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Abstract

Batch processes are usually complex and
highlv nonlinear systems. Modeling error can be
the cause of bad performance when optimal in-
put profiles computed for a particular model are
applied to the actual plant. The approach fol-
lowed in this paper uses the available model and
actual plant measurements to modify the oper-
ation of the next batch, without requiring the
remodeling the process. The effect of model er-
ror on the convergence of the iterative batch to
batch input profile determination is investigated.
The method is applied through computer simu-
lations to the determination of the optimal feed-
rate profile for a cell mass production process.
A model parameter update scheme is also pro-
posed, based on the convergence analysis. This
is applied to the determination of the optimal
temperature profile of bulk polymerization of the
optimal temperature profile of styrene.

1 Introduction

Batch processing is becoming increasingly important in
the polymerization and biochemical industries. The
modeling of such processes often involves complex re-
action mechanisms combined with empirical relations.
Model plant mismatch always exists, and it may be the
cause of bad performance when optimal input profiles
computed for a particular model of a semi-batch process
are applied to the plant.

To account for such difficulties, we examine an algo-
rithm that directly modifies the input profile u(¢) during
the course of successive batches. The procedure aims at
using information from previous batches to improve the
operation of the next without requiring the usually very
complex task of remodeling the process. An approximate

gradient of an appropriate objective function, based on
both the available model and the measurements obtained
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from the actual plant, is computed and then used to find
the next input profile, until no further improvement in
the objective function can be obtained. [n this paper, the
proposed approach is demonstrated through computer
simulations on a cell mass production process in the pres-
ence of modeling error. The effect of model uncertainty
on the convergence (from batch to batch) is also consid-
ered. A convergence analysis after each iteration may be
used to help modify the values of certain model parame-
ters, if so desired. This procedure is demonstrated on the
problem of determining the minimum-time temperatitre
profile for the batch bulk polymerization of styrene. The
methodology can be applied on any systems operated in
semi-batch mode, regardless of their nature.

2 Iterative Batch-to-Batch In-
put Profile Determination

2.1 Methodology

The approach was introduced in {7] and it is based on the
analogy between the iterations during the numerical op-
timization of the appropriate cost functional (objective
function) on one hand and the successive batches dur-
ing the operation of the plant on the other. A gradient
computation after every batch is required. The gradi-
ent computation in numerical optimization involves two
integrations. The first forward integration of the nen-
linear differential equations that describe the plant, is
not carried out numerically in this approach, but rather
it is carried by the actual plant itself, its result being
the plant measurements. Note that since these measure-
ments are not used for on-line control, no instantancous
measurements are required. For example, samples of the

product can be collected during the course of the batch
and sent for analysis. The second backward integration
of the adjoint system, however, requires the use of the
process model. The result of the above procedure will be
an estimate for the gradient, defined as g{t). This §(¢) is
then used to compute the search direction that will result
in the next input profile, so that a steady improvement in
performance is accomplished from batch to batch. This
technique is shown in Table 1. Step 5 uses the steepest



Table 1: Analogy between Numerical Optimization and Plant Operation

NUMERICAL OPTIMIZATION

PLANT OPERATION

Min.y o(z(ty))
where # = f(z.u), 2(0) = 1o (model)

Ist iteration

1. Forward integration of model
u(t) = & = f{r.u), (model) — z,(¢)

2. Linearize model  f(z,u) at uy, 2,
ur(t), z1(t) — Linearization — f.(r{,u;)
wi{t}, r1(t) — Linearization — f,(x1,1;)

3. Backward integration of adjoint
system

A= —felrnu)h Aty) = Vao(xi(t))

4. Gradient
9(t) = fI(zru)A(t)

5. Line search
Search direction : s(t) = — Pg(t)
P : constraint projection matrix
ua(t) = wy(t) + as(t)

0 <a S Omaz
where a,,; is the limit imposed
by constraints.

For every a, step 1 has to be repeated,
until the line search is terminated.

ming(g) (x(ty))
where & = f(r,u), z(0) = 1y (plant)

Ist batch

1. Forward integration of plant ?‘!

u(t) = & = f(r,u), (plant) — #;(¢) '
(off-line measurement) ‘

2. Linearize model f(r,u) at u, &
w(t), 1(t) — Linearization — fu(Z;,uy)
uy(t), #(t) — Linearization — f,(&,u)

3. Backward integration of
approximate adjoint system

A= —fo(Fnu)d; Aty) = Voa(F(t))

. Estimate gradient

4
9(t) = fI(F, w)Mt)

5. Line search >
Search direction: i(t) = —Pg(¢)
P : constraint projection matrix
u(t) = uy(t) + ad(t)

0 < o < minfa., Ama)
where @pq, is the limit imposed
by constraints; and «. is a limit on
maximum adjustment of actual plant.
For every a, step 1 has to be repeated,
until the line search is terminated.

descent with constraints method. This method is known
to be rather slow close to the optimum. However, if one
starts far from the optimum, it produces fast improve-
ment. This is exactly what one needs right after a change
has moved the process far from optimal operation. Other
techniques can of course be used as well. The line search
over a terminates as soon as an improvement is obtained.
Note that to obtain the value of the objective function for
a particular «, the corresponding input profile has to be
implemented to the actual plant. It should be noted that
because of this line search. one may occasionally have a
temporary increase in the performance index, although
3(t) may be a valid descent direction for the actual plant.

2.2 A Fed-Batch Fermentation Exam-
ple

We consider the cell mass production problem described

in {4,6]. The original problem is singular, but a change
of the optimization variable from flowrate to volume and
discretization of (5) below results in a non-singular prob-

lem [5]:

min J = —-XV(t;) {1
d
— j— a7 .
Z(XV) = uXV (2)
—d—( Sp—-S)V)y=0XV ;
(O =58)V) =0, (3)
Vm{ﬂ S Vv .<_ Vmaz: (4)
dv

<~ < F, 5
) 0 — dt —_— Fmaz: ( )

#(S) = {0.5045(1 — 0.02045)]/(0.00849 + S + 0.0406.5%]
(6)

Y(S) = [0.383(1 — 0.02045)]/[1 + 0.296S5 — 0.005015%)
(7)



o(8) = pu(S)/Y(S) (8)

where N and S are cell mass and substrate concentration:
F and \ are flowrate and volume respectively.

The optimal volume profile V'(¢) is shown in Fig. 3
(dotted line). where (X1V7)g = 1g.(SV)y = 5g.(V)o
1L Uy = 5L Four = AL/R.Sp = 10y/L.t;
A (V) = —~16.304. the subscripts 0 and F denoting

initial conditions and feed stream respectively. The above

i

il

caze 18 defined as nominal for the following simulations.

We emulate model-plant mismatch by introducing er-
ror in (7) , which describes the relationship between the
yield coeflicient and the substrate concentration. Figure
I shows the experimental data given in the literature {1]
and a plot of (7). To emulate the model error, we will
assume that Y (8) for the true plant is given by the dot-
ted line in Fig 1. This corresponds to introducing an
uncertain parameter k in the vield expression:

g

Y(S) = [0.383(1 — 0.02045)}/[1 + 0.296kS — 0.005015%)
9)
3

—

Fig. 1 shows vield curves of (9) with k=1 (model), k
(plant).

i
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Figure 1: Yield: solid line: k=1; dotted line: k=3 ;

squares: experimental points.

The steepest descent with constraints method is used,
as described in Table 1. An additional limit on the max-
imum adjustment from batch to batch for the control

variable is introduced to avoid radical changes that may
be unacceptable in an industrial environment. In this
case. we impose a limit of 0.1F,,,, on the change of the
flowrate F', which corresponds to a..

Figure 2 demonstrates that the proposed algorithm
can provide a significant improvement in the performance
index (computed for the actual plant) even if a mismatch
between the model (k=1) and the plant (k=3) exists. For

comparision, the initial volume profile ( J = —13.715 )
computed from the model, the volume profile V(¢) ob-
tained through our procedure (J = —15.678) and the

true optimal profile for the plant (if the true plant equa-
tions were known; J = —~15.689 ) are shown in Fig. 3.
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Figure 2: Plant operation under model-plant mismatch
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Figure 3: Volume Profiles; solid line: volumne profile after
70 batches; dotted line: initial volume profile; dash-dot
line (coincides with solid): true optimal volume profile
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Figure 4: Plant operation under initial conditions error



The effect of error in the assumed initial conditions
is similar to that of model error, since only an approxi-
mation of the gradient of the true plant is available. The
plant operation under initial conditions error (assumed:
No = 1.8 = 5: truer Xy = 1,55 = 1) with initial 17(¢)
the optimal for the nominal case is shown in Fig. 1.

Finally, Fig. 5 describes the plant operation in the
presence of both model-plant mismatch, (model k=1,
plant k=3). initial condition error (assumed: Xy =
oSy = 55 truer Vg = 1.5 = 1) and [0% measurement
error {or estimation error) in the state variables .\" and

S.
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Figure 5: Plant operation under model-plant mismatch,
initial condition error and 10% measurement error in the
state variables X and S.

3 Convergence Analysis and
Model Modification

3.1 Robust Convergence Condition

This section attempts to quantify the effect of model un-
certainty on the convergence (from batch to batch) of
the proposed procedure. Since the computation of the
search direction is based on an approximate gradient, if
the model error is too large, it may not be a descent
direction. In order to have a descent property, we need:

< —gpane(t),3(8) > >0 (10)

where gpigni(t) is the gradient for the true plant equations
and

< hw. B0 > [T R0A0 &

Since gpiane(t) is unknown, a robustness condition for con-
vergence can be obtained by requiring that the above
condition be satisfied for the infimum over all possible
plant parameter values.

Consider the optimal control problem defined in the
left column of Table 1. Let A be a vector of uncertain
parameters, for which lower and upper limits are known.

Different values of A result in different f. and fy, re.,
fo = felr,u; KY and f, = fulz,ui K). (fo, fu are the
partial derivatives of f w.r.t. =, u.) When the procedure
of the left column of Table 1 is used for different A7, we
will obtain different gradients that depend on At g(#) =
g(t;.]). The gradient for the true plant is the one that
corresponds to the true value of A

dptant (1) = g6 Kirue) (12)

When, during the iterative batch-to-batch determina-

tion of the input profile, a new search direction has been

determined (according to the right column of Table 1),
then (10) and (12) can be combined to yield:

iR'f < —g(t; K),3(t) > >0 (13)

Satisfaction of (13) guarantees t.hatyﬁ(t) is a descent
direction for any possible plant. This condition however
may be difficult to satisfy because of its inherent conser-
vativeness. This is due to the fact that $(¢) corresponds
1o the “true” value of I, whose effect on §(¢) comes from
step 1 of the procedure (right column of Table 1). Hence
it may very well be a descent direction for that particular
Kipye, if < —g(t; Kirue), 5(¢) > is positive, while (13) is
not satisfied.

We suggest that 3(t) be implemented even if (13) is
not satisfied. If the line search results in an improvement, -~
this means that (10) is satisfied for the true plant. This
information can be used to improve the model by modi-
fying the value for I{ and narrowing down the region of
possible values. For one parameter this would work as
follows. Let the possible values of A lie in [Ny, Rpigi].
and (13) not be satisfied for all of them, but only for the
smaller set = [wy,ws] C [Kiow, Ahign]. Since §(¢) has
proved from the actual plant data to be a descent direc-
tion, K. must lie in . This interval can now become
the new (and smaller) [Ny, Kpgn]- If the value of &
used in the model is not in 2, then it is modificd and set
to either w; or wq, whichever is closest to the previous
value. This technique is illustrated with an example in
the following section. For more than one uncertain pa-
rameters, the method is conceptually the same, but the
construction of the set Q2 is a more challenging task.

3.2 A Bulk Polymerization Example

The thermally initiated bulk polymerization of styrene
was modeled by Kwon and Evans [2] through reaction
mechanism analysis and laboratory tests. The control
objective is to find the optimal temperature profile that
minimizes the batch time required to reach the specified
conversion (80%) and polymer properties (final specific
number average chain length (NAC L) and weight aver-
age chain length (WACL) equal to 1). A coordinate
transformation changes the problem into a fixed end-
time optimization with the conversion acting as the new
“time” coordinate [3]. The methodology described in Ta-
ble 1 can then be applied.



We emulate model-plant mismatch by introducing er-
ror in the parameters of the empirical relation between
the properties of newly formed increment of polymer and
temperature:

2 = Aperp(B/T) (1-1)

where 0 is the W ACL formed at the current absolute
temperature I'. This is an empirical relationship and the
coeflicients A,. and B are obtained experimentally [2.3].
The procedure of section 2.1 was applied to this system
for a number of different modeling errors in [3]. The case
for 30% error in A, is shown in Fig. 6 (dotted line).
(Clearly this was sufficient to cause a very large error in
the optimal value of the reaction time. The methodology
led to the true optimum in about 5 batches without mod-
ifving the inaccurate model. More details can be found in
[8]. Note that the maximum adjustment (A7), (which
determines a, in Table 1) is selected 5°C. and varies with
the difference AJ in the performance index J between the
end results of the last two line searches (which are carried
out as described in the right column of Table 1):

50C if |AJ] > 50

(AT )ar = { 2°C if 1 € {AJ| <50
190 i jAJ| < 1

In this section we examine the outcome of applying
the analysis of section 3.1 on this example. The results
are shown in Table 2 and Fig. 6. We consider two cases.
In both the error lies in A,. In the first case the ro-
bust convergence condition is correctly computed over
possible values of 4, and its value in the model is appro-
priately modified. when needed. In the second case, we
assume that the uncertain parameter is B, and proceed
with modifying its value, although the error is in A,,.

Let us consider the two cases carefully. In the first,
A = R, and the initial {Njpy, Apiga] = [0.050,2.500] with
Kene = 1.5. Everytime a line search over a new search di-
rection 3(¢) is completed, the set Q2 is constructed and the
value of /', in the model is appropriately modified, if not
already in . Note that the numbers in the first column
of Table 2 correspond to the number of line searches made
and not to the number of batches, since each line search,
as mentioned in Table 1, usually requires more than one
batch. The coordinate in Fig. 6 though, corresponds
to number of batches. As it can be seen from Table 2,
K, eventually converges towards the true value 1.50. At
the same time, Fig. 6 shows a small improvement in the
speed of convergence towards the true optimal operating
policy.

In the second case we have A = A, and start with
[Kiows Ahign) = [0.900, 1.200]. In this case, however, there
is no wav to define Ay, since we incorrectly assume the
error is in B. instead of A,. This is a situation that one
would expect to occur in practice often. This case is used
as a test of “robustness” of the method to this kind of
incorrect assumptions. Table 2 shows that the value of
R’ in the model is modified. At the same time, Fig. 6
shows that this creates no problems, and that it actually
speeds up the convergence to the true optimal opearting

’

Table 2: Plant: A = 1.504,, B =8
Modify A, Modify B

A =h,A, B=B [|A,=A, B=KD
K, € [0.050, 2.500] Ky € [0.900, 1.200]

No. o K QA

1 1.000 1.000
2 [1.109, 2.500] 1.109 | [1.010, 1.200] 1.010
3 [1.229, 2.500] 1.229 1 [1.019, L.200] 1.019

]
|
[1.268, 2.500] 1.368 || {1.028, 1.200] 1.028
(1.368, 1.516] 1.368 | [1.028, 1.U38] 1.028
6 | [1.368, 1.516] 1.368 || [1.028, 1.038] 1.028
(1.483, 1.516] 1.483 || [1.028, 1.038] 1.028
[ [ ]
[ }
( |

A

~3

1.483, 1.511] 1.483
[1.483, 1.511] 1.483
10 {1.492, 1.511] 1.492

1.028, 1.038] 1.028
1.028, 1.038} 1.028
1.028, 1.038] 1.028
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Figure 6: 50% error in A,. Dotted line: no model moili-
fication; dash-dot: modify A,; solid: modify £.

policy as much as in the first case.

4 Conclusion

A method that directly modifies the input trajectory for
a semi-batch process from batch to batch, in order to cor-
rect for mode] error, has been successfully tested through
computer simulations on a biochemical cell mass produc-
tion system. It was shown that although the model is
never changed, eventually we obtain the input profile
that is optimal for the true plant. This is accomnplished
by combining the available model with plant measure-
ments to get an estimate of the objective function gradi-

ent which, although not accurate, is still a descent direc-
tion, thus producing an improvement in every batch. The
methodology behaves equally well in the case of error in
the initial conditions assumptions gnd in the presence of



measurement errors.

A condition was also developed that guarantees that
tHe gradient estimate is indeed a descent direction for
every possible value of the uncertain parameters of the
svstem. This condition is sufficient only, and thus con-
servative. When it is not satisfied, this fact can be used
1o narrow down the region of uncertainty and modify the
parameter values in the model. This technique was suc-
cessfully applied to simulations of a thermally initiated
bulk polymerization of styrene. Further work is needed
in order to provide a computationally efficient procedure

for the multi-parameter case.
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