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On the Perturbation ofLU and Cholesky FactorsG. W. StewartABSTRACTIn a recent paper, Chang and Paige have shown that the usual per-turbation bounds for Cholesky factors can systematically overestimatethe errors. In this note we sharpen their results and extend them tothe factors of the LU decomposition. The results are based on a newformula for the �rst order terms of the error in the factors.1. IntroductionLet A be a positive de�nite matrix of order n. Then A has a unique Choleskyfactorization of the form A = RTR, where R is upper triangular with positivediagonal elements.Let ~A = A + E be a perturbation of A in which E is symmetric. If E issu�ciently small, then ~A also has a Cholesky factorization:A+ E = (R + FR)T(R+ FR):Several workers [1, 3, 4, 7] have given bounds on the matrix FR. The commonresult is essentially thatkFRkFkRk2 � 1p2�2(A)kEkFkAk2 +O(kEk22): (1.1)Recently Chang and Paige [2] have shown that (1.1) can consistently overesti-mate the error in the Cholesky factor and have proposed new bounds. Following[3], they note that E = RTFR + FTRR +O(kFRk2): (1.2)Consequently if one de�nes the linear operator TR on the space of upper triangularmatrices by TR(F ) = RTF + FTR;then FR �= �FR � T�1R (E);1



2 Perturbation of LU Factorizationsand kFRk <� kT�1R kkEk;where k � k denotes a suitably chosen norm. By examining the matrix representa-tion of TR, Chang and Paige were able to show that bounds based on kT�1R k aresharper than the conventional bounds. They also derive a lower bound for kT�1R k,and show by example that the failure of (1.1) is somehow connected with pivotingin the computation of the decomposition.The purpose of this note is to generalize and strengthen the results of Changand Paige. We do so by exhibiting an explicit matrix representation of �FR. Therepresentation is invariant under a certain kind of diagonal scaling, and by adjust-ing the scaling we can improve the usual bound. Since the approach works for themore general LU decomposition, we will treat that case �rst and then specializeto the Cholesky decomposition.Throughout this note k � k will denote an absolute norm, such as the 1-norm,the 1-norm, or the Frobenius norm, which will also be denoted by k � kF. Thematrix 2-norm, which is not absolute, will be denoted by k�k2. For any nonsingularmatrix X we will de�ne ��(X) = kXk�kX�1k�:For more on norms see [5].2. The LU DecompositionLet A be a matrix of order n whose leading principal submatrices are nonsingular.Then A can be written in the form A = LU;where L is lower triangular and U is upper triangular. The decomposition is notunique, but it can be made so by specifying the diagonal elements of L. (Theconventional choice is to require them to be one.)If E is su�ciently small, A+ E has an LU factorization:A+ E = (L+ FL)(U + FU): (2.1)Again, the factorization is not unique, but it can be made so, say by requiringthat the diagonals of L remain unaltered.



Perturbation of LU Factorizations 3Multiplying out the right hand side of (2.1) and ignoring higher order terms,we obtain a linear matrix equation for �rst order approximations �FL and �FU toFL and FU : L �FU + U �FL = E:We shall show how to solve this equation in terms of two matrix operators.Let 0 � p � 1, and de�ne Lp and Up as illustrated below for a 3� 3 matrix:Lp(X) = 0B@px11 0 0x21 px22 0x31 x32 px331CA and Up(X) = 0B@px11 x12 x130 px22 x230 0 px331CA :It then follows that for any matrix X,X = Lp(X) + U1�p(X); (2.2)and kLp(X)k; kUp(X)k � kXk:Finally, if X is symmetric kU 12 (X)kF � 1p2kXkF: (2.3)Our basic result is the following:�FL = LLp(L�1EU�1) and �FU = U1�p(L�1EU�1)U:To see this, writeL[U1�p(L�1EU�1)U ] + [LLp(L�1EU�1)]U= L[U1�p(L�1EU�1) + Lp(L�1EU�1)]U= L(L�1EU�1)U by (2.2)= E:The number p is a normalizing parameter, controling how much of the perturba-tion is attached to the diagonals of L and U . If p = 0, the diagonal elements of Ldo not change. If p = 1, the diagonal elements of U do not change.We can take norms in the expressions �FL and �FU to get �rst order perturbationbounds for the LU decomposition. But it is possible to introduce degrees of free-dom in the expressions that can later be used to reduce the bounds. Speci�cally,for any nonsingular diagonal matrix DL, we have�FL = LDLL0(D�1L L�1EU�1) � L̂L0(L̂�1EU�1)



4 Perturbation of LU FactorizationsConsequently k �FLk � kL̂kkL̂�1kkU�1kkEk;or k �FLkkLk � �(L̂)�(U)kEkkLkkUk : (2.4)Since kAk � kLkkUk, we havek �FLkkLk � �(L̂)�(U)kEkkAk : (2.5)Similarly, if DU is a nonsingular diagonal matrix and we setÛ = DUU;then k �FUkkUk � �(L)�(Û)kEkkAk : (2.6)The bounds (2.5) and (2.6) di�er from the usual bounds (e.g., see [4]) by thesubstitution of L̂ or Û for L or U . However, if the diagonal matrices DL and DUare chosen appropriately, �(L̂) and �(Û) can be far less that �(L) or �(U). Forexample, if U =  1 �0 �! ; (2.7)then �1(U) �= 1=�. But if we set DU = diag(1; 1=�), then �(Û) �= 1.Poorly scaled but essentially well-conditioned matrices like U in (2.7) occurnaturally. If A is ill-conditioned and the LU decomposition of A is computedwith pivoting, the ill-conditioning of A will usually reveal itself in the diagonalelements of U . In [6] the author has shown that such upper triangular matricesare arti�cially ill conditioned in the sense that they can be made well conditionedby scaling their rows.If �(L̂) = 1 (it cannot be less), then the bound (2.4) reduces tok �FLk � kU�1kkEk: (2.8)It is reasonable to ask if there are problems for which we can replace kU�1k by aneven smaller number and still have inequality for all E. The answer depends onp. For example, suppose that k � k is the 1-norm. Let ei be the unit coordinate



Perturbation of LU Factorizations 5vectors, and let k be such that keTkU�1k = kU�1k. Let E = eneTk , so that kEk = 1Then it is easy to see thatkL̂Lp(L̂�1EU�1)k = kLp(eneTkU�1)kHence kU�1kkEk � k �FLk � pkU�1kkEk: (2.9)Consequently, if p is near one, (2.8) is essentially the smallest bound that holdsuniformly for all E.The reason for the appearance of the factor p in (2.9) is that the error mayconcentrate in the last column of L�1EU�1, in which case it is reduced by a factorof at least p by the operator Lp. This can happen, for example, when L = I andU = diag(In�1; �) for � small. However, if p si small, the perturbation will showup in �FU , for which the factor is 1 � p.The bounds (2.5) and (2.6) suggest a strategy for estimating the conditionof the LU factorizations. Van der Sluis [8] has shown that in the 2-norm, thecondition number is approximately minimized when the rows or columns of thematrix are scaled to have norm one. Thus the strategy is to so scale L̂ and Û anduse a condition estimator to estimate the condition of L, L̂, U , Û .In [4] it is shown how to obtain rigorous bounds for the errors in the �rst orderapproximations �FL and �FU . Since the second order terms decay rapidly, the errorbounds are less important than the condition that insures their existence: namely,kL�1kkU�1kkEk � 14 :3. The Cholesky DecompositionWe now return to the Cholesky decomposition. In analyzing the perturbationof the the Cholesky factor R it is natural to take p = 12 so that symmetry ispreserved. In this case the solution of the perturbation equation becomes�FR = U 12 (R�TER�1)R:Hence if R̂ is de�ned in analogy with L̂ and Û , it follows from (2.3) thatk �FRkFkRk2 � 1p2�2(R̂)�2(R)kEkFkAk2 :



6 Perturbation of LU FactorizationsMoreover, by a variant of the argument that lead to (2.9), for any A, there is anE such that kR�1k2kEkF � k �FRkF � 12kR�1k2kEkFwhich shows that we cannot reduce the constant � in the boundk �FRkF � �kEkFto less than 12kR�1k.References[1] A. Barrland. Perturbation bounds for the LDLH and the LU factorizations.BIT, 31:358{363, 1991.[2] X-W. Chang and C. C. Paige. A new perturbaton analysis for the Choleskyfactorization. School of Computer Science, McGill University. To appear inthe IMA Journal of Numerical Analysis., 1995.[3] G. W. Stewart. Perturbation bounds for the QR factorization of a matrix.SIAM Journal on Numerical Analysis, 1977:509{518, 1977.[4] G. W. Stewart. On the perturbation of LU, Cholesky, and QR factorizations.SIAM Journal on Matrix Analysis and Applications, 14:1141{1146, 1993.[5] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press,Boston, 1990.[6] G. W. Stwart. The triangular matrices of Gaussian elimination and related de-compositions. Technical Report CS-TR-3533 UMIACS-TR-95-91, Universityof Maryland, Department of Computer Science, 1995.[7] J.-G. Sun. Rounding-error and perturbation bounds for the Cholesky andLDLT factorizations. Linear Algebra and Its Applications, 173:77{98, 1992.[8] A. van der Sluis. Condition numbers and equilibration of matrices. NumerischeMathematik, 14:14{23, 1969.


