TR-86-18

Indirective Random Optimal Component

Placement

by

Yeun Tsum Wong, Pecht, Falmer



Indirective Random Optimal Component Placement '

Mechanical Engineering Department

College Park, University of Maryland

Yeun Tsun Wong
Dr. Michael Pecht

Dr. Milton Palmer

Abstract

Presented is a new efficient method for the placement of components on a printed wir-
ing board (PWB). In order to obtain shortest total wire length, all nets are considered as ran-
domly connected minimum Steiner trees. A random optimal net process theory is used to
eliminate redundant comparison and an indirective optimal technique is used to avoid calcu-

lating the exact length of minimum Steiner trees in the iterative process.

Introduction

The increased demand for high density printed wiring boards (PWB)s has necessitated
the utilization of advanced computer-aided design (CAD) techniques. This is particularly evi-
dent in the design area of component placement and routing where the design time without
CAD would be on the order of years; it is presently on the order of days. Furthermore, the
introduction of CAD and the subsequent ”tuning” of PWB placement and routing algorithms
and heuristics has improved the manufacturability, reliability, testability and maintainability

of PWBs.
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The PWB design process consists of three fundamental steps: initial assignment, place-
ment and routing. Initial assignment is predominately a data management problem consisting
of entering and utilizing data such as board and component dimensions, nets, and the com-

ponents and pins in every net.

Placement consists of determining the optimal locations of components on the board
with respect to a measure typically defined with respect to the interconnections. In this dis-
cussion, we choose to minimize the total weighted wire length of the PWB components, where
all the components are assumed to be same size and rectangular. To simplify the process, all
pins of a component are assumed to be located at the geometric center of the component.

This paper will focus on the placement problem.

Routing is the final design task. It is the selection of the actual paths of the nets inter-
connecting the components. Routing is a costly process, which typically requires excessive
computer time and numerous storage calls. The routing cost is primarily dependent on PWB
complexity and component placement. An optimal placement is therefore critical to success-

ful cost-effective routing.

In this paper, a new efficient placement method based on an iterative improvement
method will be discussed. Historically, graph partitioning has been employed in iterative
improvement methods! ~ 8. The graph partitioning problem for a circuit can be expressed as:
given n elements connected by nets that connect two or more elements, partition the elements
into two subsets of size n/2 such that the sum of the weights on the nets connecting the two
subsets is minimum. A net is said to be cut if it connects elements in one subset to elements
in the other. The weighted function of a partition is the number of nets that are cut. It is
always the local measure of a sub-process. So the final result is an union of the local optimal

results of a series of sub-processes. Kernighan-Lin’s algorithm can be employed to escape

from local minima so as to obtain a minimum cut in the iterative process.



Inrgraph partitioning, the effect of the element sizes is not considered. In VLSI, this
may not be important because the number of pins pe;r element is small for most circuits. In
contrast, the number of pins per component in a PWB is much higher (often more than 64
pins on DIP components). It is thus necessary to consider the size effect in the placement pro-
cess. If all the nets are processed as minimum Steiner trees in the iterative processing, the

size effect can be considered and the process will be consistent with the routing

13,14,15 10,12,

processes which is similar to the Lee’s algorithm 13 Unfortunately, the execution
time which is required to build Steiner trees for every comparison cannot be tolerated 13 This
in turn limits the capability to incorporate other constraints, such as thermal and mechanical,

within the placement process.

In order to obtain the shortest total wire length and avoid building random minimum
Steiner trees in the placement processing, it is shown that indirective random optimal nets
can be constructed to replace the random minimum Steiner trees. Components being pro-
cessed may be partitioned only once and divided into two subsets dependent on the weighted
function, the total wire length. Using this method, an optimal result can be obtained. In
addition, because it is not necessary to collect edges in a net into clusters as it is done in the

”min-cut” method, wire congestion can be decreased.

Indirective Random Optimal Net Theory

In an indirective random optimal net process, a "nominal” structure of a Steiner tree
must be established. We call this representative structure a nominal net or a nominal tree of
its equivalent Steiner tree. This structure is designed to be easily built or re-built and its
main data is easily computed. To determine structure types which can function as a nominal
net, the following theory is established.

A net can be expressed by a variety of trees. The length of a minimum Steiner tree is a

minimum for all trees®. We defined a graph G which consists of n minimum Steiner trees as



and where C; is jth component in the ¢ th tree. We further define the nominal graph of G

as NG and the nominal tree of N; as NN;, such that

where NN; include all components in V; .

If the length of a graph (or sub-graph ) x is denoted as L, , then

Le = 3Ly,

§=1

and

Lne = 3 Lnn, -

=1

If minimum nominal nets are their equivalent minimum Steiner trees,

Ly, < Lyn, fori =1,2, ... , n
because a minimum Steiner trees is always an optimal structure with shortest wire length.
Therefore

Lo < Lye -
When Lyg is convergent to a minimum,

Lg™ < Lyg"
where LJ™" and Ly%" represent the minimum length of L; and Ly respectively.
Theory: The Indirective Convergence Theory

If nominal trees NN;,: =1, 2, ...... , n, are equivalent to minimum Steiner

trees N;, 7 = 1, 2, ...... , n,and if Lys; is a minimum, then L is a minimum.



According to the indirective convergencé theory, any net which connects all components
in a minimum Steiner tree ‘will satisfy this theory if its shortest net length is the length of the
minimum Steiner tree. Nominal trees may be constructed in many ways. If NN; is con-

sidered as a closure of IV;, in order to make N; smallest, we can adjust NN; rather than N;.

The Nominal Graph

Based on the indirective convergence theory, the following nominal structure (Fig. 1)

will satisfy the engineering requirements in a placement process:

1. Components in the same row are connected one by one from the first terminal com-
ponent to the last terminal component. If components are rectangular, the shorter edge will

be parallel to the row direction because the connection is row oriented.
2. Each row will be connected to its next row with the shortest Manhattan distance.

3. The terminal of a net is a floating node along a given terminal boundary and it is
connected with any nearest component. According to the structure of nominal nets, the

length of a nominal net with n rows occupied by a net is

n
L, = 3] (the coordinate of last terminal component

i=1
- the coordinate of first terminal component)
n-1

+ Y row distance

§=1
+ the distance between terminal boundary and its nearest component.

For a nominal net with 20 components and 6 rows, it takes an average of 8 additions

and 1 multiplication to compute the nominal net length. Using a Steiner tree, it takes more

19
then 38 additions and more then E n (20-n ) = 1330 comparison to compute the length of
n=1

the spanning tree which is related to this Steiner tree '3, Thus, the computing time on a

spanning tree related to the Steiner tree with 20 components is almost 1330 times that for a



nominal tree. This does not include the computing time spent on madifying the spanning tree

into the Steiner tree.

The Computation of the Random Optimal Net

To determine the optimal location of components on a PWB, a measure for the process-
ing must be defined and the computational rule for the measure must be derived. This is dis-

cussed in the following.

Let G (z,y) be a set of n nodes connected with m nets and

G=uU{UN;}

{=1 F=1
Before discussing the computation of the gain obtained by exchanging two nodes, the follow-
ing definitions are established.

Definition: Net-node Relation

If e EN;, then N; is e relative. If ¢ CN;, N; is not e relative.

Definition: Weight of a Net

The weight of a net is the total length of the net. The weight of the jth net is denoted
as WN7 . If there is a node ¢, such that ¢ €G and N7 is ¢ relative, then the weight of the
j th net is denoted as WN/, and as WN 7, if the net is not ¢ relative. The weight of net ¢

is Ly, here.

Definition: Weight of a Node

The weight of a node is the sum of weights of all nets passing the node. The weight of
node ¢ is denoted as W,. The weight of node ¢ is denoted as ch,d if £ nets are ¢ and d
relative, and denoted as Wc",%d if k nets are ¢ relative, but not d relative. It is noted that
WEs = Wi,.

Definition: Gain of Exchanging Nodes a and b

The gain g, of exchanging node a and node b is the difference of weights prior to

exchanging and after exchanging. It is noted that g,, == —g;, .



The Computation of the Gain in the Random Optimal Net Placement

We now let p- and ¢ be the number of the activated pins in component ¢ and com-

ponent b respectively. If

p
G, = NNfCQG,

i=1

! b
szanCG,

J=1

then
e € G, for (n—p ) nets are not a relative,

b € G, for (n—q ) nets are not b relative.
-k,

Next, suppose p' nets are both ¢ and b relative. It is noted that
p’ <p.,andp <gq.
The weight of node a and node b can be expressed as

14
W, = 3 WN}
k=1

P, P—P’
— STWNE, + 3 WN? 4

3 =1 9 =1

= Wap,b + Wap,;gb ,

and
9
Wb = E Wka

k=1
P’ ‘1’1’,

= E WNbu'a + E WNbv'%a
% =1 v =1

= W, + WiJl,.

Denoting the position of node n as S(z,,y,) in space S(z,y), and swapping ¢ and b,

»

» .
a—b ,b—a ,gives



S(za‘»y’u‘) = S(zb /3 )’

S(zb.,yb ) = 5(24,94),

’ ’
Wa‘ - Wap‘,b’ + Wap:,‘;éb' N

’ ’
J— 14 9-p
Wb:———Wba’at -+ Wb‘,%a”

g = (Wo + W) = (W, + W)

The random connection of a Steiner tree is only relative to the positions of nodes in the
tree, rather than to their identifiers. Exchanging positions of two components inside a net

will not change the weight of the net. Furthermore, since

and

then

! ! ’ !
g = (W23 = WIP,0) + (WiZe - Wi, .,
This is the computational formula of the gain in random optimal net placement. From this
computational formula, we can determine the computing time of weights in one pass
7 ’
Tpee =21[p-p ) + (¢-p )]
From T, , we note that

1. If p=q and p' —p, then T, —0. In this case, most nets are relative to both of two

exchanging nodes.
2. The greater p' is , the less the T,,, is for a given p and ¢q.

3. If conclusion 1 is extended to any pair of components, every net will connect most
components in the board. Therefore, for a given number of activated pins, the longer the
nets are, the less the process time. For example, assume there are n components in a board

and n activated pins in every component. If every net goes through each component, any



exchangé between the components can not improve the interconnections between the com-
ponents. So the proéess time should be zero in this special case. Furthermore, since the
length of the nets is also a measure of the complexity of a PWB, the more complex the PWB

is, the faster the process speed.

The Placement Algorithms

In the iterative improvement placement method, components must be partitioned into
subsets. Components may be partitioned into m subsets such that n <m <2 for a PWB with
n components. Next, all subsets are compared each other and exchanges which obtain max-
imum gain are performed. If the maximum gain is zero, the minimum total length of nets has
been obtained and the processing is terminated. For example, assume the components are par-
titioned into three sets named A, B and C and suppose A and B, B and C, and C and A are
compared and the maximum gains are ¢, , g5, Jcs Tespectively. If g, > gy, >g., and
gop >0, then the exchanges which lead to g, are performed in A and B. If g, =0, then the
processing is terminated. A global placement (n subsets) and a two-subset placement are
described in the following.

1. The Global Placement Algorithm

Suppose there are n components in a PWB, and each component is denoted as a or b.

The algorithm of the global placement is
Repeat
For a=1 to n do
For b=1 to n do
If 2 £ b then
begin

Compute p, q, p' ;



. Compute -
G = (Wl - WET )+ (Wi — Wil o)
Store the maximum G,"};
end;
If g,"™£0 then
swap a and b;

Until g,*=0.

2. The Two-subset Placement Algorithm

Utilizing the indirective random optimal net theory and avoiding local minima® in the

processing, the two-subset placement algorithm is
Partition a PWB into two subsets A and B of size n/2;
Repeat
Remove mask on all ¢ €A and b €B;
For i=1 to n/2 do
If both a and b are not masked then
begin
Compute W, and W, ;
Find ¢; and b; that maximizes
. ' ’ ) /
gap = (WFh — W,,p:f;éb' )+ (Wi ke — WP . )
Mask a; and b; ;
end;

Find k that maximizes
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k -
gainax= EGa.b’
- =1

If g, '*>0 then
excﬁange ay, ...,ap with by, ....b
Until g, *=0.
The comparison time spent for the do loop is
T, =C2l(n/2-1) + n/2-2) + .. + 2 + 1 ] =n(m-1)(n-m)/(2m)
(2<m < n/2);
T, =[(n-1) + (n-2) + -+ + 2 + 1]=n(n-1) (m =n).

The comparison time is minimum when m = 2 or m = n /2, or maximum when m = n.

The data processing system of the two-subset placement

The data processing system (Fig. 2) is composed of three systems or 10 sub-systems.
The data management system consists of a net-component-location data base, net-row-column
relation record, component-net relation record and location-component-weight relation record.

There is also a knowledge system, and a placement controller system.
In the procedure for the indirective random optimal placement, the data structures are

expressed as

1. Net-row-column relation record (nominal net record):
row_array=—array [column-index] of column-coordinate;

net_array=array [net-identifler, row-index] of row_array;
In the placement process, column coordinates of nodes in a net are stored in row_array. The
first dimension in net_array gives the net-identifier and second dimension gives the row index.

Using nt as a pointer pointing to net_array, in Fig. 4a, data in net_array will be

nt[3,1].col{0]=1, nt[3,1].col[1]=1, nt[3,1].col[2]=38;
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_nt(3,2].col[0]=4; nt[3,2].col[1]=1, nt[3,2].col[2]=5;

nt[3,2].col[0}==5, nt[3,3].col{1)=3.
If a node location on (1,1) moves to (4,2), then data in the record will be
nt(3,1].col{0]==1, nt{3,1].col[2]=3;
nt[3,2].col{0]=4, nt{3,2].col[1}=1, nt[3,2].col[2]=2, nt[3,2].col[3]=5;
nt(3,3].col[0]=5, nt[3,3].col[1]=3.
Note that row coordinate is stored in col[0]. The nominal net length may be computed

as following

3

Ly,= 3 (nt[3,n].colllast] - nt[3,n].col(1])

+ ratio X ( XQ) (nt{3,n+1].col{0] - nt[3,n].col[0])

n=1
+ nt{3,1].col{0],
where “ratio” is the ratio of the length and the width of the grid occupied by the component
and ”last” is the number of the last component in a row.

2. Component-net record:

Chip_net_relation=array[component-identifier, index] of net-identifier.
In the array, the first dimension gives component identifier and the second gives the item
index. For example, if cnr is a pointer pointing to chip_net relation in the procedure and net
1, 2, 4 and 7 pass component 10, thus the data in the array will be

enr{10,1)==1, cnr{10,2]=2, ¢nr[10,3]=4, cnr[10,4]=7.
By the use of the array, the number of nets passing two comparing components can be

detected.

3. Location-component-weight relation record:

chip_record=record
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identifier;

weight;

restricted-status;

masked-status;
end;

chip_array=array[ x-coordinate..y-coordinate ] of chip_record.
This record is used in the iterative placement process. The component identifiers are stored
in identifier items and the weight of components in weight items. Restricted-status and
masked-status are used to recognize the status of every component in the placement process.
For example, if some components are restricted in some regions, restricted for those com-
ponents is true. In a pass of the processing, masked is true when disregarding those exchanged
components in the further processing. Two dimensions in chip_array express the space of the

PWB.

Knowledge which used in the process includes:
1. The nominal net building knowledge is provided to build or re-build a nominal net.
2. The net weight computing knowledge and the component weight computing knowledge are
provided to compute the weight of a component so as to make components comparable.
3. The maximum gain knowledge is provided to determine which exchange may obtain max-

imum gain in a pass.

Suppose there are 12 components named 1 to 12, 4 nets in a PWB and the ratio of
length and width of the components is 1.5. Nets in the PWB are expressed in the form {com—

ponent name; ...... } thus, for this example,
Net 1 = {1;2;6;11; 12; 4 };

Net 2 = {1;2,7;,11;9 };
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Net 3 = {5;6;10; 11;8 };

Net 4 = { 3; 7; 8, 10; 5 }.
Fig. 4 is the process of the two-subset placement system given above. In this figure, (1) is the
initial assignment, (2) though (5) are processing cycles and (6) is an optimal result. The exper-
imental process shows that most of the exchanges between components occur in cycles 1 and

2.

Conclusion

The method presented in this paper is being implemented as part of an experimental
program of PWB design automation. It is used to process same size components. The basic
research approach involves using the indirective total wire length as the optimal weighted
function in the iterative process. Because the partitioning is only done once in the two-subset
placement and the redundant comparisons are eliminated, the process is efficient and the
result is optimal. The method can also be extended to handle different size components. The

complete implementation of the described method is still under development.
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net index: 3

Fig. 8 Pins of a net in a PWB
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Fig. 4 An example of the two-subset placement
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