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In recent years, production automation has been the focus of this research en-
deavor to improve product quality and to increase productivity. Implementation
of computer-based untended machining has attracted great attention in the man-
ufacturing community. For a successful implementation of untended machining,
a better understanding of the machining processes and the functions they per-
form is required. This necessitates the development of sensors and intelligent
decision-making systems.

In this thesis work, a framework for sensor-based intelligent decision-making
systems to perform on-line monitoring is proposed. Such a monitoring system
interprets the detected signals from the sensors, extracts the relevant information,
and decide on the appropriate control action. In this thesis, emphasis is given
to applying neural networks to perform information processing, and to recognize
the process abnormalities in a machining operation. For signal detection, an
instrumented force transducer is designed and implemented in real time turning
operation. A neural network program based on feedforward back-propagation
algorithm is developed. The program is tested by the simulation data and verified
by the experimental data. The superior learning and noise suppression abilities
of the developed program enable high success rates for monitoring the tool wear
and surface roughness under machining of advanced ceramic materials.

It is evident that the development of hardware neural networks provides the
monitoring system with fast computational capabilities. The advances in sensor
technology enables inexpensive sensors to be easily mounted for monitoring the
machining process. All these evidences justify that neural networks will become

an attractive modeling tool for use in on-line monitoring of machining processes
in near future.
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Chapter 1

Introduction

1.1 Background

Computer Integrated Manufacturing (CIM), systems have emerged in response to
the requirements for greater flexibility, productivity, high precision and quality
of the product. The need to improve quality and decrease scrap rate while
increasing the production rate is forcing industry to consider untended machining
as a viable alternative. But this leads the operator, who attempts to sense the
effect of process variables and adjust the conditions accordingly, out of loop in
many cases. Also sometimes the operator is incapable of responding fast to alter
the conditions of operation accordingly. The former leads to high scrap rate
and higher cost to the need for rework. The later leads to reduced productivity.
Therefore appropriate sensors and associated monitors are, therefore, the key to
the successful implementations of an untended machining process.

On-line monitoring of a machining process is the key success of an untended
machining process. The monitoring systems should be highly reliable, in order
to leave the intelligent human operator out of manufacturing loop. The method-
ology to develop a monitoring system involves several key issues, like tool wear
model, on-line signal detection, digital signal processing, and model-based pro-

cess controller. The model-based controller serves as a link between the machin-



ing process stage and the detected signals from sensors. For successful on-line
monitoring, various sensors have been evaluated. These include, among others,
sensors based on force, torque, power, vibration, deflection, acoustic emission,
vision and radioactivity. Though these sensors are successful in manufacturing
shop floor, the need is felt more than ever if we were to be successful in imple-
menting an untended manufacturing efficiently. In some machining applications,
it is the lack of system’s process monitoring that is preventing total automation.
The assurance of product quality and the minimization of manufacturing cost
call for the use of nondestructive, in-process sensing techniques to characterize,
not only geometrical dimensions, shape and size, but also the microstructure,
internal defects, and material properties of a part. The availability of product
quality information on-line enables us to control a manufacturing process in real
time, realizing the objective of building quality into a product by minimizing
variability in the product’s characteristics.

Successful implementation of an untended machining process relies, to a great
extent, on the ability to recognize process irregularities and initiate corrective ac-
tions. In an untended machining process (where intelligent human operator is
missing), this function has to be performed with sensors and associated decision-
making systems which are able to interpret incoming information related to the
machining process and control the process approximately. An integrated system
consisting of sensing elements, signal conditioning devices, signal processing al-
gorithms, and signal interpretation and decision-making procedures constitutes
an intelligent sensor. Such a sensor system is a necessary requirement for suc-
cessful implementation of an untended machining process characterized by noisy
and unpredictable environments. The major concern in an automated machining
process, where normal cutting condition is desired without the human intervenes,
is the correct identification of the tool state as the machining process is going on.
On-line tool wear information is indispensable in precision machining, since it

has direct influence on part dimensions and also it assure safe cutting operation.



On-line wear monitoring is very important, in order to achieve a full automation
of machine tools and to avoid a very conservative tool changing. Prediction of
tool wear, which effects the surface quality of the machined part, vibrational
level in the machine tool, can be done by analyzing the signals from different
sensors. By studying the sensor outputs one can change the tool to achieve the
best quality of the machined product.

Intelligent sensor systems are expected to replace the knowledge, experience,
and sensory and pattern recognization abilities of human operators. For a suc-
cessful implementation of this task, the quality of information generated by the
monitoring sensors should be of high quality and the learning and decision-
making procedures used to analyze this information in the context of the process
state should be of high reliability. The quality of information depends on the
type and number of sensors used, and the signal to noise ratio of the information
generated by these sensors. Sensing strategies for unmanned machining should
aim at integrating the above factors, there by allowing for a sensor system design
which possesses the ability to successfully implement the sensory abilit.ies and
pattern recognition skills of the intelligent human operators.

The main objective of this thesis work is to develop an intelligent on-line
monitor, to recognize the process irregularities and to estimate the corrective
actions in an untended machining operation. By exploring the advantages of
neural networks, an Artificial Neural Network monitor is developed. For suc-
cessful implementation of the developed intelligent monitor in real time, a force

transducer is designed and implemented in real time machining process.

1.2 Outline of Thesis

This thesis is organized into six chapters. The contents of each chapter are
summarized below.

Chapter 2 describes an overview of pertinent literature. An introduction to



neural networks and their significance in on-line monitoring is discussed. Ex-
isting on-line monitoring methods and applications of neural networks are also
discussed.

Chapter 3 describes the basic methodology used in on-line monitoring sys-
tem. Here we explored the feedforward neural networks. Three types of neural
networks applications are discussed. In first, a relationship between the cutting
force and the cutting parameters is obtained. In second application, tool wear
and surface roughness are predicted. Finally applications of neural networks in
machining of advanced ceramics are discussed.

Chapter 4 deals with the experiments and analysis of experimental data. It
illustrates the experimental setup to perform the machining tests. Measurement
of cutting force and tool wear were discussed. Design and implementation of an
instrumented transducer is explained. Taylor’s speed-tool life curves are drawn
using the experimental data.

Chapter 5 describes about the framework of an on-line monitoring system.
Merits and demerits of instrumented transducer over commercial dynamometer
are discussed. The advantages of feedforward neural networks and their signifi-
cance in on-line monitoring are also discussed. The basic control strategy of an
on-line monitoring system is analyzed. A brief description of code developed for
a Back-Propagation Network is given.

Chapter 6 provides conclusions of this thesis and recommendations for future
work. Here we briefly summarize the results of this thesis work. The contribu-
tions of neural network in the field of machining processes are presented. The
success rate and difficulties of various architectures of neural networks in the

applications of machining processes are also discussed.



Chapter 2

Literature Review

Overview

This chapter discusses briefly about the relevant literature of this thesis. It
is mainly divided into six sections. The first section describes briefly about
the history of neural networks. The second section describes the motivation for
Artificial Neural Networks (ANN) research. The third section describes the basic
concepts of neural networks. The fourth section discusses the existing monitoring
systems in machining processes. The fifth section discusses about the significance
of neural networks in on-line monitoring. A few practical applications of neural

networks are discussed in last section.

2.1 History of Neural Networks

A technique for intelligent tool condition monitoring which employs information
from the sensors is integrated through a neural network. The artificial neural
networks consist of many massive interconnections of rather simple neurons which
simulates the biological nervous system. These networks are also referred to as
parallel distributed processing. It consists of a set of processing units, known

as neurons. These neurons have a pattern of connectivity among them and the



knowledge can be represented by the strength of the connections, which is not
fixed. Instead, the weights can be modified based on the experience, so the
network can learn from its past experience, so as to simulate the human brain.
So we can say these type of networks are intelligent.

Neurons are living nerve cells and neural networks are networks of these cells.
The cerebral cortex of the brain is an example of a neural network. Somehow,
such a network of neurons thinks, feels, learns and remembers. In the past,
many investigators attempted to build models to study neural networks. These
models fall into two categories. First one is biological modeling, where the goal
is to study the structure and function of real brains in order to explain biological
data on aspects such as behavior. In technological modeling, the goal is to
study the brains in order to extract concepts to be used in new computational
methodologies. There are points of contention on which of these two branches
should constitute the true focus of research in neural network modeling. If the
goal is to advance our understanding of biological intelligence , then the validity
of the models should be corroborated with experimental evidence. However,
many scientists and engineers are usually content with models inspired by brain
function. Although this controversy continues, the latter viewpoint is taken by
several investigators working in the area of artificial neural networks (ANN) and
neuro computers.

The two objectives of research in ANN’s may be paraphrased as follows.

1. To understand how the brain imparts abilities like perceptual interpreta-
tion, associative recall, common sense reasoning and learning to humans.
Toward this goal it is necessary to understand how computations are or-
ganized and carried out in the brain. These computations are of different

kind than the formal manipulation of symbolic expressions.

2. To understand the subclass of neural network models that emphasize com-

putational power rather than their biological fidelity. To achieve this object,



it is admissible to incorporate features in a model even if those features are

not neurobiologically possible.

The restricted view taken by technological modelers also has a turbulent his-
tory. In the early days of computers, two philosophically opposing views of what
computers could be emerged and struggled for recognition. One school believed
that both minds and digital computers are symbol-manipulating systems. Sym-
bolic logic and programming became the tools of their trade. The opposing
school felt that the ultimate goal of computation is better by modeling the brain
itself rather than manipulating the mind symbolic representation of the exter-
nal world. Stated differently, the symbol-manipulating school believed that the
problem-solving process is essentially algorithmic. Although initial demonstra-
tions proved the viability of both these approaches, the brain modelers lost some
ground when digital computers were successfully used in 1956 by Newell and
Simon to solve puzzles and prove theorems. By this time Rosenblatt also suc-
ceeded in building a devise, called the perceptron, and demonstrated the viability
of the opposing school. In the decade that followed, this school received a severe
blow when in 1965 Minsky and Papert claimed that the perceptron approach is

fundamentally flawed.

2.2 Motivations for ANN Research

The recent renewal of interest in ANN’s is prompted by advances in computation
technology as well as a deeper understanding of how the human brain works.
One motivation is a desire to build a new breed of powerful computers to solve
a variety of problems that are providing to be very difficult with conventional
digital computers. Cognitive tasks such as recognizing a familiar face, learning
to speak and understand a natural language, retrieving contextually appropriate
from memory, and guiding a mechanical hand to grasp objects of different shapes

and consistencies are some examples that come to mind quickly. Problems of



this kind typically involve pattern recognition under real world conditions, fuzzy
pattern matching, nonlinear discrimination, or combinatorial optimization. That
is, these tasks are analogous to those typically performed by our brain, and are
beyond the reach of conventionally programmed computers as well as rule based
expert systems.

Another motivation behind the spurt of activity in this area is a desire to
develop cognitive models that can serve as a foundation for artificial intelligence.
It is well known that the brain is not as good at performing arithmetic operations
as a digital computers. But it is good in association, categorization, generaliza-
tion, classification, feature extraction, and optimization. These capabilities fall
under three main categories, i.e., searching, representation, and learning. These
aspects are closely related to the associative property and self organizing capa-
bility of the brain. By associative property, we mean the capability of recalling
an entire complex of information by using a small part of it as a key to a search
process. The brain does this remarkably well. By self organizing, we mean the
ability to acquire knowledge through a trial-and-error learning process involving
organizing and reorganizing in response to external stimuli.

A devise that is familiar to electrical engineers and that behaves somewhat
like a neuron is the electronic analog operational amplifier, configured as an
integrator. If one can visualize hundreds of these integrators interconnected
together through potentiometers, then what we had a crude model of an ANN.
Aside from technological challenges, there are number of problems of theoretical
nature that need to be addressed and solved if ANNs have been built, each with
a different architecture and each aimed at solving at different problem, there
seems to be a lack of commonality in their theoretical basis. Similarly much
remains to be learned about learning algorithms. In spite of these uncertainties,
a forceful motive behind the current enthusiasm for artificial neural networks is

in the promise they hold in solving the diversity of hard problems.
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Figure 2.1: The General Aspects of Neural Networks
2.3 Introduction to Neural Networks

Kohonen defined neural networks in 1988 as ” Artificial neural networks are mas-
sively parallel interconnected networks of simple, usually adaptive, elements and
their hierarchical organizations which are in;nded to interact with the objects
of the real world in the same way as biological nervous system do”.

The gencral aspects of neural network is illustrated in Figure 2.1 There are a
set of processing units (neurons) indicated by circles in the figure. At each point
in time, each unit has an activation value a(t). This activation value is passed
through a function to produce an output value Y(t), which will pass through a

set of unidirectional connections (shown by arrows in Fig. 2.1) to other units in

the system, so that

Y; = Fja;]



There is associated with each connection a real number called weight or strength
W(t) of the connection, which determines the amount of affect that the first unit
on the second unit. Now all inputs with their weights are combined by some

operator, usually additor, to yield

net; = 3 Wi(t) * Y;()
The new activation value is now determined through a function “f”, which is a

function of the current activation value and the combined inputs, so that

ai(t) = fi(ai, net;)

These neural networks are viewed as plastic, as the patterns of interconnection
are not fixed all of the time. A neural network learns by undergoing weights
modification as a function of experience. In this way (we can assume) a neural
network system is evolved.

McClelland and Rumelhart proposed eight aspects of a neural network or
parallel distributed processing model [McRu 86]. Each one of them is explained
briefly in the following paragraphs.

1. Set of Processing Units
The whole processing of a neural net is done by these units. Each unit’s
job is to receive inputs from its neighbor’s to compute an output value
based on a function of the input it receives and to send the output to its
neighbors. The system is inherently parallel i.e., all units carry out their
computations at the same time. These units are divided into input, hidden
and output units. Input units receive inputs from sources external to the
system under study. These inputs may be either sensory input or inputs
from other parts of the processing system in which the model is embedded.
The hidden units are those whose only inputs and outputs are within the
system. They 'are not visible to outside systems. The output units send

signal out of the system.
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2. The State of Activation
The state of the system at any time ‘t’ is specified by a vector of n real
numbers a(t), which represents the pattern of activation over the set of
processing units. Each element of the vector represents the activation of
a unit at time ‘t’. Different models make different assumptions about the

activation of a unit. Activation values may be continuous or discrete.

3. Output of the Units
Associated with each unit, u;, there is an output function Fi(a;(t)), which

maps the current state of activation,a;, to an output signal, Y;(¢). So that
Yi(t) = Fi(ai(?))

In some models ‘F’ is a threshold function, so that a unit has no affect on
another unit unless its activation exceeds a certain value. In some other
models ‘F’ is assumed to be a stochastic function in which the output of

the unit depends in a probabilistic fashion on its activation values.

4. The Pattern of Connectivity
The pattern of connectivity of the system constitutes what the system
knows and determines how it will respond to any arbitrary input. In many
cases, the total input to the unit is simply the weighted sum of the separated
inputs from each of the individual units. Thus the pattern of connectiv-
ity can be represented by merely specifying the weights for each of the

connection in the system.

5. The Rule of Propagation
This rule combines the output vector Y(t), the output values of the units,
with the connectivity matrices ‘W’ to produce a net input for each unit
le.,

net = W x Y (t)

11



6. Activation Rule
The net inputs of each type impinging on a particular unit are combined
with one another and with the current state of the unit to produce a new
state of activation in accordance with a rule ‘F’. For example, assuming ‘I’

is an identity function and all connections are of the same type. Then,
a(t+1) =W x Y (t) = net(t)

We can assume ‘F’ to be a sigmoid function, when a(t) is assumed to take
on continuous values. In this case, an individual unit can saturate and

reach a minimum or maximum value of activation.

7. Learning Rule
A learning rule is used to change the weights of interconnections. In prin-

ciple there are three kinds of modifications: They are

o The development of new connections
e The loss of existing connections

o The modification of the strengths of connections that already exist

The first two can be considered a special case of last one. This is due to
the fact that when we change the strength of connection away from zero
to some positive or negative value, it has the same effect as growing a
new connection. When we change the strength connection to zero, it has
the same effect as losing an existing connection. There are many kinds
of learning rules. Virtually all of them can be considered a variant of the
Hebbian learning rule suggested by Hebb, in his classic book “Organization
of Behavior (1949)”. His basic idea is: If a unit u; receives a input from
another unit w;, then if both are highly active, the weights W;; from u; to
u; should be strengthened.

8. Representation of the Environment

This refers to a model of the environment in which this model is to exist.

12



We often represent the environment as a time-varying stochastic function

over the space of input patterns.

2.4 Existing Methods to Monitor the Machin-

ing Processes

In an untended machining, the knowledge of tool state plays a central role in
the process diagnostic system. In most of the machining processes, the primary
method of producing form and dimensions on a workpiece is the removal of ma-
terial from the work piece using edged cutting tools. During this process the tool
also looses some amount of material, which is referred as tool wear. Tool wear is
undesirable as it gives poor quality of the machined surfaces and causes unpre-
dictable changes in work piece geometry. A cutting tool may be removed from
service as a result of either gradual wear on the faces of the tool or catastrophic
failure resulting from sudden fracture or high temperature weakening of the tool.
The monitoring of gradual wear requires the development of sensitive, accurate,
and reliable devices.

On-line monitoring and compensation of the tool wear would of a great help
to avoid the increase in cutting force, loss of accuracy, deterioration in surface
finish, increase in cutting temperature and increase in vibration due to tool wear.
Also it bound to result in the improved quality of the product. One of the major
problem arising in the development of on-line monotoring of a machining process,
is the correct choice and availability of the tool wear sensors that should have
accuracy, reliability and be economical at the same time. The tool wear can be
monitored in various ways. One method to monitor the tool wear is off-line tool
wear monitoring. Off-line monitoring is preferred by a person (using a micro-
scope) or automatically by sensors that measure the tool geometry or the amount
of tool particles in chips. Since it involves a time delay in tool wear measurement,

they are not suitable for on-line applications. Tool life algebraic equations have

13



been widely used for more than eighty years and one of that equation is taylor’s
tool life equation [Ta 06]. This equation is based only on the final state of tool
wear and gives the period of time during which the cutting tool, under certain
cutting conditions, will develop a predefined amount of wear. This relation do
not describe the state of the tool wear during cutting. This limitation prevents
their usage in on-line applications such as dimensional compensation, tool break-
age prediction and adaptive control and they are useful only in the pre-process
calculation of the tool changing times. Tool wear can also be determined by
differential equations that are derived by off-line measurements [Ko 78, Ru 76],
which uses the whole cutting process for tool wear measurement. But the accu-
racy of these estimation depends purely on completeness and correctness of the
whole cutting process formulation which is very hard to obtain.

The other ways of monitoring the tool wear are direct and indirect methods.
Although both methods use sensors to monitor the tool wear, but they differ
in some aspects. In the direct method, sensors directly measures the tool wear,
such as optical scanning technique, electrical resistance, radioactive technique,
measurement of tool geometry, change in work piece size, and analysis of tool
wear particles in the chips. The optical scanning technique is limited because of
the uncertainty of the wear zone and the production environment (i.e., coolant,
chips etc.). The electrical resistance involves special preparation of the tools
which is costly and inconvenient and radioactive technique has a potential danger
of radioactivity. The measurements about the change in workpiece dimensions
may be prone to error because of the effect of temperature rise, deflection due to
cutting forces and inaccuracies in the machine tool structure.

The above difficulties leads to the indirect measuring techniques to measure
accessible process variables (such as, cutting forces, machine tool vibrations,
acoustic emission etc.), which are related to tool wear and correlating the changes
in these parameters to the change in the tool wear. Changes in the cutting force

because of gradual wear of the tool is usually very small to be used for any
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accurate and reliable correlation between the two. Indirect methods fall into
two categories: static methods and dynamic methods. The static methods uses
some static characteristics of the monitoring signal such as the mean, the rms
etc. Unfortunately, static methods are often too sensitive to the variation of the
cutting conditions. Therefore, the dynamic methods are developed, which uses
the dynamic characteristics of the monitoring signal to identify the tool condition.
However the dynamic methods have two major problems. First, the estimation
of the process model requires heavy computation; the second, the calculations
usually involve a non-linear search, which may not give accurate results.

The majority of the teéhniques discussed above for tool wear sensing is limited
due to inadaptability to on-line monitoring, influence of external disturbances
unrelated to tool wear on the measured signal, and inability of instrumentation
to operate reliably in the immediate vicinity of the cutting process.

Investigations have been carried out by several investigators on various tool
wear sensors based on radioactive isotopes [MeEr 53], measurement of the ra-
dioactivity of the activated cutting elements of the tool during machining [Ar 83],
etc. These sensors are basically used to determine the tool life. Jetly developed
a pneumatic system for tool wear sensing [Je 84], by the fact that back presure
increases with the decrease in distance between flapper and nozzle through which
high pressure air is passed. Suzuki and Weinmann [SuWe 85], have developed on-
line tool wear sensors by measuring the change in distance between the tool and
the workpiece using a stylus mounted on the tool holder. The stylus movement
is sensed by a displacement transducer.

Sajanwala etc. describes the design and testing of a pneumatic feedback sys-
tem that can be mounted on a center lathe to improve the dimensional stability
during turning by on-line tool wear sensing and compensation [SaCh 89]. The
proposed system consists of a pneumatic sensor to sense the tool wear during
machining, a pilot-controlled direction controlled valve to amplify the signal ob-

tained from the pneumatic sensor and an actuating mechanism to move the tool
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for compensation of dimensional inaccuracies.

George Chryssolouris presented an approach to the operation of manufac-
turing processes which is based on game theory [GeVe 91]). The input settings
of the process are selected by evaluating, on-line, a set of feasible alternatives
with respect to several criteria. Relevant performance measures such as process
cost and production rate can be directly influenced in this approach by estab-
lishing appropriate definitions for the decision criteria. He compared PROcess
DEcision MAking (PRODEMA) approach is compared with an adaptive con-
trol (AC) scheme through simulations of a turning process. Results show that
PRODEMA provides the ability to operate a process in accordance with overall

performance measures.

2.5 Significance of Neural Networks in On-line

Monitoring

For better on-line monitoring of machining processes, it is necessary to have
the actual process of tool wear. Tool wear can be estimated from the signals
of sensors. In order to retrace the tool wear information from the measured
signals, it is necessary to form the mathematical model of the cutting process.
These formulations may be based on either empirical analysis or physical models.
The empirical approaches are limited by their nature and applicable only in
some specific conditions. But the physical models are applicable in wider range
but they are restricted by the difficulties in formulating the accurate models.
Empirical relationships for the tool wear states is not useful in on-line monitoring
of machining process as the inherent variability property of wear process of tool.
So it is not possible to estimate the actual wearing process of the tool, if we
cannot formulate the accurate model of the cutting process, as it depends on the
so formed model.

Intelligent evolution of sensor information is necessary to perform the diag-
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nostic problem, as it is difficult to have the actual physical model to describe the
state of the process. Sensor feedback is essential if automated machines are to
produce the correct size and surface finish the first time. But unmanned facto-
ries will also demand integrated systems that replace the constant supervision of
skilled machinists. The solution for this problem can be solved by using neural
networks. Neural networks have long been studied in the hope of finding solu-
tions for problems with unknown or complex internal relationships. A neural
network takes an input numeric pattern and outputs an output numeric pattern.
Adaptation, or the ability to learn, is the most important property of neural
networks. Neural networks have capabilities of fast learning and pattern recogni-
tion i.e., they work like a human brain. In neural networks, knowledge is stored
in the connections between each neurode which is used for pattern recognition.
This obviates the requirement for searching for patterns in a separate knowledge
base and results in pattern recognition systems which are practical in real time
environments. Neural networks are able to make decisions based on noisy and
incomplete information.

A neural network can be trained to map a set of input patterns onto a cor-
responding set of output patterns simply by means of exposure to examples of
the mapping. This training is performed by a gradient descent algorithm, which
gradually adapts the internal weights of the network, so as to reduce differences
between the actual network outputs, for a given set of inputs and the desired
network outputs. Neural networks which learn mappings between sets of pat-
terns are called Mapping Neural Networks. A key property of mapping networks
is their ability to produce reasonable output vectors for input patterns outside
of the set of the training examples.

In neural networks the information contained in the input is recoded into an
internal representation by the hidden units (higher level feature detectors), which
perform the mapping from input to output. This eliminates the non-linear rela-

tionship physical models of tool wear of the cutting tool, which are very difficult
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to obtain. A set of weights that we obtained after training the network, can be
used to on-line monitor the machining process. Larger the training set, the more
accurate the estimate. Intelligent functions like learning, efficient knowledge rep-
resentation and retrieval, pattern recognition and generalization will make the

neural networks as the best alternative for on-line monitor.

2.6 Applications of Neural Networks

The word ‘applications’ should be treated with care. In evaluating an application,
it is important to be aware of how well developed an application is at the time

of evaluation. The categories of applications are:

o Candidate application - are those problems that could, in principle, be
solved by the type of technology that neural networks offer. In this type,
the problem has been identified and the problem requires a mapping or op-

timization that is similar to other problems addressed by neural networks.

e Applications underdevelopment- are those problems for which studies have
been performed or are underway. In these studies, a neural network is
usually trained to learn a simplified version of the problem first, and then

expanded to address the entire problem.

¢ Proven applications - are those for which neural networks are actually used
to solve problems. Such proven applications of neural networks by looking
at the network as a pattern-mapping systems that could be placed in a
wide variety of domains-medicine, manufacturing, image systems, speech
systems, autonomous control, and diagnostics, among others. The impor-

tant applications are paraphrased as follows.

Oleg Jakubowicz and Sridhar Ramanujam of the State University of New
York, Buffalo, have developed a neural network system intended to help techni-

cians to identify faults in circuit boards. This network not only helps to identify
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the failure but also directs technicians to the next appropriate board test. They
used unusual neural network architecture reminiscent of a counterpropagation
network. It consists of an input layer, Kohonen middle layer, and an output
layer. The input layer of the network comprises a set of binary (on-off) neurodes
and has one such neurode for each symptom that can be exhibited by the tested
board. In addition, a series of other input neurodes identify pins on the board
observed to be good or bad by the technician. This input layer is then fully con-
nected to a second, self-organizing Kohonen layer. The Kohonen layer is used
to develop a self-organizing set of feature maps, that map the various symptoms
found in the board. The Kohonen network models the input data in such a
way that the input patterns are clustered into groups of symptoms. During the
training of this layer, the overall output of the network is disregarded. Once the
Kohonen middle layer is trained, the weights between it and the input layer are
frozen and training begins on the network’s third (output) layer. The output
layer is essentially a back-propagation network layer that uses a delta-rule train-
ing procedure. The training procedure for the third layer involves presenting
the input patterns to the network and letting the Kohonen layer generates its
learned-feature map for that symptom combination. This feature map is trans-
mitted to the output layer, where the resulting network output is compared to
the desired output. The standard delta rule is used to adjust the weights. Es-
sentially, the output layer’s task is to learn the association between the symptom
feature maps as well as the probable causes for those symptoms.

G Chryssolouris, M Lee, J Pierce, M Domroese have used neural networks
for the design of manufacturing systems [ChLe 90]. The design of manufacturing
systems is often performed by means of simulations. Usually, the parameters of
a model of the system are varied by trial and error until the simulated perfor-
mance of the model reaches a desired level, as expressed by some combination
of performance measures. They used neural networks to learn the inverse of

the simulation function: given desired performance measure levels, the neural
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network outputs appropriate values for the system parameters. This eliminates
highly iterative guesswork from the manufacturing system design process. This
approach is applied to the resource requirements design problem, that is, deter-
mining the appropriate number of resources for each work center of a job shop.
They used a feed forward neural network with back propagation technique to
train the network. Results show that neural networks are capable of learning the
mapping from desired performance measures to suitable designs.

Liu and Ko used artificial neural networks for on-line monitoring of drill wear
[LiKo 90]. The authors assumed that the drill wear condition can be observed
indirectly by measuring both thrust and vertical acceleration during the drilling
process. The input vector of the neural network is obtained by processing the
signals of both the thrust and vertical acceleration while the output is the wear
states. The learning process of the neural networks is done by using back prop-
agation technique. The results of using single kind of sensor and sensor fusion
were discussed and compared. They achieved a success rate over 95 % for on-line
classification of drill wear.

Computer-integrated manufacturing requires models of manufacturing pro-
cesses to be implemented on the computer. Mechanistic models developed from
the principles of machining science are useful for implementing on a computer.
However, in spite of the progress being made in mechanistic process modeling,
accurate models are not yet available for many manufacturing processes. Em-
pirical models derived from experimental data still play a major role in manu-
facturing process modeling. Generally, non-linear regression techniques are used
for developing such models. However, these techniques suffer from several disad-
vantages like the structure of the regression model needs to be decided a priori.
S Yerramareddy etc. developed empirical models from experimental data for a
machining process [SuSt 91]. In this paper the authors compared non-linear re-
gression models with ANN models to assess the applicability of ANN as a model

building tool for computer-integrated manufacturing.
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NETTalk, developed by Sejnowski and Rosenberg [SeRo 87] at Johns Hopkins
University, learns to translate segments of English text into phonetic notation
for pronouncing the text. The phonetic notation that is output can be given to a
speech generator and pronounced out loud automatically. The network consists of
three fully interconnected layers. The input layer has 203 input units, the hidden
layer 80 units, and the output layer 26 units. The bottom layer inputs English
text, and the top layer is presented with pronunciation notation for sounds to
be pronounced from the input text. The NETTalk study illustrates the extent
to which pronunciation rules can be mastered by a three-layer back-propagation
net with only a single feature detection layer.

Several organizations are trying to apply neural networks to information-
processing problems in commerce and industry that have proved intractable or
far too expensive with algorithmic computers. Preliminary results have been
encouraging.

Behavioristics Inc., Silver Spring, Md., has demonstrated a neural network
for scheduling airline flights. Airline sell seats at different fares depending on
how far in advance a reservation is made. The system, called the Airline Mar-
keting Tactician, optimizes over time and allocation of seats between discount
and standard fare classes, to maximize the airline’s profit. At present, several
airlines are considering the system.

Murray Smith has shown how accurately neural networks can score applica-
tions for bank loans [KeTi 91]. A neurocomputer loan-scoring application has
been developed for a major finance company, which plans to install it in the field.

Jeffrey Elman, associative professor of linguistics of the University of Cali-
fornia at San Diego, has shown that neural networks can pick individual words
out of connected streams and devise representations for them. The neural net-
work speech-recognition system with the highest accuracy and largest vocabulary
was developed by Teuvo Kohonen, research professor in technical physics at the

Helsinki University of Technology, under contract to Asahi Chemical Co. of
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Tokyo, Japan.

Kunihiko Fukishima, a senior research scientist of NHK Laboratories in Tokyo,
and Sei Meyake, a research director at the Automated Telecommunications Re-
search Center in Osaka, have demonstrated a network, the Necognitron, that
can identify hand-printed characters with 95 % accuracy, regardless of shifts in
position, changes in scale, and even small distortions.

Adaptive control problems are also solved using neural networks. Andres
Pelionez, research associate professor of physiology and biophysics of New York
University, New York City, who has demonstrated the ability to move a finger of

a robot arm in a beautifully coordinated perfect straight line at any angle.

Conclusions

It is concluded that neural networks can be applied in a number of research areas.
One can see from above, that neural networks can become an viable alternative
to modeling tool. Consequently we were encouraged to apply neural networks in

the area of manufacturing.
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Chapter 3

On-Line Monitoring

Methodology

Overview

A basic methodology of on-line monitoring of a turning process is discussed
in this chapter. This chapter is divided into four sections. The first section
discusses the proposed on-line monitoring system for a turning process. The
second section describes the adaline model used to find the relationship between
force and cutting parameters (feed, cutting speed, and depth of cut) and results
are discussed. The third section describes the feedforward back-propagation
network, which is used to predict the tool wear and surface roughness. The fourth
section discusses about the machining of advanced ceramics and applications of

neural networks in ceramics machining.
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3.1 Description of an On-line Monitoring Sys-

tem

The productivity of the factory of the future and the quality of the products
it produces will, in part, depend on the intelligent utilization of computers to
monitor and control the machines that produce the products. This demands that
the supervising personnel and the computer systems should provide with accurate
and reliable information about the state of the machines and the quality of the
operations they perform. This requires, therefore a much better understanding
of the machining processes and the functions they perform, so that sensors and
the associated decision-making systems can be designed to provide the necessary
information.

In recent years, there has been an increase in the demand for high quality
products. Consequently, the manufacturing engineers are faced with the difficult
task of improving the productivity without comprising quality. The complexity
of modern day components adds to the difficulty of the task. The use of high
machining speeds to increase productivity exacerbates the stability problems and
might even lead to tool breakage in certain situations. This emphasizes proper
control of the machining process through on-line monitoring. The success of
manufacturing systems with a high level of automation and flexibility is the
capability to strictly control the quality of the product, to guarantee working
processes with a known reliability and availability of the whole system. The high
flexibility required of manufacturing systems also involves increasing severity
of operating conditions, which the various parts of the system are subjected
to. The state of the cutting tool plays an important role in the manufacturing
systems for metal-cutting machining. According to Balakrishnan, one can achieve

a fully untended machining if one can monitor the following tasks successfully

[BaMa 85]:
1. Workpiece monitoring (eg., surface finish, automatic setup, gauging)
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2. Tool monitoring (eg., tool life sensing and its breakage, offset measurement)
3. Process monitoring (eg., adaptive control, chip congestion detection)

4. Machine monitoring (eg., vibrations of gearbox, spindle and table)

A machining process is said to be fully monitored if one can successfully
implement the first two cases i.e., to increase the efficiency of the manufacturing
process, one has to know the tool life and its reliability and quality of the product.
Decision concerning optimal tool replacement policies for new manufacturing
cycles must be taken as quickly as possible in order to minimize the tool change
time and maximize the production rate.

An on-line machining process monitoring is a decision-making process to de-
termine the instant when a tool change is necessary so as to assure the product
quality or to avoid tool breakage. It can be expected that the control strategy
for this decision making process will be knowledge intensive. The task to control
the on-line monitoring is complex because of its physical contexts. A high-
performance computer program has to be developed to automate such a decision
making process. The recent advances in parallel computing, and the develop-
ment of hardware neural networks, endow artificial neural networks (ANN) with
potentially fast computational capabilities. By considering these advantages, a
neural network is implemented as an on-line monitor to machining processes, as
shown in Figure 3.1.

A neural network monitor developed to monitor a machining process is di-
vided into three stages:

The first stage is selection of a sensor(s)(eg., a force transducer). By using this
sensor(s), one can reliably monitor the machining process. From section 3.3.4, we
stated that a machining process can be monitored efficiently by studying the force
signals from the cutting operation. So the force ratio, apart from speed, feed,
depth of cut, nose radius and time, is presented to input layer of a feedforward

neural network.
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Figure 3.1: Block Diagram of an On-Line Monitoring of a Machining Process
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The second stage is training the neural network, which is done off-line. After
selecting a proper neural architecture, the network is trained with the training
data examples where each example (or pattern) consists a pair of input and out-
put variables. Once the root mean square (RMS) error for all training patterns
has reached a predetermined value (or the number of iterations reached some
fixed value), training is stopped and weights of the node connections and the
node thresholds are frozen. These weights and thresholds are used for on line
monitoring of machining processes. The values of connection weights and thresh-
olds depends on the training data. More the training data, better the network
performance and also the performance depends on the quality of the training
data.

The third stage is to implement the network in real-time machining opera-
tion, as shown in Fig. 3.1. The force signals from sensors are low pass filtered
and force ratio (feed force to tangential force) is determined. This ratio, along
with the other machining parameters, is fed into the trained neural network and
tool wear and surface finish are predicted. By looking at the predicted values,
the human operator (or control system) can act accordingly to optimize the
machining process, i.e., If any one of the output parameters (i.e., tool wear or
surface finish) has reached the target value, then the operator (or control system)
can stop the machining process or change the tool. The neural network can be
referred to as an inference engine, to effectively find a major tool wear mode
when the detected signal has been traced for a certain time. When a successful
monitoring is completed, the inference engine should take this information in the
working memory (training phase) and compare it with similar rules previously
stored in the knowledge base. The neural networks allows incremental improve-
ment as new data is made available. Therefore, the network constantly keeps
the information stored in the database updated. As the reliable information is
accumulated, more aspects of the true nature of the machining process will be

revealed.
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3.2 Identification of Relationship Between Force
and Cutting Parameters

Cutting force and cutting speed are two main quantities for an efficient machining
operation, because, their product is proportional to the power at the cutting
edge which in turn determines the metal removal rate and the required capacity
of the machine tools. Cutting force plays as significant a role in machining
as do cutting speed and tool life. Metal removal rate per h.p is very often
taken as an indicator of productivity. It is, however, very little realized that
the metal removal rate per h.p and unit cutting force are inverted concepts, i.e.,
metal removal rate per min per h.p is talking only about the unit cutting force.
Consequently, the close tie between metal removal rate per h.p and unit cutting
force proves the significance of the cutting force in metal cutting for both machine
shop and research department. The lower the unit cutting force, the better the
machinability of the material in question. Because, the larger the volume of the
material removed per min per h.p, the better its machinability. So one has to
analyze the cutting forces in order to know the machinability of the material in
question.

It is well known, that the cutting forces developed during machining can be
controlled by varying the cutting parameters, i.e., cutting speed, feed and depth
of cut. While a deep cut and a small feed (i.e., a large slenderness ratio) increases
the unit cutting force and cutting speed [Kr 66]. An increase in the permissible
cutting speed is an advantage and an increase in cutting force however is a dis-
advantage because no increase in metal removal results from it, but rather larger
deformations of the machine and workpiece takes place. The combined increase
of cutting speed and cutting force caused by a large slenderness ratio requires
also an increase in machine power. A deep cut favors tool life (for a given cutting
speed), a shallow cut favors the metal removal rate of the machine and its accu-

racy. To find the relationship between the cuting force and cutting parameters,
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we developed a model using ‘ADALINE’ neural network, whose description is as

follows:

3.2.1 Introduction to Adaline Network

The Adaline (ADAptive LINear Element) network was developed by Bernie
Widrow at Stanford University shortly after Rosenblatt developed the percep-
tron. This network is more or less similar to perceptron. Adaline uses a slightly
more sophisticated learning procedure than perceptron which is known as Widrow-
Hoff Least-mean-squared (LMS) learning rule. Also it is known as delta rule (as it
tries to minimize the Delta or Difference between the actual and observed output
of the same neuron). As mentioned above the basic difference between adaline
and a two layered perceptron is the learning law, i.e, adaline learns using L.M.S
error reduction where as perceptron uses a simple weighted difference (Delta (i)
= target.activ (i) - output_activ (i)). But the real difference between them is the
way the learning laws are applied (i.e., calculation of the delta). In perceptron
delta is calculated using the real (binary) output of the node and the desired
output, where as in adaline, delta is calculated using the neural activation before
the binary transformation is applied. This allows the weights to change in a way
that is more sensitive to the real distance between the neurons activation and the

desired output. Adaline is used for both continuous valued and binary inputs.

Architecture of Adaline and Madaline Networks

The adaline and madaline structure are similar to the structure of perceptron, as
shown in Figure 3.2. A few differences between them are at the micro-structural
level. In perceptron, hard limiting non-linearity is used whereas in adaline it is
replaced by a threshold logic non-linearity, where they add a variable threshold

instead of subtracting it (but since the thresholds can be positive or negative, this
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is just a difference in writing down the equations, not in any real performance).
They both have binary transfer function applied to the sum of the inputs times
their weights plus a threshold value, yielding (-1,1) values for the nodes.

At Meso-Structural level, the adaline is limited to a single output node and

the madaline can have many. They are each two-layered networks.

Dynamics of Adaline and Madaline structures

The dynamicé of adaline and madaline is similar to perceptron and it is quite
simple. We begin by presenting a pattern. This means that if the input layer for
the network is ‘n’ units long, we input a vector of length ‘n’; one value for each
neuron in the input layer. Now we move to next layer up. For each neuron in this
layer, we calculate an input which is the weighted sum of all the activation from
the first layer. The weighted sum is achieved by vector multiplying the activations
in the first layer by a connection weight matrix. This is not the activation of this
neuron, though. To obtain the activation, we subtract a threshold value (which
is fixed for each neuron), and apply a transfer function. The transfer function
is defined for each different network. In the case of adaline it is binary, real or
threshold-logic transfer function as shown in Fig. 3.2.

Thus the activation of the j** neuron in the second layer would be

Y_activ; = F(W;; x input_activ; — 6;)

where,
Y.activ; = activation of the j'* neuron in the second layer
F = transfer function
W;; = connection weight between i** input node and j** hidden node
input_activ; = input to the i** neuron in the input layer
; = threshold of the j** neuron in the second layer

If more than one layers are used, this process is repeated, with each layer

acting as the input layer to the layer just above it. As a result of differences
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among the value of the connection weights, different inputs can produce different

outputs in the top most layer.

The learning Law for the Adaline

After presentation of a pattern, and passing signals through the network in the
usual manner, we can observe the actual output value at each node in the output
layer and compare it with the targeted or desired value. The L.M.S error ‘E’ is
defined as,

1 N
E=Z-x% target_activ — output_activ)®
5 (Z( arget_activ — output_activ)®)

j=1
where,
target_activ = targeted activation at output node
output_activ = actual activation at output node j
N = total number of nodes in the output layer

In the above case, E represents the total error observed over the entire layer

of output nodes. This is the error we want to minimize.

3.2.2 Adaline Model

Adaline model can be applied in many fields. In the following we will discuss
how it can be applied to find the relationship between cutting force and cutting
parameters (i.e., feed, depth of cut, and speed) in a turning operation. We
developed a program that trains an adaline unit using the Delta Rule. This
program deals with single adaline (not madaline as we have only one output i.e.,
force) trying to learn to get the desired relationship between force and cutting
parameters, like a human brain. Here we assumed a linear relationship between
force and cutting parameters as adaline gives better results for linear networks.
The structure used for adaline network is illustrated in Figure 3.3. First we will

train the network (i.e., adaline) with sixteen different sets of patterns, as shown
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Feed (mm/rev) | Depth (mm) | Speed (rpm) | Force (N)
0.1 0.5 100 1533.738
0.1 0.5 100 1533.762
0.3 0.5 100 1601.835
0.3 0.5 100 1600.863
0.1 1.0 100 3067.872
0.1 1.0 100 3055.482
0.3 1.0 100 3204.723
0.3 1.0 100 3170.703
0.1 0.5 200 1534.827
0.1 0.5 200 1545.876
0.3 0.5 200 1604.982
0.3 0.5 200 1636.524
0.1 1.0 200 3067.062
0.1 1.0 200 3048.018
0.3 1.0 200 3203.277
0.3 1.0 200 3142.812

Table 3.1: Cutting Force Data

in Table 3.1. Each pattern will have three input parameters i.e, feed, depth of
cut, and speed, and one output parameter i.e, force.

The visual patterns are simulated as 3x1 patterns on a retina i.e, the adaline
processing element has a total of 3 inputs (i.e, feed, depth of cut, and speed) to
deal with. Rather than treat the desired output as a mentor input of weight one,
as explained above, this simulation simply keeps the correct answer in a separate
array for consultation when adjusting the weights.

First step in the simulation is to initialize the weights with random values
(make sure that all weights should not be equal to one or some positive value).

Next step is to initialize the range of the parameters. This is useful to normalize
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the data between 0 and 1. Normalization of data is done because we have different
parameters with different units. Therefore it is difficult to find the relationship
between them as we have to simulate the data with these parameters. So to
get rid of this problem and to have a better relationship, we will make each
parameter value lie between 0 and 1 (it is a ratio i.e, no units).

Next step is to initialize the inputs . Here we will normalize all the input and
output data between 0 and 1. Now we train the adaline by presenting it with the
first pattern i.e., with three input parameters and one output parameter (which

is the desired value of the force) and compute the output using the relation,

Actual_output; = Wy ; * feed + Wy ; * depth + W3 ; * speed

where,
i = number of pattern (i.e., example)
W,i = weights of interconnections and j varies from 1 to 3.

Now we will compare the actual output with the desired output. If the error
‘E’ (E = desired output - actual output) is less than the permissible, there is
no need to adjust the weights otherwise we need to adjust the weights according
to the Delta Rule until we get the error less than the permissible i.e., until it
recognizes the pattern with the correct output. The weights are adjusted as
follows,

Wiew = Woig + 0% E x X
where,
X = input vector

n = learning constant

After recognizing the first pattern, the second pattern is presented and the
weights are adjusted using the Delta Rule until it is also recognized (i.e., the error
is less than the permissible). At this point we need to confirm that adjusting
the weights for the second pattern did not ruin adaline’s recognization of the

first pattern. If it does not correctly remember the first pattern, we readjust
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the weights using the Delta Rule until it recognizes the first pattern. Then with
this current weights, we present the third pattern and the weights are adjusted.
Again we want to recheck that if it recognizes the first two patterns. So we will
present again the first one and find the error. If this error is greater than the
permissible, we readjust the weights until the error is less than the permissible.
After that the algorithm will do the same thing for the second pattern. This
process continues for all sixteen patterns in the training data.

After the check and re_check process for all sixteen patterns, adaline learns
to find the relationship between the force and the cutting parameters. Adaline
is fairly typical of many analog systems in this adjust and readjust problems.

We can say that the adaline recognizes all patterns (i.e., all patterns have
been learned). We have a unique set of weights, (as shown in Figure 3.4) that
represents the relationship between the output and input space. We can validate
the program by giving some known data i.e., giving input parameters (feed, depth
of cut, and speed) and find out the corresponding output using these weights as
follows,

Actualoutput = W, * feed + W, * depth + W3 x speed

Now we compare this value with the known value of the force for that particu-
lar pattern. This is done for sixteen patterns and a graph is plotted with number
of patterns on x-axis and output values on the y-axis, as shown in Figure 3.5.
To check the validity of the program, we rearranged the input data (i.e., training
data) and used the same data twice, so as to get 32 training data patterns. After
doing the simulation for this 32 patterns, we had one more unique set of weights,
which are nearly equal to the set we got from the simulation of 16 patterns. From
this one can say that, there will be no change in the network’s output if the same
information is given twice to the network.

From the network’s output one can say that the force is most effected by
depth of cut, which is a well known fact in the machining area. Consequently,

this neural network model can be used successfully in predicting the cutting force
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Feed

Depth

Speed

The weights of interconnections after convergence are:

0.065

0.927

0.006

The network’s outputs after convergence are:

Patt# Desired Output  Actual Output Error
Newtons Newtons
0 1533.738 1533.738 0.000
1 1533.762 1533.738 0.024
2 1601.835 1632.070 30.235
3 1600.863 1632.070 31.207
4 3067.872 3079.570 11.698
5 3055.482 3079.570 ~24.088
6 3204.723 3185.821 18.902
7 3170.703 3185.821 ~15.118
8 1534.827 1607.900 -73.073
9 1545.876 1607.900 -62.024
10 1604,982 1652.488 -47.506
11 1636.524 1652.488 -15.964
12 3067.062 3089.985 -22.923
13 3048.018 3089.985 -41.967
14 3203.277 3198.320 4,957
15 3142.812 3198.320 -55.508

—— i D S S St e e S o S 2 Y D e S D S G P W . S S . S P S s Stk T S S S D SRS e S P D S S e S

Figure 3.4: Adaline Network’s OQutput
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Figure 3.5: The Plot Between Actual and Desired Output of an Adaline
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during a machining operation.

3.3 Monitoring of Tool Wear and Surface Rough-

ness

3.3.1 Basic Concepts of Tool Wear

Tool wear is usually undesirable and has to be minimized. We need to control
the progress of tool wear, as it is related to the quality and cost of the machining
process, production rate, automation of manufacturing process etc. The mecha-
nism of tool wear in metal cutting is a relatively complex phenomenon, usually
occurring by several different processes, among them, adhesion, abrasion, diffu-
sion, fatigue , electrochemical action, thermal cracking, mechanical chipping and
fracture and tool deformation, depending on conditions in the cutting zone.
Adhesion wear occurs when the welded asperities between the contacting
surfaces fracture, tearing away bits of material from either surface. This type of
wear mechanism is found principally on the tool’s rake face and it is normally
associated with the relatively low cutting speeds that lead to formation of an
unstable built-up edge. When the built-up edge breaks down, it tears away
microscopic fragments of the tool with it and small fragments of the tool’s edge
are continually and progressively removed as the built-up edge breaks down. This
may be accelerated if an intermittent cutting condition occurs or vibrations of
the machine tool during machining and it is not influenced by high temperatures.
Abrasion is the most common wear mechanism on the cutting tool. It is caused
by the work material containing high surface concentrations of hard particles.
Under these conditions, the hard particles abrade the tool’s surface in a manner
similar to a grinding wheel. This wear is more susceptible to sharp edges than
hard inclusions, that are smooth and spherical. Abrasive wear is not confined to

any single face of the tool: it may be seen on both the rake and the flank faces
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simultaneously. The abrasive action tends to produce a flat surface on the tool
and causes such conditions as flank and notch wear.

Diffusion is a problem resulting from the interaction of metallic workpieces
and the cutting-tool materials during machining. It depends heavily on the met-
allurgical relationship between the materials. The diffusion process is highly
temperature-dependent, and when machining at high cutting speeds, and there-
fore at high temperatures, there is actual atomic transfer across the interface
between the tool and the chip. Fatigue wear occurs when the tool surface is re-
peatedly subjected to a loading and unloading cycle. This leads to small portions
of the tool material becoming detached from the tool’s surface. An intermittent
cutting action may leads to fatigue wear. Any fatigue problems can always be
lessened by changing the cutting-tool materials that are appreciably harder than
the workpiece. FElectrochemical action takes place by electrochemical reaction
between the workpiece and the tool, when a cutting fluid used. This reaction
results in the formation on the tool’s face of a rather weak layer of low shear
strength. This effect is normally considered desirable as it lowers the frictional
force on the tool, which in turn reduces the forces required for cutting whilst si-
multaneously lowering the tool’s temperature. However, it may also cause small
amounts of tool material to be removed by the action of the chip flow.

Thermal cracking occurs in interrupted cutting, when the tool edge is sub-
jected to rapidly fluctuating temperature. Welding of the built-up edge on the
tool face may also results in cracks being formed on the tool face or edge due
to differential expansion between the built-up edge and the tool. For the softer
cutting tool materials, e.g., high speed steel, Tool Deformation may occur when
cutting forces are high, and thus accelerate tool failure. Mechanical Chipping
and Fracture frequently occur with the more brittle cutting tools, especially the
ceramics, during interrupted cutting and also swarf action on the exposed edges
of the tool.

Figure 3.6 summarizes the criteria for wear and failure of a hard metal insert.
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Figure 3.6: Tool Wear Criteria and Failure Mechanisms
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An insert edge’s life is assessed according to three criteria, namely its ability
to hold workpiece tolerances and to maintain specific requirements for surface
finish and an efficient chip-breaking ability. If the insert no longer satisfies these
criteria, its useful life is ended and it should be discarded. A tool can be discarded
by assessing the degree of wear by the flank wear on the insert, but there are
many other factors that can also cause a shortened tool life; in this respect, the

degree of cratering is much more significant.

Tool Wear Classification

It has been a well known accepted criterion that the condition of the tool can be
obtained by the amount of flank wear on the flank face. It has been found that
progressive flank wear develops and the wear progress follows a fixed pattern, and
there are three stages of flank wear that occur during the life of a tool. These
are the initial or primary wear, progressive or secondary wear, and catastrophic
or tertiary wear, as shown in Figure 3.7.

Initial or primary wear : When a new tool is first used to machine a compo-
nent, there is a rapid breakdown of the edge, shown by the initial high wear-rate
in the graph of wear against time. This wear-rate is dependent upon the cutting
conditions and the workpiece material and it will decrease as the cutting speed
is increased. It is often stated that the high wear-rate in this region is caused by
crumbling of the edge, rather than the insert being worn in.

Progressive or secondary wear : Once the initial wear has occurred, there is a
steady progressive stage of insert wear, with a much less dramatic increase than
in the initial stage, when realistic cutting speeds are applied. Towards the end of
the progressive wear zone, it is usual to replace the tool. Sometimes, the criteria
to replace a tool depends on the quality of the machined part. Once this extent
of flank wear is reached, it can be assumed that to all practical purposes the life
of the tool has ended.

Catastrophic or tertiary wear : The final stage of wear is rapid, leading to
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Figure 3.7: Tool Wear Classification

catastrophic failure of the insert. This failure is caused by a combination of
high flank wear and a large crater formation which reach a point where the tool
is sufficiently weakened for the tool forces to cause it to fracture. If such a rapid
edge breakdown occurs during the final pass along the surface of the work, it is
likely that the workpiece will have to be scrapped. When the workpiece has a
high value, which has been increased as a result of the machining, any savings
made by using tools beyond the end of the progressive wear zone to produce extra

components will be more than lost by the value of the component scrapped.

3.3.2 Basic Concepts of Surface Roughness

Surface roughness is an important quality of machined surfaces. It not only has
an important effect on the wear, fatigue, reflection and adhesive properties of
many materials, but also affects their properties and feel. Surface roughness

is characterized as the macro and micro geometrical properties of a surface.
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Since it is more difficult to characterize a three dimensional quantity, it has
been traditionally characterized by the properties of a two dimensional profile
taken from a representative part of the surface. The geometrical properties of
this profile are called the surface roughness characteristics. The service life of a
component, which is affected by the wear-rate of mating surfaces, is dependent
upon the specified level of surface finish. Rough surfaces, with large peaks and
valleys, will of course have smaller areas of contact and, as a result, will wear
more quickly than smooth mating surfaces.

Figure 3.8 represents the main parameters of a three dimensional surface
profile. A typical machined surface has a combinations of roughness, waviness
and, lay as shown in Fig. 3.8. The roughness is the primary texture, which
is produced by the combination of the tool’s path and the tool motion. The
roughness with its typical roughness height and roughness spacing, is usually
produced by the basic surface forming process. The waviness results from such
factors as deflections of the machine or work, vibrations, chatter, heat treatment
and warping strains and it is the medium frequency component upon which
the surface roughness is superimposed. The waviness consists of the more widely
spaced irregularities. Lay, on the other hand, is a result of the production method
used and it determines the direction of the predominant surface pattern. On this
surface, the lay is in the front-to-back direction. Surfaces produced by machining
processes ordinarily have a strong lay pattern; i.e., they are unidirectional. The
surface texture is normally assessed by taking a sampling length at right angles
to the lay. Roughness and waviness comprise the surface texture. Figure 3.9,
shows two quantities that are of primary important: a measure of surface height
indicated by the roughness average parameter, R,, and a measure of the spacings
of the peaks and valleys of the surface roughness, indicated by the wavelength

parameter, D. The measure of R, is given by:

R, =[(_areasr + ) areass)/L]100/V

where,
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Figure 3.8: A Three Dimensional Surface Profile
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Figure 3.9: The Important Quantities of a Surface Profile

L = sampling length
V = vertical length
and areas r and s shown in Fig. 3.8 and R, is measured in pgm.

The parameter R, is given as a numerical value: the higher the R, value, the
rougher the surface texture. Whenever a surface-texture assessment is necessary,
it is important to consider what sampling length should be used for the trace of
the machined surface, as this choice will determine the magnitude of the assessed
parameters.

Recent advances in sensor technology have made available a variety of tech-
niques to measure surface roughness. These range from a variety of optical
techniques, that yield a direct profile of the surface such as in profilometry and
interferometry, to techniques that a parameter which is related in a complex
fashion to surface topography as in light scattering, speckle pattern analysis,
ultrasonic and capacitance methods [Br 77]. While providing different choices
in complexity, measurement range, and ‘cost for measuring surface roughness, it
would be more cost effective to use simple sensing techniques, but increase the

wealth of information gained by incorporating advanced computing methods in
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analyzing sensor data. Artificial neural networks would provide such a computing
approach.

Due to the importance 6f measuring surface roughness a variety of approaches
have been developed to analyze surfaces [ZaYe 91, ZaKa 91A, ZaKa 91B]. These
techniques range from purely quantitative ones (basic statistical parameters)
that give one or more numbers of the geometrical properties of the surface to
those that yield continuous functions. The latter include time, and frequency
domain techniques which describe the properties of the surface as a function of
the height variable, t-he shift distance along the profile, or the frequency content
of the profile. Surface roughness is based on two statistical parameters, center
line average (CLA) and root mean square (RMS). The CLA is defined as the
average of the absolute value of profile heights from a center line, while the RMS
is defined as the root mean square value of profile heights from a center line.

Furthermore, in many sensory data processing applications, there is a re-
quirement to classify sensory data into different classes based on their invariant
properties. This is needed in on-line production environments to automate the
classification and inspection of products. This can be achieved by using neural
networks as an on-line monitor to machining processes, as they works well on

noisy data.

3.3.3 Feedforward Neural Networks

Feed forward neural networks are characterized by layered architectures and
strictly feedforward connections between the neurons and no lateral, self, or back-
connections are allowed. These networks are all good pattern classifiers, and all
undergo supervised learning, i.e., they are taught to classify input into one of the
several a priori categories. This group includes the perceptron, the ADALINE
and MADALINE networks, the back-propagation network (also known as back-
propagating perceptron and multi-layer perceptron), the Boltzman machine, and

the Cauchy machine. These networks differ primarily in the way in which they
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learn. The first four networks, basically have the same learning laws and they
are good for pattern recognization, signal filtering, data compression, and hetero-
associative pattern matching. The Boltzman machine, and the Cauchy machine
learning method draws on an optimization approach which comes from statisti-
cal modeling of thermodynamic processes. In this section, we will discuss about

the back-propagation network in detail, and for other networks reference will be

found in [Ri 87].

Back-Propagation Network

The back-propagation network (BPN) is the most well known and widely used
network among the different neural networks available at present. The BPN is a
perceptron with a different transfer function in the artificial neuron and a more
robust and capable learning rule. This is an extension of single-layer perceptron
with the addition of hidden ‘layer and differs from single-layer perceptron with
the learning law, i.e., it uses Generalized Delta Rule for weight changes.

In 1986, back-propagation network (Rumelhalt, 1986; Segnowski, 1986) came
into prominence in neural networks as an exciting new means of pattern recog-
nization. The term back-propagation refers to the training method by which the
connection weights between each neuron of the network are adjusted. During
operation, all information flow is feed forward. This network takes a long time
to learn their pattern class and training sets have to be presented many times
(between 100 - 100,000) in order to get stable interconnection weights between

the neurons, to classify the input pattern correctly.

The Underlying Concept For The BPN

The important characteristic of the BPN is that, it forms a mapping from a set
of input stimuli to a set of output nodes using features (hidden layer) extracted

from the input patterns. This network can be designed and trained to accomplish
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a wide variety of mappings, some of which are very complex, as the nodes in the
hidden layers of the network learn to respond to features found in the input. By
features, we mean the correlation of the activity among different input nodes.
Because nodes in the BPN learn to respond to features as the network is trained
with different examples, the network develops the ability to generalize. For
example, the BPN can learn to distinguish between straight, concave, and convex
curved lines, even if the lines to be tested occur in different locations in the input
array than those used for training. The ability to make the complex distinctions,
even when the presented pattern is different from those on which the network
was trained, is due to the feature detection and generalization abilities which the
network was trained into the middle or hidden layer nodes. To be successful for
application, the hidden layer node of BPN must be trained to recognize the right
sets of features (right sets means to recognize an appropriate and sufficient sets
of features). These features must be sufficiently general, so that the network can
respond correctly even when its input is different from those it has previously

encountered.

Architecture of the BPN

The micro-structure and the meso-structure of BPN are shown in Figure 3.10.

The two structures are explained briefly in the following paragraphs.

The Micro-Structure

The BPN uses a sigmoid shape (S-shape) transfer function for each node, as it
is defined by a continuous function and is asymptotic for both infinitely large
positive and negative values of the input sum ‘X’ of each node, which is an
independent variable. This type of transfer function allows us for more complex
pattern recognization problems. The sigmoidal shape of transfer function means

that for the most value of an independent variable, the value given by the transfer
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Figure 3.10: The Meso and Micro Structures of a BPN

50



function is between two asymptotic values, 0 or -1 and 1. One important factor
about the sigmoid function is that its derivative is always positive, and is close to
‘0’ for either large positive or large negative values of ‘X’. Figure 3.11 illustrates
both the sigmbid function and its derivative. As shown in the Figure 3.11, the
derivative attains its maximum value at ‘X’ equal to 0, which is important in
helping the BPN learning law work effectively. This is because when we are
dealing with equations of learning law, we find that the changes made to the
weight connections between each neuron, is proportional to the derivative of the
activation. If this derivative value is zero then the weight changes are small,
which is desirable, as the derivative is zero when the activation value of neuron
is near ‘0’ or ‘1’, i.e., one of the two stable states. The derivative is the largest
when the activation is in the middle range, and so the change in the weights is
also fairly large, which drives the output of the neuron to one of the stable states.
Thus, the transfer function not only gives us smooth and differential behavior,
it actually helps the learning law work the way we want it to.

Note that as the activation of a neuron approaches either ‘0’ or ‘1’, the deriva-
tive approaches zero (as shown in Fig. 3.11). Because the learning or weight
change is proportional to this derivative, a weight may change more slowly than
desired for neurons which yield either a large or small activation. This can cause

difficulties in training the network.

The Meso-Structure

The BPN requires at least three layers of nodes, where as a single-layer percep-
tron requires two. In BPN, the layers are referred to as input, hidden or middle
and, output layers as shown in Fig. 3.10. The hidden layer nodes are crucial in
allowing the BPN to extract features and generalize. Only feed forward connec-
tions are allowed and each node in input layer is connected to the hidden layer
and each hidden layer is connected to only output layer. Usually BPN is fully

connected.
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52



Dynamics of the BPN

Like other types of networks, BPN has separate stages for learning and opera-
tion. Once the network has been trained, the learning process is stopped, and
connection weights are fixed. In operation, all information flows forward from the
input neurons to the neurons in the hidden layer(s), and from these to the output
neurons. No information is passed backward (or back propagated) during the ac-
tual network operation, and the back propagation refers strictly to the learning
stage. Now finding a set of connection weights for some problem is not easy; it
requires application of the back propagation learning rule for several thousand
iterations to achieve a good set of connection weights and neuron thresholds.

The basic structure of an BPN has an input layer, hidden layer(s), and an
output layer. The network will have variable thresholds on the hidden nodes and
the output nodes and variable weight connections between individual nodes. The
weight values could be very hard to come by unless some learning algorithm (like
back propagation learning rule) is used to drive the collection of weights toward
a useful set of values.

Now let us put a pattern to the nodes of input layer. So that we will have
some activation value to each node. Next we move our attention to the next layer
up. For each neuron in this layer, we calculate an input which is the weighted
sum of all the activation from the input layer. The weighted sum is achieved
by a vector multiplying the activation in the input layer by a connection weight
matrix. Now we add a threshold value to this weighted sum. Then we apply a
sigmoid function to get the activation of that neuron. The same thing applies to
all neurons in the hidden layer(s) and output layer.

In general the formula for the activation of the j** neuron in a layer is:
Yactivj = F(X) = F(I’V,] * Input,cltiv; + 01)

where,
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Y.ctiv; = activation of the j** neuron in the receiving layer
F(X) = transfer function (sigmoid function)

th neuron in the sending

W;; = connected weight between :
layer and j** neuron in the receiving layer
Input,ctiv; = input to the ** neuron in the sending layer

0; = threshold of the j** neuron in the receiving layer

The goal of the BPN learning law is to find useful value for the weights and
threshold values which will enable the desired classification. These weights may
not be unique, in fact they won’t be. As with most of the BPN applications,
there are lots of different weight combinations which will work. However, finding
a useful set of connection weight values is a challenge. The weight value could
be very hard to come by unless some learning algorithm is used to drive the
collection, towards a useful set of weight values over time. We can have multiple
possible sets of similar weight values, and that within each set, there may be an
infinite range of connection weights and thresholds. Each solution within a given
set will probably be roughly proportional to all other solutions. This means that
there is no single right answer, and there might not be any single best answer.

These are likely to be a very large number of good or workable answers.

Learning Law for the BPN

Like other networks, the BPN is taught to create a mapping from the input
to an activation pattern in the output layer. The BPN undergoes supervised
training. The BPN learns to distinguish among different pattern categories si-
multaneously. Each pattern will have a different type of influence on the change
in the connection weights. Thus, it is important that the patterns in the training
set presented in such a way that the changes in the connection weights move
over time to values which optimize the network’s response to all the pattern

classes. So we need a rule that will tell us how to change the weights depending
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on whether or not our training is correct. We somehow need to make the weights
on the processing element to approach the desired response. This can be done by
modifying the process element, so it can monitor its own output (by comparing
the actual output with the desired output and computing the error ‘E’) for that
particular input pattern. The rule used for training a BPN is ‘The Generalized
Delta Rule’.

The Generalized Delta Rule (GDR), which was first derived by Werbos in 1974
for a multilayer perceptron network, is an extension of the learning rule for the
single layer perceptron network proposed by Widrow and Hoff (1960). The basic
idea of GDR is to learn the target function via gradient descent minimization
of a global error function ‘E’. The rule first uses the input vector to produce its
own output vector and then compares with the desired output, or target vector.
If there is no difference between desired and target outputs, no learning takes
place. Otherwise the weights are changed to reduce the difference. This can be
viewed as a nonlinear optimization problem where the goal is to find the set of
network weights ‘W;;’ that minimize the total error.

The connection weight adjustment is done as follows:

AW;; = né;a;

where,

AW;; = adjustment of weight W;;, which goes to unit ‘j’ from unit ‘¥’

n = learning constant
6; = the error value of the target unit ‘j’
a; = the output value for the originating unit

So the new weight between node ‘i’ and node ‘j’ is:

Wii(n + 1) = Wji(n) + né;a;
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where, n= current iteration number.
The error value, denoted by §;, is simple to compute for the output layer, but
somewhat complicated for the hidden layers. If unit ‘3’ is in the output layer,

then its error value is:
8; = (t; — a;)F'(X)
For a hidden layer:

& = [Ek: W il F'(X)

n=1
where,
t; = the target value for unit j
a; = the output value for unit j

F'(X) = the derivative of the sigmoid function, F = F(X)(1 - F(X))
X = weighted sum of inputs to j

k = number of output nodes in output layer

The algorithm of BPN is given in appendix A. The basic principle of a GDR
is same as the Least Mean Square (LMS) principle. The LMS rule attempts
to insure that the aggregate statistical LMS error in the network is minimized.
In this case, the error in the weights of the processing element is based on some
ideal value for the weights. We compute the current error i.e., the deviation from
this ideal value, based on the weights for this input. We then adjust the weight
vector by computing a delta vector that is parallel to the input vector and has
a magnitude as desired in the previous equation. The weights are adjusted by
adding this delta vector to our current weight vector. This process has a simple
geometric interpretation . It can be shown mathematically that the aggregate
mean squared error is a function of the weight vector; specifically, this function is

a quadratic function of the weight vector. So, if we were to plot the mean-squared
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error Vs the possible weight vectors, we would get a parabola as illustrated in
Figure 3.12. One prominent feature of the parabola is that it has a bottom,
i.e., the point where the bowl bottoms out into a minimum value. This point
represents the minimum mean squared error or LMS error (or Delta Rule). The
weight vector that corresponds to this minimum error is our ideal weight vector.
It is the best weight vector we can possibly have for this particular input pattern.

The delta rule moves the weight vector from wherever it is on the surface of
its parabola towards the bottom of the bowl. It does this by moving along the
negative gradient of the parabola, which is the most direct route to the bottom
of the bowl. We know that the gradient always points along the direction of the
steepest descent of the curve at any given position. This means that the learning
algorithm always takes the most efficient route from the current position of the
weight vector to the ideal position, based on the current input pattern. So the
Delta Rule not only minimizes the mean squared error but does so in the most
efficient fashion possible.

The next step is to choose the value of the learning constant n. We certainly
want 7 to be positive. If it is negative, the direction of our delta vector is
away from the ideal vector, i.e., we will be degrading the response rather than
improving it. Also 7 should be less than 1; otherwise, the network cannot be
stabilized. If n is greater than 1, we will overshoot the input vector and end
up somewhere on the other side of it. So 5 should always be between 0 and
1. Also 7 is a measure of the speed of convergence of the weight vector to the
ideal one. If our weight vector is very far from its correct position, we want it
to take fairly large steps, otherwise we might end up training it for a very long
time. On the other hand, when we get close to the correct position, the specific
difference between the actual input sample and sample used to train the system
begins to introduce significant noise levels into the network. At this point, fine
distinction between the actual and desired output can cause the weight vector

to jump around excessively and be quite slow to find the correct settling point.
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A good value of 1 depends on how good our training data are.

3.3.4 Factors Related to Tool Wear and Surface Rough-

ness

Successful automation of machining operations relies, to a great extent, on the
ability to recognize process abnormalities and initiate corrective action. In the
absence of human operators, this function has to be performed with sensors
and associated decision-making systems which are able to interpret incoming
sensor information and decide on the appropriate control action. As stated in
the literature review, a machining operation can be recognized by a direct or an
indirect approach. In the indirect approach, signals related to the cutting force,
tool vibration characteristics, cutting temperature , and acoustic emission etc.,
are measured and recorded during machining operation.

It is well known that a tool will produce relatively higher loads as it begins
to wear during the cutting operation. For an effective process monitoring it is
important that the signal used should vary progressively as the tool wears , and
not just at the point when it breaks. Force measurement is currently the most
reliable and accurate sensing method in metal cutting operation. Hence, it has
been the preferred method for monitoring a machining process. The cutting force
generally increases with flank wear due to increase in the contact area of the wear
land with workpiece. It is generally assumed that the components of cutting force
are related to flank and crater wear [DaUl 87, Filp 69, MiDe 67]. It is also known
that the thrust force and the feed force are affected the most by flank and crater
wear. At light cutting conditions the crater wear is negligible and the tool failure
is mainly caused by crater wear. Except for the small changes caused by flank
wear, the cutting force for light cutting is relatively constant. The variations in
the cutting force become much more pronounced at heavier cutting conditions.
According to Wright [YeWr 83|, however, cutting force information by itself is

inadequate for tool wear detection because its magnitude also depends on the
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cutting velocity. Another problem is that although flank wear tends to increase
the cutting force, the accompanying crater wear tends to reduce it [YeWr 83],
so that the magnitude of the cutting force may not show any sensitivity to tool
wear.

Ramalingam proposed a model, in which the ratio of the feed force to the
cutting force (tangential force ) is used as the measure of flank wear of a cutting
tool during turning [ShRa 90]. The first derivative of this ratio is used to signal
tool change. According to Ramalingam, direct use of cutting force to monitor
tool wear is complicated by variation in cutting conditions. For the same cut-
ting conditions, both cutting force and feed force increases as the flank wear
increases. But feed force is more sensitive to the flank wear compared to the
tangential cutting force. Feed force is significantly affected by feed rate, cutting
speed, and depth of cut. As the feed force increases more rapidly than tangential
cutting force, the resulting force direction in the x-z plane will change with in-
creasing flank wear. It is shown that the feed to cutting force ratio is insensitive
to speed and depth of cut, and it decreases linearly with feed. But in actual sit- .
uations, feed is held constant and can be used as a process control variable. The
unknown parameters are workpiece size variations and the speed change (along
with changes in material properties). The former causes the depth of cut to vary.
So a small variation in cutting speed and depth of cut do not cause noticeable
changes in the force ratio. The curve representing the variation feed force with
time is similar to the flank wear characteristic curve. The cutting force ratio is
also a good indicator of the wear regime. When the tool reaches the catastrophic
wear stage, not only the cutting force ratio increases but also its derivative is
high.

By using cutting force ratio as an indicator of wear regime, one can eliminate
the problem of using the magnitude of force to the sensitivity of tool wear. At
high temperatures, the magnitude of cutting force may decrease due to work

hardening at the tool-workpiece interface. Because of this, the magnitude of
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cutting force may decrease, but the feed to cutting force ratio will not be effected
(i.e., it will increase with flank wear) as both components are affected by work
hardening.

Apart from force ratio, other machining parameters, like feed, speed, nose
radius of the cutting insert or tool etc., also affect the machining process. When
a high cutting speed is chosen, the insert may deform plastically as a result of the
high tangential force. This is usually caused by several interrelated factors . For
example, the high cutting speed causes the temperature of the tool to increase
locally, a factor which is further exacerbated when a small nose radius is used.
This local increase in temperature, coupled with the high speed, causes the tool
geometry to change. So the chip flow pattern is modified accordingly, leading
to tool wear. By using a larger nose radius on the insert, the heat can be more
easily dissipated.

Fortin, concluded that it is possible to increase the cutting tool life sub-
stantially by a proper variation of the cutting feed rate throughout the cutting
process [CIMa 90]. When machining tough materials, tool wear appears quickly
with the creation of a crater on the rake face. This decrease in tool-cross section
induces material chipping and premature tool breakage which can be avoided
by varying the feed rate. When high feed rates are utilized in conjunction with
other wear-promoting factors, namely a small nose radius and a low conductivity
insert, the axial force will also plastically deform the insert. In this case, the
clearances and plan approach angles will change, rather than the rake angle as in
the high speed case. Once again, tool wear will increase, leading to a premature
tool failure. Brittle fracture is associated with very high feed rates and depths

of cut.

3.3.5 Omn-line Monitor Model

A neural network model is used as an on-line monitor for the machining processes.

Developing the neural network model involves two stages. First, an appropriate
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architecture for the network has to be determined. Then the network with the
appropriate architecture has to be trained on the training data, which is obtained
through a series of experiments. A three-layer fully-connected feed forward neural
network (described in section 3.3.3) is used to learn mappings between input
and output parameters. In this thesis work, a back-propagation neural network
algorithm is implemented in a sun sparc station. A schematic of the artificial
neural network (ANN), with the input layer, the hidden layer and the output
layer, is shown in Figure 3.13. Each of the input nodes correspond to a single
input parameter, and similarly each output node is uniquely associated with one
of the output parameters. The determination of the hidden nodes is mainly based
on experience and trial and error experimentation. The role of the hidden nodes
is to perform feature extraction on the patterns presented at the input layer.
Essentially, this involves noise rejection in the raw sensor patterns, and produce
new features with a higher signal to noise ratio.

Once the architecture is determined, the neural network has to be trained
on the examples (or patterns), where each pattern is a set of input and output
parameters. All the values of patterns are normalized between 0 and 1. This is
because, each node represents a nonlinear sigmoid function, as explained earlier,
and gives an output which lies between 0 and 1. So the data we are presenting
to the network should lie between the same limits; i.e., 0 and 1. We know
that the main function of a neural network is to find a set of weights, which
represent the mapping from the input space to the output space. It is very
difficult to converge to a set of weights, if the input and output parameters are
not normalized. Also, normalization is required because the parameters used for
training will have different units of measurement and to prevent saturation of

the sigmoid function. The parameters are normalized using the relation:
Vnor = [(09 - 01)/(Vma.’v - Vmin)(‘/cur - Vmin)] + 0.1

where,

Vinae = maximum value of the parameter
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Figure 3.13: A Schematic View of an ANN
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Vinin = minimum value of the parameter
Veur = current value of the parameter
Vaor = normalized value of the parameter

Once the data is normalized, the network weights and node thresholds are
randomized. Training involves presenting the patterns (input-output pairs) to the
network, calculating the error, propagating the error back through the network
(using the back-propagation algorithm), and then modifying the weights by small
increments to reduce the error. This process is repeated until the network is
stabilized (i.e., the weights do not change) or the overall error (for all testing
patterns) is reduced below a threshold. Unlike the conventional batch algorithms,
back-propagation is an incremental learning algorithm, because at any stage
during this process, training can be stopped and the network would still serve as
a model of the function being learnt, even though it may not be quite accurate.
This feature of the algorithm allows incremental improvement as new data is
made available. If a trained network is already available, there is no need to
randomize the weights of the network. Though the original training sets have to
be reused, the network can start from its current state, thus reducing the training
time.

The six input parameters for the proposed network are: the cutting force
ratio (ratio of the feed force to the tangential force), speed, feed, depth of cut,
nose radius and time . Three different types of networks are proposed in this

work. They are as follows:

e Tool wear is predicted in the first type. The training data consists of six
input parameters and one output parameter (tool wear). The architecture
of this network is: six input nodes, one output node, and four hidden nodes

(as shown in Figure 3.14).

e Surface roughness is predicted in the second type. The training data con-

sists of six input parameters and one output parameter (surface roughness).
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The architecture is the same as that of the first type (as shown in Figure

3.14).

e Both tool wear and surface roughness are predicted in the third type. The
training data consists of six input parameters and two output parameters
~ (tool wear and surface roughness). The architecture of this network is: six
input nodes, two output nodes, and four hidden nodes (as shown in Figure
3.15). This type of network is chosen to remove false alarms for both tool

wear and surface roughness.

The data for training the above networks is taken from [Ar 89] and is shown
in tables 3.2 and 3.3.

Feedforward back-propagation network is trained with three different training
data and the results are illustrated in figures 3.16, 3.17, 3.18. Figure 3.19 illus-
trates the correlation between the predicted and the actual values for the first
type of network. Figures 3.20 and 3.21 give the same information for the second
and the third type. From the results we concluded that the percentage of pre-
dicting the tool wear (i.e., (error/desired value)* 100) from the trained network
is about 93%. Similarly predicting the surface roughness was about 82%. In the

third type of network it is 91% for tool wear and 83% for surface roughness.

3.4 ANN Applications to Machining of Ceram-
ics
3.4.1 Overview

Machining of advanced structural ceramics has recently come into prominence
due to the need for high-strength materials for high temperature applications. A
comprehensive survey of the industry has confirmed that the high cost of machin-

ing is a primary impediment to the widespread utilization of advanced ceramics.
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(B) Surface Roughness Model

Figure 3.14: The Architecture of an On-Line Model
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Speed | Feed | Depth | Radius | time'| Force | Force | Force | Finish | Wear
(rpm) | in. | in. in. |min.| Tan | Rad | Fed |muin. | in.
325 | 0.003 | 0.040 | .0156 0 44 14 26 - 0.0000
325 |[0.003 | 0.040 | .0156 2 48 12 24 35 | 0.0030
325 | 0.003 | 0.040 | .0156 5 48 12 24 30 |0.0035
325 |0.003 | 0.040 | .0156 | 10 38 12 26 35 | 0.0037
325 |0.003 | 0.040 | .0156 | 20 44 14 22 60 | 0.0038
325 |0.003 | 0.040 | .0156 30 48 14 28 65 0.0058
325 | 0.003 | 0.040 | .0156 40 50 18 28 70 0.0054
325 |0.003 | 0.040 | .0156 | 60 48 16 28 55 | 0.0056
100 | 0.006 | 0.020 | .0312 0 54 28 24 0.0000
100 | 0.006 | 0.020 | .0312 2 56 30 28 40 | 0.0021
100 | 0.006 | 0.020 | .0312 5 50 30 24 26 0.0034
100 | 0.006 | 0.020 | .0312 | 10 48 26 20 60 | 0.0051
100 | 0.006 | 0.020 | .0312 20 52 30 20 45 0.0071
100 | 0.006 | 0.020 | .0312 30 46 28 20 49 0.0079
100 | 0.006 | 0.020 | .0312 | 40 50 26 18 45 | 0.0089
100 | 0.006 | 0.020 | .0312 | 60 57 40 22 50 | 0.0097
325 |0.003 | 0.020 | .0312 0 28 14 10 0.0000
325 |0.003 | 0.020 | .0312 2 28 12 10 18 0.0038
325 |0.003 | 0.020 | .0312 ) 28 14 10 40 0.0038
325 |{0.003 | 0.020 | .0312 10 28 16 12 35 0.0047
325 |0.003 | 0.020 | .0312 | 20 28 16 12 35 | 0.0059
325 |0.003 | 0.020 | .0312 | 30 30 16 12 37 | 0.0064
325 | 0.003 | 0.020 | .0312 40 26 16 12 29 0.0067
325 |0.003 | 0.020 | .0312 | 60 30 18 12 42 ] 0.0095

Table 3.2: Experimental Data
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Speed | Feed | Depth | Radius | time | Force | Force | Force | Finish | Wear
(rpm) | in. in. in. |min.| Tan | Rad | Fed [ muin.| in.
325 |0.006 | 0.040 | .0312 0 92 30 38 ‘ 0.0000
325 |0.006 | 0.040 | .0312 2 85 23 40 27 | 0.0035
325 |0.006 | 0.040 | .0312 5 88 26 40 50 | 0.0043
325 |0.006 | 0.040 | .0312 | 10 88 23 36 55 | 0.0049
325 |0.006 | 0.040 | .0312 | 20 82 26 36 70 | 0.0051
325 |0.006 | 0.040 | .0312 | 30 86 28 40 100 | 0.0058
325 |0.006 | 0.040 { .0312 | 40 88 26 40 125 | 0.0060
325 |[0.006 | 0.040 | .0312 60 90 28 42 145 | 0.0072
100 | 0.003 [ 0.040 | .0312 0 54 20 34 0.0000
100 [ 0.003 | 0.040 | .0312 2 56 22 38 23 | 0.0025
100 [ 0.003 | 0.040 | .0312 5 56 20 38 20 | 0.0031
100 | 0.003 | 0.040 | .0312 10 64 22 40 23 0.0048
100 [ 0.003 [ 0.040 | .0312 | 20 58 24 38 23 | 0.0060
100 | 0.003 | 0.040 | .0312 | 30 64 24 34 23 | 0.0067
100 | 0.003 | 0.040 | .0312 | 40 60 22 34 35 |0.0068
100 | 0.003 | 0.040 | .0312 | 60 52 24 34 35 |0.0076
100 | 0.003 | 0.020 | .0156 0 42 16 30 0.0000
100 | 0.003 | 0.020 | .0156 2 42 16 30 37 0.0031
100 [ 0.003 [ 0.020 | .0156 5 44 18 30 50 | 0.0035
100 | 0.003 | 0.020 | .0156 10 42 20 30 55 0.0037
100 | 0.003 | 0.020 | .0156 | 20 50 20 32 60 | 0.0044
100 | 0.003 { 0.020 | .0156 | 30 52 20 30 65 | 0.0047
100 | 0.003 | 0.020 | .0156 40 26 14 14 70 0.0050
100 {0.003 | 0.020 | .0156 | 60 28 16 14 60 | 0.0055

Table 3.3: Experimental Data
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TRAINING COMPLETE after 15001 iterations

Weights of Neurode Interconnections:
Hidden Layer:

Mid Neurode # 0

0.334 0.080 0.220 47.976 -0.161 0.187
Mid Neurode # 1
=1.750 -1.722 6.349 -8.754 0.120 8.718
Mid Neurode # 2
1.349 0.191 -1.013 -9,983 -6.427 7.256
Mid Neurode # 3 .
2.038 1.479 3.933 1.077 3.135 4.061
Output Layer :
Out Neurode # 0
3.071 -1.830 -1.190 -2.882
Neorode Threshold Values:
Threshold for 0 mid node is: -=5.371
Threshold for 1 mid node is: 6.192
Threshold for 2 mid node is: 7.606
Threshold for 3 mid node is: -=2.260
Threshold for 0 out node is: 2.683
Pattern Actual Desired Errorx
Number Output Output

(rmm) (mam) (mm)
95 0.112 0.109 -0.007
96 0.113 0.117 0.004
97 0.124 0.107 -0.017
98 0.164 0.111 -0.053
99 0.123 0.116 -0.007
100 0.112 0.109 -0.003
101 0.113 0.116 -0.003
102 0.116 0.114 -0.002
103 0.118 0.114 ~0.004
104 0.136 0.137 0.001
105 0.112 0.106 -0.006
106 0.113 0.114 0.001
107 0.215 0.227 0.012

Figure 3.16: Results of Tool Wear Network
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TRAINING COMPLETE after 15001 iterations

Weights of Neurode Interconnections:

Hidden Layer:

Mid Neurode # 0

-5.883 0.306 ~1.258 15.252 -3.428 -3.522
Mid Neurode # 1
4,829 -1.436 0.717 -11.226 4.539 4,104
Mid Neurode # 2
-0.153 -9.603 4.369 ~0.335 -2.072 6.483
Mid Neurode # 3
8.671 -10.788 7.976 15.287 -2.943 6.387
Qutput Layer:
Out Neurode # 0
-3.941 ~5.083 -1.894 2.333
Neurode Threshold Values:
Threshold for 0 mid node is: -0.350
Threshold for 1 mid node is: -1.704
Threshold for 2 mid node is: 2.769
Threshold for 3 mid node is: -6.253
Threshold for 0 out node is: 2.823
Pattern Actual Desired Error
Number Output Output

{mu in) {mu in) {mu in)
95 79.14 65.000 -14.140
96 69.243 70.000 0.757
97 105.33 90.000 -15.330
98 45.280 65.000 19.720
99 103.48 100.000 -3.480
100 82.440 68.000 ~-14.440
101 74.190 65.000 ~9.190
102 72.340 108.000 -35.660
103 81.620 150.000 68.380
104 83.272 85.000 1.728
108 83.483 65.000 -18.483
106 . 82.854 65.000 -17.854
107 62.696 45.000 17.696

Figure 3.17: Results of Surface Roughness Network
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TRAINING COMPLETE after 15001 iterations

Weights of Neurode interconnections:
Hidden layer:

Mid Neurode # 0

-3.054 -2.051 -1.398 -3.004 0.285 4.449
Mid Neurode # 1

-0.118 -0.074 0.177 43.264 0.042 0.116
Mid Neurode # 2

-1.104 1.091 -1.011 0.011 -2.482 -1.136
Mid Neurode # 3

1.244 1.061 0.607 -2.860 -2.019 2.192

Output Layer:

Out Neurode # 0

-15.953 9.161 12.875 2,303
Out Neurcde # 1
-7.852 9.988 2.830 -6.403

Neurode Threshold Values:

Threshold for 0 mid node is: 7.789
Threshold for 1 mid node is: =-2,894
. Threshold for 2 mid node is: -1,527
Threshold for 3 mid node is: 3.300
Threshold for 0 out node is: 3.293

Threshold for 1 out node is: 3.885

Pattern Actual Desired Error Actual Desired Error
Number Output Output Qutput Output

(rom) (rmm) (mm) (mu in) {(mu in) (mu in)
95 0.114 0.109 -0.005 77.000 65.000 -12.000
96 0.134 0.117 -0.017 69.650 70.000 0.350
97 0.121 0.107 -0.014 99.560 90.000 -9.560
98 0.093 0.111 0.018 : 47.580 65.000 17.420
99 0.124 0.116 -0.008 115.560 100.000 -15.560
100 0.109 0.109 0.000 77.490 68.000 -9.490
101 0.127 0.116 ~0.011 81.000 65.000 -16.000
102 0.129 0.114 ~0.015 120.600 108.000 -~11.400
103 0.127 0.114 -0.013 118.950 150.000 31.050
104 0.121 0.137 0.016 65.320 85.000 19.680
105 0.106 0.106 0.000 73.980 65.000 -8.980
106 0.125 0.114 -0.009 70.490 65.000 -5.490
107 0.202 0.227 0.028 55.487 45.000 15.487

Figure 3.18: Results of Tool Wear and Surface Roughness Network
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Figure 3.19: Plots of Tool Wear Model
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Figure 3.20: Plots of Surface Roughness Model
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Figure 3.21: Plots of Tool Wear and Surface Roughness Model
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Improved processing methods in the manufacturing of ceramic materials have
achieved high strength, fracture toughness, and uniform properties. The goal of
the ceramic machining is to provide measurement methods, data, and mechanistic
information needed by industry to develop innovative and cost-effective planned
activities like obtaining machining data for optimization of grinding, elucidating
the chemo-mechanical interactions during machining etc. Now-a-days, strategic
material considerations and economic factors are forcing the choice towards the

use of ceramic components.

3.4.2 Effect of Cutting Parameters on Tangential Force

and Surface Roughness

For a ceramic materials, a feedforward back-propagation network is used to find
the relationship between the cutting parameters, and the tangential force, and
the surface roughness. Machining of ceramics is more difficult than machining
of metals. One can see from results of ceramic machining (chapter 4), that the
feed force is more than the tangential force, which is reverse in the case of a
metal machining. This is mainly because of the hardness of ceramics leading to .
a cutting mechanics dominated by fracture instead of plastic deformation. The
structure of the neural network used for this work is illustrated in Figure 3.22.
The architecture of the network is: three input nodes, one output node, and two
hidden nodes. Each of the input nodes correspond to a single input parameter,
and similarly each output node is uniquely associated with the one of the output
parameters. Two different types of networks are used for this work. They are as

follows:

e In the first network tangential force is predicted by giving feed, depth and
speed to the input layer.

e In the second network surface roughness is predicted by giving feed, depth,

and speed to the input layer.
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Figure 3.22: Architecture of Neural Network Used for Ceramics
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PARAMETER | CHANGED ACTUAL | CHANGED | PERCENTAGE
VALUE PARAMETER | OUTPUT | OUTPUT CHANGE
0.40 mm/rev | 0.36 mm/rev 1.88 lbs 1.523 1bs -18.99%
4 mils 3.6 mils 1.88 1bs 1.836 1lbs -2.3%
600 rpm 540 rpm 1.88 Ibs { 1.0156 Ibs -45.98%

Table 3.4: Effect of Cutting Parameters on Tangential Force

After determining the architecture, the network is trained with the training

examples, where each example is a set of input and output parameters. The

training examples were obtained from ceramics tests, as explained in chapter 4.

The steps for training are similar to the earlier case, i.e., steps used to train the

network for steel bars. The results are summarized in Figures 3.23 and 3.24.

3.4.3 Conclusions

1. Considering the first type network (where tangential cutting force is pre-

dicted), we see from the results that the effect of depth of cut is very small.
This can be explained in the following way. Each cutting parameter value
is decreased by an amount of 10% of original value and finding its effect on
the output from the trained neural network. Only one cutting parameter

value is changed. The results are as follows:

From above table we can say that depth of cut has the least effect on the
process (about 2.3%) and speed has the highest positive influence (about
45.98%) on tangential force. Feed has medium effect (about 18.99%). The

remaining percentage is due to other factors, such as tool wear etc.

The best quality of the machined part can be obtained at a low feed (0.2
mm/rev) and a low cutting speed (78.5 ft/min).

. Considering the second type of network (where surface roughness is pre-

dicted), we see from the results that the effect of depth of cut on surface
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TRAINING COMPLETE after 5472 iterations

Weights of Neurode Interconnections:
Hidden Layer:

Mid Neurode # 0

-4.314 -2.858 ~-2.974
Mid Neurode # 1
-5.642 ~3.880 -7.926

Output Layer:

Out Neurode # 0
2.941 -4.442

Neurode Threshold values:
Threshold for mid node 0 is: 2.105
Threshold for mid node 1 is: 11.328

Threshold for out node 0 is: 2.055

Network’s outputs:

ACTUAL OUTPUT DESIRED QUTPUT ERROR
1bs lbs

PATTERN # 0 :- 0.747 0.743 0.004
PATTERN # 1 :- 0.747 0.749 0.002
PATTERN # 2 :~ 0.10S 0.092 -0.013
PATTERN # 3 :- 0.105 0.119 0.014
PATTERN # 4 :- 0.024 0.010 -0.014
PATTERN # 5 :- 0.024 0.029 0.005
PATTERN # 6 :- 0.433 0.460 0.027
PATTERN # 7 :- 0.433 0.410 -0.023
PATTERN # 8 :- 0.189 0.200 0.011
PATTERN # 9 :- 0.189 0.181 ~0.008
PATTERN # 10 :- 0.965 0.990 0.025
PATTERN # 11 :- 0.965 0.939 -0.026
PATTERN # 12 :- 1.931 1.882 -0.049
PATTERN # 13 :- 1.931 1.982 0.051
PATTERN # 14 :- 2.198 2.250 0.052
PATTERN # 15 ;- 2.198 2.150 -0.048
PATTERN # 16 :- 1.523 1.881 0.358
PATTERN # 17 :- 1.836 1.881 0.045
PATTERN # 18 :- 1.016 1.881 0.865

Figure 3.23: Results of Neural Networks for Ceramics (Tangential Force)
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TRAINING COMPLETE after 10501 iterations

Weights of Neurode Interconnections:
Hidden Layer:

Mid Neurode # 0

-6.181 1.837 6.688
Mid Neurode # 1
0.747 ~-5.458 -1.009

Output Layer:
Out Neurode # 0
-4.015 -2.896

Neurode Threshold values:
Threshold for mid node 0 is: -1.351
Threshold for mid node 1 is: 0.910

Threshold for 0 out node is: 2.495

Network’s outputs:

ACTUAL OUTPUT DESIRED OUTPUT ERROR

{(mu in) {(mu in)
PATTERN # 0 :- 0.935 0.938 0.003
PATTERN # 1 :- 0.935 0.940 0.005
PATTERN # 2 :- 0.959 0.968 0.019
PATTERN # 3 :- 0.959 0.949 ~0.010
PATTERN # 4 :- 1.564 1.549 -0.015
PATTERN # S :- 1.564 1.578 0.014
PATTERN # 6 :- 1.987 1.969 -0.018
PATTERN # 7 :- 1.987 2.000 0.013
PATTERN # 8 :=- 0.0S3 0.056 0.003
PATTERN # 9 :- 0.053 0.055 0.002
PATTERN # 10 :- 0.671 0.631 -0.040
PATTERN # 11 :- 0.671 0.709 0.038
PATTERN # 12 :- 1.158 1.121 -0.037
PATTERN # 13 :- 1.158 1.190 0.032
PATTERN # 14 :- 1.124 1.170 0.046
PATTERN # 15 :- 1.124 1.080 ~-0.044
PATTERN # 16 :- 0.802 1.120 0.318
PATTERN # 17 :- 1.086 1,120 0.034
PATTERN # 18 :- 1.503 1.120 -0.383

Figure 3.24: Results of Neural Networks for Ceramics (Surface Roughness)
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PARAMETER | CHANGED ACTUAL | CHANGED | PERCENTAGE
VALUE PARAMETER | OUTPUT | OUTPUT CHANGE
0.40 mm/rev | 0.36 mm/rev 1.12 ym | 0.8015 pm -28.44%
4 mils 3.6 mils 1.12 ym 1.086 pm -3.1%
600 rpm 540 rpm 1.12 ym 1.503 pm +34.19%

Table 3.5: Effect of Cutting Parameters on Surface Roughness

roughness is very small. This can be explained in the same way as above.

The results obtained are as follows:

From above table we can say that as speed is decreased, surface roughness

increases (about 34.19%). Again the depth of cut has least effect on surface
roughness (about 3.1%). Feed has a medium effect (about 28.44%).

The best surface quality can be obtained by having a low feed (0.2 mm/rev)

and a high cutting speed (118 ft/min). From the results it is seen that the

percentage of predicting tangential force and surface roughness is 95% and

98% respectively, from the trained neural network model.
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Chapter 4

Experimental Verification

Overview

In this chapter, a series of machining tests have been performed to investigate
the feasibility of using sensor signals for on-line monitoring of machining pro-
cesses. This chapter is divided into three sections. The first section discusses the
experimental setup used to perform the machining tests. Measurements of tool
wear and cutting force were discussed. The second section discusses the design of
an instrumented transducer. Machining of ceramics is discussed in section three.
The last section describes the analysis of data collected during the machining

tests.

4.1 Experimental Arrangement

4.1.1 Description of the Experiments

Experiments were conducted in the machine lab of the Mechanical Engineering
Department on the College Park campus. The experimental arrangement used
to perform the machining tests is illustrated in Figures 4.1 and 4.2. A tool

holder with a carbide insert and a designed force transducer was mounted on
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the cross slide of the lathe for cutting force and tool wear measurements. The
force transducer was connected to two strain indicators to measure the amount of
deflection that the cutting tool influenced in two directions (i.e., tangential and
feed directions). The cutting force signals were amplified using an amplification
ratio of 1:100. The amplified force signals were sampled simultaneously using
a 4x4 card from a rapid system, which was connected to an IBM computer.
The data record of the signal obtained with each channel of the rapid system
contained 2048 points. All the data acquired during machining tests was stored
on floppy disks for further analysis. The signals from the amplifier was connected
to two multimeters (which measures the voltage output) to monitor the cutting
tests and to validate data by the rapid system.

Several issues were considered before starting of the actual machining test.

They are as follows:
e The flank wear is the major concern in these cutting tests.
¢ The material used in the experiments is tough 1018 carbon steel.

e As the amount of metal removal is large at high cutting speeds, five carbon
steel bars of length 58 cms, cut from the same stock of diameter 10.16
cms, were used for machining tests. This ensures the same tool-work pair

microstructure.

e Since one wear test requires several layers of the workpiece to be removed,
i.e., a test involves several diameters. Constant surface speed control is
necessary to maintain a constant cutting speed. By using large diameter

carbon steel bars, the percentage change in cutting speed can be kept within

5%.
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Figure 4.1: Experimental Arrangement for Conducting the Machining Tests
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Figure 4.2: Setup of Data Acquisition System
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4.1.2 Test Procedure

Continuous Wear Tests

A test insert is used and the steel bar is machined along its length without the
coolant. The coolant not used to accelerate the flank wear of the insert. The cut
was interrupted and the flank wear was measured using an optical rhicroscope
(as explained in the next section). To match the wear with the signals measured,
three types of cutting force signals were recorded: signals just after start of the
cut, signals in between the cut and signals just before the cut was interrupted.
After each test cut, a separate insert was used to clean-up the test bar diameter
to avoid unnecessary rubbing of the test insert’s flank during the clean-up cuts.
Whenever the diameter of the bar became small, a new test bar of the same
material was used in order to maintain constant cutting speed. More than eight
inserts were used in the tool wear tests. Because of the high cutting speeds (170
m/min) and depth of cut (1 mm) used, some thermally-induced tool failures were
encountered. In some instances, tool chipping, and spalling of the cutting edge

necessitated stopping of the machining test.

Artificial Wear Tests

This group of experiments were performed in a manner similar to that described
in the previous section. The Same material, i.e., carbon steel, was used for the
test bar to run the tests. To study the cutting force variation under progressively
increasing flank wear, carbide inserts were artificially ground to obtain different
flank wear land sizes. To assure realistic simulation of cutting with flank wear, the
tools with artificial flank wear were used in turning until an observable increase
in flank wear occurred. This can be achieved by running the test for some time
before collecting the force signals from the sensor. These conditions of artificially
worn tools were used to assess the feasibility of real-time tool wear sensing by

measuring the cutting force components during turning. The cutting force signals

86



were sampled and recorded through an IBM computer.

4.1.3 Tool Wear Measurement

Tool wear measurement was performed in the Measurements Lab of the Me-
chanical Engineering Department at the College Park campus. Tool wear was
measured using an optical microscope. Figure 4.3 illustrates the basic structure

of the optical microscope.

Test Procedure

The issues considered before starting the tool wear measurements are as follows:

e In order to utilize the optical microscope fully and efficiently, i.e., to get
the best pictures of the tool flank, the correct magnification and exposure
time should be used. The distance between the optical microscope and the

test place is minimized.

o Before starting the experiment, photographic films are kept ready to take
pictures of worn out flank of the tool. Polaroid 55 films were used to get

the pictures of magnified tool wear.

e One can get the best picture of tool wear by using necessary filters during

tool wear measurement.

After the test was interrupted, the tool insert should be placed in correct
position on the microscope table, i.e., the flank face of the insert should be
focussed to the light coming from the microscope light source. Pictures of tool
wear were obtained by adjusting the knobs of the microscope. By using the
polaroid films, pictures of flank wear were taken and stored for further analysis.
A magnification of 100 and an exposure time of 4 seconds was used.

The next step is to measure the wear land. Mean wear land was measured

using vernier calipers by taking an average of of wear land measurements made.
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Figure 4.3: Structure of an Optical Microscope
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Time | Wear (mm) Wear (mm)
(min) | (169.56 m/min) | (113 m/min)
0 0.0000 0.0000
5 0.0695 0.0480
10 0.1096 0.0511
15 0.1198 0.0632
20 0.1316 0.0753
25 0.1416 0.0988
30 0.1926 0.1196
35 0.2066 0.1257
40 0.2691 0.1365
45 - 0.1476
50 - 0.1587
55 - 0.1601
60 - 0.1723
65 - 0.1784
70 - 0.1878
75 - 0.1923
80 - 0.2120

Table 4.1: Tool Wear Land Values at Two Different Cutting Speeds

The mean wear measurement reported is prone to error, as the natural wear
land shape is irregular. As the mean wear measured has a subjective component
(a judgement of the average wear land), some inaccuracy is inevitable. The
measured wear lands for two cutting speeds are shown in Table 4.1.

After finishing the tool wear measurement, care should be taken to keep the
inserts in the same position as before the cut. This is achieved by using a cutting
tool, whose indentation (or grove) for insert matches exactly with the shape of

insert. Though we tried to minimize this effect completely, but some inaccuracy
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is unavoidable. Before starting the next cut, care should be taken to fix the insert
tightly to the cutting tool. Otherwise this may cause damage to the insert, or
spoil the surface of the machined work piece, and in an extreme case it may spoil

the tool cross slide.

4.1.4 Cutting Force Measurement

In order to obtain the data to investigate the feasibility of cutting force signals
for on-line tool conditioning, cutting tests were carried out. The cutting force

measuring system consists of:

1. A transducer or sensor, which measures the two cutting force signals from

real-time machining tests,
2. An amplifier system to amplify the measured signals,
3. A digital data acquisition system.

The experimental setup for cutting force measurements is illustrated in Fig-
ure 4.1 and the data acquisition system is shown in Figure 4.2. An instrumented
transducer is designed to measure the cutting force signals. During machining,
the voltage outputs from the force sensor system were recorded on IBM computer
disks and further analyzed to obtain the actual output voltage. After manipula-
tion, the two force components were obtained under the given conditions.

Two levels of depth of cut, feed and spindle speeds were used to conduct this
experiment. These levels are 0.07 mm/rev and 0.184 mm/rev for feed, 0.5 mm
and 1 mm for depth of cut, and 375 rpm and 625 rpm for spindle speeds. Table
4.2 shows the cutting force components for one setting of machining parameters.

Table 4.3 shows the cutting force variations for artificial flank wear land.
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Time | Tangential Force | Feed Force | Force Ratio
(min) (Newtons) Newtons)

0 0.000 0.000 0.000
3.5 868.569 242.544 0.272
7.0 893.625 255.722 0.286
10.5 946.239 288.278 0.300
14.0 927.866 278.782 0.301
17.5 982.152 309.666 0.315
21.0 1004.784 319.138 0.3176
24.5 1071.514 332.727 0.310
28.0 1085.71 364.023 0.335
31.5 1070.547 329.728 0.308
35.0 1102.416 396.966 0.360

Table 4.2: Measured Tangential and Feed Forces (feed=0.14 mm/rev, depth of
cut=1.00, speed=625)

Tool Wear | Tangential Force | Feed Force | Force Ratio
(mm) (Newtons) (Newtons)
0.162 739.62 132.184 0.179
0.202 799.083 174.228 0.218
0.270 912.833 202.518 0.221
0.310 978.811 279.606 0.286
0.370 1147.51 382.966 0.334

Table 4.3: Variation of Tangential and Feed Forces With Tool Wear (feed=0.14
mm/rev, depth of cut= 1.00 mm, speed=470 rpm)
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4.2 Design of an Instrumented Transducer

An instrumented transducer basically consists of two parts: a tool holder and
a force sensor system. The force sensor system consists of strain gage layouts,
a bridge amplifier system, and a digital data acquisition system. The attached
strain gages function as sensors to convert the cutting force signals into measur-
able electric voltage signals through the bridge amplifier system. A quantitative
relation between the cutting force components and the measured voltage outputs
from the digital data acquisition system, established from a calibration process,
recovers the magnitudes of the cutting force components from the measured volt-

age signals.

Strain Gage Selection

Precision strain gages, CEA-06-062uw-350, are used for designing a transducer.

The basic considerations involved in selecting strain gages are:

e Heat Dissipation is an important factor in selecting a strain gage. For
an accurate strain measurement, small sizes of strain gages are preferred.
However, larger sizes would be more preferable if the effect of temperature

variation on the resistance of the strain gage is of concern.

o Gage factor is defined as the ratio of the resistance change to the strain

received.

Design of Gage Layout

The cutting force produced during machining can mathematically be treated as
a spatial vector, which is conventionally decomposed into its three components.
The cutting force along the cutting speed direction, F}, is known as tangential
force, the component along the workpiece is known as feed force, F; and the

component of force perpendicular to the machined surface i.e., along radius, is
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known as radial force. In this thesis work we find only two components of force,
namely tangential and feed forces. In order to vary the resistance changes which
active strain gages undergo when subjected to acting strains, Wheatstone bridges
are usually employed as shown in Figure 4.4 [Za 86]. The basic principle of the
Wheatstone bridge is that an initially balanced bridge with Ry * R3 = Ry * R4
(or the bridge stratus before the cutting force is applied). The voltage output
of the bridge, AE,,:, due to the resistance changes of AR;, AR;, AR3, AR, is

given by
r AR] ARg ARa AR4
Ein - -
(1 + 7')2( Rl Rz + R3 R4 )

AEout =

where,
E;, = bridge supply voltage and r = %f.
The term ((1++)2) is an index to indicate the bridge circuit efficiency. The maxi-

mum bridge circuit efficiency will occur ar r=1, i.e., at Ry= R;

The strain gages were calibrated prior to the tests to establish the transfor-
mation matrix between the voltage signals and the cutting force generated during
the machining process. Figure 4.5 illustrates the set up for calibration process.
The relationship between the applied forces and the voltage outputs of the strain
gages are shown in Tables 4.4 and 4.5. The transformation matrix, 7,, is defined

as the relation between the forces and voltages:

[ ]_ InpU‘t _ ‘/:mt
"7 Output = F

The above relation can be written in matrix form as:

Ay, AV,
[Tr] — AF, AF;
avy Avy
AF, AF;

From the calibration process, we have:

7 - { Tu T

Tis Tha —0.0003 0.02533

[ 0.0283  0.0000 ]
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Figure 4.4: The Wheatstone Bridge Circuit
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Figure 4.5: Strain Gage Calibration
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Load | Voltage | Voltage
(Ibs) | Tangential | Feed
(volts) (volts)
10.0 0.1186 0.4204
20.0 0.1227 0.7054
30.0 0.1192 0.9452
40.0 0.1119 1.2148
50.0 | 01097 | 1.4136
60.0 0.1036 1.7138
70.0 0.1038 1.9307
80.0 0.0976 2.2067
90.0 0.1039 2.4667

Table 4.4: Calibration in Feed Direction

Each element of [T}] is a relation of the i** voltage output and the j** cutting

force component. The force matrix is calculated as:
[F] = (inv([T3))) [V]

The above reaction can be written as:

F,
F;

Ve
Ve

35.3357 0.0000
0.4190 39.5257

4.3 Case Study: Machining of Ceramics

4.3.1 Experimentation

Machining tests of ceramics were conducted to investigate the possible chemo-
mechanical effects on ceramics materials and to study the effect of cutting pa-

rameters on forces and surface roughness. The experiments were conducted in
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Load | Voltage | Voltage
(Ibs) | Tangential | Feed
(volts) (volts)
10.0 0.4137 0.2173
20.0 0.7137 0.2199
30.0 0.9815 0.2209
40.0 1.2835 0.2193
50.0 1.5800 0.2206
60.0 | 1.8426 0.2199
70.0 2.1349 0.2189
80.0 2.4064 0.2198
90.0 2.4064 0.2198

Table 4.5: Calibration in Tangential Direction

the Advanced Design and Manufacturing Lab of the Mechanical Engineering De-
partment at the College Park campus. The experimental setup used to perform
the tests is illustrated in Figure 4.6. We used a CNC machine to conduct the
machining tests. A tool holder with Polycrystalline Diamond Compact (PDC)
tool insert and a designed force transducer were fixed on the machine tool table
with the help of a fixture. The workpiece, aluminium oxide ceramic, is mounted
to the spindle of the machine, which can be rotated at any desired speed. The
setup for measuring the cutting forces is the same as that used for machining
steel bars (as explained earlier).

Ceramic bars of length 10.16 cm and diameter 1.91 cm are used for machining
tests. A 2-factorial design of cutting parameters was used for the tests i.e., two
levels of each cutting parameters were used. Specifically, 0.2 mm/rev and 0.40
mm/rev for feed, 4 mils and 8 mils for depth of cut, and 400 rpm and 600 rpm
for spindle speed were used. Two cutting force signals (feed force and tangential

force) were monitored during the tests (as explained earlier). The experimental
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Speed | Feed | Depth | Tangential Force | Feed Force | Surface Roughness
(rpm) | in/min | mils lbs Ibs pm

400 0.2 40 | 6.05 12.13 2.83

400 | 0.2 8.0 5.22 20.73 1.57

400 0.4 4.0 6.51 12.85 2.77

400 0.4 8.0 4.25 19.74 1.57

600 0.2 4.0 6.01 12.72 2.40

600 0.2 8.0 4.25 19.74 1.57

600 0.4 4.0 4.26 12.08 1.97

600 0.4 8.0 5.81 18.40 1.53

Table 4.6: Experimental Results for Type 1 Fluid

results are summarized in Tables 4.6 and 4.7. Figures 4.7 and 4.8 are the graphical
representations of the experimental results, i.e., the measured tangential cutting
force and surface roughness. Figure 4.9 shows the tool wear of the insert during

the initial stage (4 mts machining) and at the final stage (16 mts of machining).

4.4 Data Analysis

This section analyzes the data collected during the turning tests. Taylor’s tool

life equation is derived from the experimental tool wear curves.

4.4.1 Derivation of Taylor’s Equation

Definition of Taylor’s Equation

F.W Taylor was the first to investigate the relationship between tool life and

cutting speed. Taylor’s well known tool life — cutting speed relation is as follows:

VI =Cr
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Figure 4.9: Tool Wear of Diamond Insert
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Speed | Feed | Depth | Tangential Force | Feed Force | Surface Roughness
(rpm) | in/min | mils Ibs Ibs pm
400 0.2 4.0 0.74 16.00 0.93
400 0.2 8.0 0.09 24.00 0.97
400 0.4 4.0 0.01 18.4 1.55
400 0.4 8.0 0.46 30.00 1.97
600 0.2 4.0 0.20 15.44 0.53
600 0.2 8.0 0.99 21.20 0.63
600 0.4 4.0 1.88 19.03 1.12
600 0.4 8.0 2.25 24.70 1.17

Table 4.7: Experimental Results for Type 3 Fluid
where,

V = cutting speed in m/min
T = tool life in minutes
n = exponent mainly depending on tool material

Ct = Taylor’s constant, mainly depending on the tool and workpiece

material. Very often it is a function of the machining data.

The physical significance of C7 is that it is the cutting speed for a tool life

of 1 min. However, the equation does not take into consideration the magnitude

of the chip-cross sectional area and thus a different Taylor’s constant is required

for each chip cross-sectional area. If the tool life is too short, the tool must

be reconditioned very often. On the other hand, when tool life is too long, the

cutting speed is too low, causing losses due to high machining time. According

to Taylor’s findings the ratio of tool life between grinds and time for regrinding

the tool should, be between 7 and 35, i.e., tool life should be at least seven times,

but not more than thirty five times the grinding time.
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Figure 4.10: Tool Wear Curves Obtained from Experimental Results
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Figure 4.11: Log-Log Plot of Cutting Speed and Tool Life
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Derivation

Tool wear curves are drawn using the results in Table 4.5 and are illustrated in

Figure 4.10. The following results are deduced from the figure, for a tool wear

of 0.20 mm.

e For 0.20 mm of tool wear for a cutting speed of 169.56 m/min, the tool life

is 25 minutes.

e For 0.20 mm of tool wear for cutting speed of 113 m/min, the tool life is

80 minutes.

From Figure 4.11 (for tool wear of 0.20 mm), we have:

_ logTlh—logTiy
tana = log va—log v

T
log 77}
= Tog 2
log v
_ log g0
log “513

= 2.866

We know that, tana = 1

= n = 0.3488

Therefore, Taylor’s constant Cr is derived as:
Cr = 169.56 * 25349 = 521.44
So, we can write Taylor’s tool life equation as:

VI = 521.44

Conclusions

We conducted experiments to validate the developed neural network program.

Two types of experiments were performed: machining of steels and machining of
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the advanced ceramic materials. A force transducer is designed and monitored
the cutting forces successfully. It is found that unlike the case of machining of
metals, the feed force is more than the tangential force in the case of machin-
ing of ceramics. Tool wear and surface roughness are measured to analyze the
machining process. Taylor’s tool life equations were derived from the measured
tool wear. All the data collected from the experiments were used for training

and testing of the developed neural network (as explained in chapter 3).
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Chapter 5

Framework of an On-line

Monitoring System

Overview

This chapter describes about the framework of an on-line monitoring system and
is divided into five sections. The first section discusses the basic requirements
of a monitoring system; namely, a sensor system, an ANN on-line monitor, and
an expert system. The second section discusses the implementation of developed
components of an on-line monitoring system. The advantages of instrumented
transducer and on-line tool wear monitoring are also discussed. The third sec-
tion describes the merits and demerits of feedforward back-propagation neural
networks. A control system for the machining process is discussed in the fourth
section. Finally, a brief description of the developed program using feedforward
back-propagation network (which predicts the tool wear and surface roughness)

is discussed.
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5.1 Basic Requirements of an On-line Moni-
toring System

The demand for a shortened product cycle time, reduced waste, and a consistent
high level of quality is a constant concern in the manufacturing environment.
The implementation of an on-line monitor for the manufacturing processes from
conception to the finished product stage in an untended machining environment
will allow the manufacturer to better meet that demand. Figure 5.1 presents the
outline of an monitoring process. Figure 5.1.a represents the conventional turning
operation where a human operator is needed to intelligently control the turning
process. Figure 5.1b represents an ideal control scheme where the on-line model
is so accurate that the prediction of cutting tool wear status assures a prompt
tool change. By using an intelligent process controller, an open loop control is
sufficient to replace the human operator. However, such an on-line model does
not exist presently. To replace an intelligent human operator, one can go for
an on-line monitoring system as shown in Figure 5.2 [ZaHw 90A, ZaHw 90B,
ZaHa 90].

The basic requirements of an on-line monitoring system are:

1. sensor signal detection system
2. an on-line monitor system

3. an expert system

5.1.1 Sensor Signal Detection System

A successful on-line monitoring system heavily relies on the reliability of the
measured signal(s) from the sensor(s). The basic principle of the indirect on-
line monitoring techniques is to retrace the state of the machining process (for
example tool wear, surface roughness) through accessible process variables. A

sensor is developed because of it’s suitability for monitoring the cutting process
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and the tool wear process (as stated before in chapter 3). This sensor captures
wear-related signals during the machining process (e.g., turning process). The
detected analog signals are digitized, fed to a buffer, stores into disks, and finally
analyzed based on a desired signal processing scheme. The results from the

digital signal processing are organized into a coding system (on-line monitor).

5.1.2 On-line Monitoring System

The integration of signal detection system and process model will become the
framework of a monitoring system to retrace the machining process variables
(such as, tool wear and surface roughness etc.) during a machining process.
The next step is to develop a machining process classification and coding sys-
tem, which combines the theoretical and experimental work and organizes the
practical examples of an on-line machine monitoring into a database for future
reference. As explained earlier, Artificial Neural Networks (ANN) have received
increased attention as a modeling tool. By exploring the advantages of ANN in
machining processes, like the fact that they are suitable for incremental learning,
we developed a Neural Network monitor (as explained in chapter 3).

A Neural Network monitor performs the following functions:
o It senses and processes tool-cutting information.

o It learns by studying the signal values obtained from sharp and worn out

cutting tools.

o It stores a large amount of knowledge of the machining process in its inter-
connections from different cutting operations and automatically gives the

alarm signals from its memory.

e It reacts by sending alarm signals to the control unit of machine, informing

it if the tool is worn, broken or not-in-use.
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o It automatically coordinates machining and monitors commands from the

control unit of the machine.

e It communicates between the operator and the machine via the control
panel, informing operating personnel about cutting-tool conditions and

presenting an interface for control of all functions.

5.1.3 Expert System

An on-line machining process is a decision-making process to determine the in-
stant when a tool change is necessary so as to assure the product quality or to
avoid tool breakage. It can be expected that the control strategy for this decision-
making process will be knowledge intensive. The tasks to control the on-line
monitoring is complex because of its physical nature. So, a high-performance
computer program has to be developed to automate such a decision-making pro-
cess. The expert system proposed in machining process focuses on the following

aspects:

1. Combine the coding system and database together and transform the com-
bined form into a knowledge base. The causal rules incorporated in the
knowledge base in the symbolic representation can provide a fast response

control.
2. Combine quality control program with on-line tool wear monitoring system.

3. Develop an inference engine to effectively find a major tool wear mode

when the detected signal has been traced for a certain time.
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5.2 Implementation of an On-line Monitoring
System

The implementation of an on-line monitoring system proposed above is shown in
Figure 5.3. We developed an instrumented transducer for signal detection system
and an Artificial Neural Network monitor to measure the tool wear and surface
roughness.

The advantages of using on-line monitoring to detect the condition of the tool

are:

e Tool wear is monitored and tool changes initiated when necessary, avoiding

damage to the machine or the workpiece.

o If there is a breakage, a signal will be produced to stop the machine tool

within milliseconds.

e The system will detect if a tool or the workpiece is missing, thus eliminating

wasted machine time and the likelihood of unpredictable crashes.
The cost advantages of tool monitoring are:

e Tool life can be optimized, which means that tools need only be changed

when they are worn and so reduces tool costs.
e Down-time is lessened, and this increases the machine’s tools output.

¢ Repairs to the machine tool and cutting tools may be reduced to a minimum

so the maintenance costs are lower.

o The metal-cutting operation is monitored automatically, limiting operator

involvement.

In the following paragraphs we will discuss some important features of de-

signed transducer and tool wear measurement.
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5.2.1 Instrumented Transducer Vs Commercial Dynamome-

ters

Cutting force measurement is usually done using two methods: by using a com-
mercial dynamometer or by designing an instrumented transducer. Dynamome-
ters with high quality are available in the market. But they have two major

drawbacks:

o They are expensive and designed for laboratory work but not for on-line

monitoring unless the machine tool is changed accordingly.

o Its effectiveness is mainly dependent on the user’s knowledge of locating the
dynamometer in the machining system to have an explicit transfer function
of the signal transition process. This requires a careful study of system
dynamics and the interaction between the two structures of dynamometer

and the machine tool.

The second method is to design an instrumented transducer, where sensors
such as strain gages are attached directly to the machining system part, such
as tool holder. The main advantage of the second method is that the detected
signals may truly reflect the dynamic characteristics of the machining processes.

But however the accuracy depends upon the calibration and noise filter processes.

5.2.2 Tool Wear Measurement

A method of identifying the correct tool to be used for a specific operation can
be considered to be an essential requirement. If the wrong tool is selected, at
the very least the workpiece will be scraped or, still worse, the machine tool
itself may be seriously damaged. An efficient automatic tool-handling system,
in which the tools may be accessed at random as required, will depend upon

each tool being identified correctly at every stage of the part manufacture. Two
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methods can be used to identify the condition of the tool: a direct method
and an indirect method. As explained earlier, direct methods, such as an optical
scanning technique, electrical resistance etc., have some practical problems. This
leads to indirect measurement of tool wear. We successfully used Artificial Neural

Networks in predicting the tool wear (shown in chapter 3).

5.2.3 On-Line Monitoring of a Turning Process

The implementation of the developed monitor in a real time machining opera-
tion requires an additional piece of information, i.e., the estimate of the dynamic
variation of the monitoring target(s), such as the cutting force and/or surface
finish. This additional information enables the monitor to distinguish the ex-
ternal noise related to the machining process abnormalities from the natural,
or inherent process variation. In this work, estimates of the dynamic variations
of the two monitoring targets were obtained by two steps. The first step was
to obtain the two estimates at each of the 8 machining tests. These estimates
are presented in Figures 4.7 and 4.8. In the second step, two pooled estimates,
representing the natural variation of the cutting force and surface finish during
machining, were calculated from the 16 estimates. These two pooled estimates
were the standard deviation of the cutting force variation (2.12 Newtons) and
the standard deviation of the surface finish (0.52 g m), respectively.

To demonstrate applicability of the proposed on-line monitoring system, a
prototype monitoring system using the developed neural network monitor has
bee n implemented to monitor the machining of advanced ceramic materials.
The objective of such a monitoring system is to control the appearance of micro-
cracks on the machined surface, the dimensional accuracy, and the finish quality
of the machined surface. An assumption is made that a large cutting force leads
to a severe surface damage. Therefore, the two monitoring targets are the cutting
force and the surface finish generated during machining. Figure 5.4 illustrates

the two monitoring charts.
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The center lines of these two charts represent the predicted cutting force and
surface finish through training. The upper and lower limits on the two charts are
the warning lines of the monitoring system. They are constructed based on the 3-
o principle, which indicates that the machining process is in its normal status as
long as the detected cutting force signal, or the measured surface finish, is within
the upper and lower limits. Whenever a detected signal is out of the two limits,
the machining process goes on to an abnormal status. If the detected cutting
force signal hit the upper warning line. The machining operation should stop
immediately in order not to spoil the surface of the work-piece. The worn tool
must be replaced by a new tool and the machining process resumed to its normal
status. When the detected cutting force signal hit the lower warning line, a severe
tool breakage may occur. The breakage caused the depth of cut during machining
to drop to a level wherein there was almost no contact between the wor kpiece
and the tool. However, false alarmings sometimes happen, especially during the
cutting force monitoring due to the complexity of cutting mechanism, such as
effects of built-up edges and nonhomogeneous distributions of workpiece material
properties. As a result, the decision-making advisor built in the monitoring
system will call on a human intervention only under circumstances when the
two monitoring targets are hitting their warning lines. There is, however, an
associated side-effect, i.e., the decrease of the sensitivity of the monitoring system
for an effective detection of the process abnormalities. Further improvements are
being made to balance the need between the false alarm elimination and the

sensitivity of detection.
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5.3 Advantages and Disadvantages of Feedfor-

ward Neural Networks

5.3.1 Advantages

The advantages of using feedforward neural nets as an on-line monitor are:

o They can be used in a wide variety of applications, ranging from classifica-

tion and pattern recognition, to optimization and control.

e Unlike conventional batch algorithms, they are incremental learning algo-
rithms, because at any stage during the training process, training can be
stopped: and the network would still serve as a model of function being

learned, even though it may not be quite accurate.

o They can be used in developing the empirical models based on experimental

and observational knowledge.
o They are best suited for fast computations on parallel architectures.
¢ They have good generalization capabilities.

e They can learn from experience and gives accurate results from incomplete

and noisy data.

o The hidden layers perform feature extraction on the patterns presented at

the input layer i.e., they find a correct fit of input space and output space.

e They do not require any a priori knowledge of a mathematical function that
maps the input patterns to the output patterns. They need only examples

to train the network.

5.3.2 Disadvantages

The disadvantages of using feedforward neural nets as an on-line monitor are:
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o The largest drawback with feedforward back-propagation algorithm ap-
pears to be its convergence time. Training sessions can require hundreds or
thousands of iterations for some problems. Realistic applications may have
thousands of examples in a training set, and it may take days of computing
time (or more) for complete training. Usually, this lengthy training needs
to be done only during the development of the network, because most ap-
plications require a trained network and do not need on-line retraining of

the net.

o Lack of proper guidelines for networks architecture (number of hidden lay-
ers and number of nodes in each layer) hinders the use of these networks
fully. However, the flexibility of the network’s paradigm is enhanced by
the large number of design choices available: choices for the number of
layers, interconnections, processing units, the learning constant, and data

representations.

o The feedforward back-propagation algorithm uses a gradient search tech-
nique to minimize a cost function equal to the mean square difference
between the desired and actual node outputs. The main problem while
minimizing a cost function is sticking to a local minima rather than the

global minima. This can be avoided by using some techniques.

5.4 Control System

When a programmer writes a CNC program, it is not possible to choose optimum
values for speed, feed rate etc. because of variables such as tool wear, non-
homogenious materials and variations in dimensions of rough stock. It is normal
for a programmer to choose median values for these factors in any calculations,
but even here problems may arise, like tolerances etc. Whatever route chosen in
writing the program for a part, the programmer faces the quandary of whether

to utilize high rates and sacrifice some tool-cutting predictability to increase
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workpiece output, or to use normal rates and produce a dependable cutting action
with lower production cycle times. The adaptive control systems eliminate the

need of this guessing game.

5.5 Description of Code

Depending on the problem to be solved, the number of input and output nodes
are selected. The size of the middle layer is really our choice. If the middle layer
is too large, it will encourage the network to memorize the input patterns rather
than generalizing the input into features. This reduces the ability of the network
to handle unfamiliar inputs after the training is complete. On the other hand, a
middle layer too small will drastically extend the number of iterations required
to train the network and is likely to reduce the accuracy of recall. Therefore to
balance the both needs we have to select an optimum number of nodes in the
hidden layer. This is done by trial and error or by experience (as explained in
chap. 3). Once the architecture of the network is selected, it is ready to train the
data. Number of patterns are selected from a real-time data, to train the neural
network. Before the training starts, values for 7, a learning constant (0 < n < 1),
and a, momentum term constant (0 < a < 1), should be selected.

In this thesis work, a program has been developed using feedforward back-
propagation network to predict the machining process variables, like, the tool
wear, surface roughness etc. Definitions of various global variables and constants,

and functions used in the program are listed below:

Global Variables and Constants

max-num-pats = maximum number of patterns in the
data file
in_x_size = number of nodes per row of input layer
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in_y_size

in_size

hid_size
out_size

wts_hid[hid_size][in_size]

wts_out[out_size|[hid size]

hid_out[max_num_pats][hid_size]

out_out[max._num_pats]{out_size]

hid_error[hid_size]

out_error[out_size]

out]_error[max_num.pats]

hid-wt_change[hid_size][in size]

out_wt_change[out_size][hid_size]

thre_hid[hid size]
thre_out[out_size]

hid-thre_change[hid_size]

out_thre_change[yout_size]

= number of nodes per column of input
layer

= number of nodes in input layer

(i.e., in_x_size * in_y_size)

= total number of nodes in hidden layer
= number of nodes in output layer

= hidden layer weights

(weights between input and hidden layer
nodes)

= output layer weights

(weights between hidden and output
layer nodes

= output of hidden layer nodes

= output of output ayer nodes i.e.,
network’s output

= error of hidden layer nodes

= error of output layer nodes i.e.,
network’s output errors

= square of error of an output layer node
= storage for last weight change for a
hidden node

= storage for last weight change for an
output node

= threshold values for a hidden node

= threshold values for an output node
= storage for last threshold change for a
hidden node

= storage for last threshold change for an

output node
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in_pats[max_num_pats][in_size] = normalized value of an input variable
out_pats[max_num_ pats|[out_size] = normalized value of an output variable
totall_out_error[max num_pats] = half of the sum of the square of errors
of an output node, over all output nodes

in output layer

total_out_error[max_num_pats] = sum of errors of all nodes in an output
layer
grand_error = LMS error for all patterns, which is

the measure of whether the net
is done or not

iterations = number of times the network seen the
training data

numpats = total number of patterns (or examples)

in the data file

Functions
forward_pass : propagates input activity forward through network
out_forward : process forward pass for an output layer i.e.,
determines the network’s output
hid_forward :process forward pass for hidden layer i.e.,
determines the hidden layer nodes output
back_error_prop : propagates the error backward through network
error-network : computes the error for output nodes i.e.,
network’s error
out_wt_adjust :adjust the weights between hidden layer nodes and

output layer nodes
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hid_wt_adjust : adjust the weights between input layer nodes and

hidden layer nodes
check out_grand_error : this function checks whether the net is done or not
net_initialize : initializes the network
wts_randomize : randomizes the weights on hidden and output layers
read_data : reads the data from a file i.e., training data

(or testing data)

print_hid_wts : prints the hidden layer’s weights

print_out_-wts : prints the output layer’s weights

main : main control program

The structure of the developed program is explained below. There are four

stages in the network:

e Network initialization
e Forward pass
e Back error propagation

e Termination of training and Validating the network

Each stage will be discussed briefly in the following paragraphs.

Figure 5.5 outlines the four stages and presents the basic working principle.

Network Initialization

Initialization of the network is done by invoking the function net_initialize . This
function in turn invokes two other sub-functions, namely wts_randomize and
read-data.

wts_randomize : It expects a random number seed from the programmer. It
randomizes the weights of hidden and output layers between -1 and +1. It also
randomizes the threshold values for nodes in hidden and output layers between

-1 and +1.
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read_data : It reads the data from a file. The format of the data file is as
follows:
line#1: in_x_size, in.y.sizeg and out_size
line#2: total number of patterns
line#3: maximum and minimum values of the first variable in the data #1
line#4: coovvvniicrinene . line#n: maximum and minimum values of the last(n
th) variable in the data #1
line#n+1: values of input variables
line#n+2: values of output variables

...... and so on for all patterns in the data file

After reading the values from the file, it normalizes each value between 0 and
1 (as explained in chap. 3) and stores the value in in_pats and out_pats. If it
finds any fault with the data file, it sends an error message. After initialization

is done, the network is ready for the forward pass during the training.

Forward Pass

It invokes two sub-functions, namely hid_forward and out_forward. We now
present the first pattern to the network, after the weights on the interconnec-
tions are randomized (in network initialization). The input layer receives the
pattern and thus passes it along to each node in the hidden layer, which is done
by hid_forward function. Each of these nodes computes an activation in the
following fashion.

First the summed input, X;, is determined by multiplying each input signal

by the weight (randomized initially) on the interconnections:
X;j=Fi(Q_Wi* L)

for the j* node in hidden layer from the ** node in input layer and the sum is

taken over i = number of nodes in the input layer. The terms W and I are the
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weights and input signals, respectively. This sum is added to the thresholds (
which are randomized initially) and used as an input to the activation function
of the node, i.e., sigmoidal function. It determines the activity, or excitation
level, generated in the node as a result of an input signal of a particular size.

The sigmoid function is given as:
F(X)=1/(1+ ¢ *D)

where,
T = threshold of a node.

In this way we compute the total activation of the hidden layer nodes, and
simply use this activation as the output of each node in the hidden layer. This
ensures that our outputs are constrained to be in the range of 0 and 1. Following
through the network, these outputs frbm the hidden layer nodes are treated as
inputs to the output layer. Each node here receives the signals from all hidden
layer nodes and, in exactly the same fashion as before, an activation is computed
for each output layer node. This is done by the out_forward function. These
activations become the output for the network as the nodes generate their output

signals.

Back Error Propagation

Back error propagation is done by calling the back_error_prop function. This
function in turn calls its four sub-functions, namely, error_network, error_hid,
out_wts_adjust, and hid_wits_adjust.

At this stage we compare the output of the network to our desired output
or to the target output (in error_network function). It is very likely that the
pattern is wrong in its initial stage, so we need to adjust the weights to complete
this iteration of the network. Weight changes for the output layer nodes is done
by calling the out_wts_adjust function using the generalized delta rule.

Figure 5.6, shows the training process (weight changes) for a single weight
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from node ‘p’ in the hidden layer ‘j’ to node ‘q’ in the output layer ‘k’. The
output of a node in layer ‘k’ is subtracted from its target value to produce an
error signal. This is then multiplied by the derivative of the squashing function
(sigmoid function) calculated for node ‘k’ of that layer, thereby producing the

delta value:

delta = out_out[patt][node] * (1 — out_out[patt][node] * out_error[node]

Therefore,

wts_out[midnode][outnode](n + 1) = wts_out[midnode][outnode](n)
+n * delta * hid_out[midnode]
+(a * out_wt_change[outnode][midnode])
mid node’s threshold change is:
ch_thre = n * out_out|patt|[outnode]
*((1 — out_out[patt][outnode]
xout_error[outnode])
+(a * out_thre_change[outnode]
New threshold value is:

thre_out[outnode](n + 1) = thre_out[outnode](n) + ch_thre

Considering the middle layer, we can apply the delta rule only if we know
the input signals to each node and the resulting output. But we don’t know the
desired output. We can find the hidden node error by the following method.

Logically, we can see that if the output nodes generated the wrong answer,
it can be due to their own incorrect weights. But it can also be due to middle
layers nodes that generate the wrong input signals to the output layer. To assign
this blame we backpropagate the errors for each of the output-layer nodes to the
middle layer using the same interconnections and weights as the middle layer
used to transmit outputs to the output layer. We then compute the error for

each node in the middle layer based on their portion of the blame for the error

131



of the output layer. This is computed as:

e; = FI(X)* [} W;; » Ej]

where,
e; = error in the :** middle-layer node and the sum is taken over j
j = j* output layer node

The remaining term is the derivative of the activation function of the middle-
layer node for the net input it receives. Application of this derivative serves two
purposes. First, it contributes to the stability of the network and it ensures that,
as the output approaches 0 and 1, only very small changes can occur. Second, it
helps to compensate for excessive blame attached to the middle-layer node. When
the connection between a middle layer node and an output layer node is very
strong (high values for the weight interconnection) and the output layer node has
a very large error, the weights of the middle layer node may be assigned a very
large error too, even if that node had a very small output and thus could not have
contributed much to the error of the output node. By applying the derivative of
the signal function, this error is moderated, and only small to moderate changes
are made to the weight’s of the middle-layer node. So we have propagated the
error from the output layer back to the middle layer and computed for each of
the nodes of the middle layer. We then use this error in the generalized delta rule
and adjust the weights as before. Figure 5.7 shows how the hidden (or middle)
layer weights are changed. The weights of the hidden layer nodes are changed as

follows:
delta = hid_out[midnode] x (1 — hid_out[node] * sum

where,
sum= sum of product of output errors and output weight interconnections.

Therefore,
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wts_hid[insize][midnode](n +1) = wts_hid[insize][midnode](n)
+n * delta * in_pats[patt][midnode)
+(a * hid_wt_change[midnode][outnode))
mid node’s threshold change is:
ch_thre =5 *error_hidmidnode]
+(a * out_thre_changeloutnode])

New threshold value is:

thre_hid[midnode](n + 1) = thre_hid[midnode](n)+ ch_thre

Termination and Validation

After adjusting the weights of hidden and output layer nodes, we can find the
error for that pattern. Similarly we can find the error for all other patterns. After
showing all patterns to the network, the error for each pattern is identified and it
is then squared. Sum of half of the squared errors for all the patterns is stored in
the grand_error. Then this grand_error is compared with the permissible error.
The network will stop from training if the grand_error is within the permissible
error, otherwise all patterns are presented to the network until the grand_error is
less than permissible error. Also the network can be terminated by supervising
the number of iterations i.e., if the number of iterations reaches a predetermined
value, the network will be stopped from training. Once the training is done, the
connection weights and node thresholds are frozen and functions print_hid_wts
and print_out_wts are called to print the weights and the thresholds to output
file. Then the testing data ( which is not shown to the network during the

training) is used to validate the trained network.
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5.6 Comparision With Other’s Work

Several people showed interest in applying neural networks in the area of ma-
chining. Rangwala used neural networks to integrate information from different
~ sensors in order to know the status of the tool [RaDo 87]. He assumed that
magnitude of the cutting force is inadequate for tool wear detection because its
magnitude is also dependent on the cutting velocity and also the flank wear tends
to increase the cutting force, the accompanying crater wear tends to reduce it.
In order to eliminate this effect he assumed that the status of the tool can be
enhanced by complementing the acoustic emission information with the cutting
force information. But in this thesis cutting force ratio (feed force/tangential
force) is used instead of magnitude of cutting force (the explanation for using
this ratio is given in chapter 3). So in this thesis work we assumed and showed
that the tool can be monitored successfully by monitoring the cutting force sig-
nals alone. This eliminates the use of multiple sensors, which indirectly reduces
the amount of noise to the network and it is economical. Also Rangwala did not
discussed in his paper how we can monitor a machining process on-line, which is
one of the major emphasis of this thesis. Surface roughness of the machined work
piece is monitored simultaneously with the tool wear in this thesis work, which
is very much useful to reduce the false alarms during machining. Chryssolouris,
in his work compared different modeling techniques like multiple regression anal-
ysis, group method of data handling (GMDH), neural networks [ChGu 88]. He
proved that neural networks are better than other two.

One of the major contributions of this thesis was application of neural net-
works in machining of advanced ceramic materials, which is gaining importance
in modern industries because ceramics have good wear and abrasion resistance,
hardness and light in weight. Applying neural networks in this area is first of its

kind. We successfully monitored the cutting force and surface roughness.
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5.7 Limitations and Generalization of the Neu-
ral Network Monitor

e The performance of the developed neural network monitor depends on the
quality of the experimental data used for training. The architecture of
the network i.e., number of hidden layers and number of hidden nodes in
each layer, can be different from the one used in this thesis if one uses
another set of training data for developing the monitor. This is because of
no proper guidelines for determining the network architecture and also due

to variations in the quality of the training data.

o A further concern is the reliability of the trained network. Neural networks
must be tested for performance after training is complete. In order to
use this trained network to monitor the machining process, one should use
appropriate data and experiments for this testing. Testing data should
reflect the data to be encountered while the neural network is in use, and
testing experiments should use as broad a sprectrum of inputs as possible,
including inputs that may result from unlikely circumstances, like noisy

signals from sensors and variations in material properties.

e The developed monitor would be machine dependent and it requires whole
database of the machining process in order to monitor the machining pro-
cess correctly. As mechanism of removing material differs from work-piece
to work-piece, e.g., machining of steel and machining of ceramics, one has

to build different monitors for each kind.

5.8 Conclusions

A framework of an on-line monitoring system is proposed. The basic require-

ments of an on-line monitoring system were discussed. The advantages of on-line
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monitoring system were analyzed. It is found that using an instrumented trans-
ducer for measuring the cutting forces is more advantages than using a commer-
tial dynamometer. Advantages and disadvantages of neural networks were also
discussed. The developed neural network program was successfully utilized to
predict tool wear and surface roughness. Limitations and generalization of the
developed network monitor are discussed and comparisions between this work

with others work are also made.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

The conclusions made from this thesis are as follows:

1. The advantages of artificial neural networks were explored. A structure for
an intelligent monitoring system for a machining process was proposed and
evaluated. The proposed system utilized a force sensor as the detector of
the machining process and a neural network as the learning and decision-
making component. Through appropriate selection of architecture of the
network, noise can be minimized and the process variables (like tool wear,
surface roughness etc.) can be predicted accurately. In this thesis work,
application of neural networks for on-line monitoring, learning, and pat-
tern recognition were demonstrated. The results presented here show that
these networks possess the ability for learning and noise suppression. As a
result, a neural network enables a high success rate (above 90%) for on-line

monitoring of a machining process under a range of process conditions.
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2. We explored two types of Artificial Neural Networks: Adaline Network, and
Feedforward Back-Propagation Network. The effect of cutting parameters
on cutting force is modeled using an adaline network. In this thesis work,
we concluded from the results that the depth of cut has the highest effect
on the cutting force in machining of metals. The success rate of predicting

the cutting force is over 90% under different cutting parameters.

3. We successfully monitored tool wear and surface roughness, using a feed-
forward back-propagation network. Because the feed force increases more
rapidly than tangential cutting force, the resulting force direction in the
plane will change. For that reason we used force ratio (feed force to tangen-
tial force) instead of using total cutting force directly. The cutting force
ratio is also a good indicator of tool wear regime. The success rate of

monitoring the tool wear and surface roughness was above 92%.

4. Use of a commercial dynamometer is not a solution for force measurement
on the shop floor. In this thesis work, a practical force sensor was assem-
bled into the commercial machine. This force transducer was successfully

utilized in measuring the cutting forces in real-time machining.

5. Tool wear information is indispensable in untended machining. An optical
microscope was used to measure the tool wear during the machining tests.
Taylor’s tool-life equations under several machining conditions were derived

from the measured tool wear.

6. We applied neural networks in the machining of advanced ceramics. A feed-
forward back-propagation network was successfully implemented to predict
the effect of cutting parameters on tangential cutting force and surface
roughness. We found from experiments that unlike the case of machining
of metals, the feed force is more than the tangential force. This is mainly
due to the high hardness of ceramic materials leading to a cutting mechan-

ics dominated by fracture instead of deformation. From results, it can be
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seen that the depth of cut has the least effect and speed has the greatest
effect on tangential cutting force and surface roughness. We found that an
efficient way of machining, which reduces the tangential cutting force, is
using low feed and low cutting speed. A low feed and high cutting speed is
used for better surface finish. We used a feed rate of 0.2 mm/rev with cut-
ting speeds of 78.5 ft/min and 118 ft/min. The success rate of monitoring

tangential force and surface roughness is over 95%.

7. In a feedforward back-propagation network, it is shown that the error de-
creases with the number of hidden nodes. It is stated earlier that the nodes
in the hidden layer learn to respond to features found in the input. If we
use a large number of nodes in the hidden layer, the error can be decreased,
but the network memorizes the input patterns rather than generalizing the

input. For this reason, we used four hidden nodes in the hidden layer.

6.2 Future Work and Recommendations

The following recommendations are proposed for future work:

1. In this work we proposed an on-line monitoring system for a turning pro-
cess. In future one can explore artificial neural networks in other machining
processes such as milling, grinding, etc. Care should be taken in the ap-
plication of neural networks to milling and grinding operations, as they
involves a multi tooth cutting process. Consequently, the cutting force
generation is more complex compared to a single cutting process. Fur-
thermore, the generation of surface topography will require the knowledge
of each cutting edge and the sequence of positions that each cutting edge
will traverse. It is evident that the trajectory made by the cutting tool is

complex, because it involves overlapping between each cutting edge’s path.
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2. The on-line model (especially the tool wear model) can be implemented in a
Computer Aided Surface Topography Simulator (CASTS), which predicts
the surface texture in order to know the effect of tool wear on surface
roughness. However, it is important to consider effects of random tool
motion on the surface texture formation. It has been well known that
built-up edge phenomenon, tool wear, and properties of workpiece materials
such as, hardness and ductility are factors which may introduce random

excitation during machining.

3. Our next goal is hardware implementation of neural networks in on-line
monitoring of tool wear. The research focus should be on the develop-
ment of a parallel system to perform on-line monitoring of the surface
topography generation, which may represent a breakthrough for real-time
control of machining processes at the factory level. In this regard, one of
the promising targets would be to implement an application-specific Very
Large Scale Integration (VLSI) system. The building of a special purposed
system using a VLSI array processor approach will lead to the dream of

real-time control of machining processes to come true.
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Appendix A

The Back-Propagation Training
Algorithm

The back-propagation training algorithm is an iterative gradient algorithm designed to
minimize the mean square error between the actual output of a multilayer feed-forward
perceptron and the desired output. It requires continuous differential non-linearities.
The following assumes a sigmoid logistic non-linearity is used where the function

f(e) =1/(1 + exp(==9)

1. Initialize Weights and Offsets.
Set all weights and node offsets to small random values.

2. Present Input and Desired Outputs
Present a continuous valued input vector z,, 21, ....., £ y—1 and specify the desired
outputs do,dy,...dps—1. If the net is used as a classifier, then all the desired
outputs are typically set to zero, except for that corresponding to the class the
input is from. That desired output is 1. The input could be new on each trial or
samples from a training set could be presented cyclically until weights stabilize.

3. Calculate Actual Outputs
Use the sigmoid non-linearity from above and calculate outputs yo, y1,...yrr—1-

4. Adapt Weights
Use a recursive algorithm starting at the output nodes and working back to the
first hidden layer. Adjust weights by

wij(t+1) = wij(t) + ndje;
In this equation w;;(t) is the weight from hidden node 7 or from an input node

Jjat time ¢, z; is either the output of node i or is an input, 7 is gain term, and §;
is an error from node j. If node j is an output node, then

8; = yi(1 — y;)(dj — yj)
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where d; is the desired output of node j and y; is the actual output.
If node j is an internal hidden node then

k
6 = w1 — ) 3 66 Wa
1]

where k is over all nodes in the layers above node i. Internal node thresholds
are adapted in a similar manner by assuming they are connection weights on
links from auxiliary constant-valued inputs. Convergence is sometimes faster if
a momentum term is added and weight changes are smoothed by

wij(t + 1) = wij(2) + n;z; + a(Wi;(t) — Wij(t — 1))
where0 < a <1

5. Repeat by Going to Step 2
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