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I. Introduction

Image 'processing problems in high accurafy matching, edge detection, and
measﬁfemént can be approached using probabilistic methods in digital geometry.
We have considered this approach in [1, 2, 3, 4] in the problem of subpixel
accuracy in feature based image registration. Related techﬁiques have been
developed by Dorst and Smeulders [5]. The digital natrual of these problems
gives rise to a need for the study of the properties of digital line segments,
i i.e. the digitization of real line segments. Work in this area characterizing which
collections of pixel are digital lines was done by Rosenfeld and others ([6], [7]);.
Dorst and Smeulders [5] introduced a useful methods of representing digital
line segments in terms of four parameters, which we used in [1-4]. The above
applicaticns lead to problems related to integral geometry and hence the first
question: to consider is that of putting a measure on the set of digital line
segments. Dorst and Smeulders [5] suggested using the unique invariant measure
(8] on the space of real lines to induce a measure on the space of digital lines.
On the other hand, the counting measure on digital lines is often more convenient
for computational purposes. The use of this counting measures necessitates the

development of an expression for the number of digital lines of a given length,

which was obtained in [4] (see formulas (5) and (6) below), Since this exact
formula is very involved, it is convenient to have an asymptotic expression for

it, when the length of the digital lines is large. The purpose of this paper is to

prove such an expression.

IT. Background

This section—deséribes the parametrization [S] of_digital 1inesjmentioned
in the introduction. We also recall the results obtained in [1] describing
the set of all digital lines in terms of these parameters. We will be concerned

with lines with slope in the range [0,1) and crossing the y-axis in the interval
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[0,1). (The family of all lines can be rediced to this one modulo translation

and relabeling of the axes.) To each such line, we can associate a digital line

by the following procedure. For each nonmegative integer a, 1if the line crosses
the véftical line x = a at the point (a,b), then we mark the square pixel whose
lower left hand corner is (a,[bl), where [b] denotes the integral part of b.
The set of marked pixels obtained in this way is called the digital line aséociated
to the original line. In practice, we are only interested in line segments, hence
the integer will be in the interval {[0O,N]. N will be called the length of the
digital Iine segment. For this digital’segment, one can assign a sequencsa {Ci}

of zeros and ones as follows. _Let bO, bl""’bN be the ordinates of the lower

left hand corners of the pixels of that seament. Define

0 Eif b, = b,
i -
c., =

J
Ll otherwise

This sequence has N elements.

The period, q, of this sequence is defined to be the smallest integer
such that there exists an infinite periodic extension ¢ , ¢ yeeey with
N1 N+2
period q. It is clear that 1 = q =N and the case q = 1 corresponds to a
horizontzl digital segment, i.e. Cj = (0 for all j. Define p to be the number
of ones in a period. If p 1is different from zero, then p and q are relatively
prime.

The fourth parameter, called the shift s, can be defined by the property

that

(l) ‘Cj = [(]"S) (D/q)] - [(j“"S—l) (P/q)], j = 13""N

We impose the constraint that 0 = s < -1

It can be shown that a quadruple (N,q,p,s) subject to the above mentioned

restrictions determines a digital line segment by (1), On the other hand, this



correspondence between digital line segments and quadruples is not 1-1. 1In

{4}, we gave a 1-1 correspondence between the family of all digital segments and
a subset of the quadruples (N,q,p,s). This subset if determined by the single

condition given in Proposition 1 below. In order to state this result, we must

introduce an auxiliary parameter, &, given by
(2) Lp = ~1(mod q) and 0 < & < g

Proposition 1. (see [4]). The family of digital line segments is in a 1-1

correspondence with the set of quadruples (N,q,p,s) such that the quantity
(3) ((N~-s)/q] q + ((st&)/q]l q - %

is positive.

We want to compute the number L(N,q) of digital lines of length N and
period q. Clearly L(N,1) =1, so we can consider ¢q > 1. Proposition 1
reduced the problem of counting the number of lines to determining the number of
values of s for which the expression (3) is positive. It is clear that if

N-s2q, then (3) is positive. The only time we must be careful is when

N - s < q. This can only arise if N=<q+ s - 1= 2q - 2, that is, (+2)/2

IA
No]

Hence, if q < (N+2)/2, s can take arbitrary values and it follows that
(4) L(N,q) = q$p(q) for 2 =q< (NW+2)/2

where ¢(q) 1is the Euler function that counts the number of values p, 1 =p =q,
with p and q relatively prime. This formula is clearly valid for q =1 since
¢(1) = 1. In the remaining range of ¢, one has to be more careful but a relatively
simple argument which can be found in [1] leads to an exact formula for the mumber

L(N,q) of digital line segments in this range of q:
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(5) L(N,Q) = (N_q+2) ¢(Q) + Z min(z‘I‘N"Z, Cl"l—l, Q"l, N—Q) s
'3

where the'sum takes place over all values 2, 0 < ¢ < q, with ¢ and ¢
relatively prime.

We summarize the above as:

Proposition 2. Let L(N) be the number of digital lines of length N with

both slope and y-intercept between 0 and 1. Then

(6) L) =
q

LN,q) ,

[{ S~

1

where L(N,q) 1is given by (4) if 0 < q < (N+2)/2 and by (5) otherwise.

IIT. Asymptotic formula for the number of lines

The exact formula given in Proposition 2 is difficult to evaluate for
large N and so an asymptotic formula becomes desirable. The derivation of
such a formula is based on the heuristic fact that the numbers relatively
prime to a given number q appear to be uniformly distributed in the interval
{1,q]. 1In fact this heuristic can be made precise by the following auxiliary

proposition (a particular case of the theorem of Bombieri-Vinogradov):

Proposition 3. For fixed n, let the function F(x) be defined as the

cardinality of the set of positive integers, p, such that p = x and

(p,n) = 1. Then

(7 F(x) = Qigl-x + 0{loglog n)

It is understood that 0(loglog n) represents a quantity bounded in absolute
value by a constant, independent of n, times loglog n. . 7 -
The proof of proposition 3 requires the followinp standard facts from number

theory. We first recall the definition of the Moebius function, W, defined by



(-1)#» where r is the number of distinct primes

dividing d 1f there exists no prime whose

T p(d)

i

square divides d

0 otherwise.

Hence [u(d)]

1 or 0 according to whether d is square-free or not.

Lemma 4. The following two estimates hold:
(8) T Iﬁigll_= 0(loglog n)
d]n
1
(9 DR 0(leglog n)
d'n

Proof. The first sum is over the divisors of n that are square-free. It coin-
cides with 1 (l+£0, (The product runs over the prime diviscrs of n). This is
p|n

clearly as large as possible if n itself is the product of the first r primes,

n = Py---P - We now estimate ¥ and p_- Using Theorem 414 from [9] we have

for some constant C > O,

logn =% log pi > Cpi.

Also, by the Prime Number Theorem, we have p =~ r log r. Hence we obtain
r

logn 2Cr log r

where C denotes a different positive constant than above. Therefore
r £ C log n/loglog n .

Now, by Theorem 427 in F9] we have

1
log T (l+§) =z S A loglog P,
pln p=p_



Using the previous inequality this leads to

1
hit (l+g) 0(loglog n) ,

pin

which proves the estimate (8).

To prove the second estimate one needs to show that

We have

Proof of Proposition 3:

Let T 1
(2,n)=1

L=x
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Therefore the distribution function F(x) of the number of £ relatively prime to
n is given by:

¢ (n)

F(x) = X + 0(loglog n) (0 = x = n)

We obtain the following corollaries of Proposition 3.

(10) L1 =F®) - Fa) = (b-a) ¢i“) + 0(loglog n)
.=n
a=l=b=n

b b (b
(11) L= J xdF = xF(x) | - | PG
lin a 'a a
a<i=b
. b b
= x2 S%%l | + 0(loglog n) (b-a) - éﬁgl.f xdx + (b-a) O0(loglog n
a a
b
1 2
=3 X ¢€?) } + (b-a) 0(loglog mn)
a
2 2
b - o
= 5 = 'S:) + (b-a) 0(loglog n)

The following proposition follows now immediately from the explicit formulas (5)

and (6) and these corcllaries.

Proposition 5. The following asymptotic development holds:

(12) Ly = N /n2 + o@” log M)

Values of L(N) and the leading term, L'(N), of its asymptotic formula

were computed for N = 100:

L(N) = 104,359 , L'(N) = 104,949 ,



resulting in a relative error of 1/2% which shows that the asymptotic formula is
quite effective for use in problems of a statistical nature. In particular,
this formula proves the image registration accuracy results conjectured in [4].
in effect, the result is the following:

Given a digital line segment, XA, of length N, we gave in [4]}, a choice
of a linear function 2%*(x) = a*x + b* such that the line with equation
y = 2*%(x) has digitization A and minimizes the quantity

e(\) = min max max |8 (x)-2*(x)]
L% % = =N

where & range also over all lincar functions such that the digitization of the

N

line y = 4(x) is i. From Proposition 3 one can deduce that the expected value,

TEM), of e(A) over all X of lenpgth N 1is given by

3(1l-log 2)
S

(13) ( 3 §+ 0(log N/N2) .
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