluated on the IJB-B dataset. The
scores are reported using optimal (oracle-supplied) threshold.
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Figure 2.14: Sample face images in the MS-Celeb-1M dataset with improved purity
after applying the PAHC. Upper-half of the figure shows original face images having
machine identifier m.024xcy in MS-Celeb-1M dataset. The lower half of the figure is
obtained following the process described in Section 2.5.1. The red boxes are the face
images removed by our algorithm. The green boxes are face images that are retained
by our algorithm. Variations in extreme pose (e.g. 21, 57, 73) and resolution (e.g.
88) will assist the DCNN to learn improved representation.
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Chapter 3: Deep Density Clustering of Unconstrained Faces

3.1 Overview

In this chapter, we consider the problem of grouping a collection of uncon-

strained face images when the number of subjects is not known. We propose an

unsupervised clustering algorithm called Deep Density Clustering (DDC) which is

based on measuring density affinities between local neighborhoods in the feature

space. By learning the minimal covering sphere for each neighborhood, information

about the underlying structure is encapsulated. The encapsulation is also capable

of locating high-density region of the neighborhood, which aids in measuring the

neighborhood similarity. We theoretically show that the encapsulation asymptoti-

cally converges to a Parzen window density estimator. Our experiments show that

DDC is a superior candidate for clustering unconstrained faces when the number of

subjects is unknown. Unlike conventional linkage and density-based methods that

are sensitive to the selection operating points, DDC attains more consistent and im-

proved performance. Furthermore, the density-aware property reduces the difficulty

in finding appropriate operating points.
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3.2 Introduction

Given a collection of unseen face images, humans have the capability of group-

ing and summarizing how many distinct subjects are present by exploiting previously

learned knowledge about essential components of a face and possible variations of

faces from the same person. In computer vision research, this corresponds to the

task of grouping visual data into clusters with targeted semantics. Most existing

unsupervised algorithms group data into visually similar clusters, unaware of the un-

derlying semantics. The success in clustering handwritten digits or faces appearing

in consecutive video frames is mainly based on the fact that images that belong to

the same category are visually similar. For visual data that have extreme intra-class

variations, these methods may not be applicable. In this work, we focus on clus-

tering unconstrained face images without prior knowledge of the number of distinct

subjects. Visual variations caused by nuisance factors such as pose, illumination

and expressions may be larger than variations between subjects. To the best of our

knowledge, few previous works have addressed this challenging problem. Recent

works on face clustering first extract feature vectors using deep neural networks

(DNNs), and then group data directly in the feature space. Face clustering based

on deep features generally has advantages over other unsupervised methods due to

side information present in the training data. However, since clustering algorithms

generally deal with unseen data, these methods will suffer from the shift in data

distribution across different domains. Therefore, the underlying structure should be

considered to prevent performance degradation.
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Input: Unlabeled Images 

Output: Clustered Images 

Deep  Feature Extraction Feature Normalization  

Density-based Similarity Measure Agglomerative Merging 

Figure 3.1: We introduce Deep Density Clustering (DDC) for unconstrained face
images. DDC is a density-based clustering algorithm, which exploits the local struc-
ture of deep features for improved similarity measure.

To tackle the challenges discussed above, we propose a clustering framework,

named Deep Density Clustering (DDC) that exploits the neighborhood structure of

deep representations. DDC consists of three main steps: extracting deep features,

computing density-based similarity, and merging clusters. The novelty is mainly

in the second step: DDC first associates each data point with an ε-neighborhood.

Points inside the neighborhood are then represented by a minimal covering sphere

which encapsulates local information. Finally, DDC computes pairwise similarity

by evaluating data points on the functionals defined by the spheres.

To summarize, we make the following contributions:

• A new approach for characterizing a collection of data points that encapsulates

sufficient structural information in the deep feature space.

• A new method, DDC algorithm, for clustering unconstrained face images with-

out prior knowledge of the number of subjects. We argue that information
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about local structures should be included in the linkage criterion, and pro-

pose a novel similarity measure based on local density levels. We theoretically

show that the similarity measure is asymptotically a Parzen window density

estimator.

The remainder of this chapter is organized as follows: We first discuss several

related works in unsupervised deep clustering, unconstrained face clustering, and

deep representation. Then we introduce the proposed face clustering algorithm.

Finally, we detail our experiments and discuss the impact of the proposed method.

3.3 Backgrounds and Related Works

In this section, we briefly introduce recent advances in unsupervised clustering

and unconstrained face clustering using deep representations.

3.3.1 General Clustering Algorithms

Conventional clustering algorithms typically rely on the absolute distance de-

fined in the embedded space. Several recent clustering algorithms, however, have

shown that in addition to point-to-point topology, high-level structure could be

incorporated for improved clustering performance. For example, sparse subspace

clustering (SSC) [21] exploits the underlying linear subspace structure within data.

Several different extensions of the SSC algorithm [75, 79, 80, 120] have yielded im-

pressive results on MNIST [57] and Extended Yale B [26] datasets. However, the SSC

algorithm relies on the assumption that the given dataset can be well-approximated

39



by a union of low-dimensional subspaces, which may not be true for unconstrained

face images.

3.3.2 Deep Unsupervised Clustering Algorithms

Recently, deep neural networks (DNNs) are extensively used to learn repre-

sentation and clusters. In [118], a recurrent framework that successively updates

representations and clusters is proposed. Although good results are achieved, it re-

quires tuning a large number of hyperparameters and repeated training of deep net-

works. In [27, 113, 117] encoder-decoder structures are used to learn low-dimensional

embeddings and cluster assignments. Xie et al. [113] proposed to first learn deep

representations using a stacked autoencoder. Cluster assignments are then itera-

tively refined by minimizing the KL divergence between the soft assignments and

the target distribution. Yang et al. introduced a joint dimensionality reduction and

clustering approach that learns a clustering-friendly latent representations. Dizaji

et al. [27] proposed an end-to-end clustering framework, named DEPICT. They de-

rived a regularized relative entropy loss function to encourage balanced clusters. In

addition, the joint framework avoids layer-wise training and is computationally more

efficient. Ji et al. [43] proposed the deep subspace clustering network which uses

a novel self-expressive layer to mimic the self-expressiveness property. One major

drawback of this method is that the number of parameters for the self-expressive

layer scales quadratically with the number of images.

While successful in some applications, these methods generally require exact
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knowledge of the number of categories [27, 43, 113, 117, 118], layer-wise pretrain-

ing [43, 113, 117], and tuning network structures [43, 113, 117, 118]. Furthermore,

it is not clear whether clustering based on the encoder-decoder structure could be

scaled to datasets with a large number of categories. In fact, the evaluations of

these approaches are limited to number of clusters that are less than a hundred.

The proposed DDC algorithm, on the other hand, does not require the number of

categories as a prior, and is also evaluated on challenging unconstrained datasets

that have more than one thousand categories.

3.3.3 Unconstrained Face Clustering

Otto et al. [73] developed an efficient algorithm called the approximated rank-

order clustering that measures pairwise similarity based on the number of shared

nearest neighbors. The approach of capturing the high-level structure is efficient

when most of the identities have only a few instances. However, when the dataset

contains more large clusters, the loss of original point-to-point topology would ad-

versely affect the performance. Lin et al. [60] proposed the proximity-aware hier-

archical clustering (PAHC) which exploits neighborhood similarity based on linear

SVMs that separates local positive instances and negative instances. While im-

proved results are achieved on unconstrained face datasets, it was applied to group

faces with balanced cluster size. Unlike PAHC, the proposed method can be applied

to face images with large variations in cluster sizes. Shi et al. [94] proposed the Con-

PaC algorithm in which the clustering problem is formulated as a conditional ran-
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dom field model. By maximizing the posterior probability of the adjacency matrix,

improved performance is achieved on the recently released IJB-B dataset. However,

their approach does not scale well in speed. The proposed DDC algorithms, on the

other hand, could run significantly faster than the ConPaC algorithm. Jin et al. [45]

proposed the Erdős-Rényi clustering algorithm for joint face detection and cluster-

ing in videos. The algorithm is based on the rank-1 count similarity which requires

a reference set. In their work, a collection of frames are sampled as the reference set

that are likely to have similar distribution to the target distribution. However, col-

lecting such reference set for general face clustering is not an easy task. Unlike the

Erdős-Rényi clustering algorithm, our approach does not require a domain-specific

reference set.

3.3.4 Deep Face Representations

Deep convolutional neural networks (DCNNs) have been widely used for face

classification [63, 91, 98]. A DCNN trained on labeled face images is able to

separate faces from distinct identities in the embedded feature space. In this work,

we use deep face representations for unseen face images to retain sufficient amount

of semantic information for distinguishing different identities.

3.4 Proposed Method

For an unlabeled dataset X = [x1, · · · ,xN ] ∈ RD×N , the goal of unsupervised

clustering algorithm is to find proper cluster assignment for each data point, such
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Figure 3.2: Linkage computation for two groups of data points on a circle. It is
clear that after averaging, ū and v̄ fail to represent whether the original group of
points are sparsely or densely distributed.

that data of the same state-of-the-nature identity are grouped together. In this work,

we consider X as a collection of unconstrained face images with unknown number

of subjects. We adopt the basic average-linkage clustering approach, in which pairs

of face images are grouped according to (1) the distance measure in the embedded

space and (2) the average linkage criterion that measures the dissimilarity between

two groups of face images.

For unconstrained face images, within-subject variations could be larger than

between-subject variations. To capture sufficient amount of semantic information for

distinguishing different subjects, face images are first projected into the embedded

space using a DNN Ψθ : RD → Rd. Recent works [63] on deep representations

have shown that for DNNs trained with softmax loss, label prediction is mainly

determined by angular similarities to each class. Therefore, we consider cosine

distance as the distance measure in the feature space. Without loss of generality,

Ψθ : RD → Sd−1 is used to represent a DNN, where Sd−1 is a unit hypersphere.
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3.4.1 Key Observations

In this section, we first show that point-to-point distance measurement might

be insufficient, and then describe the motivation for the proposed method.

In Figure 3.2, the average linkage between two groups of points Ci and Cj

determines whether they should be merged together. By definition, if the distance

measure is d, the average linkage is calculated by

d(Ci, Cj) = 1
|Ci||Cj|

∑
u∈Ci,v∈Cj

d(u,v). (3.1)

For data points that lie on a unit hypersphere Sd−1, (3.1) equals to 1− ūT v̄, which

is equivalent to the cosine distance between arithmetic averages ū and v̄. Note that

local information about Ci is not retained in ū and v̄. One can find another sparsely

distributed C ′i with the same ū. However, merging C ′i and Cj is less desirable since

the cluster C ′i ∪ Cj is less homogeneous than Ci ∪ Cj. We argue that neighborhood

information should be aggregated during linkage computation in order to differen-

tiate merging Ci or C ′i with Cj. Specifically, when measuring the distance between

two points, their neighboring points should also be considered. Following this ob-

servation, we propose a new similarity measure based on the following steps: (1)

building a nearest-neighbor graph for the entire dataset, which will be described

in Section 3.4.2, (2) representing each neighborhood in a compact form, which will

be discussed in Section 3.4.3, and (3) computing a density-based similarity, which

will be described in Section 3.4.4. We name the proposed method Deep Density
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Clustering since the similarity measure is asymptotically a Parzen window density

estimator as will be proved in Section 3.4.4.

3.4.2 Nearest-Neighbor Graph Construction

We can view a set of data points as a union of local neighborhoods. Namely,

we can write X = ⋃N
m=1 V (xm), where V (xm) consists of neighboring points of xm

measured in the feature space. Common approaches to constructing local neighbor-

hoods include k-nearest neighbor rule and ε-neighborhood criterion. We construct

V (xm) based on the ε-neighborhood approach since it is more robust to density

variations, and as N →∞, |V (x)| → ∞ holds, which achieves the asymptotic prop-

erty that will be discussed in subsequent sections. However, proper selection of ε is

not trivial and usually depends on the representation. In this work, we propose to

select ε as the maximum likelihood (ML) estimator of the cosine distance between

matched pairs (image pairs belong to the same subjects). Formally,

ε = argmax
d

Ec[p(d |c)], (3.2)

where c is the subject label. The matched pairs can be sampled from the training

data or an external dataset. Details about the selection of ε will be presented in

Section 3.5.1.
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3.4.3 Local Neighborhood Encapsulation

A trivial way of characterizing points in a neighborhood is to store all the

points, however, this representation will not be useful. We propose to encapsulate

each local neighborhood in a hypersphere which retains information about local

structure. This is inspired by the SVDD algorithm [99] that describes a collection of

data by finding a sphere that covers all the target data while including no superfluous

space. Instead of the entire dataset, we apply SVDD to all the local neighborhoods.

For each V (xm), we solve for its encapsulation using the following optimization:

min
cm, R̄m, ξm

R̄m + 1
ν · nV

∑
z∈V (xm)

ξm(z)

s.t. ‖Ψθ(z)− cm‖2 ≤ R̄m + ξm(z), ξm ≥ 0, ∀z ∈ V (xm),

(3.3)

where R̄m = R2
m is the squared radius and nV is the size of V (xm). Note that in (3.3),

instead of minimizing over Rm, we aim to solve for optimal R̄∗m since the original

formulation in [99] is not convex. Readers are referred to [12] for more details. After

solving (3.3) for m = 1, · · · , N , the resulting collection of spheres {(c∗m, R∗m)}Nm=1

minimally covers each local neighborhood as demonstrated in Figure 3.3. In what

follows, when there is no confusion possible, we will drop the subscript m in (3.3)

for more compact notations.
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Local 
Neighborhoods
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Encapsulation

SVDD
Ψθ(xi)

Ψθ(xj)

Ψθ(xk)
Ψθ(xi)

Ψθ(xj)

Ψθ(xk)

Figure 3.3: Neighborhood encapsulation. (left) Pink regions are the local neigh-
borhoods of the points xi, xj, and xk in feature space. (right) Encapsulations are
learned by solving (3.3). The encapsulation is density-aware. In the figure, regions
closer to the centers of the spheres have higher density.

3.4.3.1 Relation to One-Class SVM

One-class SVM (OC-SVM) was first proposed in [90] to build a representa-

tional model for a given dataset. Suppose we choose the set as V (x), then OC-SVM

aims to solve the following optimization problem:

min
w, ρ, ξ

1
2 ‖w‖

2 + 1
ν · nV

∑
z∈V (x)

ξz − ρ

s.t. wTΨθ(z) ≥ ρ− ξz,

ξz ≥ 0, ∀z ∈ V (x).

(3.4)

The optimal hyperplane separates the data with the origin in feature space and

maximizes the distance from the hyperplane to the origin. We present the following

Lemma showing equivalence between the formulations in (3.3) and (3.4).

Lemma 1 If 1/nV < ν ≤ 1, the SVDD formulation in (3.3) is equivalent to the

OC-SVM formulation in (3.4) when the evaluation functions for the two are given
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by

hSVDD(x) = R̄∗ − ‖Ψθ(x)− c∗‖2 , (3.5)

hOC-SVM(x) = w∗TΨθ(x)− ρ∗, (3.6)

with the correspondence w∗ = c∗, and ρ∗ = c∗TΨθ(xs), where xs is a support vector

in (3.3) that lies on the learned enclosing sphere.

Proof. The condition corresponds to the case 1/nV ≤ C < 1 in [12] with C =

1/(ν · nV ). We introduce the kernel function K(xi,xj) = Ψθ(xi)TΨθ(xj). Since

K(xi,xi) is constant in our setting, the same dual formulation for (3.3) and (3.4)

can be written as:

min
α

∑
ij

αiαjK(xi,xj) s.t. 0 ≤ αi ≤ C,
nV∑
i=1

αi = 1.

Let S = {i | 0 < αi < C}. We have the following results:

c∗ =
nV∑
i=1

αiΨθ(xi), R̄∗ = ‖Ψθ(xs)− c∗‖2 , (3.7)

w∗ =
nV∑
i=1

αiΨθ(xi), ρ∗ = w∗TΨθ(xs), (3.8)

where s ∈ S. Substituting into (3.5) and (3.6), we obtain

hSVDD(x) = 2 · hOC-SVM(x) = 2
[
nV∑
i=1

αiK(xi,x)− ρ∗
]
. (3.9)
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Intuitively, the evaluation functions (3.5) and (3.6) measures the closeness to the

neighborhood V (x).

3.4.4 Density-based Similarity Measure

Our goal is to associate each pair of points with a similarity measure. We first

use the following theorem to show the evaluation function defined in (3.5) is a local

density estimator.

Theorem 3.1 If 1/nV < ν ≤ 1 and c∗TΨθ(xs) 6= 0 for some support vector xs,

hSVDD(x) defined in (3.5) is asymptotically a Parzen window density estimator in

the feature space with Epanechnikov kernel.

Proof. Given the condition, according to Lemma 1, hSVDD(x) is equivalent to

hOC-SVM(x) with ρ∗ 6= 0. From the results in [88] and the fact that ∑αi = 1 in the

dual formulations of (3.3) and (3.4), it can be shown that

hOC-SVM(x) = 8
3

nV∑
i=1

αiKE

(
‖Ψθ(x)−Ψθ(xi)‖

2

)
− ρ∗ − 1,

where KE(u) = 3
4(1 − u2), |u| ≤ 1 is the Epanechnikov kernel. As a consequence

of Proposition 4 in [88] and the proof of Proposition 1 in [89], when nV → ∞, the

fraction of support vector is ν, and the fraction of points with 0 < αi < 1/(ν · nV )

vanishes. Therefore, either αi = 0 or αi = 1/(ν · nV ). By introducing the notation
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S̄ = {i | αi = 1/(ν · nV )}, it can be shown that

hOC-SVM(x) = 2d+3

3 f̂ (Ψθ(x))− ρ∗ − 1, (3.10)

where f̂(z) = 1
ν·nV ·2d

∑
s∈S̄KE

(
‖zs−z‖

2

)
is a density estimator. As a result, hSVDD(x)

is equivalent to a Parzen window density estimator with Epanechnikov kernel of

bandwidth 2. By scaling properly, Parzen window estimator with different band-

widths can be obtained.

According to Theorem 3.1, we associate each neighborhood V (xm) with a

density estimator Em : RD → R:

Em(x) = R̄∗m − ‖Ψθ(x)− c∗m‖
2 . (3.11)

Data points that yield smaller Em lie in low-density region of V (xm) and are therefore

less similar to the neighborhood V (xm). This leads to a similarity measure between

xi and xj, which is defined as:

s(xi,xj) = 1
2

[∑
z∈V (xj) Ei(z)
|V (xj)|

+
∑
z∈V (xi) Ej(z)
|V (xi)|

]
. (3.12)

The distance between pairs of data samples can be taken as a proper monotonically

decreasing function of s(xi,xj).

50



3.4.5 Negative Set Mining

In [100], the authors proposed that when negative samples are available for

SVDD, they can be incorporated to improve the description. Specifically, the en-

closing sphere is refined by modifying the constraints in the following way:

‖Ψθ(z)− c‖2 ≤ R̄ + ξ, ∀z ∈ V (x), (3.13)

‖Ψθ(z)− c‖2 ≥ R̄− ξ, ∀z ∈ V −(x), (3.14)

where V −(x) ⊂ X contains instances which are hard negatives of x. However, since

no label information about x is available, the general notion of negative samples

is not well-defined. Instead, we view the selection of hard negative samples as

finding a balance between the amount of false positives and the false negatives in

binary hypothesis testing formulation. Specifically, points in V −(x) are sampled

from {x′ : d(x′,x) > η}, where η is chosen to minimize the misclassification rate.

In other words, we assign the same risk function to the action of selecting false

positives and false negatives. Details about the selection of η will be presented in

Section 3.5.1.

To incorporate the negative samples, we make the following observations.

From the equivalence of (3.3) and (3.4), when no negative samples are available,

encapsulations are learned by separating the data points against the origin with a

margin ρ. Note that the −ρ in (3.4) encourages large separation with the origin.

In the presence of negative samples, −ρ is no longer required, and the hyperplane
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in (3.4) should target at separating positive and negative samples. We propose to

learn the set of enclosing spheres such that positive and negative examples are sep-

arated by a margin ∆. Therefore, by the equivalence of (3.5) and (3.6) and the

arguments given above, we formulate the algorithm with negative set mining as:

min
w, ρ, ξ

1
2 ‖w‖

2 + C
∑

ξz

s.t. wTΨθ(z)− ρ ≥ ∆− ξz, ∀z ∈ V (x),

wTΨθ(z)− ρ ≤ −∆ + ξz,∀z ∈ V −(x),

ξz ≥ 0, ∀z.

(3.15)

Note that ∆ is not a hyperparameter since we can divide both sides of the constraints

by ∆ and obtain a large margin formulation with L1 normalization.

3.5 Evaluation and Discussion

In this section, we evaluate the proposed clustering approach on YouTube

Faces Database (YTF), Labeled Faces in the Wild (LFW) and IARPA JANUS

Benchmark B (IJB-B) datasets. The datasets are briefly described as follows:

• YouTube Faces Database (YTF) [109]: The dataset contains 3,425 videos

of 1,595 different people. We choose the first 41 subjects from the YTF dataset

as in [27, 118].

• Labeled Faces in the Wild (LFW) [38]: It is a well-known and standard

dataset for unconstrained face recognition which contains 13,233 images of
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(a) YTF

(b) LFW

(c) IJB-B

Figure 3.4: Sample images for the datasets.

5749 subjects. Note that 4169 subjects of the dataset have only one image.

We evaluate the proposed approach using the entire dataset.

• IARPA JANUS Benchmark B (IJB-B) [108]: The IJB-B dataset con-

tains 1,845 subjects with 11,754 images, 55026 video frames and 10,044 non-

face images. It contains a clustering protocol, which consists of seven subtasks.

These subtasks differ in the number of distinct identities and the number of

face images. Many face images are in extreme poses or of low quality, mak-

ing the dataset more challenging than YTF and LFW. We evaluate clustering

algorithms on four subtasks with number of identities 128, 256, 1024 and 1845.

Dataset # Samples # Subjects
YTF 10,000 41
LFW 13,233 5,749
IJB-B-128 5,224 128
IJB-B-256 9,867 256
IJB-B-1024 36,575 1,024
IJB-B-1845 68,195 1,845

Table 3.1: Datasets used in the experiments.
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3.5.1 Implementation Details

Deep Face Representation. We adopt the network architecture presented

in [130]. The network is first trained on the CASIA-WebFace dataset [119] using

SGD for 750K iterations with a standard batch size 128 and momentum 0.9. Then,

the model is finetuned for 230K iterations using the MSCeleb-1M dataset [34]. The

inputs to the networks are 100×100×3 RGB images. Data augmentation is per-

formed by randomly cropping and horizontally flipping face images. Given a face

image, the deep representation is extracted from the pool5 layer with dimension 320.

Parameter Selection. There are two main hyperparameters in the proposed

approach: ε for constructing neighborhoods and η for mining hard negatives. To

select ε, we follow (3.2) by randomly sampling 100 subjects from the training dataset

and computing cosine distance between all matched pairs. The red curve in Fig-

ure 3.5 represents the fitted distribution. The ML estimate is therefore ε ≈ 0.23.

The green curve in Figure 3.5 represents the distribution of the cosine distance be-

tween mismatched pairs among the 100 subjects. From Figure 3.5, it is clear that

η ≈ 0.40 minimizes the Bayesian risk of selecting false positives and false negatives.

We use the default parameters provided with the code1 when solving (3.3) or

(3.15).

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
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Figure 3.5: Distribution of cosine distance from the training dataset.

3.5.2 Evaluation Metrics

To evaluate clustering algorithms, we adopt two measures: normalized mutual

information (NMI) and BCubed F-measure [3].

NMI is a widely used metric that measures the normalized similarity between

the ground truth labels and the labels decided by the clustering algorithms. NMI

is suitable for evaluation when the number of clusters is assumed to be a known

quantity. However, when the number of clusters is unknown or is the quantity we are

trying to estimate, NMI may fail to penalize algorithms that yield over-clusterings.

We use NMI mainly for comparing with other state-of-the-art unsupervised image

clustering methods.

BCubed F-measure [3] is the harmonic mean of BCubed precision and BCubed

recall. BCubed precision calculates the fraction of points in the same cluster that

belong to the same class. BCubed recall calculates the fraction of points in the same

class that are assigned to the same cluster. Formally, for an item e, C(e) and L(e)
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are used to denote its cluster and ground truth label, respectively. For a pair of

items e and e′, the relation Correct(e, e′) is defined as:

Correct(e, e′) =


1, if C(e) = C(e′) and L(e) = L(e′),

0, otherwise.

(3.16)

The BCubed Precision, BCubed Recall, and BCubed F-measure are defined as:

Precision = Avge[Avge′:C(e′)=C(e)[Correct(e, e′)]], (3.17)

Recall = Avge[Avge′:L(e′)=L(e)[Correct(e, e′)]]. (3.18)

F-measure = 2× Precision× Recall
Precision + Recall . (3.19)

BCubed Precision and Recall can be used to evaluate clustering algorithms that yield

different number of clusters. They satisfy several formal constraints on evaluation

metrics, and is shown to be more suitable than metrics based on set matching, pair

counting, entropy or editing distance [3].

3.5.3 Baseline Methods

We compare the proposed DDC algorithm, DDC with negative set mining

(DDC-NEG), with the following methods: Agglomerative Hierarchical Clustering

56



Methods DDC-NEG DDC PAHC DBSCAN AHC

YTF

0.70 1.000 1.000 0.168 1.000 1.000
0.75 1.000 1.000 0.144 1.000 1.000
0.80 0.999 1.000 0.120 1.000 0.999
0.85 0.958 0.966 0.098 0.990 0.948

LFW

0.70 0.994 0.992 0.976 1.000 1.000
0.75 0.991 0.991 0.956 0.995 1.000
0.80 0.991 0.991 0.919 0.936 0.994
0.85 0.990 0.990 0.822 0.664 0.990

IJB-B-128

0.70 0.966 0.960 0.431 0.842 0.947
0.75 0.913 0.857 0.253 0.705 0.913
0.80 0.786 0.504 0.172 0.461 0.679
0.85 0.411 0.225 0.156 0.275 0.253

IJB-B-256

0.70 0.937 0.901 0.169 0.725 0.915
0.75 0.893 0.760 0.132 0.592 0.868
0.80 0.620 0.396 0.102 0.395 0.524
0.85 0.181 0.126 0.079 0.230 0.139

IJB-B-1024

0.70 0.798 0.616 0.087 0.485 0.735
0.75 0.459 0.210 0.053 0.347 0.307
0.80 0.105 0.101 0.038 0.241 0.055
0.85 0.050 0.066 0.022 0.157 0.025

IJB-B-1845

0.70 0.771 0.610 0.059 0.492 0.690
0.75 0.341 0.204 0.045 0.350 0.235
0.80 0.083 0.081 0.031 0.233 0.052
0.85 0.068 0.051 0.018 0.151 0.019

Table 3.2: BCubed precision evaluated at different BCubed recall values. The best
performance is reported using bold red, and the second best is reported using bold
blue.

(AHC) [31], K-means [64], Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [22], Affinity Propagation (AP) [24], Sparse Subspace Clustering

using Orthogonal Matching Pursuit (SSC-OMP) [120], Joint Unsupervised Learn-

ing of deep representations and clusters (JULE) [118], Deep Embedded Regularized

Clustering (DEPICT) [27], Proximity-Aware Hierarchical Clustering (PAHC) [60],

Approximate Rank-Order Clustering (ARO) [73], and Conditional Pairwise Clus-

tering (ConPaC) [94].

Precision and Recall Comparisons. Table 3.2 shows the BCubed preci-

sion measured at different BCubed recall for methods that yields different number of

clusters. On the YTF and LFW datasets, all methods except PAHC and DBSCAN

attains near-perfect performance. On the more-challenging IJB-B dataset, the pro-

posed approach performs the best across several subtasks. It should be noted that
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the proposed approach has consistent behavior across different operating points and

dataset scales, while the basic AHC achieves degraded performance at higher recall

regions for larger scale data, and DBSCAN is inferior at lower recall regions.

F-measure and NMI Comparisons. Table 3.4 reports the F-measure and

NMI comparisons. Some experiments for SSC-OMP do not finish within the cut-off

threshold of ten hours and are replaced by double dash marks (- -). Results reported

from the original papers are marked by asterisks (*). As shown in the table, the

proposed DDC and DDC-NEG outperforms other methods. Although AHC achieves

high F-measure and NMI using the oracle supplied threshold, it is inferior at other

operating points as discussed in the previous section.

Note that we view JULE, DEPICT and DDC as solving a complete different

problem. Given a collection of unseen face images, it is not practical to assume

the number of subjects to be a known quantity. Furthermore, the number of classes

reflects the complexity of the data at hand. Without this information, methods such

as JULE and DEPICT may suffer from tuning network structures. Therefore, the

proposed algorithm is more suitable for applications in which the number of clusters

is not known.

Discussion. We observe from the statistics in Table 3.1 that LFW contains a

large number of singleton clusters and YTF consists of multiple large clusters. Since

the AHC algorithm uses cosine similarity as the underlying measure, in LFW, it ex-

ploits the discriminative power of deep features in 1-1 comparisons (verification) and

hence high performance is achieved. However, AHC exhibits inferior performance

in YTF, since it ignores local structures as presented in Section 3.4.1.
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Both DBSCAN and PAHC are aware of local neighborhoods with fixed sizes.

DBSCAN attains improved performance for larger clusters, and PAHC performs

well on template-based data [60]. However, since the neighborhood sizes are not

adaptive to local density variations, DBSCAN has degraded performance on LFW,

and PAHC does not achieve comparable performance with other methods. The

proposed algorithm attains improved performance by balancing discriminative power

and density-aware property.

Running Time Comparisons. We compare the running time performance

using IJB-B-1024 and IJB-B-1845 subtasks which contain 36,575 and 68,195 faces

respectively. The results are reported in Table 3.3.

Dataset IJB-B-1024 IJB-B-1845
K-means [64] 00:00:17 00:01:00
AHC [31] 00:00:29 00:01:32
DBSCAN [22] 00:07:49 00:49:31
AP [24] 03:55:42 08:42:50
PAHC [60] 00:01:19 00:03:56
ARO [73] 00:00:37 00:00:73
ConPaC [94] 00:20:06 02:53:58
DDC 00:02:17 00:05:32
DDC-NEG 00:01:55 00:05:39

Table 3.3: Running Time Comparisons (HH:MM:SS).

3.5.4 Determining Operating Point

The reported performance on different operating points is obtained by thresh-

olding the pairwise similarity matrix at different levels: large thresholds result in

several tiny clusters which correspond to high precision and low recall operating

points, while small thresholds result in a few gigantic clusters which correspond
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Dataset YTF LFW IJB-B-128 IJB-B-256 IJB-B-1024 IJB-B-1845
F NMI F NMI F NMI F NMI F NMI F NMI

K-means [64] 0.815 0.915 0.688 0.922 0.628 0.835 0.585 0.838 0.551 0.851 0.532 0.854
AHC [31] 0.908 0.960 0.940 0.987 0.824 0.925 0.805 0.922 0.736 0.919 0.729 0.921
AP [24] 0.312 0.795 0.618 0.906 0.439 0.822 0.426 0.836 0.411 0.854 0.405 0.858
DBSCAN [22] 0.923 0.967 0.868 0.973 0.777 0.893 0.762 0.895 0.675 0.894 0.672 0.895
SSC-OMP [120] 0.142 0.174 - - - - 0.177 0.476 0.136 0.483 - - - - - - - -
JULE* [118] - 0.848 - - - - - - - - - -
DEPICT* [27] - 0.802 - - - - - - - - - -
PAHC [60] 0.360 0.734 0.857 0.958 0.695 0.863 0.648 0.865 0.639 0.890 0.610 0.890
ARO* [73] - - 0.870 - 0.482 - 0.423 - 0.352 - 0.317 -
ConPaC* [94] - - 0.922 - 0.563 - 0.493 - 0.452 - 0.429 -
DDC 0.906 0.960 0.943 0.988 0.810 0.918 0.788 0.916 0.723 0.913 0.725 0.919
DDC-NEG 0.919 0.965 0.955 0.991 0.829 0.927 0.816 0.926 0.751 0.922 0.746 0.925

Table 3.4: BCubed F-measure and NMI performance comparisons. For linkage-
based approaches, scores are reported using optimal (oracle-supplied) threshold.
The best performance is reported in bold.

to low precision and high recall operating points. Neither of the two cases pro-

vide desirable clustering results. In real-world applications, we are often interested

in generating high precision and recall clustering assignments and at the same time

know the approximate number of distinct identities. This requires one to find proper

operating points. In this section, we investigate the influences of different operat-

ing thresholds on the resulting number of clusters. Results on the YTF and LFW

datasets are reported. From Figures 3.6a and 3.6b, we observe kinks and clear fall-

offs from the proposed methods. The kinks provide hints to the number of distinct

identities and reduce the dynamic range of generated number of clusters.

3.6 Conclusion

In this chapter, we proposed a novel algorithm to cluster unconstrained face

images without knowing the number of subjects. Based on a local compact repre-

sentation and a density-based similarity measure, the proposed approach adaptively

models the neighborhood structure for each sample and yield a more discriminative
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Figure 3.6: Qualitative evaluations on YTF and LFW.

neighborhood similarity measure. We theoretically showed that the representa-

tion is asymptotically a Parzen window density estimator. The proposed approach

achieves improved performance than other state-of-the-art approaches on challeng-

ing face datasets. The results also show that the density-aware property reduces the

difficulty of finding proper operating points in clustering.
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Chapter 4: DuDoNet: Dual Domain Network for CT Metal Artifact

Reduction

4.1 Overview

Computed tomography (CT) is an imaging modality widely used for medical

diagnosis and treatment. CT images are often corrupted by undesirable artifacts

when metallic implants are carried by patients, which creates the problem of metal

artifact reduction (MAR). Existing methods for reducing the artifacts due to metal-

lic implants are inadequate for two main reasons. First, metal artifacts are struc-

tured and non-local so that simple image domain enhancement approaches would

not suffice. Second, the MAR approaches that attempt to reduce metal artifacts in

the X-ray projection (sinogram) domain inevitably lead to severe secondary artifacts

due to sinogram inconsistency. To overcome these difficulties, we propose an end-to-

end trainable Dual Domain Network (DuDoNet) to simultaneously restore sinogram

consistency and enhance CT images. The linkage between the sinogram and image

domains is a novel Radon inversion layer that allows the gradients to back-propagate

from the image domain to the sinogram domain during training. Extensive exper-

iments show that our method achieves significant improvements over other single
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domain MAR approaches. To the best of our knowledge, it is the first end-to-end

dual-domain network for MAR.

4.2 Introduction

Computed tomography (CT) images reconstructed from X-ray projections al-

low effective medical diagnosis and treatment. However, due to increasingly common

metallic implants, CT images are often adversely affected by metal artifacts which

not only exhibit undesirable visual effects but also increase the possibility of false

diagnosis. This creates the problem of metal artifact reduction (MAR), for which

existing solutions are inadequate.

Unlike typical image restoration tasks such as super-resolution [58, 107, 127,

131], compression artifact removal [33, 125], and denoising [15, 59, 66], metal ar-

tifacts are often structured and non-local (e.g. streaking and shadowing artifacts

as in Figure 4.1a). Modeling such artifacts in image domain is extremely difficult.

Therefore, before the emergence of deep learning, most existing works [18, 48, 67, 69]

proposed to reduce metal artifact in the X-ray projection (sinogram) domain. The

metal-corrupted regions are viewed as missing, and replaced by interpolated values.

However, as the projections are taken from a single object under certain geometry,

physical constraints should be satisfied by the enhanced sinogram. Otherwise, severe

secondary artifacts can be introduced in the reconstructed CT images.

Recently, motivated by the success of deep learning in solving ill-posed inverse

problems [59, 74, 102, 107, 123, 127], several works have been proposed to overcome
1The residual dense network (RDN) proposed in [127] without up-scaling layers.
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(a) CT with metal artifacts (b) RDN1 [127]

(c) CNNMAR [126] (d) DuDoNet (Ours)

Figure 4.1: (a) Sample MAR results for a CT image with intense metal artifacts.
Metal implants are colored in yellow. (b) Artifacts are not fully reduced and a ‘white
band’ is present between the two implants. (c) Organ boundaries on the right are
smeared out. (d) DuDoNet effectively reduces metal shadows and recovers the fine
details.

the difficulties in MAR. Wang et al. [106] applied the pix2pix model [41] to reduce

metal artifacts in the CT image domain. Zhang et al. [126] proposed to first estimate

a prior image by a convolutional neural network (CNN). Based on the prior image,

metal-corrupted regions in the sinogram are filled with surrogate data through sev-

eral post-processing steps for reduced secondary artifact. Park et al. [76] applied

U-Net [83] to directly restore metal-corrupted sinograms. Although metal artifacts

can be reduced by these deep learning approaches, we will show that, despite the

strong expressive power of deep neural networks, either image domain enhancement
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Figure 4.2: The proposed Dual Domain Network (DuDoNet) for MAR. Given a
degraded sinogram Y and a metal trace maskMt, DuDoNet reduces metal artifacts
by simultaneously refining in the sinogram and image domains.

or sinogram domain enhancement is limited in being able to restore metal shadows

and secondary artifact.

We hereby propose Dual Domain Network (DuDoNet) to address these prob-

lems by learning two CNNs on dual domains to restore sinograms and CT images

simultaneously. Our intuition is that image domain enhancement can be improved

by fusing information from the sinogram domain, and inconsistent sinograms can be

corrected by the learning signal back-propagated from the image domain to reduce

secondary artifacts. Specifically, we propose a novel network (Figure 4.2) consisting

of three parts: a sinogram enhancement network (SE-Net), a Radon inversion layer

(RIL), and an image enhancement network (IE-Net). To address the issue that in

the sinogram domain, information about small metal implants tends to vanish in

higher layers of the network due to down-sampling, we propose a mask pyramid U-

Net architecture for SE-Net, which retains metal mask information across multiple

scales. The key to our dual-domain learning is RIL that reconstructs CT images

using the filtered back-projection (FBP) algorithm and efficiently back-propagates
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gradients from the image domain to the sinogram domain. Based on RIL, we intro-

duce a Radon consistency loss to penalize secondary artifacts in the image domain.

Finally, IE-Net refines CT images via residual learning. Extensive experiments on

CT images from hundreds of patients demonstrate that dual domain enhancement

generates superior artifact-reduced CT images.

In summary, we make the following contributions:

• We propose an end-to-end trainable dual-domain refinement network for MAR.

The network is able to recover details corrupted by metal artifacts.

• We propose a mask pyramid (MP) U-Net to improve sinogram refinement.

The MP architecture improves performance especially when small metallic

implants are dominated by the non-metal regions.

• We propose a Radon inversion layer (RIL) to enable efficient end-to-end dual

domain learning. RIL can benefit the community through its ubiquitous use

in various reconstruction algorithms [2, 44, 111, 128].

• We propose a Radon consistency (RC) loss to penalize secondary artifacts

in the image domain. Gradients of the loss in the image domain are back-

propagated through RIL to the sinogram domain for improved consistency.

4.3 Backgrounds and Related Works

Tissues inside the human body such as bones and muscles have different X-ray

attenuation coefficients µ. If we consider a 2D slice of human body, the distribution

of the attenuation coefficients X = µ(x, y) represents the underlying anatomical
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structure. The principle of CT imaging is based on the fundamental Fourier Slice

Theorem, which guarantees that the 2D function X can be reconstructed solely from

its dense 1D projections. In CT imaging, projections of the anatomical structure X

are inferred by the emitted and received X-ray intensities through the Lambert-Beer

Law [6]. We consider the following CT model under a polychromatic X-ray source

with energy distribution η(E):

Y = − log
∫
η(E) exp {−PX(E)} dE, (4.1)

where P is the projection generation process, and Y represents the projection data

(sinogram). The 2D X(E) is the anatomical structure (CT image) we want to

recover from the measured projection data Y .

For normal body tissues, X(E) is almost constant with respect to the X-ray

energy E. If we let X = X(E), then

Y = PX. (4.2)

Therefore, given measured projection data Y , the CT image X̂ can be inferred by

using a reconstruction algorithm P†2: X̂ = P†Y [47].

However, when metallic implants IM(E) are present, X(E) = X + IM(E),

where X(E) has large variations with respect to E due to IM . Eq. (4.1) becomes

Y = PX − log
∫
η(E) exp{−PIM(E)}dE, (4.3)

2We use P† to denote the linear operation for reconstruction.
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where the region of PIM in Y will be referred to as metal trace in the rest of the

chapter. When the reconstruction algorithm P† is applied,

P†Y = X̂ − P† log
∫
η(E) exp{−PIM(E)}dE. (4.4)

The term after X̂ in (4.4) is the metal artifact. It is clear that perfect MAR can

be achieved only if the last term in Eq. (4.4) is suppressed while the term X̂ is

unaffected. However, it is generally an ill-posed problem since both terms contribute

to the region of metal trace.

4.3.1 Inpainting-based Methods

One commonly adopted strategy in MAR is to formulate sinogram completion

as an image inpainting task. Data within the metal trace are viewed as missing and

filled through interpolation. Linear interpolation (LI) [48] is a widely used method in

MAR due to its simplicity. Meyer et al. [69] proposed the NMAR algorithm, where

sinograms are normalized by tissue priors before performing LI. NMAR requires

proper tissue segmentation in the image domain, which is unreliable when severe

metal artifacts are present. Mehranian et al. [67] restored sinograms by enforcing

sparsity constraints in the wavelet domain. In general, inpainting-based approaches

fail to replace the data of PX in (4.3) within metal trace by consistent values. It

is this introduced inconsistency in sinogram data that leads to noticeable secondary

artifacts after reconstruction.
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4.3.2 MAR by Iterative Reconstruction

In iterative reconstruction, MAR can be formulated as the following optimiza-

tion problem:

X̂ = min
X
‖(1−Mt)� (PX − Y )‖2 + λR(X), (4.5)

where Mt is the metal trace mask. Mt = 1 on the metal trace and Mt = 0 other-

wise. R is some regularization function, e.g. total variation (TV) [35] and sparsity

constraints in the wavelet domain [122]. Eq. (4.5) is often solved through iterative

approaches such as the split Bregman algorithm. Iterative reconstruction usually

suffers from long processing time as they require multiplying and inverting huge ma-

trices in each iteration. More importantly, hand-crafted regularization R(X) does

not capture the structure of metal artifacts and would result in an over-smoothed

reconstruction. Recently, Zhang et al. [122] proposed a re-weighted JSR method

which combines NMAR into (4.5) and jointly solves for X and interpolated sino-

gram. Similar to NMAR, the weighting strategy in re-weighted JSR requires tissue

segmentation. In phantom study, better performance against NMAR is achieved by

re-weighted JSR. However, the improvements remain limited for non-phantom CT

images.
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4.3.3 Deep Learning based Methods for MAR

Convolutional neural networks have the ability to model complex structures

within data. Motivated by the success of DNNs in solving inverse problems, Gjesteby

et al. [28] and Park et al. [76] proposed to refine sinograms using a CNN for improved

consistency. Zhang et al. [126] proposed a CNNMAR model to first estimate a prior

image by a CNN and then correct sinogram similar to NMAR. However, even with

the strong expressive power of CNNs, these approaches still suffer from secondary

artifacts due to inconsistent sinograms.

Gjesteby et al. [29], Xu et al. [115] and Wang et al. [106] proposed to reduce

metal artifact directly in the CT image domain. The metal artifacts considered in

these works are mild and thus can be effectively reduced by a CNN. We will show

in our experiments that image domain enhancement is not sufficient for mitigating

intense metal shadows.

4.4 Proposed Method

As shown in Figure 2.1, our proposed model consists of three parts: (a) a

sinogram enhancement network (SE-Net), (b) a Radon inversion layer (RIL), and

(c) an image enhancement network (IE-Net). Inputs to the model include a degraded

sinogram Y ∈ RHs×Ws and the corresponding metal trace mask Mt ∈ {0, 1}Hs×Ws .

Notice that we use Hs to represent the detector size and Ws to represent the number

of projection views. The region whereMt = 1 is the metal trace. Given the inputs,

we first apply LI [48] to generate an initial estimate for the sinogram data within
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metal trace. The resulting interpolated sinogram is denoted by YLI . SE-Net then

restores YLI within the metal trace through a mask pyramid U-Net architecture.

To maintain sinogram consistency, we introduce a Radon consistency (RC) loss.

A sinogram will be penalized by the RC loss if it leads to secondary artifacts in

the image domain after passing through RIL. Finally, the reconstructed CT image

X̂ ∈ RHc×Wc is refined by IE-Net via residual learning.

4.4.1 Sinogram Enhancement Network

Sinogram enhancement is extremely challenging since geometric consistency

should be retained to prevent secondary artifacts in the reconstructed CT image,

so prior works only replace data within the metal trace. Similarly, given a metal-

corrupted sinogram Y and metal trace mask Mt, SE-Net Gs learns to restore the

region of YLI in Mt = 1. In sinogram domain enhancement, when the metal size

is small, or equivalently, the metal trace is small, information about metal trace is

dominated by non-metal regions in higher layers of network due to down-sampling.

To retain the mask information, we propose to fuse Mt through a mask pyramid

U-Net architecture. The output of SE-Net is written as

Yout =Mt � Gs(YLI ,Mt) + (1−Mt)� YLI . (4.6)

We use an L1 loss to train SE-Net:

LGs = ‖Yout − Ygt‖1, (4.7)
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where Ygt is the ground truth sinogram without metal artifact.

4.4.2 Radon Inversion Layer

Although sinogram inconsistency is reduced by SE-Net, there is no existing

mechanism to penalize the secondary artifacts in the image domain. The missing

key element is an efficient and differentiable reconstruction layer. Therefore, we

propose a novel RIL fR to reconstruct CT images from sinograms and at the same

time allow back-propagation of gradients. We hightlight that trivially inverting P

in existing deep learning frameworks would require a time and space complexity of

O(HsWsHcWc), which is prohibitive due to limited GPU memory.

In this work, we consider the projection process P as the Radon transform

under fan-beam geometry with arc detectors [47]. The distance between an X-

ray source and its rotation center is D. The resulting fan-beam sinograms Yfan

are represented in coordinates (γ, β). To reconstruct CT images from Yfan(γ, β),

we adopt the fan-beam filtered back-projection (FBP) algorithm as the forward

operation of RIL.

Our RIL consists of three modules: (a) a parallel-beam conversion module, (b)

a filtering module, and (c) a backprojection module. The parallel-beam conversion

module transforms Yfan(γ, β) to its parallel-beam counterpart Ypara(t, θ) through a

change of variables. The FBP algorithm in coordinate (t, θ) becomes more effective

and memory-efficient than in (γ, β). Parallel-beam FBP is then realized by the

subsequent filtering and back-projection modules.
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Parallel-beam Conversion Module. We utilize the property that a fan

beam sinogram Yfan(γ, β) can be converted to its parallel beam counterpart Ypara(t, θ)

through the following change of variables [47]:


t = D sin γ,

θ = β + γ.

(4.8)

The change of variable in (4.8) is implemented by grid sampling in (t, θ), which

allows back-propagation of gradients. With Ypara, CT images can be reconstructed

through the following Ram-Lak filtering and back-projection modules.

Ram-Lak Filtering Module. We apply the Ram-Lak filtering step to Ypara

in the Fourier domain.

Q(t, θ) = F−1
t {|ω| · Ft {Ypara(t, θ)}} , (4.9)

where Ft and F−1
t are the Discrete Fourier Transform (DFT) and inverse Discrete

Fourier Transform (iDFT) with respect to the detector dimension.

Backprojection Module. The filtered parallel-beam sinogram Q is back-

projected to the image domain for every projection angle θ by the following formula:

X(u, v) =
∫ π

0
Q(u cos θ + v sin θ, θ)dθ. (4.10)

It is clear from (4.10) that the computation is highly parallel. We make a remark

here regarding the property of RIL fR. Due to the back-projection nature of fR,
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Ground truth
CT image

Figure 4.3: Sample simulated metal artifact on patient CT. The X-ray spectrum is
shown in the upper-left corner. Metallic implants are colored in yellow for better
visualization.

the derivative with respect to the input Yout is actually the projection operation

P . That is, any loss in the image domain will be aggregated and projected to the

sinogram domain. This desirable property enables joint learning in sinogram and

image domains.

Radon Consistency Loss. With the differentiable RIL, we introduce the fol-

lowing Radon consistency (RC) loss to penalize secondary artifacts in X̂ = fR(Yout)

after reconstruction.

LRC = ‖fR(Yout)−Xgt‖1, (4.11)

where Xgt is the ground truth CT image without metal artifact.

Difference from DL-based Reconstruction. Our RIL is designed to

combine the image formation process (CT reconstruction) with deep neural net-

works and achieve improved MAR by dual-domain consistency learning. Methods

in [2, 44, 111, 128] target image formation via deep learning, which is not the main

74



focus of this work.

4.4.3 Image Enhancement Network

Since our ultimate goal is to reduce visually undesirable artifacts in image

domain, we further apply a U-Net Gi to enhance X̂ by residual learning:

Xout = XLI + Gi(X̂,XLI), (4.12)

where XLI = fR(YLI) is reconstructed from YLI , the linearly interpolated sinogram.

Gi is also optimized by L1 loss.

LGi = ‖Xout −Xgt‖1. (4.13)

The full objective function of our model is:

L = LGs + LRC + LGi . (4.14)

One could tune and balance each term in (4.14) for better performance. However,

we found that the default setting works sufficiently well.

4.5 Experimental Results

Following the de facto practice in the literature [126], our evaluations consider

simulated metal artifacts on real patient CTs. Various effects are considered includ-
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ing polychromatic X-ray, partial volume effect, and Poisson noise. The simulated

artifacts exhibit complicated structures and cannot be easily modelled by a very

deep CNN. All the compared approaches are evaluated on the same dataset, and

superior performance is achieved by our method.

Metal Artifact Dataset. Recently, Yan et al. [116] released a large-scale CT

dataset DeepLesion for lesion detection. Due to its high diversity and quality, we

use a subset of images from DeepLesion to synthesize metal artifact. 4,000 images

from 320 patients are used in the training set and 200 images from 12 patients are

used in the test set. All images are resized to 416 × 416. We collect a total of 100

metal shapes. 90 metal shapes are paired with the 4,000 images, yielding 360,000

combinations in the training set. 10 metal shapes are paired with the 200 images,

yielding 2,000 combinations in the test set. In the training set, the sizes of the

metal implants range from 16 to 4967 pixels. In the test set, the sizes of the metal

implants range from 32 to 2054 pixels.

We adopt similar procedures as in [126] to synthesize metal-corrupted sino-

grams and CT images. We assume a polychromatic X-ray source with spectrum

η(E) in Figure 4.3. To simulate Poisson noise in the sinogram, we assume the inci-

dent X-ray has 2× 107 photons. Metal partial volume effect is also considered. The

distance from the X-ray source to the rotation center is set to 39.7cm, and 320 pro-

jection views are uniformly spaced between 0-360 degrees. The resulting sinograms

have size 321 × 320. Figure 4.3 shows some sample images with simulated metal

artifacts.

Evaluation Metrics. We choose peak signal-to-noise ratio (PSNR) and
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Large Metal −−−−−−−−−−−→ Small Metal Average

A) 22.88/0.7850 24.52/0.8159 27.38/0.8438 28.61/0.8549 28.93/0.8581 26.46/0.8315
B) 23.06/0.7868 24.71/0.8178 27.66/0.8463 28.91/0.8575 29.19/0.8604 26.71/0.8337
C) 27.54/0.8840 29.49/0.9153 31.96/0.9368 34.38/0.9498 33.90/0.9489 31.45/0.9269
D) 28.46/0.8938 30.67/0.9232 33.71/0.9458 36.17/0.9576 35.74/0.9571 32.95/0.9355
E) 28.28/0.8921 30.49/0.9221 33.76/0.9456 36.26/0.9576 36.01/0.9574 32.96/0.9350
F) 28.97/0.8970 31.14/0.9254 34.21/0.9476 36.58/0.9590 36.15/0.9586 33.41/0.9375
G) 29.02/0.8972 31.12/0.9256 34.32/0.9481 36.72/0.9595 36.36/0.9592 33.51/0.9379

Table 4.1: Quantitative evaluations for different components in DuDoNet.
(PSNR/SSIM)

structured similarity index (SSIM) for quantitative evaluations. In DeepLesion, each

CT image is provided with a dynamic range, within which the tissues are clearly

discernible. We use the dynamic range as the peak signal strength when calculating

PSNR.

Implementation Details. We implement our model using the PyTorch [77]

framework. All the sinograms have size 321× 320, and all the CT images have size

416 × 416. To train the model, we use the Adam [51] optimizer with (β1, β2) =

(0.5, 0.999), and a batch size of 8. The learning rate starts from 2 × 10−4, and is

halved for every 30 epochs. The model is trained on two Nvidia 1080Ti for 380

epochs.

4.5.1 Ablation Study

In this section, we evaluate the effectiveness of different components in the pro-

posed approach. Performance is evaluated on the artifact-reduced CT images. When

evaluating SE-Nets without image domain refinement, we use the reconstructed CT

images X̂. We experiment on the following configurations:
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A) SE-Net0: The sinogram enhancement network without mask pyramid network.

B) SE-Net: The full sinogram enhancement module.

C) IE-Net: Image enhancement module. IE-Net is applied to enhance XLI with-

out X̂.

D) SE-Net0+IE-Net: Dual domain learning with SE-Net0 and IE-Net.

E) SE-Net+IE-Net: Dual domain learning with SE-Net and IE-Net.

F) SE-Net0+IE-Net+RCL: Dual domain learning with Radon consistency loss.

G) SE-Net+IE-Net+RCL: Our full network.

Notice that the configurations including SE-Net0, SE-Net and IE-Net are single

domain enhancement approaches.

Table 4.1 summarizes the performance of different models. Since there are

totally 10 metal implants in the test set, for conciseness, we group the results ac-

cording to the size of metal implants. The sizes of the 10 metal implants are: [2054,

879, 878, 448, 242, 115, 115, 111, 53, 32] in pixels. We simply put every two masks

into one group.

From E and G, it is clear that the use of the RC loss improves the performance

over all metal sizes for at least 0.3 dB. In Figure 4.4, the model trained with RC

loss better recovers the shape of the organ.

From F and G, we observe an interesting trend that the proposed mask pyra-

mid architecture results in ∼0.2 dB gain when the metal size is small, and the

performance is nearly identical when the metal is large. The reason is that the
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PSNR/SSIM Large Metal −−−−−−−−−−−−−−−−→ Small Metal

LI [48] 20.20/0.8236 22.35/0.8686 26.76/0.9098 28.50/0.9252 29.53/0.9312
NMAR [69] 21.95/0.8333 24.43/0.8813 28.63/0.9174 30.84/0.9281 31.69/0.9402
cGAN-CT [106] 26.71/0.8265 24.71/0.8507 29.80/0.8911 31.47/0.9104 27.65/0.8876
RDN-CT [127] 28.61/0.8668 28.78/0.9027 32.40/0.9264 34.95/0.9446 34.00/0.9376
CNNMAR [126] 23.82/0.8690 26.78/0.9097 30.92/0.9394 32.97/0.9513 33.11/0.9520
DuDoNet (Ours) 29.02/0.8972 31.12/0.9256 34.32/0.9481 36.72/0.9595 36.36/0.9592

Table 4.2: Quantitative evaluation of MAR approaches in terms of PSNR and SSIM.

mask pyramid retains metal information across multiple scales. Figure 4.5 demon-

strates that in the proximity of small metal implants, the model with mask pyramid

recovers the fine details.

Without RC loss With RC loss Ground Truth
Figure 4.4: Visual comparisons between models without RC loss (E in Table 4.1)
and our full model (G in Table 4.1).

Without MP With MP Ground Truth
Figure 4.5: Visual comparisons between models without MP (F in Table 4.1) and
our full model (G in Table 4.1).

Effect of Dual Domain Learning. In the proposed framework, IE-Net

enhances XLI by fusing information from SE-Net. We study the effect of dual
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XLI IE-Net IE-Net-RDN

X̂ Xout Ground Truth
Figure 4.6: Visual comparisons between models without SE-Net (top row IE-Net
and IE-Net-RDN) and our full model (bottom row X̂ and Xout).

domain learning by visually comparing our full pipeline (G in Table 4.1) with single

domain enhancement IE-Net (C in Table 4.1). In addition to the U-Net architecture,

we also consider IE-Net with RDN architecture, which is denoted as IE-Net-RDN.

Visual comparisons are shown in Figure 4.6. We observe that single domain models

IE-Net and IE-Net-RDN fail to recover corrupted organ boundaries in XLI . In our

dual domain refinement network, SE-Net first recovers inconsistent sinograms and

reduces secondary artifacts as in X̂. IE-Net then refines X̂ to recover the fine details.

Effect of LI sinogram. The inputs to our network are the linear interpo-

lated sinogram YLI and its reconstructed CT XLI . One possible alternative is to

directly input the metal corrupted sinogram and CT, and let the network learn to

restore the intense artifacts. However, we experimentally found out this alternative

approach does not perform well. Metal shadows and streaking artifacts are not fully
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(a) Small implants.

Ground Truth
PSNR/SSIM

With Artifact
10.98/0.1485

LI [48]
20.62/0.5462

NMAR [69]
23.21/0.6336

cGAN-CT [106]
15.12/0.2678

RDN-CT [127]
20.88/0.5353

CNNMAR [126]
23.11/0.6405

DuDoNet
26.91/0.7258

(b) Medium implants.

Ground Truth
PSNR/SSIM

With Artifact
9.67/0.1137

LI [48]
18.36/0.6628

NMAR [69]
19.08/0.6697

cGAN-CT [106]
28.15/0.7328

RDN-CT [127]
21.52/0.6966

CNNMAR [126]
19.66/0.6370

DuDoNet
28.72/0.8108

(c) Large implants.

Ground Truth
PSNR/SSIM

With Artifact
12.15/0.1519

LI [48]
19.27/0.6260

NMAR [69]
20.20/0.6597

cGAN-CT [106]
18.68/0.4460

RDN-CT [127]
26.28/0.6946

CNNMAR [126]
20.92/0.6916

DuDoNet
27.31/0.7947

Figure 4.7: Visual comparisons on MAR for different types of metallic implants.

suppressed.

4.5.2 Comparison with State-of-the-Art Methods

In this section, we compare our model with the following methods: LI [48],

NMAR [69], cGAN-CT [106], RDN-CT [127] and CNNMAR [126]. We use cGAN-

CT to refer the approach by Wang et al. [106] which applies cGAN for image domain

MAR. RDN [127] was originally proposed for image super-resolution (SR). The fun-
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damental building unit of RDN is the residual dense block (RDB). Recently, it has

been shown that by stacking multiple RDBs or its variant, the residual in residual

dense blocks (RRDBs) [107], local details in natural images can be effectively recov-

ered. We build a very deep architecture with 10 RDBs (∼80 conv layers) for direct

image domain enhancement, which is denoted by RDN-CT. Specifically, we select

D = 10, C = 8, G = 64, following the notations in [127]. Inputs to RDN-CT are

128× 128 patches.

Quantitative Comparisons. Table 4.2 shows quantitative comparisons. We

observe that the state-of-the-art sinogram inpainting approach CNNMAR achieves

higher SSIM than image enhancement approaches (e.g. RDN and cGAN-CT) espe-

cially when the size of metal is small. The reason is that sinogram inpainting only

modifies data within the metal trace and recovers the statistics reasonably well. In

most of the cases, CNNMAR also outperforms cGAN-CT in terms of PSNR. How-

ever, when CNN is sufficiently deep (e.g. RDN-CT), image enhancement approaches

generally achieve higher PSNR. Our dual domain learning approach jointly restores

sinograms and CT images, which attains the best performance in terms of both

PSNR and SSIM consistently in all categories.

Visual Comparisons. Figure 4.7 shows visual comparisons. Figure 4.7a con-

siders metal artifacts resulted from two small metallic implants. From the zoomed

figure (with metal artifact), we can perceive severe streaking artifacts and intense

metal shadows between the two implants. We observe that sinogram inpainting

approaches such as LI, NMAR and CNNMAR effectively reduce metal shadows.

However, fine details are either corrupted by secondary artifacts as in LI or blurred
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as in NMAR and CNNMAR. Image domain approaches such as cGAN-CT and

RDN-CT produce sharper CT images but fail to suppress metal shadows. Our

method effectively reduces metal shadows and at the same time retains fine details.

Figure 4.7b shows a degraded CT image with long metal implants. We observe

similar trend that sinogram inpainting approaches do not perform well in regions

with intense streaking artifact. In this example, image domain methods reduce most

of the artifacts. It is possibly due to that fact that the pattern of the artifact in

Figure 4.7b is monotonous compared to Figures 4.7a and 4.7c. However, noticeable

speckle noise is present in the result by cGAN-CT, and RDN-CT does not fully

recover details in the middle. Figure 4.7c considers metal artifacts result from two

large metallic implants. Likewise, sinogram inpainting methods and direct image

domain enhancement have limited capability of suppressing metal artifacts.

Evaluations on CT Images with Real Metal Artifacts. Evaluating

MAR methods on CT images of patients carrying metal implants is challenging

for two reasons: (1) Modern clinical CT machines have certain build-in MAR al-

gorithms. Evaluations on CT images after MAR would not be meaningful; (2)

Sinogram data with metal artifacts are difficult to access, except perhaps from ma-

chine manufacturers. To the best of our knowledge, there is no existing sinogram

database which targets MAR.

In order to compare different MAR methods, we manually collect CT images

with metal artifact from DeepLesion [116] and apply the following steps to obtain

the metal trace Mt and the LI sinogram YLI . DuDoNet can be applied by taking

Mt and YLI as inputs. Conceptually, the steps can be understood as projecting
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the input CT image with unknown imaging geometry to the source domain3 with

known geometry.

(i)Mt: We first segment out the metal mask by applying a threshold of 2,000

HU to the metal-corrupted CT image. Mt can be obtained by forward projection

with the imaging geometry presented in Section 4 in the manuscript.

(ii) YLI : We adopt the same simulation procedures and imaging geometry as

in the manuscript to synthesize metal-corrupted sinogram Y . YLI can be generated

from Y and Mt by linear interpolation.

Figure 4.8 presents visual comparisons of different MAR algorithms. Metal

masks obtained by step (i) are colored in yellow. We would like to emphasize that

the true sinogram of a given CT image cannot be inferred without information

about the actual imaging geometry (e.g. source to detector distance, and number of

projection views). Therefore, in Figure 4.8, due to inconsistent imaging geometry,

sinogram-based MAR approaches (e.g. LI) may lead to an even worse visual quality

than raw CT. In contrast, DuDoNet effectively reduces metal artifacts.

4.5.3 Running Time Comparisons

On an Nvidia 1080Ti GPU, it takes 0.24 ms for RIL to reconstruct a sinogram

of size 321×320 to a CT image of size 416×416, and 11.40 ms for back-propagation

of gradients. RIL requires 16 MB of memory for forward pass and 25 MB for

back-propagation. In Table 4.3 we compare the running time of different MAR

approaches. With the running time of LI included, DuDoNet runs almost 4× faster

3The domain of CT images with simulated metal artifacts.
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Figure 4.8: Evaluations on CT images with real metal artifacts.

than the very deep architecture RDN while achieving superior performance.
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LI
[48]

NMAR
[69]

cGAN-CT
[106]

RDN-CT
[127]

CNNMAR
[126]

DuDoNet
(Ours)

0.0832 0.4180 0.0365 0.5150 0.6043 0.1335

Table 4.3: Comparison of running time measured in seconds.

4.6 Conclusion

In this chapter, we presented the Dual Domain Network for metal artifact

reduction. In particular, we proposed to jointly improve sinogram consistency and

refine CT images through a novel Radon inversion layer and a Radon consistency

loss, along with a mask pyramid U-Net. Experimental evaluations demonstrate

that while state-of-the-art MAR methods suffer from secondary artifacts and very-

deep neural networks have limited capability of directly reducing metal artifacts in

image domain, our dual-domain model can effectively suppress metal shadows and

recover details for CT images. At the same time, our network is computationally

more efficient. Future work includes investigating the potential of the dual-domain

learning framework for other signal recovery tasks, such as super-resolution, noise

reduction, and CT reconstruction from sparse X-ray projections.
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Chapter 5: Invert and Defend: Model-based Approximate Inversion

of Generative Adversarial Networks for Secure Inference

5.1 Overview

Inferring the latent variable that generates a given test sample is a challenging

problem in Generative Adversarial Networks (GANs). In this chapter, we propose

InvGAN - a novel framework for solving the inference problem in GANs, which

involves training an encoder network capable of inverting a pre-trained generator

network without access to any training data. Under mild assumptions, we theoreti-

cally show that using InvGAN, we can approximately invert the generations of any

latent code of a trained GAN model. Furthermore, we empirically demonstrate the

superiority of our inference scheme by quantitative and qualitative comparisons with

other methods that perform a similar task. We also show the effectiveness of our

framework in the problem of adversarial defenses where InvGAN can successfully be

used as a projection-based defense mechanism. Experimental validation on several

benchmark datasets demonstrate the efficacy of our method in achieving improved

performance on several white-box attacks.
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5.2 Introduction

Generative Adversarial Networks (GANs) have shown to be successful for gen-

erative modeling. Significant research progress in GANs over the last few years has

pushed boundaries in generation capabilities and has made possible the synthesis

of photo-realistic images of human faces [49, 50] and objects [9]. A fundamental

problem involving GANs is the problem of inversion – given a test image, what is

the most likely latent code that generates the test sample? The inversion problem

is extremely challenging since the generator network in GANs is highly non-linear

and non-injective. Inversion has applications in several machine learning problems

e.g. domain adaptation [1, 8], compressed sensing [7], adversarial defenses [85], and

anomaly detection [87].

In this chapter, we propose a novel approach for addressing the inversion

problem in GANs. Our approach is model-based where the mapping from image

space to latent space is represented as a parametric function. We solve for the

parameters of this function by sampling the latent codes from the noise distribution

of the GAN and making sure that (a) the inversions produced from the generated

samples are close to the sampled codes (b) the generated images of the inversions

semantically match the GAN generations and (c) the distribution of inverted images

follows the distribution of the GAN. Our method is a data-free inversion mechanism

i.e., given a pre-trained generator network, no access to input dataset is needed.

This is particularly important in privacy-preserving learning scenarios in which the

data provider does not intend to publicly release the data due to privacy reasons,
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Figure 5.1: Overview of the proposed InvGAN framework. Left: Given a pre-trained
generatorG and no data, we solve for I to approximately invert the generator. Right:
The application of InvGAN in adversarial defenses, where InvGAN can be used to
project an adversarially perturbed sample x onto the generator manifold, and the
projected sample xproj can be used to make a robust prediction.

but instead releases a GAN model trained on this data satisfying several privacy

constraints [114]. Our approach can invert such a GAN model.

In addition to comparing the reconstruction performance with previously pro-

posed encoder-GAN models, we demonstrate the effectiveness of our inversion ap-

proach for the problem of adversarial defenses. The vulnerability of deep neural

networks to small imperceptible perturbations has been demonstrated in several

recent papers [11, 30, 71, 97], and this poses a huge threat in security-critical appli-

cation domains where these networks are used.

One of the recent defense strategies proposed is DefenseGAN [85], which uses

a GAN as a defense mechanism. In DefenseGAN, the inference step is used to

project a test sample onto the GAN’s manifold to remove possible attacks. The

inversion is posed as a non-convex optimization problem which is solved using gra-

dient descent. However, this needs careful hyper-parameter tuning per dataset and
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generator, is extremely slow in practice, and does not scale well for deeper gen-

erator models. In this chapter, we propose an inference procedure to speed up

DefenseGAN. More specifically, we use our trained encoder network to initialize the

optimization problem. Using this initialization, the inference problem can be solved

in very few iterations while preserving the quality of reconstructions. This leads

to effortless hyperparameter tuning, a dramatic speed up in runtime, and improved

reconstruction results.

5.3 Backgrounds and Related Works

5.3.1 Inverting Generative Models

While significant research has focused on improving the quality, stability and

diversity of GANs [9, 49, 50], there has been relatively less work on the inversion

problem despite its practical significance. The method in [61] poses inversion as

a non-convex optimization problem, which is then solved using projected gradient

descent with stochastic clipping. A similar optimization with logistic loss has been

proposed in [14]. While the above two methods are model-free and work for a

pre-trained generator, they are extremely slow and deliver poor reconstructions for

harder datasets like CIFAR-10.

Another line of work involves modifying the GAN objective to support gen-

eration and inference in a unified framework. They typically involve training an

encoder function that maps from the image space to the latent space jointly with

the generator function in GANs. Methods presented in [16, 19] trains the encoder
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network using an adversarial loss on (latent, image) pairs. The method proposed in

[103] uses adversarial and reconstruction loss in latent space to train the encoder.

While these methods enable fast inference, modifying the GAN objective to sup-

port inference affects the quality of generator models. Our approach offers the best

of both worlds – fast inference and ability to perform inference on a pre-trained

generator, thus preserving the quality of generative models.

5.3.2 Adversarial Attacks and Defenses

Adversarial attacks are imperceptible changes crafted to the input samples

by an adversary to flip a model’s prediction ŷ = f(x). In this work, we focus on

classification problems, hence, f(x) ∈ {1, · · · , c}. The symbol J represents the

classification loss function, Z is the output of the logit layer, and y is the original

label. The most common form of adversarial attacks are additive perturbations

where a norm-bounded perturbation δ is added to the input sample x ∈ Rw×h×c as

xadv = x+ δ. A wide range of adversarial attack methods have been proposed.

Fast Gradient Sign Method (FGSM). FGSM is the most simple form of adver-

sarial attack which maximizes the loss function along the gradient direction:

xadv = x+ ε · sign(∇Jy(x)). (5.1)

Projected Gradient Descent (PGD). PGD is a simple variant of FGSM by
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applying it multiple times with a smaller step size α.

xadv0 = x, xadvt+1 = xadvt + clipε
[
α · sign(∇Jy(xadvt ))

]
. (5.2)

Carlini and Wagner’s L2 Attack (CW).

‖xadv − x‖+ c · lCW (xadv, y), (5.3)

where lCW (xadv, y) = max(max{Z(xadv)i : i 6= y} − Z(xadv)y,−τ).

To protect the classifiers from adversarial attacks, one line of research focuses

on removing the perturbation from input samples before feeding them to the clas-

sifier. MagNet [68] detects and reforms adversarial images using autoencoders. De-

fenseGAN [85] uses a generative adversarial network to model the image manifold.

Adversarial perturbations are removed by projecting the samples onto the learned

manifold. A similar idea has been used in PixelDefend [96] where the input dis-

tribution is modeled using a PixelCNN, and adversarial perturbations are removed

from the input samples using greedy decoding.

5.3.3 Circumventing Obfuscated Gradients

These projection-based defense methods take advantage of the operations that

leads to obfuscated gradients which results in the inability to derive gradients to craft

white-box attacks. Several recent works have been proposed to craft adversarial im-

ages even when direct gradient calculation is not feasible.
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Backward Pass Differentiable Approximation (BPDA) [4]. BPDA approx-

imates the non-differentiable operations with surrogates (e.g., identity function)

during backpropagation. Adversarial attacks can then be crafted on the target clas-

sifiers using the gradients derived from the surrogates.

Overpowered Attack [42]. Overpowered Attack assumes that a generative model

G(z) which approximates the true data distribution is available. On-manifold ad-

versarial attacks can be found by solving the following optimization problem:

z∗ = argmax
z∈Rd

min
λ≥0

Eτ∼N (0,I)

[
lCW

(
G(z) + σ

τ

‖τ‖2
, y

)]
+ λ

(
ε− ‖G(z)− x‖2

h · w

)
,

(5.4)

where ε is the perturbation budget of the attack. The adversarial example is given

by xadv = G(z∗). Unlike common norm-bounded attacks where the perturbation

xadv−x is a simple transformation of the loss gradients, adversarial examples crafted

by Overpowered Attack can have different semantics from the original image if the

norm budget ε is not sufficiently small.

5.4 Proposed Method

The generator network in a GAN model G(z) : Rd → Rw×h×c maps a latent

code z ∈ Rd to an image in Rw×h×c. The inversion problem is to find the inverse

mapping i.e., given a test sample x, we are interested in finding a latent ẑ such

that G(ẑ) ≈ x. This problem is extremely hard as most generator networks used in

practice are non-convex and non-bijective functions. One common approach to this
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problem [61, 85] involves solving the following optimization problem:

min
z
‖G(z)− x‖2 (5.5)

This optimization is extremely hard due to the non-convexity of the objective func-

tion. Solving this requires multiple random initialization of z, carefully tuned learn-

ing rate and number of optimization steps for each dataset. Also, this optimization

is extremely slow, and scales poorly with increasing complexity of the generator

network and the input distribution.

To fix these issues, we propose using an inverter network IθI (x) : Rw×h×c → Rd

that maps a sample from the image space to the latent space as an initialization for

z in (5.5). The goal of the inverter network is to approximately invert the generator

network. We would like to emphasize that exact inversion is not possible as the

generator function is non-bijective.

Theorem 5.1 Let {G(z(i))}Ni=1 represent the generated samples corresponding to a

pre-trained generator function G, with the noise vectors z(i) ∼ N (0, 1). Let I(·)

represent an inverter function that is trained to achieve approximate inversion on

the training set, i.e.,

‖I(G(z(i)))− z(i)‖2 < ε, ∀z(i), i ∈ [n].

Let L be the Lipschitz constant corresponding to the composite function I ◦ G(·).
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Then, for ε′ > ε, with probability 1− o(1),

‖I(G(z))− z‖2 < ε′, for z ∼ N (0, I).

That is with high probability, the function I(·) approximately inverts the generator

G(·).

Proof.

The input samples {G(z(i))}Ni=1 correspond to the training data for the inverter

network. For any latent z ∼ N (0, I),

P (‖z − z(i)‖ < ε) ≥ 1− e− d
18 ( ε

2
4d−1)2 ∀i ∈ [n].

The above inequality follows from the concentration bound for χ2 distribution [105]

since 1
4‖z− z

(i)‖2 follows a χ2
d distribution with d degrees of freedom, where d is the

noise dimension. Then,

P (∃z(i), i ∈ [n] s.t ‖z − z(i)‖ < ε) ≥ 1− e−nd18 ( ε
2

4d−1)2
. (5.6)

Eq. (5.6) says that there exists at least one z(i) concentrated close to z. Now,
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consider ‖I(G(z))− z‖. This can be expanded as

‖I(G(z))− z‖ = ‖(I(G(z))− I(G(z(i)))) + (I(G(z(i)))− z(i)) + (z(i) − z)‖

≤ ‖I(G(z))− I(G(z(i)))‖+ ‖I(G(z(i)))− z(i)‖+ ‖z(i) − z‖

≤ (L+ 1)‖z − z(i)‖+ ‖I(G(z(i)))− z(i)‖

≤ (L+ 1)‖z − z(i)‖+ ε, ∀i ∈ [n]

≤ min
i∈[n]

(L+ 1)‖z − z(i)‖+ ε. (5.7)

This follows from the triangle inequality and the assumption on the training loss.

Using (5.6) and (5.7) for bounding ‖I(G(z))− z‖, we obtain

P (‖I(G(z))− z‖ ≤ ε′) ≥ P
(

[min
i∈[n]

(L+ 1)‖z − z(i)‖] < ε′ − ε
)

= P (∃i ‖z − z(i)‖ < ε′ − ε
L+ 1)

≥ 1− e−
nd
18 ( (ε′−ε)2

4d(L+1)2−1)2
.

That is with probability 1 − o(1), ‖I(G(z)) − z‖ ≤ ε′. Please note that we

assumed that ε′ > ε. This concludes the proof.

The above theorem states that under some smoothness conditions on the

generator-encoder pair, if the encoder loss is bounded for every training sample,

then the encoder approximately inverts the generator with high probability.

96



5.4.1 Encoder Training

A natural way to train the encoder is to minimize the following loss function:

min
θI

Ex∈pdata‖x−G(IθI (x))‖2
2. (5.8)

One issue with this objective arises from the non-surjective nature of the the genera-

tor network. There are many samples in the training set that cannot be represented

by the generator network as it is not surjective. Enforcing the mean squared error

(MSE) loss for such samples per Eq. (5.8) is not appropriate and leads to blurry

reconstructions. Hence, we propose using the following losses for training the en-

coder.

Approximate Semantic Consistency: To also make sure that our recon-

structions are semantically consistent we add:

Lsemantic = Ez∼N (0,I)

[
max(‖G(z)−G(I(G(z)))‖2

2, η)
]
. (5.9)

The use of L2 norm is not a good distance measure between two images, and min-

imizing the L2 distance results in blurry reconstructions. Hence, we use hinge loss

on L2 norm in our formulation. The use of hinge loss in combination with adversar-

ial loss (which we define later) searches for sharp reconstructions that are within η

L2 norm ball of reconstruction error, instead of blurry reconstructions obtained by

minimizing just the L2 reconstruction error.
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Latent Code Recovery: In addition to maintaining semantic consistency

between the generated images and inverted reconstructions, we recover the latent

codes by making sure they are close to the sampled z:

Llatent = ‖z − I(G(z))‖2
2. (5.10)

Inverted Image Distribution Consistency: We want the images that are

generated by the inversion G(I(x)) to have the same distribution as the images that

are generated from samples of the domain space of the generator G(z). Therefore,

we add a discriminator at training time for which the the real samples are the

generations G(z) and the fake samples are the inversions G(I(G(z)):

Ladv(I,D) = Ez∼N (0,I)
[

log(DθD(G(z)))− log(1−DθD(G(I(G(z))))
]
. (5.11)

This adversarial loss is crucial to improving the quality of the reconstructions.

5.4.2 Training

The encoder model is trained using a combination of the three loss terms

introduced above. The objective function can be written as

min
θI

max
θD

λ1Ladv(I,D) + λ2Lsemantic(I) + λ3Llatent(I).
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We set λ2 = 100, λ1 = λ3 = 1 so that the semantic consistency gets enforced early

on in the training, with the other two losses getting minimized gradually to correct

for the distribution mismatch. We train in an iterative adversarial fashion to update

the parameters of I and D.

5.4.3 Adversarial Defenses

The objective of adversarial defense mechanisms is to make the classifiers ro-

bust to any class of adversarial perturbation. In this chapter, we consider norm-

bounded perturbations – the most common form of adversarial attacks used till date.

However, our framework is general and can be extended to other forms of attacks as

well. Given an adversarially perturbed image xadv = x+ δ, projection-based defense

mechanisms project the adversarial sample xadv to the manifold representing the

input dataset. In DefenseGAN [85], the image manifold is first modeled by training

a GAN on the input dataset. The perturbed sample xadv is then projected to the

generative manifold by solving the optimization (5.5).

In this work, we replace the inference step in DefenseGAN using our proposed

InvGAN framework in Algorithm 5.1. Given an input image x, the approximate

latent code is first obtained by passing through the inverter network I(·), which can

then be used as an initialization to the optimization (5.5).

Attack Detection: In addition to robust classification, we introduce a frame-

work for detecting adversarially perturbed samples. In DefenseGAN, the projection

distance in the image space (i.e., ‖x−xproj‖) is used to determine whether the input
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Algorithm 5.1: InvGAN
Input: Image x, GAN G, encoder I, number of random restarts R, number

of gradient descent steps T , learning rate η, σ > 0.
// Do R random restarts.
for r ← 1 to R do

Sample τ ∼ N (0, σ2I).
Set z(r)

0 ← I(x) + τ .
// Do T steps of gradient descent.
for t← 0 to T − 1 do

z
(r)
t+1 ← z

(r)
t − η∇z=z(r)

t
‖G(z)− x‖2

2

end
end
r∗ ← argminr‖G(z(r)

T )− x‖2
2.

xproj ← G(z(r∗)
T ).

Output: xproj.

image x is adversarially manipulated. This measure works well when the amount

of perturbation is large. For example, in DefenseGAN [85], ε = 0.3 in [0, 1] is used

for FGSM attack. However, when the perturbation is small (e.g. CW attack), the

projection distance may not be a proper measure. Instead, we propose to detect

the adversarial images by measuring the semantic distance between the input image

and the projected image. Specifically, let the trained classification network f be

decomposed as f(x) = C ◦Φ(x) where C denotes the last layer of the network, and

Φ denotes all layers except the final layer. Φ(x) gives a feature representation of the

image x. We define attack detection score A(x) as

A(x) = ‖Φ(x)− Φ(xproj)‖2. (5.12)

If the features extracted from the input image and its projection have a large dis-

tance, it means x and xproj are not consistent and will be viewed as an adversarial

100



example.

5.5 Experimental Results

Our proposed approach is evaluated on four datasets: MNIST [56], Fashion-

MNIST [112], and CIFAR-10 [54]. We pretrain GANs on all the datasets using the

network architectures presented in [70]. We use DCGAN architecture for MNIST

and Fasion-MNIST, and GANs with residual blocks for CIFAR-10. The architecture

of the inverter I is the mirror image of the generator. The inverter network is trained

for 100K iterations using the Adam optimizer with β1 = 0.5, and β2 = 0.999.

5.5.1 Projecting natural images onto the learned data manifold

In this experiment, we consider the task of inferring the latent representation

z of an input image x from learned data manifold G and reconstructing the input

by G(z∗). The closeness of the reconstructed image to the input illustrates the

strength of the inversion scheme. The following quantitative metrics are considered

for evaluation: (1) Inception score (IS) [84], (2) Fréchet inception distance (FID) [37]

of the reconstructed samples, (3) MSE between the input and reconstruction. The

proposed InvGAN is compared with ALI [19] and AGE [103] on the CIFAR-10 test

set. We also consider the following baselines:

• Direct optimization: z∗ = argminz ‖G(z) − x‖2 is first solved by running

gradient descent for 200 iterations. G(z∗) is then treated as the reconstructed

image.
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• InvGAN with R = 1, T = 0: The encoder-decoder scheme similar to ALI and

AGE.

• InvGAN with R = 1, T = 200: The scheme used to defend against adversarial

attacks.

For fair comparisons, in this experiment, we adopt the simple DCGAN architecture

without residual blocks in [70] on CIFAR-10. The results are presented in Table 5.1.

InvGAN with T = 0 achieves the best IS and FID than the competing methods,

while direct optimization achieves the best MSE. However, lower MSE does not

necessarily produce natural looking images (which is reflected in poorer inception

and FID scores) since the MSE loss does not take semantic information into account.

Also note that InvGAN only suffers slightly from running several steps of MSE

updates. However, these optimization updates offer security against common attacks

as will be discussed in the following sections.

Table 5.1: Quantitative evaluation of inference on CIFAR-10 test set.

MSE IS FID
ALI 0.32± 0.17 6.12± 0.15 57.79
AGE 0.06± 0.03 6.43± 0.15 39.93
Direct Optimization 0.03 ± 0.02 6.50± 0.20 40.18
InvGAN (T = 0) 0.10± 0.06 7.72 ± 0.16 22.35
InvGAN (T = 200) 0.08± 0.04 7.36± 0.27 23.91

5.5.2 Running Time Comparisons

Measuring the running time of defense mechanisms is challenging as it depends

on the implementation. We propose using the effective number of gradient descent

102



MNIST Fashion-MNIST CIFAR-10

Figure 5.2: Speed - accuracy trade-off curves.

steps as a measure of running time, defined as the product of number of random

restarts and the number of iterations per run. We report the classification accuracy

of DefenseGAN and InvGAN on MNIST, Fashion-MNIST and CIFAR-10 for clean

images by varying the effective number of iterations. The result is presented in

Figure 5.2. InvGAN has a significantly shorter run time and offers reconstructions

with improved semantic consistency.

5.5.3 Defense Against Adversarial Attacks

In this section, we compare InvGAN with Defense-GAN [85] in defending

against common white-box attacks. We consider crafting FGSM [30], PGD and

CW [11] attacks on the classifier with different perturbation budget ε and feeding

the adversarial images to our pipeline. In addition, we also experiment on end-to-end

attacks using reparameterization and BPDA [4].

White-box Robust Classification. We use MNIST, Fashion-MNIST, and

CIFAR-10 for evaluation. For FGSM and PGD, we select ε = 25/75 on MNIST,

ε = 8/25 on Fashion-MNIST, and ε = 8/16 on CIFAR-10. For the CW attack, we
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set the binary search step to 4, learning rate to 0.2, and number of iterations to 100.

Tables 5.2, 5.3, and 5.4 show the classification accuracy. Compared to DefenseGAN,

InvGAN achieves comparable performance on MNIST and Fashion-MNIST, and

improved performance on CIFAR-10. In Figure 5.3, we visualize projection results

for DefenseGAN and InvGAN when clean images or PGD (ε = 16) images are fed

as input. We observe that InvGAN reconstructs more shape and color details than

DefenseGAN.

Table 5.2: MNIST: Classification accuracy under different white-box attacks. Attack
strengths ε = 25/75 for RAND, FGSM and PGD.

Clean RAND FGSM PGD CW

No Defense 0.99 0.99/0.99 0.89/0.40 0.88/0.04 0.01
DefenseGAN (R = 10, T = 200) 0.98 0.98/0.98 0.97/0.84 0.97/0.88 0.97
InvGAN (R = 1, T = 1000) 0.99 0.98/0.98 0.97/0.79 0.97/0.81 0.98
InvGAN (R = 10, T = 200) 0.99 0.98/0.98 0.97/0.83 0.97/0.87 0.98

Table 5.3: Fashion-MNIST: Classification accuracy under different white-box at-
tacks. Attack strengths ε = 8/25 for RAND, FGSM and PGD.

Clean RAND FGSM PGD CW

No Defense 0.91 0.91/0.90 0.56/0.24 0.47/0.09 0.06
DefenseGAN (R = 10, T = 200) 0.86 0.86/0.86 0.84/0.76 0.84/0.79 0.85
InvGAN (R = 1, T = 1000) 0.86 0.86/0.86 0.82/0.70 0.83/0.73 0.85
InvGAN (R = 10, T = 200) 0.87 0.86/0.86 0.84/0.76 0.84/0.78 0.86

Table 5.4: CIFAR-10: Classification accuracy under different white-box attacks.
Attack strengths ε = 8/16 for RAND, FGSM and PGD.

Clean RAND FGSM PGD CW

No Defense 0.95 0.92/0.82 0.27/0.19 0.03/0.02 0.03
DefenseGAN (R = 10, T = 500) 0.46 0.46/0.46 0.45/0.43 0.44/0.44 0.44
InvGAN (R = 1, T = 1000) 0.59 0.58/0.58 0.55/0.50 0.55/0.53 0.55
InvGAN (R = 10, T = 200) 0.56 0.56/0.55 0.53/0.47 0.53/0.50 0.53
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Figure 5.3: CIFAR-10: Qualitative comparison between DefenseGAN (R = 10, T =
500) and InvGAN (R = 1, T = 1000).

Figure 5.4: MNIST: Attack detection performance (AUC) of DefenseGAN and In-
vGAN using image (left) and semantic (right) distance.

Attack Detection. In Figures 5.4, 5.5, and 5.6, we compare the area under

ROC curve (AUC) scores for attack detection between DefenseGAN and InvGAN

on different adversarial attacks. Both image distance [85] and the proposed se-

mantic distance are evaluated. It is clear that semantic distance is more suitable

105



Figure 5.5: Fashion-MNIST: Attack detection performance (AUC) of DefenseGAN
and InvGAN using image (left) and semantic (right) distance.

Figure 5.6: CIFAR-10: Attack detection performance (AUC) of DefenseGAN and
InvGAN using image (left) and semantic (right) distance.

for attack detection, and InvGAN achieves improved AUC performance than De-

fenseGAN. Furthermore, comparing the classification accuracy in Tables 5.2-5.4 and

attack detection performance in Figures 5.4-5.6, we observe that for large perturba-

tions where the classification accuracy of InvGAN is low, attacks can be detected

easily. On the other hand, for minute perturbations, InvGAN successfully removes

perturbation and achieves high accuracy, but the attack becomes more challenging

to detect. This suggests that our attack detection and robust classification scheme

offers orthogonal benefits – when one fails, the other succeeds.

Defense for BPDA Attack. The inability to compute gradients for projection-

based defense methods makes crafting effective white-box attacks difficult. BPDA [4]
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Table 5.5: Classification accuracy and detection performance under BPDA attack.

MNIST Fashion-MNIST CIFAR-10

ACC DET ACC DET ACC DET

DefenseGAN (R = 10, T = 200) 0.66 0.93 0.59 0.91 0.44 0.54
InvGAN (R = 1, T = 1000) 0.44 0.92 0.34 0.87 0.18 0.72
InvGAN (R = 10, T = 200) 0.58 0.93 0.42 0.91 0.36 0.68

approximates the gradients by the straight through estimator (STE). That is, dur-

ing backpropagation, the projection operation is replaced by the identity function.

Adversarial attacks are then crafted by minimizing the CW loss. Using the strat-

egy, Athalye et al. [4] brought the classification accuracy on MNIST to 55% in their

setting. We present classification accuracy and detection performance in Table 5.5.

Notice that DefenseGAN achieves higher accuracy than InvGAN under BPDA at-

tack, which is mainly due to the imperfection of DefenseGAN reconstruction. The

phenomenon will be more apparent in the next section when adversarial attacks are

guaranteed to be on the manifold.

Defense for Overpowered Attack. To break DefenseGAN, the adversarial

images have to be those xadv whose projection xproj = G(z∗) is also adversarial to

the classifier. One possible approach is to directly assign xadv ← G(z∗), where

z∗ = argmin
z
‖x−G(z)‖2

2 + lCW (G(z), y). (5.13)

If the projection operation in DefenseGAN is perfect, we will have xproj = xadv =

G(z∗), which will fool the classifier. However, Athalye et al. [4] empirically found

out such approach is not successful due to the imperfect projection of DefenseGAN.
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To improve the attack, Jalal et al. [42] proposed to solve for (5.4), which finds G(z∗)

such that images within a small neighborhood can fool the classifier in expectation.

We craft adversarial examples using Overpowered Attack with the same setting as

in [42]. We present classification accuracy and detection performance in Table 5.6.

Notice that under the Overpowered Attack, DefenseGAN outperforms InvGAN in

classification accuracy. However, we found out that with the perturbation budget

0.0051 (per-pixel L2 distance) used by Jalal et al. [42], Overpowered Attack gen-

erates perceptible perturbations to the input images. In Figure 5.7, it is clear that

Overpowered Attack adds/removes small strokes to the MNIST images, which dras-

tically changes the underlying semantics. For example, the clean image of digit ‘6’

becomes a digit ‘8’. We argue that such perturbations are not valid attacks since

there is no reason to expect a classifier to predict a ‘6’ when the image is visually

an ‘8’. Furthermore, if we reduce the perturbation budget, the optimization (5.4)

may not converge to a feasible solution and oscillates between minimizing the L2

loss and the CW loss. From the images highlighted in green boxes in Figure 5.7, we

also observe that the imperfect projection of DefenseGAN leads to some failures for

the attack, and hence higher classification accuracy.

Table 5.6: Classification accuracy and detection performance under BPDA attack.
∗Value rounded from 0.0041.

MNIST Fashion-MNIST

ACC DET ACC DET

No Defense 0.00∗ - 0.01 -
DefenseGAN (R = 10, T = 200) 0.20 0.41 0.36 0.35
InvGAN (R = 1, T = 1000) 0.13 0.34 0.24 0.26
InvGAN (R = 10, T = 200) 0.11 0.25 0.32 0.32
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Figure 5.7: Visualization of Overpowered Attack and reconstructions by De-
fenseGAN (R = 10, T = 200) and InvGAN (R = 1, T = 1000).

5.5.4 Ablation study

In this section, we study the effect of disabling the adversarial loss. More

specifically, we train the encoder model by setting η = 0, λ1 = 0, λ2 = 1, and λ3 = 0

. As can be seen from Table 5.7, although this network achieves a lower MSE, the

images are perceptually less realistic, and is reflected in lower classification accuracy.

Table 5.7: Analyzing the effect of adversarial loss in InvGAN.

MSE IS FID Accuracy
w/o Ladv 0.08± 0.04 7.54± 0.17 28.07 0.603
Ours 0.10± 0.06 7.72 ± 0.16 19.85 0.625

5.6 Conclusion

In this chapter, we introduce InvGAN – a novel data-free and model-based

inversion framework for solving the inference problem in GANs. Our approach

involves training an encoder function capable of inverting the generator network

back to the latent space. The encoder function is trained using a novel loss function
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that achieves superior inversion results compared to the contemporary methods

performing inference. The usefulness of our inversion scheme is demonstrated for

the problem of adversarial defenses, where our inversion scheme has been shown to

achieve dramatic improvements in defense performance, running time and attack

detection over DefenseGAN. Finally, we study attack methods that claim to break

DefenseGAN and empirically found out that in the case of Overpowered Attack,

perceptible changes are made to the clean images, which violates the definition of

adversarial perturbation. We propose that on-manifold robustness is an interesting

topic and should be carefully evaluated.
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Chapter 6: Conclusions and Future Research Directions

6.1 Conclusions

In this dissertation, we begin with an overview of existing priors and con-

straints posed implicitly by common neural network architecture designs. Despite

the success of these implicit priors and constraints, which require minimal adhoc

feature engineering and achieve good performance, DNNs are shown to be vulner-

able under distribution shift and adversarial perturbation. This motivates us to

develop task-dependent constraints and priors.

In Chapters 2 and 3, we showed the benefit of combining the neighborhood

structure of deep features for face subject clustering. In Chapter 2, we proposed an

exemplar-based method to improve the pairwise similarity measure for clustering.

In addition to surveillance application, we also demonstrated how the proposed

algorithm can be applied to automatically curate datasets with noisy labels, which

significantly reduces the cost of data annotation. In Chapter 3, we utilized the local

density in the feature space to construct the pairwise similarity measure. Feature

points that are within the high density regions with each other have higher similarity

than those that are not. Experimental evaluations showed that the density-based

approach achieves even better performance than the exemplar-based approach.
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In Chapter 4, we showed that the imaging geometry of computed tomography

can be used as a data consistency constraint during training. The network learns to

reduce structured artifacts both in the projection (sinogram) and image domains.

Extensive experiments are conducted on a large-scale simulated dataset and a real

clinical dataset. The proposed DuDoNet outperforms competing methods by a large

margin.

In Chapter 5, we proposed an inversion method for a pretrained GAN and im-

proved the efficiency of DefenseGAN for defending against common norm-bounded

attacks. The inversion model was used as a prior when inferring the latent codes

for input images. Therefore, semantic information in the input image can be re-

constructed using a smaller number of gradient descent steps. We also developed

an algorithm for detecting adversarial examples based on feature distance. The

adversarial detection was shown to bring orthogonal benefits to perturbation re-

moval for secured classification. Finally, we investigate attacks that claim to break

DefenseGAN. We found out that the method which crafts on-manifold adversarial

examples are the most effective one. However, existing works tend to craft images

with drastically different semantics from the source images, which we view as invalid.

Future studies for valid on-manifold adversarial examples and on-manifold robust-

ness could shed light on how to further improve projection-based defense methods.
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6.2 Future Research Directions

In Chapters 2 and 3, the framework of subject clustering includes feature

extraction using a pretrained DNN followed by hierarchical clustering. In order to

train the DNN, a small-size annotated face identification dataset is required. In gen-

eral applications, annotated datasets may not be available. Therefore, one possible

research direction is to develop an unsupervised representation learning algorithm

using a large-scale image database, and then apply metric learning techniques such

that visually similar faces have smaller distance in the feature space. In Chapter 2,

we demonstrated that clustering algorithm can be used to automatically curate

datasets with noisy labels, and DNN models can be improved by fine-tuning on the

curated dataset. A possible research direction is to apply the procedure iteratively,

and investigate whether a powerful DNN can be trained with minimum efforts in

human annotation.

In Chapter 4, we showed that dual domain learning on simulated data improves

the performance and generalization ability of CNNs for metal artifact reduction.

Although promising results are demonstrated in clinical CT images, it is still unclear

whether this approach can be generalized to CT images taken by machines with

significantly different X-ray spectrum and imaging geometry. One research direction

is to investigate semi-supervised learning for metal artifact reduction. In addition

to paired simulated data, we could utilize a large number of CT images with or

without metal artifact to improve the robustness of CNNs.

In Chapter 5, we empirically showed that out-of-manifold adversarial pertur-
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bations can be removed or detected by projecting onto the learned data manifold.

To break projection-based defenses (e.g. DefenseGAN and the proposed InvGAN),

crafting on-manifold adversarial examples is necessary. Therefore, one promising re-

search direction is to quantitatively study and improve the on-manifold robustness

of classifiers. Specifically, given a trained classifier, we would like to ask (1) how to

craft valid on-manifold adversarial examples effectively, and (2) can we use these

adversarial examples to improve the robustness of the classifier?
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