TECHNICAL RESEARCH REPORT

User's Guide for ADIFFSQP Version (.91

by M.D. Liu and A.L. Tits

T.R. 97-32

IMR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

User’s Guide for ADIFFSQP Version 0.9!
Released March, 1997

Mingyan D. Liu and André L.Tits

Institute for Systems Research
University of Maryland, College Park, MD 20742

1 Introduction

ADIFFSQP is a utility program that allows the user of the FFSQP [1] constrained
nonlinear optimization routines to invoke the computational differentiation (or auto-
matic differentiation: AD) preprocessor ADIFOR2.0 [2] conveniently.

When solving optimization problems, FFSQP requires the evaluation of various ob-
jectives and constraints, and of their derivatives. The user may either provide his/her
own derivative evaluation subroutines or ask FFSQP to use its intrinsic finite differ-
encing option to evaluate the derivatives. Both alternatives have drawbacks. Manually
coding the derivative subroutine is often tedious and prone to mistakes. On the other
hand, finite differencing is inaccurate and CPU demanding. The rapid development of
the technique of automatic differentiation has shown a lot of advantages. Automatic
differentiation is as accurate as analytical differentiation. It evaluates partial derivatives
accurately and cheaply. In particular, it has been demonstrated that, in reverse mode,
the evaluation of a gradient requires no more than five times the effort of evaluating
the underlying function alone [3]. Current AD packages, such as ADIFOR2.0, typically
take the form of preprocessors that accept function evaluation subroutines as input and
generate corresponding derivative evaluation subroutines.

Obviously users can directly invoke ADIFOR2.0 to generate the derivative evaluation
subroutine without ADIFFSQP. But to do this, they have to create a “composite file”,
a “script file”, and a main program calling the function evaluation subroutine (Section
2.1), as required by ADIFOR2.0. After the derivative evaluation subroutine is generated
by ADIFOR2.0, users still have to implant it into the main program calling FFSQP and
create a “driver” subroutine invoking this ADIFOR-generated subroutine, since it cannot
be used directly.

Our purpose is to save users the time and trouble of doing the above mentioned
work and repeating it every time there is a new problem. ADIFFSQP is thus designed

1Copyright © 1997 by Mingyan D. Liu and André L. Tits. All Rights Reserved

User’s Guide for ADIFFSQP 2

to automate the procedure. The user only has to provide a valid input program set
in FORTRANT77, as required by FFSQP, with little alteration, and invoke ADIFFSQP.
ADIFFSQP takes the input program, generates all the files required by ADIFOR2.0,
invokes it, incorporates the ADIFOR-generated subroutines into the original input pro-
gram, makes essential modifications and outputs a new FORTRANT77 program that can
be used directly with FESQP.

2 ADIFFSQP Architecture

Before we start off to discuss the interrelationship and working procedures of FFSQP,
ADIFOR and ADIFFSQP, it is necessary to define some terms which will be frequently
mentioned in the following context.

independent variable: By independent variables we mean the components of x, the
third argument in the argument list of the objective and constraint evaluation subrou-
tines called by FFSQP [1].

dependent variable: The fourth argument, e.g., gj or £j, in the argument list of the
objective and constraint evaluation subroutines called by FFSQP [1].

function evaluation subroutine: A subroutine evaluating the function whose deriva-
tive is sought. Sometimes, more than one subroutine may be needed to evaluate a single
function. In such cases, there must be a top-level subroutine, as well as one or more
lower-level subroutines directly or indirectly called by the top-level subroutine. We call
these subroutines a function evaluation subroutine set.

derivative evaluation subroutine: A subroutine evaluating the derivative of a corre-
sponding function. This may also require more than one subroutine, in which case there
is also a top-level subroutine calling lower level subroutines. These subroutines is called
a derivative evaluation subroutine set.

Obviously, independent and dependent variables must be defined in both function
and derivative evaluation subroutines, at least in the top-level subroutines.

The structure of ADIFFSQP is determined by both ADIFOR and FFSQP. We will
discuss how they work in these two subsections.

2.1 ADIFOR 2.0
Figure 1, which we borrowed from [2], is the block diagram illustrating the process
of ADIFOR. ADIntrinsic and SparsLinC are two libraries that accompany the ADIFOR
package. More detailed descriptions can also be found in [2].
To summarize, a user working with ADIFOR2.0 generally needs to take the following
steps:
(1) Provide a function evaluation subroutine (set).

User’s Guide for ADIFFSQP 3

Function Evaluation
Subroutine (Set) ADIFOR 2.0 ADIntrinsics Derivative
Template ' Evaluation
. . Preprocessor
[Composite File *.cmp p Expander Subroutine (Set)
| Script File *.adf
Derivative .
Computing Compile and
Executable Link
Code
Derivative Code ADIntrinsics SparsLinC
Driver Library Library
Subroutine

Figure 1. Block Diagram of the ADIFOR2.0 Process

(2) Provide a dummy main program calling the top-level function evaluation sub-
routine;

(3) Create a “composite file” listing the names of the files containing the dummy
main program, top-level subroutine, and all the lower-level subroutines directly or indi-
rectly called by the top-level subroutine, i.e., all subroutines in the set;

(4) Create a “script file” listing the names of the composite file and of the top-
level subroutine as well as the names of the dependent and independent variables and
the number of independent variables;

(5) Execute ADIFOR2.0. The output is a derivative evaluation subroutine (set)
corresponding to the function evaluation subroutine set. Each output file has the same
name as the corresponding input file but with prefix g.. The name of each derivative
evaluation subroutine is the name of the corresponding function evaluation subroutine,
prefixed with g_. Subroutines that do not involve any independent or dependent variables
are included unprocessed in the derivative evaluation subroutine set.

(6) Provide a derivative code “driver subroutine” invoking the top-level g_ sub-
routine;

(7) Compile and link the driver program, the ADIFOR-generated g_ subroutines,

SparsLinC library and ADintrinsic library to build the desired derivative computing
executable.

User’s Guide for ADIFFSQP 4

Primary and Secondary
Input Files \

F77C 1 Output
omprie t Executable
and Link File
; Objective and Constraint

1 Function Derivative Function Derivative

ADIFFSQP 1.0 Evaluation Subroutines

, User Provided : Rl : ADIFQR-Genemted .
v Objective and Constraint
|
|
1
|

| Evaluation Subroutines

Figure 2. Block Diagram of FFSQP Process and Design Objective of ADIFFSQP

Note that ADIFOR only processes one function evaluation problem each time it is in-
voked, i.e., it allows only one top-level subroutine. This restriction will have implications
on ADIFFSQP, as discussed in Section 2.3 below.

2.2 FFSQP

To use FFSQP, the user must provide one or more files, referred to below as input
files, each of which could be in source or object form, which, together with ffsqp.o and
qld.o, must form a complete, linkable program. Obviously, in a meaningful program,
there is a file that includes a call to FFSQP. We will assume that only one file contains
such a call. This file will be referred to as primary input file. For the set of input files, or
input set, to be linkable with flsqp.o and gld.o, it must include a subroutine evaluating
the objective function(s) and another one evaluating the constraint function(s). These
top-level subroutines may in turn invoke lower-level subroutines. The user may provide
his/her own subroutines computing the derivatives of the objective and constraint func-
tions, or request that FFSQP execute finite differencing by using reserved subroutine
names within the FFSQP function call. If the input set consists of more than one file,
the additional file(s) will be referred to as secondary input file(s).

An FFSQP executable code is generated as illustrated in Figure 2.

The block in dotted lines indicates an optional component. If it is not provided,

User’s Guide for ADIFFSQP 5

| primaryfilesub.f and
secondaryfile.f ADIFFSQP

Invoking

rimaryfile.f
primary ADIFOR 2.0

secondaryfile.f

| primaryfiledmy.f

primaryfile.cmp

¢ primaryfile.adf

Derivative Driver

g_primaryﬁlesub.f
g_secondaryfile.f

ad_primaryfile.f ADIFFSQP
g_secondaryfile.f le——|perivative Code

Implanting
Figure 3. Block Diagram of The ADIFFSQP Process

FFSQP executes the intrinsic finite differencing. The design objective of ADIFFSQP is
to replace/provide this block with ADIFOR-generated derivative evaluation subroutines,
as indicated by the double-arrow in the diagram.
For more details on FFSQP, see
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

2.3 ADIFFSQP

The above discussion leads to the architecture of ADIFFSQP which is illustrated in
Figure 3.

Given a valid input set for FFSQP, the set of source files in this input set constitutes
a valid input set for ADIFFSQP provided the following three conditions are satisfied:

1. the source file set contains the primary input file as well as all the subroutines
whose arguments include independent or dependent variables, or whose common blocks
include independent or dependent variables, except possibly the objective and constraint
derivative evaluation subroutines.

2. the primary input file contains a call to FFSQP and also includes a parameter
statement assigning a constant value to nparam [1], the number of independent variables.
The primary input file must also include top-level function evaluation subroutines.

3. if present, the user provided top-level derivative evaluation subroutines appear
in the primary input file?.

ADIFFSQP proceeds as follows:

2These subroutines will be discarded by ADIFFSQP. To avoid mistakes, the user would be well
advised to remove his/her own derivative evaluation subroutines before using ADIFFSQP.

User’s Guide for ADIFFSQP 6

(1) Read the input file(s). Suppose the name of the primary input file is primaryfile.f,
and that of the secondary input file is secondaryfile.f;

(2) Examine the arguments in the FFSQP function call to determine the names of
the top-level objective function evaluation subroutine, the top-level constraint function
evaluation subroutine, as well as their derivative evaluation subroutines if they exist;

(3) Generate names to be assigned to the driver subroutines (See Step (9) below).
If derivative evaluation subroutines are provided, simply use those names.

(4) Write out to a separate file, primaryfilesub.f, all subroutines found in
primaryfile.f, except for the two user provided top-level derivative evaluation sub-
routines if they exist. The names of this file and of all secondary input files will be
passed to ADIFOR2.0 in the composite file (Step 6 below);

(5) Create a dummy main program primaryfiledmy.f calling a dummy top sub-
routine primaryfiletop, which calls both the top-level objective and constraint eval-
uation subroutines. The purpose of this dummy top subroutine is to avoid invoking
ADIFOR2.0 twice. As pointed out in 2.1, ADIFOR2.0 only allows one top-level subrou-
tine at a time. By using this dummy top subroutine, we are actually making ADIFOR2.0
process two functions, both of objective and of constraint, at the same time ;

(6) Create the corresponding composite file primaryfile.cmp and script file
primaryfile.adf;

(7) Execute the command Adifor2.0 to generate the derivative evaluation sub-
routine set correponding to the dummy top subroutine and the objective and con-
straint function evaluation subroutines, including both top-level ones and lower-level
ones. These Adifor-generated subroutines have prefix g., and are contained in file
g-primaryfilesub.f and g_secondaryfile.f, as described in 2.1.

(8) Move all contents from the primary input file to an output file ad_primaryfile.f,
which is generated by ADIFFSQP, except for the derivative subroutines if they exist

(9) Write two driver subroutines to the output file, invoking the ADIFOR-generated
top-level objective and constraint function evaluation subroutines. The names of the
driver subroutines are those assigned at Step (3) above;

(10) Move to ad_primaryfile.f the ADIFOR-generated subroutines from file
g-primaryfilesub.f;

(11) Delete all temporary files;

Thus a new FORTRANY7 program is completed, containing the automatic differ-

entiation code. It can be compiled with FFSQP to solve the optimization problem
immediately.

2.4 ADIFFSQP Linked with FFSQP and ADIFOR

The whole process and interrelationship between FFSQP, ADIFOR and ADIFFSQP
is illustrated in Figure 4.

By convention, when executing adiffsqp, the first input file name should be the
primary input file. The names of all secondary input files should also be given in the

User’s Guide for ADIFFSQP 7

ADIFOR 2.0
Preprocessor

| ad_primaryfile.f

primaryfile.f ADIFFSQP 1.0 g_secondaryfile.f
secondaryfile.f

ffsqp.o

qld.o = F77 Compile Output

ADIntrinsics Library and Link > 1}i);ecutable
ile
AD SparsLinC Library =

Figure 4. Block Diagram of ADIFFSQP Linking with FFSQP

input.
The limit on the number of input files is 100.

3 Installing ADIFFSQP

The ADIFFSQP distribution includes adiffsqp.c, adiffsqp.h and this user man-
ual.

The user should obtain a copy of the ADIFOR2.0 system, which consists of the
ADIFOR2.0 preprocessor, the ADIntrinsics template expander and library, and the
SparsLinC library. The ADIFOR2.0 software can be retrieved by visiting:

http://www.mcs.anl.gov/adifor, or http://www.cs.rice.edu/~adifor.

These pages describe how to request access to ADIFOR2.0 and how to download the
software.

The details on how to install ADIFOR2.0 can be found in [2]. This includes unpacking
the files:

gunzip adifor2.0.tar.gz
tar xf adifor2.0.tar
gunzip adifor2.0.lib.tar.gz
tar xf adifor2.0.lib.tar

User’s Guide for ADIFFSQP 8

ADIFOR2.0 can run on a Sparc, an IBM RS 6000 or an SGI workstation and it
provides the necessary libraries for each of these machines. A “C” compiler is required
to compile the SparcLinC library. Since ADIFFSQP is written in C, it can be run in all
environment where ADIFOR2.0 is supported.

An example of setting up certain environmental variables is as follows:

setenv AD_HOME /user/local/ADIFOR2.0
setenv AD_LIB /user/local/ADIFOR2.0.1ib
setenv PATH $AD_HOME/bin:$PATH
setenv MANPATH $AD_HOME/man:$MANPATH
setenv AD_ARCH sun4

setenv AD_0S Sun0S-4.x

The environment variable AD_HOME is set to be the path to the directory ADIFOR2.0,
AD_LIB to be the path to the directory ADIFOR2.0.lib, the variable AD_ARCH to
“sund”[2].

Then the user should compile adiffsqp.c to an object file using a C compiler, e.g.,

cc -c adiffsqp.c

ADIFFSQP is now installed and ready to accept user input.

4 Using ADIFFSQP

First, prepare an input file(s) as discussed in Section 3. An example with a single
file is shown in Section 5 below: sampll.f.
Second, execute the command to process the input file:

adiffsqp <primaryfile.f> [secondaryfilel.f] [secondaryfile2.f]...

secondaryfilel.f and secondaryfile2.f may contain several subroutines, includ-
ing the top-level subroutine. ADIFFSQP will process the file(s), invoke ADIFOR2.0 and
generate the output file, e.g., ad_primaryfile.f. ADIFOR-generated files are
g-secondaryfilel.f and g-secondaryfile2.f. If primaryfile.f contains function
evaluation subroutines, then ad_primaryfile.f will contain corresponding ADIFOR-
generated derivative evaluation subroutines as described in Section 2.3. If it dose not,
then all ADIFOR-generated subroutines will be contained in g_secondaryfile.f(s).

Third, ad_primaryfile.f can then be compiled along with all the objective files re-
quired by FFSQP and ADIFORZ2.0. If there are secondary input files, e.g., secondaryfilel,
and ADIFOR2.0 has generated corresponding g-files, e.g., g.secondaryfilel, for it,
these should also be included:

User’s Guide for ADIFFSQP 9

£77 ad_primaryfile.f ffsqpd.o qld.o
[secondaryfilel.f] [secondaryfile2.f]
[g_secondaryfilel.f] [g_secondaryfile2.f]
[others.f]
$AD_LIB/1lib/ReqADIntrinsics~$AD_ARCH.o
$AD_LIB/1ib/1ibADIntrinsics-$AD_ARCH.a -o samplad

T

here others.f refers to those files needed in running the optimization program, but do

not involve in function evaluation or derivative evaluation and thus are not provided to
ADIFFSQP.
It is highly recommended that the user create a Makefile for this purpose.

5 Example

The following is a suitable main program sampll.f (identical to that contained in the
FFSQP distribution):

c
c program description
c

program sampll
c

integer iwsize,nwsize,nparam,nf,nineq,neq

parameter (iwsize=29, nwsize=219)

parameter (nparam=3, nf=1)

parameter (nineq=1, neq=1)

integer iw(iwsize)

double precision x(nparam),bl(nparam),bu(nparam),

* f(nf+1) ,g(nineq+neq+1) ,w(nwsize)

external obj32,cntr32,grob32,grcn32
c

integer mode,iprint,miter,nineqn,neqn,inform

double precision bigbnd,eps,epseqn,udelta
c

mode=100

iprint=1

miter=500

bigbnd=1.d+10

eps=1.d4-08

epseqn=0.d0

udelta=0.do0

User’s Guide for ADIFFSQP

c nparam=3

c nf=1
nineqgn=1
neqn=0

c nineq=1

C neq=1

b1(1)=0.d0
b1(2)=0.40
b1(3)=0.d0
bu(1)=bigbnd
bu(2)=bigbnd
bu(3)=bigbnd

give the initial value of x

x(1)=0.140
x(2)=0.7d0
x(3)=0.2d0

call FFSQP(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,
miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
iw,iwsize,w,nwsize,obj32,cntr32,grob32,grcn32)

end

subroutine obj32(nparam,j,x,fj)
integer nparam, j
double precision x(nparam),fj

£ij=(x(1)+3.d0*x(2)+x(3)) **2+4.d0* (x (1) -x(2)) **2
return
end

subroutine grob32(nparam, j,x,gradfj,dummy)

integer nparam, j

double precision x(nmparam),gradfj(nparam),dummy,fa,fb
external dummy

fa=2.d0*(x(1)+3.d0*x(2)+x(3))

User’s Guide for ADIFFSQP 11

10

20

10

20

fb=8.d0* (x(1)-x(2))
gradfj(1)=fa+fb
gradfj(2)=fa*3.d0-fb
gradfj(3)=fa

return

end

subroutine cntr32(nparam,j,x,gj)
integer nparam, j

double precision x(nparam),gj
external dummy

go to (10,20),j
gj=x(1)**3-6.0d0*x(2)-4.0d0*x(3)+3.40
return

gj=1.0d0-x(1)-x(2)-x(3)

return

end

subroutine grcn32(nparam,j,x,gradgj,dummy)
integer nparam, j
double precision x(nparam),gradgj(nparam),dummy

go to (10,20),]
gradgj(1)=3.d0*x (1) **2
gradgj(2)=-6.4d0
gradgj(3)=-4.40
return
gradgj(1)=-1.d0
gradgj(2)=-1.d0
gradgj(3)=-1.d0
return

end

The ADIFFSQP-generated output program is as follows:

program sampli

integer iwsize,nwsize,nparam,nf,nineq,neq
parameter (iwsize=29, nwsize=219)
parameter (nparam=3, nf=1)

parameter (nineq=1, neq=1)

User’s Guide for ADIFFSQP 12

integer iw(iwsize)

double precision x(nparam),bl(nparam),bu(nparam),f(nf+1),g(nineq+n
*xeq+1) ,w(nwsize)

external obj32,cntr32,grob32,grcn32

integer mode,iprint,miter,nineqn,neqn,inform
double precision bigbnd,eps,epseqn,udelta
external grob32,g_obj32,grcn32,g_cntr32
mode=100

iprint=1

miter=500

bigbnd=1.d+10

eps=1.4-08

epseqn=0.4d0

udelta=0.do0

nineqn=1

neqn=0

b1(1)=0.d0

b1(2)=0.4d0

b1(3)=0.d0

bu(1)=bigbnd

bu(2)=bigbnd

bu(3)=bigbnd

x(1)=0.1d0

x(2)=0.7d0

x(3)=0.2d0

call FFSQP(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,miter,infor
*m,bigbnd, eps,epseqn,udelta,bl,bu,x,f,g,iv,ivsize,w,nwsize,0bj32,cn
*tr32,grob32,grcn32)

end

subroutine grob32(mparam,j,x,gradj,dummy)
integer nparam, j

double precision dummy,x(nparam),gradj(3),

* g.x(3,3),gj

external dummy

g-x(3,3)=1.0

call g_obj32(nparam,nparam, j,x,g_x,nparam,gj,
* gradj,nparam)

return

end

subroutine obj32(nparam,j,x,fj)

integer nparam, j

User’s Guide for ADIFFSQP 13

double precision x(nmparam),fj
fj=(x(1)+3.d0*x(2) +x(3)) **2+4.d0* (x (1) -x(2)) **2
return
end
subroutine grcn32(nparam,j,x,gradj,dummy)
integer nparam, j
double precision dummy,x(nparam),gradj(3),
* g x(3,3),gj
external dummy
g_x(1,1)=1.0
g-x(2,2)=1.0
g-x(3,3)=1.0
call g_cntr32(nparam,nparam,j,x,g_x,nparam,gj,
* gradj,nparam)
return
end
subroutine cntr32(nparam,j,x,gj)
integer nparam, j
double precision x(nparam),gj
go to (10,20),j
10 gj=x(1)**3-6.0d0*x(2)-4.0d0*x(3)+3.d0
return
20 gj=1.0d0-x(1)-x(2)-x(3)
return
end
subroutine g_obj32(g_p_, nparam, j, x, g.x, ldg_x, fj, g_fj, 1ldg_f
*3j)
integer nparam, j
double precision x(mparam), fj
integer g_pmax.
parameter (g_pmax_ = 3)
integer g_i_, g.p., ldg_fj, ldg_x
double precision d2_p, di_p, d6_b, d5_b, d7_v, d9_v, d47_b, g_fj(
*1dg_£j), g.x(ldg_x, nparam)
integer g_ehfid
data g_ehfid /0/
call ehsfid(g_ehfid, ’o0bj32’,’g_obj32.f’)
if (g_p_. .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif

User’s Guide for ADIFFSQP 14

x(3))

10

* %k

d7_v (x(1) + 3.d0 * x(2) + x(3)) * (x(1) + 3.40 * x(2) +

d2_p = 2.0d0 * (x(1) + 3.d40 * x(2) + x(3))
do_v = (x(1) - x(2)) * (x(1) - x(2))
di_p = 2.0d0 * (x(1) - x(2))
d5_b = 4.d0 * di_p
d6_b = d5_b + d2_p
d7_b -d5_b + d2_p * 3.40
dogii. =1, g p_
g-fj(g.i) = d2.p * g x(g_i_, 3) + d7_b * g_x(g_i_, 2) + d6_b
g_x(g_i_, 1)
enddo
fj =d7_v + 4.d0 * d9_v
return

end
subroutine g_cntr32(g_p_, nparam, j, x, g_x, ldg_x, gj, g_gj, ldg_
*g3)

integer nparam, j
double precision x(mparam), gj
integer g_pmax_
parameter (g_pmax_ = 3)
integer g_i_, g_p., ldg_gj, ldg_x
double precision di_p, d2_v, g_gj(ldg_gj), g_x(ldg_x, nparam)
integer g_ehfid
data g_ehfid /0/
call ehsfid(g_ehfid, ’cntr32’,’g_cntr32.f’)
if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
goto (10, 20), j
d2_v = x(1) ** (3 - 2)
d2_v = d2_v * x(1)
dip = 3% d2_v
d2_v = d2_v * x(1)
do g_i_ =1, g_p_
g-8j(g_i.) = -4.0d0 * g x(g_i_, 3) + (-6.0d0) * g x(g_i_, 2) +

I}

* dl_p * g x(g_i_, 1)

enddo
g = d2_v - 6.0d0 * x(2) - 4.0d0 * x(3) + 3.d0
return

User’s Guide for ADIFFSQP 15

20 dogi_ =1, g_p.
g-gj(g.il) = -g.x(g_i_, 3) + (-g_x(g_i_, 2)) + (-g_x(g_i_, 1))
enddo
gj = 1.0d0 - x(1) - x(2) - x(3)
return
end

References

[1] J.L.Zhou & A.L.Tits, User’s Guide for FSQP Version3.0c: A FORTRAN
Code for Solving Constrained Nonlinear (Minimaz) Optimization Problems, Generating
Iterates Satisfying All Inequality and Linear Constraints, Institute for Systems Research,
University of Maryland, College Park, MD 20742m 1992.

[2] Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hov-
land, ADIFOR2.0 User’s Guide, Mathematics and Computer Science Division Technical
Memorandum No.192 and Center for Research on Parallel Computation Technical Re-
port CRPC-95516-s, August 1995.

[3] Andreas Griewank, On Automatic Differentiation, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL 60493, U.S.A.

