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In a recent paper, Chang and Paige have shown that the usual per-
turbation bounds for Cholesky factors can systematically overestimate
the errors. In this note we sharpen their results and extend them to
the factors of the LU decomposition. The results are based on a new
formula for the first order terms of the error in the factors.

1. Introduction

Let A be a positive definite matrix of order n. Then A has a unique Cholesky
factorization of the form A = R'R, where R is upper triangular with positive
diagonal elements.

Let A = A+ E be a perturbation of A in which E is symmetric. If E is
sufficiently small, then A also has a Cholesky factorization:

A+ E=(R+ Fr)'(R+ Fg).

Several workers [1, 3, 4, 7] have given bounds on the matrix Fr. The common
result 1s essentially that

| Frllp 1
< — g (A
17 = et

Recently Chang and Paige [2] have shown that (1.1) can consistently overesti-
mate the error in the Cholesky factor and have proposed new bounds. Following
[3], they note that

1]
1Al

+ O(|| E][3)- (1.1)

E = R'Fp+ Fi R+ O(||Fr|)?). (1.2)

Consequently if one defines the linear operator T on the space of upper triangular
matrices by

Tr(F)=R"F+ F'R,
then
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and

[FRll S ITR £

where || - || denotes a suitably chosen norm. By examining the matrix representa-
tion of Tg, Chang and Paige were able to show that bounds based on ||T7'|| are
sharper than the conventional bounds. They also derive a lower bound for | T3],
and show by example that the failure of (1.1) is somehow connected with pivoting
in the computation of the decomposition.

The purpose of this note is to generalize and strengthen the results of Chang
and Paige. We do so by exhibiting an explicit matrix representation of Fr. The
representation is invariant under a certain kind of diagonal scaling, and by adjust-
ing the scaling we can improve the usual bound. Since the approach works for the
more general LU decomposition, we will treat that case first and then specialize
to the Cholesky decomposition.

Throughout this note || - || will denote an absolute norm, such as the l-norm,
the co-norm, or the Frobenius norm, which will also be denoted by || - ||r. The
matrix 2-norm, which is not absolute, will be denoted by ||-||2. For any nonsingular
matrix X we will define

i (X) = [ X [1IX7H],

For more on norms see [5].

2. The LU Decomposition

Let A be a matrix of order n whose leading principal submatrices are nonsingular.
Then A can be written in the form

A= LU,

where L is lower triangular and U is upper triangular. The decomposition is not
unique, but it can be made so by specifying the diagonal elements of L. (The
conventional choice is to require them to be one.)

It F is sufficiently small, A + £ has an LU factorization:

A+ E = (L+ Fp)(U+ Fp). (2.1)

Again, the factorization is not unique, but it can be made so, say by requiring
that the diagonals of L remain unaltered.
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Multiplying out the right hand side of (2.1) and ignoring higher order terms,
we obtain a linear matrix equation for first order approximations Fyoand Iy to
Fr and Fy:

LFy +UFy, = E.

We shall show how to solve this equation in terms of two matrix operators.
Let 0 < p <1, and define £, and U, as illustrated below for a 3 x 3 matrix:

pryy 0 0 P11 Ti2  T13
,Cp(X) = 21 P22 0 and Z/{p(X) = 0 P22 23 .
T31 T3z PT33 0 0  pwas
It then follows that for any matrix X,

X = L,(X) + Uy (X), (2.2)

and

Lo (X5 lled, (X < X
Finally, if X is symmetric

124, (X)) Ry (2.3)

< 5l
Our basic result is the following:
Fp = LL(LT'EU™Y) and  Fy =U_ (L' EUY)U.
To see this, write

Lith_ (L EU=YU] + [LL,(L~ EU-Y)]U
= Lth_ (L' EU-Y) + L,(L~'EU-)U
= L(LT'EU-Y)U by (2.2)
= E.

The number p is a normalizing parameter, controling how much of the perturba-
tion is attached to the diagonals of L and U. If p = 0, the diagonal elements of L
do not change. If p = 1, the diagonal elements of /' do not change.

We can take norms in the expressions Fy and Fy to get first order perturbation
bounds for the LU decomposition. But it is possible to introduce degrees of free-
dom in the expressions that can later be used to reduce the bounds. Specifically,
for any nonsingular diagonal matrix Dy, we have

Fr = LDLLo(D LV EUY) = LLo(LEUY)
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Consequently § o
Ll < IZILT I )
or y X
[zl _ #(L)s(U)|E]]
< (2.4)
IL] L
Since [[A| < [[L|[|U]], we have
[k i LE]
< k(L)r(U)r—. (2.5)
IL] 1A]]
Similarly, if Dy is a nonsingular diagonal matrix and we set
U = DyU,
then y
1Fu]] o ILE]
< k(D)r(U)r——. (2.6)
1U]] 1A]]

The bounds (2.5) and (2.6) differ from the usual bounds (e.g., see [4]) by the
substitution of L or U for L or U. Hov&iever, if the diagonal matrices Dy and Dy

are chosen appropriately, /i(ﬁ) and k(U) can be far less that x(L) or (U). For

example, if
1 €
() o

then x1(U) = 1/e. But if we set Dy = diag(1,1/¢), then x(U) = 1.

Poorly scaled but essentially well-conditioned matrices like U in (2.7) occur
naturally. If A is ill-conditioned and the LU decomposition of A is computed
with pivoting, the ill-conditioning of A will usually reveal itself in the diagonal
elements of UU. In [6] the author has shown that such upper triangular matrices
are artificially ill conditioned in the sense that they can be made well conditioned
by scaling their rows.

A

If k(L) =1 (it cannot be less), then the bound (2.4) reduces to
IF2]l < IUHIIE]. (2.8)

It is reasonable to ask if there are problems for which we can replace |[U~!]| by an
even smaller number and still have inequality for all £. The answer depends on
p. For example, suppose that || - || is the co-norm. Let e; be the unit coordinate
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vectors, and let k be such that ||ef U~ = ||[U~!]|. Let £ = e,el, so that ||E] =1
Then it is easy to see that

1L, (L7 EUTY| = [|€y(enei U]

Hence

IO N 2 1) = pllo = 1] (2.9)

Consequently, if p is near one, (2.8) is essentially the smallest bound that holds
uniformly for all £.

The reason for the appearance of the factor p in (2.9) is that the error may
concentrate in the last column of L' EU™!, in which case it is reduced by a factor
of at least p by the operator £,. This can happen, for example, when L = I and
U = diag(l,-1,¢) for € small. However, if p si small, the perturbation will show
up in FU, for which the factor is 1 — p.

The bounds (2.5) and (2.6) suggest a strategy for estimating the condition
of the LU factorizations. Van der Sluis [8] has shown that in the 2-norm, the
condition number is approximately minimized when the rows or columns of the
matrix are scaled to have norm one. Thus the strategy is to so scale L and U and
use a condition estimator to estimate the condition of L, [2, U, U.

In [4] it is shown how to obtain rigorous bounds for the errors in the first order
approximations Fy and Fy. Since the second order terms decay rapidly, the error
bounds are less important than the condition that insures their existence: namely,

LZHHOHIEN <

el B

3. The Cholesky Decomposition

We now return to the Cholesky decomposition. In analyzing the perturbation
of the the Cholesky factor R it is natural to take p = % so that symmetry is

preserved. In this case the solution of the perturbation equation becomes

Hence if R is defined in analogy with L and U, it follows from (2.3) that

Vale 1 o llE]e
< —kro(R)ka(R .
1&]. = Va0 g
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Moreover, by a variant of the argument that lead to (2.9), for any A, there is an

F such that

_ - Lo
BT 1B le = 1 Erlle = S IR ] Ee

which shows that we cannot reduce the constant p in the bound

1ERlle < ol Ellr

to less than %HR‘IH.
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