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Linear mixed effect (LME) models have become popular in modeling data in a

wide variety of fields, particularly in public health. These models are beneficial be-

cause they are able to account for both the means as well as the covariance structure

of clustered or longitudinal data. However, as studies are able to collect an increas-

ing amount of data for large numbers of predictors, a major challenge has been the

selection of only important variables to create a more interpretable, parsimonious

model. Previous methods for LME models have been inefficient in variable selection,

but three new methods attempt to select and estimate both important fixed and

important random effects simultaneously. The models are compared through anal-

ysis of simulated longitudinal data. Additionally, as an example of the important

applications to public health, the methods are applied to the Trial of Activity in

Adolescent Girls (TAAG) study, to determine important predictors for Moderate to

Vigorous Physical Activity (MVPA).
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Chapter 1

Introduction

Linear mixed-effects (LME) models (Laird and Ware 1982) are statistical mod-

els that are used in the analysis of clustered or longitudinal data. LME models es-

timate the relationship between the dependent variable and the predictors included

in the model, accounting for both the fixed effects and the random effects of the

independent variables. Compared with linear regression models without considering

clustering or temporal effects, LME models are able to more accurately estimate the

fixed effects by estimating the covariance structure through the inclusion individual-

specific random effects. Ignoring the covariance structure has been shown to lead

to biased estimates (Lange and Laird 1998).

Improvements in technology have enabled researchers to collect and store data

on an increasing number of predictors. However, inferences and predictions of an

LME model that includes all predictors become too complex or infeasible as the

number of predictors, all of which include fixed and random components, increases.

One challenge in LME models is choosing a parsimonious model that selects only

the significant covariates, while excluding variables that have no true effect on the

outcome. Many methods have been published on model selection, but three new

methods have been introduced which, unlike many previous approaches, can esti-

mate both fixed and random effects simultaneously. First, a method developed by
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Li et al. (2012), optimizes a regularization problem with two separate penalization

methods for fixed and random effects. Next, Bondell et al. (2010) select and es-

timate fixed and random effects simultaneously by maximizing a jointly penalized

regularization problem. Finally, Fan and Li (2012) use a proxy matrix to account

for covariance structure in maximizing a penalized profile likelihood for fixed and

random effects separately. These methods present more practical ways of selecting

important fixed and random effects of LME models compared to previous methods.

The goal of this thesis will be to compare the efficacy and accuracy of these new

variable selection methods though analysis of data simulation studies.

Additionally, a comparison of these methods will be performed through a real

public health data set. As an example of the power of these methods, we consider

the study of the Trial of Activity for Adolescent Girls 2 (TAAG 2), which determined

the predictors of physical activity among adolescent girls from 6 schools in Maryland

(Young et al. 2013). Data for 65 multilevel variables from 551 girls were collected

at two time points, 2006 and 2009, when the girls were enrolled in the 8th and 11th

grade, respectively. Using traditional methods, building a parsimonious model for

this data would be tedious and could introduce bias. However, this data can be

analyzed efficiently using these methods to determine which variables truly have a

relationship with the outcome variable of interest, moderate to vigorous physical

activity (MVPA). This data analysis will demonstrate the important applications

that these methods can have in the public health field.

The rest of this thesis will proceed as follows. Section 2 will discuss previous

methods used for variable selection and give an introduction to the TAAG trial.
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Section 3 will introduce the three methods used for variable selection in LME models.

In Section 4, simulation studies will be performed to compare the effectiveness of

the three methods. Section 5 will carry out the analysis of the TAAG data set.

Finally, in section 6, the strengths and weaknesses of the methods will be discussed,

along with brief implications of their use on high-dimensional data.
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Chapter 2

Background

2.1 Linear Mixed-Effects Models for Longitudinal Data

Consider a longitudinal study with n subjects. Each subject i, (i = 1, ..., n)

has m observations. The number of observations can be generalized to mi so that the

number of observations can vary across subjects, for a total of
∑n

i=1mi = N obser-

vations. Suppose there are p covariates associated with the fixed effects, X1, ..., Xp

and q random effects associated with the random effects Z1, ..., Zq. For subject i,

let xij be the vector of p predictors for fixed effects for j ∈ {1, . . . , p} and zik be the

vector of predictors for q random effects for k ∈ {1, . . . , q}. For the outcome Y at

observation t, the linear mixed-effects model can then be written as:

Yit = xTitβ + zTitbi + εij

where β is the p × 1 parameter vector for fixed effects, bi is the q × 1 param-

eter vector for random effects, and εij represents the error term which is inde-

pendently and identically distributed to N(0, σ2). The random effects for each

subject are independently and identically distributed to multivariate normal distri-

bution MVN(0, σ2Ψ), where Ψ is the m × m covariance matrix. By combining

Yi = (Yi1, ..., Yim)T ,XT
i = (xi1, ..., xim), and ZT

i = (zi1, ..., zim), the LME mode can
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be simplified to:

Yi = Xiβ +Zibi + εi (2.1)

where Xi is the m× p design matrix for the fixed effects and Zi is the m× q design

matrix for the random effects for subject i. The error term εi is independently

and identically distributed N(0, σ2Im). The subject-specific random effects bi are

independent of the population specific fixed effects β. It can be seen that β is

associated with the fixed effects and is used for predicting the mean, while b is

associated with the random effects and accounts for much of the variance in the

model.

2.2 Penalization Methods for Selection of Fixed Effects

Other methods have become widely used for performing model selection more

efficiently, notably penalized regression algorithms. Many different penalization

methods have been used to estimate parameters in a regression model with outcome

yi, design matrix Xi, and coefficients β. The penalization methods reduce the num-

ber of dimensions of the model by setting the coefficients of unimportant predictors

to 0, leading to a more parsimonious and interpretable model. For parameter vector

θ = (µ, β1, . . . , βp), penalization methods can be summarized as

min f(θ) = g(θ) + Pλ(β), (2.2)
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where g(θ) is a loss function and Pλ(β) is a penalty function on β with tuning

parameter λ.

2.2.1 Lasso Penalty

When there are a large number of parameters to be estimated, the “least

absolute shrinkage and selection operator,” or lasso (Tibshirani 1996), is a commonly

used regularization method to reduce the number of parameters. A simple example

is lasso penalized linear regression, in which the penalized objective function (2.2)

can be written as:
N∑
i=1

(yi −
∑
j

βjxij)
2 + λ

∑
j

|βj|, (2.3)

where λ > 0. Lasso applies a constraint on the residual sum of squares when finding

the Ordinary Least Squares (OLS) estimate. Placing this constraint is equivalent

to adding the penalty term λ
∑p

j=1|βj| to the OLS estimates. The regularization

problem (2.3) can then be rewritten as, in dual formation, the sum of the absolute

value of the coefficients constrained to less than a certain tuning parameter t ≥ 0:

min

{
N∑
i=1

(yi −
∑
j

βjxij)
2

}
, subject to

∑
j

|βj|≤ t,

When t is large, the magnitude of the constraint placed on the estimates is minimal,

resulting in solutions close to the OLS estimates. When t is small, the constraint

placed on the solution causes shrinkage in the OLS estimates towards zero. Equiv-

alently, a large λ corresponds to a small t, resulting in a larger penalty on the
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Introduction to High-Dimensional Penalized Methods Coordinate Descent Algorithms Applications in High-Dimensional Data Analysis Discussion References

Lasso vs. Ridge

In `2 regression with lasso and ridge penalties

Lasso solution: the contours touch the square, occurring at a corner
, a zero coe�cient

Ridge solution: no corners to hit , no zero solutions

13 / 64

Figure 2.1: Geometric Interpretation of the Lasso Penalization (Hastie et al. 2009).
The figure on the left is the Lasso Penalty, while the figure on the right is the Ridge
Penalty. The shaded region represents the constraint region for the coefficients. The
contours represent the area the objective function has coefficient values.

parameters. As the value of λ increases, a greater magnitude of shrinkage will be

placed on the coefficient estimates. An advantage of the lasso is its ability to not

only shrink these coefficient estimates towards the origin, but also to perform model

selection of the important variables by setting unimportant coefficients to exactly

zero.

Figure 2.1 represents a simple problem with two coefficients, β1 and β2, show-

ing a geometric interpretation of the lasso (left) compared with the ridge penalty

(right). The ridge penalty, where Pλ(β) = λ
∑p

j=1 β
2
j , is a method that is known to

only shrink coefficients without setting any to zero. Similar to the lasso, this penalty

is equivalent to a constraint region for the estimation of the parameters, given by:

β̂ridge = arg min

{
N∑
i=1

(yi −
∑
j

βjxij)
2

}
, subject to

∑
j

β2
j ≤ t,

However, the shaded regions in the figure show that the penalties result in different
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shapes for their constraint regions. The region for the ridge’s penalty Pλ(β) =

λ(β2
1 +β2

2) is represented as a circular shape, while the lasso’s Pλ(β) = λ(|β1|+|β2|) is

represented as a diamond shape with corners at 0. The elliptical contours correspond

to the quadratic form of the loss function
∑N

i=1(yi−
∑

j βjxij)
2, where the center of

the contour shape is the non-penalized OLS solution for β1 and β2. The minimum

of the sum of g(β) + Pλ(β) will produce the optimal value of β1 and β2, and this

minimum occurs at the point of intersection of the contours and the shaded region.

In the figure, the solution on the left shows that β1 will to be set to 0. In con-

trast, in the ridge plot, it can be seen that this will almost never happen due to the

rounded shape of both the loss function and of penalty function. This demonstrates

the important benefit of the lasso penalty: due to the shape of its constraint region,

it is more likely to eliminate unimportant predictors and perform model selection

(Hastie et al. 2009).

A simple example of the model selection attribute of the lasso can be seen in

Table 1, which compares estimates of six predictors using ordinary least squares,

estimates after ridge penalization, and estimates after lasso penalization with the

true model of three predictors. For sample size n = 30 the true model is:

y = β0 + 0.5X1 + 1X3 + 0.5X4 + ε,

where β0 = 1.5, X ∼ N(0, 1), and ε ∼ N(0, 1). The true predictors in the model

are X1, X3, and X4, while X2, X5, and X6 are noise variables. While the least

squares offers estimates of the coefficients, the unimportant predictors, as expected,
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remain in the model with small, nonzero coefficients. The ridge penalty shrinks the

estimates compared to the least squares estimates, but fails to eliminate the noise

variables. Conversely, the lasso is able to eliminate the false predictors X2, X5, and

X6, while retaining the true predictors X1, X3, and X4. This example shows that

using the lasso provides a more efficient way to perform model selection. However,

it is important to note that the lasso penalty often produces biased estimates, since

all coefficients, even important ones, shrink towards the origin. The magnitude of

selected lasso coefficients will be underestimated due to this shrinkage.

An extension of the lasso, the adaptive lasso (Zou 2006), seeks to minimize

this bias. The adaptive lasso applies a weight w̄ to the lasso penalization, seeking

to minimize:

∑N
i=1(yi −

∑
j βixij)

2 + λ
∑

j w̄|βj|

where w̄ = 1/|β̂|γ and β̂ is usually the ordinary least squares estimate and γ > 0. It

can be seen that, with this weight, βj’s with small values will be further penalized

towards 0, further reducing the number of parameters in the model. Conversely,

large and important coefficients will be minimally penalized. The adaptive lasso

has been shown to have have the oracle properties defined by Fan and Li (2001):

the adaptive lasso consistently selects true variables in a known model and has

asymptotic normality.
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2.2.2 Smoothly Clipped Absolute Deviation (SCAD) Penalty

Consider the penalized regression problem (2.2). Due to the biased results

of lasso, Fan and Li (2001) sought to create a penalty function that gave unbiased

and sparse results, and was a continuous function. The Smoothly Clipped Absolute

Deviation (SCAD) penalty for coefficient vector β by its derivative

P ′λ(β) =



sgn(β)λ, if x < 0

sgn(β) (aλ−|β|
a−1 , if λ < |β|≤ aλ.

0, if |β|> aλ

for a > 2 and λ > 0. The resulting penalty function is:

P ′λ(β) =



λ|β|, if x < 0

−(β2−2aλ|β|+λ2)
2(a−1) , if λ < |β|≤ aλ.

(a+1)λ2

2
, if |β|> aλ

The penalty function is a quadratic spline function, dependent on two tun-

ing parameters a and λ. The results were found to be relatively insensitive to the

parameter a. Through cross-validation, a = 3.7 was found give satisfactory re-

sults consistently. The second tuning parameter λ can also be found through cross

validation for given data.

The advantages of the SCAD penalty are that it is continuous at all points

except 0 and that it produces results with low bias. Similar to the adaptive lasso,
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when β is large, there is little penalization compared to when β is small. This will

ensure that unimportant variables will be penalized heavily while leaving important

variables relatively unpenalized. The SCAD penalty particularly outperforms the

lasso penalty in selecting important variables while eliminating unimportant vari-

ables when the variance of the data is large. Additionally, the SCAD penalty was

also shown to have oracle properties.

2.2.3 Review of Other Penalization Methods

Similar to the lasso and SCAD regression, there have been many penalized reg-

ularization methods to select and estimate fixed effects. Zou and Hastie (2005)

created the elastic net, which combines lasso and Ridge penalization methods and

proposed the algorithm to solve the elastic net efficiently. Bondell and Reich (2008)

created the octagonal shrinkage and clustering algorithm for regression (OSCAR).

This method has the ability to select important variables among a set of highly cor-

related predictors. However, these methods for selection of fixed effects do not take

both the correlation and covariance structure of the random effects into account.

Ignoring or underestimating covariance structure can lead to biased results of the

variance estimates for the ordinary least squares of fixed effects (Lange and Laird

1998).
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2.3 Review of Methods for Selection of Random Effects

In order to select important random effects in a model, Stram and Lee (1994)

discuss the use of likelihood ratio tests in testing for nonzero variance components

linear mixed effects models. Lin (1997) proposed a global score test to test the null

hypothesis that all variance components were equal to 0, then individual score tests

are determined for each random effect and estimation of the variance components

can be made. Hall and Praestgaard (2001) place constraints on the score tests

to select and estimate important random effects. Chen and Dunson (2003) use a

Cholesky decomposition of the covariance matrix and Bayesian methods to select

and estimate random effects variances. Foster et al. (2009) develop a lasso-based

method for selection of random effects. These methods, however, only consider the

random effects and do not have the ability to select or estimate the fixed effects.

2.4 Information Criteria for Model Selection

Information criteria methods are among the most popular methods of model

selection, as they have the ability to select both fixed and random effects in a

linear mixed effects model. Two of these methods are Akaike Information Criteria

(AIC, Akaike 1973) and Bayes Information Criteria (BIC, Schwartz 1978). For these

methods, the likelihood L is found for every combination of parameters in the model.

From there, a penalization for the number of parameters in the model is added to

−2 lnL. The goal is to find the minimum of the following:

AIC = −2 lnL+ 2k

12



BIC = −2 lnL+ k ln(n)

where k is the number of parameters, and n is the number of observations. The BIC

method places a larger penalization on the number of parameters than AIC. The

information criteria seek to find a balance between creating a model with good fit

for the data and with having a small set of parameters.

While these methods are effective in choosing a parsimonious set of fixed and

random effects that give the best fit, they can be burdensome as the number of

possible parameters increases. For p fixed effect parameters and q random effect

parameters, the number of models that need to be compared for information criteria

is 2p+q. As p and q increase, the number of possible models increases exponentially.

Thus, for a large number of predictors, AIC and BIC are inefficient methods of

variable selection.

2.5 Summary of Previous Model Selection Methods

While these methods are effective in performing model selection, they are not

ideal for use in LME models. The penalization methods for fixed effects do not

take the random effects into account, and can lead to inaccurate estimates. The

random effects methods do not consider the fixed effects. Information criteria can

find models with fixed and random effects, but are extremely inefficient for problems

with a large number of predictors. Recently, there have been other methods used to

select both fixed and random effects more efficiently. Jiang et al. (2008) consider a

method to select models with important predictors that doesn’t rely on minimizing
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a criterion function. In this method, a statistical ”fence” is created to eliminate

incorrect models. From there, an optimal model is selected from the remaining

models on the right side of this fence. This method eases the burden that is common

with the information criterion methods.

Three new methods have been created in recent years to simultaneously select

fixed and random effects. The latter sections of this thesis will describe and evaluate

these three methods.

2.6 Trial of Activity in Adolescent Girls (TAAG)

Physical inactivity has been identified as a risk factor for obesity, or a high

percentage of body fat, especially in adolescents (Pietiläinen et al. 2008). The

prevalence of childhood overweight has been increasing drastically in the United

States (Ogden et al. 2002). The resulting health problems that can occur from

physical inactivity and obesity, such as type 2 diabetes, high blood pressure, and

sleep disorders, have been on the rise in children and adolescents in recent years

(Daniels et al. 2005). It has been recommended by the Council on Sports Medicine

and Fitness and Council on School Health (2006) that increasing physical activity

in children and adolescents can be effective in reducing the prevalence of obesity

and the resulting health problems later on in life.

Among black and white girls, physical activity declines as a child ages through

adolescence (Kimm et al. 2002). This decline in physical activity is more prevalent

in girls than in boys (Sallis et al. 1996). Previous school-based interventions targeted
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at boys and girls have not been extremely successful. The Trial of Activity in Ado-

lescent Girls (TAAG) was a school and community-based, multisite, interventional

trial targeted at girls in order to lessen the typical declines in physical activity. The

study was conducted at 26 sites across six geographically diverse areas in the United

States, consisting of California, Minnesota, Maryland, Louisiana, South Carolina,

and Arizona. Data was collected at two time points in the spring of 2003, for girls

in the 6th grade and in the spring of 2005, when the girls were in 8th grade. The

intervention and control groups were assigned randomly in 2003. The program was

designed to create environments in schools and the surrounding community that

encouraged physical activity and to give cues or messages that incentivize physical

activity (Webber et al. 2008). The purpose of the intervention was to reduce the

declines in Moderate to Vigorous Physical Activity (MVPA) that normally occurs

in adolescent girls.

As a part of the TAAG study, data was collected to assess the sustainability

of the program in the spring of 2006 in a new group of 8th grade girls. In the

spring of 2009, followup data was collected from only the girls at the six Maryland

TAAG sites for the Trial of Activity in Adolescent Girls 2 (TAAG 2). This data

was collected when the 2006 8th grade group was in 11th grade. The purpose of

the TAAG 2 study was determining factors at the individual, social, school, and

neighborhood levels that may influence levels of MVPA in adolescent girls (Young

et al. 2013). The analysis in this paper will use data from only these 2006 and 2009

time points. The main outcome of interest for this paper will be average MVPA

minutes per day in the TAAG 2 study. The goal will be to select important fixed

15



and random effects of interest from the TAAG data. The methods will be discussed

in the latter sections of this thesis.
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Chapter 3

Methods

3.1 Method 1 - Double Penalization

This section describes the method created by Li et al. (2012). It selects and

estimates for the parameters of an LME through a regularization problem with two

penalization functions: one for the fixed effects and one for the random effects.

Model Consider the LME given by equation (2.1) that is standardized to have

a mean equal to 0 and a Euclidian norm equal to 0. The fixed effect intercept is

removed from the model, but a random intercept bi0 remains in the model. The

mean and variance of Yi are E(Yi) = Xiβ and V ar(Yi) = σ2(ZiΨZ
T
i + Im).

Maximum Likelihood Estimation For N > p, a modified log-likelihood incor-

porates the restricted log-likelihood (Harville 1974). To maximize for β, Ψ, and

σ2,

`nM(β,Ψ,σ2) = −1

2

n∑
i=1

log|σ2Vi|−
1

2
log σ−2

n∑
i=1

XT
i V

−1
i Xi

− 1

2σ2

n∑
i=1

(Yi −Xiβ)TV −1i (Yi −Xiβ), (3.1)

where Vi = Im+ZiΨZ
T
i , the covariance structure of Yi. When N ≤ p, the restricted

term in (3.1) becomes singular. Therefore, when N ≤ p, the following full log-
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likelihood to be maximized is:

`nF (β,Ψ, σ2) = −1

2

n∑
i=1

log|σ2Vi|−
1

2σ2

n∑
i=1

(Yi −Xiβ)TV −1i (Yi −Xiβ)(3.2)

Objective Function and Penalization A general formula for the objective func-

tion can be written:

Qn(β,Ψ, σ2) = `n(β,Ψ, σ2)− λ1P1(β)− λ2P2(Ψ)

where P1 is the penalization for the fixed effects, P2(Ψ) is the penalization for the

random effects, and λ1 and λ2 are their non-negative tuning parameters, respectively.

The log likelihood `n(β,Ψ, σ2) will be (3.1) or (3.2) when N > p and N ≤ p,

respectively.

For the fixed effects, an adaptive L1-norm, or adaptive lasso, penalty J1(fi) is

applied (Zou 2006), where

P1(βj) =

p∑
j=1

wj|βj|,

where wj = 1
|βj | is a weight given by dividing by the estimated coefficient.

For the random effects, first, a Cholesky Decomposition is used to break Ψ

into Ψ = LLT . The Cholesky factor of Ψ, L, is a unique lower triangular matrix

with positive diagonals. Penalization will then be performed on L. For any given

k ∈ {1, . . . , q}, finding a nonzero row (k) in L, or L(k) (and therefore the nonzero

diagonal element Ψkk), will select the corresponding random effect bk. Conversely,

if L(k) is equal to 0, then the corresponding Ψkk will equal 0, effectively removing
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the kth random effect from the model. An adaptive weight is added to an L2-norm

penalty and this penalty is applied to the random effects, shrinking towards the

coefficients toward zero:

P2(L) =

q∑
k=2

wk

√
L2

k1 + ...L2
kq,

where wk = 1
||L(k)||

is the weight given by dividing by the norm of the estimated

coefficient. Again, this adaptive weight will help shrink small coefficients further

towards zero, while leaving the important predictors unpenalized.

Algorithm First, σ2 can be estimated (Lindstrom and Bates 1988) by:

σ̂2 =
1

N − p
n∑
i=1

(Yi −Xiβ)TV −1i (Yi −Xiβ),

for N > p and

σ̂2 = 1
N

n∑
i=1

(Yi −Xiβ)TV −1i (Yi −Xiβ),

for N ≤ p. By inserting the estimated σ̂2 into (3.1) and (3.2), respectively, the

objective function can then be solved for one fewer parameter.

The algorithm of estimating β and L is done in iterations, through maximizing

the simplified objective function:

Qn(β,L) = PR(β,L)− λ1
p∑
j=1

|βj| − λ2
p∑
j=1

√
L2
k1 + ...+ L2

kq

where PR(β,L) is the updated log-likelihood functions (3.1) or (3.2) with σ̂2 substi-

tuted into the equation.
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The algorithm updates in iterations between two quadratic components until

convergence. First, L is fixed and β is estimated, then β is fixed and L is updated.

This is repeated until convergence. The step when L is fixed is similar to a lasso

problem. However, when β is fixed, the random component must be split into two

problems, estimating L and new parameter γ, which is updated from L estimates.

The algorithm is completed as follows:

1. Initialize the parameters β(0), L(0), γ(0)

2. Update Lkj for iteration r by finding the maximum of the first quadratic

component:

L
(r)
kj = arg max

Lkj

PR(β(r−1),L)− λ22
4

q∑
k=1

1

(γ
(r−1)
k )2

k∑
j=1

L2
kj

3. Update γk:

γ
(r)
k =

√
λ2
2
||L(r)

k ||2

4. Update β, using the LARS algorithm (Efron et al. 2004), the second

quadratic component.

5. If the difference between L
(r)
kj and L

(r−1)
kj and between β

(r)
j and β

(r−1)
j are

smaller than a specified amount, usually 10−5, then the algorithm can

end and estimates are obtained. If not, the process from step 2 can be

continued for iteration r + 1.
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3.2 Method 2 - Joint Penalization

This section describes the method introduced by Bondell et al. (2010). This

method simultaneously selects and estimates fixed and random effects in an LME

model using one joint penalization function for fixed and random effects.

Model Consider the LME model in equation (2.1). Using a modified Cholesky

Decomposition (Chen and Dunson 2003), the covariance matrix Ψ is factorized as

Ψ = DΓΓ′D

where Γ is a q×q lower triangular matrix with 1’s on the diagonal and whose (l, r)th

element is given by γlr and D = diag(d1, d2, . . . , dq) is a diagonal matrix. After this

decomposition, the LME model can be written

Yi = Xiβ +ZiDΓbi + εi (3.3)

where it is now assumed that Yi has been centered so that XT
i Xi and ZT

i Zi rep-

resent correlation matrices and bi is independently and identically distributed to

MVN(0, σ2Im). The covariance matrix of bi is now expressed in terms of vector

d = (d1, d2, . . . , dq)
T and of the free elements of Γ, denoted by vector γ = (γlr : l =

1, . . . , q : r = l + 1, . . . , q)T . Setting any dl = 0 will set the corresponding lth row

and column of the covariance matrix Ψ to 0 and therefore remove the lth random

effect from the model.
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In the new model in (3.3), Yi follows a normal distribution with mean Xiβ

and variance Vi = σ2(ZiDΓΓTDZi + Im).

Maximum Likelihood Estimation Given Y and by treating bi as observed,

the log-likelihood function for the LME model is:

`F (β,d,γ|Y , b) = −N − nq
2

log σ2 − 1

2σ2
||Y −Xiβ −ZiD̃Γ̃b||2+bTb (3.4)

where Z is a block diagonal matrix of Zi, and D̃ = In⊗D and Γ̃ = In⊗D, where

⊗ is the Kronecker product.

Objective Function and Penalization By minimizing the ||Y −Xiβ−ZiD̃Γ̃b||

term in (3.4), the log-likelihood will be maximized. Therefore the objective function

is:

Qn(β,d,γ|Y , b) = ||Y −Xiβ −ZiD̃Γ̃b||2+Pλ1(β,d)

where Pλ1(β,d) is chosen to be an adaptive lasso penalty function with tuning

parameter λ1 such that:

Pλ1(β,d) = λ1

(∑p
j=1

|βj |
|β̂j |

+
∑k

k=1
|dk|
|d̂k|

)
where β̂ and d̂ are the ordinary least squares estimates. Rearranging the terms, the

joint penalized objective function to be minimized in the algorithm is:

QF (β,d,γ|Y , b) = ||Y −Xβ −ZDiag(Γ̃b)(1q ⊗ In)d||2+λ1
(

p∑
j=1

|βj |
|β̂j |

+
k∑
k=1

|dk|
|d̂k|

)

where 1q is a q × 1 column vector of 1’s.
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Algorithm To solve for β,d, and γ, the expectation-maximization (EM) algo-

rithm (Laird and Ware 1982) is used. The algorithm consists of two steps. First,

the conditional expectation of QF (β,d,γ|Y , b) is taken (E-Step), then the objective

function is minimized (M-Step) with respect to (βT ,dT ,γT )T . The overall process

is as follows:

1. Let φ = (βT ,dT ,γT )T , the vector of parameters and φ(r) be the estimate

of parameters at the rth step. For r = 0, the REML estimates are chosen

for the parameters

2. For the rth step, first take the E-step, or find the conditional expectation

of the objective function, assuming the random effects are unobserved:

g(φ|φ(r)) = Eb|y,φ(r)

{
||Y −Xβ −ZDiag(Γ̃b)(1q ⊗ In)d||2

}
+

λ1

(
p∑
j=1

|βj|
|β̄j|

+
k∑
k=1

|dk|
|d̄k|

)

3. Complete the M-step by minimizing g(φ|φ(r)) with respect to φ. This is

completed by iterating between γ and (β, d).

4. The process is completed for step r + 1 at step 2, unless convergence has

occurred.
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3.3 Method 3 - Independent Selection with Proxy Matrix

This section describes the method created by Fan and Li (2012). This method

solves for the fixed effects β and the random effects b separately. A proxy matrix

is substituted for the unknown true covariance structure during the selection and

estimation of fixed and random effects.

Model Consider the model in (2.1). By stacking Yi,Xi, bi, and εi, notate Y ,X, b,

and ε. Let Z = diag{Z1, ...,Zn} and Ψ̃ = diag{Ψ, ...,Ψ} be block diagonal matri-

ces. The fixed effect predictors X are standardized so that each column has norm

√
n. The LME model becomes:

Y = Xβ +Zb+ ε

Maximum Likelihood Estimation of Fixed Effects The MLE for fixed effects

can be found by maximizing the joint density function of Y and b:

f(y, b) = (2πσ)−(n+qm)/2|Ψ̃|−1/2

× exp

{
− 1

2σ2
(y −Xβ −Zb)T (y −Xβ −Z − 1

2
bT Ψ̃−1b

}

Expressing the MLE for b in terms of a given β, is b̂(β) = Bz(Y −Xβ), where

Bz = (ZTZ + σ2Ψ̃−1)−1ZT . By inserting b̂(β), the MLE for b in terms of β, the

likelihood function for the fixed effects β can be expressed as:

`n(β, b̂(β)) = exp

{
− 1

2σ2
(Y −Xβ)TPz(Y −Xβ)

}
(3.5)
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where Pz = (I −ZBz)
T (I −ZBz) + σ2BT

z Ψ̃−1Bz. Finding the β that maximizes

(3.5) will give the fixed effects solution.

Objective Function and Penalization for Fixed Effects A general formula

for the objective function of fixed effects is written:

Qn(β) =
1

2
(Y −Xβ)TPz(Y −Xβ) + n

p∑
j=1

Pλ1(|β|) (3.6)

where the goal is to minimize Qn(β). It is required that the penalty function Pλ1(|β|)

is concave and increasing, so a smoothly clipped absolute deviation (SCAD, Fan and

Li 2001) penalty function is chosen with tuning parameter λ1 > 0.

Proxy Matrix for Fixed Effects Because Pz is dependent on the unknown

covariance matrix Ψ̃ and unknown variance σ2, a proxy matrix P̃z = (I +ZMZT )

is substituted for Pz withM = log(N)I. Using thisM, the proxy matrix Pz satisfies

a condition of decreasing minimal signal decay strength as sample size increases. It

also satisfies constraints placed on the proxy matrix P̃z to ensure that the model

selection has the oracle property. With this proxy matrix substituted into (3.6), the

optimization problem becomes a quadratic problem which can be solved using the

LARS algorithm (Efron et al. 2004).

Objective Function and Penalization for Random Effects The number

of random effects q is allowed to increase with sample size n. For Px = I −

X(XTX)−1XT , the objective function for the random effects is
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Qn(b) = (y−Zb)TPx(y−Zb) + σ2bT Ψ̃+b

where Ψ̃+ is the Moore-Penrose generalized inverse of Ψ̃. Adding a penalty, the

regularization problem is created:

Qn(b) =
1

2
(y−Zb)TPx(y−Zb) +

1

2
σ2bT Ψ̃+b+ n

qn∑
k=1

Pλ2(bk) (3.7)

where Pλ2(bk) is the SCAD penalty function with parameter λ2. In reality, the

covariance matrix Ψ̃ and the variance σ2 are unknown, so again, a proxy matrixM

is substituted for σ−2Ψ̃ so the regularization problem becomes:

Qn(b) = 1
2
(y−Zb)TPx(y−Zb) + 1

2
σ2bTM−1b+ n

∑qn
k=1 Pλ2(bk)

Minimizing this equation gives an estimate of the random effects parameter vector

b̂. Note that once the proxy matrix is substituted into the objective function, this

method does not require knowledge of the fixed effect parameter β.

Proxy Matrix for Random Effects Again, M = (log n)I is chosen to satisfy

constraints placed on the proxy matrix. Substituting this proxy matrix into (3.7)

creates a quadratic optimization problem similar to the the adaptive elastic net (Zou

and Hastie 2005). This allows the problem to be solved using existing quadratic

algorithms.

It should be noted that using (log n)I ignores correlations among the random

effects, which could introduce bias into the estimation of the covariance matrix.

However, although there may be a biased covariance matrix estimate, it avoids

errors caused by estimating a large number of parameters. The authors argue that
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the overall error caused by the accumulation of these errors from each parameter

estimate would give poorer results than by using the proxy matrix.
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Chapter 4

Analysis of Simulated Data

Experiments of six simulated data situations will be conducted to compare

the effectiveness and accuracy of the three methods. All of the simulations will

represent data sets where the number of observations N are greater than the number

of predictors p. For all methods, tuning parameters are chosen through grid search to

find the λ’s that result in the lowest BIC. Each simulation consisted of 50 replicates.

4.1 Simulation 1

Setting This simulation generates a small study population of n = 30 clusters

with m = 5 observations within each cluster, for observation l ∈ {1, . . . ,m}. There

are 10 predictors in consideration, of which only four are important fixed effects and

three of which are important random effects. The random effects will be selected

from the same 10 predictors as the fixed effects, so p = 10 and q = 10. The true

model is given by:

yil = (1 + bi0) + (3 + bi1l)xi1l + (1.5 + bi2l)xi2l + (2 + 0)xi5l + (2 + bi10l)xi10l (4.1)
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with xijl ∼ N(0, 1) and Corr(xijl, xijl′) = 0.5l−l
′
. The random effects (bi0l, bi1l, bi2l, bi10l)

are generated from MVN(0, σ2R), with σ = 0.8 and

R =



1.0 0.5 0.3 0.2

0.5 1.0 0.5 0.3

0.3 0.5 1.0 0.5

0.2 0.3 0.5 1.0


(4.2)

Result Simulation 1 results are in Tables 2 and 3. All methods correctly select all

true fixed effects 100% of the time, with the exception of β2 in Method 3, which was

correctly selected 98 percent of the time. Only Method 1 selects all true random

effects 100 percent of the time. Methods 2 and 3 still perform well, selecting the

all correct random effects 92.67 percent and 70.67 percent of the time, respectively.

Method 3 eliminates predictors the most, resulting in the smallest average model

sizes for both fixed and random effects. In fact, Method 3’s average model size is

consistently less than the true model size, so when using Method 3, it is probable

that true random effects are not selected.

4.2 Simulation 2

Setting Simulation 2 has the same true LME equation as Simulation 1, seen in

(4.1). However, this will be a a larger data set, where m = 8 observations within

n = 200 clusters for p = 100 and q = 50 predictors. There are still only four

important fixed effects and three important random effects, as in equation (4.1).
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All βi = 0 for β > 10. The random effects are chosen from the first 50 fixed effects

xij, where j = {1, . . . , 50}, so p = 100 and q = 50.

Results The results of simulation 2 can be found in Tables 4 and 5. Method 2 was

unable to complete analysis due to lack of memory, resulting in error ”Error: cannot

allocate vector of size 793.8 Mb.” Method 3 was unable to complete analysis for the

random effects, running for hours and then force closing MATLAB without results.

Method 1 was able to select the true fixed and random effects in 100 percent of the

simulations, while Method 3 selected the true fixed effects 100 percent of the time.

Method 1 performed well at eliminating random effects, including false predictors

in the model only 0.469 percent of the time. Both methods were able to eliminate

noise variables well, only selecting false fixed effects less than one percent of the

time.

4.3 Simulation 3

Setting This simulation generates a small study population of n = 60 clus-

ters with m = 3 observations taken at within the cluster, with observation l ∈

{1, . . . ,m}. Xijl and Zikl are generated from N(0,1) with Corr(Xijl, Xijl′) = 0.5l−l
′

and Corr(Zikl, Zikl′) = 0.8l−l
′
. Random effects bikl are generated fromMVN(0, σ2R),

where σ = 0.8 and

R =


1.0 0.5 0.3

0.5 1.0 0.5

0.3 0.5 1.0

 (4.3)
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There are p = 10 predictors for fixed and q = 5 predictors for random effects to

choose from, with four true fixed effects and two true random effects. The true

model is given by:

yil = [1 + 3xi1l + 1.5xi2l + 2xi5l + 2xi10l] + [bi0l + bi1lzi1l + bi5lzi5l] (4.4)

Results For fixed and random effects selected from different sets of predictors, the

simulation 3 results are found in Tables 6 and 7. Again, all methods perform well

when selecting fixed effects, correctly keeping true fixed effects 100 percent of the

time. The methods do not perform as well selecting random effects as in simulation

1, but still correctly select true variables, on average, more than 70 percent of the

time. Method 1 performs the best in this regard at 83 percent. Methods 2 and 3

both eliminate random predictors more heavily, resulting in average random model

sizes that are less than the true model size.

4.4 Simulation 4

Setting Simulation 4 has the same true LME equation as Simulation 3, seen in

(4.4). However, this will be a a larger data set, where n = 600 clusters with m = 3

observations within the clusters for p = 50 and q = 10 predictors. There are still

only four important fixed effects and two important random effects, as in equation

(4.4). All βi = 0 for i > 10. All bi = 0 for i > 5.
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Results For larger data sets, simulation 4 results are found in Tables 8 and 9.

Again, due to computational limitations, Method 2 was unable to complete both

fixed and random effects, while Method 3 was unable to complete the analysis for

the random effects. Methods 1 and 3 selected the true fixed effects 100 percent of

the time. Method 3 was able to eliminate false fixed effects 100 percent of the time.

Method 1 effectively selected true random effects an average of 100 percent of the

time, while eliminating false random effects almost 94 percent of the time.

4.5 Simulation 5

Setting This simulation generates a small study population of n = 60 clusters with

observations taken at m = 3 points within the clusters (observation l ∈ {1, . . . ,m}).

However, this will simulate a multilevel study, where the fixed effects are selected at

the individual level and the random effects are selected from group level predictors.

At the individual level, X ijl is generated from N(0,1) with Corr(Xijl, Xijl′) = 0.5l−l
′
.

At the group level, the predictors Zikl are nested within g = 6 groups, so all members

of group g will have the same set of responses Zgl. Zgkl is generated from N(0,1) with

Corr(Zgkl, Zgkl′) = 0.8l−l
′
. Random effects bigkl are generated from MVN(0, σ2R),

where σ = 0.8 and R is equation 4.3 above. The random effects have a subject-

specific intercept bi0l and predictor-associated bgk, for k ∈ {1, . . . , q}. There are

p = 10 predictors for fixed and q = 5 predictors for random effects to choose from,

with four true fixed effects and two true random effects. The true model is given
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by:

yigl = [1 + 3xi1l + 1.5xi2l + 2xi5l + 2xi10l] + [bi0l + bg1lzg1l + bg5lzg5l] (4.5)

Results For results from nested clustered designs, Simulation 5 results can be

found in Tables 10 and 11. All methods again perform well in the identification of

fixed effects, selecting true fixed effects 100 percent of the time. The methods do

not perform as well selecting random effects as in simulations 1 and 3. Methods 1

and 2 perform the best at selecting random effects, and among the two, Method 1 is

also better at eliminating noise random effects. Method 3 again eliminates random

effects from the model the most. Method 3’s models average just over one random

effect in each model, about half the true size.

4.6 Simulation 6

Setting Simulation 6 has the same true LME equation as Simulation 5, seen in

(4.6). However, this will be a a larger data set, where n = 600 clusters with m = 3

observations within clusters for p = 50 and q = 20 predictors. There are still only

four important fixed effects and two important random effects, as in equation (4.6).

All βi = 0 for i > 10. All bi = 0 for i > 5.

Results Simulation 6 results are listed in Tables 12 and 13. Again Methods 2

and 3 were limited by computational power. Methods 1 and 3 selected the true

fixed effects 100 percent of the time, and both were able to eliminate noise fixed

33



effects 100 percent of the time. Method 1 effectively selected true random effects

an average of 100 percent of the time, while eliminating false random effects more

than 95 percent of the time.

4.7 Simulation 7

Setting This simulation generates a small study population of n = 60 individuals

with observations taken at m = 3 time points. It will simulate a multilevel study,

where the fixed effects are selected at the individual level and the random effects

are selected from group level predictors. It will also simulate a longitudinal study,

with time t = (1, 2, 3).

At the individual level Xij(t), for individual i and predictor j, X1 = t and X ij

for j ∈ (2, . . . , p) are generated from N(0,1) with Corr(Xij(t), Xij′(t)) = 0.5t−t
′
. At

the group level, the predictors Zgk are nested within g = 6 groups, so all members

of group g will have the same set of responses Zgk(t). Zgk(t) is generated from

N(0, 1) with Corr(Zgk(t), Zgk(t
′)) = 0.8t−t

′
. Random effects b are generated from

MVN(0, σ2R), where σ = 0.8 and R is equation 4.3 above. The random effects have

a subject-specific intercept bi0(t) and predictor-associated bigk, for k ∈ {1, . . . , q}.

There are p = 10 predictors for fixed and q = 5 predictors for random effects to

choose from, with four true fixed effects and two true random effects. The true
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model is given by:

yig(t) = 1 + βXij(t) + bi0(t) + bigkZgk(t)

= [1 + 3x1(t) + 1.5xi2(t) + 2xi5(t) + 2xi10(t)] + [bi0(t) + big1zg1(t) + big5zg5(t)]

Results For results from multilevel longitudinal designs, Simulation 7 results can

be found in Tables 14 and 15. All methods again perform well in the identification

of fixed effects, selecting true fixed effects 100 percent of the time. Methods 2 and

3 overestimate β1, the coefficient for the time variable. Method 1 performs the

best at selecting random effects. Method 2 selects one of the true random effects

often while eliminating the other often. Both are selected more often than the noise

random effects, however. Method 3 again eliminates random effects from the model

the most. Method 3’s models are on average less than the true model size. Again,

Method 1 performs the best overall.

4.8 Summary of Simulation Studies

Overall, Method 1 was the most effective across data sets of different structures

and sizes. It tends to underestimate the true parameter values of fixed and random

effects, but this can be expected from penalized optimization problems. This can be

remedied through re-estimating the selected model without penalization. Method

3 performed very well in the selection of fixed effects in all settings, but could not

perform selection of random effects well for large data sets. Method 2 performed the

worst. While able to select fixed effects accurately, it performed poorly for random
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effects in nested settings. It was also unable to complete any analysis for large data

sets.
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Chapter 5

Real Data Analysis

5.1 Data Description and Model Formuation

The data used in this analysis will include only the 2006 and 2009 time points

of the TAAG 2 Maryland data set. The outcome variable of interest is the average

minutes of MVPA per day in the adolescent girls at each time point. In total, there

were 66 variables of interest for 551 subjects at two time points. A reference table

of the variables can be found in Table 18.

Data was collected at the individual, social, school, and neighborhood levels.

Examples of predictors at the individual level include BMI, percent body fat, self

esteem measures, enjoyment of physical activity, and depression, among others. At

the social level, predictors include measures of peer and family support, such as

amount of encouragement received from members in the household or time spent

home alone. At the school level, variables include policies for items such as physical

education and transportation, as well as metrics regarding the schools’ performance

academically. At the neighborhood level, variables include proximity to their school,

parks, and physical activity facilities as well as measures of safety in the neighbor-

hood (Young et al. 2013).

Because the variable selection methods require that no data is missing, it is

required that the subjects have measures at both time points. Those who were not
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present at both time points were removed from the set. Of the remaining data, miss-

ing data is imputed using the Sequential Regression Imputation Method (Raghu-

nathan et al. 2001) through IVEware (Raghunathan et al. 2002) where possible.

It is not possible to impute factors at the neighborhood level that used GIS data,

so most neighborhood level variables were not included in the selection procedures.

Questions regarding the subjects’ perceptions of their neighborhood, however, are

included.

For the ith girl, the fixed effects variables Xij to be considered will be from

the individual, social, and neighborhood levels, where j ∈ {1 . . . p}. Time will also

be included for longitudinal consideration in the model. The predictors associated

with the random effects will be used to generalize the variance components of the

model. For girls in school g (1 ≤ g ≤ 6), the random effects will be selected from the

school-level variables Zgk, where k ∈ {1 . . . q}. For the school-level variables, only

the data from the 8th grade middle school time point will be considered. Therefore,

these predictors are not time-dependent.

For the outcome yig(t), or average daily MVPA at time t ∈ (0, 1) for girl i in

school g, the LME model is represented by

yig(t) = β0 + θt+ βXi + bi0 + bg0 + biZg + εig,

where β0 is the fixed effects intercept, θ is the parameter associated with time, bi

are the individual-specific random effects with intercept bi0, and bg0 is the school-

specific random intercept. Individual-specific random effects bi are distributed to
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N(0, σ2Σi). School-specific random intercept bg0 is distributed to N(0, σ2Σg). The

error term is distributed ε ∼ N(0, 1).

5.2 Results of Real Data Analysis

Method 1 and Method 3 were able to complete analysis, while Method 2 was

not able to due to incomplete rank of the Z matrix. The results of Methods 1 and

3 can be found in Tables 16 and 17, with, for comparison, results of selected fixed

and random effects from the individual time points analyzed by Young et al. (2013).

For Method 3, the fixed effects X were scaled so each column had a norm of
√
n.

Following this, the method selected 40 fixed effects and 1 random effect. Only 6 fixed

effects were eliminated from the model, while 18 random effects were eliminated. In

the simulations, the random effects model sizes were generally smaller than the true

model size. Therefore, it is likely true random effects were eliminated from this

model.

Method 1 was more successful at creating a more parsimonious model. First,

the data was standardized such that X and Z are scaled that have zero mean and

unit Euclidean norm. Of the original 47 fixed effects and 19 random effects, Method

1 selected three fixed effects and two random effects. The fixed effects selected were

(1) self-management strategies (MSQBOD F), (2) perceived barriers (MSQBOD I),

and (3) support from friends (MSQBOD OB). Because of the tendency of Method

1 to underestimate the parameter values, the selected model was updated to a

non-penalized fitted LME model using the lme4 package in R, with corresponding
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p-values for the fixed effects. Although not selected, time was included in the re-

estimated model to determine the longitudinal effects of time on MVPA.

After re-estimation, the results suggest that there is a positive association be-

tween self-management strategies and friend support with MVPA (βMSQBOD F =

0.12 and βMSQBOD OB = 0.43). There was also a negative association between per-

ceived barriers and MVPA (βMSQBOD F = −0.21). Perceived barriers (p =< .001)

and friend support (p < .001) were both highly significant, and self-management

strategies was significant at the α = 0.05 significance level (p = .05). There was

negative, but nonsignificant, effect of time on MVPA (βtime = −0.52, p = .35).

All three fixed effects were selected in the previous study, and the results of per-

ceived barriers and friend support show the same direction of association. Based

on the results, it would be suggested to offer programs or interventions for improv-

ing self-management strategies, for reducing barriers to physical activity, and for

encouraging peers to give each other support in participating in physical activities.

One random effect was selected out of the 18 original variables. The random ef-

fect selected was PPIC19, indicating whether the schools offered interscholastic and

intramural physical activity programs. This was selected for the 2009 11th grade

time point in Young et al. (2013), but not in the 2006 8th grade model. Following

re-estimation, the results from this analysis suggest that there is substantial varia-

tion in MVPA from girl to girl associated with whether their middle school offered

interscholastic or intramural physical activity programs programs (σ̂ = 6.68).
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Chapter 6

Conclusion

This thesis has presented three new methods for variable selection in LME

models. The method proposed by Bondell et al. (2010) was one of the first to simul-

taneously select fixed and random effects in LME models. While it can effectively

select fixed effects, it performs less accurately in selecting random effects when the

data becomes nested. Further, it cannot perform analysis when the data is time in-

dependent, as was the case of the random effects in the TAAG data. Also, the EM

algorithm that Method 2 uses is an inefficient way to solve optimization problems.

As data sets get larger through increases in sample size or number of predictors,

the slow rate of convergence of the EM algorithm becomes inefficient and even im-

plausible with limited computing resources. An option for high-dimensional data,

where N ≤ p, would be to reduce the number of fixed effect parameters using pre-

vious methods, such as the lasso, while ignoring the random effects. Following this,

the method could be applied to the random effects and the selected fixed effects.

However, due to its slow rate of convergence, this method and its use of the EM

algorithm would not be able ideal for use on high-dimensional data,

Method 3, proposed by Fan and Li (2012) can accurately and quickly select

fixed effects in LME models. In simulations it performed excellently in not only

selecting true predictors, but it is very effective at removing noise fixed effects vari-
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ables from the model as well. However, the performance with the TAAG data was

inconsistent with the sparse results displayed in the simulations. The use of the

proxy matrix requires certain conditions to be satisfied. Notably, for fixed effects

X and random effects Z, the signal and noise variables must not be highly corre-

lated. By using a proxy matrix, the correlation between variables is ignored. In

cases of highly correlated signal and noise predictors, the use of the proxy matrix

could introduce bias that can hinder the model selection oracle property. There are

potentially many correlated variables in the TAAG data set that could violate this

condition set in order to use the proxy matrix, which may have caused the poor

results. Additionally, the performance of Method 3 in selecting random effects can

be troublesome, as it tends to under-select true models. This can lead to models

that are missing important random effects.

For high-dimensional data, it is necessary to first reduce the number of fixed

effects parameters while ignoring the random effects through previous regularization

methods. Next the random effects can be selected using the chosen fixed effects from

the previous step. Finally, these fixed effects can be selected and re-estimated using

the selected random effects from the second step.

Based on the results of the simulations, Method 1 by Li et al. (2012) is clearly

the optimal method of the three. It selects the true model consistently while elim-

inating noise variables effectively. Additionally, it’s new algorithm for solving the

optimization problem is much more efficient than previous methods, such as the

EM algorithm. By splitting the optimization problem into two penalized quadratic

algorithms, convergence can be reached much quicker than previous methods. Ad-
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ditionally, this method can be used with high-dimensional data. All that is needed

is to use the maximum likelihood approach in equation (3.2), instead of the REML-

modified equation (3.1).

The benefits of these methods can surely prove invaluable to researchers. This

is especially true in the field of public health, where longitudinal data is often used

and is vital for understanding temporal trends of health outcomes. The temporal

trends can provide a deeper understanding of biological, social, or environmental

processes that can lead to progress in the discovery and improvement of health risks.

With the methods introduced in this thesis, it is possible to efficiently and select

important fixed and random effects from large, complex sets of predictors. This can

aid and advance the field of public health data greatly in the future, especially as

technology and data collection methods improve.
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Table 1: Example of Model Selection Using Lasso

Variable True Value Least Squares Ridge Lasso
Intercept 1 1.04 0.96 0.90

X1 0.5 0.69 0.58 0.52
X2 0 0.13 0.06 0.00
X3 1.5 1.44 1.36 1.26
X4 0.5 0.39 0.43 0.41
X5 0 0.11 0.04 0.00
X6 0 -0.16 -0.003 0.00
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Table 2: Simulation 1 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.37 0.32 100.00 0.53 0.42
2 100.00 0.89 0.26 100.00 0.49 0.37
3 26.00 0.09 0.05 28.00 0.09 0.10
4 22.00 0.05 0.03 18.00 0.07 0.06
5 100.00 1.68 0.18 56.00 0.17 0.18
6 14.00 0.02 0.01 18.00 0.06 0.06
7 6.00 0.01 0.00 18.00 0.02 0.02
8 14.00 0.03 0.02 20.00 0.03 0.03
9 14.00 0.03 0.02 16.00 0.05 0.04
10 100.00 1.32 0.30 100.00 0.48 0.38

Method 2
1 100.00 3.02 0.18 100.00 0.90 0.42
2 100.00 1.50 0.21 100.00 0.90 0.46
3 62.00 0.03 0.13 56.00 0.60 0.47
4 70.00 -0.03 0.11 50.00 0.63 0.46
5 100.00 2.00 0.14 40.00 0.64 0.49
6 72.00 -0.02 0.12 36.00 0.59 0.44
7 66.00 0.01 0.10 52.00 0.58 0.44
8 66.00 -0.03 0.10 28.00 0.58 0.40
9 54.00 -0.00 0.07 42.00 0.65 0.48
10 100.00 2.02 0.19 78.00 0.87 0.60

Method 3
1 100.00 3.03 0.25 74.00 - -
2 98.00 1.52 0.30 72.00 - -
3 0.00 0.00 0.00 2.00 - -
4 0.00 0.00 0.00 10.00 - -
5 100.00 1.94 0.18 10.00 - -
6 0.00 0.00 0.00 2.00 - -
7 0.00 0.00 0.00 2.00 - -
8 0.00 0.00 0.00 4.00 - -
9 0.00 0.00 0.00 14.00 - -
10 100.00 1.99 0.21 66.00 - -
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Table 3: Simulation 1 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.96 7.88 3.98
Avg Model Size Random (True = 3) 4.74 5.8 2.56
Percent True β Included 100.00 100.00 99.33
Percent True D Included 100.00 92.67 70.67
Percent False β Included 16.00 64.58 0.00
Percent False D Included 21.75 35.00 6.29
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Table 4: Simulation 2 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.52 0.15 100.00 0.53 0.06
2 100.00 0.97 0.14 100.00 0.51 0.06
3 4.00 0.02 0.00 8.00 0.01 0.00
4 10.00 0.01 0.00 0.00 0.00 0.00
5 100.00 1.89 0.05 32.00 0.04 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 2.00 0.01 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 2.00 0.01 0.00
10 100.00 1.47 0.14 100.00 0.54 0.09
11 2.00 0.01 0.00 4.00 0.01 0.00

12-50 0.00 0.00 0.00 0.00 0.00 0.00
51-100 0.00 0.00 0.00 - - -

Method 2
1-50 * * * * * *

51-100 * * * - - -
Method 3

1 100.00 3.01 0.08 * * *
2 100.00 1.48 0.07 * * *
3 2.00 0.14 0.02 * * *
5 100.00 2.00 0.05 * * *
8 2.00 -0.17 0.02 * * *
9 4.00 0.01 0.04 * * *
10 100.00 1.99 0.07 * * *
15 2.00 -0.16 0.02 * * *
22 4.00 0.03 0.03 * * *
28 2.00 -0.13 0.02 * * *
29 2.00 0.15 0.02 * * *
36 4.00 -0.01 0.03 * * *
40 2.00 0.12 0.02 * * *
45 2.00 0.14 0.02 * * *
49 2.00 0.14 0.02 * * *
54 2.00 0.14 0.02 - - -
56 2.00 0.17 0.02 - - -
66 2.00 0.14 0.02 - - -
72 2.00 0.12 0.02 - - -
73 2.00 -0.13 0.02 - - -
75 2.00 0.13 0.02 - - -
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Table 4 – Continued

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error
76 2.00 -0.17 0.02 - - -
77 2.00 0.13 0.02 - - -
81 2.00 0.15 0.02 - - -
88 2.00 -0.13 0.02 - - -
89 2.00 -0.15 0.02 - - -
90 2.00 -0.15 0.02 - - -
98 2.00 -0.15 0.02 - - -

*Could not complete due to computational limitations
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Table 5: Simulation 2 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Method 3
Avg Model Size Fixed (True = 4) 4.22 * 4.54
Avg Model Size Random (True = 3) 3.46 * *
Percent True β Included 100.00 * 100.00
Percent True D Included 100.00 * *
Percent False β Included 0.229 * 0.563
Percent False D Included 0.469 * *

*Could not complete due to computational limitations
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Table 6: Simulation 3 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.52 0.18 90.00 0.33 0.30
2 100.00 1.03 0.15 46.00 0.20 0.20
3 32.00 0.00 0.00 54.00 0.19 0.22
4 36.00 0.00 0.01 36.00 0.18 0.17
5 100.00 1.36 0.16 86.00 0.35 0.30
6 4.00 0.00 0.00 - - -
7 4.00 0.00 0.00 - - -
8 2.00 0.00 0.00 - - -
9 14.00 0.00 0.00 - - -
10 100.00 1.24 0.16 - - -

Method 2
1 100.00 3.01 0.14 94.00 0.94 0.37
2 100.00 1.45 0.18 20.00 0.71 0.33
3 24.00 -0.02 0.04 2.00 1.18 0.17
4 20.00 0.03 0.03 14.00 0.72 0.26
5 100.00 1.97 0.14 56.00 0.90 0.47
6 14.00 0.08 0.05 - - -
7 16.00 0.04 0.04 - - -
8 10.00 0.04 0.04 - - -
9 18.00 -0.00 0.06 - - -
10 100.00 1.94 0.13 - - -

Method 3
1 100.00 3.04 0.23 66.00 - -
2 100.00 1.44 0.24 18.00 - -
3 6.00 0.19 0.12 12.00 - -
4 6.00 -0.49 0.12 20.00 - -
5 100.00 2.01 0.20 76.00 - -
6 8.00 -0.01 0.15 - - -
7 2.00 0.39 0.05 - - -
8 4.00 0.03 0.10 - - -
9 4.00 0.39 0.08 - - -
10 100.00 1.95 0.16 - - -
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Table 7: Simulation 3 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.92 5.02 4.30
Avg Model Size Random (True = 2) 2.44 1.86 1.26
Percent True β Included 100.00 100.00 100.00
Percent True D Included 83.00 75.00 71.00
Percent False β Included 15.33 17.00 5.00
Percent False D Included 26.00 18.00 25.00
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Table 8: Simulation 4 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.93 0.03 100.00 0.69 0.13
2 100.00 1.44 0.03 2.00 0.04 0.00
3 12.00 0.00 0.00 8.00 0.01 0.00
4 4.00 0.00 0.00 8.00 0.02 0.00
5 100.00 1.91 0.03 100.00 0.63 0.00
6 0.00 0.00 0.00 10.00 0.02 0.10
7 0.00 0.00 0.00 4.00 0.02 0.00
8 4.00 0.01 0.01 4.00 0.02 0.00
9 10.00 0.00 0.00 2.00 0.03 0.00
10 100.00 1.89 0.03 12.00 0.01 0.00
11 4.00 0.00 0.00 - - -

12-50 0.00 0.00 0.00 - - -
Method 2

1-10 * * * * * *
11-50 * * * - - -

Method 3
1 100.00 3.00 0.05 * * *
2 100.00 1.50 0.05 * * *
3 0.00 0.00 0.00 * * *
4 0.00 0.00 0.00 * * *
5 100.00 2.00 0.05 * * *
6 0.00 0.00 0.00 * * *
7 0.00 0.00 0.00 * * *
8 0.00 0.00 0.00 * * *
9 0.00 0.00 0.00 * * *
10 100.00 2.00 0.04 * * *

11-50 0.00 0.00 0.00 - - -
* Could not complete due to computational limitations
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Table 9: Simulation 4 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.34 * 4.00
Avg Model Size Random (True = 2) 2.50 * *
Percent True β Included 100.00 * 100.00
Percent True D Included 100.00 * *
Percent False β Included 3.09 * 0.00
Percent False D Included 5.55 * *

*Could not complete due to computational limitations
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Table 10: Simulation 5 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.46 0.19 78.00 0.41 0.21
2 100.00 1.04 0.21 36.00 0.23 0.15
3 34.00 0.01 0.01 36.00 0.25 0.16
4 42.00 0.01 0.01 32.00 0.24 0.14
5 100.00 1.31 0.15 60.00 0.32 0.19
6 12.00 0.00 0.00 - - -
7 2.00 0.00 0.00 - - -
8 0.00 0.00 0.00 - - -
9 6.00 0.00 0.00 - - -
10 100.00 1.21 0.15 - - -

Method 2
1 100.00 3.00 0.12 94.00 0.91 0.59
2 100.00 1.47 0.16 50.00 0.71 0.48
3 44.00 0.01 0.07 44.00 0.81 0.48
4 42.00 0.03 0.07 26.00 0.73 0.36
5 100.00 1.99 0.10 42.00 0.79 0.42
6 32.00 0.04 0.06 - - -
7 38.00 -0.00 0.07 - - -
8 48.00 0.00 0.08 - - -
9 28.00 -0.02 0.05 - - -
10 100.00 1.98 0.10 - - -

Method 3
1 100.00 2.97 0.17 50.00 - -
2 100.00 1.50 0.18 16.00 - -
3 2.00 0.41 0.06 20.00 - -
4 0.00 0.00 0.00 16.00 - -
5 100.00 2.00 0.14 52.00 - -
6 2.00 0.39 0.06 - - -
7 0.00 0.00 0.00 - - -
8 2.00 -0.39 0.06 - - -
9 0.00 0.00 0.00 - - -
10 100.00 1.99 0.13 - - -
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Table 11: Simulation 5 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.96 6.32 4.06
Avg Model Size Random (True = 2) 2.38 2.56 1.04
Percent True β Included 100.00 100.00 100.00
Percent True D Included 69.00 68.00 51.00
Percent False β Included 16.00 38.67 1.00
Percent False D Included 34.67 40.00 17.33
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Table 12: Simulation 6 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.77 0.04 90.00 0.45 0.32
2 100.00 1.30 0.04 24.00 0.12 0.08
3 0.00 0.00 0.00 12.00 0.20 0.12
4 0.00 0.00 0.00 14.00 0.12 0.06
5 100.00 1.69 0.05 88.00 0.48 0.34
6 0.00 0.00 0.00 12.00 0.18 0.13
7 0.00 0.00 0.00 6.00 0.13 0.05
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 100.00 1.66 0.05 0.00 0.00 0.00
12 0.00 0.00 0.00 2.00 0.17 0.04
14 0.00 0.00 0.00 2.00 0.13 0.04
15 0.00 0.00 0.00 2.00 0.10 0.04
19 0.00 0.00 0.00 6.00 0.23 0.13
20 0.00 0.00 0.00 4.00 0.12 0.05

21-50 0.00 0.00 0.00 - - -
Method 2

1-20 * * * * * *
21-50 * * * - - -

Method 3
1 100.00 3.01 0.05 * * *
2 100.00 1.49 0.04 * * *
3 0.00 0.00 0.00 * * *
4 0.00 0.00 0.00 * * *
5 100.00 1.99 0.04 * * *
6 0.00 0.00 0.00 * * *
7 0.00 0.00 0.00 * * *
8 0.00 0.00 0.00 * * *
9 0.00 0.00 0.00 * * *
10 100.00 2.01 0.04 * * *

11-20 0.00 0.00 0.00 * * *
21-50 0.00 0.00 0.00 - - -

*Could not complete due to computational limitations
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Table 13: Simulation 6 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.00 * 4.00
Avg Model Size Random (True = 2) 2.60 * *
Percent True β Included 100.00 * 100.00
Percent True D Included 89.00 * *
Percent False β Included 0.00 * 0.00
Percent False D Included 4.67 * *

*Could not complete due to computational limitations

57



Table 14: Simulation 7 Results - Parameter Estimates

Fixed Effects Random Effects

Covariate β̂% β̂ β̂ Error σ̂% σ̂ σ̂ Error

Method 1
1 100.00 2.70 0.14 86.00 0.15 0.14
2 100.00 1.24 0.13 52.00 0.03 0.04
3 18.00 0.08 0.05 34.00 0.02 0.01
4 24.00 0.06 0.04 42.00 0.03 0.03
5 100.00 1.76 0.12 82.00 0.19 0.17
6 10.00 0.05 0.02 - - -
7 2.00 0.15 0.02 - - -
8 10.00 0.05 0.02 - - -
9 10.00 0.05 0.02 - - -
10 100.00 1.72 0.10 - - -

Method 2
1 100.00 3.39 0.06 84.00 0.86 0.42
2 100.00 1.42 0.17 20.00 0.69 0.35
3 18.00 0.02 0.05 6.00 0.58 0.15
4 14.00 0.03 0.04 10.00 0.75 0.24
5 100.00 1.96 0.11 42.00 0.89 0.48
6 14.00 0.02 0.04 - - -
7 16.00 -0.02 0.05 - - -
8 18.00 0.06 0.04 - - -
9 18.00 0.00 0.03 - - -
10 100.00 1.94 0.14 - - -

Method 3
1 100.00 3.44 0.10 64.00 - -
2 100.00 1.49 0.19 16.00 - -
3 8.00 0.21 0.14 14.00 - -
4 2.00 -0.59 0.08 14.00 - -
5 100.00 2.03 0.15 56.00 - -
6 2.00 0.78 0.11 - - -
7 2.00 -0.59 0.08 - - -
8 0.00 0.00 0.00 - - -
9 0.00 0.00 0.00 - - -
10 100.00 2.02 0.16 - - -
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Table 15: Simulation 7 Results - Summary

Method 1 Method 2 Method 3
Double Joint Independent
Penalty Penalty Selection

Avg Model Size Fixed (True = 4) 4.74 * 4.00
Avg Model Size Random (True = 2) 2.96 * 1.60
Percent True β Included 100.00 * 100.00
Percent True D Included 84.00 * 60.00
Percent False β Included 12.33 * 0.00
Percent False D Included 42.67 * 14.67
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Table 16: TAAG 2 Data - Fixed Effects

Young et al. (2013) Results

Method 1
Method 1 Re-estimate Method 3 8th Grade 11th grade

β̂ β̂ (p-value) β̂ β̂ (p-value) β̂ (p-value)

time - -0.52(.35)* 1.01 - -
COMBPAREDUC - - -0.23 - -
MSQBA5A - - 0.71 - -
MSQBA5B - - -1.22 - -
MSQBA7 - - 0.43 - -
MSQBC1 - - -0.78 - -
MSQBC2 - - - - -
MSQBC3 - - -0.32 - -
MSQBM1 - - -0.19 0.39(.27) -0.15(.72)
MSQBM2 - - -0.45 -0.10(.76) -1.40(<.001)
MSQBM3 - - -0.23 -0.03(.86) -0.04(.86)
MSQBM4 - - - 0.78(.05) 0.80(.08)
MSQBM5 - - 0.58 - -
MSQBM6 - - 0.21 - -
MSQBM7 - - -0.74 - -
MSQBM8 - - 0.74 - -
MSQBM9 - - -0.14 - -
MSQBM10 - - -0.77 - -
MSQBR1 - - 1.51 - -
MSQBR2 - - -0.43 - -
r1 - - -1.15 1.15(.36) 0.31(.83)
r2 - - 1.18 2.25(.12) -0.73(.68)
r3 - - -0.30 0.02(.99) -0.83(.66)
BMI - - -2.47
PFAT3 - - 1.71 -0.09(.08) -0.06(.43)
MSQBA DAD MOM - - - - -
MSQBOD B - - 0.51 0.12(.04) 0.05(.43)
MSQBOD DA - - 0.89 - -
MSQBOD DB - - 0.31 0.31(.20) 0.00(.99)
MSQBOD E - - 0.25 - -
MSQBOD F 0.05 0.12(.05) - -0.04(.68) 0.01(.95)
MSQBOD G - - - 0.09(.34) 0.26(.03)
MSQBOD H - - 1.08 -0.00(0.92) -0.31(0.01)
MSQBOD I -0.09 -0.21(< .001) -0.84 -0.20(.04) −0.37(< .001)
MSQBOD˙JA - - -0.15 - -
MSQBOD JB - - 0.17 0.00(0.92) -0.02(0.06)
MSQBOD K - - 0.24 0.57(.14) -0.00(.99)
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Table 14 – Continued

Young et al. (2013) Results

Method 1
Method 1 Re-estimate Method 3 8th Grade 11th grade

β̂ β̂ (p-value) β̂ β̂ (p-value) β̂ (p-value)

MSQBOD LA - - -0.26 -0.19(.35) -0.11(0.65)
MSQBOD LB - - -0.75 -0.13(.39) 0.38(.04)
MSQBOD LC - - -0.52 - -
MSQBOD N - - -0.43 - -
MSQBOD OA - - -0.58 - -
MSQBOD OB 0.22 0.43(< .001) 1.31 0.32(.08) 0.28(.22)
MSQBOD OC - - -0.39 -0.08(.45) 0.07(.61)
MSQB80P - - - 0.01(.80) 0.01(.89)
MSQBQ1 - - 0.51 - -
MSQBR34SUM - - -0.52 - -

* Not selected but included in re-estimated model
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Table 17: TAAG 2 Data - Random Effects

Young et al. (2013) Results

Method 1
Method 1 Re-estimate Method 3 8th Grade

σ̂ σ̂ Selected β̂ (p-value) β̂ (p-value)

Individual Level
Intercept 3.97 7.61 - - -
MSMA4 - - - -1.45(< .001) 0.11(.53)
MSMA5A - - - -0.85(.20) 0.32(.28)
MSMA5B - - Yes - -
PPIC1C2 - - - -0.41(.22) -
PPIC18A - - - -5.63(.19)
PPIC19 1.47 6.68 - - 7.35(.01)
PPIC21 - - - 16.76(< .001) 3.08(.15)
PPIC22 - - - -2.93(0.21) -
PPIC34 - - - -2.93(0.21) 5.79(.07)

School Level
Intercept 0.09 0.93 - - -
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Table 18: Reference Table for Fixed and Random Effects
Predictors

Variable Description

Fixed Effects
time time = (0,1) for 8th grade and 11th grade respectively
COMBPAREDUC Parents’ education combined
MSQBA5A Employment status: father
MSQBA5B Employment status: mother
MSQBA7 Receive free or low-cost lunches at school
MSQBC1 Difficulty getting home from school-based activity
MSQBC2 Difficulty getting to community-based activity
MSQBC3 Difficulty getting home from community-based activity
MSQBM1 Perceived places to go within walking distance of home
MSQBM2 Perceived sidewalks in neighborhood
MSQBM3 Perceived bike/walking trails in neighborhood
MSQBM4 Perceived safety to walk/jog in neighborhood
MSQBM5 Perceived walkers/bikers easily seen in neighborhood
MSQBM6 Perceived traffic in neighborhood
MSQBM7 Perceived frame in neighborhood
MSQBM8 Perceived seeing kids outside playing in neighborhood
MSQBM9 Perceived interesting things to look at in neighborhood
MSQBM10 Perceived well-lit neighborhood
MSQBR1 Grade began current middle school
MSQBR2 Currently taking PE
r1 Race: white
r2 Race: black
r3 Race: hispanic
BMI BMI
BMI85 BMI above 85th percentile
BMI95 BMI above 95th percentile
PFAT3 Percent Fat
MSQBA DAD MOM Number of parents living with
MSQBOD B Average time alone per week
MSQBOD DA Sports team participation at school
MSQBOD DB Sports team participation outside school
MSQBOD E Enjoyment of PA classes/lessons
MSQBOD F Self-management strategies
MSQBOD G Self-efficacy
MSQBOD H Enjoyment of PA
MSQBOD I Perceived barriers
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Table 16 – Continued
Variable Description
MSQBOD JA Outcome expectancy
MSQBOD JB Outcome expectancy value
MSQBOD K Enjoyment of PE
MSQBOD LA Positive PA school climate for teachers
MSQBOD LB Positive PA school climate for boys
MSQBOD LC PA norms
MSQBOD N Access to recreational facilities
MSQBOD OA Provides social support
MSQBOD OB Friend support
MSQBOD OC Family support
MSQB80p Sum score on depressive scale
MSQBQ1 Ever tried cigarettes
MSQBR34 SUM Sum of PE class taking

Random Effects (School Level)
MSMA3E Percent white
MSMA4 Percent free/reduced lunch
MSMA5A Percent passing state math test
MSMA5B Percent passing state English/reading test
PDHA1 PE class size
PPIC1C2 Required weeks of PE per year
PPIC2 Percent students not meeting requirements
PPIC17 PA school events this year
PPIC19 Interscholastic and Intramural PA programs
PPIC21 School ground changes in past year
PPIC22 Policy changes that encourage PA
PPIC24 Budget change positive for PA
PPIC30 Percent bike/walk to school
PPIC34 Unstructured free play before school
PPIC35 Unstructured free play during school
PPIC36 Unstructured free play after school
PSB Numprog Number of programs in school
MVPA MVPA at school
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